JP2010210919A - Method and device for forming cvd thin film - Google Patents

Method and device for forming cvd thin film Download PDF

Info

Publication number
JP2010210919A
JP2010210919A JP2009056684A JP2009056684A JP2010210919A JP 2010210919 A JP2010210919 A JP 2010210919A JP 2009056684 A JP2009056684 A JP 2009056684A JP 2009056684 A JP2009056684 A JP 2009056684A JP 2010210919 A JP2010210919 A JP 2010210919A
Authority
JP
Japan
Prior art keywords
opening
optical axis
thin film
laser
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009056684A
Other languages
Japanese (ja)
Other versions
JP5126547B2 (en
Inventor
Yosuke Kusumi
庸輔 久住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2009056684A priority Critical patent/JP5126547B2/en
Publication of JP2010210919A publication Critical patent/JP2010210919A/en
Application granted granted Critical
Publication of JP5126547B2 publication Critical patent/JP5126547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To sufficiently uniform the transmittance of a defect correction part when it is applied to correction of a white defect part in a halftone area on a photomask. <P>SOLUTION: Laser beams emitted from a laser oscillator are made to pass through a still opening disposed in front of the optical axis, and are condensed with an objective lens. Thus, the beams are radiated to a surface of a sample placed in a reactive gas atmosphere, and the optical axis of the laser beams made to enter the opening is made to rock with respect to the opening. Thus, when irradiation light intensity on the sample surface is uniformed by time average action, the diameter of the laser beams made to enter the opening is set to be sufficiently smaller than the width of the opening, and the optical axis of the laser beams made to rock at an amplitude larger than the width of the opening. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば、フォトマスクのハーフトーン領域の白欠陥修正等のように、高度の膜厚均一化が要求される用途に好適なCVD薄膜の形成方法及び装置に係り、特に、光軸揺動による時間平均化作用を利用して、照射スポット内レーザ光の強度ムラを改善するようにしたCVD薄膜の形成方法及び装置に関する。   The present invention relates to a method and apparatus for forming a CVD thin film suitable for an application that requires a high degree of film thickness uniformity, such as correction of white defects in a halftone region of a photomask. The present invention relates to a method and apparatus for forming a CVD thin film that uses a time averaging action by motion to improve unevenness of intensity of laser light in an irradiation spot.

フォトマスクのハーフトーン領域の白欠陥修正等のように、高度の膜厚均一化が要求される用途に好適なCVD薄膜の形成方法及び装置としては、光軸揺動による時間平均化作用を利用して照射スポット内レーザ光の強度ムラを改善するようにしたものが、従来より知られている。   As a method and apparatus for forming a CVD thin film suitable for applications that require a high degree of uniform film thickness, such as the correction of white defects in the halftone area of a photomask, the time-averaging action by optical axis fluctuation is used. In order to improve the intensity unevenness of the laser beam in the irradiation spot, it has been conventionally known.

このようなCVD薄膜の形成装置の一例が、図6に示されている。このCVD薄膜の形成装置は、XYテーブル20に載置されたフォトマスク9の上を、公知の構造を有するCVDガス供給排気部6で覆うことにより、修正対象となるハーフトーン領域の白欠陥部分をCVD原料ガス雰囲気中に晒し、その状態において、CVD供給排気部6の上面窓を介してレーザ光を白欠陥上にスポット照射し、併せて、XYステージ20を駆動して、フォトマスクを水平面内で所定方向へと往復移動させつつ、照射スポットを走査することで、CVD原料ガスの反応により、適切な膜厚を有するCVD薄膜を堆積させて、ハーフトーン領域の白欠陥を修正するものである。   An example of such a CVD thin film forming apparatus is shown in FIG. This CVD thin film forming apparatus covers a photomask 9 placed on an XY table 20 with a CVD gas supply / exhaust unit 6 having a known structure, thereby providing a white defect portion in a halftone region to be corrected. Is exposed to the CVD source gas atmosphere, and in that state, laser light is spot-irradiated on the white defect through the upper surface window of the CVD supply / exhaust unit 6, and the XY stage 20 is driven to make the photomask horizontal. By scanning the irradiation spot while reciprocating in a predetermined direction, a CVD thin film having an appropriate film thickness is deposited by the reaction of the CVD source gas to correct white defects in the halftone region. is there.

図6において、レーザ発振器1は、CVD原料ガスに適した波長のレーザ光を生成して出射する。ビームエキスパンダ2は、レーザ発振器1から出射されるレーザ光の断面を所定の倍率で拡大する。光アッテネータ7は、レーザ光透過率を変化させることにより、ビームエキスパンダ2を通過したレーザ光の強度を調整する。ビームスキャンユニット3は、光アッテネータ7にて強度調整されたレーザ光を矩形開口4へと向けて照射すると共に、その照射光軸を矩形開口4の上で揺動させる。このとき、ビームエキスパンダ2の拡大作用により、矩形開口4に照射されるレーザ光の径は、矩形開口4の開口幅よりも十分に大きなものとなる。   In FIG. 6, a laser oscillator 1 generates and emits laser light having a wavelength suitable for a CVD source gas. The beam expander 2 enlarges the cross section of the laser light emitted from the laser oscillator 1 at a predetermined magnification. The optical attenuator 7 adjusts the intensity of the laser light that has passed through the beam expander 2 by changing the laser light transmittance. The beam scanning unit 3 irradiates the laser light whose intensity is adjusted by the optical attenuator 7 toward the rectangular opening 4 and swings the irradiation optical axis on the rectangular opening 4. At this time, the diameter of the laser light applied to the rectangular opening 4 is sufficiently larger than the opening width of the rectangular opening 4 due to the expanding action of the beam expander 2.

加工観察光学系5Aは、対物レンズ51とミラー52とを含み、矩形開口4を通過したのち、光学系5Bを介して到来するレーザ光を、ミラー52にて下向きに反射したのち、これを対物レンズ51で集光して、CVDガス供給排気部6の上面窓を介して、フォトマスク9の上にスポット照射する。このとき、矩形開口4とフォトマスク9とは光学的に共役な位置関係にあるため、フォトマスク9の表面には、レーザ光による微少な矩形の照射スポットが現れる。   The processing observation optical system 5A includes an objective lens 51 and a mirror 52. After passing through the rectangular opening 4, the processing observation optical system 5A reflects the laser light arriving through the optical system 5B downward by the mirror 52, which is then used as an objective. The light is condensed by the lens 51, and spot-irradiated onto the photomask 9 through the upper surface window of the CVD gas supply / exhaust unit 6. At this time, since the rectangular opening 4 and the photomask 9 are in an optically conjugate positional relationship, a minute rectangular irradiation spot by the laser beam appears on the surface of the photomask 9.

なお、フォトマスク9の表面で反射されたレーザ光は、対物レンズ51を通って光軸を戻り、さらに、ミラー52を透過して、観察光学系12へと導かれる。そのため、観察光学系(例えば、受光光学系やイメージセンサ等を含む)を介して、フォトマスク9上の照射スポットを観察することができる。   The laser light reflected by the surface of the photomask 9 returns through the objective lens 51 and returns to the optical axis, and further passes through the mirror 52 and is guided to the observation optical system 12. Therefore, the irradiation spot on the photomask 9 can be observed through an observation optical system (for example, including a light receiving optical system and an image sensor).

