TW201221939A - Portable optical detection device - Google Patents

Portable optical detection device Download PDF

Info

Publication number
TW201221939A
TW201221939A TW99139860A TW99139860A TW201221939A TW 201221939 A TW201221939 A TW 201221939A TW 99139860 A TW99139860 A TW 99139860A TW 99139860 A TW99139860 A TW 99139860A TW 201221939 A TW201221939 A TW 201221939A
Authority
TW
Taiwan
Prior art keywords
portable optical
tested
detecting device
wafer
module
Prior art date
Application number
TW99139860A
Other languages
Chinese (zh)
Inventor
Yu-Cheng Lin
Ho-Chien Lin
Shian-Chin Lai
Jheng-Kai Sun
Original Assignee
Firstep Biores Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Firstep Biores Inc filed Critical Firstep Biores Inc
Priority to TW99139860A priority Critical patent/TW201221939A/en
Publication of TW201221939A publication Critical patent/TW201221939A/en

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

The present invention relates to a portable optical detection device. The portable optical detection device includes: a case, a light source, a cassette of replaceable chip, an optically colorful sensor and a microcontroller. The cassette of replaceable chip can be put in the case, and have at least one detecting chip for loading at least one kind of sample receiving the light from the light source. The optically colorful sensor is used for receiving reflected light of the detecting chip and then outputting a sensor signal. The microcontroller is used for receiving the sensor signal to produce a result of measurement. The portable optical detection device of the invention not only significantly increases the detection accuracy, but also shortens the detection time such that the measurement process is simplified. Furthermore, the portable optical detection device of the invention is a portable, real-time measurement, and the cost and power consumption in the portable optical detection device can be decreased.

Description

201221939 六、發明說明: 【發明所屬之技術領域】 本發明較-種光學檢測裳置,詳言之,係關於―㈣ 攜式光學檢測裝置。 【先前技術】 習知用於生醫檢測之裝置有反射式影像顧取與分析裝 置,該習知裝置利用一可移動裝置來承載光學感測器與多 孔盤’移動裝置可以做出上下左右不同方向之相對位移,201221939 VI. Description of the Invention: [Technical Field to Which the Invention Is Applicable] The present invention relates to an optical detection device, and more specifically, to a "fourth" portable optical detecting device. [Prior Art] A device for biomedical detection has a reflective image capturing and analyzing device that uses a movable device to carry an optical sensor and a porous disk. The mobile device can be made up and down and left and right. Relative displacement of direction,

用以移動感測器來進行掃瞒。該習知裝置由電腦控制移動 裝置使光學感測器和承載多孔盤的載盤在γ方向移動就 可里出多孔盤上-整排的待測點;接著再控制反射鏡的反 射角度並進行同樣步驟移動,如此重複數次即完成所有多 孔盤上待測點的量測,擷取多孔盤上所有深孔内之微陣列 反射影像,並可藉由一電腦程式比對影像資料與預設圖案 而進行分析。 由於習知的光學感測公士 于a利刀析,、旎早點進行且需機械式移動Used to move the sensor for broom. The conventional device is controlled by a computer to control the moving device so that the optical sensor and the carrier carrying the porous disk move in the γ direction to extract the entire row of the to-be-measured spot on the porous disk; then control the reflection angle of the mirror and perform The same step moves, so that the measurement of the points to be measured on all the porous disks is completed several times, the microarray reflection images in all the deep holes on the porous disk are taken, and the image data and the preset are compared by a computer program. Analyze the pattern. Because the conventional optical sensing sergeant is a sharp knife, it is carried out early and requires mechanical movement.

