TW201219965A - Method for correcting photomask and laser processing device - Google Patents

Method for correcting photomask and laser processing device Download PDF

Info

Publication number
TW201219965A
TW201219965A TW100126706A TW100126706A TW201219965A TW 201219965 A TW201219965 A TW 201219965A TW 100126706 A TW100126706 A TW 100126706A TW 100126706 A TW100126706 A TW 100126706A TW 201219965 A TW201219965 A TW 201219965A
Authority
TW
Taiwan
Prior art keywords
cvd
laser light
film
laser
transmittance
Prior art date
Application number
TW100126706A
Other languages
Chinese (zh)
Other versions
TWI479258B (en
Inventor
Yosuke Kusumi
Takahiro Odajima
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Publication of TW201219965A publication Critical patent/TW201219965A/en
Application granted granted Critical
Publication of TWI479258B publication Critical patent/TWI479258B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/50Mask blanks not covered by G03F1/20 - G03F1/34; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/72Repair or correction of mask defects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Chemical Vapour Deposition (AREA)
  • Laser Beam Processing (AREA)

Abstract

This invention aims to correct a halftone pattern of a photomask with lower transmissivity. By using an UV laser beam and a raw gas of chromium carbonyl gas, a CVD film is formed on a portion of a photomask 2 where a halftone pattern is to be corrected. The UV laser beam is emitted from a laser oscillator 11 for processing CVD, of which the Q switch frequency is set at a range from 1Hz to 1kHz. The radiation energy density of each pulse of the UV laser beam is above 40mJ/cm<SP>2</SP> or the radiation power density thereof is above 1MW/cm<SP>2</SP>. This invention is applicable to a laser processing device for correcting a photomask.

Description

201219965201219965

【1明所屬之技術領域】 a 本發明是關於光罩修正方法及雷射加工裝置,特別 疋關於適合使用在進行光罩之半色調圖形的修正的情況 之光罩修正方法及雷射加工裝置。 【先前技術】 ^ 去係使用雷射 CVD(Chemical Vapor Deposition) 法來作為—種光罩缺陷部的修正方法(參照例如專利文 獻1)。 又’習知於光罩之半色調圖形的缺陷部之修正時之 CVD膜的成膜步驟中,係使用例如q開關_ : 雷 射或Q開關ND: YAG雷射的四次諧波(FHG、波長263nm 或266nm)。藉由將雷射光的強度減低(例如每—脈衝的 知、射此量密度為10〜3〇mj/cm2)’且將作為原料氣體的六 羰化鉻氣體的濃度降低,能一面利用原料氣體的供應量 大致,控制成膜速度,一面沉積CVD膜。如此—來,cvd 膜的透過率分布變得不易受到雷射光之強度分布的影響 ’而能進行透過率大致均一的CVD膜的成膜。7 β 、人,由於 成膜速度低(例如〇.5nm/s左右)’所以可容易逸〜 刀%仃透過率 的微調整。 又’ Q開關頻率係設定在例如雷射光之早 卞岣輪出呈 最大的2〜4kHz。 [先前技術文獻] [專利文獻] [專利文獻1]日本特開2007-232964號公報 201219965 【發明内容】 [發明所欲解決的課題] 然而,C ύ d rvn胺μ 膜的透過率Τ與膜厚d的關係為利用 CVD膜的反射 Α中,眘防 千R、吸收係數α,並藉由下式(1)求得( 以透過率於在CVD膜產生的多重干涉的影響,所 丁—,…由以式(1)求得之值而有所增減)。 1 = 〇-R)xe-ad 由式⑴可^ ...⑴ 奴., 侍知膜厚d愈厚則透過率T愈小,吸收係 歎a恕小則裱 ^」透過率T愈大。[Technical Field] The present invention relates to a mask correction method and a laser processing apparatus, and more particularly to a mask correction method and a laser processing apparatus which are suitable for use in the case of performing correction of a halftone pattern of a mask . [Prior Art] ^ A laser CVD (Chemical Vapor Deposition) method is used as a method of correcting a defect portion of a reticle (see, for example, Patent Document 1). Further, in the film forming step of the CVD film in the case of correcting the defective portion of the halftone pattern of the photomask, for example, q-switch _: laser or Q-switch ND: YAG laser fourth harmonic (FHG) is used. , wavelength 263nm or 266nm). By reducing the intensity of the laser light (for example, the amount of the pulse per pulse is 10 to 3 〇mj/cm 2 ) and reducing the concentration of the chromium hexacarbonyl gas as the material gas, the raw material gas can be utilized. The supply amount is roughly controlled, and the film formation speed is controlled, and a CVD film is deposited on one side. As a result, the transmittance distribution of the cvd film is less susceptible to the intensity distribution of the laser light, and the film formation of the CVD film having a substantially uniform transmittance can be performed. 7 β and human, because the film formation rate is low (for example, 〇.5nm/s or so), it is easy to easily adjust the 仃%% transmittance. Further, the Q-switching frequency is set to, for example, a maximum of 2 to 4 kHz of the morning light of the laser light. [Prior Art] [Patent Document 1] [Patent Document 1] JP-A-2007-232964A No. 201219965 [Disclosure] [Problems to be Solved by the Invention] However, the transmittance and film of the C ύ d rvn amine μ film The relationship of the thickness d is the reflection Α using the CVD film, and the thousand R and the absorption coefficient α are discriminated against, and are obtained by the following formula (1) (in terms of transmittance, the influence of multiple interferences generated in the CVD film, , ... is increased or decreased by the value obtained by the formula (1)). 1 = 〇-R)xe-ad From the formula (1) can be ... (1) slave., the thicker the film thickness d is, the smaller the transmittance T is, the smaller the absorption system is, the smaller the transmission rate is. .

藉由上述A „ TTT/r, 白知成膜方法所獲得的CVD膜是以氧化The CVD film obtained by the above A „ TTT/r, the white film formation method is oxidized.

