TW201225092A - Electronice system, memory and method for providing the same - Google Patents

Electronice system, memory and method for providing the same Download PDF

Info

Publication number
TW201225092A
TW201225092A TW100129641A TW100129641A TW201225092A TW 201225092 A TW201225092 A TW 201225092A TW 100129641 A TW100129641 A TW 100129641A TW 100129641 A TW100129641 A TW 100129641A TW 201225092 A TW201225092 A TW 201225092A
Authority
TW
Taiwan
Prior art keywords
diode
memory
coupled
memory element
supply voltage
Prior art date
Application number
TW100129641A
Other languages
Chinese (zh)
Other versions
TWI462107B (en
Inventor
Chien-Shine Chung
Original Assignee
Chien-Shine Chung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chien-Shine Chung filed Critical Chien-Shine Chung
Publication of TW201225092A publication Critical patent/TW201225092A/en
Application granted granted Critical
Publication of TWI462107B publication Critical patent/TWI462107B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

At least one diode fabricated in standard CMOS logic processes can be used as program selectors for the memory cells that can be programmed based on the directions of current flow.These memory cells are MRAM, RRAM, CBRAM, or other memory cells that have a first end of a memory element coupled to the P terminal of the first diode and to the N terminal of a second diode.The diodes can be constructed by P+ and N+ active regions on an N well as the P and N terminals of the diodes.By applying a high voltage to a second end of the memory element and switching the N terminal of the first diode to a low voltage while disabling the second diode, a current flows through the memory cell can change the resistance into one state.Similarly, by applying a low voltage to a second end of the memory element and switching the P terminal of the second diode to a high voltage while disabling the first diode, a current flows through the memory cell can change the resistance into another state.The P+ active region of the diode can be isolated from the N+ active region in an N well by using dummy MOS gate, SBL, or STI isolations.

Description

201225092 六、發明說明: 【發明所屬之技術領域】 [_本發明猶關於-記憶細單元,特別是記憶體陣列之 可編程電阻元件。 [先前技術] 闕彳編程電阻元件通常是指元件之電阻狀態可在編程後改 變。電阻狀態可以由電阻值來決定。例如,電阻性元件 可以疋單次性可編程(〇ne_Time pr〇grammable,〇τρ) 元件(如電性熔絲),而編程方法可以施用高電壓,來產 生高電流通過·0ΤΡ元件。當高電流經由打開的編程選擇器 流過0ΤΡ元件,0ΤΡ元件將被燒成高或低電阻狀態(取決 於是溶絲或反熔絲)而加以編程。 [0003] 電性熔絲是一種常見的0ΤΡ,而這種可編程電阻元件,可 以是多晶石夕、石夕化多晶石夕、矽化物、熱隔離的主動區、 金屬、金屬合金或它們的組合。金屬可以是銘,銅或其 他過渡金屬。其中最常用的電性溶絲是石夕化的多晶石夕, 其用互補式金氧半導體電晶體(CMOS)的閘極製成,用來 作為内連接(interconnect)。電性炫絲也可以是一個或 多個接點(contact)或層間接點(via),而不是小片段的 内連接。高電流可把接點或層間接點燒成高電阻狀態。 電性熔絲可以是反熔絲,其中高電壓使電阻降低,而不 是提高電阻。反熔絲可由一個或多個接點或層間接點組 成,並含有絕緣體於其間。反熔絲也可由CMOS閘極耦合 於CMOS本體,其含有閘極氧化層當做為絕緣體。 [0004] 圖1所示為一種傳統的可編程電阻式s己憶存儲單元。存儲 100129641 表單編號A0101 第4頁/共59頁 1003436465-0 201225092 Ο 單元10包含一電阻元件丨丨和一^^型金氧半導體電晶體 (_s)編程選擇器12。電阻元件u一端輕合到:⑽的 汲極,另一端轉合到正電壓V+°NMOS 12的閑極麵合到 選擇信號SEL,源極耦合到負電壓v_。當高電壓加在v + 而低電壓加在V-時,電阻元件1〇則可被編程,經由提高 編裡選擇信號SEL來打開NM〇S 12…種最常見的電阻: 件是石夕化多晶發,乃是在同時製作職閘極時用的同樣材 料。NMOS編程選擇器12的面積,需要足夠大,以使所需 的編程電流可持續幾微秒。矽化多晶矽的編程電流通常 是從幾毫安(對寬度約40奈米的熔絲)至2〇毫安^對吊寬 度約0. 6微米熔絲)。因此使用矽化多晶矽的電攸 儲單元往往需有大的面積。 …子 [0005] 可編程電阻元件可以是可逆的電阻元件,可以重複編程 且可逆編程成數位邏輯值T 4 丫 。可編程電= 件可從相變材料來製造,如鍺(Ge)、銻(Sb201225092 VI. Description of the invention: [Technical field to which the invention pertains] [The present invention relates to a memory fine unit, particularly a programmable resistance element of a memory array. [Prior Art] 阙彳 Programming a resistance element usually means that the resistance state of the element can be changed after programming. The resistance state can be determined by the resistance value. For example, a resistive component can be a single-programmable (〇ne_Time pr〇grammable, 〇τρ) component (such as an electrical fuse), while a programming method can apply a high voltage to generate a high current through the ΤΡ component. When a high current flows through the 0ΤΡ element via the open programming selector, the 0ΤΡ element will be programmed to burn to a high or low resistance state (depending on the filament or antifuse). [0003] Electrical fuses are a common type of ΤΡ, and such programmable resistive elements can be polycrystalline shi, shixi polycrystalline shi, bismuth, thermally isolated active regions, metals, metal alloys or Their combination. The metal can be a metal, copper or other transition metal. The most commonly used electric melting wire is Shihuahua's polycrystalline stone, which is made of a gate of a complementary MOS transistor (CMOS) for use as an internal connection. Electrical snaking can also be one or more contacts or vias instead of small segments. High current can burn contacts or layers indirectly to a high resistance state. The electrical fuse can be an anti-fuse, where a high voltage reduces the resistance rather than increasing the resistance. The antifuse may be composed of one or more contacts or layer indirect points and has an insulator therebetween. The antifuse can also be coupled to the CMOS body by a CMOS gate that contains a gate oxide layer as an insulator. [0004] FIG. 1 shows a conventional programmable resistive memory cell. Storage 100129641 Form No. A0101 Page 4 of 59 1003436465-0 201225092 单元 Unit 10 includes a resistive element 丨丨 and a MOS transistor (_s) programming selector 12. One end of the resistive element u is lightly coupled to the drain of (10), the other end is switched to the positive voltage V+. The idle surface of the NMOS 12 is coupled to the selection signal SEL, and the source is coupled to the negative voltage v_. When the high voltage is applied to v + and the low voltage is applied to V-, the resistive element 1〇 can be programmed to open the NM〇S 12...the most common resistor by raising the select signal SEL: The piece is Shi Xihua Polycrystalline hair is the same material used in the production of the gate. The area of the NMOS programming selector 12 needs to be large enough to allow the required programming current to last for a few microseconds. The programming current of the deuterated polysilicon is usually from a few milliamperes (for a fuse having a width of about 40 nm) to 2 mA with a hanging width of about 0.6 μm. Therefore, an electric storage unit using a deuterated polycrystalline crucible often requires a large area. ... [0005] The programmable resistive element can be a reversible resistive element that can be reprogrammed and reversibly programmable to a digital logic value T 4 丫 . Programmable electrical parts can be fabricated from phase change materials such as germanium (Ge), germanium (Sb)

Te)的組成Ge2Sb2Te5 (GST-225 )或包括成分銦(ΐη Ο )、錫(Sn)或硒(Se)的GeSbTe類材料。經由高電壓 短脈衝或低電壓長脈衝,相變材料可被編程成非晶體熊 高電阻狀態或結晶態低電阻狀態。可逆電阻元件可以是 電阻式隨機存取記憶體(電阻式記憶體RRAM),存儲單 元由在金屬或金屬合金電極之間的金屬氧化物,如鉑/氧 化鎳/鉑(Pt/NiO/Pt)或氮化鈦/氧化鈦/氧化铪/氮化鈦 (TiN/TiOx/Hf〇2/TiN)製成。該電阻狀態可逆性的改變 是經由電壓或電流脈衝的極性、強度及持續時間,產生 或消滅導電細絲。另一種類似電阻式隨機存取記憶體 100129641 表單编號A0101 第5頁/共59頁 1003436465-0 201225092 (am )的可編程電阻元件是導電橋隨機存取記憶體( CB^AM)。此記憶體是基於電化學沉積和移除在金屬或金 屬合金電極之間的固態電解質薄膜裏的金屬離子。電極 可為個可氧化陽極和惰性陰極’而且電解質可為摻銀 或銅的硫系破璃如硒化鍺(GeSe)或硒化硫(GeS)等。 該電阻狀態可祕㈣變是㈣電壓或電流脈衝的極性 、強度及持續時間,產生或消滅導電橋。 [0006] [0007] 圓乙a顯示了 —The composition of Te) is Ge2Sb2Te5 (GST-225) or a GeSbTe-based material including indium (ΐηΟ), tin (Sn) or selenium (Se). The phase change material can be programmed to an amorphous bear high resistance state or a crystalline low resistance state via a high voltage short pulse or a low voltage long pulse. The reversible resistance element may be a resistive random access memory (resistive memory RRAM), and the memory unit is made of a metal oxide between metal or metal alloy electrodes, such as platinum/nickel oxide/platinum (Pt/NiO/Pt). Or made of titanium nitride/titanium oxide/yttria/titanium nitride (TiN/TiOx/Hf〇2/TiN). The reversible change in resistance state is the generation or elimination of conductive filaments via the polarity, intensity and duration of the voltage or current pulses. Another similar resistive random access memory 100129641 Form No. A0101 Page 5 of 59 1003436465-0 201225092 (am) The programmable resistive element is a conductive bridge random access memory (CB^AM). This memory is based on electrochemical deposition and removal of metal ions in a solid electrolyte film between metal or metal alloy electrodes. The electrode may be an oxidizable anode and an inert cathode' and the electrolyte may be a silver-doped or copper-containing sulfur-based glass such as strontium selenide (GeSe) or selenium sulphide (GeS). The resistance state can be secreted (four) to be (iv) the polarity, intensity and duration of the voltage or current pulse to create or destroy the conductive bridge. [0006] [0007] Round B a shows -

N 调傅統雙極性電日日體2 2的戴面圖 電晶體22包括一P+主動區(active regi〇n) 23,— 淺井24,-N+主動區27,一p型基體25和用來隔離元件 的一淺溝槽隔離(STI) 26βΡ+主動區23#〇N+主動區η 輕合到N井24,就是雙極性電晶趙22裏射極和基極二極體 的P和N端’而P型基體25是雙極性電晶_的集極。這種 存儲單元需要N淺井24比淺溝槽隔離26淺,來妥善隔 個存儲單元,因而需要比標準CMOS邏輯制程多3 — 4、首光罩 ,而使得它的製作比較昂貴。 圖2b所示為另—相變記憶體(pcM)的可編程電阻元件。 相變記憶體材料有相變薄膜21,*二極體22,編程^擇器 。相變薄膜21,被耦合在二極體陽極22,和正電壓pi 間。二極體的陰極22,被耦合到負電壓恥。 死*知適當的 電壓在V+和V-之間持續一段適當的時間,相變薄賴,可 以被編程為高或低電阻狀態,根據電壓和持續時間而— 請見 “Kwang-Jin Lee et al.,“A 90nra l 8v 512Mb Diode-Switch PRAM with 266ΜΒ/ς r> b KeadThe N-shaped bipolar electric solar illuminator 22 has a P+ active region 23, a shallow well 24, an N+ active region 27, a p-type substrate 25, and a spacer element. A shallow trench isolation (STI) 26βΡ+ active region 23#〇N+ active region η is lightly coupled to the N well 24, which is the P and N terminals of the bipolar electro-crystal Zhao 22 and the base diode The P-type substrate 25 is the collector of the bipolar electro-crystal. This type of memory cell requires the N shallow well 24 to be shallower than the shallow trench isolation 26 to properly separate the memory cells, thus requiring three to four more than the standard CMOS logic process, making the first photomask more expensive. Figure 2b shows a programmable resistive element of another phase change memory (pcM). The phase change memory material has a phase change film 21, a diode 22, and a programming device. The phase change film 21 is coupled between the diode anode 22 and a positive voltage pi. The cathode 22 of the diode is coupled to a negative voltage shame. Death* knows that the appropriate voltage lasts between V+ and V- for an appropriate period of time. The phase change is low and can be programmed to a high or low resistance state, depending on voltage and duration - see "Kwang-Jin Lee et al ., "A 90nra l 8v 512Mb Diode-Switch PRAM with 266ΜΒ/ς r> b Kead

Throughput, M International Solid-.ct 5tate Cir- 100129641 表單編號A0101 第6頁/共59頁 1003436465- 201225092 nce, ώυυ,, ρρ 4γ2_273” 。圖& 丁為使用—核體作為相變記憶ρ 程選料_子。《這項技術可㈣州編 寸到’、有6.8 F2(F代表特徵大小),二極體 雜的製造姑,如·“晶《(SEG)nH複 入式PCM的應用,將變的非常貴。 來對嵌 [0008] 圖3a和3b顯示紐< 丄$ + ββ _ 、士由電^方向來編程磁記憶體(MRAM)存儲 〇β 成磁平行(或狀態0)和磁反平行(或狀態1)。 ΟThroughput, M International Solid-.ct 5tate Cir- 100129641 Form No. A0101 Page 6 of 59 1003436465- 201225092 nce, ώυυ,, ρρ 4γ2_273". Figure & D is for use - nucleus as phase change memory ρ Material_子. "This technology can be (4) state edited to ', with 6.8 F2 (F stands for feature size), the production of diodes, such as "SEG" nH re-entry PCM application, It will become very expensive. In contrast to the embedded [0008] Figures 3a and 3b, the display of the new < 丄$ + ββ _, the singularity of the magnetic memory (MRAM) storage 〇β magnetic parallel (or state 0) and magnetic anti-parallel (or State 1). Ο