また、矩形開口4を通過したレーザ光の一部は、ミラー53で反射されたのち、レーザ光強度検出器10へと導かれる。そのため、光強度検出器10を介して、矩形開口4を通過するレーザ光の強度を検出することができる。   A part of the laser light that has passed through the rectangular opening 4 is reflected by the mirror 53 and then guided to the laser light intensity detector 10. Therefore, the intensity of the laser light passing through the rectangular opening 4 can be detected via the light intensity detector 10.

特開平8−8197号公報JP-A-8-8197

上述の従来装置によれば、レーザ光の断面径をビームエキスパンダ2で矩形開口4の開口幅よりも十分大きく拡大し、矩形開口4内のレーザ光強度の差を小さくした上で(図7(a)参照)、矩形開口4上でレーザ光をさらに遥動させているため(図7(b)参照)、矩形開口4内各部の光強度は、時間平均化作用により理論的には均一となる筈である。   According to the above-described conventional apparatus, the cross-sectional diameter of the laser light is enlarged sufficiently larger than the opening width of the rectangular opening 4 by the beam expander 2, and the difference in laser light intensity in the rectangular opening 4 is reduced (FIG. 7). (See (a)) Since the laser beam is further swung over the rectangular opening 4 (see FIG. 7B), the light intensity of each part in the rectangular opening 4 is theoretically uniform due to the time averaging action. It is a trap.

しかし、そもそも、レーザ光の強度プロファイル(特に干渉などによるリップル成分)それ自体が、必ずしも光軸に対して対称ではないことに加え、ビーム遥動の振幅も加工観察光学系5Aのケラレや収差による強度分布の劣化を原因として、比較的小振幅に制限されるため、矩形開口4内全域の光強度の時間的均一化は必ずしも十分ではなかった(図7(c)参照)。   However, in the first place, the intensity profile of the laser beam (particularly, the ripple component due to interference, etc.) itself is not necessarily symmetrical with respect to the optical axis, and the amplitude of the beam swing also depends on vignetting and aberration of the processing observation optical system 5A. Due to the deterioration of the intensity distribution, the light intensity is limited to a relatively small amplitude, and thus the temporal uniformity of the light intensity in the entire area of the rectangular opening 4 is not always sufficient (see FIG. 7C).

一方、仮に、矩形開口4内全域のレーザ光の強度を時間的に均一化できたとしても、矩形開口4から照射面までの間に存在する光学素子(ミラー、レンズ、窓板など)で生ずる強度ムラや矩形開口像内に生ずる回折現象など光学系に起因する強度分布の不均一には、レーザ光の揺動は効果がない(図7(d)参照)。そのため、XYステージ20を利用した照射スポット(矩形開口像)の走査を併用することにより、照射面上の照射レーザ光強度の時間平均値の均一化が図られている(図7(e)参照)。   On the other hand, even if the intensity of the laser beam in the entire area of the rectangular opening 4 can be made uniform over time, it occurs in an optical element (mirror, lens, window plate, etc.) existing between the rectangular opening 4 and the irradiation surface. The fluctuation of the laser beam has no effect on the non-uniformity of the intensity distribution caused by the optical system, such as the intensity unevenness or the diffraction phenomenon occurring in the rectangular aperture image (see FIG. 7D). Therefore, the time average value of the irradiation laser beam intensity on the irradiation surface is made uniform by using scanning of the irradiation spot (rectangular aperture image) using the XY stage 20 together (see FIG. 7E). ).

しかし、このような照射スポットの走査併用にあっては、走査方向に関しては照射部の中央部分の照射レーザ光強度の時間平均値を均一化には有効であるものの(図7(e)のA部参照)、走査方向と垂直方向の照射強度の分布ムラに対しては十分な効果が得られなかった。   However, in such combined use of irradiation spot scanning, although effective in making the time average value of the irradiation laser light intensity at the central portion of the irradiation portion uniform in the scanning direction (A in FIG. 7 (e)). A sufficient effect was not obtained for uneven distribution of irradiation intensity in the scanning direction and the vertical direction.

このような理由から、上述の従来装置にあっては、フォトマスク上のハーフトーン領域の白欠陥部分の修正に適用した場合には、欠陥修正部分の透過率を十分に均一化することができないことに加え、照射スポットの走査により生ずる欠陥修正部周辺のレーザ光強度不均一部分(図7(e)のB部参照)が正規の部分透過膜と重なり合ってしまうと言ったハーフトーンパターン内部の欠陥については修正することができなかった。   For this reason, in the above-described conventional apparatus, when applied to the correction of the white defect portion of the halftone area on the photomask, the transmittance of the defect correction portion cannot be made sufficiently uniform. In addition, the laser beam intensity non-uniformity around the defect repairing part (refer to part B in FIG. 7 (e)) caused by scanning the irradiation spot overlaps with the normal partial transmission film. The defect could not be corrected.

なお、走査の端部で生ずる膜厚低減部の改善策については、走査終了時にレーザ光軸をシフトさせて加工先端部のレーザ光強度を増加させた状態でレーザ照射を継続して走査端部の膜厚を増加させると言った提案もなされている(特許文献1参照)。   As for the measures to improve the film thickness reduction part that occurs at the end of scanning, the laser end is continuously irradiated with laser while the laser optical axis is shifted to increase the laser light intensity at the processing end. There has also been a proposal to increase the film thickness (see Patent Document 1).

しかし、上述の提案は、修正部の透過率が1%程度未満となれば十分(膜厚がある程度以上であれば十分)であるバイナリマスクの修正を目的としたものであるため、本発明が問題とするハーフトーン領域の修正に要求される透過率許容範囲(目標透過率±2%前後)を実現するためには、走査終了時の照射スポットの強度分布を厳密に制御する必要があり、レーザ光の光軸シフトだけでは実現が困難であった。   However, the above proposal is intended to correct a binary mask that is sufficient if the transmittance of the correction portion is less than about 1% (if the film thickness is more than a certain level), the present invention is In order to achieve the allowable transmittance range (target transmittance around ± 2%) required for correcting the halftone area in question, it is necessary to strictly control the intensity distribution of the irradiation spot at the end of scanning, It has been difficult to realize by only shifting the optical axis of the laser beam.

本発明は、このような従来の問題点に着目してなされてものであり、その目的とするところは、フォトマスク上のハーフトーン領域の白欠陥部分の修正に適用した場合に、欠陥修正部分の透過率を十分に均一化することが可能なCVD薄膜の形成方法及び装置を提供することにある。   The present invention has been made paying attention to such a conventional problem, and the object of the present invention is to provide a defect correction portion when applied to correction of a white defect portion of a halftone area on a photomask. It is an object of the present invention to provide a CVD thin film forming method and apparatus capable of sufficiently uniforming the transmittance.

本発明のさらに他の目的並びに作用効果については、明細書の以下の記述を参照することにより、当業者であれば容易に理解されるであろう。   Other objects and operational effects of the present invention will be easily understood by those skilled in the art by referring to the following description of the specification.

上述の発明が解決しようとする課題は、以下の構成を有するCVD薄膜の形成方法により解決することができる。   The problems to be solved by the above-described invention can be solved by a method for forming a CVD thin film having the following configuration.