所以檢測時間花誊軔具。# β M x 並且s知檢測設備複雜且需要電 腦進行控制分析,較為昂貴且機動性低。 因此’有必要提供—種創新且具進步性的可搞式光學檢 測裝置,以解決上述問題。 【發明内容】 置,包括:一殼體、 一光學色彩感測器及 匣係可替換抽取地設 【s] 本發明提供一種可攜式光學檢測裝 光源 可替換晶片式抽取卡匣、 -微控制器。該可替換晶片式抽取卡 150689.doc 201221939 置於該殼體,該可替換晶片式抽取切具有至少—待測晶 片’用以裝載待測檢體,接收來自該光源之光線。該光學 色彩感測器用以接收由該待測晶片反射之光,以輸出一感 測信號。該微控帝】器用以接收該《測信號,以纟生一量測 結果。 本發明之可攜式光學檢測裝置之檢測精準度大幅提高, 且檢測反應時間大幅縮短,使量測程序簡化。再者,本發So check the time spent on cooking utensils. #β M x and s know that the detection equipment is complex and requires computer to perform control analysis, which is expensive and low in maneuverability. Therefore, it is necessary to provide an innovative and progressive optical inspection device to solve the above problems. SUMMARY OF THE INVENTION The present invention provides a portable optical detection light source that can replace a wafer-type extraction card, and a micro-sensor, an optical color sensor, and a tether-removable extraction device. Controller. The replaceable wafer-type decimating card 150689.doc 201221939 is placed in the housing, the replaceable wafer-type extracting cut having at least a wafer to be tested for loading a specimen to be tested, and receiving light from the source. The optical color sensor is configured to receive light reflected by the wafer to be tested to output a sensing signal. The micro-control device is configured to receive the "test signal" to generate a measurement result. The detection accuracy of the portable optical detecting device of the invention is greatly improved, and the detection reaction time is greatly shortened, so that the measurement procedure is simplified. Furthermore, this issue

明之可攜式光學檢測裝置為攜帶<,方便即時量測,且其 成本及功率消耗大幅降低。 【實施方式】 參考圖1 ’其顯示本發明可攜式光學檢測裝置之方塊示 思圖。參考圖2,其顯示本發明可攜式光學檢測裝置之上 視示,。圖參考圖3,其顯示本發明可攜式光學檢測裝置 之底面示意圖。 檢測裝置1 0包括 配合參考圖1至圖3,本發明之可攜式光學 •一殼體17、一光源11、一可替換晶片式 抽取卡g 12、-光學色彩感測器i 3及—微控制器夏*。 由二原色感應原理可知,如果能夠知道構成各種顏色的 一原色的值,就能夠知道所測試物體的顏色。對於色彩感 测盗來說,當選定一個顏色濾波器時,它只允許某種特定 的原色通過,阻止其他原色的通過,例如當選擇紅色濾波 器時入射光中只有紅色可以通過,藍色和綠色都被阻 止,這樣就可以得到紅色光的光強(R值);同理,選擇其 他的濾波器,就可以得到藍色光⑺值)和綠色光((}值)的光 強。通過廷二個RGB值就可以分析投射到光學色彩感測器 [S] I50689.d〇( 201221939 上的光的顏色。因&,在本實施例中,本發明的光源⑽ 為一白光LED照射測試物體,由於白光LED内含有rgb三 原色’透過光源反射原理即可偵測出測試物體反射出rgb 強度值,且LED的照射開關由該微控制器14來控制,量測 時機、亮度與照射位置都可以進行控制變化。 該可替換晶片式抽取卡匣12係可替換抽取地設置於該殼 體17,該可替換晶片式抽取卡匣12具有至少一待測晶片 121 ’用以裝載待測檢體,接收來自該光源丨丨之光線。The portable optical detection device of the Ming is portable & convenient for real-time measurement, and its cost and power consumption are greatly reduced. [Embodiment] Referring to Fig. 1', a block diagram of a portable optical detecting device of the present invention is shown. Referring to Figure 2, there is shown the above-described portable optical detecting device of the present invention. Referring to Figure 3, there is shown a schematic view of the underside of the portable optical detecting device of the present invention. The detecting device 10 includes the portable optical housing 17 , a light source 11 , a replaceable chip extracting card g 12 , an optical color sensor i 3 and the present invention with reference to FIGS. 1 to 3 . Microcontroller summer*. According to the principle of the two primary color sensing, if the value of a primary color constituting each color can be known, the color of the object to be tested can be known. For color-sensing pirates, when a color filter is selected, it only allows a certain primary color to pass, preventing the passage of other primary colors. For example, when the red filter is selected, only red in the incident light can pass, blue and The green color is blocked, so that the light intensity (R value) of the red light can be obtained; similarly, by selecting other filters, the light intensity of the blue light (7) value and the green light ((} value) can be obtained. The two RGB values can be analyzed for the color of the light projected onto the optical color sensor [S] I50689.d〇 (201221939. In this embodiment, the light source (10) of the present invention is a white LED illumination test. The object, because the white LED contains rgb three primary colors, can reflect the rgb intensity value reflected by the test object through the light source reflection principle, and the LED illumination switch is controlled by the microcontroller 14, and the measurement timing, brightness and illumination position are all Controllable changes can be made. The replaceable wafer-type extraction cassette 12 is replaceably and detachably disposed on the housing 17. The replaceable wafer-type extraction cassette 12 has at least one wafer to be tested 121' Loading the sample to be tested and receiving light from the source.

