TW201222827A - Memory cell block, manufacturing method therefor, memory device, and method for driving a memory device - Google Patents

Memory cell block, manufacturing method therefor, memory device, and method for driving a memory device Download PDF

Info

Publication number
TW201222827A
TW201222827A TW100132261A TW100132261A TW201222827A TW 201222827 A TW201222827 A TW 201222827A TW 100132261 A TW100132261 A TW 100132261A TW 100132261 A TW100132261 A TW 100132261A TW 201222827 A TW201222827 A TW 201222827A
Authority
TW
Taiwan
Prior art keywords
layer
insulating layer
gate
memory
gate insulating
Prior art date
Application number
TW100132261A
Other languages
Chinese (zh)
Inventor
Tatsuya Shimoda
Eisuke Tokumitsu
Takaaki Miyasako
Nguyen Quoc Trinh Bui
Original Assignee
Japan Science & Tech Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science & Tech Agency filed Critical Japan Science & Tech Agency
Publication of TW201222827A publication Critical patent/TW201222827A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/223Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements using MOS with ferroelectric gate insulating film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/10Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the memory core region

Abstract

This memory cell block is provided with a plurality of memory cells connected in series, each memory cell comprising a solid-state electronic element in which the following are connected in parallel: an information-storage transistor (TR1) that has a first gate-insulating layer comprising a ferroelectric layer; and an information-reading/writing transistor (TR2) that has a second gate-insulating layer. First channel regions and second channel regions comprise conductor layers or semiconductor layers formed in the same step. Each two adjacent memory cells are connected by a connection layer contiguous with the first channel regions and the second channel regions. When this memory cell block is used as a NAND memory device, the "write disturb problem" and "read disturb problem" are eliminated. Also, it is possible to form the first channel regions, the second channel regions, and the connection layers in one step. Furthermore, it is possible to reduce the contact resistance between the first and second channel regions and the connection layers.

Description

201222827 六、發明說明: 【發明所屬之技術領域】 本發明是關於記憶體單元區塊(memory cell block) 及其製造方法、記憶體裴置(m e m 〇 r y d e v i c e )以及記憶體裝 置的驅動方法。 【先前技術】 以往已知有閘絕緣層(gate insulating layer)使用鐵 〇電材料(fer roe 1 ec trie mater ial )的固態電子元件(sol id state electronic device)(例如參照專利文獻 1)。 圖41是為了說明習知的固態電子元件9 〇 〇而顯示之 圖。圖4 2是為了說明習知的固態電子元件9 〇 〇中的切換動 ' 作(switching operation)而顯示之圖。圖42(a)是顯示導 通狀態(ON state)之圖’圖42(b)是顯示截止狀態(OFF state)之圖。 習知的固態電子元件9 0 0如圖41所示包含:源電極 ❹(source electrode)950 及没電極(drain electrode) 9 6 0;位於源電極950與汲電極960之間的通道層(channei layer) 940 ;控制通道層940的導通狀態之閘電極(gate electrode) 920 ;形成於閘電極92 0與通道層940之間,由 鐵電材料構成之閘絕緣層9 3 0。此外,在圖41中符號9 1 0 是表示絕緣性基板。 在習知的固態電子元件900中,當給予閘電極920正 的電位時,如圖42(a)所示會在通道層940形成有通道 100132261 1003447808-0 201222827 ^ (channel ) 94 0 a,成為電流由汲電極96〇流到源電極95〇 的狀態。另一方面,當給予閘電㉟920零或負的電位時, 如圖42(b)所示通道層94〇空乏化(depieti〇n)並形成有空 乏.層(depletion lavpr)q4f]h, 士 %. > _ 為,,Λ ^ 成為在 >及電極9 6 〇與源電極 9 5 0之間電流不會流過的狀態。 此外,在習知的固態電子元件9〇〇中,構成問絕緣層 930的材料使用鐵電材料(例如BLT((Bi4x,U)()Ti3〇i2)或 PZT(Pb(Zrx,Tn-dO3)。)’構成通道層94〇的材料使用氧 化物導電材料(例如銦錫氧化物(IT〇:IndiumTin〇xide))。 因此,依照習知的固態電子元件9 〇 〇,因構成閘絕緣 層9 3 0的材料使用鐵電材料,故能以低的驅動電壓(d r i v e voltage)高速地進行切換(swltching),其結果,能以低的 驅動電壓高速地控制大的電流。 而且’依照習知的固態電子元件9 〇 〇,因構成閘絕緣 層9 3 0的材料使用鐵電材料,故能使閘絕緣層9 3 〇具有遲 滯特性(hysteresis property)。因此,可利用閘絕緣層 9 3 0的遲滯特性’將資訊寫入閘絕緣層9 3 0或由閘絕緣層 9 3 0讀出資訊,能以習知的固態電子元件9 0 〇當作記憶體 元件(memory element)使用。 圖4 3是為了說明閘絕緣層9 3 0的遲滯特性而顯示之 圖。圖4 4疋顯不將資訊寫入閘 '纟巴緣層9 3 0時的樣子之圖。 圖4 4 (a)是顯示將[1 ]的資訊寫入閘絕緣層9 3 0的樣子,圖 4 4 (b)是顯示將[0 ]的資訊寫入閘絕緣層9 3 0的樣子。圖4 5 是顯示由閘絕緣層9 3 0讀出資訊時的樣子之圖。圖4 5 (a) 100132261 1003447808-0 201222827 疋颂不閘I巴緣層930保持[丨]的資訊的情形,圖45(b)是顯 不閑、.巴緣層9 3 0保持[〇 ]的資訊的情形。此外,在圖4 3中 符號k是表示閑絕緣層93〇的矯頑電壓(c〇ercive vo1tage) ° 在白知的固怨電子元件9〇〇中,因閘絕緣層93〇具有 如圖43所示的遲滯特性,故如圖44所示,可在使源電極 95〇&及汲電極降低到接地電位(ground potential)的 狀態下,藉由對閘電極92〇施加寫入電壓±vw,將[丨]或[〇] 〇的貧訊寫入閘絕緣層930。亦即如圖44(a)所示,可藉由對 間電極920施加比閘絕緣4 93〇 +的正的矯頑電壓曰⑽) 高的寫入電罐w),將⑴的資訊寫入閘絕緣層93。。而 且如圖44(b)所示,可藉由對閘電極 930中的負的矯頑電壓(一 Vc)低的寫入 資訊寫入閘絕緣層9 3 0 ^ 9ζυ靶加比閘絕緣層 電壓(―Vw),將[〇 ]的 而且’在習知的固態電子元件9〇〇 a ^ , 中因閘絕緣層9 3 0 具有如圖43所示的遲滯特性,故如圖45 _ ◎比正的矯碩電壓( + Vc)低且比負的矯碩 不,可在只有 被施加於閘電極9 2 0的狀態下,藉由對壓(VC)尚的電壓 $〆原、電極9 5 Π 、、芬雷 極960之間施加規定的電壓而由閘絶 /、及電 巴緣層930讀出資吼。 亦即’在閘絕緣層930保持[1 ]的資訊味 *貝爪 守’如圖、所十, 成為電流由汲電極9 6 0流到源電極9以^ 的狀態,在閘絕緣 層930保持[0]的資訊時,如圖45(b)所示 你「fl,,巴琢 成為電流不由 汲電極9 6 0流到源電極9 5 0的狀態,故< 犯以電流是否流過 作為標記(mark)由閘絕緣層9 3 0讀出資^ ^ ^ 100132261 1003447808-0 201222827 [專利文獻1 ] 曰本國特開 2 Q Q 6〜1 2 1 〇 2 9號公報 【發明内容】 但是’在習知的固態電子元 知,即使對閘電極92〇施加 9〇〇中也能由圖45得 真電壓(+ V c )低且比負 此正的矯. 的橋頌電壓(~VC)高的電壓, 诎仅技 -Γ ^ , 馬入制絕緣層9 3 0的資訊也 被保持,故可將習知的固態電 — 拣田 m + ^ ^ 卞兀件9 0 〇當作記憶體元件 使用。因此,可考慮將習知的 ^ L _ u心兒子元件9 0 0使用於適 合大谷量化的NAND型記憶體奘w & 、 的記憶體單元(m e m o r y cell)。 使用於NAND型記 但是’當將習知的固態電子元件9〇〇 憶體裝置的s己憶體單元時有如下的問題 圖46及圖47是顯示將習知的固態電子元件9〇〇使用 於NAND型記憶體裝置的記億體單元的情形的問題點之 圖其巾圖4 6疋為了説明想將新的資訊寫入固態電子元件 900的情形的問題點而顯示之圖。圖47是為了說明想讀出 被寫入固態電子元件900的資訊的情形的問題點而顯示之 圖’此外’在圖46及圖47中,符號SW是表示區塊選擇電 晶體(block selection transistor)。 在將習知的固態電子元件9 0 0使用於NAND型記憶體裝 置的記憶體單元的情形下,例如當想將新的資訊寫入選擇 單元M6時,如圖46所示’在藉由將位元線(bit Hne)BL 及板線(p 1 a t e 1 i n e) P L的電位降低到接地電位而將選擇單 元Μ 6的源極(s 〇 u r c e )端及汲極(d r a i η)端的電位降低到接 100132261 1003447808-0 6 201222827 地電位後,將[+Vwl或「-Vwl的宜x + , 的Η㊉梅廿蔣-欠^ ]的寫入電位給予選擇單元Μ6 的間电極並將-貝訊寫人選擇單元㈣。但是,此情 是非選擇單元,Μ5、Μ7之中只存在i個截止(〇ff)的非: 擇早…青形’也無法將選擇單元M6的源極端及 電位降低到接地電位,故有不會破壞非選擇單…J M7所保持的資訊無法將新的資訊寫入選擇單& μ的 題。在本說明書中擬將這種問題稱為[寫人干㈣題^ite disturb problem)]。 〇 而且,在將習知的固態電子元件900使用於NAND型記 憶體裝置的記憶體單元的情形下’例如當想讀出保持於、 選擇的記憶體單元(以下稱為選擇單元)M6的資訊時,如2 47所示,在使未被選擇的記憶體單元(以下稱為非選擇單 元)M0〜M5、M7都導通(0N)的狀態下對位元線BL與板線 之間施加規定的電塵’以當時電流是否流過來判斷被窝入 選擇單元M6的資訊為[1]或[0]。但是’此情形因需使非選 擇單元M0~M5、M7都成導通(ON),故有在該過程[π的資訊 ◎被寫入非選擇單元Μ0~Μ5、Μ7的全部,破壞非選擇單元 Μ 0 ~ Μ 5、Μ 7所保持的資訊的問題。在本說明書中擬將這種 問題稱為[讀出干擾問題(read disturb problem)]。 如此,在將習知的固態電子元件900使用於nand型記 憶體裝置的記憶體單元的情形下’想將新的資訊寫入選擇 單元的情形以及想讀出保持於選擇單元的資訊的情形的任 一種都有如以上的重大的問題([寫入干擾問題]及[讀出干 擾問題])。 100132261 1003447808-0 201222827 此外,這種問題不 ,^ nnn 疋只會發生於使用習知的固皞|工 兀件θ 〇 〇的記憶體裝署& .〜電子 的問題,而是會發生於使用間Ρ & 層使用鐵電材料的[Ϊ! At 使用閉、、、巴緣 題。 U怒'電子元件的記憶體裳置全般的問 因此本發明是為 目的為提供-種當使用/上述的問題所進行的創作,其 元時不會使[寫人干型記憶體裝置的記憶體單 氣--杜拔^ 擾問題]及[讀出干擾問題]發生之由固 恶電子兀件構成的記怜 田固 其目的為提供一種使 古而且’ 沒種記憶體單元區塊的記恃體萝 以及記憶體裝置的驅動方法 U體裝置 [1 ]、本發明的記恃神_ 口體早元區塊,其特徵包含.且右 下構件的資訊記憶用 匕3.,、有如 m❹说 的卓—電晶體:具有第一源極端及第 一汲極鈿之第一通道F 吊 匕域’與控制前述第一通道區域 通狀態之第一閘電極, k i L·域的導 m -s F ^ 、由形成於珂述第一閘電極與前述 弟一通迢區域之間的 . ^ 的第-問絕緣層;且“層—me layer)構成 電晶體:具有第二源極=件的資訊讀出/寫入用的第二 控制前述第二通道區域:二?:端之第二通道區域’與 於前述第二閘電極與前诚笛…、、-柽與形成 、弟一通道區域之間的第二閘絕续 層,包含··由在前述第—恭a挪α二 名 屯日日體及如述第二電晶體在前述第 -源極端與刖述第二源極端被連接,冑述第一汲極端與前 述第二汲極端被連接’前述第一閘電極及前述第二閘電極 各自被連接於另一條間極線(gate me)的狀態下,被並聯 連接的固態電子元件構成之複數個記憶體單元,該等複數 100132261 1003447808-0 8 201222827 個記憶體單元被串聯遠垃 第二通道區域是由以前述第一通道區域及前述 成,前述複數個記憶體單^二成的導體層或半導體層構 Φ ^ ^ ^ - 中接鄰的兩個記憶體單元藉 由由延續於5玄兩個記憶體單 沭筮-、畜、音F Α 中的别述第一通道區域及前 述弟一通道區域,且以與該等 m μ ^ ^ ψ>> m rn Λ> 、區域同一製程形成的導 體層或+導體層構成的連接層連接。 因此,依照本發明的 π 一 i °心體早兀區塊,可藉由將該記 L體早70 £塊使用於Nand r% ^ χ ^ - r ^ 5 u體扃置的記憶體單元,構 (’成不a使[寫入干擾問題]「 狀琢 」L °貝出干擾問題]發生之記憶體 裝置。 亦即’在將本發明的記情體單 U篮早70 £塊使用於NAND型記 憶體裝置的記憶體單元區持的彳主报π L鬼的U I下,例如想將新的資訊 寫入選擇單元Μ6的情形’如後述的圖5、圖7、冑14、圖 16、圖18及圖20所示,至少對連接於非選擇單元Μ〇〜Μ5、 Μ7的第二字元線(w〇rd Hne)ffL2〇~WL27施加導通狀態電壓 (0N_state v〇itage)Von’並且對連接於選擇單元M6的第201222827 VI. Description of the Invention: [Technical Field] The present invention relates to a memory cell block and a method of manufacturing the same, a memory device (m e m 〇 r y d e v i c e ), and a method of driving a memory device. [Prior Art] A solid state electronic device using a ferroelectric material (for example, Patent Document 1) has been known as a gate insulating layer. Fig. 41 is a view for explaining a conventional solid-state electronic component 9 〇 。. Fig. 4 2 is a view for explaining a switching operation in the conventional solid-state electronic component 9 〇 。. Fig. 42(a) is a diagram showing an ON state. Fig. 42(b) is a diagram showing an OFF state. The conventional solid state electronic component 900 includes a source electrode 950 and a drain electrode 960 as shown in FIG. 41; a channel layer between the source electrode 950 and the ytterbium electrode 960 (channei) A gate electrode 920 that controls the conduction state of the channel layer 940; a gate insulating layer 930 formed of a ferroelectric material formed between the gate electrode 92 0 and the channel layer 940. Further, reference numeral 9 1 0 in Fig. 41 denotes an insulating substrate. In the conventional solid-state electronic component 900, when the positive potential of the gate electrode 920 is given, as shown in FIG. 42(a), a channel 100132261 1003447808-0 201222827 ^ (channel ) 94 0 a is formed in the channel layer 940. The current flows from the drain electrode 96 to the source electrode 95. On the other hand, when the Zener 35920 is given a zero or negative potential, as shown in Fig. 42 (b), the channel layer 94 is depleted and depleted lavpr q4f]h, %. > _ is ,, Λ ^ becomes a state in which current does not flow between > and the electrode 9 6 〇 and the source electrode 950. Further, in the conventional solid-state electronic component 9, the material constituting the insulating layer 930 is made of a ferroelectric material (for example, BLT ((Bi4x, U)() Ti3〇i2) or PZT (Pb (Zrx, Tn-dO3). The material constituting the channel layer 94 is made of an oxide conductive material (for example, indium tin oxide (IT): Indium Tin Oxide). Therefore, according to the conventional solid electronic component 9 〇〇, the gate insulating layer is formed. Since the material of 930 is made of a ferroelectric material, it can be switched at a high speed with a low driving voltage, and as a result, a large current can be controlled at a high speed with a low driving voltage. The solid-state electronic component 9 〇〇, because the material constituting the gate insulating layer 930 is made of a ferroelectric material, the gate insulating layer 9 3 〇 has a hysteresis property. Therefore, the gate insulating layer 9 3 0 can be utilized. The hysteresis characteristic 'writes information into the gate insulating layer 930 or reads information from the gate insulating layer 930, and can be used as a memory element using the conventional solid state electronic component 90 。. 3 is to illustrate the hysteresis characteristics of the gate insulating layer 930 Figure 4 4 shows the picture of the state when the information is not written to the gate of the gate. Figure 4 4 (a) shows that the information of [1] is written into the gate insulating layer 9 3 The appearance of 0, Fig. 4 4 (b) is a view showing that information of [0] is written to the gate insulating layer 930. Fig. 45 is a view showing how the information is read by the gate insulating layer 930. Fig. 4 5 (a) 100132261 1003447808-0 201222827 疋颂不II Bar edge layer 930 keeps the information of [丨], Figure 45(b) is not free, the bar edge layer 9 3 0 keeps [〇] In addition, in FIG. 4, the symbol k is a coercive voltage (c〇ercive vo1tage) indicating the free insulating layer 93〇. In the white metal component, the gate insulating layer 93 Since 〇 has hysteresis characteristics as shown in FIG. 43, as shown in FIG. 44, the gate electrode 92 can be applied by lowering the source electrode 95 〇 & and the 汲 electrode to the ground potential. The write voltage ±vw is written into the gate insulating layer 930 by the negative of [丨] or [〇] 。. That is, as shown in Fig. 44 (a), the gate electrode 920 can be insulated by a gate. + positive coercive voltage 曰(10)) Writing electric pot w), the information written ⑴ gate insulating layer 93. . Further, as shown in FIG. 44(b), the gate insulating layer voltage can be written to the gate insulating layer by a write information having a low negative coercive voltage (a Vc) in the gate electrode 930. (―Vw), [〇] and 'in the conventional solid state electronic component 9〇〇a ^ , because the gate insulating layer 930 has hysteresis characteristics as shown in Fig. 43, so as shown in Fig. 45 _ ◎ The positive oscillating voltage (+Vc) is low and is more than negative, and the voltage can be reduced by the voltage (VC) and the electrode 9 5 only in the state of being applied to the gate electrode 902. A predetermined voltage is applied between the 、 and the Fenlei poles 960, and the resources are read by the gate/and/off edge layer 930. That is, 'the information of the [1] is maintained in the gate insulating layer 930. * The pinch guards are shown in the figure, and the current is maintained in the state of the gate insulating layer 930 by the state in which the current flows from the xenon electrode 906 to the source electrode 9 When the information of [0] is as shown in Fig. 45(b), "fl," is a state in which the current does not flow from the electrode 906 to the source electrode 950, so < The mark is read by the gate insulating layer 9 3 0 ^ ^ 100132261 1003447808-0 201222827 [Patent Document 1] 曰 National Special Open 2 QQ 6~1 2 1 〇 2 9 [Invention] But The known solid-state electron element knows that even if 9 〇 is applied to the gate electrode 92, the true voltage (+V c ) can be obtained from Fig. 45 and is higher than the negative bridge voltage (~VC). The voltage, 诎 only technique - Γ ^, the information of the horse-made insulation layer 930 is also maintained, so the conventional solid-state electricity - picking m + ^ ^ 9 90 〇 can be used as a memory component. Therefore, it is conceivable to use the conventional ^ L _ u core son element 900 for a memory cell of a NAND type memory 奘 w & It is used in the NAND type but the following problems occur when the conventional solid-state electronic component 9 is used as the suffix unit. FIG. 46 and FIG. 47 show the conventional solid-state electronic component 9〇. The problem of the case of the case of the NAND-type memory device used in the NAND-type memory device is shown in Fig. 46 for the purpose of explaining the problem of writing new information into the solid-state electronic component 900. 47 is a view for explaining a problem in a case where information to be written into the solid-state electronic component 900 is read. In addition, in FIGS. 46 and 47, the symbol SW is a block selection transistor. In the case where the conventional solid-state electronic component 900 is used for the memory unit of the NAND-type memory device, for example, when it is desired to write new information to the selection unit M6, as shown in FIG. 46 The potential of the bit line (bit Hne) BL and the plate line (p 1 ate 1 ine) PL is lowered to the ground potential, and the potentials of the source (s 〇urce ) end and the drain (drai η) end of the unit Μ 6 are selected. Reduced to 100132261 1003447808-0 6 201222827 After potential, the [+ Vwl or "should -Vwl of x +, the Η㊉ Jiang Mei twenty - owe ^] given the option of writing potential between the electrodes and Μ6 the unit - Tony hearing people choose to write unit (iv). However, this is a non-selection unit. There are only i cutoffs (〇ff) in Μ5 and Μ7: The early choice...the green shape' cannot reduce the source terminal and potential of the selection unit M6 to the ground potential, so there is no Will destroy the non-selection list... The information maintained by J M7 cannot write new information to the selection list & μ question. This problem is referred to in this specification as [^ite disturb problem]. Further, in the case where the conventional solid-state electronic component 900 is used in a memory unit of a NAND-type memory device, for example, when it is desired to read information of a memory unit (hereinafter referred to as a selection unit) M6 held and selected, In the case where the unselected memory cells (hereinafter referred to as non-selected cells) M0 to M5 and M7 are both turned on (0N), the specification is applied between the bit line BL and the plate line. The electric dust 'is judged whether the information that is nested in the selection unit M6 is [1] or [0] by whether the current flows at the time. However, in this case, since the non-selected cells M0 to M5 and M7 are all turned ON, there is a process in the process [π information is written to all of the non-selected cells Μ0~Μ5, Μ7, destroying the non-selected cells. Μ 0 ~ Μ 5, Μ 7 The information kept by the problem. This problem is referred to as a "read disturb problem" in this specification. As described above, in the case where the conventional solid-state electronic component 900 is used in the memory unit of the nand type memory device, 'when the new information is to be written into the selection unit and the case where the information held by the selection unit is to be read, Any one of them has major problems like the above ([Write Interference Problem] and [Read Interference Problem]). 100132261 1003447808-0 201222827 In addition, this problem does not occur, ^ nnn 疋 will only occur in the memory of the use of the 皞 兀 兀 θ θ 〇〇 记忆 记忆 记忆 电子 电子 电子 电子 电子 电子 电子 电子Use the Ρ & layer to use the ferroelectric material [Ϊ! At use closed,, and aba margin questions. The memory of the U anger 'electronic component is all the same. Therefore, the present invention is for the purpose of providing the creation of the problem of the use/the above, and the time does not make the memory of the written memory device The body of a single gas - Du Duo ^ disturbance problem] and [read interference problem] is composed of solid and evil electronic components, the purpose of the memory is to provide a kind of ancient and 'no memory cell block The body of the body and the driving method of the memory device U body device [1], the memory of the present invention _ mouth early element block, its characteristics include. The information memory of the lower right member is used for 3., like m❹ Said Zhuo-Crystal: a first channel F with a first source and a first drain, and a first gate electrode that controls the first channel region, a guide m of the ki L· domain s F ^ , a first-instance insulating layer formed between the first gate electrode and the aforementioned one-way region; and the "me layer" constitutes a transistor: having a second source = The second control area for information read/write is to control the second channel area: the second channel area of the second?: end 'With the aforementioned second gate electrode and the former Chengdi...,, -柽 and the formation, the second gate isolating layer between the passage area, including ···························· And the second transistor is connected to the second source terminal at the first source terminal and the second source terminal, wherein the first 汲 terminal and the second 汲 terminal are connected to the first gate electrode and the second gate electrode a plurality of memory cells composed of solid-state electronic components connected in parallel in a state of being connected to another gate me, the plurality of memory cells being connected in series by the plurality of memory blocks 100132261 1003447808-0 8 201222827 The two-channel region is formed by the first channel region and the foregoing, and the two memory cells in the plurality of memory layers or the semiconductor layer structure Φ ^ ^ ^ - 5 Xuan two memory single 沭筮-, animal, sound F Α in the first channel area and the aforementioned brother-channel area, and with the m μ ^ ^ ψ> > m rn Λ>, region Connection formed by a conductor layer or a + conductor layer formed by the same process Therefore, the π-i° heart-shaped early-breaking block according to the present invention can be used for the memory of the Nand r% ^ χ ^ - r ^ 5 u body by using the L-body as early as 70 £ blocks. Unit, structure ('Do not make a [write interference problem] "state" L ° shell out interference problem] memory device. That is, 'in the case of the invention, the single U basket is 70 £ block In the UI of the memory cell area of the NAND type memory device, for example, when the new information is to be written in the selection unit Μ6, as shown in FIG. 5, FIG. 7, and FIG. 14, which will be described later, As shown in FIG. 16, FIG. 18 and FIG. 20, at least the second word line (w〇rd Hne) ffL2〇 to WL27 connected to the non-selected cells Μ〇 to Μ5 and Μ7 is applied with a turn-on state voltage (0N_state v〇itage). Von' and the number connected to the selection unit M6

一字元線WL!6施加比第一閘絕緣層的矯頑電壓vcl高的第 一寫入電壓(VW: Vw>Vcl)及比對第一閘絕緣層的矯頑電壓The word line WL!6 applies a first write voltage (VW: Vw > Vcl) higher than the coercive voltage vcl of the first gate insulating layer and a coercive voltage of the first gate insulating layer.

Vcl附加負號後的電壓(一 vcl)低的第二寫入電壓 ([-Vw] : 〇Vw]<-Vcl)的任一個。據此’因至少非選擇單元 M0〜M5、M7中的第二電晶體TR2都成導通(0N),故即使不 使用第一電晶體TR1,也能透過第二電晶體TR2使選擇單 元M6的第二汲極端及第二源極端的各個成與位元線BL及 板線PL的電位相同的接地電位。因此’不會破壞非選擇單 100132261 1003447808-0 201222827 元MO〜M5、M7中的第一電晶體TR1所保持的資訊’可將新 的資訊寫入選擇單元M6。其結果,本發明的記憶體單元區 塊成為不會使[寫入干擾問題]發生的記憶體單元區塊。此 外’此情形將新的資訊寫入選擇單元Μ 6時,對連接於選擇 單元Μ6的第二字元線WL26施加導通狀態電壓Von或截止 狀態電壓(〇FF-state voltage)Voff的任—個也可以。 另一方面’在將本發明的記 型記憶體裝置的記憶體單元區塊的情形下,例如想讀出保 持於選擇單元M6的資訊的情形,如後述的圖6、圖8、圖 U、圖U、圖19及圖21所示,對連接於非選擇單元M(M15、 M7的第二字元線WL20,25、仏7施加導通狀態電壓v〇n, 亚且對連接於選擇單元M6的第二字元線WL26施加截止狀 態電壓Voff。摅m μ ^ 隹乂立狀 曰f + 單元Μ〇〜Μ5、Μ7中的第二電 曰曰體T R 2都成導通(〇 ν、,、时— 都成截止(QFn n ±早70 Μ6中的第二電晶體m 時,因任—條第Λ可讀出保持於選擇單元^的資訊。此 , 子元線都未連接於繁_ φ Β Τ Ρ 1 XL· 對非選擇單元Mniic: 咬按於弟電日日體TR1,故 晶體-也=破Γ7及選擇單元M6中的任—個第一電 憶體單元^A A k所保持的貧訊。其結《,本發明的記 元區塊。 .、'、不會使[讀出干擾問題]發生的記憶體單 依照本發明的記憶體單元區塊,因 域及第二通道區 層構成,複數個二 一製程形成的導體層或半導 由由延續於兮,體單元之中接鄰的兩個記憶體單元 Λ X個記憶體單元中的第一通道區域及第二 1 0 100132261 1003447308-0 201222827 道區域’且以與該等通道區域同—製裎形 導體層構成的連接層連接,故可藉由一次 的製程形成第一通道區域及第二通道區玉 且,可降低第一通道區域及第二通道區域 接觸電阻(contact resistance)。 [2 ]、在本發明的記憶體單元區塊中, 域及前述第二通道區域以及前述連接層由 構成較佳。 〇 藉由以這種構成,因可提高各通道區 (carrier concentration),故能以低的驅 制大的電流。 [3 ]、在本發明的記憶體單元區塊中, 電極及前述第二閘電極的閘電極層,與構 緣層和前述第二閘絕緣層的閘絕緣層,與 導體層都使用液體材料形成較佳。 藉由以這種構成,因可使用壓花) 〇 mo 1 d i ng)加工技術製造記憶體單元區塊, 往還少的原料(raw mater i a 1)及製造能量 energy)製造如上述般優越的記憶體單元區 使用 M0D(Metal Organic Decomposition 材料、溶膠-减膠溶液(sol-gel solution) 液體材料等。 [4 ]、在本發明的記憶體單元區塊中, 與前述閘絕緣層’與前述導體層或半導體 成的導體層或半 的製程,亦即短 成與連接層。而 與連接層之間的 前述第一通道區 氧化物導電材料 域中的載子濃度 動電壓高速地控 構成前述第一閘 成前述第一閘絕 前述導體層或半 故形(embossing 故可使用遠比以 (manufacturing :塊。液體材料可 :金屬有機分解) 、奈米粒子分散 前述閘電極層, 層都不使用真空 100132261 1003447808-0 201222827 製程(vacuum process)而形々, 1形成較佳。 藉由以這種構成,因又说Vcl is added with a negative voltage (a vcl) lower than the second write voltage ([-Vw] : 〇Vw] < -Vcl). Accordingly, since at least the second transistors TR2 in the non-selected cells M0 to M5 and M7 are turned on (ON), the selection unit M6 can be made to pass through the second transistor TR2 even if the first transistor TR1 is not used. Each of the second and second source terminals has the same ground potential as the potential of the bit line BL and the plate line PL. Therefore, the information held by the first transistor TR1 in the non-selection order 100132261 1003447808-0 201222827 element MO~M5, M7 can be destroyed, and new information can be written to the selection unit M6. As a result, the memory cell block of the present invention becomes a memory cell block which does not cause the [write disturb problem] to occur. Further, in this case, when new information is written in the selection unit Μ 6, any of the on-state voltage Von or the off-state voltage Voff is applied to the second word line WL26 connected to the selection unit Μ6. Also. On the other hand, in the case of the memory cell block of the memory device of the present invention, for example, it is intended to read the information held by the selection unit M6, as shown in FIG. 6, FIG. 8, FIG. As shown in FIG. 19, FIG. 19 and FIG. 21, the on-state voltage v〇n is applied to the second word lines WL20, 25 and 仏7 connected to the non-selection cells M (M15, M7), and the pair is connected to the selection unit M6. The second word line WL26 applies an off-state voltage Voff. 摅m μ ^ 隹乂 曰 + f + unit Μ〇 Μ Μ 5, 第二 7 of the second electric body TR 2 are both turned on (〇ν,,, When - all are cut off (QFn n ± 70 Μ 6 of the second transistor m, because any - strip Λ can read the information held in the selection unit ^. Thus, the sub-line is not connected to the complex _ φ Β Τ Ρ 1 XL· Non-selection unit Mniic: Biting on the younger day of the body TR1, so the crystal - also = breaking 7 and selecting any of the first electronic memory unit ^AA k in the unit M6 The message block of the present invention, the memory cell of the present invention, which does not cause the [readout interference problem] to occur, is in accordance with the memory cell block of the present invention. Due to the domain and the second channel layer structure, the conductor layer or semi-conductor formed by the plurality of two-dimensional processes is the first of the two memory cells Λ X memory cells which are continued from the 兮, body unit The channel region and the second 10 100132261 1003447308-0 201222827 track region 'and are connected with the connection layer formed by the same conductor region as the channel region, so that the first channel region and the second region can be formed by one process In the channel region, the contact resistance of the first channel region and the second channel region can be reduced. [2] In the memory cell block of the present invention, the domain and the second channel region and the foregoing connection layer are Preferably, the configuration is such that the carrier concentration can be increased, so that a large current can be driven at a low level. [3] In the memory cell block of the present invention, the electrode And the gate electrode layer of the second gate electrode, and the gate insulating layer of the framing layer and the second gate insulating layer, and the conductor layer are preferably formed of a liquid material. With this configuration, embossing can be used. ) Mo 1 di ng) Processing technology to manufacture memory cell blocks, to produce raw memory cells with less raw materials (raw mater ia 1) and energy production). M0D (Metal Organic Decomposition material, sol-minus) Sol-gel solution, liquid material, etc. [4] In the memory cell block of the present invention, a process of forming a conductor layer or a half of the gate insulating layer with the conductor layer or the semiconductor, that is, Short into and connected to the layer. And the carrier concentration dynamic voltage in the first channel region oxide conductive material region between the connection layer and the connection layer is controlled at a high speed to form the first gate into the first gate to eliminate the conductor layer or the semi-defective shape (embossing can be used) Far more than (manufacturing: block liquid material can be: metal organic decomposition), nanoparticle dispersion of the above gate electrode layer, the layer is not used vacuum 100132261 1003447808-0 201222827 vacuum process shape, 1 formed better. By using this composition, because of