MRAM存儲單几210由一個磁性隧遠接面(MTJ) 2U和-NM〇S的編程選擇器218組成。磁隧道接面211擁有多層次 T鐵磁或反鐵磁叠與如A1203或MgO的金屬氧化物,作為 夕層_人之間的絕緣體。磁隨道接面211包括自由堆叠層 212和固疋堆疊層213。打開編程選擇器CMOS 218且施加 適备的電流到磁性隧道接面211,自由層堆212就可排列 成磁平行或磁反平行於固定層堆213,根據電流的流出或 流入固定層堆213而定。因此,磁狀態可以進行編程,而 狀態結果可以由電阻值來決定磁平行狀態的低電阻或磁 反平行狀態的高電阻《狀態〇或1電阻值分別為约5kD或 10ΚΩ,而且編程電流約+/-i〇〇-2〇〇mAe編程MRAM存 儲單元的一個例子描述在” 2Mb Spin_Transfer Torque RAM with Bit-by-Bit Bidirectional Current Write and Paralleiizing-Direction Current Read,” International Solid-State Circuit Conference, 2007, pp· 480-481” 。 【發明内容】 100129641 表單編號A0101 第7頁/共59頁 1003436465-0 201225092 _9]本發明之-目的為提供使用二㈣作為編程選擇器的可 編程電阻7L件存料元,可編㈣電阻元件可以使用桿 準CMOS邏輯製程,以減少存儲單元的大小和成本。τ [_因此本發明提供-種記憶體,包括:多個記憶存儲單元 ,至少一記憶存儲單元包括:—記憶元件有第—端和第 二端,該第一端被耦合到第一電源電壓線;及一第一二 極體包括至少一第一端和一第二端,其中該第一端具有 -第-類型摻雜,該第二端具有—第二類型摻雜,該第 一二極體的該第一端被耦合到該記憶元件的該第二端; 一第二二極體包括至少一第一端和一第二端其中該第 一端具有一第一類型摻雜,該第二端具有一第二個類型 摻雜,該第二二極體的該第二端被耦合到該記憶元件的 該第二端,其中該第一二極體的該第二端被耦合到—第 二電源電壓線’其中該第二二極體的該第一端被耦合到 該第二或一第三電源電壓線,其中,該記憶元件被配置 為可編程到不同的邏輯狀態,經由施加電壓到該第_, 第二和/或第三電源電壓線,從而導通該第一二極體而切 斷了該第二二極體到一邏輯狀態,或導通該第二二極體 而切斷了該第一二極體到另一邏輯狀態。 [0011]因此本發明提供一種記憶體,包括:多個記憶存儲單元 ,至少有一記憶存儲單元包括:一記憶元件有第一端和 第二端,該第一端被耦合到一第一電源電壓線;及—第 —二極體包括至少一第一端和一第二端,其中該第一端 具有一第一類型掺雜,第二端具有一第二類型摻雜,該 第—二極體的該第一端被耦合到該記憶元件的該第二端; 100129641 表單編號A0101 第8頁/共59頁 1003436465-0 201225092 Ο [0012]The MRAM memory cell 210 is comprised of a magnetic tunnel junction (MTJ) 2U and a programming selector 218 of -NM〇S. The magnetic tunnel junction 211 has a multi-layered T-ferromagnetic or antiferromagnetic stack with a metal oxide such as A1203 or MgO as an insulator between the layers. The magnetic track junction 211 includes a free stack layer 212 and a solid stack layer 213. The programming selector CMOS 218 is turned on and a suitable current is applied to the magnetic tunnel junction 211, and the free layer stack 212 can be arranged in magnetic parallel or magnetic anti-parallel to the fixed layer stack 213, depending on the current flowing out or flowing into the fixed layer stack 213. set. Therefore, the magnetic state can be programmed, and the state result can be determined by the resistance value to determine the low resistance of the magnetic parallel state or the high resistance of the magnetic antiparallel state "state 〇 or 1 resistance value is about 5kD or 10 Κ Ω, respectively, and the programming current is about + An example of a /-i〇〇-2〇〇mAe programming MRAM memory cell is described in "2Mb Spin_Transfer Torque RAM with Bit-by-Bit Bidirectional Current Write and Paralleiizing-Direction Current Read," International Solid-State Circuit Conference, 2007, Pp·480-481". [Description of Contents] 100129641 Form No. A0101 Page 7 of 59 1003436465-0 201225092 _9] The present invention is directed to providing a programmable resistor 7L piece stock using two (four) as a programming selector The device can be programmed to use a quasi-CMOS logic process to reduce the size and cost of the memory cell. τ [Therefore, the present invention provides a memory comprising: a plurality of memory storage units, at least one memory storage unit including The memory element has a first end and a second end, the first end being coupled to the first supply voltage line; and a first diode package Including at least a first end and a second end, wherein the first end has a -type-type doping, the second end has a second type of doping, and the first end of the first diode is coupled To the second end of the memory element; a second diode comprising at least a first end and a second end, wherein the first end has a first type of doping and the second end has a second type Doping, the second end of the second diode is coupled to the second end of the memory element, wherein the second end of the first diode is coupled to a second supply voltage line The first end of the second diode is coupled to the second or a third supply voltage line, wherein the memory element is configured to be programmable to a different logic state, via applying a voltage to the _, second And/or a third power voltage line, thereby turning on the first diode to cut the second diode to a logic state, or turning on the second diode to cut the first diode To another logic state. [0011] The present invention therefore provides a memory comprising: a plurality of memory storage units, to A memory storage unit includes: a memory element having a first end and a second end, the first end coupled to a first supply voltage line; and - the second diode includes at least a first end and a second end The first end has a first type doping, the second end has a second type doping, and the first end of the first diode is coupled to the second end of the memory element; 100129641 form No. A0101 Page 8 of 59 1003436465-0 201225092 Ο [0012]

一第二二極體包括至少一第一端和一第二端,其中該第 一端具有一第一類型摻雜’該第二端具有一第二類型摻 雜,该第二二極體的該第二端被柄合到該&己憶元件的該 第一端,其中該第—二極體的該第二端和該第二二極體 的該第一端被耦合到一第二電源電壓線,其中,該記憶 元件被配置為可編程到不同的邏輯狀態,經由施加電壓 到該第一和第二電源電壓線,從而導通該第一二極體而 切斷了該第二二極體到一邏輯狀態,或導通該第二二極 體而切斷了該第—二極體到另一邏輯狀態。 本發明提供-種電子系統,包括:-種處理器;及 種戏體可操作地連接到處理器,這記憶體包括至少 f时料元來提供輯㈣,每健 π一:憶元件有第-端和第二端,該第-端被:: 到-第-電源電壓線;及1 —二極體包括至少 和一第二端’其中該第—端具有一第一類型換雜,該第 二端具有-第二個類型摻雜,該第一二極體的該第一端 油合到該記憶元件的該第二端,該第一二極體的該第 二端被耦合一到第二電源電壓線;一第二極體包括至少 -第-端和-第二端’其中該第—端具有一第一類型摻 雜,該第二端具有-第二類型摻雜,該第二二極體的該 第二端被Μ合到該記憶元件的該第二端,而該第二二極 體的該第-端被Μ合到該第二或—第三電源電壓線;其 中’该S己憶元件被S己置為可編程到不同的邏輯狀態,經 由施加電壓到S亥第一,第二和/或第三電源電麼線,從而 導通該第一二極體而切斷了該第二二極體到一邏輯狀態 100129641 表單編號A0101 第9頁/共59 1003436465-0 頁 201225092 ,或導通該第二二極體而t 牧蒞而切斷了該第一二極體到另一邏 輯狀態。 [0013] 因此本發明提供-種方法來提供一記憶體,包括:提供 多個記憶存料元’至少有-記憶存儲單元包括至少(i )-記憶元件有第-端和第二端,該第—端被柄合到一 第-電源電壓線;及(ii) 一第一二極體包含至少一第一 端和一第二端,該第—端具有第一類型摻雜,該第二端 擁有第-類型掺雜,該第_二極體的該第—端被麵合到 該記憶元件的該第二端而該第一二極體的該第二端被耦 合到-第二電源電壓線;⑴〇一第二二極體包含至少 -第-端和-第二端,該第—端具有第—類型摻雜,該 第二端具有第二類型摻雜,該第一端提供了二極體的一 第一端,第二端提供二極體的一第二端,該第二二極體 的該第二端被耦合到該記憶元件的該第二端而該第二二 極體的該第-端被Μ合到該第二或—第三電源電壓線; 及 [0014] 其中,該記憶元件被配置為可編程到不同的邏輯狀態, 經由施加電壓到該第一,第二和/或第三電源電壓線從 而導通該第一二極體而切斷了該第二二極體到一邏輯狀 態,或導通該第二二極體而切斷了該第一二極體到另一 邏輯狀態。 [0015] 【實施方式】 在本發明之實施例中,Ρ + /Ν井接面二極體作為可編程電 阻式元件的編程選擇器。此二極體可以包括在1^井裏的ρ + 和Ν+主動區(Active regions)。由於ρ·^〇Ν+主動區和1^ 100129641 表單編號A0101 第10頁/共59頁 1003436465-0 201225092 井都是以現成的標糊GS邏輯録,這些元件可用有效 率及符合成本效益的方法做成且不需額外的光罩或製程 步驟省成本。這可編程電阻式元件可以包括在一 個電子系統裏。a second diode includes at least a first end and a second end, wherein the first end has a first type of doping 'the second end has a second type of doping, the second dipole The second end is stalked to the first end of the & recall element, wherein the second end of the second diode and the first end of the second diode are coupled to a second a power supply voltage line, wherein the memory element is configured to be programmable to a different logic state, by applying a voltage to the first and second supply voltage lines, thereby turning the first diode off and cutting the second The polar body is in a logic state, or the second diode is turned on to cut off the first diode to another logic state. The present invention provides an electronic system comprising: a processor; and a theater operatively coupled to the processor, the memory comprising at least a f-time element to provide a series (4), each of the π: a memory element having a a - terminal and a second terminal, the first terminal being:: to - a - supply voltage line; and 1 - the diode comprising at least a second end 'where the first end has a first type of miscellaneous The second end has a second type of doping, the first end of the first diode is coupled to the second end of the memory element, and the second end of the first diode is coupled to a second power supply voltage line; a second polar body comprising at least a first end and a second end 'where the first end has a first type doping and the second end has a second type doping The second end of the diode is coupled to the second end of the memory element, and the first end of the second diode is coupled to the second or third supply voltage line; 'The S-remembered component is set to be programmed to a different logic state by applying voltage to the first, second and/or third power supply lines of the S, thereby conducting The first diode cuts the second diode to a logic state 100129641, form number A0101, page 9 / total 59 1003436465-0 page 201225092, or turns on the second diode and t grazes The first diode is broken to another logic state. [0013] The present invention therefore provides a method for providing a memory comprising: providing a plurality of memory cells - at least - a memory storage unit comprising at least (i) - a memory element having a first end and a second end, The first end is coupled to a first-supply voltage line; and (ii) a first diode includes at least a first end and a second end, the first end having a first type of doping, the second The terminal has a first type of doping, the first end of the second diode is coupled to the second end of the memory element and the second end of the first diode is coupled to the second power source a voltage line; (1) the second diode includes at least a first end and a second end, the first end having a first type doping and the second end having a second type doping, the first end providing a first end of the diode, the second end providing a second end of the diode, the second end of the second diode being coupled to the second end of the memory element and the second The first end of the polar body is coupled to the second or third supply voltage line; and [0014] wherein the memory element is configured to be programmable to a different logic a state, cutting the second diode to a logic state, or turning on the second diode by applying a voltage to the first, second, and/or third power voltage lines to turn on the first diode The first diode is cut off to another logic state. [Embodiment] In an embodiment of the present invention, a Ρ + / Ν well junction diode is used as a program selector for a programmable resistive element. This diode can include ρ + and Ν + active regions in the well. Since ρ·^〇Ν+ active area and 1^100129641 Form No. A0101 Page 10 / Total 59 Page 1003436465-0 201225092 Wells are all ready-to-use standard GS logic records, these components can be used in an efficient and cost-effective way It is made and does not require additional masks or process steps to save costs. This programmable resistive element can be included in an electronic system.