鉻 III(Cr2〇3)A 、. 主成分。以氧化鉻III(Cf2〇3)為主成分的 CVD膜’對於巫 _ 一 、f 面 ^示器(FPD(Flat Panel Display))用光 罩之曝光波長(水銀的亮線丨線(365nm)、h線(4〇5nm 線(436請))的°及收倍ϋ。因此,對於作為目桿的透 過率τ’所需的膜厚d變厚。 透 例如’對以氧化鉻ΠΙ為主成分的CVD膜之i線的 吸收係數約9xi Gkm.1左右,為了將對;線的透過率言1 40/ ’所需的膜厚肖9Gnm,為了將透過率設成 所需的膜厚約25〇nm。 〇 ’ 另一方面,一旦CVD膜的膜厚變厚,則在將修正 色調圖形之際所成膜的CVD膜藉ZAp加工予以整形時 會產生裂痕,而在之後的洗淨等步驟令會有cvd膜剝離 之虞。所以,上述習知的CVD成膜方法難以應用於對於 1線的透過率為40%以下之半色調圖形的修正。 本發明係鑒於如此的狀況而完成者,係可進行 透過率之光罩的半色調圖形之修正的發明。 &amp; 201219965 [用以解決課題的手段] 本發明之一態樣的光罩修正方法,係進行光罩修正 的方法’其特徵在於:使用紫外線雷射光及由六羰化鉻 氣體所構成的原料氣體而於前述光罩之半色調圖形的修 正部分形成CVD膜’該紫外線雷射光係從q開關頻率設 疋在1 Hz至1 kHz範圍内的雷射振盪器射出,且是每一 脈衝的照射能量密度為40mJ/cm2以上或照射功率密度 為lMW/cm2以上的紫外線雷射光。 於本發明之一態樣中,於光·罩之半色調圖形的修正 部分形成金屬鉻膜質的CVD膜。 因此,可進行更低透過率之光罩之半色調圖形的修 正0 此苗射振盪器係藉由例如可激發連續波(cw (Continuous Wave))的q開關Nd : YLF雷射所構成。此 紫外線雷射光係設為例如q開關Nd : YLF雷射之四次諧 波(FHG、振盈波長263nm)的雷射光。 於此光罩修正方法中,能以使用脈衝寬度為4〇ns以 下且照射功率密度為1MW/cm2以上的紫外雷射光、或脈 衝寬度超過40ns且每一脈衝的照射能量密度超過 40mJ/cm2的紫外線雷射光的方式來進行。 藉此,不受限於紫外線雷射光的脈衝寬度,而可進 行更低透過率之光罩之半色調圖形的修正。 本發明之一態樣的雷射加工裝置,係進行光罩修正 的裝置’其特徵在於包含:q帛關雷射振盪手段,係振 盪紫外線雷射光;原料氣體供應手段,係將由六羰化鉻 201219965 氣體所構成的原料氣體 &amp; 體供應至刖述光罩之半色調圖形的 二附近,·及雷射控制手段,係控制前述Q開關雷 :振盛手段的關頻率、以及紫外線雷射光之每一脈 衝的照射能量$ $ β i # a 在x及…、射功率费度;將前述Q開關雷射 振盛手段的Q開關頻率設定在1Hzj_ “Hz範圍内,將 紫外線雷射光之每一脈衝的照射能量密度設定在 4〇mJ/Cm2以上或將紫外線雷射光之照射功率密度設定在 道数^以上,而對前述修正部分照射紫外線雷射光, 以於前述修正部分產生Cvd膜。 於本發明之一態樣,其中於光罩之半色調圖形的修 正部分形成金屬鉻膜質的CVD膜。 如此一來,可進行更低透過率之光罩之半色調圖带 的修正。 少 此Q開關雷射振盪手段係藉由例如可激發連續波 (CW(Continuous Wave))的 Q 開關 Nd : YLF 雷射所構成 。此紫外線雷射光係設為例如q開關Nd : YLF堂_&amp;+ 审财之四 次错波(FHG、振盪波長263nm)的雷射光。此原料氣體供 應手段係藉由例如氣體單元及原料氣體供應-排氣單— 所構成。此雷射控制手段係藉由例如電腦或各種 。。 理益 所構成。 [發明效果] 圖形。 率之光 依據本發明之一態樣,能修正光罩的半色言周 特別是’依據本發明之一態樣,能進行更低透過 罩之半色調圖形的修正。 201219965 【實施方式】 [發明之最佳實施形態] 以下說明用以實施本發明的形態(以 僻貫施形能) 。又,利用以下的順序來進行說明。 … 1. 實施形態 2. 變形例 &lt; 1.實施形態&gt; [雷射加工裝置的構成例] 第1圖係表示應用本發明之雷射加肚 衣罝 1 之一眚 施形態的方塊圖。雷射加工裝置1係用以星 一夏 了 有半辛亡固 圖形之光罩2進行修正的裝置》雷射加 &amp; 丄衣置1係 勹 含CVD加工用雷射振盪器1 1、雷射昭 〜 ^ 田π,、、、射強度岣— 學系12、ZAP加工用雷射振盈器13、雷射照射強户j 化光學系14、可調狹縫1 5、成像加工光風 又句一 干乐16、氧體 單元1 7、原料氣體供應-排氣單元1 8、尖罢^ 尤卓保持器丨9、 XY工作台20、透射式照明21、透射式照明透鏡u、a 察光學系23、探測光源24、透過光強度測量琴^ 制部26的方式構成。 &amp; # CVD加工用雷射振盈器丨係藉由例如可激發連續波 (CW(Continuous Wave))的 Q 開關 Nd : γτ f Φ a w I l r由射所構成 ’可振盪並射出四次諧波(FHG、振盪波長263nm)的雷射 光(以下亦稱CVD雷射光)。 雷射照射強度均一化光學系1 2係用以使通過可調 狹縫1 5之CVD雷射光的強度分布大致均一的光學系。 例如雷射照射強度均一化光學系12係利用擴束器將 201219965 CVD雷射光的束徑擴大,並使強度較弱的小束中央部射 入可調狹縫1 5的開口,藉此將通過可調狹縫1 5之CV〇 雷射光之空間方向的強度分布平均化。又,雷射照射強 度均一化光學系12藉由電流計(galvanometer)等使雷射 束搖動,以將通過可調狹縫1 5之CVD雷射光之時間方 向的強度分布平均化。再者,雷射照射強度均一化光學 系1 2具有用以調節CVD雷射光之照射功率密度的光衰 減器。 ZAP加工用雷射振盪器1 3係藉由例如可激發脈衝的 Q開關Nd : YLF雷射所構成,振盪並射出振盪重複頻率 為5 0Hz以下的三次諧波(THG、振盪波長3 5 5nm)的雷射 光(以下稱ZAP雷射光)。藉著將此近紫外光的雷射光作 為ZAP雷射光來使用,而能不損傷光罩2的玻璃基板, 能實現細微的修正加工。又,此波長在355nm附近之近 紫外光的雷射光,於進行光罩修正之修復裝置中,乃自 昔以來一般被使用作為ZAP加工用的雷射光。 雷射照射強度均一化光學系14具有與雷射照射今 度均-化光學系、12同樣的構造,可將通過可調狹縫ι 之ZAP雷射光之空間方而月主弓 ]万向及時間方向的強度分布設成i 句 又&quot;&quot;射照射強度均一化光學系、14具有用以1 節ZAP雷射光之照射功率密度的光衰減器。 下在無須特別區分CVD雷射光與ZAP雷肩 光的情況下’僅稱為雷射光。 可調狹縫1 5設罟古a Λ ,、—二 又置有兩組以兩片為一組的刀刃(knii edge),耩者調整各組 J的間隔’旎改變矩形開口的;) 小。又,可調狹縫丨5具有 、令便全體繞光軸旋轉的機構。 201219965 成像加工光學系1 6係使已通過可調狹缝1 5之雷射 光在光罩2的表面成像的光學系。成像加工光學系1 6係 由例如接物鏡14a、成像鏡(未以圖式顯示)、分光鏡(未 以圖式顯示)、形成雷射光之光路的鏡(未以圖式顯示)、 測量已通過可調狹縫15之雷射光之輸出的雷射輪出測 量器(未以圖式顯示)等所構成。又,成像加工光學系16 具有微動工作台1 6b。該微動工作台i 6b係使接物鏡i &amp; 微動,用以將雷射光所產生之可調狹缝丨5之開口的像( 即照射點),在光罩2上以既定的速度掃描。 氣體單元1 7將用以運送作為原料氣體的六羰化鉻 氣體的載體氣體(carrier gas)及沖洗氣體(purge㈣供應 至原料氣體供應-排氣單元丨8。又,氣體單元丨7將由原 料氣體供應-排氣單元18的吸取口吸取的氣體所包含的 原料氣體予以熱分解’並藉由過濾器來捕捉。又,供應 至$罩2之加工部的原料氣體的濃度係以下述方式進行 ^ 1依據&amp;制部2 6的控制來調節原料氣體之容器的溫 又、凋節所產生之原料氣體的濃度、或調節沖洗氣體及 載體氣體的流量。 技原料氣體供應-排氣單元1 8將沖洗氣體及載體氣體 供應至光罩2的加工部。原料氣體係藉由載體氣體而供 :,光罩2的加工部。沖洗氣體從光罩2的加工部去除 -又原料氣體供應-排氣單元1 8具有以使原料氣 眩不洩漏至外部的方式來吸取的吸取口,且將已吸取的 氣體供應至氣體單元1 7 , 相·仏 工早2之加工部附近 空間被保持於原料氣體環境。在光罩2之加工部附近 -10 - 201219965 空間被保持在原料氣體環境的狀態下使cvd雷射光照 射於加工部’以將CVD膜沉積於加工部。 、 又,原料氣體供應-排氣單元1δ具有透過雷射光、 觀察照明光及探測光的光圈板…冲洗氣體發揮防止該光 圈板被CVD加工的功效。 光罩保持器19搭載於ΧΥ工作台2〇上並固定光罩2 的位置。 ΧΥ工作台20依據控制部26的控制而使光罩保持器 19朝水平方向移動,並進行已保持在光罩保持器19之 光罩2之加工位置的定位。 透射式照明2i射出用以產生光罩之透過像的觀察 照明光。從透射式照明2&quot;十出的觀察照明光藉由透射式 照明透鏡22而被聚光於光罩2的表面。1,已透過光罩 2的觀察照明光藉由成像加工光學系16内的分光鏡(未 以圖式顯示)而朝觀察光學系、23的方向反射。觀察光學 =3將利用觀察照明光所查生光罩2之表面的像(以下 ^規察像)予以成像叫吏用者能經由接目鏡(未以圖式顯 不等來觀察其觀察像。又,於觀察光學系23設置攝像 兀4 ,亦能顯示藉由拍攝觀察像所獲得的影像。 探測光源24依據控制部26的控制而射出要進行光 2之曝光㈣錢之光源波長,或接近該波長之波長 工(探測光)。從探測光源24射出的探測光通過成像加 ^系M、原料氣體供應_排氣單元18的光圈板而照 、軍2。透過光罩2的探測光藉由透射式照明透鏡 被聚光並射入透過光強度測量器25。 -11- 201219965 透過光強度剩量器25測量已透過光罩2之探 強度並將表示測量結果的信號供應至控制部^。“的 又,依據控制部,&amp; &amp; 止, 透過光強度測量器25移動“Λ :::透射式^明2 1及 照明透鏡22的光輛上。 於透射式 控制部26係由例如電腦或各種處 :=加工裝置1之各部分的控制。例如,二’二 ::CVD,加工 '雷射振蘯器11的Q開關頻率或CVD ♦ 一:的脈衝寬度等。又,控制部26控制雷射照射強度 :率系12的光衰減器’以調節CVD雷射光的·;射 、在X。再者’控制部26調節ZAp加工用雷射振還 二的Q開關頻率或ZAP雷射光的脈 J制部…雷射照射強度均一化光學系、二光:減 以5周即ZAP雷射光的照射功率密度。 再者,控制部26控制成像加工光學系、16的微動工 :16b ’以調節照射點的掃描速度.。又,控制部26控 截二f單兀1 7以凋節原料氣體的濃度以及沖洗氣體及 ' a氣體的流量。再者,控制部26控制χγ工作台之〇 ,:使光罩2朝水平方向的位置移動。χ,控制部26進行 =射式照日月21及透過光強度測量器25之位置的設定。 者,控制部26依據利用透過光強度測量 2測光強度的測量結果’求得光罩2之半色 的透過率。 [半色調圖形修正時的CVD加工條件] 在此,針對於雷射加工裝置丨中,修正光罩2之半 色調圖形之缺陷部時的CVD加工條件探討研究。 -12- 201219965 為了防止修正半色調圖形之際所成膜 J ^ V D m ZAP加工予以整形時產生裂痕,只要形成 、曰 . j W為近紫·夕卜 光之ΖΛΡ雷射光的吸收係數大且膜厚較薄、 可。 的LVE)膜即 為了獲得對近紫外光的吸收係數大,且膜厚較薄的 CVD膜’只要以與習知二元式光罩之白缺陷之 樣的條件來進行CVD^卫即可,,只要使原料氣體的 j度比上述習知半色調圖形修正時之原料氣體的濃度還 濃,而將CVD雷射丰杜存坦古 ^ , λ ^ 田耵九強度k尚,來形成金屬鉻的 強的CVD膜即可。 一例如將Q開關頻率設定於2kHz(脈衝寬度(半峰全 中田值)、.·勺40ns) ’將CVD雷射光的平均照射功率密度設定 =80〜200W/Cm2 ’將每一脈衝的照射能量密度設定於 4〇 〜lQ〇mj/cm2,昭 $ …、 率捃度(=每一脈衝的照射能量 2广雷射光脈衝寬度(半峰全幅值))設定於卜 吸ΓΙ’:二適當地調節原料氣體的漢度,11此能獲得 係數十分大的金屬膜質的CVD膜。 此cJn^’習知之二元式光罩的白缺陷修正,係利用 右 加工條件沉積吸收係數為3xl05cm-i左右(OD3左 (透過率為〇·1%左右)的膜厚15〇nm左右)的CVD膜。 工徭 來’即使透過率低,也能在ZAP加工時及加 線的吸此不會產生裂痕# CVD膜。例如’容易形成對1 ΐ ; _約2々1〇^以上,即,對1線的透過率 ί:低的半T4°nm以下的⑽膜。而且,能進行透 低的+色調圖形之缺陷部的修正。 13- 201219965 又,以習知的 為主成分的CVD月 罩的曝光波長(i線 透過率會因曝光波 加工條件所成膜的 以對i線、h線、g 光波長的不同所導: 但是,若是以j 速度快達100nm/s j 膜的吸收係數不僅j 對i線、h線、g線 率大幅改變。所以, 望的值,又,CVD 均變大。 因此,以下檢1 第2圖係表示, 、每一脈衝的照射能 lMW/cm2)的 CVD 上掃描以沉積CVD 度改變時,CVD雷身 均透過率之測量結: 的照射時間係藉由 來求得。又,第2 縱軸表示平均透過: CVD加工條件成祺且以氧化鉻III作 莫,係如以上所述,由於對FPD用光 、h線、g線)的吸收係數低,因此, 長而大幅改變。相對於此,以此CVD CVD膜,由於其臈質接近金屬鉻所 線的吸收係數大致相同,能減低因曝 改之透過率的差。 比CVD加工條件,則CVD膜的沉積 t右艾付難以控制膜厚。再者,cvd 针作為近紫外光的ZAP雷射光變大, 也變大,因膜厚些微不同就會使透過 難以將CVD膜的透過率設定成所希 摸内的膜厚不均等會造成透過率的不 寸降低透過率不均的方法。 使利用脈衝寬度(半峰全幅值)約4〇ns 夏密度約40mJ/cm2(照射功率密度約 雷射光所形成的照射點,在石英基板 膜的情況下,使Q開關頻率與掃描速 咬光的照射時間與CVD膜對丨線的平 篆之例子的曲線圖。又,CVD雷射光 掃描方向之照射點的尺寸—掃描速度 圖之橫軸表示照射時間(單位為秒), 率(單位為%)。 -14- 201219965 第3圖表示在與第2圖相同條件下,對丨線的 透過率與掃描方向之透過率不均之測量結果之例子 線圖。又,透過率不均係藉由掃描方向之透過率的 值與最小值的差來表示。又,第3圖之橫軸表示平 過率(單位為%),縱軸表示透過率不均(單位為%)。 從第2圖得知,Q開關頻率愈低,則降低 平均透過率所需的照射時間就愈長。即,q開關頻 低,則CVD膜的沉積速度愈慢。例如,與q開關頻 2kHz的情形比較,在Q開關頻率為lkHz的情形下, 膜的沉積速度為約1/2,在Q開關頻率為〇 5kHz的 下,CVD膜的沉積速度為約1/4。藉此,變得容易 膜厚’而能獲得更接近所希望膜厚的CVD膜。 又,從第3圖得知,Q開關頻率愈低,則愈減 描方向的透過率不均,而提升掃描方向之膜厚的均 。如以上所述,Q開關頻率愈低,則CVD膜的沉積 愈慢,則為了獲得所希望透過率之CVD膜所必須的 雷射光的照射時間愈長。其結果,藉由❼匕照射時 短時間之CVD雷射光的振動、掃描速度的變動、輸 度的變動平均化、使CVD膜内之膜厚均一化,可改 過率不均。又,當Q開關頻率變低,進行CVD雷射 射的時間間隔(CVD雷射光的休止期間)變長時,則 於其間在CVD膜之前端部之原料氣體分子的表面 量飽和,所以成長核的形成可穩定地進行,CVD膜 積速度穩定也是改善透過率不均的一個主要因素。 平均 的曲 最大 均透 膜之 率愈 率為 CVD 情形 控制 少掃 一性 速度 CVD 間還 出強 善透 光照 因為 吸附 的沉 -15- 201219965 ,從第3圖的測量結果得知,透過率不均為4 %以下 之平均透過率的範圍在Q開關頻率為2.0kHz的情形下為 2〇义以下’相對於此,Q開關頻率為1.0kHz、〇.5kHz的 It形下刀別為大約4 〇 %以下、4 9 %以下。所以,一旦將 透過率不均的谷许程度設在4 % (士2 % )時若將〇開關 頻率《又疋在l.0kHz以下,則可沉積足夠的cvd膜來修 正習知所無法修正之透過率未達40%之半色調圖形。 又,此時,於其中任一 Q開關頻率,對丨線的平均 透過率為40%的膜厚是4〇nm以下,對i線的平均透過 率為10%的膜厚是l00nm以下。此乃顯示著對;線之 CVD膜的吸收係數是約2 3χ1〇5(:ηΓΐ以上。 又’即使將Q開關頻率設定得比1 kHz還高,藉著 降低原料氣體濃度或CVD雷射光的照射功率密度,仍可 使CVD膜的沉積速度降低而能延長CVD雷射光的照射 時間。但是’一旦將Q開關頻率設定得高,則Cvd膜之 前端部之成長核的形成變得不穩定,所以透過率不均惡 化了。 又,第2圖及第3圖的測量結果係cvD雷射光的脈 衝寬度為約40ns時的情形,再者,檢討在4〇ns以外的 情形,例如脈衝寬度從數ns至i 〇〇ns左右的範圍内不同 的情形。Chromium III (Cr2〇3) A,. Main component. The CVD film with chromium oxide III (Cf2〇3) as the main component is used for the exposure wavelength of the mask of the FPD (Flat Panel Display) (the bright line of mercury (365nm) And the h-line (4〇5nm line (436)) ° and the magnification ϋ. Therefore, the film thickness d required for the transmittance τ' of the target rod becomes thicker. The absorption coefficient of the i-line of the CVD film of the component is about 9 xi Gkm.1, in order to set the transmittance of the line, the desired film thickness is 9 Gnm, in order to set the transmittance to a desired film thickness. On the other hand, when the film thickness of the CVD film is increased, cracks may occur when the CVD film formed by correcting the tone pattern is shaped by ZAp processing, and then washed, etc. The procedure of the above-mentioned conventional CVD film formation method is difficult to apply to correction of a halftone pattern having a transmittance of 40% or less for one line. The present invention has been completed in view of such a situation. It is an invention that can correct the halftone pattern of the transmittance mask. &amp; 201219965 [Means for Solving the Problem] A method of correcting a mask according to an aspect of the present invention is a method for performing mask correction, characterized in that: a halftone pattern of the mask is used by using ultraviolet laser light and a material gas composed of chromium hexacarbonyl gas. The modified portion forms a CVD film. The ultraviolet laser light is emitted from a laser oscillator having a q-switching frequency set in the range of 1 Hz to 1 kHz, and the irradiation energy density per pulse is 40 mJ/cm 2 or more or the irradiation power density. It is an ultraviolet laser light of 1 MW/cm2 or more. In one aspect of the invention, a metal chromium film CVD film is formed on the modified portion of the halftone pattern of the light cover. Therefore, a mask having a lower transmittance can be used. Correction of halftone pattern 0 This seeding oscillator is composed of, for example, a q-switched Nd:YLF laser that can excite a continuous wave (cw (Continuous Wave)). This ultraviolet laser light system is set to, for example, a q-switch Nd: YLF. Laser light of the fourth harmonic of the laser (FHG, vibration wavelength 263 nm). In this mask correction method, ultraviolet laser light having a pulse width of 4 〇ns or less and an irradiation power density of 1 MW/cm 2 or more can be used. Or pulse The ray width is more than 40 ns, and the irradiation energy density per pulse exceeds 40 mJ/cm 2 of ultraviolet laser light. Thereby, the pulse width of the ultraviolet laser light is not limited, and the mask having a lower transmittance can be performed. Correction of a halftone pattern. A laser processing apparatus according to an aspect of the present invention is a device for performing mask correction, which is characterized by comprising: a laser oscillation means for oscillating ultraviolet rays; a source gas supply means, The raw material