在本實施例中,該殼體17具有至少一第一接合單元 171,該可替換晶片式抽取卡匣12具有至少一第二接合單 疋122,用以與該第一接合單元171接合,使該可替換晶片 式抽取卡匣12設置於該殼體I?。 其中,該第一接合單元171具有一彈性元件172及一圓形 凸塊173,該第二接合單元122為半圓弧形凹槽用以容納 該圓形凸塊173。經由該彈性元件172之伸縮,可使該圓形 凸塊173恰設置於該第二接合單元122之半圓弧形凹槽内, 或退出該該第二接合單元122之半圓弧形凹槽内使得該 可替換晶片式抽取卡匣12可替換抽取地設置於該殼體丨7。 該可替換晶片式抽取卡匣丨2具有複數個待測晶片121, 以陣列排列’每一待測晶片i 2 !具有一檢測孔(圖未示出), 用以裝載待測檢體及反應試劑。該可替換晶片式抽取卡匣 12另包括至少一透明玻璃(圖未示出),設置於該待測晶片 121上,該可替換晶片式抽取卡匣12另包括一光學透鏡(圖 未示出)’設置於該透明玻璃上且對應該檢測孔之相對位 [S3 J 50689.doc 201221939 置。 此外’並在該可替換晶以抽取卡⑽上可設計三個置 放陣列晶片(例如7x7)之凹槽,以利測試進行中方便替換不 同待檢測之陣列待測晶片。另外,設計多點微陣列待測晶 片褒載待測檢體以進行量測’在矩形待測晶片上利用黃光 微影製程造出微米等級檢测孔,並依序緊密排列,且孔與 孔之間間隔固定並排形成微陣列待測晶片。在待測晶片上 要把待測檢體以及反應試劑共同注入各孔之中,等待時間 ^變色,但因孔洞十分微小,所以注入孔後整體陣列待測 日曰片較佳地再經由透明矽玻璃緊密覆蓋。透明矽玻璃上對 f待測晶片孔洞位置裝載微小光學透鏡,使接下來的光學 里測Λ號旎更明確。值得注意的是由於檢測需要極為精 役,稍有灰塵或玻璃髒汙都會對整體檢測結果產生重大影 響,所以在微陣列待測晶片製作過程中需保持無塵無菌, 且檢體注入部分要在限定時限内完成,才能保證後續量測 結果正確性。 參考圖4,其顯示本發明可攜式光學檢測裝置之檢測示 意圖。配合參考圖1及4,該光學色彩感測器丨3用以接收由 该待測晶片1 2 1反射之光’以輸出一感測信號。該微控制 器14用以接收該感測信號,以產生一量測結果。 參考圖5 ’其顯示本發明光學色彩感測器之方塊示意 圖。該光學色彩感測器13包括一光電二極體陣列13 1及一 電流頻率轉換器1 32 ’該光電二極體陣列1 3 1包括複數個光 電二極體,該等光電二極體具有複數個紅色濾波器、複數 [ \ 50689.doc 201221939 個綠色濾波器、複數個藍色濾波器及複數個透光二極體。 在本實施例中,該光電二極體陣列1 3 1包括64個光電二極 體:1 6個紅色濾波器、1 6個綠色濾波器、16個藍色濾波器 及16個透光二極體。16個透光二極體可以透過全部光資 訊。這些光電二極體在晶片内是交叉排列的,能夠最大限 度地減少入射光輻射的不均勻性,從而增加顏色識別的精 確度。In this embodiment, the housing 17 has at least one first engaging unit 171 having at least one second engaging unit 122 for engaging with the first engaging unit 171. The replaceable wafer-type extraction cassette 12 is disposed in the housing I?. The first engaging unit 171 has a resilient member 172 and a circular projection 173. The second engaging unit 122 is a semi-circular recess for receiving the circular projection 173. The circular protrusion 173 can be disposed in the semi-circular groove of the second joint unit 122 or exit the semi-circular groove of the second joint unit 122 by the expansion and contraction of the elastic member 172. The replaceable wafer-type extraction cassette 12 is replaceably provided to the housing cassette 7. The replaceable wafer-type extraction cassette 2 has a plurality of wafers 121 to be tested, arranged in an array. 'Each wafer to be tested i 2 ! has a detection hole (not shown) for loading the sample to be tested and reacting Reagents. The replaceable wafer-type extraction cassette 12 further includes at least one transparent glass (not shown) disposed on the wafer 121 to be tested, and the replaceable wafer-type extraction cassette 12 further includes an optical lens (not shown) ) 'Set on the transparent glass and correspond to the relative position of the hole [S3 J 50689.doc 201221939. Further, three recesses for arranging the array wafer (e.g., 7x7) can be designed on the removable crystal to extract the card (10) to facilitate the replacement of the array of wafers to be tested which are to be tested in the test. In addition, the multi-dot micro-array to be tested is designed to carry the test object to be measured. The micro-scale detection holes are formed on the rectangular wafer to be tested by the yellow lithography process, and are closely arranged in sequence, and the holes and holes are arranged. The microarrays are to be tested side by side to form a microarray to be tested. On the wafer to be tested, the test object and the reaction reagent are injected into each hole together, and the waiting time is changed. However, since the hole is very small, the entire array of the test piece to be tested after the injection hole is preferably transparent. The glass is tightly covered. On the transparent glass, the micro-optical lens is loaded on the hole of the wafer to be tested, so that the next optical Λ is more clear. It is worth noting that because the inspection needs to be extremely intensive, a little dust or dirty glass will have a significant impact on the overall test results. Therefore, it is necessary to maintain dust-free sterility during the fabrication of the microarray to be tested, and the sample injection part should be The completion of the limited time limit will ensure the correctness of the subsequent measurement results. Referring to Figure 4, there is shown a detection schematic of the portable optical detecting device of the present invention. Referring to Figures 1 and 4, the optical color sensor 丨3 is configured to receive light reflected by the wafer to be tested 1 2 1 to output a sensing signal. The micro controller 14 is configured to receive the sensing signal to generate a measurement result. Referring to Figure 5', there is shown a block diagram of an optical color sensor of the present invention. The optical color sensor 13 includes a photodiode array 13 1 and a current frequency converter 1 32 ′. The photodiode array 13 1 includes a plurality of photodiodes having a plurality of photodiodes. Red filters, complex [ \ 50689.doc 201221939 green filters, a plurality of blue filters and a plurality of light-transmitting diodes. In this embodiment, the photodiode array 13 1 includes 64 photodiodes: 16 red filters, 16 green filters, 16 blue filters, and 16 transparent dipoles. body. The 16 light-transmitting diodes can pass all the light information. These photodiodes are cross-aligned within the wafer to minimize the unevenness of incident light radiation, thereby increasing the accuracy of color recognition.

該電流頻率轉換器132連接至該光電二極體陣列13ι,用 以輸出該感測信號’其中該感測信號為RGB值。該光學色 彩感測器13的輸出信號為帶有RGB結果訊息的數位量,可 以驅動標準的TTL或MOS邏輯輸入,因此可直接與微控制 器14或其他邏輯電路相連接。由於輸出的是數位量並且 能夠實現每個彩色通道10.位元以上的轉換精度,因而不再 需要A/D轉換電路,使電路變得更簡單,並可直接與微控 制器連接溝通,即時把量測結果進行處理並輸出。The current to frequency converter 132 is coupled to the photodiode array 13i for outputting the sensed signal 'where the sensed signal is an RGB value. The output signal of the optical color sensor 13 is a digital quantity with an RGB result message, which can drive a standard TTL or MOS logic input, and thus can be directly connected to the micro controller 14 or other logic circuits. Since the output is digital and can achieve conversion accuracy of more than 10. bit per color channel, the A/D conversion circuit is no longer needed, making the circuit simpler and directly communicating with the microcontroller. The measurement results are processed and output.

配合參考圖1及4,該微控制器14用以 GB 測灰階值,用讀㈣表μ定灰階值比較,、= 生該待測檢體之量測結果。在本實施例中,該微控制器Μ 包括-模組控制器141及一信號處理器⑷,該帛組控制器 14 1用以控制5亥光源! !及該光學色彩感測器1 3,該模組控 制器⑷包括:一光源開關模組、—光源照度模組、_: 學色彩感測器控制模組、—量測進行模組、一數值存取模 組及一輸出模組。 、 該信號處理器142用以接 收該數值存取模組之rGB值 150689.doc [S] 201221939 並轉換為LAB,在LAB中去色,使A、B均為零,並依據該 值輸出與RGB等值之該量測灰階值,再依據該量測灰階值 向灰度空間轉換’轉換後之灰階值,用以與該對照檢體表 之設定灰階值比較,以產生該待測檢體之量測結果。該對 照檢體表係為已經過實驗而設定的檢體表。本發明可攜式 光學檢測裝置10另包括一顯示裝置15,連接該微控制器14 之該輸出模組,以顯示量測結果。 利用本發明可攜式光學檢測裝置,可以達成量測檢體和 試劑反應後的色彩訊息,再將色彩RGB訊息轉成灰階值。. 參考圖ό ’其顯示檢體加入不同反應試劑及經過不同時間 所呈現的顏色變化示意圖,四種檢體試劑由左至右分別 為.AuNPs、AgNPs、PtNPs、Sliver Enhance ;透過圖中 可清楚發現檢體加試劑後反應色彩有顯著的差異。且隨著 放置時間的不同(0-16 min)反應色彩也越來越深,如此就 可以透過光學色彩感測器判斷出各點的RGB值。 圖7為圖6之檢體試劑之rGB色彩訊息轉成灰階值表之關 係圖,採用8-bit Grayscale把色彩RGB值轉成256個灰階 值,並針對檢體反應試劑結果輸出。圖中所示不同的色彩 值其灰階值有所差異,也可看出各檢測點的差異程度,再 配合預先設定的對照組灰階色碼表就能比對出檢體結果。 本發明之可攜式光學檢測裝置之檢測精準度大幅提高, 且檢測反應時間大幅縮短,使量測程序簡化。再者,本發 明之可攜式光學檢測裝置為攜帶式,方便即時量測,且其 成本及功率消耗大幅降低。 [S] 150689.doc 201221939 惟上述實施例僅為說明本發明之原理及其功效,而非用 以限制本發明。因此,習於此技術之人士對上述實施例進 灯修改及變化仍不脫本發明之精神。本發明之權利範圍應 如後述之申請專利範圍所列。 【圖式簡單說明】 圖1顯示本發明可攜式光學檢測裝置之方塊示意圖; 圖2顯示本發明可攜式光學檢測裝置之上視示意圖; 圖3顯示本發明可攜式光學檢測裝置之底面示意圖; 圖4顯示本發明可攜式光學檢測裝置之檢測示意圖; 圖5顯示本發明光學色彩感測器之方塊示意圖; 圖6顯示檢體加入不同反應試劑及不同置放時間所呈現 的顏色變化示意圖;及 圖7為圖6之檢體試劑之RGB色彩訊息轉成灰階值表之關 係圖。 【主要元件符號說明】 10 本發明之可攜式光學檢測裝置 11 光源 12 可替換晶片式抽取卡g 13 光學色彩感測器 14 微控制器 15 顯示裝置 17 殼體 121 待測晶片 122 第二接合單元 I50689.doc •10· 201221939 13 1 光電二極體陣列 132 電流頻率轉換器 141 模組控制器 142 信號處理器 171 第一接合單元 172 彈性元件 173 圓形凸塊 150689.docReferring to Figures 1 and 4, the microcontroller 14 is used to measure the gray scale value of the GB, compare the gray scale value with the read (four) table, and = the measurement result of the sample to be tested. In this embodiment, the microcontroller 包括 includes a module controller 141 and a signal processor (4) for controlling the 5 MW source and the optical color sensor 13 The module controller (4) comprises: a light source switch module, a light source illumination module, a _: a learning color sensor control module, a measurement execution module, a numerical access module and an output module. The signal processor 142 is configured to receive the rGB value of the value access module 150689.doc [S] 201221939 and convert it to LAB, and remove the color in the LAB, so that both A and B are zero, and output according to the value. Measure the gray scale value of the RGB equivalent value, and then convert the converted gray scale value to the gray space according to the gray scale value to compare with the set gray scale value of the comparison sample table to generate the gray scale value The measurement result of the sample to be tested. The pair of examination forms