すなわち、このCVD薄膜の形成方法は、レーザ発振器から射出されるレーザ光を、光軸前方に静止して設けられた開口を通過させたのち、対物レンズで集光することにより、反応ガス雰囲気中に置かれた試料表面に照射すると共に、前記開口へと入射されるレーザ光の光軸を前記開口に対して揺動させることにより、試料表面上における照射光強度を時間平均作用によって均一化するようにしたCVD薄膜の形成方法であって、前記開口へ入射されるレーザ光の径を前記開口の幅よりも十分に小さく設定すると共に、前記レーザ光の光軸を前記開口の幅よりも大きな振幅で揺動させる、ことを特徴とする。   That is, in this CVD thin film forming method, laser light emitted from a laser oscillator passes through an opening provided stationary in front of the optical axis, and is then collected by an objective lens to be in a reactive gas atmosphere. And irradiating the surface of the sample placed on the surface, and by oscillating the optical axis of the laser light incident on the opening with respect to the opening, the intensity of the irradiated light on the surface of the sample is made uniform by time averaging In this method of forming a CVD thin film, the diameter of the laser beam incident on the opening is set sufficiently smaller than the width of the opening, and the optical axis of the laser beam is larger than the width of the opening. It is characterized by oscillating with amplitude.

このような構成によれば、開口上では光スポット径よりも遥動の振幅が大きいため、レーザ光の強度分布が光軸に対して対称でなくとも照射レーザ光強度の時間平均を均一にすることができる。しかも、光軸の揺動振幅それ自体は従前のものとあまり変わらないため、加工観察光学系ケラレや収差による強度分布の劣化を原因として、揺動振幅が小振幅に制限されても問題はない。   According to such a configuration, since the amplitude of the swing is larger than the light spot diameter on the opening, the time average of the irradiation laser light intensity is made uniform even if the intensity distribution of the laser light is not symmetric with respect to the optical axis. be able to. In addition, since the oscillation amplitude of the optical axis itself is not much different from the conventional one, there is no problem even if the oscillation amplitude is limited to a small amplitude due to deterioration of the intensity distribution due to vignetting and aberration of the processing observation optical system. .

上述の方法の好ましい実施の形態としては、前記開口へ入射されるレーザ光の強度を前記レーザ光の揺動中の光軸位置に応じて変化させようにしてもよい。   As a preferred embodiment of the above-described method, the intensity of the laser light incident on the opening may be changed according to the position of the optical axis during the oscillation of the laser light.

このような構成によれば、上述の微少スポットの大振幅揺動による効果に加えて、光学系に起因する照射面上の照射レーザ光強度の時間平均のムラについても、解消することができる。   According to such a configuration, in addition to the above-described effect due to the large amplitude fluctuation of the minute spot, the unevenness of the time average of the irradiation laser beam intensity on the irradiation surface due to the optical system can also be eliminated.

このとき、前記光軸位置が前記開口のエッジ近辺にあるとき、前記レーザ光の強度を所定の態様で変化させるようにすれば、加工観察光学系の回折や収差による結像エッジ部分の光強度分布の補正と、光スポットが矩形開口4の光像のエッジを横切って像内に入り込む場合に、薄膜成長の種形成が不十分な場合にそれを補うことができる。   At this time, when the optical axis position is in the vicinity of the edge of the opening, if the intensity of the laser beam is changed in a predetermined manner, the light intensity at the imaging edge due to diffraction and aberration of the processing observation optical system The correction of the distribution and the light spot entering the image across the edge of the light image of the rectangular aperture 4 can be compensated for inadequate seeding of the thin film growth.

同様に、このとき、前記光軸位置が前記開口の内部領域にあるとき、各位置に応じて予め定められた態様にしたがって、前記レーザ光の強度を変化させるようにすれば、各ビーム位置毎にアッテネータの透過率を自動的に変化させ、これにより光学系に起因するレーザ照射強度のムラを補正することができる。   Similarly, at this time, when the optical axis position is in the inner region of the opening, if the intensity of the laser beam is changed according to a predetermined mode according to each position, each beam position is changed. In addition, the transmittance of the attenuator can be automatically changed, whereby the unevenness of the laser irradiation intensity caused by the optical system can be corrected.

上述の各方法において、前記レーザ光の径は前記開口の幅の1/3よりも小さいものであってもよい。   In each of the above methods, the diameter of the laser beam may be smaller than 1/3 of the width of the opening.

上述の各方法は、前記試料がフォトマスクであって、そのハーフトーン領域の白欠陥部分の修正のために用いられるものであってもよい。   In each of the above-described methods, the sample may be a photomask, and may be used for correcting a white defect portion in the halftone region.

別の一面からすると、上述の発明が解決しようとする課題は、以下の構成を有するCVD薄膜の形成装置により解決することができる。   From another aspect, the problem to be solved by the above-described invention can be solved by a CVD thin film forming apparatus having the following configuration.

すなわち、このCVD薄膜の形成装置は、レーザ発振器と、レーザ発振器から出射されたレーザ光を、静止位置に置かれた所定形状の開口へと照射しつつ、その光軸を揺動させることが可能な照射揺動手段と、前記開口を通過したのちのレーザ光を集光して、反応ガス雰囲気中に置かれた試料の表面に照射する対物レンズとを有し、前記照射揺動手段は、前記開口上における光スポットの径を、前記開口の開口幅よりも十分に小さく設定すると共に、前記開口上における光スポット揺動の振幅は、前記開口の幅よりも大きく設定する機能が組み込まれている、ことを特徴とする。ここで、照射揺動手段は、一実施形態においては、ビームエキスパンダ2とビームスキャニングユニット3とを含んで構成されている。   That is, this CVD thin film forming apparatus can oscillate its optical axis while irradiating a laser oscillator and a laser beam emitted from the laser oscillator to an opening of a predetermined shape placed at a stationary position. An irradiation rocking means, and an objective lens for condensing the laser light after passing through the opening and irradiating the surface of the sample placed in the reaction gas atmosphere, The function of setting the diameter of the light spot on the opening sufficiently smaller than the opening width of the opening and setting the amplitude of the light spot fluctuation on the opening larger than the width of the opening is incorporated. It is characterized by that. Here, in one embodiment, the irradiation rocking means includes a beam expander 2 and a beam scanning unit 3.

このような構成であっても、開口上では光スポット径よりも遥動の振幅が大きいため、レーザ光の強度分布が光軸に対して対称でなくとも照射レーザ光強度の時間平均を均一にすることができる。しかも、光軸の揺動振幅それ自体は従前のものとあまり変わらないため、加工観察光学系ケラレや収差による強度分布の劣化を原因として、揺動振幅が小振幅に制限されても問題はない。   Even in such a configuration, since the amplitude of the swing is larger than the light spot diameter on the aperture, the time average of the intensity of the irradiated laser light is made uniform even if the intensity distribution of the laser light is not symmetric with respect to the optical axis. can do. In addition, since the oscillation amplitude of the optical axis itself is not much different from the conventional one, there is no problem even if the oscillation amplitude is limited to a small amplitude due to deterioration of the intensity distribution due to vignetting and aberration of the processing observation optical system. .