gas &amp; body composed of chromium hexacarbonyl 201219965 gas is supplied to the vicinity of the halftone pattern of the reticle, and the laser control means controls the closing frequency of the aforementioned Q-switched lightning: vibrating means And the irradiation energy of each pulse of ultraviolet laser light $ $ β i # a at x and ..., the power consumption fee; the Q-switching frequency of the aforementioned Q-switched laser oscillating means is set in the range of 1 Hzj_ "Hz, The irradiation energy density of each pulse of the ultraviolet laser light is set to be 4 〇mJ/cm 2 or more or the irradiation power density of the ultraviolet laser light is set to be more than the number of tracks, and the aforementioned correction portion is taken. An ultraviolet laser beam, to produce a film on the correction Cvd portion. In one aspect of the invention, a chrome-plated CVD film is formed in the modified portion of the halftone pattern of the reticle. In this way, the correction of the halftone band of the mask with lower transmittance can be performed. Less This Q-switched laser oscillation is composed of, for example, a Q-switch Nd:YLF laser that excites a continuous wave (CW). This ultraviolet laser light system is, for example, laser light of the four-time error wave (FHG, oscillation wavelength: 263 nm) of the q-switch Nd: YLF Hall & This raw material gas supply means is constituted by, for example, a gas unit and a raw material gas supply-exhaust gas. This laser control means by means of, for example, a computer or various. . The composition of the benefits. [Effect of the Invention] Graphics. Light of the Light According to one aspect of the present invention, the half-color period of the reticle can be corrected. In particular, according to one aspect of the present invention, the correction of the halftone pattern of the lower transmission cover can be performed. [2012] [Embodiment] [Best Mode for Carrying Out the Invention] Hereinafter, a mode for carrying out the present invention (in a singular shape) can be described. Further, the description will be made in the following order. 1. Embodiment 2. Modifications 1. Embodiments [Configuration Example of Laser Processing Apparatus] Fig. 1 is a block diagram showing a configuration of a laser plus a belly top 1 to which the present invention is applied. . The laser processing device 1 is a device for correcting the mask 2 with a semi-simple dead figure in the summer. "Laser Plus &amp; 丄 置 1 1 system 雷 laser oscillator for laser processing 1 1 , Ray射昭~ ^ Tian π,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,句一干乐16, Oxygen unit 17 7. Raw material gas supply-exhaust unit 1 8. Tips ^ Youzhu retainer 丨 9, XY table 20, transmissive illumination 21, transmissive illumination lens u, a The system 23 is configured such that the detecting light source 24 and the light intensity measuring unit 26 are transmitted. &# CVD processing laser oscillator 丨 system by, for example, a continuous wave (CW (Continuous Wave)) Q switch Nd: γτ f Φ aw I lr formed by the shot 'can oscillate and emit four harmonics Laser light (FHG, oscillation wavelength 263 nm) (hereinafter also referred to as CVD laser light). The laser irradiation intensity uniformizing optical system 12 is an optical system for making the intensity distribution of the CVD laser light passing through the adjustable slit 15 substantially uniform. For example, the laser irradiation intensity uniformizing optical system 12 expands the beam diameter of the 201219965 CVD laser light by a beam expander, and causes the weakly centered small beam portion to enter the opening of the adjustable slit 15 to pass through. The intensity distribution in the spatial direction of the CV 〇 laser light of the adjustable slit 15 is averaged. Further, the laser irradiation intensity uniformizing optical system 12 oscillates the laser beam by a galvanometer or the like to average the intensity distribution in the time direction of the CVD laser light passing through the adjustable slit 15. Further, the laser irradiation intensity uniformizing optical system 12 has a light attenuator for adjusting the irradiation power density of the CVD laser light. The ZAP processing laser oscillator 13 is composed of, for example, an Q-switchable Nd:YLF laser capable of exciting pulses, and oscillates and emits a third harmonic (THG, oscillation wavelength of 35 5 nm) having an oscillation repetition frequency of 50 Hz or less. Laser light (hereinafter referred to as ZAP laser light). By using the near-ultraviolet laser light as the ZAP laser light, the glass substrate of the photomask 2 can be damaged, and fine correction processing can be realized. Further, the laser light of the near-ultraviolet light having a wavelength of around 355 nm is generally used as a laser light for ZAP processing in the repair apparatus for mask correction. The laser irradiation intensity uniformization optical system 14 has the same structure as the laser irradiation current uniformization optical system, 12, and can pass the space of the ZAP laser light through the adjustable slit ι and the moon main bow] universal direction and time The intensity distribution of the direction is set to i, and the &quot;&quot; radiation intensity uniformization optical system, 14 has an optical attenuator for the illumination power density of one ZAP laser light. In the case where it is not necessary to specifically distinguish between CVD laser light and ZAP thunder shoulder light, it is simply referred to as laser light. The adjustable slits 1 5 are set to a a a , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , . Further, the adjustable slit 丨 5 has a mechanism for rotating the entire optical axis. The 201219965 imaging processing optical system 16 is an optical system that images the laser light having passed through the adjustable slits 15 on the surface of the reticle 2. The imaging processing optical system 16 is composed of, for example, an objective lens 14a, an imaging mirror (not shown), a beam splitter (not shown), a mirror that forms the optical path of the laser light (not shown), and the measurement has been performed. The laser wheel output measuring device (not shown in the figure) or the like is configured by the output of the laser light of the adjustable slit 15. Further, the imaging processing optical system 16 has a jog table 16b. The micro-motion table i 6b is configured to make the objective lens i & micro-motion to scan the image of the opening of the adjustable slit 丨 5 (ie, the irradiation point) generated by the laser light at a predetermined speed on the reticle 2. The gas unit 17 supplies a carrier gas and a flushing gas (four) for transporting chromium hexacarbonyl gas as a material gas to the raw material gas supply-exhaust unit 丨 8. Further, the gas unit 丨7 is composed of a raw material gas The source gas contained in the gas sucked from the suction port of the supply-exhaust unit 18 is thermally decomposed' and captured by a filter. Further, the concentration of the material gas supplied to the processing portion of the cover 2 is performed in the following manner. (1) Adjusting the temperature of the material gas container, the concentration of the raw material gas generated by the stagnation, or adjusting the flow rate of the rinsing gas and the carrier gas according to the control of the &amp; part 26. Technical material gas supply-exhaust unit 1 8 The flushing gas and the carrier gas are supplied to the processing portion of the photomask 2. The raw material gas system is supplied by the carrier gas: the processing portion of the photomask 2. The flushing gas is removed from the processing portion of the photomask 2 - and the raw material gas supply - row The gas unit 18 has a suction port sucked in such a manner that the material gas glare does not leak to the outside, and the sucked gas is supplied to the gas unit 1 7 , and the space near the processing portion of the phase 2 is In the vicinity of the processing portion of the mask 2 - 10 - 201219965, the space is held in the material gas atmosphere, and the cvd laser light is irradiated onto the processing portion ' to deposit the CVD film on the processing portion. The gas supply-exhaust unit 1δ has an aperture plate that transmits laser light, observes illumination light, and detects light. The flushing gas functions to prevent the aperture plate from being processed by CVD. The mask holder 19 is mounted on the crucible table 2 and fixed. The position of the mask 2. The cymbal table 20 moves the mask holder 19 in the horizontal direction in accordance with the control of the control unit 26, and performs positioning at the processing position of the mask 2 held by the mask holder 19. The illumination 2i emits observation illumination light for generating a transmission image of the reticle. The observation illumination light from the transmissive illumination 2&quot; is condensed on the surface of the reticle 2 by the transmissive illumination lens 22. The observation illumination light of the mask 2 is reflected in the direction of the observation optical system 23 by a beam splitter (not shown) in the imaging processing optical system 16. The observation optical = 3 will be used to observe the illumination light. The image of the surface of 2 (the following image) is imaged so that the user can view the observation image through the eyepiece (the image is not observed by the pattern. Also, the camera 兀4 can be set in the observation optical system 23, The image obtained by photographing the observation image is displayed. The detection light source 24 emits a wavelength of a light source to be subjected to exposure of the light 2 according to the control of the control unit 26, or a wavelength (probe light) close to the wavelength. The emitted probe light is irradiated by the imaging plate M, the raw material gas supply_the aperture plate of the exhaust unit 18, and the probe 2. The probe light transmitted through the reticle 2 is condensed by the transmissive illumination lens and incident on the transmitted light intensity. The measuring device 25. -11- 201219965 The transmitted intensity of the reticle 2 is measured by the light