u不使用真空製程而能製造記情體 單元區塊,故可使用遠比以4 U 以住還少的製造能量製造如上述 般優越的記憶體單元區塊。 [5 ]、在本發明的記怜髀„。 w體早元區塊中,構成前述第—問 電極及高述第二閘電極的+ 书徑的閘電極層,與構成前述第一 緣層和前述第二閘絕緣層 本胃的閘絕緣層,與前述導體 導體層均由氧化物材料構成較佳。 一 藉由以运種構成,的 )扯使用液體材料形成閘電極層與 閘絕緣層與導體層或半導^Φ ^ 守滑。而且,可當作可靠度 (rel iabi 1 i ty)高的固態電子元件。 又 [6]、在本發明的記憶體單元區塊中,前述閘電極層與 前述閘、絕緣層與前述導體層或_ f體層均具㈣欽礦構造 (perovski te structure)較佳。 藉由以這種構成’閘電極層與閘絕緣層與導體層或半 導體層成為同一的結晶構造(cryStalIine structure),可 製造晶格缺陷(lattice defect)少的高品質的固態電子元 件。 [7 ]、在本發明的記憶體單元區塊中,前述第二閘絕緣 層是由與前述第一閘絕緣層同層的鐵電層構成,前述第一 電晶體及前述第二電晶體可具有:在固體基板中的一方的 表面上’構成前述第一閘電極及前述第二閘電極的閘電極 層,與構成前述第一閘絕緣層和前述第二閘絕緣層的閘絕 緣層,與構成前述第一通道區域及前述第二通道區域以及 100132261 1003447808-0 12 201222827 前述連接層的導體層或半導體層以此順序形成的構造。 藉由以這種構成’可在固體基板上構成平面分離型的 s己憶體單元區塊(下閘極式:b〇 11 om ga t e t y pe )(參照後述 的實施形態五)。 [8 ]、在本發明的記憶體單元區塊中,前述第二閘絕緣 層是由與前述第一閘絕緣層同層的鐵電層構成,前述第一 電晶體及前述第二電晶體可具有:在固體基板中的一方的 表面上’構成前述第一通道區域及前述第二通道區域以及 〇前述連接層的導體層或半導體層,與構成前述第一閘絕緣 層和前述第二閘絕緣層的閘絕緣層,與構成前述第一閘電 極及前述第二閘電極的閘電極層以此順序形成的構造。 藉由以這種構成’可在固體基板上構成平面分離型的 。己k體單元區塊(上閘極式:t 〇p ^ ^ e t y p e )(參照後述的實 施形態六)。 [9 ]、在本發明的記憶體單元區塊中,前述第一電晶體 及w述第二電晶體並排配置於通道寬度方向(channel ◎ width direction)較佳。 藉由以這種構成’可空間效率良好地配置第一電晶體 及第二電晶體。 [1 0 ]、在本發明的記憶體單元區塊中,前述第一電晶 體及前述第二電晶體可具有:在固體基板中的一方的表面 上,構成珂述第一閘電極的第一閘電極層,與前述第一閘 絕緣層’與構成前述第一通道區域及前述第二通道區域以 及前述連接層的導體層或半導體層’與前述第二閘絕緣 100132261 1003447808-0 201222827 層’與構成前述第二閘電極的 的構造。 閑-極層以此順序形成 :由以這種構成’可構成:在固體基板上 極、第-間絕緣層及第—通道區域構成一 ^ 由第二通道區域、第-閘π 电晶體,與 …… 及第二閘電極構成的第- (參照後述的實施形態一、三及四)。 己匕體早兀區塊 [11]、在本發明的記憶體單元區塊中, 體及前述第二電晶體可星右 ⑨处弟一電晶 屯日日體了具有:在固體基板 上,構成前述第二閘電坧Μ铱 ^万的表面 、弟π Ί:極的第二閘電極 絕緣層,與構成前述第一通 〜則这苐—閘 及前述連接層的導體”二:及别述第二通道區域以 層…冓成前:第二或+導體層’與前述第-閘絕緣 的構造。 極的弟-間電極層以此順序形成 藉由以這種構成,可错_ 4、 ^ 構成:在固體基板上,由第-η蕾 極、第一閘絕緣層及第_ „ 一閘電 罘層及弟—通逼區域 由第-通道區域、第一閘奶“ .乂扪弟一電曰曰體’與 兩曰I*以ϋ* β » 、巴、^及第一閘電極構成的第一 电日日體以此順序被豐層的曼八 及層刀離型的固能雷+分杜r 照後述的實施形態二)。 』N心冤子疋件(參 [1 2 ]、在本發明的記悵 〜 早兀區塊(記載於上述[10] 或[11 ]的記憶體單元區塊)中,& & . 、 引述第一閘絕緣層由順電層u It is possible to manufacture a memory cell block without using a vacuum process, so that it is possible to manufacture a memory cell block superior to the above with a manufacturing energy of less than 4 U. [5], in the memory of the present invention, the gate electrode layer constituting the first electrode and the second gate electrode of the second gate electrode, and the first edge layer And the gate insulating layer of the second gate insulating layer and the conductor conductive layer are preferably made of an oxide material. The wire electrode layer and the gate insulating layer are formed by using a liquid material. And the conductor layer or semi-conducting ^Φ ^ Slip. Moreover, it can be regarded as a solid electronic component with high reliability (rel iabi 1 ty). [6] In the memory cell block of the present invention, the foregoing gate Preferably, the electrode layer and the gate, the insulating layer and the conductor layer or the _f body layer have a (four) perovski te structure. By forming the gate electrode layer and the gate insulating layer and the conductor layer or the semiconductor layer The same crystal structure (cryStalIine structure) can produce high-quality solid-state electronic components with few lattice defects. [7] In the memory cell block of the present invention, the second gate insulating layer is a ferroelectric layer in the same layer as the first gate insulating layer The first transistor and the second transistor may have a gate electrode layer constituting the first gate electrode and the second gate electrode on one surface of the solid substrate, and insulating the first gate The gate insulating layer of the layer and the second gate insulating layer and the conductor layer or the semiconductor layer constituting the aforementioned first channel region and the second channel region and the aforementioned connecting layer of 100132261 1003447808-0 12 201222827 are formed in this order. According to this configuration, a planar separation type s-resonance unit block (lower gate type: b〇11 om ga tety pe) can be formed on a solid substrate (refer to Embodiment 5 to be described later). [8] In the memory cell block of the present invention, the second gate insulating layer is composed of a ferroelectric layer in the same layer as the first gate insulating layer, and the first transistor and the second transistor may have: a surface of one of the substrates constituting the first channel region and the second channel region and the conductor layer or the semiconductor layer of the connection layer, and the first gate insulating layer and the aforementioned a gate insulating layer of the second gate insulating layer and a gate electrode layer constituting the first gate electrode and the second gate electrode are formed in this order. By using such a structure, a planar separation type can be formed on the solid substrate. The hex-body unit block (upper gate type: t 〇p ^ ^ etype ) (refer to the sixth embodiment described later). [9] In the memory cell block of the present invention, the first transistor It is preferable that the second transistors are arranged side by side in the channel width direction. The first transistor and the second transistor can be disposed in a space-efficient manner by such a configuration. [1] In the memory cell block of the present invention, the first transistor and the second transistor may have a first surface on a surface of the solid substrate that constitutes a first gate electrode a gate electrode layer, and the first gate insulating layer 'and a conductor layer or a semiconductor layer constituting the first channel region and the second channel region and the connecting layer and the second gate insulating layer 100132261 1003447808-0 201222827' The structure constituting the aforementioned second gate electrode. The idle-pole layer is formed in this order: it can be constituted by: the upper electrode of the solid substrate, the first-inter-insulating layer and the first-channel region constitute a second channel region, the first gate π transistor, And - and the second gate electrode - (see Embodiments 1, 3, and 4 to be described later). In the memory cell block of the present invention, in the memory cell block of the present invention, the body and the second transistor can be in the right-hand side, and the electro-crystal is formed on the solid substrate. a second gate electrode insulating layer constituting the surface of the second gate electrode, the second gate electrode of the π Ί: pole, and a conductor constituting the first gate and the gate and the connecting layer. The second channel region is formed by layering: the second or + conductor layer 'is insulated from the aforementioned first gate. The pole-interelectrode layer of the pole is formed in this order. , ^ Composition: on the solid substrate, from the first -n ray pole, the first gate insulation layer and the _ „ 闸 罘 及 及 及 弟 通 通 通 通 通 通 通 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由The first electric eclipse composed of the electric 曰曰 body's and the two 曰**, 巴* β », 巴, ^ and the first gate electrode is solidified by the layered Manba and the layer knife in this order. The energy can be divided into the following: (2) [11] in the memory unit block), &&., quote the first gate insulating layer from the paraelectric layer

Cparaelectric layer)構成較件。 藉由以這種構成’也能山〜 田 由後述的實施形態一、二及四 得知,在上述的豐層分離型的 u心、电子兀件中,可正確地 100132261 1003447808-0 14 201222827 進行資訊的寫入及讀出。 [13] 、在本發明的記憶體單元區塊(記載於 或[11 ]的記憶體單元區塊彳φ 、, :上述[10 ] 構成較佳。 塊)中1述第二閘絕緣層由鐵電層 、、藉由以這種構成,也能由後述的實施形態三 上述的疊層分離型的記憶體 ^ 訊的寫入及讀出。 體…塊中’可正確地進行資 A U卜,在本發明的記憶體單元區塊(記載、十[ Ο [10]〜[13]的任一項的記置一 ;上述 “ 體早兀區塊)中,導體層或丰導 體9之中,第一通道區域位一 一 ,^ 、弟閘包極的界面的近 旁,弟二通道區域位於與第二問電極的界面的近旁。的近 而且,在本發明的記憶體單元區塊(記载於 [10]〜[13]的任一項的記憶體單元區塊)中,' u ^ ^ 逍道區域 及弟二通道區域的部分中的導體層或半導體層的厚产被嗖 定為如下的厚度較佳··在想讀出被保持於規定的二=二二 元的截止資訊(off i nf0rmati0n)時,在規定的記憶^單元 〇以外的記憶體單元中,至少第二通道區域成為導。二 另一方面,在規定的記憶體單元令,構成第一通道及^二 通道的導體層或半導體層全體成為非導通狀態。 [14] 、在本發明的記憶體單元區塊中,前述第二間絕 緣層是由與前述第一閘絕緣層同層的鐵電層構成,前述第 一通道區域及前述第二通道區域位於形成於半導體芙板 (semiconductor substrate)的表面的規定的源極區域 (source region)及規定的汲極區域(drain region)之間, 100132261 100344780S-0 201222827 前述第一閘絕緣層覆蓋前述第一通道區域而形成,前述第 二閘絕緣層覆蓋前述第二通道區域而形成,前述第一閘電 極隔著前述第一閘絕緣層對向於前述第一通道區域而形 成,前述第二閘電極隔著前述第二閘絕緣層對向於前述第 二通道區域而形成較佳。 藉由以這種構成,可在半導體基板的表面構成平面分 離型的 固態電 子元件 (MFS(Metal-Ferroelectric-Semiconductor:金屬-鐵電― 半導體)型)(參照後述的實施形態七)。其結果,可使用一毫参 般的半導體製程以廉價的製造成本製造記憶體單元區塊。 [1 5 ]、在本發明的記憶體單元區塊(記載於上述[丨4 ] 的記憶體單元區塊)中,在前述第一通道區域及前述第二通 道區域,與前述第一閘絕緣層及前述第二閘絕緣層之間形 成有順電緩衝層(paraelectric buffer layer)較佳。 藉由以這種構成,可在半導體基板的表面構成平面分 離型的 記憶體 單元區 境Cparaelectric layer) constitutes a piece. According to the first, second, and fourth embodiments of the above-described composition, it is also possible to accurately correct 100132261 1003447808-0 14 201222827 in the above-mentioned abundance separation type u core and electronic component. Write and read information. [13] In the memory cell block of the present invention (described in the memory cell block 彳 φ of [11] or the above [10] is preferably configured.), the second gate insulating layer is described by With such a configuration, the ferroelectric layer can also be written and read by the stacked-separated memory of the above-described third embodiment. In the block...the block can be correctly carried out, in the memory unit block of the present invention (documentation, the record of any one of [10 [10] to [13]; the above-mentioned "body early zone" In the block), among the conductor layer or the abundance conductor 9, the first channel region is located one by one, the vicinity of the interface of the second gate, and the second channel region is located near the interface with the second electrode. In the memory cell block of the present invention (described in the memory cell block of any one of [10] to [13]), in the portion of the 'u ^ ^ channel region and the second channel region The thickness of the conductor layer or the semiconductor layer is determined to be as follows. When it is desired to read the cutoff information (off i nf0rmati0n) held in the predetermined two=two binary, the predetermined memory unit is used. In the other memory cells, at least the second channel region serves as a guide. On the other hand, in a predetermined memory cell, the entire conductor layer or the semiconductor layer constituting the first channel and the second channel are rendered non-conductive. In the memory cell block of the present invention, the second insulating layer is The first gate insulating layer is formed of a ferroelectric layer of the same layer, and the first channel region and the second channel region are located in a predetermined source region and a predetermined surface formed on a surface of a semiconductor substrate. Between the drain regions, 100132261 100344780S-0 201222827, the first gate insulating layer is formed to cover the first channel region, and the second gate insulating layer is formed to cover the second channel region, the first gate electrode The first gate insulating layer is formed to face the first channel region, and the second gate electrode is preferably opposed to the second channel region via the second gate insulating layer. In the configuration, a planar separation type solid-state electronic component (MFS (Metal-Ferroelectric-Semiconductor) type) can be formed on the surface of the semiconductor substrate (see Embodiment 7 described later). As a result, one millimeter can be used. The semiconductor process of the present invention manufactures a memory cell block at a low cost of manufacture. [1 5 ] In the memory cell block of the present invention (recorded In the memory cell block of the above [丨4], a parasitic buffer layer is formed between the first channel region and the second channel region, and between the first gate insulating layer and the second gate insulating layer ( Paraelectric buffer layer) is preferable. By adopting such a configuration, a planar separation type memory cell region can be formed on the surface of the semiconductor substrate.

(MFIS(Metal-Ferroelectric-Insulator-Semiconductor: U 金屬-鐵電-絕緣體-半導體)型)(參照後述的實施形態 八)。據此,可抑制往往會在半導體基板(例如S i )與構成 第一閘絕緣層及第二閘絕緣層的鐵電層(例如p Z T)之間產 生的[不良相互擴散現象(undesirable interdifiusion phenomenon ) ° [1 6 ]、在本發明的記憶體單元區塊(記載於上述[1 4 "! 或[1 5 ]的記憶體單元區塊)中’在前述順電缓衝層,與前述 1 6 100132261 1003447808-0 201222827 第一閘絕緣層及前述第二閘絕緣層之間形成有浮接電極 (floating electrode)車交佳。 藉由以這種構成’可在半導體基板的表面構成平面分 離 型的記 憶體單 元區塊 (MFMIS(Metal-Ferroelectric-Metal-Insulator-Semi con due tor:金屬-鐵電-金屬-絕緣體_半導體)型)(參照後述 的實施形態九)。據此,可藉由任意調整由閘絕緣層構成的 電容器與由順電緩衝層構成的電容器的面積,緩和剩餘極 〇 化量(amount of residual polarizati〇n)大的閘絕緣層與 剰餘極化量小的半導體基板之間的電荷失配(以訂以 mismatch)。 [17]、本發明的記憶體裝w特徵包含:位元線;板 、線;第-字元線;第二字元線;在前述位元線與前述板線 之間串聯連接有複數個記憶體單元之記憶體單元區塊;配 設有複數個前述記憶體單元區塊之記憶體單元陣列 (memory ce 1丨array),前述記憶體單元在前述第一閘電極 ◎連接於第-字元線,前述第二閑電極連接於第二字元線的 狀態下被並聯連接而成,其中前述記憶體單元區塊包含本 發明的記憶體單元區塊。 因此,本發明的記憶體裝置成 战马將本發明的固態電子 兀件使用於NAND型記憶體裝置的 直的元憶體單元之大容量且 不會使[寫入干擾問題]及[讀出干擾 置 傻問喊]發生的記憶體裝 此外’在本發明的記憶體裴置中, 第 電晶體為空乏 100132261 1003447808 17 201222827 型(depletion type)的電晶體也可以(參照後述的實施妒 悲一〜二、五〜九)’且為增強型(enhancement type)的電曰 體也可以(參照後述的實施形態四)。任一種類型的電晶體 都成為可對選擇單元正確地進行資訊的讀出或寫入之記情 體裝置。而且’第一電晶體為空乏型的電晶體也可以, ,, 且 為增強型的電晶體也可以。任一種類型的電晶體都成為可 對選擇單元正確地進行資訊的讀出或寫入之記憶體裝置 [1 8 ]、在本發明的記憶體裝置中, 塊至少透過一個區塊選擇電晶體連接於 板線較佳。(MFIS (Metal-Ferroelectric-Insulator-Semiconductor type)) (refer to Embodiment 8 described later). According to this, it is possible to suppress the "undesirable interdifius phenomenon" which is often generated between the semiconductor substrate (for example, S i ) and the ferroelectric layer (for example, p ZT) constituting the first gate insulating layer and the second gate insulating layer. ° [1 6 ], in the memory cell block of the present invention (described in the above [1 4 "! or [1 5 ] memory cell block), in the aforementioned paraelectric buffer layer, and the foregoing 1 6 100132261 1003447808-0 201222827 A float electrode is formed between the first gate insulating layer and the second gate insulating layer. By using such a configuration, a memory cell block (MFMIS (Metal-Ferroelectric-Metal-Insulator-Semicon due tor) can be formed on the surface of a semiconductor substrate. Type) (refer to Embodiment 9 described later). Accordingly, by arbitrarily adjusting the area of the capacitor composed of the gate insulating layer and the capacitor composed of the parallax buffer layer, the gate insulating layer and the residual electrode having a large amount of residual polarization can be alleviated. Charge mismatch between semiconductor substrates with a small amount (to be mismatched). [17] The memory device w feature of the present invention comprises: a bit line; a board, a line; a first word line; a second word line; and a plurality of series connection between the bit line and the board line a memory cell block of the memory unit; a memory cell array (memory ce 1丨array) of the plurality of memory cell blocks, wherein the memory cell is connected to the first word at the first gate electrode ◎ The memory line unit is connected in parallel in a state in which the second idle electrode is connected to the second word line, wherein the memory unit block includes the memory unit block of the present invention. Therefore, the memory device of the present invention becomes a war horse to use the solid-state electronic component of the present invention for the large capacity of the straight meta-memory unit of the NAND-type memory device without causing [write interference problem] and [readout interference In addition, in the memory device of the present invention, the transistor is a depleted 100132261 1003447808 17 201222827 type (depletion type) transistor (see the implementation of the following description) (2, 5 to IX) 'and an electric heating type of an enhancement type may be referred to (see Embodiment 4 to be described later). Any type of transistor is a sensible device that can read or write information correctly to the selection unit. Further, the first transistor may be a depleted transistor, and may be an enhanced transistor. Any type of transistor is a memory device that can read or write information correctly to the selection unit. [8 8] In the memory device of the present invention, the block is connected through at least one block to select a transistor. It is better for the board line.

前述記憶體單元區 前述位元線或前述 藉由以這種構成,可透過給予區塊選擇電晶體的區塊 選擇信號selectiQn signai)選擇所需的記憶體單 元區塊。 平 前述記憶體單元區 [1 9 ]、在本發明的記憶體裝置中, 塊包含本發明的記憶體單元區塊(記載於上述[7]~[9]的任 -:的記憶體單元區塊)’在前述連接層之中,平面地看位 於,、前述第一字元線或前述第二字元線交又的位置的前述 連接層的上層或下層形成有電阻降低用導體層較佳。The memory cell region of the bit line or the above-described memory cell block can be selected by the block selection signal selectiQn signai) which is given to the cell selection transistor. In the memory device of the present invention, the block includes the memory cell block of the present invention (described in the memory cell region of any of the above [7] to [9]: In the above-mentioned connection layer, it is preferable that a conductor layer for resistance reduction is formed in an upper layer or a lower layer of the connection layer at a position where the first word line or the second word line is overlapped. .

藉由以這種構成,可防止在位於與第;元線或L 字元線交叉的位置的連接層的部分產生不良切換現象 (Undesirable switching phen〇raen〇n)。 [20]、在本發明的記憶體裝置中,前述記憶體單 塊包含本發明的記憶體單元區塊(記載於上述「二〜「9 ]的2 一項的記憶體單元區塊)’構成前述連接層的導體層或半導With such a configuration, it is possible to prevent a poor switching phenomenon (Undesirable switching phen〇raen〇n) from occurring in the portion of the connection layer located at a position intersecting the first meta-line or the L-shaped element line. [20] In the memory device of the present invention, the memory block includes the memory cell block of the present invention (described in the memory cell block of the two items "2 to 9"). Conductor layer or semiconducting layer of the foregoing connecting layer

1 S 100132261 1003447808-0 201222827 的導體 線或第 現象。 化。此 的導體 的導體 单兀區 [13]的 詹或半 域的導 半導體 ,使構 或第二 F徵為: 包含本 一項的 L元(以 憶體單 元為非 非選擇 體層比構成前述第一通道 艰運區域或前述第二通道區域 層或半導體層還厚較佳。 藉由以這種構成’也可防止在位於與第一字元 二字元線交叉的位置的連接層的邹分產生不良.切換 而且,可使構成連接;沾适灿恳+ 人免丧層的導體層或半導體層低電阻 情形,可藉由使用壓花点报枯名嵌耸 社^ ± 化珉形技術寺,使構成連接層1 S 100132261 1003447808-0 201222827 Conductor wire or phenomenon. Chemical. The conductor of the conductor monomolecular region [13] of the Zhan or half-domain conduction semiconductor, the structure or the second F sign is: the L element containing the term (the memory cell is a non-selective layer ratio constitutes the aforementioned The one-channel arduous area or the aforementioned second-channel area layer or the semiconductor layer is also thicker. By using this configuration, it is also possible to prevent the connection layer located at a position crossing the first character two-character line. Poorly produced. Switching and making the connection; the conductor layer or the semiconductor layer with low resistance in the case of the smear-free + human-free layer can be reported by using the embossing point. Make up the connection layer

層或半導體層比構成第—F 丹机乐通道&域或第二通道區域 層或半導體層還厚。 C) [21 ]、在本發明的記憶體裝置中,前述記憶體 塊包含本發明的記憶體單元區塊(記載於上述[10]~ 任項的§己憶體單元區塊),構成前述連接層的導體 導體層比構成前述第一通道區域及前述第二通道區 體層或半導體層還厚較佳。 藉由以這種構成,可使構成連接層的導體層或 層低電阻化。此情形,可藉由使用壓花成形技術等 成連接層的導體層或半導體層比構成第一通道區域 〇通道區域的導體層或半導體層還厚。 [2 2 ]、本發明的記憶體裝置的驅動方法,其牟 使用本發明的記憶體裝置’且前述記憶體單元區塊 發明的記憶體單元區塊(記载於上述[丨〇 ] ~ [丨3 ]的任 記憶體單元區塊)之記憶體裝置,對規定的記憶體^ 下稱為選擇單元,而且稱屬於與選擇單元同—的記 元區塊的記憶體單元之中選擇單元以外的記憶體單 選擇單元)進行資訊的寫入’其中藉由至少對連接於 100132261 1003447808-0 19 201222827 單元的第二字元線施加導通狀態電壓 Von,使非選擇單元 中的前述第二電晶體導通(0N),並且藉由給予連接於選擇 單元的第二字元線接地電位,對連接於選擇單元的第一字 元線施加比第一閘絕緣層的矯頑電壓V c 1高的第一寫入電 壓(Vw:Vw>Vcl)及比對前述矯頑.電壓 Vcl附加負號後的電 壓(-Vcl)低的第二寫入電壓([-Vw]:[-Vw]<-Vcl)的任一 個,進行對選擇單元的資訊的寫入動作。 因此,依照本發明的記憶體裝置的驅動方法,也由後 述的試驗例得知,可對選擇單元高速地寫入資訊。 [2 3 ]、本發明的記憶體單元區塊的製造方法,其特徵 為用以製造包含如下構件的記憶體單元區塊的記憶體單元 區塊的製造方法:具有如下構件的資訊記憶用的第一電晶 體:具有第一源極端及第一汲極端之第一通道區域,與控制 前述第一通道區域的導通狀態之第一閘電極,與由形成於 前述第一閘電極與前述第一通道區域之間的鐵電層構成的 第一閘絕緣層;具有如下構件的資訊讀出/寫入用的第二電 晶體:具有第二源極端及第二汲極端之第二通道區域,與控 制前述第二通道區域的導通狀態之第二閘電極,與形成於 前述第二閘電極與前述第二通道區域之間的第二閘絕緣 層,包含:由在前述第一電晶體及前述第二電晶體在前述第 一源極端與前述第二源極端被連接,前述第一汲極端與前 述第二汲極端被連接,前述第一閘電極及前述第二閘電極 各自被連接於另一條閘極線的狀態下,被並聯連接的固態 電子元件構成之複數個記憶體單元,該等複數個記憶體單 100132261 1003447808-0 20 201222827 域及 中接 ,使 通道 ,均 電極 絕緣 ,都 ,與 ,均 閘電 閘絕 造如 、記 施的 元被串聯連接,1申 前述第二通道區域以及二::程形成前述第-通道區 鄰的兩個記”單、厨述複數個記憶體單元之 U體早疋的連接層。 [24]、在本發明的。 m ^ 。己L、體早兀區塊的製造方法中 用乳化物導電材料 ^ 區域:及前述連接層較通道區域及前述第二 使用7體]材憶體單元區塊的製造方法中 ΓΊ ΛΑ η ^ α ^ 冓成則述第一閘電極及前述第二閘 ί I的閘電極層,盘;i# 士 乂、丄… /、籌成剛述弟一閘絕緣層和前述第二閘 層的閘絕緣層,愈义、+、、盆 /、則述導體層或半導體層較佳。 [26]、在本發明的記憶體單元區塊的製造方法tThe layer or the semiconductor layer is thicker than the layer constituting the -Fth Dankele channel & or the second channel region or semiconductor layer. [C] [21] In the memory device of the present invention, the memory block includes the memory cell block of the present invention (described in the above [10] to § the memory cell block of any of the above), and constitutes the aforementioned The conductor conductor layer of the connection layer is preferably thicker than the first channel region and the second channel region body layer or semiconductor layer. With such a configuration, the conductor layer or layer constituting the connection layer can be made low in resistance. In this case, the conductor layer or the semiconductor layer of the connection layer by using an embossing forming technique or the like may be thicker than the conductor layer or the semiconductor layer constituting the first channel region 〇 channel region. [2 2] The method of driving the memory device of the present invention, wherein the memory device of the present invention is used and the memory cell block of the memory cell block invention is described (described in the above [丨〇] ~ [ The memory device of any memory cell block of 丨3] is referred to as a selection unit for a predetermined memory, and is not selected among the memory cells of the cell block belonging to the same cell as the selection unit. The memory single selection unit) performs information writing 'where the second transistor in the non-selection unit is caused by applying at least a second state line connected to the 100132261 1003447808-0 19 201222827 unit to the on-state voltage Von Turning on (0N), and applying a second word line ground potential connected to the selection unit, applying a higher coercive voltage V c 1 than the first gate insulating layer to the first word line connected to the selection unit A write voltage (Vw: Vw > Vcl) and a second write voltage ([-Vw]: [-Vw] <- which is lower than a voltage (-Vcl) to which the aforementioned coercive voltage Vcl is added with a negative sign. Any one of Vcl) to write information about the selected unit Work. Therefore, according to the driving method of the memory device of the present invention, it is also known from the test examples described later that the information can be written to the selection unit at a high speed. [2 3] The method of manufacturing a memory cell block of the present invention, characterized in that a method of manufacturing a memory cell block for manufacturing a memory cell block including: a member for information memory having the following components a first transistor: a first channel region having a first source terminal and a first drain terminal, and a first gate electrode for controlling an on state of the first channel region, and a first gate electrode formed in the first gate electrode and the first a first gate insulating layer formed by a ferroelectric layer between the channel regions; a second transistor for information read/write having: a second source region having a second source terminal and a second drain terminal, and a second gate electrode for controlling an on state of the second channel region, and a second gate insulating layer formed between the second gate electrode and the second channel region, comprising: the first transistor and the foregoing The second transistor is connected to the second source terminal at the first source terminal, the first 汲 terminal is connected to the second 汲 terminal, and the first gate electrode and the second gate electrode are respectively In the state connected to another gate line, a plurality of memory units composed of solid electronic components connected in parallel, the plurality of memory sheets 100132261 1003447808-0 20 201222827 domain and the middle connection, so that the channel and the average electrode are insulated , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The connecting layer of the U-body early in the memory unit. [24] In the manufacturing method of the present invention, the emulsion conductive material is used in the method of manufacturing the L-form and the early-stage block, and the connecting layer is the channel a region and the second method for manufacturing a second body material; the 闸 ΛΑ η ^ α ^ 冓 is the first gate electrode and the gate electrode layer of the second gate ί I, disk; i#士乂, 丄... /, to form the gate insulating layer of the sluice insulation layer and the second sluice layer, and the conductor layer or the semiconductor layer is better. [26] Method for manufacturing memory cell block of the present invention

不使用真空萝铝取J 表^成剛述閘電極層,與前述閘絕緣層 前述導體層或半導體層較佳。It is preferable to use a vacuum aluminum alloy to form a gate electrode layer, and the above-mentioned gate insulating layer is preferably a conductor layer or a semiconductor layer.

CC

[2 7 ]、在本發明的記憶體單元區塊的製造方法中 使用氧化物材料形成構成前述第一閘電極及前述第二 極的閑電極層’與構成前述第一閘絕緣層和前述第二 緣層的問絕緣層’與前述導體層或半導體層較佳。 依照本發明的記憶體單元區塊的製造方法,可製 上述般優越的本發明的記憶體單元區塊。 【實施方式】 以下針對本發明的記憶體單元區塊及其製造方法 憶體裝置以及記憶體裝置的驅動方法,根據圖示的實 形態來說明。 100132261 1003447808-0 201222827 圖1是用以說明使用於與實施形態一〜九有關的記憶 體裝置2 0 0 ~ 2 0 0h的固態電子元件1 00〜1 00h的構造而顯示 之圖表。 使用於本發明的固態電子元件為包含資訊記憶用的第 一電晶體TR1與資訊讀出/寫入用的第二電晶體TR2,在第 一源極端與第二源極端被連接,第一汲極端與第二汲極端 被連接,第一閘電極及第二閘電極各自被連接於另一條閘 極線(第一字元線或第二字元線)的狀態下,被並聯連接的 固態電子元件。 在使用於本發明的固態電子元件中,如圖1所示,第 一電晶體TR1的閘絕緣層(第一閘絕緣層)均由鐵電層(實 施形態一〜九)構成,第二電晶體TR2的閘絕緣層(第二閘絕 緣層)由順電層(實施形態一、二、四)或鐵電層(實施形態 三、五〜九)構成,通道區域是由形成於固體基板上的導體 層或半導體層(實施形態一 ~六)或者位於半導體基板的表 面中的規定的源極區域與規定的汲極區域之間的半導體基 板(實施形態七〜九)構成。而且,第一電晶體TR1與第二電 晶體TR2的分離構造(isolation structure)是由疊層分離 型(實施形態一〜四)或平面分離型(實施形態五〜九)構成。 其中疊層分離型中的閘極式(gate type)是由第一閘極為 下層且第二閘極為上層的閘極式(實施形態一、三、四)或 第一閘極為上層且第二閘極為下層的閘極式(實施形態二) 構成。而且,平面分離型中的閘極式是由下閘極式(實施形 態五)或上閘極式(實施形態六〜九)構成。第二電晶體TR2 100132261 1003447808-0 22 201222827 是由空乏型(實施形態一〜三、五~九)或增強型(實施带熊 構成。 " 此外在本發明中,空乏型不 壓時成為截止狀態(OFF state),對閘電極施加〇v日^ 可成為 導通狀態(ON state)之完全的[空乏型],也包含對# T閉电極 施加負電壓時成為載止狀態,但對閘電極施加〇V拉π丄 呀不成為[2] In the method of manufacturing a memory cell block of the present invention, an oxide material is used to form a dummy electrode layer ′ constituting the first gate electrode and the second electrode, and the first gate insulating layer and the first portion are formed. The insulating layer of the double-edge layer is preferably the same as the conductor layer or the semiconductor layer. According to the method of manufacturing a memory cell block of the present invention, the memory cell block of the present invention superior in the above-described manner can be produced. [Embodiment] Hereinafter, a memory cell block of the present invention, a method of manufacturing the same, and a method of driving a memory device will be described based on the illustrated embodiments. 100132261 1003447808-0 201222827 Fig. 1 is a diagram for explaining the structure of the solid-state electronic components 100 to 100h used in the memory devices 2000 to 2000h according to the first to ninth embodiments. The solid state electronic component used in the present invention is a first transistor TR1 for information memory and a second transistor TR2 for information read/write, and is connected at the first source terminal and the second source terminal, the first The solid state in which the extreme and second turns are connected, and the first gate electrode and the second gate electrode are respectively connected to another gate line (the first word line or the second word line) element. In the solid-state electronic component used in the present invention, as shown in FIG. 1, the gate insulating layer (first gate insulating layer) of the first transistor TR1 is composed of a ferroelectric layer (embodiments 1 to 9), and the second The gate insulating layer (second gate insulating layer) of the crystal TR2 is composed of a paraelectric layer (embodiments 1, 2, and 4) or a ferroelectric layer (embodiment 3, 5 to 9), and the channel region is formed on the solid substrate. The conductor layer or the semiconductor layer (Embodiments 1 to 6) or a semiconductor substrate (embodiment 7 to 9) located between a predetermined source region on the surface of the semiconductor substrate and a predetermined drain region. Further, the isolation structure of the first transistor TR1 and the second transistor TR2 is constituted by a laminated separation type (embodiments 1 to 4) or a plane separation type (embodiments 5 to 9). The gate type in the stacked separation type is a gate type in which the first gate is extremely lower and the second gate is extremely upper (embodiment 1, 3, 4) or the first gate is upper and the second gate It is composed of a gate type (Embodiment 2) of the lower layer. Further, the gate type in the planar separation type is constituted by a lower gate type (implementation form 5) or an upper gate type (embodiment 6 to 9). The second transistor TR2 100132261 1003447808-0 22 201222827 is composed of a depleted type (embodiment 1 to 3, 5 to 9) or an enhanced type (implemented with a bear. " In addition, in the present invention, when the depletion type is not pressed, the deadline is The state (OFF state), the 闸v day ^ is applied to the gate electrode, and the ON state can be turned into a complete [depletion type], and it also includes a load state when a negative voltage is applied to the #T closed electrode, but the gate is applied. Electrode application 〇V pull π丄 does not become

完全的導通狀態而在對閘電極施加正電壓時首+上 目入成為完全 的導通狀態之[不完全的空乏型]者的電晶體。 [實施形態一] 圖2是與實施形態一有關的記憶體裝置2 η η ^ ζυυ之電路圖。 圖3是用以說明與貫施形悲一有關的記恃杜 G 11體裝置2 0 〇 而顯示之圖。圖3(a)是記憶體裝置200之偏· 固 财視圖,圖3(b) 是圖3(a)的A1-A1剖面圖’圖3(c)是圖 疋回dU)的A2-A2剖 面圖,圖3(d)是圖3(a)的A3-A3剖面圖。 圖4是用以說明與實施形 抵體裝置200 而顯示之圖。圖4(a)是以圖3(b)的符號rw 己Is]的部分(使 〇用於實施形態一的固態電子元件1〇〇)之擴 擴大剖面圖,圖 4(b)是顯示第一閘絕緣層132的矯頑電壓Vci與…一 +曰 體TR1的寫入電壓(+Vw,-Vw)的關係之圖,圖4、弟:電晶 第二電晶體TR2的導通狀態電壓v〇n及截 ^是顯不 m 狀態電壓v〇 之圖。 2所示包含: 第二字元線 與板線PL之In the full conduction state, when a positive voltage is applied to the gate electrode, the first + top is turned into a transistor of the [incomplete depletion type] which is in a completely conductive state. [Embodiment 1] Fig. 2 is a circuit diagram of a memory device 2 η η ^ 与 according to the first embodiment. Fig. 3 is a view for explaining the display of the 恃 G G 11 body device 20 〇 related to the singularity. Fig. 3(a) is a partial view of the memory device 200, and Fig. 3(b) is a cross-sectional view taken along line A1-A1 of Fig. 3(a). Fig. 3(c) is A2-A2 of Fig. 3(c) FIG. 3(d) is a cross-sectional view taken along line A3-A3 of FIG. 3(a). Fig. 4 is a view for explaining the display and execution of the deforming device 200. 4(a) is an enlarged cross-sectional view showing a portion of the symbol rw Is] of FIG. 3(b) (a solid-state electronic component 1A for use in the first embodiment), and FIG. 4(b) is a view showing A graph of the relationship between the coercive voltage Vci of a gate insulating layer 132 and the write voltage (+Vw, -Vw) of the body TR1, FIG. 4, the conduction state voltage of the transistor 2 of the transistor 2 〇n and truncation ^ are graphs showing the voltage of the m state. 2 shows: the second word line and the plate line PL