上述の装置の好ましい実施形態としては、前記前記照射揺動手段の前段にあって、前記照射揺動手段へと入射されるべきレーザ光を透過すると共に、その光透過率が外部からの制御で変更可能とされた可変透光手段と、前記開口の位置を示す開口位置信号を生成出力する開口位置検出手段と、前記開口位置における前記レーザ光の光軸位置を示す光軸位置信号を生成出力する光軸位置検出手段と、前記開口位置検出手段から出力される開口位置信号と前記光軸位置検出手段から出力される光軸位置信号とに基づいて、前記開口に対する前記光軸の位置を判定し、その判定結果に基づいて、前記可変透光手段の光透過率を制御する制御手段とをさらに含む、ものであってもよい。   As a preferred embodiment of the above-described apparatus, the laser beam to be incident on the irradiation rocking means is transmitted before the irradiation rocking means, and the light transmittance is controlled by an external control. Variable translucent means that can be changed, opening position detection means for generating and outputting an opening position signal indicating the position of the opening, and generating and outputting an optical axis position signal indicating the optical axis position of the laser beam at the opening position Determining the position of the optical axis with respect to the opening based on the optical axis position detecting means, the opening position signal output from the opening position detecting means, and the optical axis position signal output from the optical axis position detecting means. And a control means for controlling the light transmittance of the variable light-transmitting means based on the determination result.

このような構成であっても、上述の微少スポットの大振幅揺動による効果に加えて、光学系に起因する照射面上の照射レーザ光強度の時間平均のムラについても、解消することができる。   Even with such a configuration, in addition to the above-described effect due to the large amplitude fluctuation of the minute spot, it is possible to eliminate unevenness in the time average of the intensity of the irradiated laser beam on the irradiated surface due to the optical system. .

このとき、前記制御手段が、前記光軸が前記開口のエッジ近辺にあると判定されるとき、前記可変透光手段の光透過率を所定の態様で変化させるようにすれば、加工観察光学系の回折や収差による結像エッジ部分の光強度分布の補正と、光スポットが矩形開口4の光像のエッジを横切って像内に入り込む場合に、薄膜成長の種形成が不十分な場合にそれを補うことができる。   At this time, if the control means determines that the optical axis is in the vicinity of the edge of the opening, and changes the light transmittance of the variable light transmission means in a predetermined manner, the processing observation optical system Correction of the light intensity distribution at the imaging edge due to diffraction and aberration of the light beam, and when the light spot enters the image across the edge of the optical image of the rectangular aperture 4 and the seed formation of the thin film growth is insufficient. Can be supplemented.

このとき、前記制御手段が、前記光軸が前記開口の内部領域にあると判定されるとき、各位置に応じて予め定められた態様にしたがって、前記可変透光手段の光透過率を変化させるようにすれば、各ビーム位置毎にアッテネータの透過率を自動的に変化させ、これにより光学系に起因するレーザ照射強度のムラを補正することができる。   At this time, when the control means determines that the optical axis is in the inner region of the opening, the control means changes the light transmittance of the variable light transmission means according to a predetermined mode according to each position. By doing so, it is possible to automatically change the transmittance of the attenuator for each beam position, thereby correcting the unevenness of the laser irradiation intensity caused by the optical system.

上述の各装置においては、前記レーザ光の径は前記開口の幅の1/3よりも小さい、ものであってもよい。   In each of the above-described apparatuses, the diameter of the laser beam may be smaller than 1/3 of the width of the opening.

上述の各装置においては、前記試料がフォトマスクであって、そのハーフトーン領域の白欠陥部分の修正のために用いられる、ものであってもよい。   In each of the above-described apparatuses, the sample may be a photomask that is used for correcting a white defect portion in the halftone region.

本発明によれば、開口上では光スポット径よりも遥動の振幅が大きいため、レーザ光の強度分布が光軸に対して対称でなくとも照射レーザ光強度の時間平均を均一にすることができる。しかも、光軸の揺動振幅それ自体は従前のものとあまり変わらないため、加工観察光学系ケラレや収差による強度分布の劣化を原因として、揺動振幅が小振幅に制限されても問題はない。そのため、本発明によれば、フォトマスク上のハーフトーン領域の白欠陥部分の修正に適用した場合に、欠陥修正部分の透過率を十分に均一化することが可能となる。   According to the present invention, since the amplitude of the swing is larger than the light spot diameter on the aperture, the time average of the intensity of the irradiated laser light can be made uniform even if the intensity distribution of the laser light is not symmetric with respect to the optical axis. it can. In addition, since the oscillation amplitude of the optical axis itself is not much different from the conventional one, there is no problem even if the oscillation amplitude is limited to a small amplitude due to deterioration of the intensity distribution due to vignetting and aberration of the processing observation optical system. . Therefore, according to the present invention, when applied to the correction of the white defect portion of the halftone area on the photomask, the transmittance of the defect correction portion can be made sufficiently uniform.

本発明装置の一実施形態を示す構成図である。It is a block diagram which shows one Embodiment of this invention apparatus. ビームスキャンユニットの一例を示す構成図である。It is a block diagram which shows an example of a beam scanning unit. 制御部によるアッテネータの透過率制御内容の一例を示すグラフである。It is a graph which shows an example of the transmittance | permeability control content of the attenuator by a control part. アッテネータ透過率とレーザ光強度との関係を示すグラフである。It is a graph which shows the relationship between attenuator transmittance | permeability and laser beam intensity. 本発明の作用を説明するためのグラフである。It is a graph for demonstrating the effect | action of this invention. 従来装置の一例を示す構成図である。It is a block diagram which shows an example of a conventional apparatus. 従来装置の作用を説明するためのグラフである。It is a graph for demonstrating the effect | action of a conventional apparatus.

以下に、本発明に係るCVD薄膜の形成方法及び装置の好適な実施の一形態を添付図面にしたがって詳細に説明する。   Hereinafter, a preferred embodiment of a CVD thin film forming method and apparatus according to the present invention will be described in detail with reference to the accompanying drawings.

本発明装置の一実施形態を示す構成図が図1に示されている。この装置は、図示しないテーブルに載置されたフォトマスクの上を、公知の構造を有するCVDガス供給排気部6で覆うことにより、修正対象となるハーフトーン領域の白欠陥部分をCVD原料ガス雰囲気中に晒し、その状態において、CVD供給排気部6の上面窓を介してレーザ光を白欠陥上に照射することで、CVD原料ガスの反応により、適切な膜厚を有するCVD薄膜を堆積させて、白欠陥を修正しようとするものである。   The block diagram which shows one Embodiment of this invention apparatus is shown by FIG. In this apparatus, a photomask placed on a table (not shown) is covered with a CVD gas supply / exhaust unit 6 having a known structure, so that a white defect portion in a halftone region to be corrected is exposed to a CVD source gas atmosphere. In this state, a white film is irradiated with laser light through the upper surface window of the CVD supply / exhaust unit 6 to deposit a CVD thin film having an appropriate film thickness by the reaction of the CVD source gas. , Trying to fix white defects.

図1において、レーザ発振器1は、CVD原料ガスに適した波長(例えば、266nm)のレーザ光を生成して出射する。ビームエキスパンダ2は、レーザ発振器1から出射されるレーザ光の断面を所定の倍率(例えば、7倍)で拡大する。   In FIG. 1, a laser oscillator 1 generates and emits laser light having a wavelength (for example, 266 nm) suitable for a CVD source gas. The beam expander 2 enlarges the cross section of the laser light emitted from the laser oscillator 1 at a predetermined magnification (for example, 7 times).

光アッテネータ7は、そのレーザ光透過率を変化させることにより、ビームエキスパンダ2を通過したレーザ光の強度を調整する。後に詳細に説明するように、この光アッテネータのレーザ光透過率の値は、制御部8からの信号により適宜に変更制御される。   The optical attenuator 7 adjusts the intensity of the laser light that has passed through the beam expander 2 by changing the laser light transmittance. As will be described in detail later, the value of the laser light transmittance of the optical attenuator is appropriately changed and controlled by a signal from the control unit 8.