_]則所㈣依據—實施例的㈣至卜二極體的記憶體存 儲早兀30方塊圖。㈣是,存儲單元3()包括—記憶元件 3〇a和二極體32a,32b。記憶元件3〇a可耗合在二極體 32a的陽極和電壓v之間。二極趙心的陰極可輕合到負電 Ο 壓卜。圮憶几件30&可耦合在二極體32b的陰極和電壓V 之間一極體32b的陽極可耦合到正電壓乂+。在—實施例 裏,圮憶體存儲單元3〇可為磁記憶體(MRAM)存儲單元, 其含有為磁性隧道接面(MTJ)的記憶元件3〇a。二極體 32a或32b可以作為編程〇或丨選擇器。二極體可以用p型 基體的標準CMOS製程的P+/N井來建造。作為二極體陽極 和陰極的P+和N+主動區就是CM〇s元件的源極或汲極。n 井就是CMOS井用來嵌入pM0S元件。另外,二極體可以用 Q 製程裏的N+/P井來構造,其使用N型基體。記憶 元件3Ga和二極體32a或32b於電源電壓V和V+/V-之間是 可互換的。經由一適當的時間裏施加適當的電壓(在〇和 V-之間)’記憶元件30a可由導通(turn on)—二極體且 切斷(cut off)另一二極體而被編程為高或低電阻狀態 ,因此編程記憶體存儲單元30可存儲數據值(例如,數 據的位元)。二極體32a或32b可以是接面二極體。接面 二極體的P+和N+主動區可以使用假CMOS閘極、淺溝槽隔 離(STI)、局部氧化(LOCOS)或矽化物阻擋層(SBl 100129641 表單编號A0101 第11頁/共59頁 1卯3436465-0 201225092 )來隔離。如果沒有石夕化物靠近第一和第二主動區的邊 界,第一和第二主動區可以對接(butted)在一起或用摻 雜低劑量的主動區來分離這兩種主動區。 [0017] 磁性隧道接面(MTJ)的存儲單元可作為說明關鍵實現概念 的範例。圖5a顯示了一二極體32的橫截面,在可編程電 阻元件裏使用淺溝槽隔離的P + /N井二極體做為編程選擇 器。分別構成二極體32的P和N終端的P+主動區33和N+主 動區37就是在標準CMOS邏輯製程裏的PM0S和NM0S的 源極或汲極。N+主動區37被耦合到N井34,此N井在標準 CMOS邏輯製程裏嵌入PM0S。淺溝槽隔離36隔離不同元件 的主動區。電阻元件(沒有顯示在5a圖),如MTJ,可以 一端被耦合到P+區33而另一端被耦合到高電壓電源V+。 為了編程這種可編程電阻式元件,高電壓加在V+,低電 壓或地電位施加到N +區3 7。因此,高電流流過熔絲元件 和二極體32來編程電阻元件。 [0018] 圖5b顯示了另一接面二極體32’實施例截面圖,其當做 編程選擇器並以假CMOS閘極隔離。淺溝槽隔離36’提供 其他主動區的隔離。主動區31’係以淺溝槽隔離36’來加 以定義。這裡的N +和P +主動區37’和33’進一步分別由 假CMOS閘極39’,P +植入層38’ ,和N +植入層(P +植 入層38’之互補)混合來加以定義,構成二極體32’的 N和P端。該二極體32’被製作成類似PM0S的元件包含了 37’、39’、33’、34’作為源極、閘極、汲極和N井,然 而源極37’上覆蓋有N +植入層而非真正的PM0S所覆蓋的 P +植入層38’。假M0S閘極39’最好是偏壓在一固定的電 100129641 表單編號A0101 第12頁/共59頁 1003436465-0 201225092 壓’其目的為在製作過程中當作Ρ+主動區33,和!^+主動區 37’之間的隔離。Ν+主動區37,被耦合到Ν井34’,此井在 標準CMOS邏輯製程裏是嵌入PM〇s的本體。ρ基體35,是ρ 型矽的基體。電阻元件(圖5b中沒有顯示,例如MTJ)可 以端被輕合到P+區33’而另一端被搞合到高電壓電源 。為了編程這種可編程電阻元件,高電壓施加在以,而 低電壓或接❹ΠΗ主動區37’ 因此,高電流流過溶絲元 Ο [0019] Ο [0020] 件與二極體32,來編程電阻元件。這實施例有理想的小 尺寸和低電阻。 圖5c所示另一實施例的橫截面,其中接面二極體32”以 石夕化物阻騎(SBL) 39”祕並作為編料擇^。圖^ 類似圖5b,然而在圖此裏的假⑽s閘極39,被圖^裏 的發化物阻擋層39 “所取代’以阻止石夕化物生長在主動 區31 “的頂部。如果沒有—個假⑽s閘極或石夕化物阻擋 層,NW+主動區將由主動區域31 “表面的石夕化物而被 短路。 嶋所示另-倾㈣職面,其巾料二極舰,,作 為編程選擇器,並採用絕㈣基體(如)的技術。在 則技術裏,基體35 ’’是如二氧化石夕或類似材料的絕緣 體,此絕緣體包含一薄層石夕生長在頂部。所有_S和 PM0S都在料襄’由二氧切或類似的材料隔離彼此和 基體35 。一整件(one piece)主動區31"經由假 CMOS閘極39”、P +植入層38”和入層⑴植入層 38”之互補)的混合分為N+主動區π",主動區 33’’和本體34,’。因此,Ν+主動區3?,,和ρ+主動區 100129641 表單編號Α0101 第13頁/共59頁 1003436465-0 201225092 33’,分別構成接面二極體32”的N端和P端。N+主動區 37’,及P+主動區33’ ’可以分別和標準⑶⑽邏輯製程裏 NM0S和PM0S的源極或沒極相同。同樣,假(^肋閘極別 “可以和標準CMOS製程建構的CM〇s閘極相同。假M〇s閘 極39,可以偏壓在一固定的電壓,其目的為在製作過程中 當作P+主動區33”和N +主動區37”之間的隔離。.主 動區37被搞合到低電壓和N井34,此N井在標準CMOS 邏輯製程裏是嵌入PM0S的本體。電阻元件(圖6a中沒有 顯示)’如MTJ’可以—端被搞合到p+主動區33,而另 一端被Μ合到高電壓電源V+。為了編程這種電性熔絲存 儲單元,高和低電壓分別施加在V+和V-,導通大電流流 過MTJ與接面二極體32 來編程電阻元件。CMOS隔離技 術的其他實施例,如淺溝槽隔離、假CMOS閘極或矽化物 阻擋層在一至四邊或任何一邊,可以很容易應用到相應 的CMOS SOI技術。 [0021] 圖6b顯示了另—接面二極體45實施例的一载面圖,該接 面二極體45使用翅式場效應電晶體(FinFET)技術的編程 選擇器。FinFET是指翅式(FIN)為基本的多閘極電晶體 。FinFET技術類似傳統的CMOS,但是具有高瘦石夕島,其 升高在碎基體上以作為CMOS元件的主體。主體像在傳統 CMOS,分為源極,汲極和多晶石夕或非銘金屬閘極的通道 。主要的區別是在FinFET技術中’ M0S元件的本體被提 升到基板之上,島狀區的高度即是通道的寬度,雖然電 流的流動方向仍然是在平行於矽的表面。圖6b顯示了 FinFET技術的一個例子,石夕基體35是一外延層,建在類 100129641 表單編號A0101 第14頁/共59頁 1003436465-0 201225092 似SOI絕緣層或其他高電阻石夕基體之上。梦基體⑽可以被 姓到成幾個南大的長方形島狀區3Η、31_2和3卜3。經 由適田的閘極氧化層成長,島狀區31_1、3丨_2即31_3可 7別以M0S閘極39-1、39-2和39-3來覆蓋升高的島狀 區=兩邊及疋義源極和没極區。源極和汲極區形成於島 狀區31-1、31-2及31-3,然後填充矽,如填充於填充 $ 〇 1和40-2,讓合併的源極和汲極面積大到足以放下 接點在圖6b中,40-1和40-2的填充區域只是用來說明 〇 顯露橫截面’例如填充區域可以填充到島狀區31丄1、 和31 3的表面。在此實施例,主動區33_1,2 3和 I 2’ 3被P+植入層38,和N +植入層(p+植入層38 ^互補)分別覆蓋來構成接面二極體彻^^端,而不 疋像傳統FinFET的PM0S全部被p+植入層38覆蓋。N+主 動區仏1,2,3被耗合到低電壓電源卜。電阻元件(嶋 沒有顯示),如MTJ,一端被轉合到p+主動區 ,另一端被轉合到高電壓電源V+。為了編程這種電性熔 〇 絲’高和《壓分別施加在叫V-上,導以通大電流流 過電阻元件與接面二極體45,來編程電阻元件。CM〇s主 體技術隔離的其他實施例,如淺溝槽隔離 ,或魏物阻料,可以很容易應用到相應的 術。 [0022] 圖7顯示一磁記憶體(MRAM)存儲單元31〇的一實施例, 使用二極體317和318作為編程選擇器。依據此實施例,' MRAM存儲單元310在圖7裏是三端點的MRAM存儲單元且 有磁隧道接面(MTJ)311,其中包括自由堆叠層312^固具 100129641 表單編號A0101 第15頁/共59頁 ^03436465-0 201225092 ^ 定堆疊層313與之間的介電質薄膜,以及兩二極體317和 318。自由堆疊層312被耦合到電源電壓v和經由介電質 薄膜(如金屬氧化物之氧化鋁(A1203)或氧化鎂 (MgO))被耦合到固定堆疊層313。二極體317之N端耦合 到固定堆疊層313且P端耦合到v+以編程(邏輯)1。二極 體318之P端耦合到固定堆疊層313且N端被耦合到V-以 編程(邏輯)〇。如果V+電壓高於v,電流從V +流到V來編 程MTJ 311到狀態1。同樣,如果V-電壓低於V,電流從 V流到V-來編程MTJ 311進入狀態〇。在編程過程中,另 一二極體應該在截止區。在讀取時,V +和V-可以皆設為 0V而節點V和V+/V-之間的電阻可被感應,以決定磁隧道 接面311是在狀態0或1。 [0〇23]圖8a顯示了一 MRAM存儲單元310實例的截面圖,其含有 MTJ 311和作為編程選擇器之接面二極體317及318。照 此實施例’ MTJ 311有自由堆疊層312、固定堆疊層313 及介電質於其間’以構成一磁性隧道接面^二極體317被 用來編程1而二極體318被用來編程0。二極體31 7和318 分別在N井321和320裡有p +和N+主動區,此N井可用於嵌 入標準CMOS製程裏的PM〇s。二極體317有P+主動區315 和N+主動區314 ’來構成編程}的二極體317的P和N端。 同樣,二極體318有P+主動區316和N+主動區319,來構 成編程0的二極體318的P和N端。圖8a所示二極體317和 318的p和N端由STI 330來隔離。對此技術熟知者可知 ’不同的隔離方法(例如假M0S閘極或SBL)亦可以應用。 [0024] MTJ 311的自由堆疊層312可被耦合到電源電壓v,二極 100129641 表單編號A0101 第16頁/共59頁 1003436465-0 201225092 Ο _ 體318的Ν端可被耦合到電源電壓ν_,而二極體317的1>端 可_合到另一電源電V+。在圖8a裏’編程工可以經由施 加高電塵(即2V)到V+和[,同時保持¥在接地或⑽來達 成。為了編程1,電流從二極體317經由MTJ 311流過, 當時二極體318處於截止狀態。同樣,編程〇可以經由施 加一個高電廢(即2V)到V,並保持VH〇v_接地來達成。 在這種障況下冑桃從’ 311流經由二極趙318,而當 時二極體317處於截止狀態。 圖㈣示-舰時儲單元31G,㈣—實施例的截面圖 ο 。依據此實施例’其包含MTJ 311’與作為編程選擇器之 接面二極體3Π,和318’。阳311,有自由堆叠層 =、固定堆叠層313,及於之間的介電質來構成一磁 ^接面。二極體317,用來編程1而二極體川,是用 來=程〇。二極體317’和318’有分別在_21,和 320之P+和N+主動區,該N井必 Μ。%以額外處理的淺井來 製造雖‘、、、還而要更多的處理步 更小。二_17,有P+主動區315存,體積可以 來構成編程i二極體317,的 ° +主動區31 ,右p+ 士 和W 同樣地,二極體 318有P+主動區316,和_ 二極體318,的⑽端。^ , 來構成編程〇 用來隔離不同的主動 區0 [0026] MTJ 311的自由堆為声312’ ·5τ ,二極體318,料合職源電壓V W〗7, _ &源電壓V-,而二極 體3 端可以被耗合到電源電壓v 程1時,可以姆山 +。在圖11 b裏編 从由施加高電壓(即⑺至V+和v_,同時 100129641 表單編號纖 ^ 17 I/* 59 I 1003436465-0 201225092 保持V接地或GV來達成。為了編程1,電流經由MTJ 3U ,流過二極體317’,而二極體318,處於截止狀態。同 樣’編刻可以經由施加高電壓(即4 2v)M,並保持 V +和V —接地來達成。在這種情況下,電流會從MTJ 3H, 流通過二極體318,,而二極體川,處於截止狀態。 [0027] 圖9a顯示-具三端點之2Χ2謝_儲單元陣列的實施例 ’其使用二極體3Π和318作為編程選擇器,及顯示編程i 於-存儲單元之條件。存儲單元31㈠g、3ι〇 〇ι、 310-10和310-11構成—二維陣列。存儲單⑽〇_〇〇具 有一犯31卜⑽,—編程1二極體3Π-00和-編程〇二 極體318 GG。訂】311-GQ —端被轉合到電源電壓v,另 一端被麵合到編程1二極體〇〇的N端和編程〇二極體 318-00的P端。編程!二極體317_〇〇的p端被麵合到一電 源電壓V+編程G_極體318_Q()_端她合到一電源電 壓卜。其他存儲單元31Q,、3UM〇及31(j_u都有類 似的耦σ在同行存儲單元31〇一⑽和的電壓v 被連接到位7C線〇(BL〇)。在同—行存儲單元31〇 〇1和 310-11的電壓V被連接到位元線⑽⑴。在同一列的存 儲單元310 一 〇〇和310_01的電壓V+和V-分別被連接到字 元線動P和WLGN。在同—列的存儲單元31〇_1〇和 310 11的電壓V+和V-分別被連接到字元線WLlpiaWUN 。為了編寫1到存儲單元3H1-G卜孔㈣設成高電壓, BL1被設成低電壓,而設定其他此和扎在適當的電壓, 如圖9a所示’來使其他編程1和編程0二極體除能 (disable)»圖9a裏的黑粗線顯示電流的流動方向。 100129641 表單編號A0101 第18頁/共59頁 1003436465-0 201225092 LUUZ»J圖此顯不另一實施例,係說明將一 2X2 MRAM存儲單元陣 列裏存儲單元31 〇~〇1編程為1之另一條件。例如分別設 BL1和WL0P成低電壓和高電壓,以將存儲單元31〇^編 程為1。如果於條件1中BL〇被設置為高電壓,η〇Ν和 WL1N可以是高電壓或浮動,並且wup可以是低電壓或浮 動。MRAM在當今的技術的高和低電壓分別約為:高電壓2 -3V和低電壓〇。如果於條件2中乩〇是浮動,札⑽和 WL1N能是高電壓,低電壓,或浮動,並且WL1P可以是低 ❹ 電壓或洋動。在實際執行,浮動節點通常是經由非常弱 的元件被耦合到—個固定的電壓,以防止漏電。圖93所 示編程為1條件的實施例中’並無任何浮動節點。 [0029]圖10a顯示一具三端點之2X2 MRAM存儲單元陣列的實施 例’其包含MTJ 311和作為編程選擇器之接面二極體 317和318,及顯示編程存儲單元為〇之條件。這些存儲單 元310-00、310'01、310-10和310-11 構成一二維陣列 。該存儲單元31G,具有-犯31卜〇() '編程!二極體 Ο 317-00和編程0二極體318-00 〇MTJ 311-00—端被耦合 到電源電壓V ’另—端被麵合到編程1二極體317-〇〇的{^ 端和編程0二極體318-00的P端。編程丨二極體317_〇〇的 P端被耦合到—電源電壓V+。編程0二極體318-〇〇的1^端 被耦合到一電源電壓v_。其他存儲單元31〇_〇1、 310-10及31 〇-11都有類似的耦合。在同一行存儲單元 310-00和31〇-10的電壓v被連接到位元線BL〇。在同—’ 打存儲早tc31〇-〇h〇310-U的電壓¥被連接到Bu。在 同一列的存儲單元310一00和310_01的電壓卩+和¥分別 100129641 表單編號A0101 第19頁/共59頁 1003436465-0 201225092 被連接到字元線WL0P和WL0N。在同一列的存儲單元 310-10和31 0-11的電壓V +和V-分別被連接到字元線 WL1P和WL1N。如圖l〇a所示,為了編寫〇到存儲單元 310-01,WL0N被設成低電壓’ BL1被設成高電壓,而設 定其他BL和WL在適當的電壓,以使其他編程1和編程〇二 極體除能。圖1 0a裏的黑粗線顯示電流的流動方向。 [0030] 圖10b顯示另一實施例,係說明把三端點之2χ2 mram# 儲單元陣列裏存儲單元310-01編程為〇之條件。例如,分 別設BL1和WL0N成低電壓和高電壓,可將存儲單元 310-01編程為〇。於條件1裏,如果BL〇被設置為低電壓 ,WL0P和WL1P可以是低電壓或浮動,並且孔⑺可以是高 電壓或浮動。MRAM在當今的技術的高和低電壓分別約為 :高電壓2-3V和低電壓〇。於條件2裏,如果⑽是浮動 的,WL0P和WL1P能是高電壓,低電壓,或浮動並且 WL1N可以是高電堡或浮動。在實際執行,浮動節點通 是經由非常弱的元件被麵合到到—固定的電壓以防止 渴電。圖10a顯示編程為〇條件的一實施例,其中無任何 [0031] 一 一m「干門仔儲單元是 端存儲單元,即存料元具有V,V淋節點, ^果編程電™P小於兩倍的二極體臨界電酬娜 起ΓΓΓ ’R—存儲單元的v^v—節點可以被連接在— 起作為雙端細單元。由於在室溫Tvd約級6_^, 100129641 如果齡電壓低2V,這種雙端存儲單元可正常工作 。UMRAM陣列在先進的圓技術裏常見的電壓配置, 表單編號A0101 第20頁/共59頁 1003436465-0 201225092 [0032] Ο_] Then (4) According to the memory of the (IV) to Bu diode of the embodiment, the block diagram is as early as 30. (d) Yes, the memory unit 3() includes a memory element 3a and a diode 32a, 32b. The memory element 3a can be consumed between the anode of the diode 32a and the voltage v. The cathode of the dipole Zhao Xin can be lightly connected to the negative electricity Ο pressure. A few pieces of 30& can be coupled between the cathode of the diode 32b and the voltage V. The anode of the pole 32b can be coupled to a positive voltage 乂+. In an embodiment, the memory cell 3 can be a magnetic memory (MRAM) memory cell that includes a memory element 3A that is a magnetic tunnel junction (MTJ). The diode 32a or 32b can be used as a programming 丨 or 丨 selector. The diode can be constructed using a p+ substrate of a standard CMOS process P+/N well. The P+ and N+ active regions as the diode anode and cathode are the source or drain of the CM〇s component. The n well is the CMOS well used to embed the pM0S component. Alternatively, the diode can be constructed using an N+/P well in the Q process, which uses an N-type substrate. The memory element 3Ga and the diode 32a or 32b are interchangeable between the supply voltages V and V+/V-. Applying the appropriate voltage (between 〇 and V-) via a suitable time 'memory element 30a can be programmed to be high by turning on-diode and cutting off the other diode Or a low resistance state, so the program memory storage unit 30 can store data values (eg, bits of data). The diode 32a or 32b may be a junction diode. The P+ and N+ active regions of the junction diode can use a dummy CMOS gate, shallow trench isolation (STI), local oxidation (LOCOS) or germanide barrier layer (SBl 100129641, Form No. A0101, Page 11 of 59) 1卯3436465-0 201225092) to isolate. If no lithotripsy is adjacent to the boundary of the first and second active regions, the first and second active regions may be butted together or separated by a low dose active region to separate the active regions. [0017] A magnetic tunnel junction (MTJ) memory cell can serve as an example to illustrate the key implementation concepts. Figure 5a shows a cross section of a diode 32 in which a shallow trench isolated P + /N well diode is used as a programming selector in a programmable resistive element. The P+ active region 33 and the N+ active region 37, which respectively constitute the P and N terminals of the diode 32, are the source or drain of the PM0S and NM0S in a standard CMOS logic process. The N+ active region 37 is coupled to the N-well 34, which is embedded in the PMOS in a standard CMOS logic process. Shallow trench isolation 36 isolates the active regions of the different components. A resistive element (not shown in Figure 5a), such as the MTJ, can be coupled to the P+ region 33 at one end and to the high voltage supply V+ at the other end. To program such a programmable resistive component, a high voltage is applied to V+, a low voltage or ground potential is applied to the N+ region 37. Therefore, a high current flows through the fuse element and the diode 32 to program the resistance element. [0018] Figure 5b shows a cross-sectional view of another junction diode 32' embodiment as a programming selector and isolated by a dummy CMOS gate. Shallow trench isolation 36' provides isolation of other active regions. Active region 31' is defined by shallow trench isolation 36'. Here, the N + and P + active regions 37' and 33' are further mixed by a dummy CMOS gate 39', a P + implant layer 38', and an N + implant layer (complementary to the P + implant layer 38'), respectively. To define, the N and P ends of the diode 32' are formed. The diode 32' is fabricated like a PMOS component comprising 37', 39', 33', 34' as the source, gate, drain and N well, whereas the source 37' is covered with N+ implant Into the layer instead of the P+ implant layer 38' covered by the real PIOS. The dummy M0S gate 39' is preferably biased at a fixed electrical 100129641 Form No. A0101 Page 12 / Total 59 Page 1003436465-0 201225092 Pressure 'The purpose is to treat the active area 33 during the production process, and! ^+ isolation between active areas 37'. The Ν+active region 37 is coupled to the well 34', which is the body embedded in the PM 〇s in a standard CMOS logic process. The ρ substrate 35 is a matrix of p-type 矽. The resistive element (not shown in Figure 5b, such as the MTJ) can be lightly coupled to the P+ zone 33' and the other end to the high voltage supply. In order to program such a programmable resistive element, a high voltage is applied to the low voltage or junction active region 37'. Therefore, a high current flows through the dissolver element [0020] Ο [0020] and the diode 32, Program the resistive element. This embodiment has an ideal small size and low resistance. A cross-section of another embodiment, shown in Figure 5c, in which the junction diode 32" is made as a braided material. Fig. 5 is similar to Fig. 5b, however, the dummy (10)s gate 39 in the figure is "replaced" by the halide barrier layer 39 in the figure to prevent the growth of the ceramsite at the top of the active region 31". If there is no false (10) s gate or a lithiation barrier, the NW+ active region will be short-circuited by the active region 31 "the surface of the stone compound. 嶋The other-dip (four) face, its towel, the second pole ship, As a programming selector, and using a technique of a (four) substrate (for example), in the technique, the substrate 35'' is an insulator such as a dioxide dioxide or similar material, and the insulator contains a thin layer of stone grown on top. Both _S and PM0S are isolated from each other and the substrate 35 by a dioxotomy or similar material. One piece of active region 31" via a dummy CMOS gate 39", a P+ implant layer 38" and The mixing of the entry layer (1) the complementary layers of the implant layer 38" is divided into an N+ active region π", an active region 33'' and a body 34, '. Therefore, Ν+active area 3?,, and ρ+ active area 100129641 Form No. 1010101 Page 13/59 pages 1003436465-0 201225092 33', respectively forming the N-terminal and P-terminal of the junction diode 32". N+ The active region 37', and the P+ active region 33'' can be the same as the source or the pole of the NM0S and PM0S in the standard (3) (10) logic process. Similarly, the dummy gate can be constructed with a standard CMOS process. The s gate is the same. The dummy M〇s gate 39 can be biased at a fixed voltage for the purpose of isolation between the P+ active region 33" and the N + active region 37" during the fabrication process. Zone 37 is fitted to the low voltage and N well 34. This N well is embedded in the body of the PM0S in the standard CMOS logic process. The resistor component (not shown in Figure 6a) 'such as MTJ' can be integrated into p+ active Zone 33, and the other end is coupled to a high voltage power supply V+. To program such an electrical fuse memory cell, high and low voltages are applied to V+ and V-, respectively, and a large current is conducted through the MTJ and the junction diode. 32 to program resistive elements. Other embodiments of CMOS isolation techniques, such as shallow trench isolation, dummy CMOS gates or The barrier layer can be easily applied to the corresponding CMOS SOI technology on one to four sides or on either side. [0021] FIG. 6b shows a carrier diagram of another embodiment of the junction diode 45, the junction diode 45 Programming selector using FinFET technology. FinFET is a basic multi-gate transistor with FIN (FIN) technology. FinFET technology is similar to traditional CMOS, but has a high lean island, which rises in The main body is like a main body of a CMOS component. The main body is in a traditional CMOS, which is divided into a source, a drain, and a channel of a polycrystalline or non-metal gate. The main difference is the body of the M0S component in FinFET technology. Being lifted onto the substrate, the height of the island is the width of the channel, although the direction of current flow is still parallel to the surface of the crucible. Figure 6b shows an example of FinFET technology, which is an epitaxial layer. , built in class 100129641 Form No. A0101 Page 14 / Total 59 Page 1003436465-0 201225092 Like SOI insulation or other high-resistance Shi Xi matrix. Dream base (10) can be surnamed into several Nanda rectangular islands Zones 3Η, 31_2, and 3卜3. Through the growth of the gate oxide layer of the field, the island regions 31_1, 3丨_2, that is, 31_3 can be covered by the M0S gates 39-1, 39-2, and 39-3. Elevated islands = both sides and the source and the annihilation zone. The source and drain regions are formed in the islands 31-1, 31-2, and 31-3, and then filled with 矽, such as filled in the fill $ 〇1 and 40-2, so that the combined source and drain areas are large enough to drop the contacts. In Figure 6b, the filled areas of 40-1 and 40-2 are only used to illustrate the 横截 revealing cross-sections. The surfaces of the island regions 31丄1, and 313 are filled. In this embodiment, the active regions 33_1, 2 3 and I 2' 3 are respectively covered by the P+ implant layer 38 and the N + implant layer (p + implant layer 38 ^ complementary) to form the junction diode. The PMOS, which is not like a conventional FinFET, is all covered by the p+ implant layer 38. The N+ active zone 仏 1, 2, 3 is consumed by the low voltage power supply. The resistive element (嶋 not shown), such as the MTJ, is switched to the p+ active region at one end and to the high voltage supply V+ at the other end. In order to program such an electrical fuse wire 'high and the voltage is applied to V-, respectively, a large current flows through the resistor element and the junction diode 45 to program the resistor element. Other embodiments of the CM〇s main body isolation, such as shallow trench isolation, or Weigong material, can be easily applied to the corresponding operation. [0022] FIG. 7 shows an embodiment of a magnetic memory (MRAM) memory cell 31, using diodes 317 and 318 as programming selectors. According to this embodiment, the 'MRAM memory cell 310 is a three-terminal MRAM memory cell in FIG. 7 and has a magnetic tunnel junction (MTJ) 311 including a free-stacking layer 312, a fixture 100129641, a form number A0101, page 15/ Total 59 pages ^03436465-0 201225092 ^ The dielectric layer between the stacked layers 313 and the two diodes 317 and 318. Free stack layer 312 is coupled to supply voltage v and coupled to fixed stack layer 313 via a dielectric film such as aluminum oxide (A1203) or magnesium oxide (MgO). The N terminal of diode 317 is coupled to fixed stack layer 313 and the P terminal is coupled to v+ to program (logic) 1. The P terminal of diode 318 is coupled to fixed stack layer 313 and the N terminal is coupled to V- to program (logic). If the V+ voltage is higher than v, the current flows from V+ to V to program MTJ 311 to state 1. Similarly, if the V-voltage is lower than V, the current flows from V to V- to program the MTJ 311 into state 〇. During the programming process, the other diode should be in the cutoff area. At the time of reading, both V + and V- can be set to 0V and the resistance between nodes V and V+/V- can be sensed to determine that the magnetic tunnel junction 311 is in state 0 or 1. [023] Figure 8a shows a cross-sectional view of an example of an MRAM memory cell 310 that includes an MTJ 311 and junction diodes 317 and 318 as programming selectors. According to this embodiment, the MTJ 311 has a free stack layer 312, a fixed stack layer 313, and a dielectric therebetween to form a magnetic tunnel junction. The diode 317 is used for programming 1 and the diode 318 is used for programming. 0. Dipoles 31 7 and 318 have p + and N + active regions in wells 321 and 320, respectively, which can be used to embed PM〇s in standard CMOS processes. The diode 317 has a P+ active region 315 and an N+ active region 314' to form the P and N terminals of the diode 317. Similarly, diode 318 has a P+ active region 316 and an N+ active region 319 to form the P and N terminals of the programming zero diode 318. The p and N terminals of diodes 317 and 318 shown in Figure 8a are isolated by STI 330. It is known to those skilled in the art that 'different isolation methods (e.g., dummy MOS gates or SBLs) can also be applied. [0024] The free stacking layer 312 of the MTJ 311 can be coupled to a supply voltage v, dipole 100129641 Form No. A0101 Page 16 / Total 59 Page 1003436465-0 201225092 Ο _ The end of the body 318 can be coupled to the supply voltage ν_, The 1> terminal of the diode 317 can be coupled to another power supply V+. In Figure 8a, the programmer can achieve this by applying high dust (ie 2V) to V+ and [while keeping ¥ at ground or (10). For programming 1, current flows from diode 317 through MTJ 311, while diode 318 is in an off state. Similarly, programming can be achieved by applying a high-power waste (ie 2V) to V and keeping VH〇v_grounded. In this situation, the peach flows from the '311 through the dipole Zhao 318, while the diode 317 is in the off state. Figure (4) shows a ship-time storage unit 31G, (d) - a cross-sectional view of the embodiment ο. According to this embodiment, it includes the MTJ 311' and the junction diodes 3', and 318' as programming selectors. The anode 311 has a free stacking layer =, a fixed stack layer 313, and a dielectric between them to form a magnetic junction. The diode 317, which is used to program 1 and the diode, is used for Cheng Cheng. The diodes 317' and 318' have P+ and N+ active regions at _21, and 320, respectively, and the N well must be. % is made with shallow wells that are additionally processed, although ‘, , and still require more processing steps. Two _17, there is P + active area 315, the volume can be composed to program i dipole 317, ° + active area 31, right p + 士 and W Similarly, diode 318 has P + active area 316, and _ two (10) end of the polar body 318. ^ , to form programming 〇 used to isolate different active areas 0 [0026] MTJ 311 free heap is sound 312 ' · 5τ, diode 318, material source voltage VW〗 7, _ & source voltage V- And the diode 3 can be consumed to the power supply voltage v, when it can be used. In Figure 11b, the voltage is achieved by applying a high voltage (ie (7) to V+ and v_, while 100129641 form number fiber ^ 17 I / * 59 I 1003436465-0 201225092 keep V ground or GV. For programming 1, current through MTJ 3U, flowing through the diode 317', while the diode 318 is in an off state. Similarly, the 'engraving can be achieved by applying a high voltage (ie, 4 2v) M and maintaining V + and V - ground. In this case, the current will flow from the MTJ 3H through the diode 318, and the diode will be in the off state. [0027] Figure 9a shows an embodiment of a two-terminal 2 Χ 2 _ storage cell array The diodes 3 and 318 are used as programming selectors, and the conditions for programming the memory cells are displayed. The memory cells 31 (a) g, 3 ι〇〇ι, 310-10, and 310-11 constitute a two-dimensional array. The memory is single (10) 〇 _ 〇〇 has a blunder 31 (10), - programming 1 diode 3 Π - 00 and - programming 〇 diode 318 GG. Order 311 - GQ - the end is turned to the power supply voltage v, the other end is face to programming The N-terminal of the diode is P and the P terminal of the 〇 diode 318-00 is programmed. Programming! The p-side of the diode 317_〇〇 is bonded to A power supply voltage V+ programming G_ pole body 318_Q () _ end she is connected to a power supply voltage. Other memory units 31Q, 3UM 〇 and 31 (j_u have similar coupling σ in the peer storage unit 31 10 one (10) and The voltage v is connected to the bit 7C line 〇 (BL 〇). The voltage V at the same-line memory cells 31 〇〇 1 and 310 -11 is connected to the bit line (10) (1). The memory cells 310 in the same column are 〇〇 and 310_01 The voltages V+ and V- are connected to the word line movements P and WLGN, respectively. The voltages V+ and V- of the same-column memory cells 31〇_1〇 and 31011 are respectively connected to the word line WLlpiaWUN. To the memory cell 3H1-G Bu hole (4) set to high voltage, BL1 is set to low voltage, and set the other and the appropriate voltage, as shown in Figure 9a 'to make other programming 1 and programming 0 diodes Disable»The thick black line in Figure 9a shows the direction of current flow. 100129641 Form No. A0101 Page 18 of 59 1003436465-0 201225092 LUUZ»J This is another embodiment, the description will be a 2X2 In the MRAM memory cell array, the memory cell 31 〇~〇1 is programmed to another condition of 1. For example, BL1 and WL0P are respectively set. The voltage and the high voltage are used to program the memory cell 31 to 1. If BL is set to a high voltage in Condition 1, η 〇Ν and WL1N may be high voltage or floating, and wup may be low voltage or floating. The high and low voltages of MRAM in today's technology are approximately: high voltage 2 - 3V and low voltage 〇. If 乩〇 is floating in condition 2, 扎(10) and WL1N can be high voltage, low voltage, or floating, and WL1P can be low ❹ voltage or ocean wave. In practice, floating nodes are typically coupled to a fixed voltage via very weak components to prevent leakage. In the embodiment shown in Fig. 93 programmed to 1 condition, there is no floating node. Figure 10a shows an embodiment of a three-terminal 2X2 MRAM memory cell array that includes MTJ 311 and junction diodes 317 and 318 as programming selectors, and displays the conditions for programming memory cells. These memory cells 310-00, 310'01, 310-10, and 310-11 form a two-dimensional array. The storage unit 31G has - commits 31 divination () 'programming! Diode Ο 317-00 and programming 0 diode 318-00 〇 MTJ 311-00 - terminal is coupled to the supply voltage V 'the other end is connected to the {^ terminal of the programming 1 diode 317-〇〇 And program the P terminal of the diode 318-00. The P terminal of the programming 丨 diode 317_〇〇 is coupled to the supply voltage V+. The 1^ terminal of the programming 0 diode 318-〇〇 is coupled to a supply voltage v_. Other memory cells 31〇_〇1, 310-10, and 31〇-11 have similar couplings. The voltage v at the same row of memory cells 310-00 and 31〇-10 is connected to the bit line BL〇. In the same -' hit the memory early tc31〇-〇h〇310-U voltage is connected to Bu. The voltages 卩+ and ¥ in the same column of memory cells 310 00 and 310_01 are respectively 100129641 Form No. A0101 Page 19 of 59 1003436465-0 201225092 is connected to the word lines WL0P and WL0N. The voltages V + and V - of the memory cells 310-10 and 31 0-11 in the same column are connected to the word lines WL1P and WL1N, respectively. As shown in Figure l〇a, in order to write to memory cell 310-01, WL0N is set to low voltage 'BL1 is set to high voltage, while other BL and WL are set to the appropriate voltage for other programming 1 and programming 〇 Dipole depletion. The thick black line in Figure 1a shows the direction of current flow. [0030] FIG. 10b shows another embodiment for explaining the condition of programming the memory cell 310-01 in the 2χ2 mram# memory cell array of the three terminals to the 〇. For example, setting BL1 and WL0N to a low voltage and a high voltage, respectively, can store memory cell 310-01 as 〇. In Condition 1, if BL〇 is set to a low voltage, WL0P and WL1P may be low voltage or floating, and the hole (7) may be high voltage or floating. The high and low voltages of MRAM in today's technology are approximately: high voltage 2-3V and low voltage 〇. In condition 2, if (10) is floating, WL0P and WL1P can be high voltage, low voltage, or floating and WL1N can be high power or floating. In actual implementation, the floating node is covered by a very weak component to a fixed voltage to prevent thirst. Figure 10a shows an embodiment programmed to the 〇 condition, wherein there is no [0031] one by one m "dry gate storage unit is the end storage unit, that is, the storage element has V, V leaching node, ^ fruit programming power TMP is less than Double the critical electric charge of the diode ΓΓΓ 'R—the v^v of the storage unit—the node can be connected as the double-ended fine unit. Since the Tvd is about 6_^ at room temperature, 100129641 is low in age. 2V, this kind of double-ended memory unit can work normally. UMRAM array is common in advanced circle technology, form number A0101 page 20/59 page 1003436465-0 201225092 [0032] Ο