is a sample table that has been experimentally set. The portable optical detecting device 10 of the present invention further includes a display device 15 connected to the output module of the microcontroller 14 to display the measurement result. By using the portable optical detecting device of the present invention, it is possible to measure the color information after the reaction of the sample and the reagent, and then convert the color RGB message into a grayscale value. Refer to the figure ό 'It shows the sample with different reagents and the color change presented at different times. The four sample reagents are from left to right. AuNPs, AgNPs, PtNPs, Sliver Enhance; It was found that there was a significant difference in reaction color after the sample was added with the reagent. And the color of the reaction is deeper and deeper with different placement time (0-16 min), so that the RGB value of each point can be judged by the optical color sensor. Fig. 7 is a diagram showing the relationship between the rGB color information of the sample reagent of Fig. 6 converted into a gray scale value table, and the color RGB value is converted into 256 gray scale values by 8-bit Grayscale, and is output for the sample reaction reagent result. The different color values shown in the figure have different grayscale values. It can also be seen that the degree of difference between the detection points can be compared with the preset grayscale color code table of the control group. The detection accuracy of the portable optical detecting device of the invention is greatly improved, and the detection reaction time is greatly shortened, so that the measurement procedure is simplified. Furthermore, the portable optical detecting device of the present invention is portable, convenient for instant measurement, and its cost and power consumption are greatly reduced. [S] 150689.doc 201221939 The above examples are merely illustrative of the principles of the invention and its utility, and are not intended to limit the invention. Therefore, those skilled in the art can make modifications and variations to the above embodiments without departing from the spirit of the invention. The scope of the invention should be as set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing the portable optical detecting device of the present invention; FIG. 2 is a top view of the portable optical detecting device of the present invention; FIG. 3 is a bottom view of the portable optical detecting device of the present invention; Figure 4 shows a schematic diagram of the detection of the portable optical detecting device of the present invention; Figure 5 shows a block diagram of the optical color sensor of the present invention; Figure 6 shows the color change exhibited by the sample with different reagents and different placement times. FIG. 7 is a diagram showing the relationship between the RGB color information of the sample reagent of FIG. 6 and the gray scale value table. [Main component symbol description] 10 Portable optical detecting device 11 of the present invention Light source 12 Replaceable wafer type extracting card g 13 Optical color sensor 14 Microcontroller 15 Display device 17 Housing 121 Chip to be tested 122 Second bonding Unit I50689.doc •10· 201221939 13 1 Photodiode array 132 Current to frequency converter 141 Module controller 142 Signal processor 171 First joint unit 172 Elastic element 173 Round bump 150689.doc

Claims (1)

201221939 七、申請專利範圍: 1 · 一種可攜式光學檢測裝置,包括: 一殼體; 一光源; —可替換晶片式抽取卡匣,可替換抽取地設置於該殼 體’該可替換晶片式抽取卡匣具有至少一待測晶片,用 以裝載待測檢體,接收來自該光源之光線; —光學色彩感測器’用以接收由該待測晶片反射之 • 光’以輸出一感測信號; 微控制器’用以接收該感測信號,以產生一量測結 果。 2.如清求項1之可攜式光學檢測裝置,其中該殼體具有至 少一第一接合單元’該可替換晶片式抽取卡匣具有至少 一第二接合單元,用以與該第一接合單元接合,使該可 替換晶片式抽取卡匣設置於該殼體。 3'如明求項2之可攜式光學檢測裝置,其中該第一接合單 • 元具有-彈性元件及-圓形凸塊,該第二接合單元為半 圓弧形凹槽,用以容納該圓形凸塊。 4·如β求項1之可攜式光學檢測裝置,其十該可替換晶片 • 式:取卡g具有複數個待測晶片,以陣列排列,每一待 測曰曰片具有一檢測孔,用以裝載待測檢體及反應試劑。 5·如4求項4之可攜式光學檢測裝置,其中該可替換晶片 式抽取卡£另包括至少—透明玻璃設置於該待測晶片 上,該可替換晶K式社&上 月式抽取卡匣另包括一光學透鏡,設置 I 150689.doc 201221939 於該透明玻璃上且對應該檢測孔之相對位置。 6_如請求項1之可攜式光學檢測裝置,其中該光學色彩感 測器包括一光電二極體陣列及一電流頻率轉換器,該光 電二極體陣列包括複數個光電二極體,該等光電二極體 具有複數個紅色濾波器、複數個綠色濾波器、複數個藍 色濾波器及複數個透光二極體,該電流頻率轉換器連接 至該光電二極體陣.列’用以輸出該感測信號,其中該感 測信號為RGB值。201221939 VII. Patent application scope: 1 · A portable optical detecting device, comprising: a casing; a light source; - a replaceable wafer type extraction cassette, which is replaceably and detachably disposed on the casing 'the replaceable wafer type The extraction cassette has at least one wafer to be tested for loading the object to be tested, and receiving light from the light source; - an optical color sensor 'for receiving the light reflected by the wafer to be tested to output a sensing a signal; a microcontroller' is configured to receive the sensed signal to generate a measurement result. 2. The portable optical detecting device of claim 1, wherein the housing has at least one first engaging unit. The replaceable wafer-type picking cassette has at least one second engaging unit for engaging the first engaging The unit is engaged such that the replaceable wafer-type extraction cassette is disposed in the housing. 3' The portable optical detecting device of claim 2, wherein the first engaging unit has an elastic member and a circular projection, and the second engaging unit is a semi-circular concave groove for receiving the Round bumps. 4. The portable optical detecting device of the β-item 1, wherein the removable chip has a plurality of wafers to be tested, arranged in an array, each of which has a detecting hole. It is used to load the sample to be tested and the reagents for reaction. 5. The portable optical detecting device of claim 4, wherein the replaceable wafer-type extracting card further comprises at least a transparent glass disposed on the wafer to be tested, the replaceable crystal K-style & last month The extraction cassette further includes an optical lens, and I 150689.doc 201221939 is disposed on the transparent glass and corresponds to the relative position of the aperture. The portable optical detecting device of claim 1, wherein the optical color sensor comprises a photodiode array and a current frequency converter, the photodiode array comprising a plurality of photodiodes, The photodiode has a plurality of red filters, a plurality of green filters, a plurality of blue filters, and a plurality of light transmissive diodes, and the current frequency converter is connected to the photodiode array. The sensing signal is outputted, wherein the sensing signal is an RGB value. 如請求項6之可攜式光學檢測裝置’其中該微控制器用 以將RGB值轉換為量測灰階值,用以與一對照檢體表之 設定灰階值比較,以產生該待測檢體之量測結果。 8.如請求項7之可攜式光學檢測裝置,其中該微控制器包 括一模組控制器及一信號處理器,該模組控制器用以控 制該光源及該光學色彩感測器,該模組控制器包括:一 元源照度模組 无源開關模組、 π罕巴衫埶測器控 制模組、-量測進行模組、一數值存取模組及一輪出模 ’’且°亥乜號處理器用以接收該數值存取模組之RGB值, 並轉換為LAB ’在LAB中去色,使A、b均為零,並依據 该值輸出與RGB等值之該量測灰階值,再依據該量測灰 階值向灰度空間轉換,轉換後之灰階值用以與該對日召 :體表之設定灰階值比較,以產生該待測檢體之量測: 9. 如請求項8之可攜式光學檢測裝置,另包括 置’連接該輸出模組,以顯示量測結果。 一顯示裝 150689.doc mThe portable optical detecting device of claim 6, wherein the microcontroller is configured to convert the RGB value into a measured grayscale value for comparison with a set grayscale value of a comparison sample table to generate the to-be-tested The measurement results of the body. 8. The portable optical detecting device of claim 7, wherein the microcontroller comprises a module controller and a signal processor, wherein the module controller is configured to control the light source and the optical color sensor, the module The group controller includes: a passive switch module for the one-source illuminance module, a control module for the π-Hundred-pad test, a measurement module, a numerical access module, and a round-out model. The processor is configured to receive the RGB value of the value access module, and convert it to LAB 'de-color in the LAB, so that both A and b are zero, and output the gray scale value corresponding to the RGB equivalent according to the value. And converting the gray scale value to the gray space according to the measurement, and the converted gray scale value is used to compare with the set gray scale value of the pair of daily calls: the body surface to generate the measurement of the sample to be tested: 9 The portable optical detecting device of claim 8, further comprising: connecting the output module to display the measurement result. A display pack 150689.doc m
TW99139860A 2010-11-19 2010-11-19 Portable optical detection device TW201221939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99139860A TW201221939A (en) 2010-11-19 2010-11-19 Portable optical detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99139860A TW201221939A (en) 2010-11-19 2010-11-19 Portable optical detection device