intensity residual meter 25, and a signal indicating the measurement result is supplied to the control unit. Further, according to the control unit, &amp;&amp;, the light intensity measuring device 25 moves the light of the "Λ:: transmission type" and the illumination lens 22. The transmissive control unit 26 is controlled by, for example, a computer or various parts: = parts of the processing apparatus 1. For example, two 'two :: CVD, processing the Q switching frequency of the laser oscillator 11 or the pulse width of the CVD ♦ one. Further, the control unit 26 controls the laser irradiation intensity: the optical attenuator of the rate system 12 to adjust the CVD laser light; and the radiation is at X. Furthermore, the control unit 26 adjusts the Q-switching frequency of the ZAp processing laser beam or the pulse of the ZAP laser beam. The laser irradiation intensity is uniform optical system, and the second light is reduced by 5 weeks, that is, ZAP laser light. Irradiation power density. Further, the control unit 26 controls the micro-motion: 16b' of the imaging processing optical system 16 to adjust the scanning speed of the irradiation spot. Further, the control unit 26 controls the two f-units 17 to reduce the concentration of the material gas and the flow rate of the flushing gas and the 'a gas. Further, the control unit 26 controls the χγ table to move the photomask 2 in the horizontal direction. In other words, the control unit 26 performs the setting of the position of the illuminating sun ray 21 and the transmitted light intensity measuring device 25. The control unit 26 determines the transmittance of the half color of the mask 2 based on the measurement result of the photometric intensity by the transmitted light intensity measurement 2 . [CVD Processing Conditions in Halftone Pattern Correction] Here, in the laser processing apparatus, the CVD processing conditions in the case of correcting the defective portion of the halftone pattern of the mask 2 are examined. -12- 201219965 In order to prevent the formation of cracks when the film is formed by J ^ VD m ZAP processing in the correction of halftone pattern, as long as the formation, 曰. j W is near purple, the light absorption coefficient of the laser light is large and The film thickness is thin and can be. In order to obtain a CVD film having a large absorption coefficient for near-ultraviolet light and having a thin film thickness, the LVE film may be subjected to CVD treatment under the conditions of a white defect of a conventional binary mask. As long as the j-degree of the raw material gas is more concentrated than the concentration of the raw material gas in the above-mentioned conventional halftone pattern correction, the CVD laser is abundance, and the λ ^ 耵 耵 nine strength k is still formed to form the metal chromium. A strong CVD film is enough. For example, the Q switching frequency is set to 2 kHz (pulse width (half-peak full midfield value), . . . spoon 40 ns) 'The average irradiation power density of CVD laser light is set = 80 to 200 W/cm 2 '. Density is set at 4〇~lQ〇mj/cm2, indicating $..., rate ( (= irradiation energy per pulse 2 wide laser light pulse width (half-peak full amplitude)) set in 卜 ΓΙ ': two appropriate The degree of the raw material gas is adjusted, and a metal film CVD film having a very large coefficient can be obtained. The white defect correction of the cJn^'s conventional binary mask is based on the right processing condition and the deposition absorption coefficient is about 3×10 5 cm-i (the left OD3 (transmission rate is about 1%) is about 15 〇 nm) CVD film. If the transmittance is low, even if it is low in transmittance, it can be cracked during the processing of ZAP and the wire is not cracked #CVD film. For example, it is easy to form a pair of ΐ; _about 2々1〇^ or more, that is, a transmittance to a line of ί: a film of (10) having a low half T4° nm or less. Moreover, the correction of the defective portion of the transmissive +tone pattern can be performed. 13- 201219965 Also, the exposure wavelength of the conventional CVD moon mask (the i-line transmittance is due to the difference in the wavelengths of i-line, h-line, and g-light due to the exposure wave processing conditions: However, if the absorption coefficient of the film is as fast as 100 nm/sj at j speed, not only the i line, the h line, and the g line rate are greatly changed. Therefore, the value of the film is increased, and the CVD is increased. The graph shows that, when the CVD on-line scan of each pulse is 1 MW/cm 2 ), when the deposition CVD degree is changed, the irradiation time of the CVD beam uniform transmittance measurement is obtained. Further, the second vertical axis indicates the average transmission: the CVD processing conditions are 祺 and the chromium oxide III is used as the molybdenum, as described above, since the absorption coefficient for the FPD light, the h line, and the g line is low, the length is long. Greatly changed. On the other hand, with this CVD CVD film, since the absorption coefficient of the enamel close to the metal chrome is substantially the same, the difference in transmittance due to the exposure can be reduced. Compared with the CVD processing conditions, the deposition of the CVD film is difficult to control the film thickness. Furthermore, the cvd needle has a large ZAP laser light as a near-ultraviolet light, and it also becomes large. Since the film thickness is slightly different, it is difficult to set the transmittance of the CVD film to be uneven in the thickness of the film. The rate is not limited to reduce the uneven transmission rate. The pulse width (full width at half maximum) is about 4 〇ns, and the density is about 40 mJ/cm 2 (the irradiation power density is about the irradiation point formed by the laser light, and in the case of the quartz substrate film, the Q switching frequency and the scanning speed bite are made. The graph of the irradiation time of the light and the flattening of the CVD film on the 丨 line. Further, the size of the illuminating point of the CVD laser scanning direction - the horizontal axis of the scanning speed map indicates the irradiation time (in seconds), the rate (unit (%). -14- 201219965 Fig. 3 is a diagram showing an example of the measurement results of the unevenness of the transmittance between the transmission line and the scanning direction under the same conditions as in Fig. 2. Further, the transmittance is uneven. The difference between the value of the transmittance in the scanning direction and the minimum value is shown. Further, the horizontal axis of Fig. 3 indicates the flattening rate (unit: %), and the vertical axis indicates the transmittance unevenness (unit: %). 2 shows that the lower the Q switching frequency, the longer the irradiation time required to reduce the average transmittance. That is, the q switching frequency is low, the deposition speed of the CVD film is slower. For example, with the q switching frequency of 2 kHz Comparison, in the case of Q switching frequency of 1 kHz, the film sink The speed is about 1/2, and at a Q switching frequency of 〇5 kHz, the deposition speed of the CVD film is about 1/4. Thereby, the film thickness is made easy, and a CVD film closer to the desired film thickness can be obtained. Further, as is understood from Fig. 3, the lower the Q-switching frequency, the more the transmittance in the subtraction direction is uneven, and the film thickness in the scanning direction is increased. As described above, the lower the Q-switching frequency, the CVD film The slower the deposition, the longer the irradiation time of the laser light necessary to obtain the desired transmittance of the CVD film. As a result, the vibration of the CVD laser light, the variation of the scanning speed, and the transmission time by the ❼匕 irradiation are short. When the variation of the CVD film is uniform, the film thickness of the CVD film is uniform, and the rate of change is not uniform. When the Q-switching frequency is low, and the time interval for performing the CVD laser beam (the resting period of the CVD laser light) becomes long, Then, the surface amount of the material gas molecules at the front end of the CVD film is saturated, so that the formation of the growth nucleus can be stably performed, and the CVD film formation speed is also a major factor for improving the transmittance unevenness. Membrane rate is controlled by CVD The low-sweep speed CVD also produces a strong light-transparent photo because of the adsorption of Shen-15-201219965. From the measurement results in Figure 3, the average transmittance of the transmission rate other than 4% is in the Q-switching frequency. In the case of 2.0 kHz, it is 2 以下 or less. In contrast, the Q-switching frequency is 1.0 kHz, and the 形.5 kHz It-shaped lower blade is about 4% or less and 49% or less. Therefore, once the transmittance is If the degree of unevenness is set at 4% (±2%), if the switching frequency is “less than 1.00kHz, sufficient cvd film can be deposited to correct the transmittance that cannot be corrected by conventional knowledge. % halftone graphics. Further, at this time, at any of the Q switching frequencies, the film thickness of the average transmittance of the 丨 line is 40% or less, and the film thickness of the average transmittance of the i line is 10% or less. This shows that the absorption coefficient of the CVD film of the line is about 2 3 χ 1 〇 5 (: η Γΐ or more. Also 'even if the Q switching frequency is set higher than 1 kHz, by reducing the concentration of the material gas or the CVD laser light. The irradiation power density can still reduce the deposition rate of the CVD film and prolong the irradiation time of the CVD laser light. However, once the Q switching frequency is set high, the formation of the growth nuclei at the front end of the Cvd film becomes unstable. Therefore, the transmittance unevenness is deteriorated. The measurement results in Fig. 2 and Fig. 3 are the case where the pulse width of the cvD laser light is about 40 ns, and further, the case other than 4 ns is reviewed, for example, the pulse width is It is different in the range of several ns to i 〇〇 ns.