與實施形態一有關的記憶體裝置2〇〇如圖 位元線BL ;板線PL ;第一字元線WLi〇~wLj ; WL2〇〜WL27 ;記憶體單元 M〇~M7 ; A A - AThe memory device 2 related to the first embodiment is shown as a bit line BL; a plate line PL; a first word line WLi〇~wLj; WL2〇~WL27; a memory unit M〇~M7; A A - A

在位7L線BL 100132261 1003447808-0 23 201222827 間串聯連接有複數個記憶體單元MO〜M7之記憶體單元區塊 MB卜MB3(與實施形態一有關的記憶體單元區塊);配設有複 數個記憶體單元區塊 MB1〜MB3之記憶體單元陣列(未圖 示)。此外,在圖2僅圖示有與實施形態一有關的記憶體裝 置2 0 0的一部分。 各記憶體單元M0〜M7如圖2、圖3(a)〜圖3(c)及圖4(a) 所示,由具備第一電晶體TR1與第二電晶體TR2的固態電 子元件1 0 0構成。 第一電晶體TR 1為資訊記憶用的電晶體,如圖3 ( a )〜 圖3 (c )及圖4 ( a )所示具有:具有第一源極端S1及第一汲極 端D1之第一通道區域142;控制第一通道區域142的導通 狀態之第一閘電極1 2 2 ;形成於第一閘電極1 2 2與第一通 道區域1 4 2之間的由鐵電層構成之第一閘絕緣層1 3 2。 第一電晶體TR1的寫入電壓Vw、-Vw如圖4(b)所示被 設定為滿足[_Vw<-Vcl<0<Vcl<Vw]的關係的值。Vcl、-Vcl 為第一閘絕緣層的矯頭電壓。 第二電晶體TR2為資訊讀出/寫入用的電晶體,如圖 3(a)〜圖3(c)及圖4(a)所示具有:具有第二源極端S2及第 二汲極端D2之第二通道區域1 44 ;控制第二通道區域1 44 的導通狀態之第二閘電極1 6 4 ;形成於第二閘電極1 6 4與 第二通道區域 1 44之間的由順電層構成之第二閘絕緣層 154 ° 第二電晶體TR2為空乏型的電晶體,導通狀態電壓Von 及截止狀態電壓 V 〇 f f 如圖 4 ( c)所示被設定為滿足 100132261 1003447808-0 24 201222827 [Vof f <Von = 0V]的關係的值。 第包日日體TR1及第二電晶體TR2如圖2及圖 圖3(c)所示’在第—源極端S1與第二源極端以被連: 第-没極端m與第二及極端D2被連接,進而第 : 122與第二閘電極164各自被連接於另—條閘極線(第 電極層(第一字元線)120、第二間電極層(第二字元線)16〇\ 的狀態下被並聯連接。 jA memory cell block MBb MB3 (memory unit block related to the first embodiment) of a plurality of memory cells MO to M7 is connected in series between the bit 7L line BL 100132261 1003447808-0 23 201222827; A memory cell array (not shown) of memory cell blocks MB1 to MB3. Further, only a part of the memory device 200 related to the first embodiment is shown in Fig. 2 . As shown in FIGS. 2, 3(a) to 3(c) and 4(a), each of the memory cells M0 to M7 is composed of a solid electronic component 10 having a first transistor TR1 and a second transistor TR2. 0 composition. The first transistor TR 1 is a transistor for information memory, and has a first source terminal S1 and a first gate terminal D1 as shown in FIG. 3( a ) to FIG. 3 ( c ) and FIG. 4 ( a ). a channel region 142; a first gate electrode 1 2 2 that controls an on state of the first channel region 142; and a ferroelectric layer formed between the first gate electrode 12 2 and the first channel region 14 2 A gate insulation layer 1 3 2 . The write voltages Vw and -Vw of the first transistor TR1 are set to values satisfying the relationship of [_Vw < -Vcl < 0 < Vcl < Vw] as shown in Fig. 4 (b). Vcl and -Vcl are the head voltages of the first gate insulating layer. The second transistor TR2 is a transistor for information read/write, and has a second source terminal S2 and a second 汲 terminal as shown in FIGS. 3(a) to 3(c) and 4(a). a second channel region 1 44 of D2; a second gate electrode 1 6 4 that controls an on state of the second channel region 1 44; a parasitic region formed between the second gate electrode 164 and the second channel region 1 44 The second gate insulating layer 154 of the layer is formed. The second transistor TR2 is a depleted transistor, and the on-state voltage Von and the off-state voltage V 〇ff are set to satisfy 100132261 1003447808-0 24 as shown in FIG. 4(c). 201222827 [Vof f <Von = 0V] The value of the relationship. The first day of the body TR1 and the second transistor TR2 are as shown in Fig. 2 and Fig. 3(c) 'at the first source terminal S1 and the second source terminal are connected: first - no extreme m and second and extreme D2 is connected, and then the first: 122 and the second gate electrode 164 are respectively connected to the other gate line (the first electrode layer (first word line) 120, the second electrode layer (second word line) 16 〇\ is connected in parallel. j

第一 日體TR1及第二電晶體TR2如圖3(b)、圖 〇及圖4(a)所示被並排配置於疊層方向。 C 與實施形態一有關的記憶體單元區塊(例如MB1)如圖 2所示,至少透過一個區塊選擇電晶體sw連接於位元線 區塊選擇電晶體sw如圖3(a)、圖3(b)及圖3(d)所示 由具有如下的構件的第三電晶體TR3構成:第三通道區 146 ;控制第三通道區域146的導通狀態之第三閘電極 166;形成於第三閘電極166與第三通道區域146之間的由 順電層構成之第三閘絕緣層156(與第二閘絕緣層154 〇的層)。 第一通道區域142'第二通道區域144及第三通道區 域146由以同一製程形成的導體層140構成,屬於同—個 記憶體單元區塊(例如MB 1 )的複數個記憶體單元〜M7之 中接鄰的兩個記憶體單元(例如M7及M6)如圖3(a)及圖 3(b)所示’藉由由延續於該兩個記憶體單元中的第—通道 區域142及第二通道區域144,且以與該等通道區域Η?、 144同一的製程形成的導體層140構成的連接層連接,且 100132^61 1003447808-0 25 201222827 屬於同一個記憶體單元區塊(例如丨)的區塊選擇電晶趙 SW及接鄰該區塊選擇電晶體sw的記憶體單元(記憶體單元 M0)藉由由延續於該記憶體單元M0中的第一通道區域142 及第二通道區域144以及區塊選擇電晶體sw中的第三通道 區域146’且以與該等通道區域142、U4、ι46同_的擊 程形成的導體層140構成的連接層連接。 使用於實施形態一的固態電子元件1 〇〇為第一電晶題 TR1及第二電晶體TR2如圖3(b)及圖4(a)所示具有:在固 體基板11〇中的一方的表面上,構成第一閘電極ι22的第 一閘電極層120,與第一閘絕緣層132(13〇),與構成第〜 通道區域142及第二通道區域144的導體層14〇,與第、 閘絕緣層1 54 ( 1 5 0 ) ’與構成第二閘電極164的第二閘電槌 層160以此順序形成的構造之所謂的疊層分離型的二:= 子元件。 〜、电 在使用於貫施形態一的固態電子元件1 〇 〇中 固體基 板110例如使用在Si基板的表面隔著Si〇2層及Ti犀^ STO(SrTiO)層的絕緣性基板。而足, 1 θ形成.^ _ 乐]I 極層 12 0 例 如使用Pt。而且,使用於第一閘%緣層132的 鐵電材料例 如使用PZT(Pb(Zrx,Th — ooo。而且,導體層 用由銦錫氧化物(IT0)構成的氧化物導體。而且,&amp;例如使 緣層150例如使用Si〇2。而且進而, ’弟二閘絕 第一閘電極層160 如使用A1。 例 資訊的寫 在與實施形態一有關的記憶體裝置2〇〇中 入及讀出是如下而進行。 100132261 1003447808-0 26 201222827 圖 是用以說明盥容 中的資訊寫八動作而顯示之圖。圖6是用以說明與實施形 實施形態一有關的記憶體裝置2 0 〇 焉入動作;Βπ S 女料 、厘1 。 圆 〇 疋m从5儿”厂4六只… 一有關的記憶體骏 口 圖。 2〇0中的資訊讀出動作而顯示之 亦即,在資訊寫 士 元M0~M7的第_—入符如圖5所示,對連接於非選擇單 並且對連接於選擇單_ U〇〜WL27施加導通狀態電壓V〇n, 閘絕緣層的矯頑電壓兀Μβ的第一字元線WLl6施加比第一 及比對第—間έ73 &amp; VC1高的第一寫入電壓(Vw:Vw&gt;Vcl) 1甲J、、、巴緣層的接 崎碩電壓Vcl附加負號後的電壓 圖 〇 (-Vcl)低的第-官λ 貝電壓Vcl附加負號後 據此’因非選擇單元Mn ([-Vw]:[—VW]〈-VC1)的任一個。 ⑽,故即使不使用第二M7中的第二電晶體TR2都成導通 體TR2使選擇單元M :電晶體TR1’也能透過第二電晶 與位元線BL及板線ρΐ〜汲極端及第二源極端的各個成 會破壞非選擇單元:電位相同的接地電位。因此’不 Μυ〜Μ5、Μ7中的第一雷曰萨τι?ι硌保柹 的資訊,可將新的資5宜 们弟冑曰曰體TR1所保持 η本你事1沾门 凡寫入選擇單元Μ6。其結果,使用於 〇貫施形態一的固態雷工- W 件1〇〇(及與實施形態一有關的 5己憶體&amp;置20 0 )成為不各 ^ r „ s使[寫入干擾問題]發生的固態 电子兀件(及冗憶體裝置)。 而且’在資訊讀出瞎士一 一 ’圖6所不’對連接於非選擇單 兀M0〜M5、M7的第-宝n lirT n —子7&quot;線WL2〇〜WL25、WU7施加導通狀態 電壓Von,亚且對連接於選擇單元M6的第二字元線…6 施加截止狀態電壓Voff。據此,因非選擇單Μου 中的第二電晶體TR2都成導通(0Ν),選擇單元Μ6中的第二 100132261 1003447808-0 27 201222827 電晶體TR2成截止(OFF),故可讀出保持於選擇單元M6的 資訊。亦即,可藉由若對位元線BL與板線PL之間施加規 定的電壓的話,以當時電流是否流過來判斷被寫入選擇單 元M6的資訊為[1 ]或[0 ],因此,可讀出保持於選擇單元 M6的資訊。然後,此時因任一條第二字元線WL2〇〜WL27都 未連接於第一電晶體TR1,故對非選擇單元M0〜M5、M7及 選擇單元M6中的任一個第一電晶體TR1也不會破壞所保持 的資訊。其結果,使用於實施形態一的固態電子元件 1〇〇(及與實施形態一有關的記憶體裝置200)成為不會使 ( [讀出干擾問題]發生的固態電子元件(及記憶體裝置)。 圖7是顯示與實施形態一有關的記憶體裝置2 0 0中的 資訊寫入時的驅動波形之圖。圖7 (a )是顯示用以驅動第二 電晶體T R 2的驅動波形之圖,圖7(b)是頒不用以驅動弟'一 電晶體T R1的驅動波形之圖。 圖8是用以說明與實施形態一有關的記憶體裝置2 0 0 中的資訊讀出時的驅動波形而顯示之圖。圖8 ( a)是顯示用 以驅動第二電晶體TR2的驅動波形之圖,圖8 (b)是顯示用 以驅動第一電晶體TR 1的驅動波形之圖。圖8 ( c )是顯示汲 極電流(drain current)。 此外,在以下的說明中擬著眼於記憶體單元Μ 6而說明 資訊的讀出及寫入方法。因此,在圖7及圖8中擬針對選 擇記憶體單元Μ6的期間(期間7 ),除去陰影並進行高亮度 顯示。 在與實施形態一有關的記憶體裝置2 0 0中,可使用圖 100132261 1003447808-0 28 201222827 7所示的驅動波形二“ 對連接於所 / 仃資訊的寫入。亦即如圖7 (a)所示, 在全期n #的記憶體單元Μ0〜Μ7的第二字元線WL2〇~WL27 他王4間施加導 处 所干,欠悲电壓Von(例如0V)。而且如圖7(b) '、 在該狀態下,斟、*吐 一字 對連接於非選擇單元Μ0〜Μ5、Μ7的第 丁 深 W L· 1 〇 〜f l r w 對連接於撰想m 1 、WLl7施加接地電位(例如ον),並且The first honeycomb body TR1 and the second transistor TR2 are arranged side by side in the stacking direction as shown in Fig. 3 (b), Fig. 4, and Fig. 4 (a). C is a memory cell block (for example, MB1) related to the first embodiment. As shown in FIG. 2, at least one block selection transistor sw is connected to the bit line block to select the transistor sw as shown in FIG. 3(a) and FIG. 3(b) and FIG. 3(d) are composed of a third transistor TR3 having the following members: a third channel region 146; a third gate electrode 166 that controls the conduction state of the third channel region 146; A third gate insulating layer 156 (a layer of the second gate insulating layer 154 构成) composed of a paraelectric layer between the gate electrode 166 and the third channel region 146. The first channel region 142', the second channel region 144 and the third channel region 146 are formed by a conductor layer 140 formed by the same process, and a plurality of memory cells belonging to the same memory cell block (for example, MB1)~M7 The two adjacent memory cells (eg, M7 and M6) are as shown in FIGS. 3(a) and 3(b) by the first channel region 142 extending from the two memory cells and The second channel region 144 is connected by a connection layer formed by a conductor layer 140 formed by the same process as the channel regions 、, 144, and 100132^61 1003447808-0 25 201222827 belong to the same memory cell block (for example The block selects the electric crystal Zhao SW and the memory unit (memory unit M0) adjacent to the block selection transistor sw by the first channel region 142 and the second extending from the memory unit M0 The channel region 144 and the third channel region 146' in the block selection transistor sw are connected by a connection layer formed by a conductor layer 140 formed by the same channel region 142, U4, ι46. The solid state electronic component 1 used in the first embodiment is the first electromorphic problem TR1 and the second transistor TR2, as shown in Figs. 3(b) and 4(a): one of the solid substrates 11 On the surface, the first gate electrode layer 120 constituting the first gate electrode ι 22, and the first gate insulating layer 132 (13 〇), and the conductor layer 14 构成 constituting the first channel region 142 and the second channel region 144, and The gate insulating layer 1 54 (150') is a so-called stacked-separated type two:= sub-element having a structure in which the second gate electrode layer 160 constituting the second gate electrode 164 is formed in this order. 〜 电 In the solid-state electronic component 1 used in the first embodiment, the solid substrate 110 is, for example, an insulating substrate having a Si〇2 layer and a Ti-STO (SrTiO) layer interposed on the surface of the Si substrate. And the foot, 1 θ formation. ^ _ music] I pole layer 12 0 such as the use of Pt. Further, the ferroelectric material used for the first gate % edge layer 132 is, for example, PZT (Pb (Zrx, Th - ooo. Moreover, the conductor layer is made of an indium tin oxide (IT0) oxide conductor. Moreover, & For example, the edge layer 150 is made of, for example, Si〇2. Further, the first gate electrode layer 160 is made of A1. The information of the example is written and read in the memory device 2 of the first embodiment. 100132261 1003447808-0 26 201222827 The figure is for explaining the information writing operation in the reading. FIG. 6 is a diagram for explaining the memory device 20 related to the first embodiment. Intrusion action; Βπ S female material, PCT 1. Round 〇疋m from 5 children" factory 4 six... A related memory Junkou map. The information readout action in 2〇0 is displayed, The _-input of the information writers M0~M7 is as shown in Fig. 5. The connection is applied to the non-selection order and the on-state voltage V〇n is applied to the connection list _U〇~WL27, and the gate insulating layer is coercive. The first word line WL16 of the voltage 兀Μβ is applied more than the first and the first 第73 & V The first write voltage (Vw: Vw &gt; Vcl) of C1 is high. The voltage of the first and second λB voltages after the negative voltage is added to the voltage of the sakisaki V. Vcl is appended with a minus sign, and accordingly, because of the non-selection unit Mn ([-Vw]: [-VW] <-VC1) (10), even if the second transistor TR2 in the second M7 is not used, it is turned on. The body TR2 causes the selection unit M: the transistor TR1' to pass through the second transistor and the bit line BL and the plate line ρΐ~汲 and the second source terminal to destroy the ground potential of the non-selection unit: the same potential. Therefore, the information of the first 曰 曰 τ τ ι τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ The unit Μ6 is selected. As a result, the solid state laser-W device 1 〇〇 used in the first embodiment (and the 5 mnemonic &amp; 20 20 related to the first embodiment) becomes not the same as the φ s s [Write interference problem] occurs in solid-state electronic components (and redundant device). And 'in the information read gentleman one by one' Figure 6 is not 'connected to non-selected singles M0~M5, M7 -Bao nrrn - sub 7&quot; lines WL2 〇 WL25, WU7 apply an on-state voltage Von, and an off-state voltage Voff is applied to the second word line ...6 connected to the selection unit M6. Accordingly, due to non-selection The second transistor TR2 in the unit Μου is turned on (0Ν), and the second unit 100132261 1003447808-0 27 201222827 in the selection unit Μ6 is turned OFF, so that the information held in the selection unit M6 can be read. In other words, if a predetermined voltage is applied between the bit line BL and the plate line PL, it is judged whether the information written in the selection unit M6 is [1] or [0] by whether or not the current flows at the time. The information held in the selection unit M6 can be read. Then, at this time, since any one of the second word lines WL2 〇 WL WL27 is not connected to the first transistor TR1, the first transistor TR1 of any one of the non-selected cells M0 M M5, M7 and the selection unit M6 is also Will not destroy the information maintained. As a result, the solid-state electronic component 1 (and the memory device 200 according to the first embodiment) used in the first embodiment is a solid-state electronic component (and a memory device) that does not cause ([Reading interference problem]). Fig. 7 is a view showing a driving waveform at the time of information writing in the memory device 2000 according to the first embodiment. Fig. 7(a) is a view showing a driving waveform for driving the second transistor TR 2 . Fig. 7(b) is a diagram showing the driving waveform of the transistor T R1 which is not used to drive the transistor. Fig. 8 is a view for explaining the driving of the information reading in the memory device 200 in the first embodiment. A waveform is displayed. Fig. 8(a) is a view showing a driving waveform for driving the second transistor TR2, and Fig. 8(b) is a view showing a driving waveform for driving the first transistor TR1. 8 (c) shows the drain current. In addition, in the following description, we will focus on the memory unit Μ 6 to explain the method of reading and writing information. Therefore, in Figure 7 and Figure 8 For the period of selecting the memory unit Μ6 (period 7), the shadow is removed and highlighted In the memory device 200 related to the first embodiment, the driving waveform 2 shown in FIG. 100132261 1003447808-0 28 201222827 7 can be used to write the information connected to the device. That is, as shown in FIG. (a) shows that in the whole period n # memory unit Μ0~Μ7, the second word line WL2〇~WL27 is used to apply the guide, and the sorrow voltage Von (for example, 0V). (b) ', in this state, the 斟, * 吐一字 pairs of the non-selected cells Μ0~Μ5, Μ7, the Ding depth WL·1 〇~flrw, the ground potential is applied to the imaginary m 1 , WLl7 ( For example ον), and

C 緣層的矯頑電壓v 、第—予元線WL6施加比第一閘絕 對第—閘絕I ^沾C1高的第—寫入電壓(VW: VW&gt;VC1)及比 低的第二寫入命厭/電【Vcl附加負號後的電壓(-VC1) 對連接π韭电i卜Vw]:[_Vw]&lt;-Vcl)的任一個。此外, 對連接於非選擇單元M〇~ WLJ施加比第—η π祕 Μ7的第一字元線WLl0~WLl5、 妒 甲巴、層的矯碩電壓Vcl低且比對第一閘 '、巴,、彖層的矯頑電壓VC1附加鲁 ν / Γ ν Ί 、唬後的電壓(-Vcl)高的電壓 VCL-Vcl ]&lt;v&lt;Vci)也可以。 笛 〜 而且’對連接於選擇單元M6的 弟一予几線仉』施加截止狀態電壓v〇ff也可以。 在與實施形態-有關的記俺體裝置2〇 &quot;,藉由將如 上述的驅動波形給予各第一字 %線及弟二子元線,使得至 〇少非選擇單元M0~M5、M7中的筮一冷H祕 Y旳卓—電晶體TR2在非選擇期 間中一直成導通(0N)的狀態,± 故即使不使用第一電晶體 TR1,也能透過第二電晶體TR2 1之選擇早兀M6的第二汲極 及第一源極端的各個成與位彳@ RI ητ 凡線BL及板線PL的電位相 同的接地電位。因此’不會破壤非選擇單元M0,… 的第—電晶體TR1所保持的資邙 ^ U ^ 貝。fl ’可將新的貢訊寫入選擇 單元M6。 另一方面,在與實施形錐 .n ~有關的記憶體裝置200 100132261 1003447808-0 201222827 中,可使用圖8所示的驅動波形進行資訊的讀出。亦即如 圖8(a)所示,對連接於非選擇單元M0〜M5、M7的第二字元 線WL2〇〜WL25、WL27施加導通狀態電壓Von(OV),並且對連 接於選擇單元M6的第二字元線WL26施加截止狀態電壓 Vo f f。而且如圖 8 (b )所示,對連接於各第一記憶體單元 Μ 0〜Μ 7的第一字元線W LI 0〜W LI 7施加0 V。此外,對連接於 各第一記憶體單元Μ0~Μ7的第一字元線WLiO~WLi7施加比 第一閘絕緣層的矯頑電壓V c 1低且比對第一閘絕緣層的矯 頑電壓 Vcl 附加負號後的電壓(-Vcl)高的電壓 V([-Vcl]&lt;V&lt;Vcl)也可以。 在與實施形態一有關的記憶體裝置20 0中,藉由將如 上述的驅動波形給予各第一字元線及第二字元線,使得在 位元線與板線之間流過像圖8 ( c)所示的汲極電流,故可藉 由測定該〉及極電流的大小判斷各記憶體早元所保持的貫訊 為[1 ]或[〇 ],其結果,可進行保持於各記憶體單元的資訊 的讀出。 [實施形態二] 圖9是用以說明與實施形態二有關的記憶體裝置2 0 0a 而顯示之圖。圖9(a)是記憶體裝置200a之俯視圖,圖9(b) 是圖9(a)的A1-A1剖面圖,圖9(c)是圖9(a)的A2-A2剖 面圖,圖9(d)是圖9(a)的A3-A3剖面圖。 圖1 0是用以說明與實施形態二有關的記憶體裝置 200a而顯示之圖。+圖10(a)是以圖9(b)的符號R包圍的 部分(使用於實施形態二的固態電子元件 1 0 0 a )之擴大剖 100132261 1003447808-0 30 201222827 面圖,圖l〇(b)是顯示第一閘絕緣層132的矯頑電壓Vcl 與第一曰電晶體tR1的寫入電壓(+Vw, _Vw)的關係之圖,圖 10(c)是顯示第二電晶體TR2的導通狀態電壓及截止 狀態電壓Vof f之圖。 與實施形態二有關的記憶體裝置200a基本上和與實 施形態一有關的記憶體農置2〇〇 一樣具有疊層分離型的^ 成,惟第一電晶體TR1形成於第二電晶體TR2的上層此點 和與實施形態一有關的記憶體裝置2 〇 〇的情形不同。 亦即,與實施形態二有關的記憶體裝置20〇a為第一電 晶體TR1及第二電晶體TR2如圖9(b)、圖9(c)及圖1〇(a) 所示具有:在固體基板11〇中的一方的表面上,構成第二閘 電極1 64的第二閘電極層16〇,與第二閘絕緣層ΐ54(ιπ), 與構成第二通道區域144及第一通道區域142的導體層 14〇,與第—閘絕緣層1 3 2 ( 1 3 0 ),與構成第一閘電極122 的第一閘電極層1 20以此順序形成的構造。 如此,與實施形態二有關的記憶體裝置2〇〇a雖然在第 〇 - :晶體TR1形成於第二電晶體TR2的上層此點和與實施 形態一有關的記憶體裝詈? n n # &amp; ^ 脰农置200的情形不同,惟因資訊記憶 用的第-電晶體TR1及資訊讀出/寫入用的第二電晶體TR2 具有在第一閘電極及第二閑電極各自被連接於另-條問極 線的狀想下被並聯連接的構造,故和與實施形態一有關的 記憶體裝置200的情形―樣’成為不會使[寫入干擾問題] 及[讀出干擾問題]發生的記憶體裝置。 此外’因與實施形態二有關的記憶體裝置200a在第一 100132261 1003447808-0 201222827 電晶體TR1形成於第二電晶體TR2的上層此點以外的點 中,具有和與實施形態一有關的記憶體裝置2 0 0的情形一 樣的構成,故具有與實施形態一有關的記憶體裝置2 0 0所 具有的功效之中相當的(corresponding)功效° [實施形態三] 圖11是與實施形態三有關的記憶體裝置2 0 0b之電路 圖。 圖1 2是用以說明與實施形態三有關的記憶體裝置 2 0 0 b而顯示之圖。圖1 2 ( a )是記憶體裝置2 0 Ob之俯視圖, 圖12(b)是圖12(a)的A1-A1剖面圖,圖12(c)是圖12(a) 的A2-A2剖面圖,圖12(d)是圖12(a)的A3-A3剖面圖。 圖1 3是用以說明與實施形態三有關的記憶體裝置 200b而顯示之圖。圖13(a)是以圖12(b)的符號R包圍的 部分(使用於實施形態三的固態電子元件1 〇 〇b)之擴大剖 面圖,圖1 3 (b )是顯示第一閘絕緣層1 3 2的矯頑電壓V c 1 與第一電晶體TR1的寫入電壓( + Vw, -Vw)的關係之圖,圖 13(c)是顯示第二閘絕緣層150的矯頑電壓Vc2與第二電晶 t 體TR2的導通狀態電壓Von及截止狀態電壓Voff之圖。 與實施形態三有關的記憶體裝置2 0 0 b基本上具有和 與實施形態一有關的記憶體裝置2 0 0 —樣的構成,惟如圖 11及圖1 3 (c)所示,第二閘絕緣層1 5 4 ( 1 5 0 )由鐵電層構成 此點和與實施形態一有關的記憶體裝置2 0 0的情形不同。 此情形,第二閘絕緣層 1 5 4 ( 1 5 0 )的層厚比第一閘絕緣層 1 3 2 ( 1 3 0 )的層厚薄。 100132261 1003447808-0 32 201222827 如此’與實施形態三有關的記憶體裝置2〇〇b雖铁在第 有 閉絕緣層154(15〇)由鐵電層構成此點和與實施形、離一 關的記憶體裝置2 0 〇的愔拟τ门 ^ π .. -電晶體TR1…讀記憶用的第 第-間電極及第二閑電極久寫入用的第二電晶體TR2具有在 瘧下被並聯連接的構造 β徑踝的狀 裝置2 0 〇的情形一樣,°、,、故和與實施形態一有關的記憶體 +搀鬥π 1找, ^成為不會使[寫入干擾問題]及[讀出 -0 干擾問喊]發生的記憶體裴置。 」次L。賈出 而且,因資訊之寫 入第一通道區域142與—閘絕緣層132成為寫入被夾 可得到穩定的寫入特性第一閘電極1 22之間的鐵電層,故 在與實施形態三有 入及讀出是如S的記憶體裝置200b中,資訊的寫 卜而進行。 圖14是用以說 20 0b中的資訊寫入動 /、貫施形態三有關的記憶體裝置 實施形態三有關 作而顯示之圖。圖1 5是用以說明與 0示之圖。 %暇裝置200中的資訊讀出動作而顯 亦即,在資訊·§; λ g± l _ 元MO〜M7的第-〜 7如圖14所示,對連接於非選擇單 —予元線WT π 並且對連接於课 〜WLd施加導通狀態電壓Von, 、%釋單元 閘絕緣層的墙頑命 _的第一字元線WL!6施加比第一 ^ V p 1 -λ- 及比對第一閘々 1向的第一寫入電壓(Vw: Vw&gt;Vcl) 、巴、、彖層的^ (-Vcl)低的第_ 場碩電壓Vcl附加負號後的電壓 —冩入電题 據此’因非選摆。n _ 髮([〜Vw] ·· [-Vw] &lt;-Vcl )的任一個。 坪早元Μη 〜Μ7中的第二電晶體TR2都成導通 100132261 1003447808-0 201222827 的資訊,可將新的資訊寫入選擇單元 _’故即使^使用第—電晶體TRl,也能透過第二電晶 肚TR2使選擇早το M6的第二汲極端及第二源極端的各個成 與位兀線BL及板線PL的電位相同的接地電位。因此,不 會破壞非選擇單元M0〜M5、M7中的第—電晶體w所保持 M6。其結果,使用於 實施形態三的固態電子卩π彳n 千7°件1〇〇b(及與實施形態三有關的 記憶體裝置200b)成為不會使[寫入 、她y φ ^ - .. , „ ^ θ 干搔問題]發生的固態 電子το件(及記憶體裝置)。 而且’在資机讀出時如圖1 5所 -wnwr 、,對連接於非選擇單 凡Μ0~Μ5、Μ7的第二字元線WL2〇〜WL25 .首、s &amp; v WL27施加導通狀恶 電i Von,亚且對連接於 元 淪知哉V·曲-十r b的第二字元線WL26 鈀加截止狀悲電壓Voff。據此,因非 中的第二電晶體m都成導通⑽),=擇單元.M5、M7 電晶體TR2成戴止(〇FF),故可 早-M6中的第- 資m。亦gp,T — *待於選擇單元M6的 ° 亦P 可糟由若對位元線BL斑叔ώ 定的兩懕的蛘 、板線PL之間施加規 疋的%壓的忐,以當時電流是否流 ;MR认次π * 、水匈斷被寫入選擇單 π M6的貝讯為[i ]或[〇 ],因此,可 MR认次μ I 寅出保持於選擇單元 Μ6的貧讯。然後,此時因任一 .^ 予凡線WL2〇〜WL27都 弟—電晶體TR1,故對非選擇單元M0〜M5、M7及 &amp;擇早兀M6中的任_個第—電晶體m也不會破壞所保持 的貪讯。其結果吏用於實施形態三的固態電子元件 100=及與實施形態三有關的記憶體裝置2Q…成為不會 使[讀出干擾問題]發生的固態電子元件(及記憶體裝置卜 圖16是顯示與實施形態三有關的記憶體褒:2_中 100132261 1003447S08-0 34 201222827 的資訊寫入時的驅動波形之圖。圖1 6 (a)是顯示用以驅動 第二電晶體TR2的驅動波形之圖,圖1 6 (b)是顯示用以驅 動第一電晶體TR1的驅動波形之圖。 圖 17是用以說明與實 200b中的資訊讀出時的驅動波形而顯示之圖。圖17(a)是 顯示用以驅動第二電晶體TR2的驅動波形之圖,圖17(b) 疋顯示用以驅動第一電晶體T R1的驅動波形之圖,圖1 7 ( c ) 是顯示汲極電流。 Ο 在與實施形態三有關的記憶體裝置2 〇 0 b中,可使用圖 1 6所示的驅動波形進行資訊的寫入。亦即如圖j 6 (a)所 示’對連接於所有的記憶體單元m〇~M7的第二字元線 WLzO〜WLs7在選擇期間1時施加導通狀態電壓v〇n(例如 + V〇)。此吟因第二閘絕緣層由鐵電層構成,故透過其記憶 效應(mem〇ry ef fect),之後(選擇期間2〜8)第二電晶體tr2 一直成導通(ON)。而且如圖_ 、 叭D)所不,在該狀態下,對 連接於非選擇單元Μ0~Μ5、Μ7的第_空-&amp; 加加接地電位(例如〇v),並且斟、4 一一 且對連接於選擇單元M6的第 子兀線WL6施加比第一閘絕緣層 一耷入+厭v ,' 的緯碩電壓Vcl高的第 冩入电壓(Vw:Vw&gt;Vcl)及比對宽—The coercive voltage v of the C-edge layer, the first-to-yuan line WL6, the first write voltage (VW: VW &gt; VC1) and the lower second write than the first gate absolute first gate Into the life-threatening / electric [Vcl after the negative sign of the voltage (-VC1) to connect π 韭 i i V Vw]: [_Vw] &lt; - Vcl). In addition, the first word line WL10~WLl5, the 矫甲巴, the layer of the pedestal voltage Vcl, which is connected to the non-selection unit M〇~ WLJ, are lower than the first gate 'B, The coercive voltage VC1 of the 彖 layer may be added with Luν / Γ ν Ί , and the voltage (VCL-Vcl) of the voltage (-Vcl) after the 彖 layer may be (v &lt; v &lt; Vci). It is also possible to apply the off-state voltage v ff to the flute 〜 and 'to the younger one connected to the selection unit M6. In the recording device 2 relating to the embodiment, by giving the driving waveform as described above to each of the first word % line and the second sub-member line, the non-selecting units M0 to M5, M7 are reduced. The H 冷 冷 H — 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电Each of the second drain and the first source terminal of 兀M6 is at the ground potential of the potential 彳@ RI ητ which is the same as the potential of the line BL and the plate line PL. Therefore, the assets held by the first transistor TR1 of the non-selective unit M0, ... will not be broken. Fl ' can write a new message to the selection unit M6. On the other hand, in the memory device 200 100132261 1003447808-0 201222827 related to the implementation of the taper .n ~, the readout of information can be performed using the drive waveform shown in FIG. That is, as shown in FIG. 8(a), the on-state voltage Von(OV) is applied to the second word lines WL2 to WL25, WL27 connected to the non-selected cells M0 to M5, M7, and the pair is connected to the selection unit M6. The second word line WL26 applies an off-state voltage Vo ff. Further, as shown in Fig. 8 (b), 0 V is applied to the first word lines W LI 0 to W LI 7 connected to the respective first memory cells Μ 0 to Μ 7. Further, the first word lines WLi0 to WLi7 connected to the respective first memory cells Μ0 to Μ7 are applied with a lower coercive voltage V c 1 than the first thyristor layer and the coercive voltage of the first thyristor insulating layer is applied. The voltage V ([-Vcl] &lt; V &lt; Vcl) of the voltage (-Vcl) after Vcl is added with a minus sign is also acceptable. In the memory device 20 according to the first embodiment, by applying the driving waveform as described above to each of the first word line and the second word line, an image is flowed between the bit line and the plate line. 8 (c) shows the bungee current. Therefore, by measuring the magnitude of the current and the magnitude of the polar current, it can be judged that the memory held by each memory is [1] or [〇], and the result can be maintained. Reading of information of each memory unit. [Embodiment 2] Fig. 9 is a view for explaining a memory device 200a according to the second embodiment. 9(a) is a plan view of the memory device 200a, FIG. 9(b) is a cross-sectional view taken along line A1-A1 of FIG. 9(a), and FIG. 9(c) is a cross-sectional view taken along line A2-A2 of FIG. 9(a). 9(d) is a cross-sectional view taken along line A3-A3 of Fig. 9(a). Fig. 10 is a view for explaining the memory device 200a according to the second embodiment. + Fig. 10(a) is an enlarged cross-section of the portion surrounded by the symbol R of Fig. 9(b) (solid-state electronic component 1 0 0 a used in the second embodiment) 100132261 1003447808-0 30 201222827, FIG. b) is a graph showing the relationship between the coercive voltage Vcl of the first gate insulating layer 132 and the write voltage (+Vw, _Vw) of the first germanium transistor tR1, and FIG. 10(c) is a view showing the second transistor TR2. A diagram of the on-state voltage and the off-state voltage Voff. The memory device 200a according to the second embodiment basically has a laminated separation type as in the case of the memory bank 2 according to the first embodiment, but the first transistor TR1 is formed on the second transistor TR2. This upper layer is different from the case of the memory device 2 of the first embodiment. That is, the memory device 20A related to the second embodiment has the first transistor TR1 and the second transistor TR2 as shown in Figs. 9(b), 9(c), and 1(a): On one of the surfaces of the solid substrate 11A, the second gate electrode layer 16B constituting the second gate electrode 164, and the second gate insulating layer ΐ54 (ιπ), and the second channel region 144 and the first channel are formed. The conductor layer 14A of the region 142 and the first gate insulating layer 13 2 2 (1 3 0 ) and the first gate electrode layer 120 constituting the first gate electrode 122 are formed in this order. As described above, in the memory device 2A according to the second embodiment, the memory device is mounted on the upper layer of the second transistor TR2 and the memory device is related to the first embodiment. Nn # & ^ The situation of the 脰农置200 is different, except that the first transistor TR1 for information memory and the second transistor TR2 for information read/write have respective first and second idle electrodes Since the structure connected to the other interrogation line is connected in parallel, the case of the memory device 200 according to the first embodiment does not cause [writing interference problem] and [readout]. Interference problem] The memory device that occurs. Further, the memory device 200a according to the second embodiment has a memory associated with the first embodiment in a point other than the point at which the first transistor 1001 is formed in the upper layer of the second transistor TR2. The configuration of the device 2000 is the same as that of the memory device 2000 according to the first embodiment. [Embodiment 3] FIG. 11 is related to the third embodiment. The circuit diagram of the memory device 2000. Fig. 12 is a view for explaining the memory device 2 0 0 b according to the third embodiment. Figure 1 2 (a) is a top view of the memory device 20 Ob, Figure 12 (b) is a cross-sectional view of A1-A1 of Figure 12 (a), and Figure 12 (c) is a cross-section of A2-A2 of Figure 12 (a) Fig. 12(d) is a cross-sectional view taken along line A3-A3 of Fig. 12(a). Fig. 13 is a view for explaining the memory device 200b according to the third embodiment. Figure 13 (a) is an enlarged cross-sectional view of a portion surrounded by the symbol R of Figure 12 (b) (solid-state electronic component 1 〇〇 b used in the third embodiment), and Figure 13 (b) shows the first gate insulation. A graph showing the relationship between the coercive voltage V c 1 of the layer 1 3 2 and the write voltage (+Vw, -Vw) of the first transistor TR1, and FIG. 13(c) shows the coercive voltage of the second gate insulating layer 150. A graph of the on-state voltage Von and the off-state voltage Voff of Vc2 and the second electro-crystal t body TR2. The memory device 200b according to the third embodiment basically has a configuration similar to that of the memory device 200 according to the first embodiment, but as shown in Fig. 11 and Fig. 13 (c), the second The gate insulating layer 1 5 4 (150) is composed of a ferroelectric layer, which is different from the case of the memory device 200 according to the first embodiment. In this case, the layer thickness of the second gate insulating layer 1 5 4 (150) is thinner than the layer thickness of the first gate insulating layer 1 3 2 (130). 100132261 1003447808-0 32 201222827 Thus, the memory device 2〇〇b related to the third embodiment is characterized in that the iron is formed of a ferroelectric layer in the first closed insulating layer 154 (15〇) and is separated from the implementation shape and the off-state. Memory device 2 0 愔 τ τ τ π π . . . 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电 电In the case of the connected device of the structure of the β-diameter 20 0, the memory + the bucket π 1 associated with the first embodiment is found, ^ is not caused by [writing interference problem] and [ Read - 0 Interference Calls] The memory device that occurred. "L. Further, since the information is written into the first channel region 142 and the gate insulating layer 132 becomes a ferroelectric layer between the first gate electrodes 1 22 which is written and clamped to obtain stable writing characteristics, The three-input and read-out are performed in the memory device 200b such as S, and the information is written. Fig. 14 is a view showing the third embodiment of the memory device according to the information writing operation in Fig. 20b and the third embodiment. Figure 15 is a diagram for explaining the relationship with 0. The information read operation in the % device 200 is displayed, that is, in the information §; λ g ± l _ yuan MO ~ M7 - 7 as shown in Figure 14, the pair is connected to the non-selected single-to-yuan line WT π and applying a conduction state voltage Von to the WLd, and a first word line WL!6 of the wall stub of the % release unit insulation layer is applied to the first ^V p 1 -λ- and the alignment The first write voltage (Vw: Vw &gt; Vcl) of the first gate 1 and the voltage of the first _ field voltage Vcl of the low (^Vcl) of the 々1 layer are added with a minus sign - the input data This is because of the non-selection pendulum. n _ Hair ([~Vw] ·· [-Vw] &lt;-Vcl ). The second transistor TR2 in Pingchenyuan Μ Μ~Μ7 is turned on to turn on the information of 100132261 1003447808-0 201222827, and new information can be written into the selection unit _', so even if the first transistor TR1 is used, the second transistor can pass through the second The electro-op crystal belly TR2 selects each of the second 汲 terminal and the second source terminal of the early το M6 to have the same ground potential as the potential of the bit line BL and the plate line PL. Therefore, the M6 of the first transistor w in the non-selected cells M0 to M5 and M7 is not destroyed. As a result, the solid-state electron 卩π彳n 1 〇〇b (and the memory device 200b according to the third embodiment) used in the third embodiment does not cause [writing, her y φ ^ - . . „ ^ θ Cognac problem] occurs in solid-state electrons (and memory devices). And 'when the machine is read out, as shown in Figure 1-5-wnwr, the pair is connected to the non-selection Μ0~Μ5, The second word line WL2〇~WL25 of Μ7. The first, s & v WL27 applies a conduction-like nuisance i Von, and the second word line WL26 connected to the 沦 沦 哉 V· 曲- 十 rb The cut-off sad voltage Voff. According to this, the second transistor m is turned on (10)), the selected cell M5, the M7 transistor TR2 is turned on (〇FF), so it can be as early as -M6 - 资m. Also gp, T - * ° ° in the selection unit M6 can also be caused by the application of the % pressure of the two 懕 蛘, plate line PL between the two lines of the bit line忐, whether the current flows at the time; MR recognizes that π*, water and Hungary are written to select the single π M6 as [i] or [〇], so the MR can be held in the selection unit. Μ6's poor news. Then, Because of any .^ to the WL2〇~WL27 Duo-transistor TR1, it is not possible for the non-selective units M0~M5, M7 and &amp; The result is that the solid-state electronic component 100 used in the third embodiment and the memory device 2Q in the third embodiment are solid-state electronic components that do not cause the [readout interference problem] to occur (and FIG. 16 is a diagram showing the driving waveforms of the memory 褒: 2_中100132261 1003447S08-0 34 201222827 in relation to the third embodiment. FIG. 16 (a) is a display for driving the first FIG. 16(b) is a diagram showing driving waveforms for driving the first transistor TR1. FIG. 17 is a diagram for explaining driving waveforms when reading information in the real 200b. Figure 17 (a) is a diagram showing a driving waveform for driving the second transistor TR2, and Figure 17 (b) is a diagram showing a driving waveform for driving the first transistor T R1, Figure 1 7 ( c ) is the display of the drain current. Ο In the memory device 2 〇 0 b related to the third embodiment, The information is written using the driving waveform shown in Fig. 16. That is, as shown in Fig. j 6 (a), the second word lines WLzO to WLs7 connected to all the memory cells m〇~M7 are selected. The conduction state voltage v〇n (for example, + V〇) is applied during the period of 1. The second gate insulating layer is composed of a ferroelectric layer, so that the memory effect (mem〇ry ef fect) is passed, and then (selection period 2~) 8) The second transistor tr2 is always turned ON. Moreover, as shown in Fig. _, 叭 D), in this state, the ground potential (e.g., 〇v) is added to the _th-&amp; connected to the non-selected cells Μ0~Μ5, Μ7, and 斟, 4一一And applying a first input voltage (Vw: Vw &gt; Vcl) and a comparison width higher than the first gate insulating layer to the first gate insulating layer M6, which is higher than the first gate insulating layer, and the weft voltage Vcl, which is connected to the first gate insulating layer M6. -

Vcl m ήα ^ ^ ^ 閑絕緣層的矯頑電壓 附加負说後的電壓卜Vcl)低 ([七]:[-Vw]&lt;-Vcl)的任一個 弟-寫入電壓 元㈣〜M5、M7的第一字元線WLi〇〜ni5對連接於非選擇單 絕緣層的矯頑電壓Vcl低且比對第丄施加比第一閘Vcl m ήα ^ ^ ^ The coercive voltage of the idle insulating layer is added after the voltage is negative (Vcl) low ([seven]: [-Vw] &lt;-Vcl) any one of the brothers - write voltage element (four) ~ M5, The first word line WLi〇~ni5 of M7 has a low coercive voltage Vcl connected to the non-selective single insulating layer and is applied to the first gate than the first gate

Vcl附加負號後的電壓(_Vcn古&amp; —間絕緣層的矯頑電壓 H、 V c i 阿的電壓 ^ V([-Vcl]&lt;V&lt;Vcl) 100132261 1003447808-0 35 201222827 也可以。而且’對連接於選擇單元M6的第二字元線 W L 2 6 施加截止狀態電壓Vo f f也可以。 在與實施形態三有關的記憶體裝置2 0 0b中,藉ά u 上述的驅動波形給予各第一字元線及第二字元線, 少非選擇單元M0~M5 符由將如 使得至 M7中的第二電晶體TR2在非 、 F崎擇期 間中一直成導通(ON)的狀態,故即使不使用第—恭 隻晶體 TR1 ’也能透過第二電晶體TR2使選擇單元M6的筮〜 〜汲極 端及第二源極端的各個成與位元線BL及板線pl的恭 電^立相 同的接地電位。因此,不會破壞非選擇單元M〇〜M5、 的第一電晶體TR1所保持的資訊’可將新的資訊寫入1 單元M6。 璉擇 另一方面,在與實施形態三有關的記憶體褒置2〇卟 中,可使用圖1 7所示的驅動波形進行資訊的讀出。 亦即, 若著眼於記憶體單元M6的話,首先參昭 .、'、圖 1 7(a),在期 1中第二字元線WU6被給予導通狀態電 8 兔壓Von,期間}由The voltage after Vcl is added with a minus sign (_Vcn ancient &amp; - the voltage of the coercive voltage H, V ci of the insulating layer ^ V ([-Vcl] &lt; V &lt; Vcl) 100132261 1003447808-0 35 201222827 is also possible. 'The off-state voltage Vo ff may be applied to the second word line WL 2 6 connected to the selection unit M6. In the memory device 20 0b according to the third embodiment, the above-mentioned driving waveform is given to each A word line and a second word line, the non-selection unit M0~M5 symbol is such that the second transistor TR2 in M7 is always turned ON during the non-F and K-selection periods, so Even if the first-only crystal TR1' is not used, the 筮~~汲 extreme of the selection unit M6 and the second source terminal can be made to be connected to the bit line BL and the plate line pl through the second transistor TR2. The same ground potential. Therefore, the information held by the first transistor TR1 of the non-selected cells M〇 to M5 is not destroyed, and new information can be written into the cell M6. On the other hand, in the embodiment The three related memory devices are placed in 2〇卟, and the driving waveform shown in Figure 17 can be used. Information reading. That is, if you look at the memory unit M6, first refer to Fig., ', Figure 17 (a), in the first period, the second word line WU6 is given the on state. Period

第二電晶體TR2成導通(0N)。接著,在 T 览期間2 ~ 6中第二a 元線WU6只被給予0V的電壓’惟透過 ♦曰 子 年一电日日體TR2的 記憶效應,第二電晶體TR2在期間2〜6中也仍 導 通⑽)。接著’在期間7中第二字元線U被給予戴止: 態電塵V〇ff,期間7中第二電晶體%成截止(〇FF)。接 著’在期間8中第二字元線WL26被給予導通狀態電壓―, 期間8中第二電晶體TR2再度成導通( 、υ Μ)。其他的記憶體 單元Μ0~Μ5、Μ7的情形基本上也使用 使用大致一樣的驅動波 形。作是,對記憶體單元Μ0的愔抿 心^ m h形因期間1為選擇期間, 100132261 1003447803-0 201222827 故第 ν 字元線WLd從— 〇f f :而且,對記憶體單元:7 :就被給予截止狀態電塵 中的取後的期間,故在 的情形因期間8為期間Η :狀態電屋…,第」字8中第二字元線心被給予截 屯壓V〇n。而且如圖 几線WLz7不被仏;-首3 一 圖1 7 (b)戶斤; +破給予導通狀態 元M0〜M7的第一宝_ '、,對連接於久筮 幻弟予兀線WL, # 垵於各弟—記憶體單 一記憶體單元Μ0〜Μ7的第—1加0 V。此外,對連接於各第 層的矯碩電壓Vcl低且比I ^兀線施加比第一閘絕緣 附加負號後的電壓卜v ^第—閘絕緣層的矯頑電壓Vc ;! 以。 ^ )高的電壓V([—Vcl]&lt;v&lt;Vcl)也可 在與實施形態三右防^ μ、+、μ B 啕關的記憶體裝置20 0b中,藉由將如 上述的驅動波形給 精田將如 合弟—字元線及第二字元線,使得在 —、/、板線之間流過像圖1 7 ( C )所示的汲極電流,故可 藉由測疋该沒極電流的大小判斷各記憶體單元所保持的資 汛為[1 ]或[0 ],其結果,可進行保持於各記憶體單元的資 訊的讀出。 Ο 因與實施形態三有關的記憶體裝置2 0 〇 b在第二閘絕 緣層1 54( 1 50 )由鐵電層構成此點以外的點中,具有和與實 施形態一有關的記憶體裝置200的情形一樣的構成’故具 有與實施形態一有關的記憶體裝置2 0 0所具有的功效之中 相當的功效。 [實施形態四] 與實施形態四有關的記憶體裝置2 〇 〇 c基本上具有和 與實施形態一有關的記憶體裝置2 0 0 —樣的構成’惟第二 100132261 1003447808-0 37 201222827 電晶體TR2為掏? «強型的電晶 έ己憶體裝置2 0 〇的太 點和岛會 的U形不同。 ,、實施形態一有關的 在/、貫知*形能 ± 〜四有關的纪悔 入及讀出和與督k趙搫要 體農置20 0的情形 _如、也形態—有關的4又置20 0 c中,資訊的寫 樣,如下而進行。 叼§己憶皿... 以說明與叙 圖18是用 200c中的資訊寫 虼形態四右p3 實施形態四有二作而顯〜圖。_關的記憶體裳置 顯示之圖。的記憶體裝置:c : 1是用以說明與 亦即,在 的資訊讀出動作而 、吼寫入時如顧 元M0〜M7的第_ &lt; _ 1 8所_ ^ a f+ ^ ^〜子兀線wL2〇〜Wl 不,對連接於非選擇單 閘絕緣層的橋二早元M6的第〜字-!通狀態電壓v°n’ 場項電壓Vci言 疋線壯,6施加比第一 及比對弟—閘絕緣層的矯頌、弟—寫入電壓(VW:Vw&gt;Vcl) (-vci)低的第二寫入電壓([、j墨VC1附加負號後的電壓 據此,因非選擇單元M0〜M7 Vw]:卜Vw]&lt; — Vcl)的任一個。 (ON),故即使不用 的第二電晶體TR2都成導通 M TR2^ig^ -- —電晶體TRl ,也能透過第二電晶 —擇早7&quot;Μ6的第二汲極端及第二源極端的各個成 _位元線BL及板線pL的電位相同的接地電位。因此,不 會破壞非選擇單兀Μ0〜Μ5、Μ7中的第一電晶體TR1所保持 的資汛可將新的資訊寫入選擇單元Μ 6。其結果,使用於 實施形態四的固態電子元件1 〇〇c(及與實施形態四有關的 記憶體裝置200c)成為不會使[寫入干擾問題]發生的固態 電子元件(及記億體裝置)。 100132261 1003447808-0 38 201222827 而且,在資訊讀出時如圖19所示,對連接於非選擇單 元M0〜M5、M7的第二字元線礼2〇~壯25、WU7施加導通狀態 電壓V〇n,並且對連接於選擇單元M6的第二字元線叽』 施加戴止狀態電壓V〇f卜據此,因炸選擇單元M〇〜M5、Μ 中的第二電晶體TR2都成導通(ON),選擇單元Μ6中的第二 電晶體TR2成截止(0FF),故可讀出保持於選擇單元Μ6的 貝汛。亦即,可藉由若對位元線BL與板線PL之間施加規The second transistor TR2 is turned on (ON). Then, during the T-view period 2-6, the second a-line WU6 is only given a voltage of 0V', but the memory effect of the TR子年一电日日体 TR2, the second transistor TR2 is in the period 2~6 Also still turned on (10)). Then, in the period 7, the second word line U is given a state: the electric dust V ff, and the second transistor % in the period 7 is turned off (〇FF). Then, in the period 8, the second word line WL26 is given an on-state voltage, and in the period 8, the second transistor TR2 is turned on again (, υ 。). In the case of other memory cells Μ0~Μ5, Μ7, basically the same drive waveform is used. Therefore, for the memory cell Μ0, the heart ^mh shape period 1 is the selection period, 100132261 1003447803-0 201222827, so the νth word line WLd is from - 〇ff: and, for the memory unit: 7: The period after the removal of the off-state electric dust is given. Therefore, the period 8 is the period Η: state electric house..., and the second character line center in the first word 8 is given the intercept pressure V〇n. Moreover, as shown in the figure WLz7 is not smashed; - the first 3 a picture 1 7 (b) households; + the first treasure that gives the conduction state element M0~M7 _ ',, connected to the long-term phantom WL, # 垵 各 各 记忆 - memory single memory unit Μ 0 ~ Μ 7 of the first - plus 0 V. Further, the oscillating voltage Vc1 connected to each of the first layers is low and a voltage equal to the I 兀 line is applied to the voltage of the first thyristor. ^) The high voltage V([-Vcl]&lt;v&lt;Vcl) can also be driven in the memory device 20 0b which is related to the third embodiment of the control, μ, +, and μ B The waveform will be given to Jingtian, such as the word line and the second word line, so that the drain current shown in Fig. 17 (C) flows between the -, /, plate lines, so it can be measured The size of the immersed current is determined to be [1] or [0], and as a result, the information held in each memory unit can be read.电池 The memory device 20 0b according to the third embodiment has a memory device related to the first embodiment in a point other than the point where the second gate insulating layer 1 54 (150) is formed of a ferroelectric layer. In the case of the case of 200, it has the same effect as that of the memory device 2000 according to the first embodiment. [Fourth Embodiment] The memory device 2 〇〇c according to the fourth embodiment basically has the same configuration as that of the memory device 200 according to the first embodiment. The second 100132261 1003447808-0 37 201222827 transistor What is TR2? «Strong type of electro-crystal έ έ 忆 装置 2 2 2 2 2 2 2 2 和 和 和 和 和 和 和 岛 岛 岛 岛, in the case of the implementation of the first in the /, the knowledge of the * shape can be ± ~ four related to the repentance and readout and the situation with the supervision of the k Zhao 搫 体 农 农 20 _ _ _ _ _ _ _ _ _ _ Set 20 0 c, the information is written as follows.叼§有忆皿... To illustrate and describe Figure 18 is to use the information in 200c to write 虼 form four right p3 implementation form four has two to display. _Off memory is displayed. The memory device: c : 1 is used to explain the information read operation, that is, the _ &lt; _ 1 8 _ ^ a f + ^ ^ ~ of the Gu Yuan M0~M7 when writing The sub-twist line wL2〇~Wl No, the second word of the bridge two early M6 connected to the non-selected single-gate insulation layer-! The pass state voltage v°n' field term voltage Vci is strong, 6 is lower than the first and the opposite pair—the brake, the write-in voltage (VW: Vw &gt; Vcl) (-vci) The second write voltage ([, the voltage after the addition of the minus sign of the ink VC1 is accordingly, because of the non-selection unit M0 to M7 Vw]: Bu Vw] &lt; - Vcl). (ON), so even if the second transistor TR2 that is not used is turned on M TR2^ig^ - the transistor TR1, it can pass through the second transistor and the second source and the second source of the 7&quot; The extreme ground potentials of the potentials of the _ bit line BL and the plate line pL are the same. Therefore, the information held by the first transistor TR1 in the non-selection units Μ0 to Μ5, Μ7 is not destroyed, and new information can be written to the selection unit Μ6. As a result, the solid-state electronic component 1 〇〇c (and the memory device 200c according to the fourth embodiment) used in the fourth embodiment is a solid-state electronic component that does not cause the [writing interference problem] (and the device). ). 100132261 1003447808-0 38 201222827 Moreover, as shown in FIG. 19, when the information is read, the second word line connected to the non-selected units M0 to M5, M7 is applied to the second state, and the ON state voltage V is applied to the WU7. n, and applying a wearing state voltage V〇f to the second word line connected to the selecting unit M6, whereby the second transistor TR2 in the frying selection units M〇 to M5 and Μ are turned on ( ON), the second transistor TR2 in the selection unit Μ6 is turned off (OFF), so that the bellows held in the selection unit Μ6 can be read. That is, by applying a gauge between the bit line BL and the plate line PL

疋的電壓的話,以當時電流是否流過來判斷被寫入選擇單 兀* M6的資汛為[丨]或[〇],因此,玎讀出保持於選擇單元 M6的貝訊然後,此時因任一條第二字元線WL2〇〜WLz7都 未連接於第—電晶體TR1,故對非選擇單元M0〜M5、M7及 選^單元M 6中的任—個第—電晶體T R1也不會破壞所保持 的貝汛。其結&amp; ’使用於實施形態四的固態電子元件 〇〇c(及與貝刼形態四有關的記憶體裝置2⑽幻成為不會 使[讀出干,問題]發生的固態電子元件(及記憶體裝置)。 圖2 0疋顯不與實施形態四有關的記憶體裝置2 〇 〇 c中If the voltage of 疋 is current, it is judged whether the information written to the selection unit 兀* M6 is [丨] or [〇] by the current flowing at that time. Therefore, 贝 is read and held in the selection unit M6, and then Neither of the second word lines WL2 〇 WL WLz7 is connected to the first transistor TR1, so neither of the non-selected cells M0 M M5, M7 and the selected cell M R T1 Will destroy the kept beggars. The junction &amp; 'the solid-state electronic component 〇〇c used in the fourth embodiment (and the memory device 2 (10) related to the Bellows form 4 is a solid-state electronic component (and memory that does not cause the [read dry, problem] to occur) Body device) Fig. 2 shows the memory device 2 〇〇c which is not related to the fourth embodiment

的貢訊寫入時的驅動波形之圖。圖20 (a)是顯示用以驅動 第一電晶體TR2的驅動波形之圖,圖2〇(b)是顯示用以驅 動第一電晶體TR1的驅動波形之圖。 圖2 1是用以說明與實施形態四有關的記憶體裝置 200c中的資訊讀出時的驅動波形而顯示之圖。圖2ΐ(&amp;)是 ,,&quot;貝不用以驅動第二電晶體TR2的驅動波形之圖,圖2丨(b) 疋颃示用以軀動第一電晶體T R1的驅動波形之圖,圖21 ( c) 是顯示及極電流。 100132261 1003447808-0 39 201222827 在與實施形態四有關的記 α趙装置200c中,可使用国 2 0所示的驅動波形進行眘却&amp; 、用圖 ,± ^ ^ 、的寫入。亦即如圖2〇(a)^ 示’對連接於所有的記情# 、a)所 〜體早凡M0~M7的第二字元硷 WL2〇~WU7在全期間施加莫;s虹τ几線 ¥通狀態電壓V〇n(V〇n&gt;0V)。而曰 如圖20(b)所示’在該肤能 叫且 心下’對連接於非選擇單; M0〜M5、M7的第一字元線WL 早兀 WU5、wl】7施加接地電位 如0V),並且對連接於選擇單 例 坪早π Μ6的第一字元線WL丨6输Λ 比第一閘絕緣層的矯頑電懕 &amp;加 只电峻Vcl高的第一寫入 f% (Vw:Vw&gt;Vcl)及比對第—鬧箱络a 电竣 閉絕緣層的矯頑電壓Vcl附 號後的電壓Η⑴低的第:寫人電壓(卜vw]: [_vw]&lt;負 的任-個。此外’對連接於非選擇單元MQ〜M5、M?的第— 字元線wLl〇~wLl5、wLl7施加比第—閘絕緣層的矯頑電壓 Vc 1低且比對第一閘絕緣層的矯頑電壓Vci附加負號後的 電塵(-Vcl)高的電壓V([-Vcl]&lt;v&lt;Vcl)也可以。而且,對 連接於選擇單元M6的第二字元線WLz6施加截止狀態電壓 V 〇 f f (例如0 V)也可以。 在與實施形態四有關的記憶體裝置2 0 0 c中,藉由將如 上述的驅動波形給予各第一字元線及第二字元線,使得至 少非選擇單元M0〜M5、M7中的第二電晶體TR2在非選擇期 間中一直成導通(ON)的狀態,故即使不使用第一電晶體 TR1 ’也能透過第二電晶體TR2使選擇單元M6的第二汲極 端及第二源極端的各個成與位元線BL及板線PL的電位相 同的接地電位。因此’不會破壞非選擇單元M0~M5、M7中 的第一電晶體T R1所保持的資訊,可將新的資訊寫入選擇 100132261 1003447808-0 40 201222827 單元M6。 另一方面,在與實施形態 中,可使用圖2丨所干有關的記憶體裝置200c 不的驅動波形袼〜- 圖21(a)所示’對連接^非 仃貧訊的讀出。亦即如 元線WL2〇U、WL27施加導通早广M°〜M5、M7的第二字 且對連接於選擇單元M6 “狀恶電壓v〇n(v〇n&gt;〇v),並 電壓Voff(例如0V)。而且 字元線WL26施加截止狀態 ^ , ^ a . 圖21 (b)所示,對連接於各 弟 D己隐體卓元M〇~M7的第一 a _ 1L 予疋線 WL^OILJ 施加 OV。 Ο此外,對連接於各第一記恃體m _ WT n WT 體早兀MO〜M7的第一字元線 WI^O'WLj施加比第一閘絕緣屏 s的矯頑電壓Vcl低且比對第 一閘絕緣層的绩頑電壓V c 1附 ^ 附力口負號後的電壓(_Vcl)高的 電壓 V([-Vcl]&lt;V&lt;Vcl)也可以。 在與貫施形態四有關的記憶體裝置2〇〇c中,藉由將如 上述的驅動波形給予各第一字元線及第二字元線,使得在 位元線與板線之間流過像圖21(〇所示的汲極電流,故可 藉由測定該汲極電流的大小判斷各記憶體單元所保持的資 ❹汛為[丨]或[〇],其結果,可進行保持於各記憶體單元的資 訊的讀出。 因與實施形態四有關的記憶體裝置2 〇 0 C在第二電晶 體TR2為增強型的電晶體此點以外的點中’具有和與實施 形態一有關的記憶體裝置20 〇的情形一樣的構成,故具有 與實施形態一有關的記憶體裝置200所具有的功效之中相 當的功效。 與實施形態一 ~四有關的記憶體裝置200〜200c(以及 100132261 100344:7808-0 201222827 固態電子元件1 0 0〜1 0 0 c)可使用眾所周知的薄膜形成技術 及微影(photolithography)製造’且可使用液體材料(例如 M0D(Metal Organic Decomposition:金屬有機分解)材料、 溶膠-凝膠(sol-gel)材料、奈米粒子分散液體材料),並且 可使用壓花成形技術製造。 〈與實施形態三有關的記憶體裝置200b的製造方法〉 舉與實施形態三有關的記憶體裝置2 0 0b的製造方法 為例說明與實施形態--四有關的記憶體裝置2 0 0〜2 0 0 c的 製造方法。 與實施形態三有關的記憶體裝置2 0 0b可藉由以下所 示的第一製程〜第五製程以此順序實施而製造。以下說明製 程順序。圖22是用以說明製造與實施形態三有關的記憶體 裝置200b的方法而顯示之圖。圖22(a)〜圖22(f)為各製程 圖。此外’圖22(a)〜圖22(f)是對應圖12(b)之圖。 (1)、第一製程 第一製程是在固體基板110的表面形成第一閘電極層 1 2 0的製程(參照圖2 2 (a) ~圖2 2 (b))。 如圖22(a)及圖22(b)所示,使用藏鐘法(SpUttering method)及微影在由[在si基板的表面隔著Si〇2層及丁丨層 形成STO (SrT 1 0 )層的絕緣性基板]構成的固體基板11 〇的 表面形成由白金(Pt)構成的第一閘電極層12〇。 此外’雖然在第一製程中使用濺鍍法及微影,在固體 基板1 1 0的表面形成了由白金(p t)構成的第一閘電極層 120 ’ 但使用真空蒸鑛法(vacuum evap〇rati〇n meth〇d)(例 100132261 1003447808-0 42 201222827 如EB蒸鍵法(E 1 er + rw ώ B e a m e v a p 〇 r a t i ο n m e t h o d :電子束 蒸鍍法))或CVD法. 1 u ^ Chemical Vap〇r Deposition method: 化學氣相沉積法)及微影,在固體基板u〇的表面形成由白 金(Pt)構成的第一閘電極層120也可以,且使用含有白全 材料的溶朦-凝勝溶液及利用凹凸模的壓花成形技術,在固 體基板110的表面形成由白金(Ρΐ)構成的第一閘電極層 1 2 0也可以。 (2)、第二製程 /第二製程是在固體基板110及第一閘電極層12〇的表 面形成第一閘絕緣層132的製程(參照圖22(c))。 如圖22(c)所示使用濺鍍法,在固體基板11〇的表面 上开/成由PZT構成的I,俾覆蓋第一閘電極層】2 〇,然後 使用 CMP 法(Chemical Mechanical p〇Ushing meth〇d:化 學機械研磨法)研磨由該PZT構成的層’形成第一閘絕緣層 132。 (3)、第三製程 〇 第三製程是在第一閘絕緣層132的表面形成包含第一 通道區域142、第二通道區域144及第三通道區域146以 及延續於該等通道區域的連接層的導體層14〇的製程(參 照圖 22(d))。 如圖22(d)所示使用濺鍍法及微影,在第一閘絕緣層 132的表面形成包含第一通道區域142、第二通道區域144 及第二通道區域146以及延續於該等通道區域的連接層的 導體層140。導體層14〇使用載子濃度成為ixl〇18cm-3〜lx 100132261 1003447808-0 43 201222827 1 021cnT3的範圍肉而構成的由銦錫氧化物UT0)構成的氧化 物導體材料。 (4 )、第四製程 第四製程是在包含第一閘絕緣層1 3 2以及第一通道區 域142、第二通道區域144及第三通道區域146以及延續 於該等通道區域的連接層的導體層140的表面形成第二閘 絕緣層1 5 0的製程(參照圖2 2 (e))。 如圖2 2 (e)所示使用濺鍍法,在第一閘絕緣層1 3 2的 表面上形成由PZT構成的層’俾覆蓋上述的導體層140, ❹ 然後使用CMP法研磨由該PZT構成的層,形成第二閘絕緣 層 1 5 0。 (5 )、第五製程 第五製程是在第二閘絕緣層〗50的表面形成第二閘電 極層1 6 0的製程(參照圖2 2 ( f ))。 如圖22(f)所示使用濺鍍法及微影,在第二閘絕緣層 150的表面形成由銘(A1)構成的第二閘電極層16〇。A diagram of the drive waveform when the tribute is written. Fig. 20 (a) is a view showing a driving waveform for driving the first transistor TR2, and Fig. 2 (b) is a view showing a driving waveform for driving the first transistor TR1. Fig. 21 is a view for explaining a driving waveform at the time of reading information in the memory device 200c according to the fourth embodiment. Fig. 2 (&amp;) is, &quot;Bei is not used to drive the driving waveform of the second transistor TR2, and Fig. 2(b) shows the driving waveform for the first transistor T R1 for the body movement Figure 21 (c) shows the display and the pole current. 100132261 1003447808-0 39 201222827 In the 赵 装置 装置 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 That is, as shown in Fig. 2〇(a)^, the second character 硷WL2〇~WU7 of the pair of M0~M7 is attached to all the quotations #, a) Several lines of the ¥ state voltage V〇n (V〇n &gt; 0V). And as shown in Fig. 20(b), 'the skin can be called and the heart is 'connected to the non-selection list; the first word line WL of M0~M5, M7 is applied to the ground potential as early as WU5, wl]7 0V), and the first word line WL丨6 connected to the selected single case ping π Μ6 is higher than the first writing f of the first gate insulating layer & % (Vw:Vw&gt;Vcl) and the comparison of the first-noisy box a. The voltage of the coherent voltage of the closed insulating layer Vcl is lower than the voltage Η(1): the write voltage (Bu vw): [_vw]&lt; Negative any one. Further, 'the first word line wL1〇~wLl5, wLl7 connected to the non-selection cells MQ~M5, M? is applied lower than the coercive voltage Vc1 of the first gate insulating layer and compared The coercive voltage Vci of the gate insulating layer may be a voltage V ([-Vcl] &lt; v &lt; Vcl) of the electric dust (-Vcl) after the negative sign is added. Moreover, the second word connected to the selection unit M6 may be used. The off-state voltage V 〇 ff (for example, 0 V) may be applied to the element line WLz6. In the memory device 200c according to the fourth embodiment, the driving waveforms as described above are given to the respective first word lines and Second character line, making The second transistor TR2 in the minority selection units M0 to M5 and M7 is always in an ON state during the non-selection period, so that the selection can be made through the second transistor TR2 without using the first transistor TR1'. Each of the second and second source terminals of the cell M6 has the same ground potential as the potential of the bit line BL and the plate line PL. Therefore, the first transistor in the non-selected cells M0 to M5, M7 is not destroyed. The information held by T R1 can be written into the selection unit 100132261 1003447808-0 40 201222827 unit M6. On the other hand, in the embodiment, the memory device 200c related to the operation of FIG. 2 can be used. Waveform 袼~- Figure 21 (a) shows the readout of the connection 仃 仃 。 。 。 。 。 。 。 。 。 。 。 。 WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL The selection unit M6 "likes the voltage v〇n (v〇n &gt; 〇v), and the voltage Voff (for example, 0 V). And the word line WL26 applies the off state ^, ^ a . Fig. 21 (b), The first a _ 1L connected to each of the brothers D 隐 卓 卓 卓 卓 M M M M M WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL The first character line WI^O'WLj of the first sputum m _ WT n WT body early 兀MO~M7 is applied lower than the coercive voltage Vcl of the first gate insulating screen s and compared with the first gate insulating layer The voltage Vc 1 is attached to the voltage V ([-Vcl] &lt; V &lt; Vcl) at which the voltage (_Vcl) after the minus port is negative. In the memory device 2〇〇c related to the fourth embodiment, by driving the driving waveform as described above to each of the first word line and the second word line, the flow between the bit line and the plate line is performed. After the gate current shown in Fig. 21 (〇), it can be judged by the magnitude of the drain current that the memory held by each memory cell is [丨] or [〇], and as a result, it can be maintained. The information of each memory cell is read. The memory device 2 〇0 C according to the fourth embodiment has the same function as the first embodiment except that the second transistor TR2 is an enhanced transistor. Since the memory device 20 is configured in the same manner as in the case of the memory device 20, it has the same functions as those of the memory device 200 according to the first embodiment. The memory devices 200 to 200c according to the first to fourth embodiments ( And 100132261 100344:7808-0 201222827 Solid-state electronic components 1 0 0~1 0 0 c) can be fabricated using well-known thin film forming techniques and photolithography' and liquid materials can be used (for example, MOD (Metal Organic Decomposition: Metal Organic) break down A material, a sol-gel material, or a nanoparticle-dispersing liquid material, and can be produced by an embossing technique. <Method for Manufacturing Memory Device 200b According to Third Embodiment> The manufacturing method of the memory device 2000b will be described as an example of a method of manufacturing the memory device 200 to 2000c according to the fourth embodiment. The memory device 200b according to the third embodiment can be used. The first process to the fifth process shown below are manufactured in this order. The process sequence will be described below. Fig. 22 is a view for explaining the method of manufacturing the memory device 200b according to the third embodiment. 22(a) to 22(f) are diagrams of the respective processes. Further, 'Fig. 22(a) to Fig. 22(f) are diagrams corresponding to Fig. 12(b). (1) The first process of the first process is A process of forming the first gate electrode layer 120 in the surface of the solid substrate 110 (refer to FIG. 22 (a) to FIG. 2 2 (b)). As shown in FIG. 22(a) and FIG. 22(b), the use is hidden. The SpUttering method and lithography are based on the formation of the STO (SrT 1 0 ) layer on the surface of the Si substrate via the Si〇2 layer and the butyl layer. The first substrate electrode layer 12 made of platinum (Pt) is formed on the surface of the solid substrate 11 of the substrate. Further, although the sputtering method and the lithography are used in the first process, the solid substrate 1 10 The surface forms a first gate electrode layer 120' composed of platinum (pt) but using vacuum evap〇rati〇n meth〇d (example 100132261 1003447808-0 42 201222827 such as EB steaming method (E 1 Er + rw ώ B eamevap 〇rati ο nmethod : electron beam evaporation method) or CVD method. 1 u ^ Chemical Vap〇r Deposition method: chemical vapor deposition method and lithography, formed on the surface of the solid substrate u〇 The first gate electrode layer 120 composed of platinum (Pt) may be formed of platinum (Ρΐ) on the surface of the solid substrate 110 by using a solvent-solid solution containing white all-material and an embossing forming technique using a concave-convex mold. The first gate electrode layer 120 may be formed. (2) The second process / the second process is a process of forming the first gate insulating layer 132 on the surface of the solid substrate 110 and the first gate electrode layer 12 (see Fig. 22 (c)). As shown in Fig. 22(c), on the surface of the solid substrate 11 turns, I is formed of PZT on the surface of the solid substrate 11〇, and the first gate electrode layer is covered by 俾, and then the CMP method is used (Chemical Mechanical p〇) Ushing meth〇d: chemical mechanical polishing) grinding a layer composed of the PZT to form a first gate insulating layer 132. (3) The third process 〇 third process is to form a connection layer including a first channel region 142, a second channel region 144, and a third channel region 146 on the surface of the first gate insulating layer 132 and continuing in the channel regions. The process of the conductor layer 14 is (see Fig. 22 (d)). As shown in FIG. 22(d), a first channel region 142, a second channel region 144, and a second channel region 146 are formed on the surface of the first gate insulating layer 132 by using a sputtering method and a lithography, and are continued in the channels. The conductor layer 140 of the connection layer of the region. The conductor layer 14 is made of an oxide conductor material composed of indium tin oxide UT0) having a carrier concentration of ixl 〇 18 cm - 3 to 1 x 100 132 261 100 3 447 808 - 0 43 201222827 1 021 cn T3. (4) The fourth process of the fourth process is to include the first gate insulating layer 132 and the first channel region 142, the second channel region 144 and the third channel region 146, and the connection layer continuing in the channel regions. The surface of the conductor layer 140 forms a process of the second gate insulating layer 150 (refer to FIG. 22 (e)). As shown in Fig. 2 2 (e), a layer of 'PZT' is formed on the surface of the first gate insulating layer 132 to cover the above-mentioned conductor layer 140, and then CMP is used to polish the PZT. The layer formed constitutes a second gate insulating layer 150. (5) The fifth process The fifth process is a process of forming the second gate electrode layer 160 on the surface of the second gate insulating layer 50 (refer to Fig. 22 (f)). As shown in Fig. 22 (f), a second gate electrode layer 16A made of the inscription (A1) is formed on the surface of the second gate insulating layer 150 by sputtering and lithography.

此外,雖然在第五製程中使用濺鍍法及微影,在第二 閘絕緣層150的表面形成了由鋁(A1)構成的第二閘電極層 1 6 0,但使用真空蒗鍍法(例如ρ β 、, 、列如ΕΒ瘵鍍法)或CVD法及微影, 在第二閘絕緣層1 5 0的表面报Α、丄、 j衣w形成由鋁(Α1)構成的第二閘電 極層160也可以,且徒用合右a λ 有白金材料的溶膠-凝膠溶液及 利用凹凸模的壓花成形技術, 在弟二閘絕緣層1 5 0的表面 形成由銘(Α1)構成的第二閘電 兔極層1 6 0也可以。 如以上,可製造與實 t — 形恶二有關的記憶體裝置 100132261 1003447808-0 201222827 200b ° 此外,在上述的製造方法中,可藉由 ~成由Si(h構成 的層取代由PZT構成的層當作第二閘絕緣 ^ 深層150,製造與 貫施形態一有關的記憶體裝置2 0 0。而且, ^ 可藉由在固體 基板110的表面,第二閘電極層160、第- 〜閘絕緣層150、 導體層140、第一閘絕緣層1 32及第一閘畲枚a β电極層1 2 0以此 順序升&gt;成,並且升々成由Si〇2構成的層取代由?2&gt;1«構成的層 當作第二閘絕緣層! 5 〇,製造與實施形態二有關的記憶體 (1 裝置200a。而且’可藉由形成由si 〇2構成的層取代由PZT 構成的層當作第二閘絕緣層150,並且調整導體層140的 雜質濃度(impurity concentration)或層厚,製造與實施 形態四有關的記憶體裝置2 0 0 c。 〈與實施形態三有關的記憶體裝置2〇〇b的另一個製造 方法〉 與實施形態三有關的記憶體裝置2 0 〇 b可藉由以下所 示的第一製程~第五製程以此順序實施而製造。但是,在與 〇貫施形態三有關的記憶體裝置2〇〇b的另一個製造方法 中’擬藉由由LN0構成的層形成第一閘電極層120及第二 閘電極層1 6 0。以下依照製程順序說明與實施形態三有關 的s己憶體裝置200b的另一個製造方法。圖23〜圖2了是用 以說明製造與實施形態三有關的記憶體裝置2 〇 〇 b的另一 個方法而顯示之圖。圖23(a)〜圖23(f)、圖24(a) ~圖 24(e)、圖 25(a)-圖 25(e)、圖 26(&amp;)~圖 26(e)及圖 27(a)〜 圖27(f)為各製程圖。 100132261 1003447808-0 45 201222827 (1)、第一製程 第一製程是在固體基板110的表面形成第一閘電極層 1 2 0的製程(參照圖2 3 )。 首先’藉由熱處理製備成為錄酸鑭(lanthanum nickelate)(LaNi〇3)的功能性液體材料(functional liquid material)。具體上,製備含有金屬無機鹽(metal inorganic salt)(硝酸鑛(lanthanum nitrate)(六水合物 (hexahydrate))及醋酸鎳(nickel acetate)(四水合物 (tetrahydrate)))的溶液(溶劑:2 - 甲氧基乙醇 (2 - m e t h ο X y e t h a n ο 1)) ° 其次,如圖23(a)及圖23(b)所示,在由[在Si基板的 表面隔著SiCh層及Ti層形成STO(SrTiO)層的絕緣性基板] 構成的固體基板110中的一方的表面使用旋塗法(spin coating method)塗佈功能性液體材料(例如 5 0 0 rpm、25 秒)’然後藉由將固體基板110放置在熱板(hot plate)上 以6 0 °C使其乾燥1分鐘’形成錄酸鋼的前驅物組成物層 (precursor composition 1ayer)120'(層厚 300nm) ° 其次’如圖23(&lt;:)~圖23(e)所示,使用具有對應第一 閘電極層120的段差的段差的凹凸模Ml,以i50〇c對前驅 物組成物層1 20’施以壓花加工,在前驅物組成物層丨2〇’ 形成壓花構造。施以壓花加工時的壓力是以5MPa。 其次’藉由以弱條件對前驅物組成物層1 2 〇,進行全 面姓刻(overall etching),由對應第一閘電極層12〇的區 域以外的區域完全除去前驅物組成物層1 2 0,(全面|虫列 100132261 1003447808-0 46 201222827 衣&amp; ) °全面麵刻製程是使用濕式蝕刻技術(HF: ΗΠ溶液) 不使用真空製程而進行。 最:後·藉由使用 RTA(Rapid Thermal Annealing:快速 ,、、 衣直並以高溫(6 5 0 1:、1 〇分鐘)對前驅物組成物層 120 進订熱處理,如圖23(f)所示,由前驅物组成物層 120形成由鎳酸鑭(LaNi〇3)構成的第一閘電極層12〇。 (2 )、第二製程 第—製程是在固體基板110及第一閘電極層120的表 〇面形成第—聞絕緣層1 32的製程(參照圖24)。 如圖24(a)及圖24(b)所示,在固體基板110的表面塗 佈包含鐵電持料的原料的溶液(例如PZT溶膠-凝膠溶液) 形成包含鐵電材料的原料的膜1 30’ ,俾覆蓋第一閘電極 層 1 20。 接著’在將包含該鐵電材料的原料的膜1 3 〇 ’乾燥 後’如圖24(c)及圖24(d)所示,藉由將平坦模M2按壓於 該包含鐵電材料的原料的膜丨30’ ,使包含鐵電材料的原 ◎ 料的膜130’平坦化。 其次,使用RTA裝置對包含鐵電材料的原料的膜1 3〇 ’ 施以熱處理,如圖2 4 ( e )所示形成第一閘絕緣層1 3 2。 (3 )、第三製程 第二製程是在第一開絕緣層132的表面形成包含第一 通道區域142、第二通道區域144及第三通道區域146以 及延續於該等通道區域142、144、146的連接層的導體層 14 0的製程(參照圖2 5 )。 100132261 1003447808-0 47 201222827 首先,如圖25(a)及圖25(b)所示,藉由將包含氧化物 導體材料的原料的溶液(例如IT〇溶膠_凝膠溶液)塗佈於 第-閘絕緣層132的表面,形成包含氣化物導體材料的原 料的膜140’。此外,在包含氧化物導體材料的原料的溶 液添加有於完成時導體層14〇的載子濃度成為i X ltTcnT3〜lxl02IcnT3的範圍内的濃度的雜質。 其次,在將包含氧化物導體材料的原料的膜14〇,乾 燥後,如圖25(c)〜圖25⑷所示,使用對應第—通道區域 142、第二通道區域144及第三通道區_ 146以及延續於該 等通運區域的連接層的區域成為 乂馮凹向形成的凹凸模M3,對 包含氧化物導體材料的原料的膜丨4 n, */ 的膜140進行壓花成形加 工。此時進行對包含氧化物導體材料的原料的的 壓花成形加工’俾第-通道區域142、第二通道區域“4 及第三通道…46的層厚於完成時成為位於y 的範圍内的規定的層厚。 其次,藉由以弱條件對包含該氧化物導體材料的原料 的膜“。’進行全面姓刻,由對應導體層14〇的區域以外 的區域完全除去包含該氧化物導體材料的原料的膜Η。, 後’猎由使用im裝置對包含氧化物導體材料的原料的膜 140施以熱處理,如圖25(e)所示,形成包含第-通道區 域142、第二通道區域144及第三通道區$ 146以及延續 於該等通道區域142、144、146的連接層的導體層140。 (4 )、第四製程 第四製程是在第-閑絕緣層132的表面形成第二閣絕 100132261 1003447808-0 48 201222827 緣層150的製複r ^參照圖2 6 )。 如圖26(a)及 面塗佈包含鐵電26(b)所示,在第—閘絕緣層132的表 液)形成包含鐵會^料的原料的溶液(例如PZT溶膠-凝膠溶 立^ — 材料的原料的膜150’ 。 其次,在將包入 如圖26(c)及圖2 3鐵電材料的原料的膜150’乾燥後’ 含鐵電材料的原料d)所示,藉由將平坦模Μ4按塵於該包 膜150,平坦化i的骐15〇,,使包含鐵電材料的原料的 Ό Ο 其次’使用RTa &amp; 施以熱處理,形成笛對包含鐵電材料的原料的膜15〇, 取第二閘絕緣層150。 (5)、第五製裎 第五製程是在證_ ,^ ^ . e n —閘絕緣層1 5 0的表面形成第二閘電 極層160的製程(岌 ^闲屯 、参照圖2 7)。 首先,藉由執由 .、、'處理製備成為鎳酸鑭(LaNiCh)的功能性 液體材料。具體上, 1、 衣備含有金屬無機鹽(硝酸鑭(六水合 物)及醋酸鎳(四水人 Q物)的溶液(溶劑:2 —曱氧基乙醇)。 其次,如圖 ? 7 r 、 〔a)及圖2 7 (b )所示’在第二閘絕緣層 150中的一方的表而 使用旋塗法塗佈功能性液體材料(例 如 5 0 0 rpm、25 秒),扯、Λ 、後藉由將固體基板11 〇放置在埶板 上以60°C使其乾燥丨八# , i … τ丄刀鐘,形成鎳酸鑭的前驅物組成物層 160’ (層厚 30 0nm)。 其次,如圖、 、 (c)〜圖27(e)所示,使用具有對應第二 閘電極層160的段差的外辛从 意的段差的凹凸模M5,以15〇。(:對前驅 物組成物層1 6 0 ’施以厭— , 乂壓化加工,在耵驅物組成物層1 6 〇, 100132261 1003447808-0 49 201222827 形成 面钱 除去 程是 進行 對前 月!J驅16 0。20 0b 與實 的層 實施 構成160、 及第 的層 實施 層當 壓花構造。施以壓花加工時的壓力是以5 Μ P a。 其次’藉由以弱條件對前驅物組成物層160’進行全 刻’由對應第二閘電極層1 6 0的區域以外的區域完全 前驅物組成物層1 6 0 ’(全面蝕刻製程)。全面蝕刻製 使用濕式蝕刻技術(HF : HC1溶液)不使用真空製程而 最後,藉由使用RTA裝置並以高溫( 650t、10分鐘) 驅物組成物層1 6 〇 ’進行熱處理,如圖2 7 (f)所示,由 物組成物層160,形成由鎳酸鑭構成的萆二閘電極層 r 如以上,可製造與實施形態三有關 。此情形,可使用液體材料而不使用 施形態三有關的記憶體裝置2 0 0b。 的記憶體裝置 真空製程,製造 此外’在上述的製造方法中,可藉άt %由形成由BZN構成 取代由PZT構成的層當作第二閘絕绦 巴緣層1 5 0,製造與 形態一有關的記憶體裝置2 0 0。在,士 μ主 仗此情形下,由ΒΖΝ 的 層 可 使用 ΒΖΤ 溶膠_ -凝膠溶液而形成。 而 且 &gt; 可藉 由在 固體 基板11 0 的 表 面, 第二閘絕緣層 150、 導體層 14C 丨、 第一 —' 閘 電 極層 120 以此 順序形成 並 且形 取 代 由 ΡΖΤ 構成 .的層 當作第二閘 莕巴 緣層 形 態 二 有關 的記 憶體 裝置200 a 〇 而 且 5 可藉 由形 成由 Β Ζ Ν構成 的 層 取代 作 第 二 閘絕 緣層 150 ,並且調 整 導 體層 弟二閘電極層 閘絕緣層1 3 2 成由ΒΖΝ構成 1 5 0,製造與 由ΡΖΤ構成的 140的雜質濃 100132261 1003447308-0 50 201222827 度或層厚’製造與實施形態四有關的記憶體裝置2 〇 〇e。 [實施形態五] 圖28是用以說明與實施形態五有關的記憶體 衣置 200d而顯示之圖。圖28(a)是記憶體裝置200d之俯視圖 圖28(b)是圖28(a)的A1-A1剖面圖,圖28(c)是圖 的A2-A2剖面圖,圖28(d)是圖28(a)的A3-A3剖面圖 28(e)是圖28(a)的A4-A4剖面圖。此外,圖28中符號 是表示電阻降低用金屬層。 圖17〇Further, although a sputtering method and lithography are used in the fifth process, a second gate electrode layer 160 made of aluminum (A1) is formed on the surface of the second gate insulating layer 150, but vacuum iridium plating is used ( For example, ρ β , , , such as ruthenium plating, or CVD and lithography, on the surface of the second gate insulating layer 150, the second gate composed of aluminum (Α1) is formed. The electrode layer 160 may be formed of a sol-gel solution having a platinum material and a embossing forming technique using a concave-convex mold, and the surface of the insulating layer of the second gate is formed of Ming (Α1). The second gate electric rabbit pole layer 1 60 is also available. As described above, the memory device 100132261 1003447808-0 201222827 200b can be manufactured in relation to the real t-shaped dioxin. Further, in the above manufacturing method, the layer composed of Si (h can be replaced by a layer composed of PZT) The layer is used as the second gate insulating layer 150 to fabricate the memory device 200 related to the first embodiment. Moreover, ^ can be formed on the surface of the solid substrate 110, the second gate electrode layer 160, and the first gate The insulating layer 150, the conductor layer 140, the first gate insulating layer 1 32, and the first gate a β electrode layer 1 2 0 are grown in this order, and are upgraded to a layer composed of Si〇2. The layer formed by ?2&gt;1« is used as the second gate insulating layer! 5 〇, the memory related to the second embodiment is manufactured (1 device 200a. And 'can be formed by PZT by forming a layer composed of si 〇2 The layer is used as the second gate insulating layer 150, and the impurity concentration or layer thickness of the conductor layer 140 is adjusted, and the memory device 2 0 0 c according to the fourth embodiment is manufactured. <Memory related to the third embodiment Another manufacturing method of the body device 2〇〇b> The three related memory devices 20 〇b can be manufactured by the first process to the fifth process shown below in this order. However, in the memory device 2〇〇b related to the third mode In another manufacturing method, the first gate electrode layer 120 and the second gate electrode layer 160 are formed by a layer composed of LN0. Hereinafter, another embodiment of the s-remember device 200b related to the third embodiment will be described in accordance with the process sequence. Fig. 23 to Fig. 2 are views for explaining another method of manufacturing the memory device 2 〇〇b according to the third embodiment. Fig. 23(a) to Fig. 23(f) and Fig. 24(a) ~ Fig. 24(e), Fig. 25(a) - Fig. 25(e), Fig. 26 (&)~ Fig. 26(e) and Fig. 27(a) to Fig. 27(f) are the respective processes Fig. 100132261 1003447808-0 45 201222827 (1) First process The first process is a process of forming a first gate electrode layer 120 on the surface of the solid substrate 110 (refer to FIG. 23). First, 'be prepared by heat treatment. A functional liquid material of lanthanum nickelate (LaNi〇3). Specifically, the preparation contains a metal inorganic salt (meta) l inorganic salt) (lanthanum nitrate (hexahydrate) and nickel acetate (tetrahydrate) solution (solvent: 2 - methoxyethanol (2 - meth) ο X yethan ο 1)) ° Next, as shown in Fig. 23 (a) and Fig. 23 (b), an insulating substrate in which an STO (SrTiO) layer is formed on the surface of a Si substrate via a SiCh layer and a Ti layer. One surface of the solid substrate 110 is coated with a functional liquid material (for example, 500 rpm, 25 seconds) using a spin coating method and then placed on a hot plate by placing the solid substrate 110 on the hot plate (hot) Plate) was dried at 60 ° C for 1 minute to form a precursor composition composition (precursor composition 1ayer) 120' (layer thickness 300 nm) ° followed by 'as shown in Fig. 23 (&lt;:)~ Fig. 23 (e), the embossing process is performed on the precursor composition layer 1 20' at i50 〇c using the embossing mold M1 having a step difference corresponding to the step of the first gate electrode layer 120, in the precursor composition layer 丨2〇' Forms an embossed structure. The pressure applied to the embossing process was 5 MPa. Secondly, by performing the overall etching on the precursor composition layer 1 2 弱 under weak conditions, the precursor composition layer 1 2 0 is completely removed from the region other than the region corresponding to the first gate electrode layer 12〇. , (Comprehensive | Worm 100132261 1003447808-0 46 201222827 Clothing &amp; ) ° The full face engraving process is carried out using a wet etching technique (HF: ΗΠ solution) without using a vacuum process. Most: After the use of RTA (Rapid Thermal Annealing: fast,, clothing straight and high temperature (6 5 0 1:, 1 〇 minutes) on the precursor composition layer 120 finishing heat treatment, as shown in Figure 23 (f) As shown, the first gate electrode layer 12 made of lanthanum nickelate (LaNi〇3) is formed from the precursor composition layer 120. (2) The second process first process is on the solid substrate 110 and the first gate electrode The surface of the layer 120 forms a first insulating layer 1 32 (see FIG. 24). As shown in FIGS. 24(a) and 24(b), the surface of the solid substrate 110 is coated with a ferroelectric holding material. A solution of the raw material (for example, a PZT sol-gel solution) forms a film 1 30' of a raw material containing a ferroelectric material, and covers the first gate electrode layer 120. Then, 'the film 1 containing the raw material of the ferroelectric material 3 〇 'after drying', as shown in Fig. 24 (c) and Fig. 24 (d), the flat mold M2 is pressed against the film 丨 30' of the raw material containing the ferroelectric material to make the original ◎ containing the ferroelectric material. The film 130' of the material is planarized. Next, the film 13' of the raw material containing the ferroelectric material is subjected to heat treatment using an RTA apparatus, as shown in Fig. 24 (e). Forming the first gate insulating layer 132. (3) The third process of the third process is to form a first channel region 142, a second channel region 144, and a third channel region 146 on the surface of the first insulating layer 132. The process of the conductor layer 140 of the connection layer of the channel regions 142, 144, 146 is continued (refer to FIG. 25). 100132261 1003447808-0 47 201222827 First, as shown in Fig. 25(a) and Fig. 25(b) A film 140' containing a raw material of a vaporized conductor material is formed by applying a solution (for example, an IT sol-gel solution) containing a raw material of an oxide conductor material to the surface of the first gate insulating layer 132. In the solution containing the raw material of the oxide conductor material, the concentration of the carrier concentration of the conductor layer 14〇 at the concentration of i X ltTcnT3 to lxl02IcnT3 at the completion of the addition is added. Next, the film of the raw material containing the oxide conductor material is added. 14〇, after drying, as shown in FIGS. 25(c) to 25(4), an area corresponding to the first channel region 142, the second channel region 144, and the third channel region _146 and the connection layer continuing in the transport regions is used. Become a phoenix The embossing mold M3 embosses the film 140 of the film 丨 4 n, */ containing the raw material of the oxide conductor material. At this time, the embossing process for the raw material containing the oxide conductor material is performed. The layer thickness of the channel region 142 and the second channel region "4" and the third channel ... 46 becomes a predetermined layer thickness within the range of y upon completion. Next, by completely engraving the film ".' of the raw material containing the oxide conductor material under weak conditions, the film containing the material of the oxide conductor material is completely removed from the region other than the region corresponding to the conductor layer 14? The film 140 of the raw material containing the oxide conductor material is heat-treated by using an im device, and as shown in FIG. 25(e), the first channel region 142, the second channel region 144, and the third channel are formed. a region $146 and a conductor layer 140 continuing in the connection layer of the channel regions 142, 144, 146. (4) The fourth process of the fourth process is to form a second barrier 100132261 1003447808 on the surface of the first-id insulating layer 132. -0 48 201222827 The formation of the edge layer 150 is referred to Fig. 2 6 ). As shown in Fig. 26 (a) and the surface coating including the ferroelectric 26 (b), the surface layer of the first gate insulating layer 132 is formed. A solution containing a raw material of iron (for example, PZT sol-gel-solubilized film 150' of the raw material of the material. Next, the raw material of the ferroelectric material as shown in Fig. 26(c) and Fig. 23 will be enclosed. After the film 150' is dried, the raw material d) containing the ferroelectric material is dusted by the flat mold 4 The envelope 150 flattens the 骐15〇 of the i, and causes the 包含 包含 of the raw material containing the ferroelectric material to be subsequently subjected to heat treatment using RTa &amp; to form a film 15 〇 for the raw material containing the ferroelectric material. The second gate insulating layer 150. (5) The fifth process of the fifth system is a process for forming the second gate electrode layer 160 on the surface of the gate insulating layer 150 (岌^, 屯, 屯, Referring to Fig. 2 7). First, a functional liquid material which is prepared as a lanthanum nickelate (LaNiCh) by the treatment of ., 'process. Specifically, 1. The clothing contains a metal inorganic salt (niobium nitrate (hexahydrate)). And a solution of nickel acetate (tetrahydrate human Q) (solvent: 2 - decyloxyethanol). Next, as shown in Fig. 7 r , [a) and Fig. 27 (b), in the second gate insulating layer A functional liquid material (for example, 500 rpm, 25 seconds) is applied by spin coating to one of the 150 sheets, and then the solid substrate 11 is placed on the crucible at 60 ° C. The dry 丨8#, i ... τ 丄 knife clock, forms the precursor composition layer 160' of strontium nickelate (layer thickness 30 0nm). Second, as shown in the figure, ( c) to Fig. 27(e), using a concave-convex mold M5 having a step difference corresponding to the step of the second gate electrode layer 160, 15 〇 (: for the precursor composition layer 1 60 0 ' Applying anaerobic, 乂 pressure processing, in the 耵 物 composition layer 1 6 〇, 100132261 1003447808-0 49 201222827 The formation of the face money removal process is carried out on the previous month! J drive 16 0. 20 0b and the real layer implementation 160, and the first layer of the layer is an embossed structure. The pressure applied to the embossing process is 5 Μ P a . Next, the precursor composition layer 160' is completely engraved by weak conditions from the region other than the region corresponding to the second gate electrode layer 160. (Complete etching process). The full etching process uses a wet etching technique (HF: HC1 solution) without using a vacuum process and finally, by using an RTA device and heat treatment at a high temperature (650t, 10 minutes) of the composition layer of the coating, as shown in Fig. 2 As shown in Fig. 7 (f), the bismuth electrode layer r composed of strontium nickelate is formed from the composition layer 160 as described above, and can be produced in accordance with the third embodiment. In this case, a liquid material can be used instead of the memory device 200b associated with the third embodiment. In the above-mentioned manufacturing method, the layer formed of PZT is replaced by a layer formed of BZN as a second gate barrier layer 150, manufactured and shaped. The relevant memory device is 200. In this case, the layer of ruthenium can be formed using a ruthenium sol-gel solution. Further, by the surface of the solid substrate 110, the second gate insulating layer 150, the conductor layer 14C, and the first-'th gate electrode layer 120 are formed in this order and the layer formed by ΡΖΤ is substituted as the first layer. The second memory device 200 a 〇 and 5 can be replaced by a layer formed of Β Ν 作 as the second gate insulating layer 150, and the conductor layer of the conductor layer is adjusted. 1 3 2 Formation 1 5 , 。 , , 制造 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 [Fifth Embodiment] Fig. 28 is a view for explaining the display of a memory device set 200d according to the fifth embodiment. 28(a) is a plan view of the memory device 200d. FIG. 28(b) is a cross-sectional view taken along line A1-A1 of FIG. 28(a), FIG. 28(c) is a cross-sectional view taken along line A2-A2 of the figure, and FIG. 28(d) is a cross-sectional view of FIG. Fig. 28(a) is a cross-sectional view taken along line A3-A3 of Fig. 28(a). Further, the symbol in Fig. 28 indicates a metal layer for resistance reduction. Figure 17〇

圖29是用以說明與實施形態五有關的記憶體f 200d而顯示之圖。圖29(a)是以圖29(d)的符號r白瞭 部分(使用於實施形態五的固態電子元件1 〇 〇 d )之擴大A 面圖’圖29(b)是顯示第一閘絕緣層1 32 ( 1 30 )的矯頑φ 只%*髮Fig. 29 is a view for explaining the display of the memory f 200d according to the fifth embodiment. Figure 29 (a) is an enlarged view of the portion of the symbol r of Figure 29 (d) (the solid-state electronic component 1 〇〇d used in the fifth embodiment). Figure 29 (b) shows the first gate insulation. The coercivity φ of layer 1 32 ( 1 30 ) is only %*

Vcl與第一電晶體TR1的寫入電壓(+Vw,-Vw)的關係之圖 與實施形態五有關的記憶體裝置200d基本上具有和 與實施形態一有關的記憶體裝置2 0 0 —樣的構成,惟如圖 28及圖29所示,固態電子元件為第一電晶體tri及第二 電晶體T R 2在平面内被分離之所謂的平面分離型的固喷恭 子元件此點和與實施形態一有關的記憶體裝置2〇〇的情形 不同。 亦即,使用於實施形態五的固態電子元件1 00(1為第二 閘絕緣層1 34由與第一閘絕緣層1 32同層的鐵電層構成, 第一電晶體TR1及第二電晶體TR2具有:在固體基板110 中的一方的表面上’構成第一閘電極122及第二閘電極124 的閘電極層120a、120b ’與構成第一閘絕緣層132和第二 100132261 1003447808-0 201222827 閘絕緣層1 3 4的閘絕緣層1 3 0,與構成第一通道區域1 4 2 及第二通道區域1 44的導體層1 40以此順序形成的構造之 所謂的平面分離型的固態電子元件(下閘極式)。 如此,與實施形態五有關的記憶體裝置2 0 Od雖然在第 一電晶體TR1及第二電晶體TR2於平面内被分離此點和與 實施形態一有關的記憶體裝置2 0 0的情形不同,惟因具有 在第一閘電極1 2 2及第二閘電極1 2 4各自被連接於另一條 閘極線(第一字元線120a、第二字元線120b)的狀態下被並 聯連接的構造,故和與實施形態一有關的記憶體裝置2 0 0 的情形一樣,成為不會使[寫入干擾問題]及[讀出干擾問題] 發生的記憶體裝置。 此外,因與實施形態五有關的記憶體裝置2 0 0 d在固態 電子元件(第一電晶體TR1及第二電晶體TR2)為平面分離 型的固態電子元件此點以外的點中,具有和與實施形態一 有關的記憶體裝置2 0 0的情形一樣的構成,故具有與實施 形態一有關的記憶體裝置2 0 0所具有的功效之中相當的功 效。 [實施形態六] 圖3 0是用以說明與實施形態六有關的記憶體裝置 2 0 0 e而顯示之圖。圖3 0 (a )是記憶體裝置2 0 0 e之俯視圖, 圖30(b)是圖30(a)的A1-A1剖面圖,圖30(c)是圖30(a) 的A2-A2剖面圖,圖30(d)是圖30(a)的A3-A3剖面圖,圖 30(e)是圖30(a)的A4-A4剖面圖。 圖 3 1是用以說明與實施形態六有關的記憶體裝置 100132261 1003447808-0 52 201222827 2〇〇e而顯示之圖。圖31 (a)是以圖31(d)的符號R包圍的 部分(使用於實施形態六的固態電子元件1 0 〇 e )之擴大叫 面圖,圖31(b)是顯示第一閘絕緣層132(13〇)的矯碩電壓 VC1與第一電晶體TR1的寫入電壓( + Vw,-Vw)的關係之圖。 與實施形態六有關的記憶體裝置200e基本上和與, 施形態五有關的記憶體裝置200d —樣,固態電子元件為^ 面分離型的固態電子元件,惟如圖3 0及圖31所示,固萍 電子7G件為上閘極式此點和與實施形態五有關的 〇置200d的情形不㈤。 =體裝 亦即,使用於實施形態六的固態電子元件丨〇〇e為第二 閘絕緣層1 34由與第一閘絕緣層丄32同層的鐵電層構成, 第-電晶體m及第二電晶體TR2具有:在固體二板m 中的一方的表面上,構成第一通道區域142 域144的導體層140,與構成第—閘絕緣層i32和 絕緣層134的閘絕緣層13〇 ’與構成第一閘電極 ::The relationship between Vcl and the write voltage (+Vw, -Vw) of the first transistor TR1 is similar to that of the memory device 200d according to the fifth embodiment. As shown in FIG. 28 and FIG. 29, the solid electronic component is a so-called plane-separated solid-spray Kyoko element in which the first transistor tri and the second transistor TR 2 are separated in a plane. The case of the memory device 2 of the form 1 is different. That is, the solid state electronic component 100 used in the fifth embodiment (1 is the second gate insulating layer 134 is composed of a ferroelectric layer in the same layer as the first gate insulating layer 1 32, the first transistor TR1 and the second transistor The crystal TR2 has a gate electrode layer 120a, 120b' constituting the first gate electrode 122 and the second gate electrode 124 on one surface of the solid substrate 110 and constitutes the first gate insulating layer 132 and the second 100132261 1003447808-0 201222827 The gate insulating layer 1 3 0 of the gate insulating layer 1 3 4 and the so-called plane-separated solid state of the structure formed by the conductor layer 140 constituting the first channel region 1 4 2 and the second channel region 1 44 in this order In the electronic device (lower gate type), the memory device 20 Od according to the fifth embodiment is separated in the plane between the first transistor TR1 and the second transistor TR2, and is related to the first embodiment. The memory device 200 is different in the case of having the first gate electrode 1 2 2 and the second gate electrode 1 24 4 connected to the other gate line (the first word line 120a and the second word element). The structure in which the wires 120b) are connected in parallel, and In the same manner as in the case of the memory device 200, the memory device does not cause the [write interference problem] and the [read disturb problem]. Further, the memory device 20 according to the fifth embodiment In the case where the solid-state electronic components (the first transistor TR1 and the second transistor TR2) are planar-separated solid-state electronic components, the case of the memory device 200 related to the first embodiment is present. The same configuration has the same effect as that of the memory device 2000 according to the first embodiment. [Embodiment 6] FIG. 30 is a view for explaining the memory device 2 according to the sixth embodiment. Fig. 3 (a) is a top view of the memory device 2000, Fig. 30 (b) is a cross-sectional view of A1-A1 of Fig. 30 (a), and Fig. 30 (c) is a view 30(a) is a cross-sectional view of A2-A2, Fig. 30(d) is a cross-sectional view taken along line A3-A3 of Fig. 30(a), and Fig. 30(e) is a cross-sectional view taken along line A4-A4 of Fig. 30(a). It is a diagram for explaining the memory device 100132261 1003447808-0 52 201222827 2〇〇e related to the sixth embodiment. Fig. 31 (a) is surrounded by the symbol R of Fig. 31 (d). An enlarged view of a portion (solid state electronic component 10 〇e used in Embodiment 6), and FIG. 31 (b) shows a grading voltage VC1 of the first gate insulating layer 132 (13 〇) and the first transistor TR1 A diagram of the relationship between the write voltages (+Vw, -Vw). The memory device 200e according to the sixth embodiment is basically the same as the memory device 200d associated with the fifth embodiment, and the solid-state electronic components are separated. The solid-state electronic components of the type, as shown in FIG. 30 and FIG. 31, the case where the 7G piece of Guping Electronics is the upper gate type and the case of the setting 200d related to the fifth embodiment is not (5). = body mount, that is, the solid state electronic component 丨〇〇e used in the sixth embodiment is the second gate insulating layer 134 composed of a ferroelectric layer in the same layer as the first gate insulating layer 32, the first transistor m and The second transistor TR2 has a conductor layer 140 constituting the first channel region 142 region 144, and a gate insulating layer 13 constituting the first gate insulating layer i32 and the insulating layer 134 on one surface of the solid two plates m. 'With the first gate electrode::