[0033] 其具有m.GV的電源電壓。圖lla及叫分別顯示在具有 兩端的2X2 MRAM陣列裏編程1和〇的電路圖。 圖A及m顯示在具兩端的MRAM存儲單元的m陣列裏 分别編程1和〇的實例。這些存儲單元31〇 〇〇、3ι〇 〇ι 、310-10和“卜丨丨構成一二維陣列。該存儲單元 具有ΜΠ 3U-00,編程丨二極體317_QG和編程〇 二極體318-00。MTJ 31卜00 —端被耦合到電源電壓v, 另—端被耦合到編程1二極體317 —〇〇的?^端和編程〇二極 體318-00的P端。編程丨二極體317_〇〇的13端被耦合到一 電源電壓V+。編程〇二極體318_00的N端被耦合到另一電 原·電壓V- 〇若滿足VDDP〈2*ν(}條件,電壓^+和乂_可在 存儲單元層次連接在一起。其他存儲單元31(&gt;_〇1、 31〇~10及310-11有類似的耦合。在同一行存儲單元 31〇-〇0和310-10的電壓ν被連接到bl〇。在同一行存儲 單元310-01和310-11的電壓v被連接到BU。在同一列 的存儲單元310-00和31〇-01的電壓^和卜被連接到 WL0。在同一列的存儲單元Μ q_ 1〇和的電壓和 V-被連接到WL1。 為了編寫l到存儲單元3l0-0l,wL0被設成高電壓,BLl 被設成低電壓,而設定其他虬和虬在適當的電壓,如圖 11a所示來使其他編程1和編程〇二極體除能。圖裏的 黑粗線顯示電流的流動方向。為了編寫〇到存儲單元 310-01 ’ WL0被設成低電壓,BL1被設成高電壓,而設定 其他BL和WL在適當的電壓,如圖llb所示,來使其他編程 1和編程0二極體除能。圖llb裏的黑粗線顯示電流的流動 100129641 表單编號A0101 第21頁/共59頁 1003436465-0 201225092 方向。 [0034] [0035] [0036] 如圖9a-llb所示,構建MRAM存儲單元於一2χ2陣列裏的 實例僅用於說明目的。對此技術知悉者可對一記憶體裏 存儲單元行或列的數目任意改變,並且行和列是可互換 的0 磁記憶體(MRAM)存儲單元成磁平行或磁反平行可能會隨 β夺間而改變對存儲單元的穩定。但是,大多數應用需要 保留數據ίο年,且從工作溫度0到85γ或。 為了在兀件的寿命期限和在如此寬的溫度範圍内維持存 儲單元的穩定性,磁記憶體可以被定期讀取出,然後將 數據寫回相同的存儲單元,此為更新機制。更新週期可 能會相當長,如超過一秒鐘(如,分鐘,小時,天星 期,甚至月)。更新機制可由記憶體内部產生或從記憶 體外部觸發。長時間的更新週期以維持存儲單元的穩定 性’也可以應㈣其他新興的記憶體’如電阻式記憶體 (RRAM)、導電橋隨機存取記憶體(CBRAM)和相變記憶 體(PCM)等。 根據另一實施例,可編程電阻元件可用於建立一記憶體 。圖12a顯示一可編程電阻記憶體1〇〇的一部分由^^列义 (m +1)行的3端MRAM存儲單元11〇的一陣列1〇1和n對 字元線驅動器150- i和151-i (i = 〇 1 所構建。記憶體陣列101有„!個正常行和—參考行共用一 100129641 感應放大器做差動感應。每個記憶體存儲單元11 〇有一電 阻元件111耦合到一編程〇二極體112的p端和一編程〗二 極體113的N端。編程〇二極體u 2和編程〗二極體u 3用來[0033] It has a power supply voltage of m.GV. Figure 11a and the circuit diagrams showing programming 1 and 〇 in a 2X2 MRAM array with two ends, respectively. Figures A and m show examples of programming 1 and 分别, respectively, in an m-array with MRAM memory cells at both ends. These memory cells 31〇〇〇, 3ι〇〇ι, 310-10 and “dipoles form a two-dimensional array. The memory cell has ΜΠ3U-00, a programming 丨 diode 317_QG and a programming 〇 diode 318- 00. The terminal of the MTJ 31 00 is coupled to the power supply voltage v, and the other end is coupled to the terminal of the programming 1 diode 317 - and the terminal P of the programming diode 318 - 00. The 13 terminal of the polar body 317_〇〇 is coupled to a power supply voltage V+. The N terminal of the programming 〇 diode 318_00 is coupled to another power source. The voltage V- 〇 if the condition of VDDP<2*ν(} is satisfied, the voltage ^+ and 乂_ can be connected together at the storage unit level. Other storage units 31 (&gt;_〇1, 31〇~10, and 310-11 have similar couplings. In the same row of storage units 31〇-〇0 and 310 The voltage ν of -10 is connected to bl. The voltage v of the memory cells 310-01 and 310-11 in the same row is connected to the BU. The voltages of the memory cells 310-00 and 31〇-01 in the same column ^ and Is connected to WL0. The voltage and V- of the memory cell Μ q_ 1〇 in the same column are connected to WL1. In order to write 1 to the memory cell 3l0-0l, wL0 is set to a high voltage, and BL1 is set to low. Press and set other 虬 and 虬 at the appropriate voltage, as shown in Figure 11a to disable the other programming 1 and programming 〇 diode. The thick black line in the figure shows the direction of current flow. 310-01 ' WL0 is set to low voltage, BL1 is set to high voltage, and other BL and WL are set to the appropriate voltage, as shown in Figure llb, to disable other programming 1 and programming 0 diodes. The thick black line in llb shows the flow of current 100129641 Form No. A0101 Page 21 / Total 59 Page 1003436465-0 201225092 Direction [0035] [0036] As shown in Figures 9a-llb, the MRAM memory cell is constructed The examples in a 2 χ 2 array are for illustrative purposes only. Those skilled in the art can arbitrarily change the number of rows or columns of memory cells in a memory, and the rows and columns are interchangeable 0 magnetic memory (MRAM) memory cells. Parallel or magnetic anti-parallel may change the stability of the memory cell with β. However, most applications need to retain data for ίο, and from operating temperature 0 to 85 γ or in order to be in the lifetime of the device and in Maintaining in such a wide temperature range The stability of the storage unit, the magnetic memory can be read out periodically, and then the data is written back to the same storage unit, which is an update mechanism. The update cycle can be quite long, such as more than one second (eg, minutes, hours, The day of the week, or even the month. The update mechanism can be generated internally by the memory or triggered from the outside of the memory. The long-term update cycle to maintain the stability of the memory cell can also be used to (4) other emerging memories such as resistive memory ( RRAM), conductive bridge random access memory (CBRAM) and phase change memory (PCM). According to another embodiment, a programmable resistive element can be used to create a memory. Figure 12a shows a portion of a programmable resistive memory 1''''''''''''''''''' 151-i (i = 〇1 is constructed. Memory array 101 has „! normal line and — reference line share a 100129641 sense amplifier for differential sensing. Each memory storage unit 11 has a resistive element 111 coupled to one. Programming the p-terminal of the diode 112 and the N-terminal of the programming diode 113. Programming the u diode u 2 and programming the diode u 3