以下,為了獲得金屬膜質的CVD膜而將必須的cVD 雷射光每一脈衝之石英基板之表面溫度的上升幅度設為 △ T。又,以下’ C.VD膜内之熱擴散長度(kCVDxt)W2(kCVD 為CVD膜的熱傳導係數,τ為CVD雷射光的脈衝寬度) -16- 201219965 比膜厚大很多’所以’設成膜厚的溫度變化相同。而且 ,以下將對石英基板的熱傳導與CgXpgx(KgXT)i/2xAT(Cg 為石英基板的比熱,pg為石英基板的密度,Kg為石英基 板的熱傳導係數)近似。如此—來,可藉由下式來表 示。 △T— PXT’(CcvDxPcvDxd+Cgxpgx(KgxT)1/2) . . (2) 其中,P表示CVD雷射光的照射功率密度,Gao表 示CVD膜的比熱,pcvD表示CVD膜的密度,d表示CVD 膜的膜厚。 藉此,可獲得相同表面溫度之上升幅度的照射 功率密度Ρ、照射能量密度ρΧτ如下式所示。 Ρ — △ T x ( C c ν d x p c ν d x d / τ + C g X p g X ( κ g X τ ) 1 /2) · · ( 3 ) P xτ — ΔΤ x (Ccvd x pcvd xd + Cgx pgx (xg xτ)1/2) · · (4) 由式(3)及式(4)得知,相對於脈衝寬度τ,照射功率 密度Ρ係單調地減少,照射能量密度ρ χ τ係單調地增加 〇 實際上,使用脈衝寬度較4〇ns還短之例如約7ns的 CVD雷射光進行實驗的情形下,藉著將每一照射能量密 度設定成約25mJ/cm2(照射功率密度設定成約 3.5MW/cm2) ’能形成金屬膜質的cvd膜。若將此與第2 圖及第3圖之實驗時相比較時,照射功率密度從 lMW/cm2上升至3.5MW/cm2 ’照射能量密度從40mJ/cm2 降低至25mJ/cm2。此乃證明藉著上述式(3)及式(4)所表 示的脈衝寬度τ與照射功率密度ρ及照射能量密度ρ χ τ 的關係。 -17- 201219965 因此,在脈衝寬度為40ns以下的情況下,將CVD 雷射光的照射功率密度設定成l.OMW/cm2以上(每一照 射能量密度設定成40mJ/cm2以下),在脈衝寬度超過4〇ns 的情況下’藉著將CVD雷射光的照射功率密度設定成未 達l.OMW/cm2(每一照射能量密度設定成超過4〇mJ/cm2) ’可謂能形成金屬膜質的CVD膜。 又,CVD雷射光的照射能量密度或照射功率密度必 須設定成比會對沉積的CVD膜及光罩的遮光膜造成損 傷的值還低。 ' 叫、“ 丄你叶丨』如c v ^雷射光 的照射時間、原料氣體的濃度、照射點的尺寸、CVD加 ,的尺寸等)、光罩之基板的材質、遮光膜的構成(例如 單層膜、二㈣、三層膜等)、材質及膜厚等而不同,而 且,也依據其成膜條件而不同。 只要以獲得金屬_CVD膜的方式適切地 :疋:二乳體的條件’則無須對Q開關頻 正品質(例如透過4V等期待半色調圖形的修 所須要的時間就會變長 升,但另-方面,修正 ,例如考量修正時二::質考量光罩修正的經濟性 例如,習知。在適當的值。 右的照射時間,此乃相當於?修正方法需要三分鐘左 設定在1Hz狀況時的照貫施形態中將Q開關頻率 設成與習知相同程度以上、才B所以,若是將修正時間 下限值為1 Hz。 、為條件’則Q開關頻率的 -18- 201219965 又,從第3圖的測量結果,為了更確實地將透過率 不均設於容許程度以下,最好是將Q開關頻率設定在 0.5kHz 以下。 [半色調圖形修正處理j 其次,參照第4圖的流程圖來說明以雷射加工裝置 1所進打的光罩修正處理。又,以下,舉例說明在藉由 形成於第5圖的光罩2上之半色調圖形之半色調膜_ I成之半色調圖形上產生缺陷52,巾進行該半色調圖形 之修正的情形。 於步驟S 1,雷射加工裝置i將缺陷圖形予以整形。 例如’雷射加工裝置&quot;等ZAp雷射光照射於半色調膜” ,並藉由ZAP加工去除半色調膜5 j。 又’在步”驟S1的處理之後,&amp;了防止因ZAP加工 的殘渣或賤出物等所造成c v D膜的均一性不良 行光罩2洗淨的情;兄。 田π加工裝置 。具體上,雷射加工&quot;… 平的範圍 政置1係以與要修正的半色別同犯 相同的形狀及透過率且去“从 千邑調圖升; 圖形作為參照圖形, 色调 25來測量實際曝光Π 則光及透過光強度測量器 控制部26脾、/長中之參照圖形的透過率。而且, 二° 、以已測量之參照圖形的透過率作為巾 既定的笳囹执中士 必 &lt; 干作為中心之 1已圍s又疋成目標透過率的範圍。 於步驟S3 ’雷射加工裝 具體上,栌制邻4 «又疋CVD加工條件。 26參照第2圖及第3圖 置1的CVD加工停株崎玄 由射加工裝 条件6又疋成上述的CVD加工條件。即 -19- 201219965 扰制。P 26將CVD加工用雷射振盪器丨丨之q開關頻率 。又疋在1Hz至I .〇kHz的範圍内,更佳者為設定在1Hz 至0.5kHz的範圍内。又,控制部26控制氣體單元i7而 將作為原料氣體之六鼓化鉻t體的$農度設既定的值 〇 再者,控制部26控制雷射照射強度均一化光學系 12 ~的光衰減器,而將CVD雷射光的平均照射功率密度 設定成既定的值。此時,當CVD雷射光的脈衝寬度為 40nm以下時,以CVD雷射光的照射功率密度為 1 .〇MW/cm2以上且每一脈衝的照射能量密度為4〇mj/cm2 乂下的方式,s史义平均照射功率密度,當脈衝寬度超過 4〇1^時,以CVD雷射光的照射功率密度未達 且母脈衝的如射能量密度超過40mJ/cm2的方式,設定 平均照射功率密度。 又,控制部2 6依據預先準備的目標透過率與照射點 =掃描速度或掃描次數的對照表,設定掃描速度或掃描 次數。此時,考量CVD膜之透過率的不均勻範圍而以 CVD膜之曝光波長中的透過率不低於目標透過率範圍的 方式’設定掃插速度或掃描次數。 於步驟S4,雷射加工裝置丨在以步驟S3之處理所 設定的CVD加工條件下進行CVD加工。藉此,例如以 第7圖所示的方式,於已去除半色調膜5}的痕跡(即, 半色調圖形的修正部分)形成CVD膜61。 又’進行CVD加工之前’為了容易進行加工表面之 CVD膜的核形成,亦可以加工時的照射功率密度或該密 -20- 201219965 度以上的功率密度,將CVD雷射光照射於光罩2的加工 部分。 於步驟S5 ’雷射加工裝置1測量加工部分的透過率 。即,與步驟S2的處理同樣地處理而測量新形成之cVD 膜61的透過率。 於步驟S6 ’雷射加工裝置1判斷透過率是否在目標 透過率的範圍内。即,雷射加工裝置i判斷以步驟S5之 處理所測量之CVD膜61的透過率是否在以步驟S2之處 理所設定的目標透過率的範圍内,當判斷為目標透過率 之範圍外的情況下,前進至步驟S7的處理。 於步驟S7,雷射加工裝置丨判斷透過率是否比目標 透過率的範圍還高。即,雷射加工裝置1判斷以步驟s5 之處理所測量之CVD膜61的透過率是否比以步驟82之 處理所設定的目標透過率的範圍還高,當判斷為比目標 透過率之範圍還高的情況下,前進至步驟S8的處理。 於步驟S8 ’雷射加工裝置1調整CVD加工條件。 具體上,雷射加工裝置1將Q開關頻率、原料氣體濃度 、平均照射功率密度變更成預定的值。又,雷射加工裝 置1依據預先準備之透過率的測量結果與目標透過率的 差,和照射點之掃描速度的對照表,而設定掃描速度。 此8寸,為了容易進行CVD膜之曝光波長中的透 過率的微調整导β ρ ^ 取好疋以CVD Μ之成膜速度儘可能慢的 方式來設定Q開關頻率、原料氣體濃度、平均照射功率 密度。其中’即使設定成與習知半色調圖形修正時同樣 的CVD加工條件,由於在之後的步驟S9的處理中所增 201219965 加的CVD膜6 1的膜厚小,所以,藉著ZAp 刀丄而於 膜6 1產生裂痕的可能性非常低。 ' ^ V 〇 於步驟,雷射加工裝置丨進行透過率微調軟 CVD加工。即,雷射加工裝置丨以在步驟§7之疋用的 設定的CVD加工條件來進行CVD加工,並粒μ义理所 龙稭考將 膜61的膜厚增厚若干量來微調整CVD膜61的々 ^ 之後,回到步驟5的處理,迄至於步驟6 。 斷·{悉、 率在目標透過率的範圍内或於步驟7判斷透過率&amp; 過 透過率的範圍還低為止前,反覆進行步驟5至步=目榡 處理,以進行CVD膜61之透過率的微調整。” 9的 另一方面,於步驟7判斷透過率比目標透過率 圍還低時,即,當CVD膜61的膜厚作得過厚時,回= 步驟si的處理,進行步驟S1以後的處理。即,藉由 加工來去除新產生# CVD膜61,而&amp; cvd膜的形 度重新進行。 另一方面,於步驟S6判斷透過率在目標透過率的範 圍内時’前進至步驟1〇的處理。 於步驟sio,雷射加工裝置i進行cvd膜的整形。 例如’如帛8圖所示,雷射加工裝置i藉著zAp加工去 除由已升/ $㈤CVD膜61之中的g兄定圖升)超出&amp; CVD膜 61A、61B’僅餘留㈣膜61C。又,此時,係參照第2 圖及第3圖並利用上述的CVD加I條件而形成cVD膜 61 ’所以,即使對㈣膜61進行ZAp加工也不會產生 之後’結束光罩修正處理。 -22- 201219965 如以上所述處理,可進行對丨線的透過率為4〇%以 下的半色凋圖形的修正。又’能降低因所修正之半色調 圖形之曝光波長的不同所造成透過率的差。 &lt; 2·變形例&gt; 又,以上的說明中,表示將半色調膜51全部去除之 後’修正半色調圖形的例子,然@,也能作成僅去除缺陷 52周邊的半色調膜51之後’修正半色調圖形的方式。 又,本發明之實施形態未限定於以上所述的實施形態 在不、脫γ離本發明之要旨的範圍内皆可作各種的變更。 【圖式簡單說明】 第1圖係表示應用本發明之雷射加工裝置之一實施 形態的方塊圖。 第圖係表示CVD雷射光的照射時間與cVD膜的 平均透過率之關係的圖表。 第3圖係表示CVD膜的平均透過率與透過 關係的圖表。 第4圖係用以說明藉由雷射加工裝置所進行之光罩 修正處理的流程圖。 第5圖係模式地表示半色調圖形修正前之光罩 的圖式。 第6圖係模式地表示半色調圖形去除後之 的圖式 】卞 第7圖係模式地表示於修正部分形成CVD膜後之光 罩例子的圖式。 、 一第8圖係模式地表示將已成膜的膜整形之後之 光罩例子的圖式。 -23- 201219965 探測光源 【主要元件符號說明】 1 2 11 12、14 13 15 16 16a 16b 17 18 19 20 21 22 23 24 25 26 51 雷射加工裝置 光罩 CVD加工用雷射振盪器 雷射照射強度均一化光學系 ZAP加工用雷射振盪器 可調狹縫 成像加工光學系 接物鏡 微動工作台 氣體單元 原料氣體供應-排氣單元 光罩保持器 XY工作台 透射式照明 透射式照明透鏡 觀察光學系 透過光強度測量器 控制部 半色調膜 5 2 缺陷 61、61A、61B、61C CVD 膜 -24-Hereinafter, in order to obtain a metal film-type CVD film, the increase in the surface temperature of the quartz substrate per pulse of the necessary cVD laser light is ΔT. Further, the following thermal diffusion length (kCVDxt) W2 in the C.VD film (kCVD is the thermal conductivity of the CVD film, and τ is the pulse width of the CVD laser light) -16-201219965 is much larger than the film thickness. Thick temperature changes are the same. Further, the heat conduction to the quartz substrate is similar to CgXpgx(KgXT)i/2xAT (Cg is the specific heat of the quartz substrate, pg is the density of the quartz substrate, and Kg is the thermal conductivity of the quartz substrate). In this way, it can be expressed by the following formula. ΔT—PXT′(CcvDxPcvDxd+Cgxpgx(KgxT)1/2) (2) where P represents the irradiation power density of CVD laser light, Gao represents the specific heat of the CVD film, pcvD represents the density of the CVD film, and d represents CVD. The film thickness of the film. Thereby, the irradiation power density Ρ and the irradiation energy density ρ τ of the same increase in the surface temperature can be obtained as shown in the following formula. Ρ — Δ T x ( C c ν dxpc ν dxd / τ + C g X pg X ( κ g X τ ) 1 /2) · · ( 3 ) P xτ — ΔΤ x (Ccvd x pcvd xd + Cgx pgx (xg Xτ) 1/2) · (4) From the equations (3) and (4), the irradiation power density 单 is monotonously reduced with respect to the pulse width τ, and the irradiation energy density ρ χ τ is monotonously increased. Actually, in the case of experiments using CVD laser light having a pulse width shorter than 4 ns, for example, about 7 ns, by setting each irradiation energy density to about 25 mJ/cm 2 (the irradiation power density is set to about 3.5 MW/cm 2 ) 'Can form a metal film cvd film. When this is compared with the experimental conditions of Figs. 2 and 3, the irradiation power density is increased from 1 MW/cm 2 to 3.5 MW/cm 2 ', and the irradiation energy density is lowered from 40 mJ/cm 2 to 25 mJ/cm 2 . This is a relationship between the pulse width τ expressed by the above formulas (3) and (4), the irradiation power density ρ, and the irradiation energy density ρ χ τ . -17- 201219965 Therefore, when the pulse width is 40 ns or less, the irradiation power density of CVD laser light is set to 1.00 W/cm 2 or more (each irradiation energy density is set to 40 mJ/cm 2 or less), and the pulse width is exceeded. In the case of 4 〇 ns, by setting the irradiation power density of CVD laser light to less than 1.0 MW/cm 2 (each irradiation energy density is set to more than 4 μm J/cm 2 ), it is possible to form a metal film CVD film. . Further, the irradiation energy density or the irradiation power density of the CVD laser light must be set to be lower than the value which would cause damage to the deposited CVD film and the light shielding film of the photomask. 'Call, 丄 丨 丨 丨 』 』 c 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如The film, the two (four), the three-layer film, etc., the material, the film thickness, and the like are different, and also differ depending on the film forming conditions. As long as the metal-CVD film is obtained, it is appropriate: 疋: conditions of the two emulsions 'There is no need to correct the quality of the Q switch (for example, the time required to repair the halftone pattern through 4V, etc. will become longer, but the other side, the correction, for example, the correction of the second:: quality consideration mask correction Economical, for example, conventional. In the appropriate value. Right irradiation time, this is equivalent to? The correction method takes three minutes. The left setting is in the 1Hz state. The Q switching frequency is set to the same level as the conventional one. If the above is the case, the lower limit of the correction time is 1 Hz. For the condition ', the Q-switching frequency is -18-201219965. From the measurement result of the third figure, in order to more accurately set the transmittance unevenness. Below the allowable level, the best The Q-switching frequency is set to 0.5 kHz or less. [Half-tone pattern correction processing j Next, the mask correction processing by the laser processing apparatus 1 will be described with reference to the flowchart of Fig. 4. Further, the following is an example of A defect 52 is generated on the halftone pattern formed by the halftone film of the halftone pattern formed on the mask 2 of FIG. 5, and the towel performs correction of the halftone pattern. In step S1, the laser is irradiated. The processing device i shapes the defect pattern. For example, the 'laser processing device' and the like, the ZAp laser light is irradiated to the halftone film, and the halftone film 5 j is removed by the ZAP process. Further, after the processing of the step S1 , &amp; the prevention of the uniformity of the cv D film caused by the residue or the ejected material processed by ZAP, etc.; the π processing device. Specifically, the laser processing &quot;... The scope of the government 1 is the same shape and transmittance as the half-color to be corrected and goes "from the millennium map; the graph is used as the reference pattern, the hue 25 is used to measure the actual exposure Π light and transmitted light intensity Measuring device control unit 26 spleen, / long middle According to the transmittance of the figure. Moreover, the transmission rate of the measured reference pattern as the towel is determined by the sergeant of the towel. The dryness is the range of the target transmittance. Step S3 'Specific laser processing equipment, 邻 邻 4 4 « 疋 疋 CVD processing conditions. 