ビームスキャンユニット3は、光アッテネータ7にて強度調整されたレーザ光を矩形開口4へと向けて照射すると共に、その照射光軸を矩形開口4の上で揺動させる。後に詳細に説明するように、ビームスキャンユニット3は、矩形開口4上で開口幅の1/3以下の光スポットを形成し、開口幅よりも大きい振幅で光スポットを遥動させる。当業者により良く知られているように、矩形開口4は、複数のナイフエッジの組合せ等により開口形状乃至サイズを変更可能に構成されるのが一般的であり、この矩形開口4からは、光スポットの揺動方向の両端エッジ位置のそれぞれを示す開口エッジ信号S2が出力される。   The beam scanning unit 3 irradiates the laser light whose intensity is adjusted by the optical attenuator 7 toward the rectangular opening 4 and swings the irradiation optical axis on the rectangular opening 4. As will be described in detail later, the beam scanning unit 3 forms a light spot having a width equal to or smaller than 1/3 of the opening width on the rectangular opening 4 and swings the light spot with an amplitude larger than the opening width. As is well known by those skilled in the art, the rectangular opening 4 is generally configured such that the shape or size of the opening can be changed by a combination of a plurality of knife edges or the like. An opening edge signal S2 indicating each of both end edge positions in the spot swinging direction is output.

加工観察光学系5Aは、対物レンズ51とミラー52とを含み、矩形開口4を通過したのち、光学系5Bを介して到来するレーザ光を、ミラー52にて下向きに反射したのち、これを対物レンズ51で集光して、CVDガス供給排気部6の上面窓を介して、フォトマスク9の上にスポット照射する。このとき、矩形開口4とフォトマスク9の表面とは光学的に共役な位置関係にあるため、フォトマスク9の表面には、レーザ光による微少な矩形の照射スポットが現れる。   The processing observation optical system 5A includes an objective lens 51 and a mirror 52. After passing through the rectangular opening 4, the processing observation optical system 5A reflects the laser light arriving through the optical system 5B downward by the mirror 52, which is then used as an objective. The light is condensed by the lens 51, and spot-irradiated onto the photomask 9 through the upper surface window of the CVD gas supply / exhaust unit 6. At this time, since the rectangular opening 4 and the surface of the photomask 9 are in an optically conjugate positional relationship, a minute rectangular irradiation spot by the laser beam appears on the surface of the photomask 9.

フォトマスク9の欠陥修正部はCVDガス供給・排気部9によりCVD原料ガス雰囲気中に置かれているため、光スポットの照射部分でCVD原料ガスが分解し、矩形開口4の縮小投影像内部に薄膜が形成される。   Since the defect correcting portion of the photomask 9 is placed in the CVD source gas atmosphere by the CVD gas supply / exhaust portion 9, the CVD source gas is decomposed at the irradiated portion of the light spot, and the reduced aperture image inside the rectangular opening 4 A thin film is formed.

なお、フォトマスク9の表面で反射されたレーザ光は、対物レンズ51を通って光軸を戻り、さらに、ミラー52を透過して、観察光学系12へと導かれる。そのため、観察光学系(例えば、受光光学系やイメージセンサ等を含む)を介して、フォトマスク9上の照射スポットを観察することができる。   The laser light reflected by the surface of the photomask 9 returns through the objective lens 51 and returns to the optical axis, and further passes through the mirror 52 and is guided to the observation optical system 12. Therefore, the irradiation spot on the photomask 9 can be observed through an observation optical system (for example, including a light receiving optical system and an image sensor).

矩形開口4を通過したレーザ光の一部は、ミラー53で反射されたのち、レーザ光強度検出器10へと導かれる。そのため、光強度検出器10を介して、矩形開口4を通過したレーザ光の強度を検出することができる。   Part of the laser light that has passed through the rectangular opening 4 is reflected by the mirror 53 and then guided to the laser light intensity detector 10. Therefore, the intensity of the laser beam that has passed through the rectangular opening 4 can be detected via the light intensity detector 10.

フォトマスク9を透過したレーザ光は、フォトマスク9の下に配置されたレーザ光検出器11へと導かれる。そのため、レーザ強度検出器11を介して、フォトマスク9を透過するレーザ光の強度を検出することができる。   The laser light transmitted through the photomask 9 is guided to a laser light detector 11 disposed under the photomask 9. Therefore, the intensity of the laser beam that passes through the photomask 9 can be detected via the laser intensity detector 11.

ビームスキャンユニットの一例(1軸の場合)を示す構成図が図2に示されている。同図に示されるように、ビームスキャンユニット3は、アッテネータ7で強度調整されたレーザ光が照射されるアパーチャ31と、このアパーチャ31の透過光の光軸前方にあって、ガルバノメータに傾動可能に装着されたスキャンミラー30と、スキャンミラー30で反射されたレーザ光を、矩形開口4上に開口幅の1/3以下の光スポットが形成されるように、縮小投影させるレンズとを含んで構成される。そして、ビームスキャンユニット3からは、スキャンミラー30の傾動角度を基礎として生成され、矩形開口4に対する現在のレーザ光の光軸位置を示すビーム位置信号S1が出力される。   FIG. 2 shows a configuration diagram illustrating an example of a beam scanning unit (in the case of one axis). As shown in the figure, the beam scanning unit 3 is positioned in front of the optical axis of the aperture 31 irradiated with the laser light whose intensity is adjusted by the attenuator 7 and transmitted through the aperture 31, and can be tilted to the galvanometer. The scanning mirror 30 that is mounted, and a lens that projects the laser light reflected by the scanning mirror 30 in a reduced manner so that a light spot having a width of 1/3 or less of the opening width is formed on the rectangular opening 4. Is done. The beam scan unit 3 outputs a beam position signal S1 that is generated based on the tilt angle of the scan mirror 30 and that indicates the current optical axis position of the laser beam with respect to the rectangular aperture 4.

スキャンミラー30の往復傾動と共に、矩形開口4に対して、開口幅の1/3以下の光スポット(例えば、円形の光スポット)が、矩形開口4の開口幅よりも大きい振幅で揺動し、これにより矩形開口4内のレーザ光の時間平均強度は均一化されることとなる。ここで、光スポットの揺動の軌跡は、水平方向へと揺動するような一次元的な揺動態様、或いは、水平方向揺動と垂直方向揺動とが組み合わされた二次元的な揺動態様を採るものであってもよいであろう。   Along with the reciprocal tilt of the scan mirror 30, a light spot (for example, a circular light spot) of 1/3 or less of the opening width swings with a larger amplitude than the opening width of the rectangular opening 4 with respect to the rectangular opening 4. As a result, the time average intensity of the laser light in the rectangular opening 4 is made uniform. Here, the trajectory of the light spot swing is a one-dimensional swing mode in which the light spot swings in the horizontal direction or a two-dimensional swing in which horizontal swing and vertical swing are combined. It may be a moving mode.

スキャンミラー30とレンズ31との距離は、スキャナミラー30の光軸上の点Pが、加工観察光学系5の対物レンズの入射瞳50上に結像するように調節されている。レンズ31の焦点距離は、対物レンズの入射瞳50で光スポットの周辺が遮られることがないように、また光スポットが矩形開口4の最大サイズ時のエッジ位置にあるときに加工観察光学系5の収差の影響が生じないように選定される。   The distance between the scan mirror 30 and the lens 31 is adjusted so that the point P on the optical axis of the scanner mirror 30 forms an image on the entrance pupil 50 of the objective lens of the processing observation optical system 5. The focal length of the lens 31 is set so that the periphery of the light spot is not obstructed by the entrance pupil 50 of the objective lens, and when the light spot is at the edge position at the maximum size of the rectangular opening 4, the processing observation optical system 5 Is selected so as not to be affected by the aberration.