Publications (1)

Publication Number Publication Date
TW201221939A true TW201221939A (en) 2012-06-01

Family

ID=46725095

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99139860A TW201221939A (en) 2010-11-19 2010-11-19 Portable optical detection device

Country Status (1)

Country Link
TW (1) TW201221939A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110836873A (en) * 2018-08-15 2020-02-25 林立元 Optical measuring device
TWI726538B (en) * 2019-12-16 2021-05-01 宏碁股份有限公司 Electronic system with creative material capturing function and input device
CN113066137A (en) * 2019-12-31 2021-07-02 宏碁股份有限公司 Electronic system with material capturing function and input device
TWI822279B (en) * 2022-08-26 2023-11-11 神鐳光電股份有限公司 Detection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110836873A (en) * 2018-08-15 2020-02-25 林立元 Optical measuring device
TWI726538B (en) * 2019-12-16 2021-05-01 宏碁股份有限公司 Electronic system with creative material capturing function and input device
CN113066137A (en) * 2019-12-31 2021-07-02 宏碁股份有限公司 Electronic system with material capturing function and input device
CN113066137B (en) * 2019-12-31 2023-06-30 宏碁股份有限公司 Electronic system with authored material capturing function and input device
TWI822279B (en) * 2022-08-26 2023-11-11 神鐳光電股份有限公司 Detection method

Similar Documents

Publication Publication Date Title
EP3311163B1 (en) Micro-plate reader for elisa testing
US9389167B2 (en) Multichannel analytical instruments for use with specimen holders
JP3628727B2 (en) Video test strip reader and test strip evaluation method
CN1667418A (en) Multifunctional portable unit for measurement, analysis and diagnosis
TWI328108B (en)
JP2015520370A (en) Fisheye lens analyzer
TW201221939A (en) Portable optical detection device
CN103808918A (en) Image-sensor-based detection system of colloidal gold immunoassay
CN101592654A (en) The image analysis method of bio-detector
CN111542742B (en) Slide rack determination system
US20090292479A1 (en) Method for analyzing image from bio-detection analyzer
US9250177B2 (en) Reader for urine analysis
KR101380700B1 (en) A test table with solar cells for light-emitting components and a test method thereof
CN102297866B (en) Nano-gold quantitative detection analyzer
KR20100109196A (en) A system and method of measuring object's concentration using for transmission or reflection of light
EP3240993B1 (en) An arrangement of optical measurement
CN208984529U (en) A kind of multi-functional dry type POCT equipment
TWI487914B (en) Handheld fluorescent protein spectral sensing system
CN204255834U (en) Scan-type optical detection apparatus
JP7286558B2 (en) Inspection method, computer-readable recording medium, and standard plate
KR101339778B1 (en) Urine analysis device
CN103994974B (en) Dry type biochemical analyzer
Liu et al. Research of urine analyzer based on color sensor
CN113755311B (en) Gene chip reader
WO2018136474A1 (en) Mobile phone based fluorescent multi-well plate reader