表單編號A010I 第22頁/共59頁 1003436465-0 201225092 當作編程選擇11。對那些記憶體存儲單元11G在同-行的 每個電阻元件111也轉合到—位元線BLj i7Q_j(卜 O’1’ . .m )或參考位元線BLR0 175-0。對那些記憶 體存儲單το於HG於同—列的二極m N端被搞合到一 字兀線則1 152] ’經由局部字it線LWLNi 154-i(i 0’1, ,11丨)。對那些存儲單元於同—列的二極體113 p端被耦合到-字元線WLPi 153_i,經由局部字元線 Ο LWLPl 155 1(1 = Ο’1,·.·,!!])。每個字元線 WLNi 或 WLPi分別被Μ合到至少_個局部字元線LWLNe LWLPl(1 = Ο,1,.·. ,n-l)。該 LWLNi 154-i和 LWLPi 155-1—般都是由_高電阻材料(如N井或多晶矽) 來構建且連接到細單元,且分躲由導電接點或層間 接點、緩衝器或後解瑪器172- i或173 _i(i = 0, 1,…,n-l)而被耦合到礼…或叽^ (例如,低電阻 金屬WLNi或WLPi)。當使用二極體作為編程選擇器,因 為有電流流過WLNi或WLPi,緩衝器172- i或後解碼器 173- i可能是必需的;尤其在一些實施例裏當一個 WLNi或WLPi驅動多個存儲單元來同時編程和讀取時。字 元線WLNi和WLPi分別由字元線驅動器— i 來驅動。為編程和讀取,其電源電壓vddi可以在不同的 電壓之間被切換。每個BLj i7〇_j或BLR〇 ι75_〇都經 由一個Y-write-Ο通道閉⑵勺或⑶被耦合到一電源電 壓VDDP來編程〇,其中每個BLj 170-j或BLR0 175-0 分別由YS0WBj = 〇,1,…,ra-1)或YS0WRB0來選 取。Y-write-Ο通道閘12〇叫(卜^,…,^)或125 可用PMOS來建構;然而NM〇s、二極體或雙極型元件也 100129641 1003436465-0 表單編號A0101 第23頁/共59頁 201225092 可在一些實施例裏使用。同樣,每—個BLj 17〇—』或 BLRO 175-0 都經由一個 Y-write — !通道閘 121j 或 126 被耦合到一電源電壓為0 V來編程1,其中每個虹j 170-j 或 BLR0 175-0 分別由 YSIWj ( j = 0,i, )或YS1WR0來選取。Y-write-1通道閘i2卜j或126 是可用NM0S來建構’然而PM0S、二極體或雙極型元件 也可在一些實施例裏使用。每個BL或BLR〇都經由一個 Y-read通道閘130-j或135被耦合到數據線或參考 數據線DLR0,分別由YSRj ( j= 〇, 1, ,)或 YSRR0來選取。在記憶體陣列ι〇1這部分,m正常的數據 線DLj (j = 0,1,…,m-l)被連接到一個感應放大器 140的一輸入端160。該參考數據線dlro提供了感應放 大器140的另一輸入端161,然而在參考分部裏一般不需 要多工器。感應放大器140的輸出端是Q〇。 [0037]要編程一個0到一存儲單元,如圖l〇a或10b所示,特定的 WLNi、WLPi和BLj被字元線驅動器i5〇-i,15卜丨選上而 Y-pass通道閘120-j被YSOWBj分別選上,其中i = 0’1’.. ,n-l和j =〇,l,...,m-i,而其他字元線和位元 線也被適當的設定。一高電壓被施加於VDDP。在一也實 例裏’參考存儲早元可以被編程為0,由設定適當電壓到 WLRNi 158-i,WLRPi 159-i和YS0WRB0,其中,i = 〇, 1,…,η-1。要編程一個1到一存儲單元,如圖仏或 9b所示,特定的WLNi,WLPi和BLj被字元線驅動器 150-i,15卜i 選上,而 Y-pass通道閘 121-j被YslWB i 選上’其中 i = 〇,1.. n - 1和 j =〇,l,...,m_l,而其 100129641 表單編號A0101 第24頁/共59頁 1003436465-0 201225092 他字元線和位元線也被適當的設定。在—些實施例裏, 由設定適當電壓到WLRNi 158-i,WLRPi 159-i和 YSlWROCi = 0’1,…,n-i),參考存儲單元可以被編程 為1。要讀取一存儲單元,數據行16〇可以由打開特定的 WLNi,WLPi 和 YSRj (其中 i = 0」, ,和 j = 0,1,.·· ,m-l)被選到,而一參考數據線DLR〇 161可 以由打開特定的參考存儲單元,皆被耦合到於感應放大 140來感應和比較160和DLR 161與接地之間的電阻差 異,同時使所有 YSOWBj,YS0WRB0,ysiw 彳和 YS1WR0 I 除能,其中j = 〇, 1,…,m-l。 [0038] 圖12b顯示另一以二端點的MRAM存儲單元來構成狀媸記 憶體的實施例。根據此一實施例,在高與低狀態之間的 VDDP電壓差須小於二極趙臨界電壓Vd的兩倍,即VDDP 〈2 *Vd。如圖12b所示’原本於圖12a中每列的兩個字元 線WLNi 152-i和WLPi 153-i可以被合併成一字元線 驅動器WLNi 152-i’其中i = Ο,ΐ,.'ηΗ。此外如圖 q 12b所示,原本於圖12a中每列的局部字元線ULNi 154-i和LWLP 155-i於可以被合併成一局部字元線 LWLNi 154-i,其中卜〇, 1,'n-l。更進一步,在圖 12a裏的兩個字元線驅動器150~i和151-i可以被合併 成一個,即字元線驅動器150-1。未選的存儲單元的61群 和WLN群被安排適當的編程1和〇的條件,如圖Ua及ub 分別所示。由於一半的字元線,局部字元線和字元線驅 動器可以在此實施例裏被移除,存儲單元和記憶體的面 積可以大幅度減小。 100129641 表單編號A0101 第25頁/共59頁 1003436465-0 201225092 [0039]圖13&amp;和13b顯示流程圖實施例,分別描繪可編程電jj且式 記憶體的編程方法S700和讀取方法S800。方法S7〇〇和 S800描述了在可編程電阻式記憶體情況下’如圖l2a及 12b所示可編程電阻記憶體100的編程和讀取。此外,雖 然說是一個步驟流程,對此技術知悉者可知至少一些步 驟可能會以不同的順序進行,包括同時或跳過。 [_]圖13a描繪了一種於一可編程電阻記憶體中編程方法 的流程圖。根據此實施例,在第一步驟S710,選擇適當 的電源選擇器以施加高電壓電源到字元線和位元線驅動 器。在第二步驟S720,在控制邏輯(在圖12a和i2b裏'、Λ 有顯不)裏進行分析要被編程的數據,根據什麼類型的 可編程電阻元件。對於MRAM,電流流過MTJ的方向比持 續時間更重要。控制邏輯決定字元線和位元線的適當電 源選擇器並且啟動控制信號,以確保電流在所需的時間 裏流過所需的方向。在第三步驟S73〇,選擇存儲單元的 一列(群),所以相對的局部字元線可被開啟。在第四+ 驟S740,停用感應放大器,以節省電源和防止干擾到編 程的運作。在第五步驟S750,存儲單元的—行(群),可 以被選定並且相對應的Y-Write通道閘可以被打開來輪合 所選的位元線到一電源電壓。在最後一步驟576〇,在已Q 建立的傳導路徑來驅動所需的電流一段所需要的時間來 完成編程的運作。對於大多數可編程電阻記憶體,這個 傳導路徑是由高壓電源,通過被選的位⑽,電阻元件 ,作為編程選擇器的二極體,以及局部字元線驅動器的 NMOS下拉元件到接地。特別是對於編#呈i到一隠m,傳 100129641 表單編號A0101 第26頁/共59頁 1003436465-0 201225092 導路徑疋由尚屋電源,通過局部字元線驅動器的上 拉元件’作為編程選擇器的二極體,電阻元件,被選的 位元線到接地。 [0041] Ο ο 圖13b描繪了一種依據一實施例而於一可編程電阻記憶體 讀取方法S800流程阖。在第一步驟S810,提供合適的電 源選擇器來選電源電壓給局部字元線驅動器,感應放大 器和其他電路。在第二步驟S820,所有γ-write通道閘 ,例如位元線編程選擇器,可以被關閉。在第三步驟 S830 ’所需的局部字元線驅動器(群)可以被選,使作 為編程選擇器(群)的二極體(群)具有傳導路徑到接 地。在第四步驟S840,啟動感應放大器(群)和準備感 應的輸入信號。在第五步驟S850,數據線和參考數據線 被預先充電到可編程電阻元件存儲單元的V-電壓。在第 六步驟S860,選所需的Y_read通道閘’使所需的位元線 被搞合到感應放大器的一個輸入端。一個傳導路役於是 被建立,從位元線(群)到所要的存儲單元的電阻元件 ,作為編程選擇器(群)的二極體(群)和局部字元線 驅動器(群)的下拉元件到接地。這同樣適用於參考分 支。在最後一步驟S870,感應放大器可以比輯讀取電流 與參考電流的差異來決定邏輯輸出是〇或!以完成讀取操 作0 [0042] 圖14顯示依據另一實施例的一種處理器系統7〇〇。根據此 一實施例,處理器系統7〇〇可包括可編程電陴元件744, 其在記憶體740中的存儲單元陣列742裏。處理器系統 700例如可以屬於-電腦系統。電腦系統4以包括中央處 100129641 表單编號A0101 第27 頁/共59頁 1003436465-0 201225092 理單元(CPU) 710,它經由共同匯流排715來和多種記 憶體和周邊裝置溝通,如輸入輸出單元720、硬碟驅動器 730、光碟750、記憶體740和其他記憶體760。其他記憶 體760是一種傳統的記憶體如靜態記憶體(SRAM)、動態 記憶體(DRAM)或閃存記憶體(flash),通常經由一記憶 體控制器來和與中央處理單元710溝通。中央處理單元 710—般是一種微處理器、數位信號處理器或其他可編程 數位邏輯元件。記憶體740最好是以積體電路來構造,其 中包括擁有至少有可編程電阻元件744的記憶體陣列742 。通常,記憶體740經由記憶體控制器來接觸中央處理 單元710。如果需要,可合併記憶體740與處理器(如中 央處理單元710)在單片積體電路。 [0043] 本發明可以部分或全部實現於積體電路,印刷電路板( PCB)上,或系統上。該可編程電阻元件可以是熔絲、反 熔絲或新出現的非揮發行性記憶體。熔絲可以是矽化或 非矽化多晶矽熔絲、熱隔離的主動區熔絲、金屬熔絲、 接點熔絲、或層間接點熔絲。反熔絲可以是閘極氧化層 崩潰反熔絲、介電質於其間的接點或層間接點反熔絲。 新出現的非揮發行性記憶體可以是磁性記憶體(MRAM) 、相變記憶體(PCM)、導電橋隨機存取記憶體(CBRAM )或電阻隨機存取記憶體(RRAM)。雖然編程的機制不 同,他們的邏輯狀態可以由不同的電阻值來區分。 [0044] 以上的說明和圖晝,只是用來說明認為是示範的實現, 其實現本發明的特點和優勢。在沒有離開本發明的精神 和範圍之下,特定的過程條件,結構的修改和替換可被 100129641 表單編號A0101 第28頁/共59頁 1003436465-0 201225092 [0045] Ο ο 100129641 1003436465-0 達成。 【圖式簡單說明】 .打轉統的可編㈣阻式記憶存料元電路圖。 =ar相變記憶體(PCM)用的另—種傳統可編程電阻 圖^電路圖’其採用雙極型晶體管作為編程選擇器。 圖2 b顯示另-種傳統相變記憶體(PCM)存儲單元電路圖 ’其採用三極_為編程選擇器。 2^31&gt;顯讀由電流方向來編程傳統磁記憶體⑽AM) :早元解行(或„ W和反平行(絲態丨)的磁 方向示意圖。 圖4顯示—方塊圖,包含根據本發明之使用至少-二極兹 的§己憶存儲單元。 ”属不接面二極體的橫截面。根據此實施例,二極 洗溝槽隔離(STI)來隔離陽極和陰極,並當編程選擇 顯示接面二極體的橫截面。根據此實施例,此二 用假CMOS閘極來隔離陽極和陰極,並當編程選擇器 圖 5c_ + »丄 了一接面二極體的橫截面。根據此實施例,此 用梦化阻擋層(SBL)來隔離陽極和陰極,.並當編程 選擇器》 圖 6 a li; ..肩不一接面二極體的橫截面。根據此實施例,此二 極體用絕緣矽基體(SOI)技術裏的假CMOS閘極來隔離陽 極和陰極,並當編程選擇器。 圖6b顯示一接面二極體的橫截面。根據此實施例,此二 極體用翅式場效應電晶體(FINFET)技術裏假CMOS閘極來 表單編楚A0101 第29頁/共59頁 201225092 隔離陽極和陰極,並當編程選擇器。 圖7顯示-實施例賴AM存儲單元之採用 為編程選擇器之電路圖。 —極體作 ,顯示—MRAM單元的頂視圖。按照此 道接面从磁隧 -極W 輕阻轉和與標準⑽S製程之Ρ + / 一極體作為編程選擇器。 井 圖此顯示另—MRAM存儲單元的頂視圖。按照此實_ 以磁隧道接面(Mm你“ 瓦施例’ 之⑴ 作為電阻兀件和與淺井CM0S製程 井一極體作為編程選擇器。 圖9a顯示一且二嫂w 示专圖,B 存儲單元陣列的實施例 &quot; 、使用一極體作為編程選擇器。而且根據此_ 實施例’編程右上邊的存儲單it為1之條件。 — 圖9b顯不另_實施例狀態列表,把沿mRAM存 列右上邊的存料元_為1之條件。 疋陣 圖l_0a顯示一具三端點之2χ2剛存儲單元陣 例不思圖’其使㈣面二極體作為編料胸。而且 據此一實施例’編程右上邊的存儲單元為〇之條件。 圖⑽顯示另一實施例狀態列表,把2X2咖存儲 陣列右上邊的存儲單元編程&amp; 0之條件。 几 圖1U及Ub顯示—實施例之示意圖,在—二端點之2Χ2 MRAM存料元陣職,分雜右上邊的存料元編 和 0 〇 π 1 圖心顯示-可編鞋電阻式記憶體的—部分的示意圖 據此實施例,MRAM陣列由3端點的存儲單元構成。 圖觀示另-實施例之示意圖,由二端點的瞧存 元構成一部分MR AM的記憶體。 100129641 表單編號腿01 第30頁/共59頁 ^03436465 201225092 圖1 3 a描繪一種方法來編程可編程電阻式記憶體的流程圖 〇 圖13b描繪一種方法來讀取可編程電阻式記憶體的流程圖 圖14顯示一種處理器(Processor)的系統的實施例示意 圖。 【主要元件符號說明】Form No. A010I Page 22 of 59 1003436465-0 201225092 Select as a programming option 11. Each of the resistive elements 111 in the same-line of those memory storage units 11G is also transferred to the bit line BLj i7Q_j (Bu O'1' . .m) or the reference bit line BLR0 175-0. For those memories, the memory τοο HG is merged into the same-line two-pole m N-end of the same column, then 1 152] 'via the local word it line LWLNi 154-i (i 0'1, ,11丨). Those memory cells are coupled to the -word line WLPi 153_i at the p-side of the same-pole diode 113 via the local word line Ο LWLP1 155 1 (1 = Ο'1, ···, !!]). Each word line WLNi or WLPi is coupled to at least _ local word line LWLNe LWLP1 (1 = Ο, 1, , . . , n-l), respectively. The LWLNi 154-i and LWLPi 155-1 are generally constructed of _ high-resistance materials (such as N-well or polysilicon) and connected to the thin cells, and are hidden by conductive contacts or layers of indirect points, buffers or after The numerator 172-i or 173 _i (i = 0, 1, ..., nl) is coupled to the ritual or 叽^ (for example, the low resistance metal WLNi or WLPi). When a diode is used as the programming selector, a buffer 172-i or a post-decoder 173-i may be necessary because of the current flowing through WLNi or WLPi; especially in some embodiments when one WLNi or WLPi drives multiple Memory cells are used for simultaneous programming and reading. The word lines WLNi and WLPi are driven by the word line driver - i, respectively. For programming and reading, the supply voltage vddi can be switched between different voltages. Each BLj i7〇_j or BLR〇ι75_〇 is programmed via a Y-write-Ο channel closed (2) spoon or (3) coupled to a supply voltage VDDP, where each BLj 170-j or BLR0 175-0 They are selected by YS0WBj = 〇, 1, ..., ra-1) or YS0WRB0, respectively. Y-write-Ο channel gate 12 〇 ((^,...,^) or 125 can be constructed with PMOS; however NM〇s, diode or bipolar element is also 100129641 1003436465-0 Form No. A0101 Page 23 / A total of 59 pages 201225092 can be used in some embodiments. Similarly, each BLj 17〇—』 or BLRO 175-0 is programmed via a Y-write — ! channel gate 121j or 126 to a supply voltage of 0 V to program 1, where each rainbow j 170-j or BLR0 175-0 is selected by YSIWj ( j = 0, i, ) or YS1WR0, respectively. The Y-write-1 channel gate i2 j or 126 can be constructed with NM0S' whereas the PMOS, diode or bipolar element can also be used in some embodiments. Each BL or BLR is coupled to the data line or reference data line DLR0 via a Y-read channel gate 130-j or 135, selected by YSRj (j = 〇, 1, , ) or YSRR0, respectively. In the portion of the memory array ι〇1, the m normal data line DLj (j = 0, 1, ..., m-1) is connected to an input terminal 160 of a sense amplifier 140. The reference data line dlro provides the other input 161 of the inductive amplifier 140, however, no multiplexer is typically required in the reference subsection. The output of sense amplifier 140 is Q〇. [0037] To program a 0 to a memory cell, as shown in FIG. 1A or 10b, the specific WLNi, WLPi, and BLj are selected by the word line driver i5〇-i, 15 and the Y-pass channel gate. 120-j is selected by YSOWBj, where i = 0'1'.., nl and j = 〇, l, ..., mi, and other word lines and bit lines are also set appropriately. A high voltage is applied to VDDP. In an example, the reference memory early element can be programmed to zero by setting the appropriate voltage to WLRNi 158-i, WLRPi 159-i and YS0WRB0, where i = 〇, 1, ..., η-1. To program a 1 to a memory cell, as shown in Figure 仏 or 9b, the specific WLNi, WLPi and BLj are selected by the word line drivers 150-i, 15i, and the Y-pass channel gates 121-j are YslWB. i select 'where i = 〇, 1.. n - 1 and j = 〇, l, ..., m_l, and its 100129641 form number A0101 page 24 / total 59 pages 1003436465-0 201225092 his character line and The bit line is also set as appropriate. In some embodiments, the reference memory cell can be programmed to one by setting the appropriate voltage to WLRNi 158-i, WLRPi 159-i and YSlWROCi = 0'1, ..., n-i). To read a memory location, the data row 16 can be selected by opening a specific WLNi, WLPi and YSRj (where i = 0", and j = 0, 1, . . . , ml), and a reference data Line DLR 161 can be turned on by a particular reference memory cell, coupled to sense amplifier 140 to sense and compare the difference in resistance between 160 and DLR 161 and ground, while dividing all YSOWBj, YS0WRB0, ysiw 彳 and YS1WR0 I Yes, where j = 〇, 1,..., ml. [0038] FIG. 12b shows another embodiment of a two-terminal MRAM memory cell to form a memory. According to this embodiment, the VDDP voltage difference between the high and low states must be less than twice the threshold voltage Vd of the dipole, i.e., VDDP < 2 * Vd. As shown in Fig. 12b, the two word lines WLNi 152-i and WLPi 153-i of each column originally in Fig. 12a can be combined into a word line driver WLNi 152-i' where i = Ο, ΐ, .' ΗΗ. Further, as shown in FIG. 12 12b, the local word lines ULNi 154-i and LWLP 155-i of each column originally in FIG. 12a can be merged into a local word line LWLNi 154-i, where divination, 1, ' Nl. Further, the two word line drivers 150~i and 151-i in Fig. 12a can be combined into one, i.e., word line driver 150-1. The 61 groups and WLN groups of unselected memory cells are arranged with appropriate programming 1 and 〇 conditions, as shown in Ua and ub, respectively. Since half of the word lines, local word lines and word line drivers can be removed in this embodiment, the area of the memory cells and memory can be greatly reduced. 100129641 Form No. A0101 Page 25 of 59 1003436465-0 201225092 [0039] Figures 13 &amp; and 13b show flowchart embodiments depicting a programmable memory Jj and a memory memory programming method S700 and a reading method S800, respectively. Methods S7A and S800 describe the programming and reading of the programmable resistive memory 100 as shown in Figures 12a and 12b in the case of a programmable resistive memory. In addition, although it is a step-by-step process, it is known to those skilled in the art that at least some of the steps may be performed in a different order, including simultaneous or skipping. [_] Figure 13a depicts a flow chart of a programming method in a programmable resistor memory. According to this embodiment, in a first step S710, an appropriate power supply selector is selected to apply a high voltage power supply to the word line and bit line drivers. In a second step S720, the data to be programmed is analyzed in the control logic (in Figures 12a and i2b), depending on what type of programmable resistive element. For MRAM, the direction in which current flows through the MTJ is more important than the duration. The control logic determines the appropriate power selector for the word line and bit line and initiates a control signal to ensure that the current flows through the desired direction for the desired amount of time. In a third step S73, a column (group) of memory cells is selected, so that the relative local word lines can be turned on. At the fourth + step S740, the sense amplifier is deactivated to save power and prevent interference to the programming operation. In a fifth step S750, the row (group) of memory cells can be selected and the corresponding Y-Write channel gate can be opened to rotate the selected bit line to a supply voltage. At the last step 576, the programmed operation is completed at the time that the established path has been established by Q to drive the required current for a period of time. For most programmable resistor memories, this conduction path is made by a high voltage supply, through the selected bit (10), the resistive element, the diode as the programming selector, and the NMOS pull-down element of the local word line driver to ground. Especially for the compilation #present i to one 隠m, pass 100129641 Form No. A0101 Page 26 / Total 59 Page 1003436465-0 201225092 Guide path 尚 by Shangwu power supply, through the pull-up component of the local word line driver' as a programming choice The diode of the device, the resistive element, the selected bit line to ground. [0041] FIG. 13b depicts a flow of a programmable resistive memory read method S800 in accordance with an embodiment. In a first step S810, a suitable power selector is provided to select the supply voltage to the local word line driver, the inductive amplifier and other circuitry. In a second step S820, all gamma-write channel gates, such as bit line programming selectors, can be turned off. The local word line driver (group) required in the third step S830' can be selected such that the diode (group) as a program selector (group) has a conductive path to ground. In a fourth step S840, the sense amplifier (group) and the input signal for the induction are activated. In a fifth step S850, the data line and the reference data line are precharged to the V-voltage of the programmable resistive element memory cell. In a sixth step S860, the desired Y_read channel gate is selected to cause the desired bit line to be tapped to an input of the sense amplifier. A conduction trajectory is then established, from the bit line (group) to the resistive element of the desired memory cell, as a diode (group) of the programming selector (group) and a pull-down element of the local word line driver (group) To ground. The same applies to the reference branch. In the last step S870, the sense amplifier can determine the difference between the current and the reference current to determine whether the logic output is 〇 or! To complete the read operation [0042] Figure 14 shows a processor system 7A in accordance with another embodiment. In accordance with this embodiment, processor system 7A can include a programmable electrical component 744 in memory cell array 742 in memory 740. Processor system 700 may, for example, be a computer system. The computer system 4 includes a central unit 100129641, form number A0101, page 27, page 59, 1003436465-0, 201225092, a unit (CPU) 710, which communicates with various memory and peripheral devices via a common bus 715, such as an input/output unit. 720, hard disk drive 730, optical disk 750, memory 740, and other memory 760. Other memory 760 is a conventional memory such as static memory (SRAM), dynamic memory (DRAM) or flash memory that is typically communicated to central processing unit 710 via a memory controller. Central processing unit 710 is typically a microprocessor, digital signal processor, or other programmable digital logic component. Memory 740 is preferably constructed in an integrated circuit that includes a memory array 742 having at least programmable resistive elements 744. Typically, memory 740 contacts central processing unit 710 via a memory controller. If desired, the memory 740 can be combined with a processor (e.g., central processing unit 710) in a monolithic integrated circuit. [0043] The invention may be implemented in part or in whole on an integrated circuit, on a printed circuit board (PCB), or on a system. The programmable resistive element can be a fuse, an anti-fuse or an emerging non-volatile memory. The fuse may be a deuterated or non-deuterated polysilicon fuse, a thermally isolated active region fuse, a metal fuse, a contact fuse, or a layer indirect fuse. The antifuse can be a gate oxide breakdown antifuse, a dielectric junction or a layer indirect antifuse. Emerging non-volatile memory devices can be magnetic memory (MRAM), phase change memory (PCM), conductive bridge random access memory (CBRAM) or resistive random access memory (RRAM). Although the programming mechanisms are different, their logic states can be distinguished by different resistance values. [0044] The above description and drawings are merely illustrative of implementations that are believed to be illustrative of the features and advantages of the invention. The specific process conditions, structural modifications and alternatives can be achieved by the form number A0101, page 28 of 59, 1003436465-0 201225092 [0045] ο ο 100129641 1003436465-0 without departing from the spirit and scope of the present invention. [Simple description of the diagram] The circuit of the circuit can be edited (4) Resistive memory storage element. Another traditionally used resistor for the =ar phase change memory (PCM) is a circuit diagram that uses a bipolar transistor as a programming selector. Figure 2b shows another conventional phase change memory (PCM) memory cell circuit diagram which employs a three-pole_program selector. 2^31&gt; The readout is programmed by the current direction to the conventional magnetic memory (10) AM): the early magnetic solution (or „W and anti-parallel (filamental 丨) magnetic direction schematic. Figure 4 shows a block diagram, including according to the invention The use of at least a two-pole memory cell is a cross-section of a junctionless diode. According to this embodiment, a two-pole wash trench isolation (STI) is used to isolate the anode and cathode, and when programming is selected The cross-section of the junction diode is shown. According to this embodiment, the two use a dummy CMOS gate to isolate the anode and cathode, and when programming the selector Figure 5c_ + » 横截 a cross-section of the junction diode. In this embodiment, the Dreaming Barrier Layer (SBL) is used to isolate the anode and cathode, and when programming the selector, Figure 6 a li; .. the shoulder is not connected to the cross-section of the diode. According to this embodiment, This diode isolates the anode and cathode with a dummy CMOS gate in the Insulator Base (SOI) technique and when the selector is programmed. Figure 6b shows a cross section of a junction diode. According to this embodiment, Fake-type field effect transistor (FINFET) technology in the polar body CMOS gate to form A0101 Page 29 of 59 201225092 Isolating the anode and cathode, and when programming the selector. Figure 7 shows the circuit diagram of the programming selector used in the embodiment of the AM memory cell. - Pole, display - top of the MRAM cell View. According to this junction, the magnetic tunnel-pole W light resistance and the standard (10) S process Ρ + / one pole body as a programming selector. The well diagram shows the top view of the other - MRAM memory unit. According to this _ Use the magnetic tunnel junction (Mm you "Wa Shishi" (1) as the resistor element and the shallow well CM0S process well one as the programming selector. Figure 9a shows one and two 嫂w diagram, B memory cell array The embodiment &quot; uses a polar body as a program selector. And according to this embodiment, the upper right storage unit is set to a condition of 1. - Figure 9b shows another _ embodiment status list, which is stored along the mRAM The upper right storage element _ is a condition of 1. The l array l_0a shows a three-terminal 2 χ 2 just storage unit array does not think 'the (four) surface diode as a braided chest. Example 'programming the upper right storage unit is a strip Figure (10) shows another embodiment status list, the conditions of the upper right storage unit of the 2X2 coffee storage array are programmed &amp; 0. Figures 1U and Ub show a schematic view of the embodiment, at the 2nd end of the 2 Χ 2 MRAM storage In the elementary position, the upper right side of the storage element and the 0 〇 π 1 picture display - the schematic diagram of the part of the shoe-resistant resistive memory. According to this embodiment, the MRAM array is composed of three end-point memory cells. A schematic diagram of another embodiment is shown in which a memory of a part of MR AM is formed by a memory of two endpoints. 100129641 Form number leg 01 page 30/59 page ^03436465 201225092 Figure 1 3 a depicts a method to program Flowchart of Programmable Resistive Memory Figure 13b depicts a flow diagram for reading a programmable resistive memory. Figure 14 shows a schematic diagram of an embodiment of a processor system. [Main component symbol description]

[0046] [習知] [0047] 存儲單元10 [0048] 電阻元件11 [0049] NM0S編程選擇器12 [0050] 可編程電阻元件20, 20, [0051] 相變薄膜21,21’ [0052] 雙極性電晶體22 [0053] P+射極2 3 [0054] N型基極27 [0055] 集極25 [0056] 二極體22’ [0057] 存儲單元210 [0058] 磁性隧道接面211 [0059] NM0S的編程選擇器 218 表單編號A0101 100129641 第31頁/共59頁 1003436465-0 201225092 [0060] 自由堆疊層2 1 2 [0061] 固定堆疊層213 [0062] [本發明] [0063] 記憶體存儲單元30 [0064] 記憶元件3 0a [0065] 二極體 3 2a,32b [0066] 二極體 32,32’,32” [0067] P+主動區33,33’ ,33” [0068] N 井 34,34’,34” [0069] N+主動區37, 37’ ,37” [0070] 淺溝槽隔離36,36’ [0071] 主動區 31’,3Γ [0072] 閘極 39’ [0073] 矽化物阻擋層39” [0074] 基體35,35’,35” [0075] 接面二極體45 [0076] 島狀區 31-1, 3 卜2, 3 卜3 [0077] MOS 閘極 39-1,39 —2,39-3 [0078] 矽區40-1和矽區40-2 100129641 表單编號A0101 第32頁/共59頁 1003436465-0 201225092[0014] Memory Cell 10 [0048] NMOS Device Selector 12 [0050] Programmable Resistive Element 20, 20, [0051] Phase Change Film 21, 21' [0052] Bipolar Transistor 22 [0053] P+ Emitter 2 3 [0054] N-type Base 27 [0055] Collector 25 [0056] Diode 22' [0057] Memory Cell 210 [0058] Magnetic Tunnel Junction 211 [0059] Programming selector 218 of NM0S Form No. A0101 100129641 Page 31/59 page 1003436465-0 201225092 [0060] Freely stacked layer 2 1 2 [0061] Fixed stacked layer 213 [0062] [Invention] [0063] Memory storage unit 30 [0064] Memory element 3 0a [0065] Diode 3 2a, 32b [0066] Diode 32, 32', 32" [0067] P+ active area 33, 33', 33" [0068 N Well 34, 34', 34" [0069] N+ Active Region 37, 37', 37" [0070] Shallow Trench Isolation 36, 36' [0071] Active Region 31', 3Γ [0072] Gate 39' [0073] Telluride Barrier Layer 39" [0074] Substrate 35, 35', 35" [0075] Junction Dipole 45 [0076] Island Region 31-1, 3 Bu 2, 3 Bu 3 [0077] MOS Gate 39-1, 39-2, 39-3 [0078] 矽Zone 40-1 and Zone 40-2 100129641 Form No. A0101 Page 32 of 59 1003436465-0 201225092