一方、光アッテネータ3のレーザ光透過率は、薄膜形成時の設定透過率にレーザ光の遥動角度に対してあらかじめ定められた変化率を乗じた透過率に設定される。また、形成する薄膜の目標透過率によっても、異なる変化率を設定することができる。   On the other hand, the laser light transmittance of the optical attenuator 3 is set to a transmittance obtained by multiplying the set transmittance at the time of thin film formation by a predetermined change rate with respect to the swing angle of the laser light. Also, different rates of change can be set depending on the target transmittance of the thin film to be formed.

ここで、レーザ光強度検出器10、11はレーザ光強度の設定と、光アッテネータ7の変化率の粗調整に使用される。光アッテネータ7の変化率の粗調整値Qは、レーザ光強度検出器10の出力をL1、レーザ光強度検出器11の出力をL2、加工観察光学系5の損失を補正するための補正係数をαとすると、

Q = (L2/L1) × α

として算出され、実際に部分透過膜(ハーフトーン膜)を形成して、その透過率ムラを低減するように微調整される。
Here, the laser beam intensity detectors 10 and 11 are used for setting the laser beam intensity and coarsely adjusting the change rate of the optical attenuator 7. The coarse adjustment value Q of the change rate of the optical attenuator 7 is L1 for the output of the laser light intensity detector 10, L2 for the output of the laser light intensity detector 11, and a correction coefficient for correcting the loss of the processing observation optical system 5. If α is

Q = (L2 / L1) x α

And a fine adjustment is performed so as to actually form a partially transmissive film (halftone film) and reduce the transmittance unevenness.

制御部8では、ビームスキャンユニット3から得られるビーム位置信号S1と、矩形開口4から得られる開口エッジ信号S2とに基づいて、現在の光スポットの矩形開口4に対する位置を認識し、それに対応する値を有する透過率制御信号S3を出力することにより、光アッテネータ7のレーザ光透過率を変化させる。   The control unit 8 recognizes the position of the current light spot with respect to the rectangular opening 4 based on the beam position signal S1 obtained from the beam scanning unit 3 and the opening edge signal S2 obtained from the rectangular opening 4, and corresponds to the position. By outputting a transmittance control signal S3 having a value, the laser light transmittance of the optical attenuator 7 is changed.

制御部8によるアッテネータ7の透過率制御内容の一例を示すグラフが、図3及び図4に示されている。   Graphs showing examples of the transmittance control contents of the attenuator 7 by the control unit 8 are shown in FIGS. 3 and 4.

図3の例にあっては、ビーム位置信号S1の値に基づいて、ビーム位置が矩形開口4の第1エッジを越えて開口内(図中C部参照)へと進入したことが判定されると、図示しない透過率制御信号S3の値が変化することにより、アッテネータ7透過率の値はそれ以降徐々に低下し、その後、一定の下限値に安定する。一方、同様にして、ビーム位置が矩形開口4の第2エッジを越えて開口外へと脱出したことが判定されると、図示しない透過率制御信号S3の値が変化することにより、アッテネータ7透過率の値はそれ以降急激に上昇し、その後、一定の上限値に安定する。   In the example of FIG. 3, based on the value of the beam position signal S1, it is determined that the beam position has entered the opening (refer to part C in the figure) beyond the first edge of the rectangular opening 4. When the value of the transmittance control signal S3 (not shown) changes, the value of the attenuator 7 transmittance gradually decreases thereafter, and then stabilizes to a certain lower limit value. On the other hand, if it is determined that the beam position has escaped beyond the second edge of the rectangular opening 4 in the same manner, the value of the transmittance control signal S3 (not shown) changes, and the transmission through the attenuator 7 The value of the rate increases rapidly thereafter, and then stabilizes at a certain upper limit value.

このように、矩形開口4のエッジ位置付近で光アッテネータ7の透過率を変化させる目的は、おもに加工観察光学系5の回折や収差による結像エッジ部分の光強度分布の補正と、光スポットが矩形開口4の光像のエッジを横切って像内に入り込む場合に、薄膜成長の種形成が不十分な場合にそれを補うためである。   Thus, the purpose of changing the transmittance of the optical attenuator 7 near the edge position of the rectangular opening 4 is mainly to correct the light intensity distribution at the imaging edge portion due to diffraction and aberration of the processing observation optical system 5 and to adjust the light spot. This is to compensate for the insufficient seed formation of the thin film growth when entering the image across the edge of the optical image of the rectangular aperture 4.

図4の例は、主として、矩形開口4の内部におけるアッテネータ7の透過率制御を説明するものであって、この例にあっては、予め用意された、ビーム位置信号(S1)と透過率の変化率データ(Q)との関係に基づいて、各ビーム位置毎にアッテネータの透過率を自動的に変化させ、これにより光学系に起因するレーザ照射強度のムラを補正するものである。   The example in FIG. 4 mainly explains the transmittance control of the attenuator 7 inside the rectangular opening 4. In this example, the beam position signal (S 1) and the transmittance are prepared in advance. Based on the relationship with the change rate data (Q), the transmittance of the attenuator is automatically changed for each beam position, thereby correcting the unevenness of the laser irradiation intensity caused by the optical system.

最後に、本発明の作用を説明するためのグラフが図5に示されている。本発明によれば、矩形開口4上では光スポット径(同図(a)参照)よりも遥動の振幅が大きいため(同図(b)参照)、レーザ光の強度分布が光軸に対して対称でなくとも照射レーザ光強度の時間平均を均一にすることができる(同図(c)参照)。   Finally, a graph for explaining the operation of the present invention is shown in FIG. According to the present invention, since the swing amplitude is larger than the optical spot diameter (see (a) in the figure) on the rectangular opening 4 (see (b) in the figure), the intensity distribution of the laser beam is relative to the optical axis. Even if they are not symmetrical, the time average of the intensity of the irradiated laser beam can be made uniform (see (c) in the figure).

一方、光学系に起因する照射面上の照射レーザ光強度の時間平均のムラ(同図(d)参照)は、光アッテネータ7の透過率を図3及び図4に示されるように、光スポットの光軸位置と矩形開口サイズに応じて変化させることによって、ほぼ均一化することができる(同図(e)参照)。但し、図5(d)では、図3に示す矩形開口サイズによるエッジ部分の透過率調節は示していない。   On the other hand, the unevenness of the time average of the intensity of the irradiated laser beam on the irradiated surface due to the optical system (see FIG. 4D) indicates that the transmittance of the optical attenuator 7 is a light spot as shown in FIGS. Can be made almost uniform by changing the position according to the position of the optical axis and the size of the rectangular opening (see FIG. 5E). However, FIG. 5D does not show the transmittance adjustment of the edge portion by the rectangular opening size shown in FIG.

なお、以上の実施形態においては、小径ビームを開口内で大振幅揺動させる技術とアッテネータによるビーム位置対応の透過率制御の技術との双方を組み合わせたが、光学系に起因する照射面上の照射レーザ光強度の時間平均ムラがさほど問題がないのであれば、小径ビームを開口内で大振幅揺動させる技術単独でも十分である。   In the above embodiment, both the technique of swinging a small-diameter beam with a large amplitude within the aperture and the technique of transmittance control corresponding to the beam position by the attenuator are combined. However, on the irradiation surface caused by the optical system. If the time average unevenness of the intensity of the irradiated laser beam is not so problematic, a technique for swinging a small-diameter beam with a large amplitude within the aperture is sufficient.

本発明は、フォトマスクのハーフトーン領域の白欠陥修正のみならず、高度な膜厚均一化を要求される他の用途にも広く適用ができる。   The present invention can be widely applied not only to correcting white defects in a halftone region of a photomask but also to other uses that require a high degree of uniform film thickness.

本発明は、例えば、フォトマスクのハーフトーン領域の白欠陥修正等のように、高度の膜厚均一化が要求される用途に好適なCVD薄膜形成装置に利用することができる。   The present invention can be used for a CVD thin film forming apparatus suitable for applications requiring a high degree of uniform film thickness, such as correction of white defects in a halftone region of a photomask.

1 レーザ発振器
2 ビームエキスパンダ
3 ビームスキャンユニット
4 矩形開口
5A 加工観察光学系
5B 光学系
6 CVDガス供給排気部
7 光アッテネータ
8 制御部
9 フォトマスク
10 レーザ光強度検出器
11 レーザ光強度検出器
12 観察光学系
30 スキャンミラー
31 アパーチャ
32 レンズ
50 入射瞳
51 対物レンズ
52 ミラー
53 ミラー
P 結像点
DESCRIPTION OF SYMBOLS 1 Laser oscillator 2 Beam expander 3 Beam scan unit 4 Rectangular opening 5A Processing observation optical system 5B Optical system 6 CVD gas supply exhaust part 7 Optical attenuator 8 Control part 9 Photomask 10 Laser light intensity detector 11 Laser light intensity detector 12 Observation optical system 30 Scan mirror 31 Aperture 32 Lens 50 Entrance pupil 51 Objective lens 52 Mirror 53 Mirror P Imaging point

Claims (12)

レーザ発振器から射出されるレーザ光を、光軸前方に静止して設けられた開口を通過させたのち、対物レンズで集光することにより、反応ガス雰囲気中に置かれた試料表面に照射すると共に、前記開口へと入射されるレーザ光の光軸を前記開口に対して揺動させることにより、試料表面上における照射光強度を時間平均作用によって均一化するようにしたCVD薄膜の形成方法であって、
前記開口へ入射されるレーザ光の径を前記開口の幅よりも十分に小さく設定すると共に、前記レーザ光の光軸を前記開口の幅よりも大きな振幅で揺動させる、ことを特徴とするCVD薄膜の形成方法。
The laser light emitted from the laser oscillator passes through an opening provided stationary in front of the optical axis, and then is focused on the objective lens to irradiate the sample surface placed in the reaction gas atmosphere. This is a method for forming a CVD thin film in which the optical axis of laser light incident on the opening is oscillated with respect to the opening so that the irradiation light intensity on the surface of the sample is made uniform by a time-average action. And
The CVD is characterized in that the diameter of the laser light incident on the opening is set sufficiently smaller than the width of the opening, and the optical axis of the laser light is swung with an amplitude larger than the width of the opening. Method for forming a thin film.
前記開口へ入射されるレーザ光の強度を前記レーザ光の揺動中の光軸位置に応じて変化させる、ことを特徴とする請求項1に記載のCVD薄膜の形成方法。   2. The method of forming a CVD thin film according to claim 1, wherein the intensity of the laser beam incident on the opening is changed in accordance with the position of the optical axis during the oscillation of the laser beam. 前記光軸位置が前記開口のエッジ近辺にあるとき、前記レーザ光の強度を所定の態様で変化させる、ことを特徴とする請求項2に記載のCVD薄膜の形成方法。   The method of forming a CVD thin film according to claim 2, wherein when the optical axis position is in the vicinity of the edge of the opening, the intensity of the laser beam is changed in a predetermined manner. 前記光軸位置が前記開口の内部領域にあるとき、各位置に応じて予め定められた態様にしたがって、前記レーザ光の強度を変化させる、ことを特徴とする請求項2に記載のCVD薄膜の形成方法。   3. The CVD thin film according to claim 2, wherein when the optical axis position is in an inner region of the opening, the intensity of the laser beam is changed according to a predetermined mode according to each position. Forming method. 前記レーザ光の径は前記開口の幅の1/3よりも小さい、ことを特徴とする請求項1〜4のいずれか1つに記載のCVD薄膜の形成方法。   The diameter of the said laser beam is smaller than 1/3 of the width | variety of the said opening, The formation method of the CVD thin film as described in any one of Claims 1-4 characterized by the above-mentioned. 前記試料がフォトマスクであって、そのハーフトーン領域の白欠陥部分の修正のために用いられる、ことを特徴とする請求項1〜5のいずれか1つに記載のCVD薄膜の形成方法。   The method for forming a CVD thin film according to claim 1, wherein the sample is a photomask and is used for correcting a white defect portion in a halftone region thereof. レーザ発振器と、
レーザ発振器から出射されたレーザ光を、静止位置に置かれた所定形状の開口へと照射しつつ、その光軸を揺動させることが可能な照射揺動手段と、
前記開口を通過したのちのレーザ光を集光して、反応ガス雰囲気中に置かれた試料の表面に照射する対物レンズとを有し、
前記照射揺動手段は、
前記開口上における光スポットの径を、前記開口の開口幅よりも十分に小さく設定すると共に、前記開口上における光スポット揺動の振幅は、前記開口の幅よりも大きく設定する機能が組み込まれている、ことを特徴とするCVD薄膜の形成装置。
A laser oscillator;
Irradiation oscillating means capable of oscillating the optical axis while irradiating the laser beam emitted from the laser oscillator to an opening of a predetermined shape placed at a stationary position;
An objective lens that condenses the laser light after passing through the opening and irradiates the surface of the sample placed in the reaction gas atmosphere;
The irradiation rocking means is
The function of setting the diameter of the light spot on the opening sufficiently smaller than the opening width of the opening and setting the amplitude of the light spot fluctuation on the opening larger than the width of the opening is incorporated. An apparatus for forming a CVD thin film, wherein:
前記照射揺動手段の前段にあって、前記照射揺動手段へと入射されるべきレーザ光を透過すると共に、その光透過率が外部からの制御で変更可能とされた可変透光手段と、
前記開口の位置を示す開口位置信号を生成出力する開口位置検出手段と、
前記開口位置における前記レーザ光の光軸位置を示す光軸位置信号を生成出力する光軸位置検出手段と、
前記開口位置検出手段から出力される開口位置信号と前記光軸位置検出手段から出力される光軸位置信号とに基づいて、前記開口に対する前記光軸の位置を判定し、その判定結果に基づいて、前記可変透光手段の光透過率を制御する制御手段とをさらに含む、ことを特徴とする請求項7に記載のCVD薄膜の形成装置。
Variable light transmission means that is in the preceding stage of the irradiation rocking means, transmits laser light to be incident on the irradiation rocking means, and whose light transmittance can be changed by external control,
Opening position detecting means for generating and outputting an opening position signal indicating the position of the opening;
Optical axis position detection means for generating and outputting an optical axis position signal indicating the optical axis position of the laser beam at the opening position;
Based on the opening position signal output from the opening position detection means and the optical axis position signal output from the optical axis position detection means, the position of the optical axis with respect to the opening is determined, and based on the determination result The CVD thin film forming apparatus according to claim 7, further comprising a control unit that controls a light transmittance of the variable light transmitting unit.
前記制御手段は、前記光軸が前記開口のエッジ近辺にあると判定されるとき、前記可変透光手段の光透過率を所定の態様で変化させる、ことを特徴とする請求項8に記載のCVD薄膜の形成装置。   The said control means changes the light transmittance of the said variable light transmission means in a predetermined | prescribed aspect, when it determines with the said optical axis being near the edge of the said opening. CVD thin film forming equipment. 前記制御手段は、前記光軸が前記開口の内部領域にあると判定されるとき、各位置に応じて予め定められた態様にしたがって、前記可変透光手段の光透過率を変化させる、ことを特徴とする請求項8に記載のCVD薄膜の形成装置。   The control means, when it is determined that the optical axis is in the inner region of the opening, changes the light transmittance of the variable light transmission means according to a predetermined mode according to each position. The apparatus for forming a CVD thin film according to claim 8. 前記レーザ光の径は前記開口の幅の1/3よりも小さい、ことを特徴とする請求項1又は7〜10のいずれか1つに記載のCVD薄膜の形成装置。   The diameter of the said laser beam is smaller than 1/3 of the width | variety of the said opening, The formation apparatus of the CVD thin film as described in any one of Claim 1 or 7-10 characterized by the above-mentioned. 前記試料がフォトマスクであって、そのハーフトーン領域の白欠陥部分の修正のために用いられる、ことを特徴とする請求項7〜11のいずれか1つに記載のCVD薄膜の形成装置。   12. The CVD thin film forming apparatus according to claim 7, wherein the sample is a photomask, and is used for correcting a white defect portion in a halftone region thereof.
JP2009056684A 2009-03-10 2009-03-10 Method and apparatus for forming CVD thin film Active JP5126547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009056684A JP5126547B2 (en) 2009-03-10 2009-03-10 Method and apparatus for forming CVD thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009056684A JP5126547B2 (en) 2009-03-10 2009-03-10 Method and apparatus for forming CVD thin film

Publications (2)

Publication Number Publication Date
JP2010210919A true JP2010210919A (en) 2010-09-24
JP5126547B2 JP5126547B2 (en) 2013-01-23

Family

ID=42971160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009056684A Active JP5126547B2 (en) 2009-03-10 2009-03-10 Method and apparatus for forming CVD thin film

Country Status (1)

Country Link
JP (1) JP5126547B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014520A1 (en) * 2010-07-30 2012-02-02 オムロン株式会社 Photomask correcting method and laser processing device
JP2017173670A (en) * 2016-03-25 2017-09-28 Hoya株式会社 Pattern correction method, photomask manufacturing method, photomask, and correction film forming device
KR102226232B1 (en) 2020-03-04 2021-03-09 가부시키가이샤 에스케이 일렉트로닉스 Method for correcting defect in half-tone mask, method for manufacturing half-tone mask, and half-tone mask

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195451A (en) * 1988-01-30 1989-08-07 Nec Corp Device for correcting white-spot defect of photomask
JPH088197A (en) * 1994-06-22 1996-01-12 Nec Corp Laser cvd apparatus and thin film forming method
JP2000263193A (en) * 1999-03-15 2000-09-26 Nippon Steel Corp Gap meter for single roll method casting and production of rapidly cooled and solidified strip
JP2000347387A (en) * 1999-06-07 2000-12-15 Nec Corp Method and device for correcting photomask
JP2001018086A (en) * 1999-07-01 2001-01-23 Nec Corp Method and device for laser beam machining
JP2002023346A (en) * 2000-02-24 2002-01-23 Quantronix Corp Laser projection system and method for restoration of photolithographic mask
JP2006154595A (en) * 2004-12-01 2006-06-15 Laserfront Technologies Inc Imaging optical apparatus and laser repair apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195451A (en) * 1988-01-30 1989-08-07 Nec Corp Device for correcting white-spot defect of photomask
JPH088197A (en) * 1994-06-22 1996-01-12 Nec Corp Laser cvd apparatus and thin film forming method
JP2000263193A (en) * 1999-03-15 2000-09-26 Nippon Steel Corp Gap meter for single roll method casting and production of rapidly cooled and solidified strip
JP2000347387A (en) * 1999-06-07 2000-12-15 Nec Corp Method and device for correcting photomask
JP2001018086A (en) * 1999-07-01 2001-01-23 Nec Corp Method and device for laser beam machining
JP2002023346A (en) * 2000-02-24 2002-01-23 Quantronix Corp Laser projection system and method for restoration of photolithographic mask
JP2006154595A (en) * 2004-12-01 2006-06-15 Laserfront Technologies Inc Imaging optical apparatus and laser repair apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014520A1 (en) * 2010-07-30 2012-02-02 オムロン株式会社 Photomask correcting method and laser processing device
JP2012032649A (en) * 2010-07-30 2012-02-16 Omron Corp Photomask correction method and laser processing unit
JP2017173670A (en) * 2016-03-25 2017-09-28 Hoya株式会社 Pattern correction method, photomask manufacturing method, photomask, and correction film forming device
KR20170113184A (en) 2016-03-25 2017-10-12 호야 가부시키가이샤 A pattern modification method, a manufacturing method of photomask, photomask and modified film formation device
KR102226232B1 (en) 2020-03-04 2021-03-09 가부시키가이샤 에스케이 일렉트로닉스 Method for correcting defect in half-tone mask, method for manufacturing half-tone mask, and half-tone mask

Also Published As

Publication number Publication date
JP5126547B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
US7295305B2 (en) Method and its apparatus for inspecting a pattern
CN108780208B (en) Pattern light irradiation apparatus and method
WO2020090075A1 (en) Processing system and processing method
JPWO2006129473A1 (en) Laser processing apparatus and laser processing method
WO2001067154A3 (en) A microscope suitable for high-throughput screening having an autofocusing apparatus
JP2011100733A5 (en)
JP6898557B2 (en) Laser processing equipment and crack detection method
KR100958478B1 (en) Projection display
KR20160127768A (en) Monitoring method and apparatus for control of excimer laser annealing
CN114555276A (en) Adjustment apparatus and method for Bessel beam processing optics
JP2006074041A (en) Equipment and method for homogenizing laser radiation, and laser system using such equipment and method
JP5126547B2 (en) Method and apparatus for forming CVD thin film
JP2007317862A (en) Aligner and exposure method
KR20130089581A (en) Extending the lifetime of a deep uv laser in a wafer inspection tool
EP0735563B1 (en) Scanning electron microscope
JP2009297781A (en) Laser beam machining apparatus
JP2002054989A (en) Laser beam measuring device and control device
TWI704023B (en) Control device of laser processing machine, laser processing method and laser processing machine
WO2020090074A1 (en) Processing system and processing method
JP2007029959A (en) Laser beam machining apparatus
WO2018211928A1 (en) Laser anneal device and laser anneal method
JP4452150B2 (en) Phase defect correcting mask correcting optical system, phase defect correcting mask correcting apparatus, and phase defect correcting laser CVD mask correcting apparatus
KR20200019386A (en) Laser processing apparatus
KR102313467B1 (en) Laser processing apparatus
JP2004101438A (en) Laser generator, image reading apparatus and image inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121016

R150 Certificate of patent or registration of utility model

Ref document number: 5126547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250