26 Refer to Figure 2 and Figure 3 CVD processing stop Zhu Qishen Xuan by the processing conditions 6 CVD processing conditions. -19-201219965 Disturbance. P 26 will be used for CVD laser oscillators with a q-switching frequency. It is also in the range of 1 Hz to I. 〇 kHz, and more preferably set at 1 Hz. Within the range of 0.5 kHz. Further, the control unit 26 controls the gas unit i7 to set a predetermined value of the agricultural value of the six-drum chrome t body as the material gas, and the control unit 26 controls the light attenuation of the laser irradiation intensity uniformizing optical system 12 to The average irradiation power density of the CVD laser light is set to a predetermined value. In this case, when the pulse width of the CVD laser light is 40 nm or less, the irradiation power density of the CVD laser light is 1. 〇 MW / cm 2 or more, and the irradiation energy density per pulse is 4 〇 mj / cm 2 ,, s historical average irradiation power density, when the pulse width exceeds 4 〇 1 ^, the average irradiation power density is set such that the irradiation power density of the CVD laser light is not reached and the pulse energy density of the mother pulse exceeds 40 mJ/cm 2 . Further, the control unit 26 sets the scanning speed or the number of scanning in accordance with a comparison table of the target transmittance and the irradiation point = scanning speed or the number of scanning times prepared in advance. At this time, the sweeping speed or the number of scans is set in such a manner that the transmittance of the CVD film is not lower than the target transmittance range in consideration of the uneven range of the transmittance of the CVD film. In step S4, the laser processing apparatus performs CVD processing under the CVD processing conditions set by the processing of step S3. Thereby, for example, in the manner shown in Fig. 7, the CVD film 61 is formed on the trace of the halftone film 5} (i.e., the corrected portion of the halftone pattern). In addition, before the CVD process, in order to facilitate the formation of the nucleus of the CVD film on the surface, the CVD laser light can be irradiated onto the reticle 2 by the irradiation power density at the time of processing or the power density of the dense -20-201219965 degree or higher. Processing part. The laser processing apparatus 1 measures the transmittance of the processed portion in step S5'. That is, the transmittance of the newly formed cVD film 61 is measured in the same manner as the process of step S2. In step S6', the laser processing apparatus 1 determines whether or not the transmittance is within the range of the target transmittance. In other words, the laser processing apparatus i determines whether or not the transmittance of the CVD film 61 measured by the process of step S5 is within the range of the target transmittance set by the process of step S2, and is determined to be outside the range of the target transmittance. Next, the process proceeds to step S7. In step S7, the laser processing apparatus determines whether the transmittance is higher than the range of the target transmittance. That is, the laser processing apparatus 1 determines whether or not the transmittance of the CVD film 61 measured by the processing of the step s5 is higher than the range of the target transmittance set by the processing of the step 82, and determines that it is greater than the range of the target transmittance. In the case of high, the process proceeds to step S8. The laser processing apparatus 1 adjusts the CVD processing conditions in step S8'. Specifically, the laser processing apparatus 1 changes the Q switching frequency, the material gas concentration, and the average irradiation power density to predetermined values. Further, the laser processing apparatus 1 sets the scanning speed based on the difference between the measurement result of the transmittance prepared in advance and the target transmittance, and the comparison table of the scanning speeds of the irradiation points. This 8-inch is used to easily adjust the transmittance of the CVD film at the exposure wavelength, and the Q-switching frequency, the material gas concentration, and the average irradiation are set so that the film formation rate of the CVD film is as slow as possible. Power density. In the case where the CVD processing condition is the same as that in the case of the conventional halftone pattern correction, since the film thickness of the CVD film 6 1 added in 201219965 is increased in the subsequent step S9, the ZAp blade is used. The possibility of cracking in the film 61 is very low. ' ^ V 〇 In the step, the laser processing device performs fine-tuning soft CVD processing. That is, the laser processing apparatus performs CVD processing by the set CVD processing conditions used in the step § 7, and the CVD film 61 is finely adjusted by thickening the film thickness of the film 61 by a certain amount. After 々^, return to the processing of step 5, and then to step 6. If the rate is within the range of the target transmittance or before the range of the transmittance and the over-transmission rate is determined to be low in step 7, the step 5 to step = the target process is repeatedly performed to perform the CVD film 61. The micro adjustment of the rate. On the other hand, if it is determined in step 7 that the transmittance is lower than the target transmittance, that is, when the film thickness of the CVD film 61 is excessively thick, the process of step = si is performed, and the process after step S1 is performed. That is, the newly generated # CVD film 61 is removed by processing, and the shape of the &amp; cvd film is re-executed. On the other hand, when it is judged in step S6 that the transmittance is within the range of the target transmittance, 'advance to step 1〇 In step sio, the laser processing apparatus i performs shaping of the cvd film. For example, as shown in Fig. 8, the laser processing apparatus i removes the g brother in the CVD film 61 by zAp processing. In addition, in the CVD film 61A, 61B', only the (four) film 61C is left. In this case, the cVD film 61' is formed by referring to the second and third figures by the CVD plus I condition described above. Even if the (four) film 61 is subjected to ZAp processing, the subsequent end mask correction processing does not occur. -22- 201219965 The above-described processing can be performed to correct the half-color pattern of the transmission line having a transmittance of 4% or less. And 'can reduce the transmittance caused by the difference in the exposure wavelength of the modified halftone pattern. <2. Modifications> Further, in the above description, an example in which the halftone film 51 is completely removed and then the halftone pattern is corrected is described. However, it is also possible to create a halftone film in which only the periphery of the defect 52 is removed. In the following, the embodiment of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing an embodiment of a laser processing apparatus to which the present invention is applied. Fig. 3 is a graph showing the relationship between the irradiation time of CVD laser light and the average transmittance of a cVD film. A graph showing the relationship between the average transmittance and the transmission of the CVD film. Fig. 4 is a flow chart for explaining the mask correction processing by the laser processing apparatus. Fig. 5 is a view schematically showing the light before the halftone pattern correction. Fig. 6 is a view schematically showing a pattern after removal of a halftone pattern. Fig. 7 is a view schematically showing an example of a mask after forming a CVD film in a correction portion. System mode The figure shows a pattern of a reticle after shaping the film which has been formed. -23- 201219965 Detecting light source [Signature of main components] 1 2 11 12, 14 13 15 16 16a 16b 17 18 19 20 21 22 23 24 25 26 51 Laser processing equipment reticle CVD processing laser oscillator laser irradiation intensity uniformization optical system ZAP processing laser oscillator adjustable slit imaging processing optical system objective lens micro-motion table gas unit raw material gas supply - row Gas unit mask holder XY table transmissive illumination transmissive illumination lens observation optical system transmission light intensity measuring device control unit halftone film 5 2 defects 61, 61A, 61B, 61C CVD film-24-