C 二問電s m的閑電極|120a、120b以此順序形 &amp; 之所謂的平面分離型(上閘極)的固態電子元件。 &amp; 如此’與實施形態六有關的記憶體裝置 態電子元件跡具有上閘極的構造此點和==固 有關的記憶體裝置2_的情形不同,惟因具2…五 極122及第二閘電極124各自被連接於 120a、12Qb的狀態下被並聯連接的構造,故和 五有關的記憶體裝置200d的情形成為不:、7 干擾問題]及[讀出干擾問題]發生的記憶體裝置:L寫入 100132281 1003447808-0 53 201222827 此外’因與貫施形態六有關的記憶體裝置2 0 0 e在固態 電子元件1 〇〇e具有上閘極的構造此點以外的點中,具有和 與實施形態五有關的記憶體裝置2〇〇d的情形—樣的構 成,故具有與實施形態五有關的記憶體裝置20Od所具有的 功效之中相當的功效。 此外汽知^开》態五及六有關的記憶體裝置2〇〇d、 200e(以及固態電+亓相^ unH inn 、£ 毛千兀仵I00d、l〇〇e)和與實施形態一〜四 有關的記憶體骏置200、9nn /、, 1 zuu 〜20〇c(以及固態電子元件 100、100a〜100c)的情形—样, 月浴检,可使用眾所周知的薄膜形成 技術及微影製造,且可使用该辨4 」便用液體材料(例如M0D(MetalC. The idle electrodes |120a, 120b of the second sm are in the order of the so-called planar separation type (upper gate) solid state electronic components. &amp; Thus, the memory device state electronic component trace related to the sixth embodiment has a structure of an upper gate, which is different from the case of the memory device 2_ related to the == solid, but has 2...five poles 122 and Since the two gate electrodes 124 are connected in parallel in a state in which they are connected to 120a and 12Qb, the memory device 200d related to the fifth is a memory that does not: 7, the interference problem, and the [readout interference problem]. Device: L writes 100132281 1003447808-0 53 201222827 In addition, the memory device 2 0 0 e related to the configuration of the sixth embodiment has a point other than the point where the solid electronic component 1 〇〇e has the upper gate. The configuration of the memory device 2〇〇d according to the fifth embodiment has an effect equivalent to that of the memory device 20Od according to the fifth embodiment. In addition, the steam knows the state of the five and six related memory devices 2〇〇d, 200e (and solid state electricity + 亓 phase ^ unH inn, £ 兀仵 兀仵 I00d, l〇〇e) and with the implementation of a ~ For the case where the memory is 200, 9nn /, 1 zuu ~ 20 〇 c (and solid-state electronic components 100, 100a - 100c), the monthly bath inspection can be performed using well-known thin film forming technology and lithography. And can use this material to use liquid materials (such as M0D (Metal

Organic Decomposition:金屬右嬙八姑 λ 蜀有機刀解)材料、溶膠-凝膠 材料、奈米粒子分散液體材料), ;並且可使用壓花成形技術 製造。 2 0 0 d的製造方法〉 2 0 0d的製造方法 〈與貫施形態五有關的記憶體袭置 舉與實施形態五有關的記憶體I置 2 0 0d ' 2 0 0 e 為例說明與實施形態五及六有關的4 y 巧丨别的§己憶體裝置 的製造方法。 200d可藉由以下所 而製造。以下說明製 與實施形態五有關的記憶體装置 示的第一製程〜第四製程以此順序實施 貫施形態五有關的記憶體 32(a)〜圖32(e)為各製程 程順序。圖3 2是用以說明製造與 裝置20 0d的方法而顯示之圖。圖 圖。 0的表面形成閘電極層(第 (1)、第一製程 第一製程是在固體基板 100132261 1003447808-0 201222827 一 3極線12〇a、第二閘極線120b、第一閘電極122及第二 閘電極124)的製程(參照圖32(a卜圖32(b))。 如圖3 2 (a)及圖3 2 (b )所示,使用濺鍍法及微影在由 [在Si基板的表面隔著Si〇2層及n層形成ST〇(SrTi〇)層 的絕緣性基板]構成的固體基板11〇的表面形成由白金(pt) 構成的閘電極層(第—閘極線1 2 〇 a、第二閘極線1 2 〇 b、第 一閘電極122及第二閘電極124)。 此外’雖然在第一製程中使用濺鍍法及微影,在固體 〇基板110的表面形成了由白金(pt)構成的閘電極層,但使 用真空蒸鍍法(例如EB蒸鍍法)或CVD法及微影,在固體基 板110的表面形成由白金(Pt)構成的閘電極層也可以且 使用含有白金材料的溶膠—凝膠溶液及利用凹凸模的壓花 成形技術’在固體基板110的表面形成由白金(pt)構成的 閘電極層也可以。 (2) 、第二製程 第一製程是在固體基板110及閘電極層12〇a、i2〇b、 1 2 2、1 2 4的表面形成閘絕緣層1 3 0的製程(參照圖3 2 (c ))。 如圖32(c)所示使用滅鍍法,在固體基板11()的表面 上形成由PZT構成的層,俾覆蓋閘電極層(第一問極線 120a、第二閘極線120b、第一閘電極122及第二閘電極 124),然後使用CMP法研磨由該PZT構成的層,形成間絕 緣層1 3 0。 (3) 、第三製程 第三製程是在閘絕緣層130的表面形成包含第—通道 100132261 1003447808-0 201222827 區域142、第二通道區域144及第三通道區域146以及延 續於該等通道區域的連接層的導體層1 40的製程(參照圖 32(d))。 如圖32(d)所示使用濺鍍法及微影,在閘絕緣層13〇 的表面形成包含第一通道區域142、第二通道區域144及 第三通道區域146以及延續於該等通道區域的連接層的導 體層140。導體層140使用載子濃度成為ixl〇ucnr3〜lx 1 021cnT3的範圍内而構成的由銦錫氧化物(ITO)構成的氧化 物導體材料。 (4 )、第四製程 第四製程是在導體層140的表面規定區域形成電阻降 低用金屬層170的製程(參照圖32(e))。 如圖32(e)所示在導體層140中的連接層之中與第— 閘極線1 2 0 a或第二閘極線1 2 0 b交叉的區域形〜 4艰成電阻降低 用金屬層170。 如以上’可製造與實施形態五有關的記憶體裝置 200d 。 〜 、 此外,在上述的製造方法中,可藉由在固體基板ιι〇 的表面,電阻降低用金屬層170、導體層14〇、閘絕緣層 130及閘電極層(第—閘極線12〇a、第二間極線a吒、^ -閘電極1 22及第二閘電極! 24)以此順序形成,製造與實 施形態六有關的記憶體裝置2〇〇e。 〈與實施形態五有關的記憶體裝置2〇〇d的另一個制造 方法〉 《 100132261 1003447808-0 56 201222827 與實施形態五有關的記憶體裝置2 0 0d也可藉由以下 所示的第一製程〜第四製程以此順序實施而製造。但是,在 與實施形態五有關的記憶體裝置2〇〇d的另—個製造方法 中,擬藉由由鎳酸鑭(L a n丨〇3)構成的層形成閘電極層(第一 閘極線120a、第二閘極線12〇b、第一閘電極122及第二閘 電極1 24)以及電阻降低用金屬層} 70〇以下依照製程順序 說明與實施形態五有關的記憶體裝置2〇〇d的另一個製造 方法。圖3 3〜圖3 5是用以說明製造與實施形態五有關的記 ίί憶體裝置20〇d的另一個方法而顯示之圖。圖33(a)~圖 33(0、圖34(&amp;)~圖34(e)及圖35(a)〜圖35(f)為各製程圖。 (1)、第一製程 第一製程是在固體基板11〇的表面形成閘電極層(第 • 一閘極線12〇a、第二閘極線120b、第一閘電極122及第二 閘電極1 2 4 )的製程(參照圖3 3 )。 首先’藉由熱處理製備成為鎳酸鑭(LaNi〇3)的功能性 液體材料。具體上,製備含有金屬無機鹽(硝酸鑭(六水合 〇物)及醋酸鎳(四水合物))的溶液(溶劑:2 —甲氧基乙醇)。 其次’如圖33(a)及圖33(b)所示’在由[在Si基板的 表面隔著Si〇2層及Ti層形成STO(SrTi〇)層的絕緣性基板] 構成的固體基板110中的一方的表面使用旋塗法塗佈功能 性液體材料(例如500rpm、25秒)’然後藉由將固體基板 110放置在熱板上以6(TC使其乾燥i分鐘,形成錄酸鑭的 前驅物組成物層1 20’ (層厚300nm)。 其次’如圖33(c)〜圖33(e)所示’使用具有對應閘電 100132261 1003447808-0 57 201222827 極層(第一閘極線120a、第二閘極線120b、第一閘電極122 及第二閘電極124)的段差的段差的凹凸模M6,以150°C對 前驅物組成物層 1 2 0 ’施以壓花加工,在前驅物組成物層 1 20’形成壓花構造。施以壓花加工時的壓力是以5MPa。 其次,藉由以弱條件對前驅物組成物層 1 2 0 ’進行全 面钮刻,由對應問電極層(第一閘極線1 2 0 a、第二閘極線 1 2 0 b、第一閘電極1 2 2及第二閘電極1 2 4 )的區域以外的區 域完全除去前驅物組成物層 1 2 0 ’(全面蝕刻製程)。全面 蝕刻製程是使用濕式蝕刻技術(HF .· HC1溶液)不使用真空 製程而進行。 最後,藉由使用RT A裝置並以高溫(6 5 0 °C、1 0分鐘) 對前驅物組成物層1 2 0 ’進行熱處理,如圖3 3 ( f )所示,由 前驅物組成物層 1 2 0 ’形成由鎳酸鑭構成的閘電極層(第 一閘極線120a、第二閘極線120b、第一閘電極122及第二 閘電極124)。 (2 )、第二製程 第二製程是在固體基板11 〇及閘電極層(第一閘極線 120a、第二閘極線120b、第一閘電極122及第二閘電極124) 的表面形成閘絕緣層1 3 0的製程(參照圖3 4)。 如圖34(a)及圖34(b)所示,在固體基板110的表面塗 佈包含鐵電材料的原料的溶液(例如PZT溶膠-凝膠溶液) 形成包含鐵電材料的原料的膜1 30’ ,俾覆蓋閘電極層(第 一閘極線1 20a、第二閘極線1 20b、第一閘電極1 22及第二 閘電極1 2 4)。 100132261 1003447808-0 58 201222827 的原料的膜130,乾燥 轉由將平坦模M7按壓於 ,使包含鐵電材料的原 電材料的原料的膜13〇, 接著’在將包含該鐵電材料 後’如圖34(c)及圖34(d)所示, 該包含鐵電材料的原料的膜丨3 〇 ’ 料的膜1 3 0 ’平坦化。 其次’使用RTA裝置對包含鐵 施以熱處理,形成閘絕緣層1 3 0。 (3 )、第三製程 裂扛疋在開絕緣 〇區域142、第二通道區域144及第三通道區立或以及延 續於該等通道區域142、144、146的連接層的導體層“Ο 的製程(參照圖3 5 ( a) ~圖3 5 ( e ))。 #首先,如圖35(a)及圖35(b)所示’藉由將包含氧化物 導體材料的原料的溶液(例如IT〇溶膠_凝膠溶液)塗佈於 閘絕緣層1 30的表面’形成包含氧化物導體材料的原料的 、〇 此外,在包含氧化物導體材料的原料的溶液添 加有於完成時導體層140的載子濃度成為lxl〇18cm_3~ix O 1〇21cnr3的範圍内的濃度的雜質。 其次,在將包含氧化物導體材料的原料的膜i40,乾 燥後,如圖35((〇~圖35(d)所示,使用對應第一通道區域 142、第二通道區域】44及第三通道區域146以及延續於該 等通道區域的連接層的區域成為四而形成的凹凸模M8,對 包含氧化物導體材料的原料的膜丨4〇,進行壓花成形加 工。此時進行對包含氧化物導體材料的原料的膜14〇,的 壓花成形加工,俾第一通道區域142、第二通道區域144 100132261 1003447808-0 59 201222827 及第二通道區域146的層厚於完成時成為位於5nm〜lOOnm 的範圍内的規定的層厚。 其次,藉由以弱條件對包含該氧化物導體材料的原料 的膜14 0 進行全面钱刻,由對應導體層1 4 0的區域以外 的£域元全除去包含該氣化物導體材料的原料的膜14〇’ 後’藉由使用RTA裝置對包含氧化物導體材料的原料的膜 140施以熱處理,如圖35(e)所示,形成包含第_通道區 域142、第二通道區域及第三通道區域146以及延續 於該等通道區域142、ι44、146的連接層的導體層140。 €1 此外,第一通道區域142與第二通道區域144被分離。 (4)、第四製程 第四製程是在導體層14〇的表面規定區域形成電阻降 低用金屬層170的製程(參照圖35(f))。 如圖35(f)所示在導體層丨40中的連接層之中與第一 閘極線1 20a或第二閘極線1 2〇b交叉的區域形成電阻降低Organic Decomposition: metal right 嫱 姑 λ 蜀 organic knives), sol-gel materials, nanoparticle dispersion liquid materials, and can be manufactured using embossing technology. Manufacturing method of 20000> Manufacturing method of 20000 (memory of the memory of the fifth aspect) Memory I of the fifth embodiment is set to 2 0 0d ' 2 0 0 e as an example for description and implementation Forms 5 and 6 related to the manufacturing method of the 4 y 丨 的 己 体 。 。 device. 200d can be manufactured by the following. In the following, the first to fourth processes of the memory device according to the fifth embodiment are executed in this order. The memories 32(a) to 32(e) of the fifth aspect are the respective process sequences. Fig. 3 is a view for explaining the method of manufacturing the device 20d. Figure. The surface of 0 forms a gate electrode layer (the first process of the first process is on the solid substrate 100132261 1003447808-0 201222827, a 3-pole line 12〇a, a second gate line 120b, a first gate electrode 122, and a The process of the two gate electrode 124) (refer to Fig. 32 (a, Fig. 32(b)). As shown in Fig. 3 2 (a) and Fig. 3 2 (b), sputtering method and lithography are used in [in Si A gate electrode layer (first gate line) made of platinum (pt) is formed on the surface of the solid substrate 11 which is formed by interposing an insulating layer on the surface of the substrate with an Si 2 layer and an n-layer forming an insulating substrate of a ST 〇 (SrTi〇) layer. 1 2 〇a, second gate line 1 2 〇b, first gate electrode 122 and second gate electrode 124). Further, although sputtering and lithography are used in the first process, the solid germanium substrate 110 is A gate electrode layer made of platinum (pt) is formed on the surface, but a gate electrode made of platinum (Pt) is formed on the surface of the solid substrate 110 by vacuum evaporation (for example, EB evaporation) or CVD and lithography. The layer may also be formed of platinum on the surface of the solid substrate 110 by using a sol-gel solution containing a platinum material and an embossing forming technique using a concave-convex mold. Pt) The gate electrode layer may also be formed. (2) The second process first process is to form a gate insulating layer on the surface of the solid substrate 110 and the gate electrode layers 12a, i2〇b, 1 2 2, and 1 2 4 . Process of 1 30 (refer to Fig. 3 2 (c )). As shown in Fig. 32 (c), a layer composed of PZT is formed on the surface of the solid substrate 11 () by using a dry plating method, and the gate electrode layer is covered with germanium ( The first interrogation line 120a, the second gate line 120b, the first gate electrode 122, and the second gate electrode 124) are then polished by a CMP method to form a layer of the PZT to form an interlayer insulating layer 130. (3) The third process of the third process is to form a connection layer including a first channel 100132261 1003447808-0 201222827 region 142, a second channel region 144 and a third channel region 146, and a continuation layer in the channel region of the gate insulating layer 130. The process of the conductor layer 140 (refer to FIG. 32(d)). As shown in FIG. 32(d), a sputtering method and a lithography are used to form a first channel region 142 and a second channel on the surface of the gate insulating layer 13A. a region 144 and a third channel region 146 and a conductor layer 140 continuing the connection layer of the channel regions. The conductor layer 140 is used The oxide conductor material composed of indium tin oxide (ITO) is formed in the range of ixl 〇ucnr3 to lx 1 021cnT3. (4) The fourth process of the fourth process is a predetermined region on the surface of the conductor layer 140. A process for forming the metal layer 170 for resistance reduction is formed (see FIG. 32(e)). As shown in FIG. 32(e), in the connection layer in the conductor layer 140, a region intersecting the first gate line 1 2 0 a or the second gate line 1 2 0 b is formed into a metal for resistance reduction. Layer 170. The memory device 200d according to the fifth embodiment can be manufactured as described above. Further, in the above manufacturing method, the metal layer 170 for the resistance reduction, the conductor layer 14, the gate insulating layer 130, and the gate electrode layer (the first gate line 12A) can be formed on the surface of the solid substrate. a, the second interpolar line a吒, the ^-gate electrode 1 22, and the second gate electrode! 24) formed in this order, and the memory device 2〇〇e related to the sixth embodiment is manufactured. <Another manufacturing method of the memory device 2〇〇d according to the fifth embodiment> 100132261 1003447808-0 56 201222827 The memory device 200d related to the fifth embodiment can also be processed by the first process shown below. ~ The fourth process is manufactured in this order. However, in another manufacturing method of the memory device 2〇〇d according to the fifth embodiment, the gate electrode layer (first gate) is formed by a layer composed of lanthanum nickelate (L an丨〇3). The line 120a, the second gate line 12〇b, the first gate electrode 122, and the second gate electrode 1 24) and the metal layer for resistance reduction are described below. The memory device according to the fifth embodiment is described in accordance with the process sequence. Another method of manufacturing 〇d. Fig. 3 3 to Fig. 3 are diagrams for explaining another method of manufacturing the memory device 20 〇d according to the fifth embodiment. 33(a) to 33(0, 34(&amp;)~Fig. 34(e) and Fig. 35(a) to Fig. 35(f) are diagrams of each process. (1) First process first process The process of forming the gate electrode layer (the first gate line 12a, the second gate line 120b, the first gate electrode 122, and the second gate electrode 1 2 4) on the surface of the solid substrate 11A (refer to FIG. 3) 3) First, a functional liquid material which becomes a lanthanum nickelate (LaNi〇3) is prepared by heat treatment. Specifically, a metal inorganic salt (cerium nitrate (ruthenium hexahydrate) and nickel acetate (tetrahydrate)) is prepared. Solution (solvent: 2-methoxyethanol). Next, as shown in Fig. 33(a) and Fig. 33(b), 'STO is formed by [Si 2 layer and Ti layer on the surface of the Si substrate ( Insulating Substrate of SrTi〇) Layer One surface of the solid substrate 110 is coated with a functional liquid material (for example, 500 rpm, 25 seconds) by spin coating. Then, the solid substrate 110 is placed on a hot plate. 6 (TC is allowed to dry for 1 minute to form a precursor composition layer 1 20' (layer thickness 300 nm). Next, as shown in Fig. 33(c) to Fig. 33(e), the use of the corresponding gate 100132261 1 003447808-0 57 201222827 The concave-convex mode M6 of the step difference of the step of the pole layer (the first gate line 120a, the second gate line 120b, the first gate electrode 122 and the second gate electrode 124), the precursor at 150 ° C The composition layer 1 2 0 ' is subjected to embossing, and an embossed structure is formed in the precursor composition layer 1 20'. The pressure applied to the embossing process is 5 MPa. Second, the precursor is composed by weak conditions. The layer 1 2 0 ' performs a full button engraving, and the corresponding electrode layer (the first gate line 1 2 0 a, the second gate line 1 2 0 b, the first gate electrode 1 2 2 and the second gate electrode 1) The region outside the region of 2 4 ) completely removes the precursor composition layer 1 2 0 ' (full etching process). The overall etching process is performed using a wet etching technique (HF . · HC1 solution) without using a vacuum process. The precursor composition layer 1 2 is heat treated by using an RT A device and at a high temperature (65 ° C, 10 minutes), as shown in Fig. 3 3 (f), from the precursor composition layer 1 2 0 ' forming a gate electrode layer composed of strontium nickelate (first gate line 120a, second gate line 120b, first gate electrode) 122 and the second gate electrode 124). (2) The second process of the second process is on the solid substrate 11 and the gate electrode layer (the first gate line 120a, the second gate line 120b, the first gate electrode 122, and The surface of the second gate electrode 124) forms a process of the gate insulating layer 130 (refer to FIG. 34). As shown in FIGS. 34(a) and 34(b), a solution containing a raw material of a ferroelectric material (for example, a PZT sol-gel solution) is applied onto the surface of the solid substrate 110 to form a film 1 containing a raw material of a ferroelectric material. 30', 俾 covers the gate electrode layer (first gate line 1 20a, second gate line 1 20b, first gate electrode 1 22 and second gate electrode 1 2 4). 100132261 1003447808-0 58 201222827 The film 130 of the raw material is dried by pressing the flat mold M7 to the film 13 of the raw material containing the ferroelectric material, and then 'after the ferroelectric material will be contained' 34(c) and FIG. 34(d), the film 1300' of the film of the ferroelectric material is flattened. Next, the iron containing material is subjected to heat treatment using an RTA apparatus to form a gate insulating layer 130. (3) a third process crack in the open insulating germanium region 142, the second channel region 144, and the third channel region or a conductor layer extending from the connecting layer of the channel regions 142, 144, 146. Process (refer to Fig. 35 (a) ~ Fig. 35 (e)). #First, as shown in Fig. 35 (a) and Fig. 35 (b), by using a solution of a raw material containing an oxide conductor material (for example) The IT sol-gel solution is applied to the surface of the gate insulating layer 130 to form a material containing the oxide conductor material, and further, the solution of the material containing the oxide conductor material is added to the conductor layer 140 at completion. The concentration of the carrier becomes a concentration of impurities in the range of lxl 〇 18 cm_3 to ix O 1 〇 21 cnr3. Next, after drying the film i40 containing the raw material of the oxide conductor material, as shown in Fig. 35 ((〇~图35 ( d) shows a concave-convex mold M8 formed by using four regions corresponding to the first channel region 142, the second channel region 44 and the third channel region 146, and the connecting layer continuing in the channel regions, The film of the raw material of the conductor material is embossed and formed. The embossing process of the film 14A containing the raw material of the oxide conductor material, the layer thickness of the first channel region 142, the second channel region 144 100132261 1003447808-0 59 201222827 and the second channel region 146 are completed. The predetermined layer thickness is in the range of 5 nm to 100 nm. Next, the film 14 0 containing the raw material of the oxide conductor material is completely engraved under weak conditions, and is outside the region corresponding to the conductor layer 1 40. The film of the raw material containing the material of the gas-conducting conductor is completely removed by heat treatment, and the film 140 containing the raw material of the oxide conductor material is subjected to heat treatment by using an RTA apparatus, as shown in FIG. 35(e). A conductor layer 140 including a first channel region 142, a second channel region and a third channel region 146, and a connecting layer continuing through the channel regions 142, ι 44, 146. Further, the first channel region 142 and the second channel The region 144 is separated. (4) The fourth process of the fourth process is a process of forming the metal layer 170 for resistance reduction in a predetermined region on the surface of the conductor layer 14A (see FIG. 35(f)). Shown in the conductor layer 丨40 Forming a resistance layer in connection with the reduced area of the first gate line 20a or a second gate line intersecting a 2〇b