L0079J P+主動區 33-1,2, 3, [0080] N+主動區 37-1,2, 3 [0081] P +植入層38’ [0082] MRAM存儲單元310,310’ [0083] MTJ 311, 311’ [0084] 接面二極體 317,318,317’ ,318, [0085] 自由堆疊層312,312’ [0086] 固定堆疊層313,313’ [0087] N 井 321,320,321’ 320, [0088] P+主動區315, 316,315’ , 316’ [0089] N+主動區314,319,314’ , 319’ [0090] STI 330, 330’ [0091] 存儲單元 310-00, 310-01, 310-10, [0092] 編程1二極體317-00 [0093] 編程0二極體318-00 [0094] 可編程電阻記憶體10 0 [0095] 陣列101 [0096] 記憶體存儲單元110 [0097] 電阻元件111 310-11 表單編號A0101 第33頁/共59頁 100129641 1003436465-0 201225092 [0098] 編程0二極體11 2 [0099] 編程1二極體11 3 [0100] 參考位元線BLR0 175-0 [0101] 字元線驅動器150-i [0102] 位元線BLj 170-j [0103] 局部字元線LWLNi 154-i [0104] 字元線WLPi 153-i [0105] 局部字元線LWLNi, LWLPi [0106] Y-write-〇 通道閘 12〇-〇j, 125 [0107] Y-write-1 通道閘 121-j, 126 [0108] 感應放大器140 [0109] 輸入端1 60,1 61 [0110] Y-read 通道閘 130-j,135 [0111] 步驟 S700-S760, S800-S870 [0112] 處理器系統700 [0113] 記憶體740 [0114] 可編程電阻元件7 4 4 [0115] 存儲單元陣列742 [0116] 中央處理單元710 100129641 表單編號A0101 第34頁/共59頁 1003436465-0 201225092L0079J P+ active area 33-1, 2, 3, [0080] N+ active area 37-1, 2, 3 [0081] P + implanted layer 38' [0082] MRAM memory unit 310, 310' [0083] MTJ 311 , 311' [0084] junction diodes 317, 318, 317', 318, [0085] freely stacked layers 312, 312' [0086] fixed stacked layers 313, 313 ' [0087] N wells 321, 320, 321 '320, [0088] P+ active area 315, 316, 315', 316' [0089] N+ active area 314, 319, 314', 319' [0090] STI 330, 330' [0091] storage unit 310-00, 310-01, 310-10, [0092] Programming 1 Diode 317-00 [0093] Programming 0 Diode 318-00 [0094] Programmable Resistor Memory 10 [0095] Array 101 [0096] Memory Memory Unit 110 [0097] Resistive Element 111 310-11 Form No. A0101 Page 33 / Total 59 Page 100129641 1003436465-0 201225092 [0098] Programming 0 Dipole 11 2 [0099] Programming 1 Diode 11 3 [0100] Reference Bit Line BLR0 175-0 [0101] Word Line Driver 150-i [0102] Bit Line BLj 170-j [0103] Local Word Line LWLNi 154-i [0104] Word Line WLPi 153-i [ 0105] Local word line LWLNi, LWLPi [0106] Y-write-〇 channel gate 12〇-〇j, 125 [0107] Y-write-1 channel gate 121-j, 126 [0108] sense amplifier 140 [0109] input terminal 1 60, 1 61 [0110 Y-read channel gate 130-j, 135 [0111] Step S700-S760, S800-S870 [0112] Processor system 700 [0113] Memory 740 [0114] Programmable resistance element 7 4 4 [0115] Memory unit Array 742 [0116] Central Processing Unit 710 100129641 Form Number A0101 Page 34 / Total 59 Page 1003436465-0 201225092

LUll/JLUll/J

[0118] [0119] [0120] [0121] [0122] Ο 共同匯流排715 輸入輸出單元720 硬盤驅動器730 光碟750 記憶體740 其他記憶體760 ο 100129641 表單編號Α0101 第35頁/共59頁 1003436465-0[0120] [0122] [0122] 共同 Common bus 715 Input/output unit 720 Hard disk drive 730 Optical disk 750 Memory 740 Other memory 760 ο 100129641 Form number Α 0101 Page 35 / Total 59 pages 1003436465- 0

Claims (1)

201225092 七、申請專利範圍: 1 · 一種記憶體,包括: 多個記憶存儲單元,至少—記憶存儲單元包括: -記憶元件有第-端和第二端,該第—端被麵合到第一電 源電壓線;及 -第-二極體包括至少—第—端和—第二端,其中該第一 端具有-第-類型摻雜,該第二端具有一第二類型推雜, 該第一二極體的該第—端被柄合到該記憶元件的該第二端 , 一第二二極體包括至少一第一端和一第二端,其中該第一 端具有一第一類型摻雜,該第二端具有一第二個類型摻雜 ,該第二二極體的該第二端被耦合到該記憶元件的該第二 端; 其中該第一二極體的該第二端被耦合到一第二電源電壓線 , 其中該第二二極體的該第一端被叙合到該第二或_第三電 源電壓線; 其中’該記憶元件被配置為可編程到不同的邏輯狀態,經 由施加電壓到該第一,第二和/或第三電源電壓線,從而 導通該第一二極體而切斷了該第二二極體到一邏輯狀態, 或導通該第二二極體而切斷了該第一二極體到另一邏輯狀 態。 2 .如申請專利範圍第1項所述之記憶體,其中該記憶元件是 一磁性隧道接面(MTJ)由擁有多層次的鐵磁或反鐵磁疊 的固定堆疊層,和多層次的鐵磁或反鐵磁疊的自由堆疊層 100129641 表單編號A0101 第36頁/共59頁 1003436465-0 201225092 ’而絕緣體在二堆疊層之間。 .如申請專利範圍第2項所述之記龍,其中該記憶元件是 在發表面為一搞圓形之磁性隧道接面(MTJ)。 •如申請專利範圍第2項所述之記憶體,其中該記憶元件是 磁性隧道接面(MTJ),且在矽表面對該第一或第二電 源電壓線為一傾斜橢圓形。 .如申請專利範圍第1項所述之記憶體,其中該記憶元件是 金屬或金屬合金電極和電極之間的金屬氧化物。 申請專利範圍第1項所述之記憶體,其中該記憶元件是 是電極和電極之間的固態電解質薄膜。 .如申請專利範圍第1項所述之記憶體,其中至少有一二極 體為接面二極體,其第一和第二主動區作為二極體的兩端 存在井裡。 .如申請專利範圍第1項所述之記憶體,其中至少有一二極 激為接面二極體,其第一和第二主動區作為二極體的兩端 存在井裡,其所在的井是用來製造金氧半導體((:1108)元 件。 9 .如申請專利範圍第1項所述之記憶體,其中至少有一二極 體為接面二極體,其兩個主動區作為二極體的兩端,且被 一個假M0S閘極分開。 10 .如申請專利範圍第丨項所述之記憶體,其中至少有一二極 體為接面二極體,其兩個主動區作為二極體的兩端,且被 一個淺溝槽隔離分開。 11 如申請專利範圍第1項所述之記憶體,其中至少有一二極 體為接面二極體,其兩個主純作為三極體的兩端,且被 一矽化物阻擋層分開。 100129641 表單編號A0101 第37頁/共59頁 1003436465-0 201225092 12 . —種記憶體’包括: 多個記憶存儲單元,至少有一記憶存儲單元包括: 一 έ己憶元件有第一端和第二端’該第一端被轉合到一第一 電源電壓線;及 一第一一極體包括至少一第一端和一第二端,其中該第一 端具有一第一類型摻雜,第二端具有一第二類型摻雜,該 第一二極體的該第一端被耦合到該記憶元件的該第二端; 一第一二極體包括至少一第一端和一第二端,其中該第一 端具有一第一類型摻雜,該第二端具有一第二類型摻雜, 該第二二極體的該第二端被耦合到該記憶元件的該第二端 ) 其中該第-二極體的該第二端和該第二二極體的該第一端 被耦合到一第二電源電壓線; 其中,忒S己憶TL件被配置為可編程到不同的邏輯狀態,經 由施加電壓到該第一和第二電源電壓線從而導通該第一 —極體而切斷了該第二二極體到一邏輯狀態或導通該第 二二極體而⑽了該第—二極體到另—邏輯狀態。 Ϊ 3 . —種電子系統,包括: 一種處理器;及 —種記憶體可操作地連接到處理器,這記憶體包括至少數 個》己隐存儲單70來提供數據存健,每個記憶存错單元包括 一 S己憶元件有第一端货_ 鸲和第二端,該第一端被耦合到一第一 電源電壓線;及 一第一二極體包括至少 端具有一第一類型摻雜 表單編號A0101 當 —第一端和一第二端,其中該第一 100129641 ’該第二端具有一第二個類型摻雜 頁/共 59 頁 1003436465-0 201225092 ,β玄第一二極體的該第一端被麵合到該記憶元件的該第二 端,該第一二極體的該第二端被耦合一到第二電源電壓線 9 Ο 一第二極體包括至少一第一端和一第二端,其中該第一端 具有一第一類型摻雜,該第二端具有一第二類型摻雜,該 第二二極體的該第二端被耦合到該記憶元件的該第二端, 而S衾第二二極體的該第一端被耦合到該第二或—第三電源 電壓線; 其中,該記憶元件被配置為可編程到不同的邏輯狀態,經 由施加電壓到該第一,第二和/或第三電源電壓線,從而 導通該第-二極體而切斷了該第二二極體到—邏輯狀態, 或導通該第二二極體而切斷了該第一二極體到另一邏輯狀 態。 14 · 如申凊專利範圍第13項所述之電子系統,其中電子系統被 構建成定期讀取每個存儲單元的内容,並寫回内容。 15 · 一種方法來提供一記憶體,包括: ο 100129641 提供多個記憶存儲單元,至少有一記憶存儲單元包括至少 ⑴-記憶元件有第1和第二端,該第—端被麵合到 -第-電源電壓線;及(ii) 一第一二極體包含至少一第 一端和一第二端,該篦一她 μ具有第一類型摻雜,該第二端 擁有第-類型掺雜’該第一二極體的該第一端被搞合到該 Z It 7G件的該第—端而該第—二極體的該第二端被搞合到 -第二電源電壓線;(iii) _第二二極體包含至少一第 一端和一第二端’該第一端具有第-類型摻雜,該第二端 具有第二類型摻雜,該第1提供了二㈣的—第一端, 第-一 供二極體的-楚-λΟι 的第一碥,該第二二極體的該第二端 表單編號Α0101 第39頁/共5q百 ' y Ά 1003436465-0 201225092 被耦合到該記憶元件的該第二端而該第二二極體的該第一 端被耦合到該第二或一第三電源電壓線;及 其中,該記憶元件被配置為可編程到不同的邏輯狀態,經 由施加電壓到該第一,第二和/或第三電源電壓線,從而 導通該第一二極體而切斷了該第二二極體到一邏輯狀態, 或導通該第二二極體而切斷了該第一二極體到另一邏輯狀 態。 100129641 表單編號A0101 第40頁/共59頁 1003436465-0201225092 VII. Patent application scope: 1 · A memory comprising: a plurality of memory storage units, at least - the memory storage unit comprises: - the memory element has a first end and a second end, the first end is faceted to the first a power supply voltage line; and - the second diode includes at least a first end and a second end, wherein the first end has a -type-type doping, and the second end has a second type of doping, the first The first end of the diode is coupled to the second end of the memory component, and the second diode includes at least a first end and a second end, wherein the first end has a first type Doping, the second end has a second type of doping, the second end of the second diode is coupled to the second end of the memory element; wherein the second of the first diode The end is coupled to a second supply voltage line, wherein the first end of the second diode is summed to the second or third supply voltage line; wherein 'the memory element is configured to be programmable to different Logic state by applying a voltage to the first, second and/or third power source Pressure line, thereby turning on the first diode and a cut off of the logic state of the second diode, or the second conducting diode is cut off the first diode to the other logic state. 2. The memory of claim 1, wherein the memory element is a magnetic tunnel junction (MTJ) consisting of a fixed stack of multi-layered ferromagnetic or antiferromagnetic stacks, and a multi-layered iron Free stacking layer of magnetic or antiferromagnetic stacks 100129641 Form No. A0101 Page 36 / Total 59 pages 1003436465-0 201225092 'The insulator is between the two stacked layers. According to the claim 2, the memory element is a magnetic tunnel junction (MTJ) on the surface of the hair. The memory of claim 2, wherein the memory element is a magnetic tunnel junction (MTJ) and the first or second source voltage line is obliquely elliptical on the surface of the crucible. The memory of claim 1, wherein the memory element is a metal oxide between a metal or metal alloy electrode and an electrode. The memory of claim 1, wherein the memory element is a solid electrolyte membrane between the electrode and the electrode. The memory of claim 1, wherein at least one of the diodes is a junction diode, and the first and second active regions are present in the well as both ends of the diode. The memory of claim 1, wherein at least one of the two poles is a junction diode, and the first and second active regions are present in the well as the ends of the diode, and the The well is used to manufacture a MOS semiconductor ((1108) component. 9. The memory of claim 1, wherein at least one of the diodes is a junction diode, and the two active regions are The two ends of the diode are separated by a dummy MOS gate. 10. The memory of claim 2, wherein at least one of the diodes is a junction diode, and two active regions thereof The two ends of the diode are separated by a shallow trench. 11 The memory of claim 1, wherein at least one of the diodes is a junction diode, and the two main pure As the two ends of the triode, and separated by a telluride barrier layer. 100129641 Form No. A0101 Page 37 / Total 59 Page 1003436465-0 201225092 12 . — Memory 'includes: Multiple memory storage units, at least one memory The storage unit includes: a memory element having a first end and The first end is turned to a first power voltage line; and the first one body includes at least a first end and a second end, wherein the first end has a first type of doping, The second end has a second type of doping, the first end of the first diode is coupled to the second end of the memory element; and the first diode includes at least a first end and a second An end, wherein the first end has a first type doping, the second end has a second type doping, and the second end of the second diode is coupled to the second end of the memory element) Wherein the second end of the second diode and the first end of the second diode are coupled to a second supply voltage line; wherein the TL component is configured to be programmable to a different one a logic state, by applying a voltage to the first and second supply voltage lines to turn on the first body, cutting the second diode to a logic state or turning on the second diode (10) The first-secondary body to another-logic state. Ϊ 3. An electronic system comprising: a processor; and a memory operatively coupled to the processor, the memory comprising at least a plurality of hidden memory sheets 70 for providing data storage, each memory The wrong unit includes a first memory element having a first end _ 鸲 and a second end, the first end being coupled to a first supply voltage line; and a first diode comprising at least one end having a first type of doping Miscellaneous form number A0101 when - first end and second end, wherein the first 100129641 'the second end has a second type of doping page / total 59 pages 1003436465-0 201225092, β Xuan first diode The first end is coupled to the second end of the memory component, the second end of the first diode is coupled to the second power voltage line 9 Ο a second pole body includes at least one first And a second end, wherein the first end has a first type doping, the second end has a second type doping, and the second end of the second diode is coupled to the memory element The second end, and the first end of the S衾 second diode is coupled to the first a second or a third supply voltage line; wherein the memory element is configured to be programmable to a different logic state, by applying a voltage to the first, second, and/or third supply voltage lines, thereby turning on the second The pole body cuts off the second diode to a logic state, or turns on the second diode to cut the first diode to another logic state. 14. The electronic system of claim 13, wherein the electronic system is configured to periodically read the contents of each of the storage units and write back the content. 15 · A method for providing a memory, comprising: ο 100129641 providing a plurality of memory storage units, at least one memory storage unit comprising at least (1)-memory elements having first and second ends, the first end being flanked by - a power supply voltage line; and (ii) a first diode comprising at least a first end and a second end, the first μ having a first type doping and the second end having a first type doping The first end of the first diode is engaged to the first end of the Z It 7G member and the second end of the second diode is engaged to the second power voltage line; The second diode comprises at least a first end and a second end 'the first end having a first type doping, the second end having a second type doping, the first providing a second (four) - The first end, the first one of the first-second diode-Chu-λΟι, the second end of the second diode form number Α0101, page 39/total 5q hundred' y Ά 1003436465-0 201225092 Coupled to the second end of the memory element and the first end of the second diode is coupled to the second or a third supply voltage line; The memory element is configured to be programmable to a different logic state, by applying a voltage to the first, second, and/or third supply voltage lines, thereby turning the first diode off and cutting the second The diode is in a logic state, or the second diode is turned on to cut the first diode to another logic state. 100129641 Form No. A0101 Page 40 of 59 1003436465-0
TW100129641A 2010-08-20 2011-08-18 Electronics system, memory and method for providing the same TWI462107B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US37565310P 2010-08-20 2010-08-20

Publications (2)

Publication Number Publication Date
TW201225092A true TW201225092A (en) 2012-06-16
TWI462107B TWI462107B (en) 2014-11-21

Family

ID=45795081

Family Applications (3)

Application Number Title Priority Date Filing Date
TW100129641A TWI462107B (en) 2010-08-20 2011-08-18 Electronics system, memory and method for providing the same
TW100129642A TWI480881B (en) 2010-08-20 2011-08-18 One-time programmable memory, electronics system, and method for providing one-time programmable memory
TW100129640A TWI452680B (en) 2010-08-20 2011-08-18 Phase-change memory, electronics system, reversible resistive memory and method for providing the same

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW100129642A TWI480881B (en) 2010-08-20 2011-08-18 One-time programmable memory, electronics system, and method for providing one-time programmable memory
TW100129640A TWI452680B (en) 2010-08-20 2011-08-18 Phase-change memory, electronics system, reversible resistive memory and method for providing the same

Country Status (2)

Country Link
CN (3) CN102376739B (en)
TW (3) TWI462107B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9378785B2 (en) 2012-10-23 2016-06-28 Industrial Technology Research Institute Resistive random-access memory devices
TWI550621B (en) * 2013-09-21 2016-09-21 上峰科技股份有限公司 Circuit and system of using junction diode as program selector for electrical fuses with extended area for one-time programmable devices

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10916317B2 (en) 2010-08-20 2021-02-09 Attopsemi Technology Co., Ltd Programmable resistance memory on thin film transistor technology
US9711237B2 (en) 2010-08-20 2017-07-18 Attopsemi Technology Co., Ltd. Method and structure for reliable electrical fuse programming
US10923204B2 (en) 2010-08-20 2021-02-16 Attopsemi Technology Co., Ltd Fully testible OTP memory
US9818478B2 (en) 2012-12-07 2017-11-14 Attopsemi Technology Co., Ltd Programmable resistive device and memory using diode as selector
US10229746B2 (en) 2010-08-20 2019-03-12 Attopsemi Technology Co., Ltd OTP memory with high data security
US10192615B2 (en) 2011-02-14 2019-01-29 Attopsemi Technology Co., Ltd One-time programmable devices having a semiconductor fin structure with a divided active region
US10586832B2 (en) 2011-02-14 2020-03-10 Attopsemi Technology Co., Ltd One-time programmable devices using gate-all-around structures
TWI608483B (en) * 2012-12-07 2017-12-11 上峰科技股份有限公司 Circuit and system of 3d programmable resistive device and memory using diode as selector
US9922720B2 (en) * 2013-03-07 2018-03-20 Intel Corporation Random fuse sensing
EP3069350A4 (en) * 2013-09-21 2017-07-26 Shine C. Chung Circuit and system of using junction diode as program selector for one-time programmable devices
CN106374039B (en) * 2015-07-22 2019-03-12 旺宏电子股份有限公司 Memory device and its manufacturing method
CN107579087B (en) * 2016-07-04 2020-04-07 中芯国际集成电路制造(上海)有限公司 Memory cell array structure and electronic device
US10535413B2 (en) 2017-04-14 2020-01-14 Attopsemi Technology Co., Ltd Low power read operation for programmable resistive memories
US11615859B2 (en) 2017-04-14 2023-03-28 Attopsemi Technology Co., Ltd One-time programmable memories with ultra-low power read operation and novel sensing scheme
US10726914B2 (en) 2017-04-14 2020-07-28 Attopsemi Technology Co. Ltd Programmable resistive memories with low power read operation and novel sensing scheme
US11062786B2 (en) 2017-04-14 2021-07-13 Attopsemi Technology Co., Ltd One-time programmable memories with low power read operation and novel sensing scheme
US10770160B2 (en) 2017-11-30 2020-09-08 Attopsemi Technology Co., Ltd Programmable resistive memory formed by bit slices from a standard cell library
US10325991B1 (en) * 2017-12-06 2019-06-18 Nanya Technology Corporation Transistor device
CN109994137A (en) * 2019-03-20 2019-07-09 浙江大学 A kind of no write de-lay method of single tube list resistance random access memory array
CN111739570B (en) * 2019-03-25 2022-05-31 中电海康集团有限公司 SOT-MRAM memory cell and SOT-MRAM memory
US11107859B2 (en) * 2019-08-05 2021-08-31 Taiwan Semiconductor Manufacturing Company, Ltd. Memory cell with unipolar selectors
GB2587089B (en) * 2019-09-03 2021-12-15 Attopsemi Tech Co Ltd One-time programmable memories with low power read operation and novel sensing scheme
US12046308B2 (en) 2021-04-23 2024-07-23 Changxin Memory Technologies, Inc. OTP memory and method for manufacturing thereof, and OTP circuit
CN115240746A (en) * 2021-04-23 2022-10-25 长鑫存储技术有限公司 OTP memory and manufacturing method thereof, and OTP circuit

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130044A (en) * 1984-07-20 1986-02-12 Nippon Denso Co Ltd Semiconductor chip inspection method
JP2671503B2 (en) * 1989-06-01 1997-10-29 トヨタ自動車株式会社 Painting method
JPH09134974A (en) * 1995-09-08 1997-05-20 Fujitsu Ltd Ferroelectric memory device
US20030075778A1 (en) * 1997-10-01 2003-04-24 Patrick Klersy Programmable resistance memory element and method for making same
TW388129B (en) * 1998-03-06 2000-04-21 Nation Science Council Novel process for producing polysilicon interlayer contact of polysilicon TFT SRAM
US6054344A (en) * 1998-10-30 2000-04-25 Taiwan Semiconductor Manufacturing Company OTP (open trigger path) latchup scheme using buried-diode for sub-quarter micron transistors
JP2000323669A (en) * 1999-03-10 2000-11-24 Sanyo Electric Co Ltd Semiconductor nonvolatile memory device
US6400540B1 (en) * 1999-03-12 2002-06-04 Sil.Able Inc. Clamp circuit to prevent ESD damage to an integrated circuit
US6541316B2 (en) * 2000-12-22 2003-04-01 The Regents Of The University Of California Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction
US6646912B2 (en) * 2001-06-05 2003-11-11 Hewlett-Packard Development Company, Lp. Non-volatile memory
JP2002368136A (en) * 2001-06-06 2002-12-20 Sony Corp Semiconductor memory device and production method therefor
US6707729B2 (en) * 2002-02-15 2004-03-16 Micron Technology, Inc. Physically alternating sense amplifier activation
US6813182B2 (en) * 2002-05-31 2004-11-02 Hewlett-Packard Development Company, L.P. Diode-and-fuse memory elements for a write-once memory comprising an anisotropic semiconductor sheet
US7511982B2 (en) * 2004-05-06 2009-03-31 Sidense Corp. High speed OTP sensing scheme
US7212432B2 (en) * 2004-09-30 2007-05-01 Infineon Technologies Ag Resistive memory cell random access memory device and method of fabrication
US7423897B2 (en) * 2004-10-01 2008-09-09 Ovonyx, Inc. Method of operating a programmable resistance memory array
US8179711B2 (en) * 2004-10-26 2012-05-15 Samsung Electronics Co., Ltd. Semiconductor memory device with stacked memory cell and method of manufacturing the stacked memory cell
US7035141B1 (en) * 2004-11-17 2006-04-25 Spansion Llc Diode array architecture for addressing nanoscale resistive memory arrays
US7391064B1 (en) * 2004-12-01 2008-06-24 Spansion Llc Memory device with a selection element and a control line in a substantially similar layer
US7402874B2 (en) * 2005-04-29 2008-07-22 Texas Instruments Incorporated One time programmable EPROM fabrication in STI CMOS technology
US8217490B2 (en) * 2005-05-09 2012-07-10 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8183665B2 (en) * 2005-11-15 2012-05-22 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7227233B2 (en) * 2005-09-12 2007-06-05 International Business Machines Corporation Silicon-on-insulator (SOI) Read Only Memory (ROM) array and method of making a SOI ROM
US7433247B2 (en) * 2005-09-26 2008-10-07 Macronix International Co., Ltd. Method and circuit for reading fuse cells in a nonvolatile memory during power-up
US7411810B2 (en) * 2005-12-11 2008-08-12 Juhan Kim One-time programmable memory
US20080036033A1 (en) * 2006-08-10 2008-02-14 Broadcom Corporation One-time programmable memory
US7508694B2 (en) * 2006-09-27 2009-03-24 Novelics, Llc One-time-programmable memory
US7489535B2 (en) * 2006-10-28 2009-02-10 Alpha & Omega Semiconductor Ltd. Circuit configurations and methods for manufacturing five-volt one time programmable (OTP) memory arrays
US7436695B2 (en) * 2006-11-21 2008-10-14 Infineon Technologies Ag Resistive memory including bipolar transistor access devices
KR100909537B1 (en) * 2007-09-07 2009-07-27 주식회사 동부하이텍 Semiconductor device and manufacturing method thereof
JP4482039B2 (en) * 2008-01-11 2010-06-16 株式会社東芝 Resistance change memory
US20100091546A1 (en) * 2008-10-15 2010-04-15 Seagate Technology Llc High density reconfigurable spin torque non-volatile memory
US20100108980A1 (en) * 2008-11-03 2010-05-06 Industrial Technology Research Institute Resistive memory array
KR20100064715A (en) * 2008-12-05 2010-06-15 삼성전자주식회사 Nonvolatile memory device using variable resistive element
US8089137B2 (en) * 2009-01-07 2012-01-03 Macronix International Co., Ltd. Integrated circuit memory with single crystal silicon on silicide driver and manufacturing method
CN101667460A (en) * 2009-10-12 2010-03-10 中国科学院微电子研究所 One-time programming memory based on resistive random access memory and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9378785B2 (en) 2012-10-23 2016-06-28 Industrial Technology Research Institute Resistive random-access memory devices
TWI550621B (en) * 2013-09-21 2016-09-21 上峰科技股份有限公司 Circuit and system of using junction diode as program selector for electrical fuses with extended area for one-time programmable devices

Also Published As

Publication number Publication date
CN102385932A (en) 2012-03-21
TWI452680B (en) 2014-09-11
TWI462107B (en) 2014-11-21
TW201234379A (en) 2012-08-16
TW201230306A (en) 2012-07-16
CN102376739B (en) 2015-03-11
CN102385917B (en) 2014-11-26
TWI480881B (en) 2015-04-11
CN102376739A (en) 2012-03-14
CN102385932B (en) 2016-03-02
CN102385917A (en) 2012-03-21

Similar Documents

Publication Publication Date Title
TWI462107B (en) Electronics system, memory and method for providing the same
TWI479487B (en) Magnetic memory, electronic system, memory and method thereof
US9385162B2 (en) Programmably reversible resistive device cells using CMOS logic processes
US8488359B2 (en) Circuit and system of using junction diode as program selector for one-time programmable devices