Claims (1)

201219965 七、申請專利範圍: 1 · 一種光罩修正方法,係進行光罩修正的方法,其特徵 在於: 使用紫外線雷射光及由六羰化鉻氣體所構成的原 料氣體而於前述光罩之半色調圖形的修正部分形成 CVD膜,該紫外線雷射光係從Q開關頻率設定在iHz 至lk=範圍内的雷射振盪器射出,且是每一脈衝的照 射能量密度為40mJ/cm2以上或照射功率密度為 lMW/cm2以上的紫外線雷射光。 2.如申請專利範圍第1項之光罩修正方法,其中使用脈 衝寬度為40ns以下且照射功率密度為1MW/cm2以上的 紫外線雷射光、或脈衝寬度超過4〇ns且每一脈衝的照 射能量密度超過40mJ/cm2的紫外線雷射光。 3 · 一種雷射加工裝置,係進行光罩修正的裝置,其特徵 在於包含: Q開關雷射振盪手段,係振盪紫外線雷射光; 原料氣體供應手段’係將由六羰化鉻氣體所構成 的原料氣體供應至前述光罩之半色調圖形的修正部分 附近;及 雷射控制手段,係控制前述Q開關雷射振盪手段 的Q開關頻率、以及紫外線雷射光之每一脈衝的照射 能量密度及照射功率密度; 將前述Q開關雷射振盪手段的Q開關頻率設定在 1Hz至ikHz範圍内,將紫外線雷射光之每一脈衝的照射 月里岔度β又疋在4 〇 m J / c m2以上或將紫外線雷射光的照 射功率密度設定在1 MW/cm2以上,而對前述修正部分照 射紫外線雷射光,以於前述修正部分產生CVD膜。 -25-201219965 VII. Patent application scope: 1 · A method for correcting a mask, which is a method for correcting a mask, characterized in that: half of the mask is used by using ultraviolet laser light and a material gas composed of chromium hexacarbonyl gas The correction portion of the tone pattern forms a CVD film which is emitted from a laser oscillator whose Q switching frequency is set in the range of iHz to lk=, and the irradiation energy density per pulse is 40 mJ/cm 2 or more or the irradiation power. Ultraviolet laser light having a density of 1 MW/cm 2 or more. 2. The reticle correction method according to claim 1, wherein ultraviolet laser light having a pulse width of 40 ns or less and an irradiation power density of 1 MW/cm 2 or more, or an irradiation energy of a pulse width exceeding 4 ns and each pulse is used. Ultraviolet laser light with a density exceeding 40 mJ/cm2. 3. A laser processing apparatus for performing mask correction, comprising: a Q-switched laser oscillation means for oscillating ultraviolet laser light; and a raw material gas supply means - a material composed of chromium hexacarbonyl gas The gas is supplied to the vicinity of the correction portion of the halftone pattern of the photomask; and the laser control means controls the Q switching frequency of the Q-switched laser oscillation means and the irradiation energy density and the irradiation power of each pulse of the ultraviolet laser light Density; The Q-switching frequency of the aforementioned Q-switched laser oscillation means is set in the range of 1 Hz to i kHz, and the irradiance β of each pulse of the ultraviolet laser light is further increased by 4 〇m J / c m2 or The irradiation power density of the ultraviolet laser light is set to be 1 MW/cm 2 or more, and the corrected portion is irradiated with ultraviolet laser light to generate a CVD film in the correction portion. -25-
TW100126706A 2010-07-30 2011-07-28 Method for correcting photomask and laser processing device TWI479258B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010172888A JP5163967B2 (en) 2010-07-30 2010-07-30 Photomask correction method and laser processing apparatus