用金屬層170。電阻降低用金屬層170的形成是藉由以下 所示的方法進行。 首先,藉由熱處理製備成為鎳酸鑭(LaNi〇3)的功能 液體材料。具體上,製锖含有金屬無機鹽(硝酸鑭(六才 物)及醋酸鎳(四水合物)的溶液(溶劑:2 一曱氧基乙醇) 其次,在閘絕緣層1 q η β遵_ _层]^ k # 130及¥體層140的表面使用薄 法塗佈功能性液體材料(例如5⑽rpm、25秒),然後萨^ 固體基板110放置在熱板上以6〇r使其乾燥丨”分鐘:升 鎳酸鑭的前驅物組成物層1 7 0,(層厚3 〇 〇 nm ) 100132261 1003447808-0 60 201222827 其次 段差的凹 加工,在 加工時的 其次 面姓刻, 完全除去 刻製程是 ;〇 程而進行 最後 對前驅物 前驅物組 屬層170 如以 200d ° 此 實施形態 〇 此外 的表面, 130及閘 一閘電極 施形態六 成形技術 成電阻降 用金屬層 100132261 ’使用具有對應電阻降低用金屬層17〇的段差的 凸模’以1 5 0。(:對前驅物組成物層1 7 0 ’施以壓花 前驅物組成物層1 70’形成壓花構造。施以壓花 壓力是以5MPa。 ’藉由以弱條件對前驅物組成物層1 7 0 ’進行全 由對應電阻降低用金屬層170的區域以外的區域 前驅物組成物層170,(全面蝕刻製程)。全面蝕 使用濕式蝕刻技術(HF : HC1溶液)不使用真空製 〇 ’藉由使用RTA裝置並以高溫(6 5 0 1:、1 0分鐘) 組成物層170’進行熱處理,如圖33(f)所示,由 成物層170’形成由鎳酸鑭構成的電阻降低用金 〇 上’可製造與實施形態五有關的記憶體裝置 情形’可使用液體材料不使用真空製程而製造與 五有關的記憶體裝置2 〇 〇 d。 ’在上述的製造方法中,可藉由在固體基板11〇 電阻降低用金屬層170、導體層140、閘絕緣層 電極層(第一閘極線l2〇a、第二閘極線i20b、第 122及第二閘電極124)以此順序形成,製造與實 有關的記憶體裝置2 〇 〇 e。此情形,藉由使用壓花 在固體基板110的規定區域設有凹部,並且將構 低用金屬層1 7 0的材料埋入該凹部形成電阻降低 1 7 0也可以。 1003447808-0 201222827 [實施形態七] 圖36是用以說明與實施形態七有關的記憶體较复 2 0 0 f而顯示之圖。圖3 6 (a)是記憶體裝置2 0 0 f之俯視圖 圖36(b)是圖36(a)的A1-A1剖面圖,圖36(c)是圖36( 的A2-A2剖面圖’圖36(d)是圊36(a)的A3-A3剖面圖。 国° it匕 外’付號180疋表示半導體基板,符號182是表示源極〔 域,付5虎1 8 4疋表不源極區域/〉及極區域,符號1 8 6是表 汲極區域。 圖37是用以說明與實施形態七有關的記憶體繁复 200f而顯示之圖。圖37(a)是以圖36(c)的符號r包圍 同的 部分(使用於實施形態七的固態電子元件1 0 0 f )之擴大$ 面圖,圖36(b)是顯示第一閘絕緣層132(130)的續頌電厭 Vcl與第一電晶體TR1的寫入電壓(+Vw,-Vw)的關係之_ 與實施形態七有關的記憶體裝置2 0 0 f基本上和與實 施形態六有關的記憶體裝置2 0 〇 e —樣具有上閘極構成,惟 如圖36及圖37所示,第一電晶體TR1、第二電晶體 及第三電晶體TR3由形成於半導體基板180的表面的 MFS(Metal-Ferroelectric-Semiconductor:金屬-鐵電、半 導體)型的電晶體構成此點和與實施形態六有關的記憶體 裝置200e的情形不同。 亦即,在與實施形態七有關的記憶體裝置2 0 0 f中第— 通道區域142及第二通道區域144位於形成於半導體基板 1 8 0的表面的規定的源極區域1 8 2、規定的源極/汲極區域 1 8 4及規定的汲極區域1 8 6之中任兩個區域之間,第一閘 100132261 1003447808-0 62 201222827 絕緣層1 3 2被形成,俾覆蓋第一通道區域1 4 2,第二閘絕 緣層134被形成,俾覆蓋第二通道區域144,第一閘電極 1 2 2隔著第一閘絕緣層1 3 2對向於第一通道區域1 4 2而形 成,第二閘電極1 24隔著第二閘絕緣層1 34對向於第二通 道區域1 4 4而形成。 如此,與實施形態七有關的記憶體裝置2 0 0 f雖然第一 電晶體TR1、第二電晶體TR2及第三電晶體TR3由形成於 半導體基板180的表面的MFS型的電晶體構成此點和與實 〇 施形態六有關的記憶體裝置2 0 0 e的情形不同,惟因資訊記 憶用的第一電晶體TR1及資訊讀出/寫入用的第二電晶體 TR2具有在第一閘電極122及第二閘電極124各自被連接 於另一條閘極線1 2 0 a、1 2 Ob的狀態下被並聯連接的構造, 故和與實施形態六有關的記憶體裝置200e的情形一樣,成 為當使用於NAND型記憶體裝置的記憶體單元時不會使[寫 入干擾問題]及[讀出干擾問題]發生的記憶體裝置。 而且,依照與實施形態七有關的記.憶體裝置2 0 0 f,也 〇 得到可使用一般的半導體製程以廉價的製造成本製造記憶 體裝置的功效。 此外,因與實施形態七有關的記憶體裝置2 0 0 f在第一 電晶體TR1、第二電晶體TR2及第三電晶體TR3由形成於 半導體基板1 80的表面的MFS型的電晶體構成此點以外的 點中,具有和與實施形態六有關的記憶體裝置20Oe的情形 一樣的構成,故具有與實施形態六有關的記憶體裝置200e 所具有的功效之中相當的功效。 100132261 1003447S08-0 63 201222827 [實施形態八] 圖38是用以說明與實施形態八有關的記憶體裝置 200g(未圖示)而顯示之圖。在圖38中是將構成與實施形態 八有關的記憶體裝置2 0 0 g的固態電子元件1 〇 〇 g的主要部 分剖面放大而顯示。 與實施形態八有關的記憶體裝置2 0 0 g基本上具有和 與實施形態七有關的記憶體裝置2 0 〇 f —樣的構成,惟如圖 38所示’第一電晶體TR1、第二電晶體TR2及第三電晶體 TR3 由形成於半導體基板 180 的表面的 MFIS(Metal-Ferroelectric-Insulator-Semiconductor: 金屬-鐵電-絕緣體-半導體)型的電晶體構成此點和與實施 形態七有關的記憶體裝置2 0 0 f的情形不同。 亦即,在與實施形態八有關的記憶體裝置2 0 0 g中,在 第一通道區域142及第二通道區域144與第一閘絕緣層 132及第二閘絕緣層134之間形成有順電缓衝層19〇。 如此,與實施形態八有關的記憶體裝置2 0 0 g雖然第一 電晶體TR1'第二電晶體TR2及第三電晶體TR3由形成於 U 半導體基板1 70的表面的MF IS型的電晶體構成此點和與實 施形態七有關的記憶體裝置2 0 0 f的情形不同,惟因資訊記 憶用的第一電晶體TR1及資訊讀出/寫入用的第二電晶體 TR2具有在第一閘電極122及第二閘電極124各自被連接 於另一條閘極線1 20a、1 2Ob的狀態下被並聯連接的構造, 故和與實施形態七有關的記憶體裝置20 0 f的情形_樣,成 為當使用於NAND型記憶體裝置的記憶體單元時不會使[寫 100132261 1003447808-0 64 201222827 入干:問題]及[讀出干擾問題]發生的記憶體裝置。 得到可二依照與實施形態八有關的記憶體裝置,也 P制彺往會在半導體基板180( 閘絕緣層132e* Ba u Si)與構成第一 間產生二 昂二問絕緣層134的鐵電層(例如· 產生的[不良相互擴散現象]的功效。 此外,因與實施形態八有關的記 雷曰髀TD, &amp; 一版衷置200g在弟一 日日體TR1、第二電晶體TR2及第三 电道触社, 私日曰體TR3由形成於 +導體基板I80的表面的MF IS型的固皞電 ^ ^ 口心罨子兀件構成此點 〇以外的點中’具有和蛊 ,、貫色办〜、有關的記憶體裝置200 f 的情形一樣的構成,故且有斑實施报能^ 〇Λ &quot;、有八只 ^態七有關的記憶體裝 置200 f所具有的功效之中相當的功效。 [實施形態九] 圖39是用以說明與實施形態九有關的記憶體裝置 2〇〇h(未圖示)而顯示之圖。在圖39中是將構成與實施形態 九有關的記憶體裝置20 0h的固態電子元件1〇〇h的主要部 分剖面放大而顯示。 ϋ 與只开》態九有關的記憶體裝置2 0 0 h基本上具有和 與實施形悲八有關的記憶體裝置2 0 〇 g —樣的構成,惟如圖 39所示,第一電晶體TR1、第二電晶體TR2及第三電晶體 TR3由形成於半導體基板18〇的表面的 MFMISCMetal-Ferroelectric-Metal-lnsulator-Semicond uctor:金屬-鐵電-金屬-絕緣體-半導體)型的固態電子元 件構成此點和與實施形態八有關的記憶體裝置2 0 0 g的情 形不同。 100132261 1003447808-0 65 201222827 亦即’在與實施形態九有關的記憶體裝置20Oh中,在 順電緩衝層1 9 0與第一閘絕緣層1 3 2及第二閘絕緣層1 3 4 之間形成有浮接電極1 9 2。 如此’與實施形態九有關的記憶體裝置20Oh雖然第一 電晶體TR1、第二電晶體TR2及第三電晶體TR3由形成於 半導體基板180的表面的MFMIS型的固態電子元件構成此 點和與實施形態八有關的記憶體裝置2 0 0 g的情形不同,惟 因資訊記憶用的第一電晶體TR1及資訊讀出/寫入用的第 二電晶體TR2具有在第一閘電極122及第二閘電極124各 自被連接於另一條閘極線1 2 0 a、1 2 0 b的狀態下被並聯連接 的構造’故和與實施形態八有關的記憶體裝置2 0 〇 g的情形 一樣’成為當使用於NAND型記憶體裝置的記憶體單元時不 會使[寫入干擾問題]及[讀出干擾問題]發生的記憶體裝 置。 而且’依照與實施形態九有關的記憶體裝置2〇〇h,也 得到可藉由任意調整由閘絕緣層1 3 〇構成的電容器與由順 電緩衝層1 9 0構成的電容器的面積,缓和剩餘極化量大的 閘絕緣層132、1 34( 1 30)與剩餘極化量小的半導體基板180 之間的電荷失配的功效。 此外,因與實施形態九有關的記憶體裝置20〇h在第一 電晶體TR1、第二電晶體TR2及第三電晶體TR3由形成於 半導體基板180的表面的MF MIS型的固態電子元件構成此 點以外的點中’具有和與實施形態八有關的記憶體裝置 2 0 0 g的情形一樣的構成’故具有與實施形態八有關的記憶 100132261 1003447808-0 66 201222827 體裝置200g所具有的功效之中相當的功效。 在上述實施形態六〜八中,雖然可使用一般的半導體製 程製造記憶體裝置200f〜2〇〇h(以及固態電子元件 100f~lGGh) ’惟針對閘絕緣層、閘電極層、順電緩衝層以 及浮接電極也可使用液體材料(例如M〇D(MetalA metal layer 170 is used. The formation of the metal layer 170 for resistance reduction is carried out by the method shown below. First, a functional liquid material which becomes lanthanum nickelate (LaNi〇3) is prepared by heat treatment. Specifically, a solution containing a metal inorganic salt (yttrium nitrate (hexahydrate) and nickel acetate (tetrahydrate)) (solvent: 2-methoxyethanol) is followed by a gate insulating layer 1 q η β _ _ The surface of the layer] ^ k # 130 and the body layer 140 is thinly coated with a functional liquid material (for example, 5 (10) rpm, 25 seconds), and then the solid substrate 110 is placed on a hot plate and dried at 6 Torr for "minutes". : 前 镍 镍 镧 镧 组成 组成 组成 组成 组成 1 1 1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次The last step of the precursor precursor layer 170 is performed, for example, at 200 d °, the surface of the substrate, 130, and the gate electrode are formed into a metal forming layer 100132261' with a corresponding resistance reduction. The embossing structure is formed by applying a embossing of the metal layer 17〇 to the embossing structure by applying a embossing precursor composition layer 1 70' to the precursor composition layer 170. It is 5 MPa. 'With weak strips The precursor composition layer 170 is subjected to a region precursor composition layer 170 other than the region of the metal layer 170 for resistance reduction (total etching process). The full etching is performed using a wet etching technique (HF: HC1 solution). The heat treatment is performed without using a vacuum 〇 'by using an RTA device and at a high temperature (65 0-1:1, 10 minutes) composition layer 170', as shown in Fig. 33(f), formed by the formation layer 170' The electric resistance reduction by the ruthenium nickelate can be used to manufacture the memory device of the fifth embodiment. The liquid device can be used to manufacture the memory device 2 〇〇d related to the fifth without using a vacuum process. In the above manufacturing method, the metal layer 170, the conductor layer 140, and the gate insulating layer electrode layer (the first gate line 12a, the second gate line i20b, and the 122nd layer) can be formed on the solid substrate 11 The second gate electrode 124) is formed in this order to fabricate a memory device 2 〇〇e. In this case, a recess is provided in a predetermined region of the solid substrate 110 by using embossing, and a low metal layer is formed. 1 70 material buried in the The concave portion forming resistance may be reduced by 170. 1003447808-0 201222827 [Embodiment 7] Fig. 36 is a view for explaining the memory according to the seventh embodiment in comparison with the memory of Fig. 7. Fig. 3 6 (a) FIG. 36(b) is a cross-sectional view taken along line A1-A1 of FIG. 36(a), and FIG. 36(c) is a cross-sectional view of A2-A2 of FIG. 36 (Fig. 36(d) is A36(a) A3-A3 cross-sectional view. The country 'it' is outside the 'paid number 180' to indicate the semiconductor substrate, the symbol 182 is the source [domain, pay 5 tiger 1 8 4 疋 table source area /> and polar region, symbol 186 is the surface bungee region . Fig. 37 is a view for explaining the memory multiplication 200f according to the seventh embodiment. 37(a) is an enlarged view of the same portion (the solid-state electronic component 1 0 0 f used in the seventh embodiment) surrounded by the symbol r of FIG. 36(c), and FIG. 36(b) shows the first gate. The relationship between the susceptibility Vcl of the insulating layer 132 (130) and the write voltage (+Vw, -Vw) of the first transistor TR1 is substantially the same as that of the memory device 20 0 f related to the seventh embodiment. The memory device 20 of the sixth embodiment has an upper gate configuration, but as shown in FIGS. 36 and 37, the first transistor TR1, the second transistor, and the third transistor TR3 are formed in the semiconductor. The MFS (Metal-Ferroelectric-Semiconductor) type transistor structure on the surface of the substrate 180 is different from the case of the memory device 200e according to the sixth embodiment. That is, in the memory device 20 0 f related to the seventh embodiment, the first channel region 142 and the second channel region 144 are located in a predetermined source region 1 8 formed on the surface of the semiconductor substrate 180. Between the source/drain region 1 8 4 and any two of the specified drain regions 1 8 6 , the first gate 100132261 1003447808-0 62 201222827 The insulating layer 1 3 2 is formed, and the first channel is covered by the crucible The region 1 4 2, the second gate insulating layer 134 is formed, and the second gate region 144 is covered, and the first gate electrode 12 2 is opposite to the first channel region 1 4 2 via the first gate insulating layer 13 2 Formed, the second gate electrode 1 24 is formed to face the second channel region 144 via the second gate insulating layer 134. As described above, in the memory device 200 according to the seventh embodiment, the first transistor TR1, the second transistor TR2, and the third transistor TR3 are constituted by MFS type transistors formed on the surface of the semiconductor substrate 180. Different from the case of the memory device 200 0 e related to the implementation mode 6, the first transistor TR1 for information memory and the second transistor TR2 for information read/write have the first gate Since the electrode 122 and the second gate electrode 124 are connected in parallel in a state in which the other gate lines 1 2 0 a and 1 2 Ob are connected in parallel, as in the case of the memory device 200e according to the sixth embodiment, It is a memory device that does not cause [write interference problem] and [read disturb problem] when it is used in a memory cell of a NAND type memory device. Further, according to the memory device 20 0 f related to the seventh embodiment, it is possible to obtain a memory device which can be manufactured at a low cost by using a general semiconductor process. Further, the memory device 2 0 0 f according to the seventh embodiment is composed of the MFS type transistor formed on the surface of the semiconductor substrate 180 in the first transistor TR1, the second transistor TR2, and the third transistor TR3. The point other than this point has the same configuration as that of the memory device 20Oe according to the sixth embodiment, and therefore has an effect equivalent to that of the memory device 200e according to the sixth embodiment. [Embodiment 8] FIG. 38 is a view for explaining a memory device 200g (not shown) according to the eighth embodiment. In Fig. 38, a main portion of a solid-state electronic component 1 〇 〇 g constituting a memory device of the eighth embodiment is enlarged and displayed. The memory device 200 g related to the eighth embodiment basically has a configuration similar to that of the memory device 20 〇f according to the seventh embodiment, but as shown in Fig. 38, 'the first transistor TR1, the second The transistor TR2 and the third transistor TR3 are composed of a MFIS (Metal-Ferroelectric-Insulator-Semiconductor) type transistor formed on the surface of the semiconductor substrate 180, and are related to the seventh embodiment. The memory device 2 0 0 f is different. That is, in the memory device 200g according to the eighth embodiment, the first channel region 142 and the second channel region 144 are formed with the first gate insulating layer 132 and the second gate insulating layer 134. The electric buffer layer 19 is. As described above, in the memory device of the eighth embodiment, the first transistor TR1', the second transistor TR2, and the third transistor TR3 are formed of MFIS type transistors formed on the surface of the U semiconductor substrate 170. This configuration is different from the case of the memory device 20000 according to the seventh embodiment, except that the first transistor TR1 for information memory and the second transistor TR2 for information reading/writing have the first When the gate electrode 122 and the second gate electrode 124 are connected in parallel to each other in the state of being connected to the other gate lines 1 20a and 1 2Ob, the memory device 20 0 f according to the seventh embodiment is used. It is a memory device that does not cause [write 100132261 1003447808-0 64 201222827 into the dry: problem] and [read disturb problem] when it is used in the memory unit of the NAND type memory device. According to the memory device of the eighth embodiment, the semiconductor device 180 (the gate insulating layer 132e* Ba u Si) and the ferroelectric material which forms the first insulating layer 134 between the first and second layers are obtained. Layer (for example, the effect of [bad interdiffusion phenomenon] produced. In addition, due to the implementation of the eighth embodiment, the Thunder TD, &amp; one version of the 200g in the younger day TR1, the second transistor TR2 And the third circuit contact, the private day body TR3 is formed of a MF IS type solid-state electric core element formed on the surface of the +conductor substrate I80, and has a point other than the point ' , the color of the device ~, the memory device 200 f of the same situation, so there are spots to implement the report ^ 〇Λ &quot;, there are eight ^ state seven related memory device 200 f [Embodiment 9] FIG. 39 is a view for explaining a memory device 2〇〇h (not shown) according to the ninth embodiment. FIG. 39 shows a configuration and an embodiment. Nine related memory devices 20 h of solid state electronic components 1 〇〇 h main part section magnification The memory device 20000 related to the only state 9 is basically composed of the memory device 20 〇g related to the implementation of the sorrow, but as shown in FIG. 39, the first The transistor TR1, the second transistor TR2, and the third transistor TR3 are formed of a solid state of the type of MFMISCM et al-Ferroelectric-Metal-lnsulator-Semiconductor: metal-ferroelectric-metal-insulator-semiconductor formed on the surface of the semiconductor substrate 18A. The electronic component configuration is different from the case of the memory device 2000g related to the eighth embodiment. 100132261 1003447808-0 65 201222827 That is, in the memory device 20Oh related to the ninth embodiment, between the paraelectric buffer layer 190 and the first gate insulating layer 133 and the second gate insulating layer 134 A floating electrode 1 9 2 is formed. In the memory device 20Oh according to the ninth embodiment, the first transistor TR1, the second transistor TR2, and the third transistor TR3 are constituted by MFMIS type solid-state electronic components formed on the surface of the semiconductor substrate 180. In the case of the memory device of the eighth embodiment, the case of the second transistor TR1 for information memory and the second transistor TR2 for information read/write have the first gate electrode 122 and the first The structure in which the two gate electrodes 124 are connected in parallel in the state in which the other gate lines 1 2 0 a and 1 2 0 b are connected in parallel is the same as in the case of the memory device 20 0 g related to the eighth embodiment. It is a memory device that does not cause [write interference problem] and [read disturb problem] when it is used in a memory cell of a NAND type memory device. Further, according to the memory device 2〇〇h related to the ninth embodiment, it is also possible to alleviate the area of the capacitor composed of the gate insulating layer 13 〇 and the capacitor composed of the parasitic buffer layer 190 by arbitrarily adjusting. The effect of charge mismatch between the gate insulating layers 132, 134 (130) having a large amount of residual polarization and the semiconductor substrate 180 having a small residual polarization. Further, the memory device 20〇h according to the ninth embodiment is composed of the MF MIS type solid-state electronic components formed on the surface of the semiconductor substrate 180 in the first transistor TR1, the second transistor TR2, and the third transistor TR3. The point other than this point has the same configuration as the case of the memory device 2000g related to the eighth embodiment. Therefore, the memory 100132261 1003447808-0 66 201222827 body device 200g has the same function as the eighth embodiment. A considerable effect. In the above-described sixth to eighth embodiments, the memory devices 200f to 2〇〇h (and the solid-state electronic components 100f to lGGh) can be manufactured using a general semiconductor process, but for the gate insulating layer, the gate electrode layer, and the parasitic buffer layer. Liquid materials can also be used for floating electrodes (eg M〇D (Metal)

Decomposition:金屬有機分解)材料、溶膠_凝膠材料、奈 米粒子分散液體材料)而形成。 [試驗例] .〇 以下透過試驗例更詳細地說明本發明。 試驗例是在使用第一電晶體TR1與第二電晶體TR2的 分離構造為疊層分離型的記憶體裝置,對規定的選擇單元 進行資訊的寫入時,顯示[不是使連接於選擇單元的第二字 元線成浮接(floating)狀態,而是給予該第二字元線接地 電位]較佳的試驗例。 1、記憶體裝置 使用具有和與實施形態一有關的記憶體裝置2〇〇中的 II固態电子元件100 —樣的構造的固態電子元件進行了試 2、評價方法 依照以下的寫入方法1及2,對上述的固態電子元件 進行了資訊的寫入。亦即在寫入方法1中,在給予固態電 子元件的源極端(第一源極端及第二源極端)及汲極端(第 一汲極端及第二汲極端)接地電位的狀態下,使第二閘電極 成浮接狀態,並且給予第一閘電極正或負的寫入電壓(Vw = 100132261 1003447S08-0 67 201222827 ±8 V)。而且,在寫入方法2中,在給予固態電子元件的源 極端(第一源極端及第二源極端)及汲極端(第一汲極端及 第二汲極端)接地電位的狀態下,給予第二閘電極接地電 位,且給予第一閘電極正或負的寫入電壓(Vw = ±8V)。此外, 在寫入方法1中或寫入方法2中都使寫入脈衝的脈衝寬度 (pulse width)在 5xlO_4&gt;、~5xlO_1 秒(5/zsec〜500msec)的 範圍使其變化。 然後,測定在固態電子元件的源極端(第一源極端及第 f':'% 二源極端)與汲極端(第一汲極端及第二汲極端)之間給予 規定的讀出電位時流過的汲極電流。 2、評價結果 圖4 0是顯示試驗例的結果之圖。 由圖4 0得知,在寫入方法2中即使是比在寫入方法1 中還短的脈衝寬度的情形也得到大的S/N比。亦即,顯然 在寫入方法2中能比在寫入方法1中對選擇單元還高速地 寫入資訊。 以上雖然是根據上述的實施形態說明了本發明的記憶 U 體單元區塊及其製造方法、記憶體裝置以及記憶體裝置的 驅動方法,惟本發明不是被限定於該等實施形態,在不脫 離其要旨的範圍中可實施,例如如以下的變形也可能。 (1 )、在上述各實施形態中雖然是將固態電子元件適用 於NAND型記憶體,惟本發明不是被限定於該NAND型記憶 體。例如也可將固態電子元件適用於切換電路(s w i t c h i n g circuit)等其他的電子電路。 100132261 1003447808-0 68 201222827 (2) 、在上述實施形悲 六中,固體基技110雖然是 使用了例如在Si基板的表面隔者Si 〇2層及層形成 STO (SrT i 0 )層的絕緣性基板’惟本發明不是妓限定於該絕 緣性基板。例如也能使用由S i0 2基板構成的绝緣性基板等 其他的絕緣性基板。 (3) 、在上述實施形態 六中,第一閘%極層120雖 然是使用了例如pt,惟本發明不是被限定於頡Pt。例如也 能使用石英玻璃基板、Si〇2/Si基被、氧化鋁 ()(aluraina)(Al2〇3)基板、由 SRO(SrRu(h)基板或 sTO(SrTiO) 基板構成的絕緣性基板、s 1基板、S1C基板等的半導體基 板。 (4) 、在上述實施形態 六中,第一閘電極層120雖 然是使用了例如Pt ’第二閘電極層1 6〇使用了例如A1,惟 本發明不是被限定於該P t、A1。第一閘電極層1 2 0或第二 閘電極層1 6 0例如可使用Au、Ag、A1、T i、I TO、In2(h、 Sb-Iru〇3、Nb-Ti〇2、ZnO、Al-ZnO、鎳酸鑭(LaNi〇3)、Ga-ZnO ' 〇 IGZO、Ru(h 及 Ir〇2 以及 Nb-STO ' SrRuCh、LaNi〇3、Bapb〇3、 LSCO、LSMO、YBCO 等其他的鈣鈦礦型導電氧化物 (perovskite type conducting oxide)。而且,也能使用 焦綠石型導電氧化物(pyrochlore type conducting oxide) 及非晶質導電氡化物(amorphous conducting oxide)。 (5 )、在上述實施形態一〜六中,使用於第一閘絕緣層 132 的鐵電材料雖然是使用了例如 PZT(Pb(Zrx, Ti^OO3),惟本發明不是被限定於該 PZT(Pb(Zrx, 100132261 1003447808-0 69 201222827Decomposition: metal organic decomposition) material, sol-gel material, nanoparticle dispersion liquid material). [Test Example] . The present invention will be described in more detail below by way of test examples. In the test example, when the separation structure using the first transistor TR1 and the second transistor TR2 is a stacked-separated memory device, when information is written to a predetermined selection unit, the display is [not connected to the selection unit. The second word line is in a floating state, but is preferably a test case in which the second word line ground potential is given. 1. The memory device is tested using a solid-state electronic component having a structure similar to the solid-state electronic component 100 of the memory device 2 of the first embodiment. 2. The evaluation method is according to the following writing method 1 and 2. The information is written to the above solid electronic component. That is, in the writing method 1, in the state in which the source terminals (the first source terminal and the second source terminal) of the solid-state electronic component and the 汲 terminal (the first 汲 terminal and the second 汲 terminal) are given a ground potential, The two gate electrodes are in a floating state and give a positive or negative write voltage to the first gate electrode (Vw = 100132261 1003447S08-0 67 201222827 ±8 V). Further, in the writing method 2, given the ground potentials of the source terminals (the first source terminal and the second source terminal) and the 汲 terminal (the first 汲 terminal and the second 汲 terminal) of the solid state electronic component, The second gate electrode is grounded and gives a positive or negative write voltage to the first gate electrode (Vw = ±8V). Further, in the writing method 1 or the writing method 2, the pulse width of the write pulse is changed in the range of 5x10_4&gt;, ~5xlO_1 second (5/zsec to 500msec). Then, the measurement flows when a predetermined readout potential is given between the source terminal (the first source terminal and the f': '% source terminal) of the solid state electronic component and the 汲 terminal (the first 汲 terminal and the second 汲 terminal) The bungee current. 2. Evaluation results Fig. 40 is a diagram showing the results of the test examples. As is apparent from Fig. 40, even in the case of the writing method 2, a large S/N ratio is obtained even in the case of a pulse width shorter than that in the writing method 1. That is, it is apparent that the writing method 2 can write information at a high speed to the selecting unit as compared with the writing method 1. Although the memory U-body block of the present invention, the method of manufacturing the same, the memory device, and the method of driving the memory device have been described above based on the above embodiments, the present invention is not limited to the embodiments, and does not deviate from The scope of the gist of the gist can be implemented, for example, the following modifications are also possible. (1) In the above embodiments, the solid state electronic component is applied to the NAND type memory, but the present invention is not limited to the NAND type memory. For example, the solid state electronic component can also be applied to other electronic circuits such as a switching circuit (s w i t c h i n g circuit). 100132261 1003447808-0 68 201222827 (2) In the above-mentioned embodiment, the solid-state technique 110 uses insulation such as a Si 〇 2 layer and a layer to form an STO (SrT i 0 ) layer on the surface of the Si substrate. The substrate "is not limited to the insulating substrate". For example, another insulating substrate such as an insulating substrate made of a Si02 substrate can be used. (3) In the sixth embodiment described above, the first gate % pole layer 120 is, for example, pt, but the present invention is not limited to the 颉Pt. For example, a quartz glass substrate, a Si〇2/Si based layer, an alumina (aluraina) (Al2〇3) substrate, an insulating substrate made of an SRO (SrRu(h) substrate or an sTO(SrTiO) substrate, or the like, may be used. a semiconductor substrate such as an s1 substrate or an S1C substrate. (4) In the sixth embodiment, the first gate electrode layer 120 uses, for example, Pt 'second gate electrode layer 16 〇, for example, A1 is used. The invention is not limited to the P t, A1. For example, Au, Ag, A1, Ti, I TO, In2 (h, Sb-Iru) may be used for the first gate electrode layer 120 or the second gate electrode layer 160. 〇3, Nb-Ti〇2, ZnO, Al-ZnO, lanthanum nickelate (LaNi〇3), Ga-ZnO '〇IGZO, Ru(h and Ir〇2, and Nb-STO 'SrRuCh, LaNi〇3, Bapb 〇3, LSCO, LSMO, YBCO and other perovskite type conducting oxides. Also, pyrochlore type conducting oxides and amorphous conductive tellurides can be used. (a) In the above-described first to sixth embodiments, the ferroelectric material used for the first gate insulating layer 132 is used, for example. PZT(Pb(Zrx, Ti^OO3), but the invention is not limited to the PZT (Pb(Zrx, 100132261 1003447808-0 69 201222827)

Ti ι-χ)〇3)。例如可使用Nb掺雜ΡΖΤ、La摻雜ΡΖΤ、鈦酸鋇 (barium t i tanate)(BaT i〇3) 、 鈦酸船 (lead titanate)(PbTiO〇、BTO(Bi4Ti3〇12)、BLT(Bi4-xLaxTi3〇12)、 SBT(SrBi2Ta2〇9)、BZN(BiK5Zrii.〇.Nbi.5〇7)或鐵酸多必(bi sinuth ferrite)(Bi FeCh)。 (6 ) '在上述實施形態--六中,導體層1 4 0雖然是使 用了例如由銦錫氧化物(I T 0 )構成的氧化物導體,惟本發明 不是被限定於該由銦錫氧化物(I T 0)構成的氧化物導體。例 如可使用氧化銦(i nd i um ox i de ) ( I n2〇3)、銻摻雜氧化錫 (antimony doped tin oxide)(Sb-Sn〇2)、氧化鋅(zinc oxide)(ZnO)、紹摻雜氧化辞(aluminium doped zinc oxide)(Al-ZnO)、蘇按雜氧化辞(gallium doped zinc oxide)(Ga-ZnO)、氧化釕(ruthenium oxide)(Ru〇2)、氧化 銀(iridium oxide)(Ir〇2)、氧化錫(tin oxide)(Sn〇2)、 一氧化錫(tin monoxide)(SnO)、銳摻雜二氧化鈦(niobium doped titanium dioxide)(Nb-Ti〇2)等的氧化.物導體材 料。而且,可使用銦鎵鋅複合氧化物(indiumgalliumzinc complex oxide)(IGZ0)、鎵摻雜氧化銦(gallium doped indium oxide)(In-Ga-O(IGO))、銦換雜氧化鋅(indium doped zinc oxide)(In-Zn-0(IZ0))等的非晶質導電氧化物 (amorphous conducting oxide)0 而且,可使用鈦酸錄 (strontium titanate)(SrTi〇3)、鈮摻雜鈦酸鹤(niobium doped strontium titana1;e)(Nb-SrTi〇3)、4思鋇複合氧化 物(strontium barium complex oxide)(SrBaOs) ' 鹤約複 100132261 1003447808-0 70 201222827 合氧化物(strontium calcium complex oxide)(SrCa〇3)、 釕酸錄(strontium ruthenate)(SrRu〇3)、鎳酸鋼 (lanthanum nickelate)(LaNi〇3)、鈦酸鑭(lanthanum t i tanate)(LaT i Os)、銅 酸鋼(1anthanum copper oxide)(LaCu〇3) 、 鎳酸鈦 (neodymium nickelateKNdNiOs) 、 鎳 酸 記 (yttrium nickelate)(YNi〇3)、鑭妈猛複合氧化物(Lanthanum Calcium Manganese complex 0xide)(LCM0)、錯酸頜 ?〇 (barium p 1 umbate) (BaPb〇3) 、 LSCOCLaxSn-xCuOs) LSMO(Lai-xSrxMn〇3) 、 YBC0( YBazCusOy-x) 、 LNTO(La(NIi-xTix)〇3) 、 LST0((Lai-x, Srx)Ti〇3)、 ' STRCKSrCTiHRuOOs)等其他的鈣鈦礦型導電氧化物或焦 綠石型導電氧化物。 (7 )、在上述實施形態一〜六中,通道層雖然是使用了 由氧化物導體構成的導體層,惟本發明不是被限定於該導 體層。例如可使用由 Si、Ge、SiC、SiGe、GaAs、GaP、GaN、 ZnS、ZeSe、ZnO、CdS、CuInSe2 等構成的半導體層。 (8 )、在上述實施形態一中,第二閘絕緣層i 5〇雖然是 使用了例如Si 02,惟本發明不是被限定於該si 〇2。例如也 能使用 SiOrAhOs'BZiKBiuZnuNbuCMLaAlOpHfOz 等。 而且,也能使用(Bi2-X,Znx)(Znx,Nb2-x)〇7、Bix-Nbh-Oy、 B i χ - Z r 1 - χ - 0 y、B i χ - H f 1 - x - 0 y、B i X - T a 1 - x - 0 y、L a χ - T i 1 - χ - 0 y、 L a x - Z r i - x — 0 y、L a x - H f i - x - 0 y、L a x — T a i - x - 0 y、L a x — N b i - x - 0 y 等的 焦綠石型結晶或非晶質氧化物(amorph〇us oxide)、 100132261 1003447808-0 71 201222827 BST((Bai-x,Srx)Ti〇3)STO(SrTi〇3)等的鈣鈦礦型結晶或非 晶質氧化物、Six0y、AL2〇3、LaAHh、La2〇3、Zr〇2、Hf〇2、Ti ι-χ)〇3). For example, Nb-doped yttrium, La-doped yttrium, barium titanate (BaT i〇3), lead titanate (PbTiO〇, BTO(Bi4Ti3〇12), BLT (Bi4-) can be used. xLaxTi3〇12), SBT(SrBi2Ta2〇9), BZN(BiK5Zrii.〇.Nbi.5〇7) or bisinuth ferrite (Bi FeCh). (6) 'In the above embodiment--six In the case of the conductor layer 140, an oxide conductor composed of, for example, indium tin oxide (IT 0 ) is used, but the present invention is not limited to the oxide conductor composed of indium tin oxide (IT 0). For example, indium oxide (I nd i um ox i de ) (I n2〇3), antimony doped tin oxide (Sb-Sn〇2), zinc oxide (ZnO), Aluminum doped zinc oxide (Al-ZnO), gallium doped zinc oxide (Ga-ZnO), ruthenium oxide (Ru〇2), silver oxide (iridium) Oxide (Ir〇2), tin oxide (Sn〇2), tin monoxide (SnO), niobium doped titanium dioxide (Nb-Ti〇2), etc. Oxidation In addition, indium gallium zinc complex oxide (IGZ0), gallium doped indium oxide (In-Ga-O (IGO)), indium doped zinc oxide (indium doped) Zinc oxide) (amorphous conducting oxide) such as In-Zn-0 (IZ0), and strontium titanate (SrTi〇3), yttrium-doped titanate (niobium doped strontium titana1; e) (Nb-SrTi〇3), strontium barium complex oxide (SrBaOs) ' 鹤约复100132261 1003447808-0 70 201222827 strontium calcium complex oxide (SrCa〇3), strontium ruthenate (SrRu〇3), lanthanum nickelate (LaNi〇3), lanthanum ti tanate (LaT i Os), copper acid steel ( 1anthanum copper oxide) (LaCu〇3), neodymium nickelate (KNdNiOs), yttrium nickelate (YNi〇3), Lanthanum Calcium Manganese complex 0xide (LCM0), wrong acid Barium p 1 umbate (BaPb〇3), LSCOCLaxSn-xCuOs) LSMO (Lai-xSrxMn〇3), YBC0 (YBazCusOy-x), LNTO (La(NIi-xTix)〇3), LST0((Lai-x, Srx)Ti〇3), 'STRCKSrCTiHRuOOs), etc. A mineral conductive oxide or a pyrochlore type conductive oxide. (7) In the above-described first to sixth embodiments, the channel layer is a conductor layer made of an oxide conductor, but the present invention is not limited to the conductor layer. For example, a semiconductor layer composed of Si, Ge, SiC, SiGe, GaAs, GaP, GaN, ZnS, ZeSe, ZnO, CdS, CuInSe2 or the like can be used. (8) In the first embodiment, the second gate insulating layer i 5 is made of, for example, Si 02, but the present invention is not limited to the si 〇2. For example, SiOrAhOs'BZiKBiuZnuNbuCMLaAlOpHfOz or the like can also be used. Furthermore, (Bi2-X, Znx)(Znx, Nb2-x)〇7, Bix-Nbh-Oy, B i χ - Z r 1 - χ - 0 y, B i χ - H f 1 - x can also be used. - 0 y, B i X - T a 1 - x - 0 y, L a χ - T i 1 - χ - 0 y, L ax - Z ri - x - 0 y, L ax - H fi - x - 0 Y, L ax — T ai — x − 0 y, L a — — bi bi — x — y , etc. pyrochlore-type crystal or amorphous oxide (amorph〇us oxide), 100132261 1003447808-0 71 201222827 BST ((Bai-x, Srx) Ti〇3) Perovskite crystal or amorphous oxide such as STO (SrTi〇3), Six0y, AL2〇3, LaAHh, La2〇3, Zr〇2, Hf〇 2,

Ta2〇s等的結晶或非晶質氡化物等。 (9 )、在上述實施形態五及六中,雖然在連接層的上層 或下層形成了電阻降低用導體層,惟本發明不是被限定於 此。例如使構成連接層的導體層或半導體層比構成第一通 道區域或第二通道區域的導體層或半導體層厚而構成也可 以。如此構成也能防止在位於與第一字元線或第二字元線 交又的位置的連接層的部分產生不良的切換現象。而且,〇 也能使構成連接層的導體層或半導體層低電阻化。此情形 可藉由使用壓花成形技術等,使構成連接層的導體層或半 導體層比構成第一通道區域或第二通道區域的導體層或半 導體層厚。 、(1 0 )、在上述實施形態一〜四中,雖然令構成連接層的 導體層或半導體層與構成第一通道區域及第:通道區域的 導體層或半導體層成相同的厚度’惟本發明不是被限定於 此:例如使構成連接層的導體層或半導體層比構成第一通 迢區域及第二通道區域的導體層或半導體層厚而構成也可 以。藉由以這種構成’也能使構成連接層的導體層或半導 體層低電阻化。此情形可藉由使用壓花成形技術等,使構 成連接層的導體層或半導體層比構成第一通道區域及第二 通道區域的導體層或半導體層厚。 【圖式簡單說明】 100132261 1003447808-0 72 201222827 圖1是用以說明實施形態一〜九中的各固態電子元件 100~100h的構造而顯示之圖表。 圖2是與實施形態一有關的記憶體裝置20 0之電路圖。 圖3是用以說明與實施形態一有關的記憶體裝置2 0 0 而顯示之圖。 圖4是用以說明與實施形態一有關的記憶體裝置2 0 0 而顯示之圖。 圖5是用以說明與實施形態一有關的記憶體裝置2 0 0 C.) 中的資訊寫入動作而顯示之圖。 圖6是用以說明與實施形態一有關的記憶體裝置2 0 0 中的資訊讀出動作而顯示之圖。 圖7是用以說明與實施形態一有關的記憶體裝置2 0 0 中的資訊寫入時的驅動波形而顯示之圖。 圖8是顯示與實施形態一有關的記憶體裝置20 0中的 資訊讀出時的驅動波形之圖。 圖9是用以說明與實施形態二有關的記憶體裝置2 0 0 a 而顯示之圖。 丨 圖10是用以說明與實施形態二有關的記憶體裝置 200a而顯示之圖。 圖11是與實施形態三有關的記憶體裝置200b之電路 圖。 圖12是用以說明與實施形態三有關的記憶體裝置 200b而顯示之圖。 圖1 3是用以說明與實施形態三有關的記憶體裝置 100132261 1003447808-0 73 201222827 200b而顯示之圖。 圖1 4是用以說明與實施形態三有關的記憶體裝置 2 0 0 b中的資訊寫入動作而顯示之圖。 圖1 5是用以說明與實施形態三有關的記憶體裝置 2 0 0 b中的資訊讀出動作而顯示之圖。 圖1 6是用以說明與實施形態三有關的記憶體裝置 2 0 0 b中的資訊寫入時的驅動波形而顯示之圖。 圖1 7是顯示與實施形態三有關的記憶體裝置2 0 0 b中 的資訊讀出時的驅動波形之圖。 圖18是用以說明與實施形態四有關的記憶體裝置 200c中的資訊寫入動作而顯示之圖。 圖1 9是用以說明與實施形態四有關的記憶體裝置 2 0 0 c中的資訊讀出動作而顯示之圖。 圖 2 0是用以說明與實施形態四有關的記憶體裝置 2 0 0 c中的資訊寫入時的驅動波形而顯示之圖。 圖21是顯示與實施形態四有關的記憶體裝置2 0 0 c中 的資訊讀出時的驅動波形之圖。 圖2 2是用以說明製造與實施形態三有關的記憶體裝 置2 0 0 b的方法而顯示之圖。 圖2 3是用以說明製造與實施形態三有關的記憶體裝 置200b的另一個方法而顯示之圖。 圖2 4是用以說明製造與實施形態三有關的記憶體裝 置200b的另一個方法而顯示之圖。 圖2 5是用以說明製造與實施形態三有關的記憶體裝 100132261 1003447808-0 74 201222827 置200b的另一個方法而顯示之圖。 圖2 6是用以說明製造與實施形態三有關的記憶體裝 置2 0 0 b的另一個方法而顯示之圖。 圖27是用以說明製造與實施形態三有關的記憶體裝 置200b的另一個方法而顯示之圖。 圖 2 8是用以說明與實施形態五有關的記憶體裝置 200d而顯示之圖。 圖 2 9是用以說明與實施形態五有關的記憶體裝置 200d而顯示之圖。 圖 3 0是用以說明與實施形態六有關的記憶體裝置 200e而顯示之圖。 圖 3 1是用以說明與實施形態六有關的記憶體裝置 200e而顯示之圖。 圖3 2是用以說明製造與實施形態五有關的記憶體裝 置200d的方法而顯示之圖。 圖3 3是用以說明製造與實施形態五有關的記憶體裝 f| 置200d的另一個方法而顯示之圖。 圖34是用以說明製造與實施形態五有關的記憶體裝 置200d的另一個方法而顯示之圖。 圖35是用以說明製造與實施形態五有關的記憶體裝 置200d的另一個方法而顯示之圖。 圖3 6是用以說明與實施形態七有關的記憶體裝置 200f而顯示之圖。 圖3 7是用以說明與實施形態七有關的記憶體裝置 100132261 1003447808-0 75 201222827 200f而顯示之圖。 圖38是用以說明與實施形態八有關的記憶體裝置 200g而顯示之圖。 圖3 9是用以說明與實施形態九有關的記憶體裝置 200h而顯示之圖。 圖4 0是顯不試驗例的結果之圖。 圖41是用以說明習知的固態電子元件9 0 0而顯示之 圖。 圖4 2是用以說明習知的固態電子元件9 0 0中的切換動 作而顯示之圖。 圖4 3是用以說明閘絕緣層9 3 0的遲滯特性而顯示之 圖。 圖44是顯示將資訊寫入閘絕緣層9 3 0時的樣子之圖。 圖4 5是顯示由閘絕緣層9 3 0讀出資訊時的樣子之圖。 圖46是顯示將習知的固態電子元件9 0 0使用於NAND 型記憶體裝置的記憶體單元的情形的問題點之圖。 圖47是顯示將習知的固態電子元件9 0 0使用於NAND 型記憶體裝置的記憶體單元的情形的問題點之圖。 【主要元件符號說明】 100~100h:固態電子元件 11 0 :固體基板 120、 120a、 120b、 120c、 160、 160a、 160b、 160c: 閘電極層 100132261 1003447808-0 76 201222827 1 20’ :鎳酸鑭的前驅物組成物層 1 2 2、1 6 2 :第一閘電極 124、164:第二閘電極 1 2 6、1 6 6 :第三閘電極 13 0、150、9 3 0 :閘絕緣層 1 31 :鐵電層 132、152:第一閘絕緣層 134、154:第二閘絕緣層 〇 1 3 6、1 5 6 :第三閘絕緣層 140 :導體層 142:第一通道區域 144 :第二通道區域 146:第三通道區域 1 7 0 :電阻降低用金屬層 180 :半導體基板 1 8 2、9 5 0 :源極區域 Q 1 8 4 :源極區域/汲極區域 186、960:汲極區域 1 9 0 :順電緩衝層 1 9 2 :浮接電極 20 0〜20 0h:記憶體裝置 91 0 :絕緣性基板 9 2 0 :閘電極 9 4 0 :通道層 100132261 1003447808-0 77 201222827 B L :位元線 BSO :區塊選擇線 D1 :第一汲·極端 D 2 :第二没極端 MO、M5、M6、M7 :記憶體單元 MB1、MB2、MB3 :記憶體單元區塊 P L :板線 S1 :第一源極端 S 2 :第二源極端 SW :區塊選擇電晶體 TR1 :第一電晶體 TR2:第二電晶體 TR3 :第三電晶體 + Vc、-Vc :矯頑電壓A crystalline or amorphous telluride such as Ta2〇s. (9) In the above-described fifth and sixth embodiments, the conductor layer for resistance reduction is formed in the upper layer or the lower layer of the connection layer, but the present invention is not limited thereto. For example, the conductor layer or the semiconductor layer constituting the connection layer may be made thicker than the conductor layer or the semiconductor layer constituting the first channel region or the second channel region. In this configuration, it is also possible to prevent a defective switching phenomenon in the portion of the connection layer located at a position overlapping the first word line or the second word line. Further, 〇 can also reduce the resistance of the conductor layer or the semiconductor layer constituting the connection layer. In this case, the conductor layer or the semiconductor layer constituting the connection layer can be made thicker than the conductor layer or the semiconductor layer constituting the first channel region or the second channel region by using an embossing technique or the like. (10), in the above-described first to fourth embodiments, the conductor layer or the semiconductor layer constituting the connection layer has the same thickness as the conductor layer or the semiconductor layer constituting the first channel region and the channel region. The invention is not limited thereto: for example, the conductor layer or the semiconductor layer constituting the connection layer may be thicker than the conductor layer or the semiconductor layer constituting the first via region and the second channel region. By such a configuration, the conductor layer or the semiconductor layer constituting the connection layer can also be made low in resistance. In this case, the conductor layer or the semiconductor layer constituting the connection layer can be made thicker than the conductor layer or the semiconductor layer constituting the first channel region and the second channel region by using an embossing technique or the like. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph for explaining the structure of each of the solid-state electronic components 100 to 100h in the first to ninth embodiments. Fig. 2 is a circuit diagram of a memory device 20 in accordance with the first embodiment. Fig. 3 is a view for explaining the display of the memory device 200 in accordance with the first embodiment. Fig. 4 is a view for explaining the display of the memory device 200 in accordance with the first embodiment. Fig. 5 is a view for explaining the information writing operation in the memory device 2 0 0 C.) according to the first embodiment. Fig. 6 is a view for explaining the information reading operation in the memory device 2000 according to the first embodiment. FIG. 7 is a view for explaining a driving waveform at the time of information writing in the memory device 200 according to the first embodiment. Fig. 8 is a view showing driving waveforms at the time of information reading in the memory device 20 0 according to the first embodiment. Fig. 9 is a view for explaining the display of the memory device 200a according to the second embodiment. Fig. 10 is a view for explaining the memory device 200a according to the second embodiment. Fig. 11 is a circuit diagram of a memory device 200b according to the third embodiment. Fig. 12 is a view for explaining the display of the memory device 200b according to the third embodiment. Fig. 13 is a view for explaining the memory device 100132261 1003447808-0 73 201222827 200b according to the third embodiment. Fig. 14 is a view for explaining the information writing operation in the memory device 2000b according to the third embodiment. Fig. 15 is a view for explaining the information reading operation in the memory device 2000b according to the third embodiment. Fig. 16 is a view for explaining a driving waveform at the time of information writing in the memory device 2000b according to the third embodiment. Fig. 17 is a view showing driving waveforms at the time of information reading in the memory device 2000b according to the third embodiment. Fig. 18 is a view for explaining the information writing operation in the memory device 200c according to the fourth embodiment. Fig. 19 is a view for explaining the information reading operation in the memory device 2000c according to the fourth embodiment. Fig. 20 is a view for explaining a driving waveform at the time of information writing in the memory device 2000c according to the fourth embodiment. Fig. 21 is a view showing driving waveforms at the time of reading information in the memory device 2000c according to the fourth embodiment. Fig. 2 is a view for explaining a method of manufacturing the memory device 2 0 0 b according to the third embodiment. Fig. 23 is a view for explaining another method of manufacturing the memory device 200b according to the third embodiment. Fig. 24 is a view for explaining another method of manufacturing the memory device 200b according to the third embodiment. Fig. 25 is a view for explaining another method of manufacturing the memory package 100132261 1003447808-0 74 201222827 200b according to the third embodiment. Fig. 26 is a view for explaining another method of manufacturing the memory device 2 0 0 b according to the third embodiment. Fig. 27 is a view for explaining another method of manufacturing the memory device 200b according to the third embodiment. Fig. 28 is a view for explaining the memory device 200d according to the fifth embodiment. Fig. 29 is a view for explaining the memory device 200d according to the fifth embodiment. Fig. 30 is a view for explaining the memory device 200e according to the sixth embodiment. Fig. 3 is a view for explaining the memory device 200e according to the sixth embodiment. Fig. 3 is a view for explaining a method of manufacturing the memory device 200d according to the fifth embodiment. Fig. 3 is a view for explaining another method of manufacturing the memory device set 50d according to the fifth embodiment. Fig. 34 is a view for explaining another method of manufacturing the memory device 200d according to the fifth embodiment. Fig. 35 is a view for explaining another method of manufacturing the memory device 200d according to the fifth embodiment. Fig. 36 is a view for explaining the memory device 200f according to the seventh embodiment. Fig. 37 is a view for explaining the memory device 100132261 1003447808-0 75 201222827 200f according to the seventh embodiment. Fig. 38 is a view for explaining the display of the memory device 200g according to the eighth embodiment. Fig. 39 is a view for explaining the memory device 200h according to the ninth embodiment. Figure 40 is a graph showing the results of the test examples. Fig. 41 is a view for explaining a conventional solid state electronic component 900. Fig. 4 is a view for explaining the switching operation in the conventional solid-state electronic component 900. Fig. 4 is a view for explaining the hysteresis characteristics of the gate insulating layer 930. Fig. 44 is a view showing how the information is written to the gate insulating layer 930. Fig. 45 is a view showing a state when information is read by the gate insulating layer 930. Fig. 46 is a view showing a problem of a case where a conventional solid-state electronic component 900 is used for a memory cell of a NAND-type memory device. Fig. 47 is a view showing a problem of a case where a conventional solid-state electronic component 900 is used for a memory cell of a NAND-type memory device. [Description of main component symbols] 100 to 100h: solid state electronic component 11 0 : solid substrate 120, 120a, 120b, 120c, 160, 160a, 160b, 160c: gate electrode layer 100132261 1003447808-0 76 201222827 1 20': strontium nickelate Precursor composition layer 1 2 2, 1 6 2 : first gate electrode 124, 164: second gate electrode 1 2 6 , 1 6 6 : third gate electrode 13 0, 150, 9 3 0 : gate insulating layer 1 31 : ferroelectric layer 132, 152: first gate insulating layer 134, 154: second gate insulating layer 〇 1 3 6 , 1 5 6 : third gate insulating layer 140: conductor layer 142: first channel region 144: Second channel region 146: third channel region 1 7 0 : metal layer 180 for resistance reduction: semiconductor substrate 1 8 2, 9 5 0 : source region Q 1 8 4 : source region / drain region 186, 960: The drain region 1 9 0 : the parasitic buffer layer 1 9 2 : the floating electrode 20 0 to 20 0h: the memory device 91 0 : the insulating substrate 9 2 0 : the gate electrode 9 4 0 : the channel layer 100132261 1003447808-0 77 201222827 BL : Bit line BSO : Block selection line D1 : First 汲 · Extreme D 2 : Second no extreme MO, M5, M6, M7 : Memory unit MB1, MB2, MB3 : Memory unit Block PL: plate line S1: first source terminal S 2 : second source terminal SW: block selection transistor TR1: first transistor TR2: second transistor TR3: third transistor + Vc, -Vc: correction Recalcitrant

Vcl:第一橋頑電壓 V ο η :導通狀態電壓Vcl: first bridge voltage V ο η : conduction state voltage

Vof f :截止狀態電壓 土Vw :寫入電壓 WL0、WLi5、WL〗6、WLi7 :第一字元線 WL2〇、WL25、WL26、WL27:第二字元線 100132261 1003447808-0 78Vof f : off-state voltage soil Vw : write voltage WL0, WLi5, WL 〖6, WLi7: first word line WL2 〇, WL25, WL26, WL27: second word line 100132261 1003447808-0 78

Claims (1)

201222827 七、申請專利範圍: 1、一種記憶體單元區塊’其特徵包含: 具有如下構件的資訊記憶用的第一電晶體:具有第_ 源極端及第一汲極端之第一通道區域,與控制該第一通道 區域的導通狀態之第一閘電極,與由形成於該第一閘電極 與該第一通道區域之間的鐵電層構成的第一閘絕緣層; 具有如下構件的資訊讀出/寫入用的第二電晶體:具有 弟—源極端及第—〉及極端之弟—通道區域,與控制該第_ :(!通道區域的導通狀態之第二閘電極’與形成於該第二閑電 極與該第二通道區域之間的第二閘絕緣層, 包含:由在該第一電晶體及該第二電晶體在該第一源 極端與該第一源極端被連接’該第一汲極端與該第二、; 及極 端被連接,該第一閘電極及該第二閘電極各自被連接於另 一條閘極線的狀態下,被並聯連接的固態電子元件構成之 複數個記憶體單元,該等複數個記憶體單元被串聯連接, 其中 ◎ 該第一通道區域及該第二通道區域是由以同一製程形 成的導體層或半導體層構成’ 該複數個記憶體單元之中接鄰的兩個記憶體單元藉由 由延續於該兩個記憶體單元中的該第一通道區域及該第二 通道區域,且以與該等通道區域同一製程形成的導體層或 半導體層構成的連接層連# ° 2、如申請專利範圍第1項之記憶體單元區塊,其中該 第一通道區域及該第二·通道區域以及該連接層由氧化物導 100132261 1003447808-0 201222827 電材料構成。 3、 如申請專利範圍第1項或第2項之記憶體單元區 塊,其中構成該第一閘電極及該第二閘電極的閘電極層, 與構成該第一閘絕緣層和該第二閘絕緣層的閘絕緣層,與 該導體層或半導體層都使用液體材料形成。 4、 如申請專利範圍第3項之記憶體單元區塊,其中該 閘電極層,與該閘絕緣層,與該導體層或半導體層都不使 用真空製程而形成。 5、 如申請專利範圍第1項至第4項中任一項之記憶體 單元區塊,其中構成該第一閘電極及該第二閘電極的閘電 極層,與構成該第一閘絕緣層和該第二閘絕緣層的閘絕緣 層,與該導體層或半導體層均由氧化物材料構成。 6、 如申請專利範圍第5項之記憶體單元區塊,其中該 閘電極層與該閘絕緣層與該導體層或半導體層均具有鈣鈦 礦構造。 7、 如申請專利範圍第1項至第6項中任一項之記憶體 單元區塊,其中該第二閘絕緣層是由與該第一閘絕緣層同 層的鐵電層構成, 該第一電晶體及該第二電晶體具有:在固體基板中的 一方的表面上,構成該第一閘電極及該第二閘電極的閘電 極層,與構成該第一閘絕緣層和該第二閘絕緣層的閘絕緣 層,與構成該第一通道區域及該第二通道區域以及該連接 層的導體層或半導體層以此順序形成的構造。 8、 如申請專利範圍第1項至第6項中任一項之記憶體 100132261 1003447808-0 80 201222827 單元區i鬼, 層的鐵電層 該第一 一方的表面 及該連接層 和該第二閘 第二閘電極 9 '如1 Ο塊,其中該 度方向。 1 0、如 體早元區塊 • 體基板中的 極層,與該 二通道區域 閘絕緣層, 形成的構造 11、如 體單元區塊 體基板中的 極層,與該 二通道區域 間絕緣層, 形成的構造 100132261 中°亥第一閘絕緣層是由與該第一閘絕緣層同 構成, 電晶體及該第二電晶體具有:在固體基板中的 上’構成該第一通道區域及該第二通道區域以 的導體層或半導體層,與構成該第一閘絕緣層 絕緣層的閘絕緣層,與構成該第—閘電極及該 的間電極層以此順序形成的構造。 ^請專利範圍第7項或第8項之記憶體單元區 第电日日體及該第二電晶體並排配置於通道寬 申請專利範圍第i項至第6項中任一項之記憶 其中該第一電晶體及該第二電晶體具有:在固 方的表面上,構成該第一閘電極的第一閘電 第-閘絕緣層,與構成該第一通道區域及該第 以及該連接層的導體層或半導體層,與該第二 與構成該第二閑電極的第二閉電極層以此順序 〇 1項至$ 6 W任-項之記憶 二其中該第-電晶體及該第二電晶體具有:在固 -方的表面上’構成該第二間電極的第二閘電 第二間絕緣層’與構成該第—通道區域及該第 以及該連接層的導體層或半導體層,與該第一 與構成該第-問電極的第—間電極層以此順序 〇 1003447808-0 201222827 1 2、如申請專利範圍第1 0項或第11項之記憶體單元 區塊,其中該第二閘絕緣層由順電層構成。 1 3、如申請專利範圍第1 0項或第11項之記憶體單元 區塊,其中該第二閘絕緣層由鐵電層構成。 1 4、如申請專利範圍第1項.之記憶體單元區塊,其中 該第二閘絕緣層是由與該第一閘絕緣層同層的鐵電層構 成,該第一通道區域及該第二通道區域位於形成於半導體 基板的表面的規定的源極區域及規定的汲極區域之間, 該第一閘絕緣層覆蓋該第一通道區域而形成,該第二 閘絕緣層覆蓋該第二通道區域而形成,該第一閘電極隔著 該第一閘絕緣層對向於該第一通道區域而形成,該第二閘 電極隔著該第二閘絕緣層對向於該第二通道區域而形成。 1 5、如申請專利範圍第1 4項之記憶體單元區塊,其中 在該第一通道區域及該第二通道區域,與該第一閘絕緣層 及該第二閘絕緣層之間形成有順電缓衝層。 1 6、如申請專利範圍第1 4項或第1 5項之記憶體單元 區塊,其中在該順電緩衝層,與該第一閘絕緣層及該第二 閘絕緣層之間形成有浮接電極。 1 7、一種記憶體裝置,其特徵包含: 位元線; 板線; 第一字元線; 第二字元線; 在該位元線與該板線之間串聯連接有複數個記憶體單 100132261 1003447808-0 82 201222827 元之記憶體單元區塊;以及 配設有複數個該記憶體單元區塊之記憶體單元陣列, 該記憶體單元在該第一閘電極連接於第一字元線,該 第二閘電極連接於第二字元線的狀態下被並聯連接而成, 其中 該記憶體單元區塊包含申請專利範圍第1項至第1 6 項中任一項之記憶體單元區塊。 1 8、如申請專利範圍第1 7項之記憶體裝置,其中該記 憶體單元區塊至少透過一個區塊選擇電晶體連接於該位元 線或該板線。 1 9、如申請專利範圍第1 7項或第1 8項之記憶體裝置, 其中該記憶體單元區塊包含申請專利範圍第7項至第9項 中任一項之記憶體單元區塊, 在該連接層之中,平面地看位於與該第一字元線或該 第二字元線交叉的位置的該連接層的上層或下層形成有電 阻降低用導體層。 Q 2 0、如申請專利範圍第1 7項或第1 8項之記憶體裝置, 其中該記憶體單元區塊包含申請專利範圍第7項至第9項 中任一項之記憶體單元區塊, 構成該連接層的導體層或半導體層比構成該第一通道 區域或該第二通道區域的導體層或半導體層還厚。 2卜如申請專利範圍第1 7項或第1 8項之記憶體裝置, 其中該記憶體單元區塊包含申請專利範圍第1 0項至第13 項中任一項之記憶體單元區塊, 100132261 1003447808-0 83 201222827 構成該連接層的導體層或半導體層比構成該第一通道 區域及該第二通道區域的導體層或半導體層還厚。 2 2、一種記憶體裝置的驅動方法,其特徵為:使用申請 專利範圍第1 7項至第2 1項中任一項之記憶體裝置,且該 記憶體單元區塊包含申請專利範圍第2項至第5項中任一 項之記憶體單元區塊之記憶體裝置,對規定的記憶體單元 (以下稱為選擇單元,而且稱屬於與選擇單元同一的記憶體 單元區塊的記憶體單元之中選擇單元以外的記憶體單元為 非選擇單元)進行資訊的寫入,其中 藉由至少對連接於非選擇單元的第二字元線施加導通 狀態電壓 Von,使非選擇單元中的該第二電晶體導通 (0N),並且 藉由給予連接於選擇單元的第二字元線接地電位,對 連接於選擇單元的第一字元線施加比第一閘絕緣層的矯頑 電壓 Vcl高的第一寫入電壓(Vw: Vw&gt;Vcl)及比對該矯頑電 壓 Vcl附加負號後的電壓(-Vcl)低的第二寫入電壓 ([-Vw] : [-Vw] &lt;-Vcl )的任一個,進行對選擇單元的資訊的 、:. 寫入動作。 2 3、一種記憶體單元區塊的製造方法,其特徵為:用以 製造包含如下構件的記憶體單元區塊的記憶體單元區塊的 製造方法: 具有如下構件的資訊記憶用的第一電晶體:具有第一 源極端及第一沒極端之第一通道區域,與控制該第一通道 區域的導通狀態之第一閘電極,與由形成於該第一閘電極 100132261 1003447808-0 84 201222827 與該第一通道區域之間的鐵電層構成 具有如下構件的資訊讀出/寫入用的第一閉絕緣層; 第二源極端及第二汲極端之第二通道區域〜電晶體:具有 通道區域的導通狀態之第二間電極,與形/控㈣第二 極與該第二通道區域之間的第二閘絕緣層,於該弟二閘電 包含:由在該第—電晶體及該第二電晶妒 、 極端與該第二源極端被連接,嗲筮 a 。第一源 必乐一及極蠕邀 _ 端被連接,該第一閘電極及該第二閘、q /極 电徑各自被遠接 一條閘極線的狀態下,被並聯連接的固態電子元 ' 複數個記憶體單元,該等複數個記恃 70彳構成之 #上 ύ愿體早兀被串聯連接, 其中 二通道區域以 記憶體單元的 以同一製程形成該第一通道區域及該第 及連接該複數個記憶體單元之中接鄰的兩個 連接層。201222827 VII. Patent application scope: 1. A memory unit block' characterized by: a first transistor for information memory having the following components: a first channel region having a _ source terminal and a first 汲 extreme, and a first gate electrode for controlling an on state of the first channel region, and a first gate insulating layer formed of a ferroelectric layer formed between the first gate electrode and the first channel region; information reading having the following components a second transistor for outputting/writing: having a dipole-source terminal and a -> and an extreme brother-channel region, and a second gate electrode that controls the first _: (the conduction state of the ! channel region) a second gate insulating layer between the second dummy electrode and the second channel region, comprising: being connected to the first source terminal and the first source terminal at the first source terminal The first 汲 extreme is connected to the second, and the extreme, and the first gate electrode and the second gate electrode are respectively connected to another gate line, and the plurality of solid electronic components connected in parallel are composed of plural Memory list The plurality of memory cells are connected in series, wherein: the first channel region and the second channel region are formed by a conductor layer or a semiconductor layer formed by the same process, and adjacent to the plurality of memory cells Two memory cells are connected layers formed by a conductor layer or a semiconductor layer formed by the first channel region and the second channel region continuing in the two memory cells and formed in the same process as the channel regions The memory cell block of claim 1, wherein the first channel region and the second channel region and the connecting layer are composed of an oxide material 100132261 1003447808-0 201222827. The memory cell block of claim 1 or 2, wherein the gate electrode layer constituting the first gate electrode and the second gate electrode, and the first gate insulating layer and the second gate are formed The gate insulating layer of the insulating layer is formed of a liquid material together with the conductive layer or the semiconductor layer. 4. The memory cell block of claim 3, wherein the gate electrode layer And the insulating layer of the gate, and the conductor layer or the semiconductor layer are not formed by using a vacuum process. 5. The memory cell block according to any one of claims 1 to 4, wherein the first a gate electrode and a gate electrode layer of the second gate electrode, and a gate insulating layer constituting the first gate insulating layer and the second gate insulating layer, and the conductor layer or the semiconductor layer are both made of an oxide material. The memory cell block of claim 5, wherein the gate electrode layer and the gate insulating layer and the conductor layer or the semiconductor layer both have a perovskite structure. 7. Patent Application No. 1 to 6 The memory cell block of any one of the preceding claims, wherein the second gate insulating layer is formed by a ferroelectric layer in the same layer as the first gate insulating layer, the first transistor and the second transistor having: a gate electrode layer constituting the first gate electrode and the second gate electrode, and a gate insulating layer constituting the first gate insulating layer and the second gate insulating layer on one surface of the solid substrate a channel area and the second channel area and Configuration formed in this order connecting conductor layer or semiconductor layer. 8. The memory of any one of the first to sixth aspects of the patent application 100132261 1003447808-0 80 201222827 unit area i ghost, the layer of the first layer of the ferroelectric layer and the connecting layer and the first The second gate of the second gate 9' is like a block, which is the direction of the degree. 10, such as the polar layer in the body element block, the pole layer in the body substrate, and the insulating layer of the two-channel region, the formed structure 11, such as the pole layer in the body unit block substrate, and the insulation between the two channel regions Layer, formed structure 100132261, wherein the first gate insulating layer is formed by the first gate insulating layer, and the transistor and the second transistor have: the upper channel in the solid substrate constitutes the first channel region and The conductor layer or the semiconductor layer in the second channel region, the gate insulating layer constituting the first gate insulating layer insulating layer, and the structure in which the first gate electrode and the interlayer electrode layer are formed in this order. ^Please note that the memory unit area of the seventh or eighth aspect of the patent unit and the second transistor are arranged side by side in the memory of any one of items i to 6 of the channel width application patent. The first transistor and the second transistor have: a first gate electric gate insulating layer constituting the first gate electrode on a surface of the solid, and the first channel region and the first and the connecting layer a conductor layer or a semiconductor layer, and the second and second closed electrode layers constituting the second idle electrode are in this order from 1 to 6 6 W - the memory 2 of the first transistor and the second The transistor has: a second galvanic second insulating layer constituting the second interlayer electrode on a solid-side surface; and a conductor layer or a semiconductor layer constituting the first channel region and the first and the connection layer, And the first and the first electrode layer constituting the first electrode are in this order 〇1003447808-0 201222827 1 2. The memory unit block of claim 10 or 11 of the patent scope, wherein the The second gate insulating layer is composed of a paraelectric layer. 1 . The memory unit block of claim 10 or 11, wherein the second gate insulating layer is composed of a ferroelectric layer. The memory cell block of claim 1, wherein the second gate insulating layer is composed of a ferroelectric layer in the same layer as the first gate insulating layer, the first channel region and the first a second channel region is formed between a predetermined source region formed on a surface of the semiconductor substrate and a predetermined drain region, the first gate insulating layer is formed to cover the first channel region, and the second gate insulating layer covers the second region Forming a channel region, the first gate electrode is formed opposite to the first channel region via the first gate insulating layer, and the second gate electrode is opposite to the second channel region via the second gate insulating layer And formed. The memory cell block of claim 14, wherein the first channel region and the second channel region are formed between the first gate insulating layer and the second gate insulating layer. Paraelectric buffer layer. 1 . The memory unit block of claim 14 or claim 15, wherein a floating buffer layer is formed between the first gate insulating layer and the second gate insulating layer. Connect the electrodes. 17. A memory device, comprising: a bit line; a plate line; a first word line; a second word line; a plurality of memory sheets connected in series between the bit line and the board line 100132261 1003447808-0 82 201222827 memory cell block; and a memory cell array provided with a plurality of the memory cell blocks, the memory cell being connected to the first word line at the first gate electrode The second gate electrode is connected in parallel with the second word line, wherein the memory unit block includes the memory unit block of any one of claims 1 to 16. . 18. The memory device of claim 17, wherein the memory cell block is connected to the bit line or the plate line through at least one block selection transistor. 1 . The memory device of claim 17 or claim 18, wherein the memory unit block comprises the memory unit block of any one of claims 7 to 9. Among the connection layers, a conductor layer for resistance reduction is formed in an upper layer or a lower layer of the connection layer which is located at a position intersecting the first word line or the second word line. Q 2 0. The memory device of claim 17 or claim 18, wherein the memory unit block comprises the memory unit block of any one of claims 7 to 9. The conductor layer or the semiconductor layer constituting the connection layer is thicker than the conductor layer or the semiconductor layer constituting the first channel region or the second channel region. (2) The memory device of claim 17 or claim 18, wherein the memory unit block includes the memory unit block of any one of claims 10 to 13 of the patent application, 100132261 1003447808-0 83 201222827 The conductor layer or the semiconductor layer constituting the connection layer is thicker than the conductor layer or the semiconductor layer constituting the first channel region and the second channel region. 2 . A method of driving a memory device, comprising: using a memory device according to any one of claims 17 to 21, wherein the memory unit block includes a patent application scope 2 The memory device of the memory unit block according to any one of the items 5 to 5, wherein the predetermined memory unit (hereinafter referred to as a selection unit, and is also referred to as a memory unit of the same memory unit block as the selection unit) Writing a message to the memory cell other than the selected cell is a non-selecting cell, wherein the first state in the non-selected cell is caused by applying at least a second state word line Von connected to the non-selected cell The second transistor is turned on (0N), and by applying a second word line ground potential connected to the selection unit, applying a higher coercive voltage Vcl than the first gate insulating layer to the first word line connected to the selection unit a first write voltage (Vw: Vw &gt; Vcl) and a second write voltage ([-Vw]: [-Vw] &lt;- which is lower than a voltage (-Vcl) to which a negative sign is added to the coercive voltage Vcl. Any one of Vcl) Message:: Write action. A method of manufacturing a memory cell block, characterized in that: a method of manufacturing a memory cell block for fabricating a memory cell block comprising: a first device for information memory having the following components a crystal: a first channel region having a first source terminal and a first terminal, and a first gate electrode for controlling a conduction state of the first channel region, and a first gate electrode formed by the first gate electrode 100132261 1003447808-0 84 201222827 The ferroelectric layer between the first channel regions constitutes a first closed insulating layer for information read/write with the following components; the second source region of the second source terminal and the second drain region of the second drain terminal - transistor: having a channel a second electrode of the conductive state of the region, and a second gate insulating layer between the shape/control (four) second pole and the second channel region, wherein the second gate electrode comprises: the first transistor and the The second transistor is connected to the second source terminal, 嗲筮a. The first source must be connected to the terminal, and the first gate electrode and the second gate and the q/pole path are each connected to a gate line, and the solid state elements connected in parallel are connected. a plurality of memory cells, wherein the plurality of memory cells 70 are configured to be connected in series, wherein the two channel regions form the first channel region and the first channel by the same process of the memory cells Connecting two adjacent connection layers among the plurality of memory units. 2 4、如申請專利範圍第2 3 方法’其中使用氧化物導電材 第一通道區域以及該連接層。. 項之記憶體單元區塊的製造 料形成該第一通道區域及該 25、如申請專利範圍第23項戋 广仏矛 項及弟24項之記億體單元 £塊的‘ la方法,盆中约传用浪种 /'肀勾使用液體材料形成構成該第一閘 也極及5兹第二閘電極的問電極 』W %徑增興構成該第一閘絕緣層 口該第二閘絕緣層的閘絕緣層’ #該導體層或半導體詹。 、6巾明專利乾圍第25項之記憶體單元區塊的製造 、、都不使用真空製程形成該閘電極層,與該閘絕 緣層,與該導體層或半導體層。 100132261 1003447808-0 85 201222827 2 7、如申請專利範圍第2 3項至第2 6項中任一項之記 憶體單元區塊的製造方法,其中均使用氧化物材料形成構 成該第一閘電極及該第二閘電極的閘電極層,與構成該第 一閘絕緣層和該第二閘絕緣層的閘絕緣層,與該導體層或 半導體層。 100132261 1003447808-0 862 4. The method of claim 2, wherein the first conductive region of the oxide conductive material and the connecting layer are used. The manufacturing of the memory cell block of the item forms the first channel region and the 25th method of the 23rd item of the patent application scope, the 戋 仏 仏 及 及 及 及In the middle of the wave type / '肀 hook using the liquid material to form the first gate and the fifth electrode of the second gate electrode" W% diameter increase constitutes the first gate insulation layer the second gate insulation Layer of gate insulating layer ' # the conductor layer or semiconductor Zhan. The manufacture of the memory cell block of the 25th patent circumstance No. 25 does not use a vacuum process to form the gate electrode layer, the gate insulating layer, and the conductor layer or the semiconductor layer. The method for manufacturing a memory cell block according to any one of claims 2 to 2, wherein an oxide material is used to form the first gate electrode and a gate electrode layer of the second gate electrode, and a gate insulating layer constituting the first gate insulating layer and the second gate insulating layer, and the conductor layer or the semiconductor layer. 100132261 1003447808-0 86
TW100132261A 2010-09-10 2011-09-07 Memory cell block, manufacturing method therefor, memory device, and method for driving a memory device TW201222827A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010203783 2010-09-10

Publications (1)

Publication Number Publication Date
TW201222827A true TW201222827A (en) 2012-06-01

Family

ID=45810704

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100132261A TW201222827A (en) 2010-09-10 2011-09-07 Memory cell block, manufacturing method therefor, memory device, and method for driving a memory device

Country Status (3)

Country Link
JP (1) JPWO2012033106A1 (en)
TW (1) TW201222827A (en)
WO (1) WO2012033106A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9876067B2 (en) 2013-03-22 2018-01-23 Japan Science And Technology Agency Dielectric layer and manufacturing method of dielectric layer, and solid-state electronic device and manufacturing method of solid-state electronic device
US11200950B2 (en) 2017-04-28 2021-12-14 Micron Technology, Inc. Programming enhancement in self-selecting memory
TWI754793B (en) * 2018-02-09 2022-02-11 美商美光科技公司 Dopant-modulated etching for memory devices
US11404637B2 (en) 2018-02-09 2022-08-02 Micron Technology, Inc. Tapered cell profile and fabrication
US11545625B2 (en) 2018-02-09 2023-01-03 Micron Technology, Inc. Tapered memory cell profiles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2724150B2 (en) * 1988-03-15 1998-03-09 株式会社東芝 Nonvolatile semiconductor memory device
JP3704947B2 (en) * 1998-04-15 2005-10-12 セイコーエプソン株式会社 Method for manufacturing field effect transistor
JP2000340759A (en) * 1999-05-31 2000-12-08 Sony Corp Nonvolatile semiconductor memory and drive method therefor
JP2007157982A (en) * 2005-12-05 2007-06-21 Seiko Epson Corp Transistor-type ferroelectric memory and method of manufacturing same
WO2010097862A1 (en) * 2009-02-24 2010-09-02 パナソニック株式会社 Semiconductor memory cells and manufacturing method therefor as well as semiconductor memory devices
JP2010267704A (en) * 2009-05-13 2010-11-25 Panasonic Corp Semiconductor memory cell and method of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9876067B2 (en) 2013-03-22 2018-01-23 Japan Science And Technology Agency Dielectric layer and manufacturing method of dielectric layer, and solid-state electronic device and manufacturing method of solid-state electronic device
TWI621142B (en) * 2013-03-22 2018-04-11 Japan Science & Tech Agency Method for manufacturing dielectric layer and dielectric layer, and method for manufacturing solid state electronic device and solid state electronic device
US11200950B2 (en) 2017-04-28 2021-12-14 Micron Technology, Inc. Programming enhancement in self-selecting memory
US11735261B2 (en) 2017-04-28 2023-08-22 Micron Technology, Inc. Programming enhancement in self-selecting memory
TWI754793B (en) * 2018-02-09 2022-02-11 美商美光科技公司 Dopant-modulated etching for memory devices
US11404637B2 (en) 2018-02-09 2022-08-02 Micron Technology, Inc. Tapered cell profile and fabrication
US11545625B2 (en) 2018-02-09 2023-01-03 Micron Technology, Inc. Tapered memory cell profiles
US11800816B2 (en) 2018-02-09 2023-10-24 Micron Technology, Inc. Dopant-modulated etching for memory devices

Also Published As

Publication number Publication date
JPWO2012033106A1 (en) 2014-01-20
WO2012033106A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP7054410B2 (en) Semiconductor device
JP7341271B2 (en) semiconductor equipment
JP7455935B2 (en) semiconductor equipment
KR101968435B1 (en) Semiconductor device, magnetic tunnel junction and manufacturing method thereof
JP6968139B2 (en) Semiconductor device
EP2082426B1 (en) Correlated electron memory
TWI307158B (en) Ferroelectric memory, multivalent data recording method and multivalent data reading method
US7872900B2 (en) Correlated electron memory
TW201222827A (en) Memory cell block, manufacturing method therefor, memory device, and method for driving a memory device
WO2010131310A1 (en) Semiconductor memory cell and method for manufacturing same
TW201042731A (en) Buried silicide structure and method for making
KR20180002940A (en) Method for manufacturing magnetic memory device
JP2009152235A (en) Ferroelectric stacked-layer structure and fabrication method thereof, field effect transistor and fabrication method thereof, and ferroelectric capacitor and fabrication method thereof
Kaneko et al. A dual-channel ferroelectric-gate field-effect transistor enabling NAND-type memory characteristics
JPH07502150A (en) integrated circuit memory
JP2013026459A (en) Non-volatile resistance variation element
WO2010131311A1 (en) Semiconductor memory cell and method for manufacturing same
JP2006210525A (en) Memory device and circuit element
JP5415613B2 (en) Field effect transistor and memory device
Singh et al. Lead-zirconate-titanate based metal/ferroelectric/high-K/semiconductor (M/Fe/High-K/S) gate stack for non-volatile memory applications
CN113363384B (en) HfO 2 Ferroelectric tunnel junction device and method for manufacturing the same
JP2003060170A (en) Ferroelectric memory cell using oxide semiconductor
JP5140936B2 (en) Nonvolatile memory and manufacturing method thereof
JP2014195111A (en) Nonvolatile resistance change element
JP2004172483A (en) Nonvolatile storage device and multi-value storing method using the device