Publications (2)

Publication Number Publication Date
TW201219965A true TW201219965A (en) 2012-05-16
TWI479258B TWI479258B (en) 2015-04-01

Family

ID=45529744

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100126706A TWI479258B (en) 2010-07-30 2011-07-28 Method for correcting photomask and laser processing device

Country Status (5)

Country Link
JP (1) JP5163967B2 (en)
KR (1) KR101363905B1 (en)
CN (1) CN103026297B (en)
TW (1) TWI479258B (en)
WO (1) WO2012014520A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI691608B (en) * 2017-09-12 2020-04-21 日商Hoya股份有限公司 Method of repairing a photomask, method of manufacturing a photomask, photomask and method of manufacturing a display device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233217B (en) * 2013-04-01 2015-11-18 北京工业大学 The method of the micro-repairing of a kind of chromium mask transparency defect laser-transmitting
CN104746041B (en) * 2015-03-04 2018-02-13 深圳清溢光电股份有限公司 The method that laser Gaseous depositional mode repairs white defect
JP2018133591A (en) * 2018-05-18 2018-08-23 大日本印刷株式会社 Manufacturing method of template
JP7361622B2 (en) * 2019-03-05 2023-10-16 Hoya株式会社 Photomask repair method, photomask repair device, method for manufacturing a photomask with pellicle, and method for manufacturing a display device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3044811B2 (en) * 1991-03-25 2000-05-22 日本電気株式会社 Photomask repair equipment
JP2639346B2 (en) * 1994-06-20 1997-08-13 日本電気株式会社 Photomask defect defect repair method and apparatus
JP2785803B2 (en) * 1996-05-01 1998-08-13 日本電気株式会社 Method and apparatus for correcting white spot defect on photomask
JP2904170B2 (en) * 1996-12-27 1999-06-14 日本電気株式会社 Halftone phase shift mask and halftone phase shift mask defect repair method
JPH10280152A (en) * 1997-04-14 1998-10-20 Nec Corp Chamberless laser cvd device
TW541605B (en) * 2000-07-07 2003-07-11 Hitachi Ltd Fabrication method of semiconductor integrated circuit device
JP3479838B2 (en) * 2000-10-19 2003-12-15 日本電気株式会社 Pattern correction method and pattern correction device
US20030054300A1 (en) * 2001-09-15 2003-03-20 Castaldi Marco J. Apparatus having similar interstitial passages
JP4979941B2 (en) * 2005-03-30 2012-07-18 Hoya株式会社 Manufacturing method of glass substrate for mask blanks, manufacturing method of mask blanks
JP4754369B2 (en) * 2006-02-28 2011-08-24 オムロンレーザーフロント株式会社 Photomask defect correcting method and defect correcting apparatus
JP2009086382A (en) * 2007-09-29 2009-04-23 Hoya Corp Gray tone mask blank and method for manufacturing the same, method for manufacturing gray tone mask and gray tone mask, and pattern transfer method
JP5045394B2 (en) * 2007-11-28 2012-10-10 大日本印刷株式会社 Gradation mask defect correction method
JP5126547B2 (en) * 2009-03-10 2013-01-23 オムロン株式会社 Method and apparatus for forming CVD thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI691608B (en) * 2017-09-12 2020-04-21 日商Hoya股份有限公司 Method of repairing a photomask, method of manufacturing a photomask, photomask and method of manufacturing a display device
TWI710649B (en) * 2017-09-12 2020-11-21 日商Hoya股份有限公司 Photomask and method of manufacturing a display device
TWI742885B (en) * 2017-09-12 2021-10-11 日商Hoya股份有限公司 Photomask and method of manufacturing a display device

Also Published As

Publication number Publication date
WO2012014520A1 (en) 2012-02-02
JP2012032649A (en) 2012-02-16
KR20130042587A (en) 2013-04-26
JP5163967B2 (en) 2013-03-13
TWI479258B (en) 2015-04-01
KR101363905B1 (en) 2014-02-19
CN103026297B (en) 2014-11-26
CN103026297A (en) 2013-04-03

Similar Documents

Publication Publication Date Title
TW201219965A (en) Method for correcting photomask and laser processing device
TWI241467B (en) Pattern forming method
JP2785803B2 (en) Method and apparatus for correcting white spot defect on photomask
JP2007047332A (en) Wavelength conversion optical system, laser light source, exposure device, device for inspecting inspection object, and device for processing polymer crystal
TWI510834B (en) Laser-processing apparatus and method for performing a laser process
Piredda et al. Micro-machining of PMN-PT crystals with ultrashort laser pulses
van der Linden et al. Picosecond pulsed underwater laser ablation of silicon and stainless steel: Comparing crater analysis methods and analysing dependence of crater characteristics on water layer thickness
TW201701981A (en) Methods and apparatus for processing transparent materials
JP4361383B2 (en) Light intensity distribution monitoring method, annealing apparatus, annealing method, and crystallization apparatus
TW200929369A (en) Laser processing device and laser processing method
JP2009074802A (en) Inspection device, inspection method, and manufacturing method of pattern substrate
TW202314392A (en) Operating methods of semiconductor system inspection tool
JP2007078712A (en) Method for cleaning substrate, method for manufacturing phase mask, and method for manufacturing semiconductor device
JP2010210919A (en) Method and device for forming cvd thin film
KR101051073B1 (en) Repair method and repair system of halftone mask
Fox et al. Development and validation of a calculation routine for the precise determination of pulse overlap and accumulated fluence in pulsed laser surface treatment
JP2639346B2 (en) Photomask defect defect repair method and apparatus
KR100814821B1 (en) Crystallization apparatus and method of silicon thin film
JP2004311618A (en) Laser annealing method, its equipment, and method for manufacturing mask and display device
JP2018195676A (en) Laser annealing apparatus and laser annealing method
RU174220U1 (en) LASER-RADIATED FERROELECTRIC ANNEALING DEVICE WITH SPATIAL RESOLUTION EXCEEDING THE DIFFRACTION LIMIT
JP4649964B2 (en) Photo-vapor chemical growth method and photo-vapor chemical growth apparatus
JP2000347387A (en) Method and device for correcting photomask
TWI461838B (en) Method and system for repairing halftone mask
JP2005033007A (en) Method and device for correcting energy variation of laser beam

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees