TW201218384A - Thin film transistor and method for manufacturing the same - Google Patents
Thin film transistor and method for manufacturing the same Download PDFInfo
- Publication number
- TW201218384A TW201218384A TW100118451A TW100118451A TW201218384A TW 201218384 A TW201218384 A TW 201218384A TW 100118451 A TW100118451 A TW 100118451A TW 100118451 A TW100118451 A TW 100118451A TW 201218384 A TW201218384 A TW 201218384A
- Authority
- TW
- Taiwan
- Prior art keywords
- film
- layer
- active layer
- transistor
- protective layer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 53
- 239000010409 thin film Substances 0.000 title claims abstract description 38
- 239000010408 film Substances 0.000 claims abstract description 280
- 239000000758 substrate Substances 0.000 claims abstract description 94
- 239000004065 semiconductor Substances 0.000 claims abstract description 53
- 239000012298 atmosphere Substances 0.000 claims abstract description 17
- 238000000059 patterning Methods 0.000 claims abstract description 7
- 239000010410 layer Substances 0.000 claims description 247
- 239000011241 protective layer Substances 0.000 claims description 111
- 239000001257 hydrogen Substances 0.000 claims description 49
- 229910052739 hydrogen Inorganic materials 0.000 claims description 49
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 48
- 229920002120 photoresistant polymer Polymers 0.000 claims description 40
- 238000004544 sputter deposition Methods 0.000 claims description 18
- 239000002253 acid Substances 0.000 claims description 14
- 238000005530 etching Methods 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 9
- 239000004020 conductor Substances 0.000 claims description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims description 3
- 239000003513 alkali Substances 0.000 claims description 2
- 210000003298 dental enamel Anatomy 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- 239000012085 test solution Substances 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims 1
- 229910052724 xenon Inorganic materials 0.000 claims 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims 1
- 239000007789 gas Substances 0.000 description 51
- 239000001301 oxygen Substances 0.000 description 31
- 229910052760 oxygen Inorganic materials 0.000 description 31
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 30
- 230000015572 biosynthetic process Effects 0.000 description 26
- 239000004417 polycarbonate Substances 0.000 description 24
- 239000011347 resin Substances 0.000 description 20
- 229920005989 resin Polymers 0.000 description 20
- 229910052750 molybdenum Inorganic materials 0.000 description 17
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 16
- 229910052707 ruthenium Inorganic materials 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000000203 mixture Substances 0.000 description 15
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 14
- 239000012535 impurity Substances 0.000 description 14
- 238000001459 lithography Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 13
- 239000012212 insulator Substances 0.000 description 13
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 12
- 239000011521 glass Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 239000011733 molybdenum Substances 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 229910052681 coesite Inorganic materials 0.000 description 10
- 229910052906 cristobalite Inorganic materials 0.000 description 10
- 239000001307 helium Substances 0.000 description 10
- 229910052734 helium Inorganic materials 0.000 description 10
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 10
- 229910052682 stishovite Inorganic materials 0.000 description 10
- 229910052905 tridymite Inorganic materials 0.000 description 10
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 9
- 239000002131 composite material Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000012670 alkaline solution Substances 0.000 description 7
- 229960002050 hydrofluoric acid Drugs 0.000 description 7
- 230000007774 longterm Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- -1 poly(fluorene trifluoroethylene) Polymers 0.000 description 7
- 125000004429 atom Chemical group 0.000 description 6
- 238000001755 magnetron sputter deposition Methods 0.000 description 6
- 238000001552 radio frequency sputter deposition Methods 0.000 description 6
- 239000004925 Acrylic resin Substances 0.000 description 5
- 229920000178 Acrylic resin Polymers 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 5
- 229920000106 Liquid crystal polymer Polymers 0.000 description 4
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 4
- 229910001182 Mo alloy Inorganic materials 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000005685 electric field effect Effects 0.000 description 4
- 229910001195 gallium oxide Inorganic materials 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 239000011112 polyethylene naphthalate Substances 0.000 description 4
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 238000007733 ion plating Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000008267 milk Substances 0.000 description 3
- 210000004080 milk Anatomy 0.000 description 3
- 235000013336 milk Nutrition 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 235000006408 oxalic acid Nutrition 0.000 description 3
- 239000002985 plastic film Substances 0.000 description 3
- 229920006255 plastic film Polymers 0.000 description 3
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 238000009751 slip forming Methods 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 229960001296 zinc oxide Drugs 0.000 description 3
- VZXTWGWHSMCWGA-UHFFFAOYSA-N 1,3,5-triazine-2,4-diamine Chemical compound NC1=NC=NC(N)=N1 VZXTWGWHSMCWGA-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 229910000979 O alloy Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910004205 SiNX Inorganic materials 0.000 description 2
- CLLRAVDQGDKZFC-UHFFFAOYSA-N [N+](=O)([O-])CC(=O)O.[P] Chemical compound [N+](=O)([O-])CC(=O)O.[P] CLLRAVDQGDKZFC-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 210000000078 claw Anatomy 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- XLJMAIOERFSOGZ-UHFFFAOYSA-N cyanic acid Chemical compound OC#N XLJMAIOERFSOGZ-UHFFFAOYSA-N 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229940074355 nitric acid Drugs 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- ZDYUUBIMAGBMPY-UHFFFAOYSA-N oxalic acid;hydrate Chemical compound O.OC(=O)C(O)=O ZDYUUBIMAGBMPY-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- DILISPNYIVRDBP-UHFFFAOYSA-N 2-[3-[2-(2-hydroxypropylamino)pyrimidin-4-yl]-2-naphthalen-2-ylimidazol-4-yl]acetonitrile Chemical compound OC(CNC1=NC=CC(=N1)N1C(=NC=C1CC#N)C1=CC2=CC=CC=C2C=C1)C DILISPNYIVRDBP-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910004286 SiNxOy Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- HYWKVFVQRGEFCH-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[PH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[PH6+3] HYWKVFVQRGEFCH-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000001167 anti-butyric effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- SCCCLDWUZODEKG-UHFFFAOYSA-N germanide Chemical compound [GeH3-] SCCCLDWUZODEKG-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 150000002472 indium compounds Chemical class 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- LBGSDOMRVQPKJM-UHFFFAOYSA-N indium yttrium Chemical compound [Y][In] LBGSDOMRVQPKJM-UHFFFAOYSA-N 0.000 description 1
- ZEWMZYKTKNUFEF-UHFFFAOYSA-N indium;oxozinc Chemical compound [In].[Zn]=O ZEWMZYKTKNUFEF-UHFFFAOYSA-N 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000010977 jade Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000001182 laser chemical vapour deposition Methods 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 125000001095 phosphatidyl group Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920003050 poly-cycloolefin Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 125000004424 polypyridyl Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 150000003304 ruthenium compounds Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000015067 sauces Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- DVUVKWLUHXXIHK-UHFFFAOYSA-N tetraazanium;tetrahydroxide Chemical compound [NH4+].[NH4+].[NH4+].[NH4+].[OH-].[OH-].[OH-].[OH-] DVUVKWLUHXXIHK-UHFFFAOYSA-N 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 150000003553 thiiranes Chemical class 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66742—Thin film unipolar transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78606—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Thin Film Transistor (AREA)
- Physical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
201218384 六、發明説明: 【發明所屬之技術領域】 本發明係有關於—種薄膜電晶體及其製造方法,特 別是有關於一種信賴性及再現性優良,同時產率高且生 產性優良之薄膜電晶體及其製造方法。 【先前技術】 目前,溥膜電晶體特別是電場效果型電晶體,係被 廣泛地使用作為半導體記憶積體電路、高頻信號增幅元 件等。 又,作為液晶顯示裝置(LCD)、電激發光顯示裝置 (EL) ' % 發射顯不器(Field Emissi〇n Display : FED)等的 平面薄型影像顯示裝置(Flat Panel Display : FpD)的開關 兀件,電%政果型電晶體之中,能夠使用薄膜電晶體(以 下亦私為TFT)。在平面薄型影像顯示裝置(以下亦稱為 FPD)所使用的TFT係在玻璃基板上形成非晶f碎薄膜或 多晶矽薄膜作為活性層。 在活}·生層使用上述非晶石夕薄膜或多晶石夕薄膜之 TFT,係需要比較高溫的熱步驟。因此,雖然能夠使用 玻璃基板’但是使用耐熱性低之樹脂製的基板係困難的。 又,關於FPD ’被要求進一步薄型化、輕量化、耐 破損性’亦研討使用輕量且具有撓性之樹脂製的基板來 代替^璃基板。因此,能夠在低溫成膜之非晶質氧化物 半導《a例如In_Ga_Zn_〇系的非晶氧化物之TFT的開發 係活躍地進行中(例如參照專利文獻1、2)。 201218384 在專利文獻1,係揭 device),其係具備將第i絕 中的至少一元素之非晶質氧 2絕緣體依照該順序具有之 導體膜構成活性層。在該專 其位於與第1絕緣體的界面 位於與第2絕緣體的界面之 至少任一方的氧空孔密度, 1及第2界面層以外的部分 低。又’專利文獻1係揭示 氧空孔密度係比主體層的氧 而且’在專利文獻1, 在第1絕緣體上進行形成氧 化物半導體膜上形成第2絕 含有第1絕緣體、氧化物半 氧化物半導體膜構成活性層 利文獻1,係除了第1絕緣 導體膜的成膜步驟以外,藉 氧化物半導體膜之位於與前 亦即苐1界面層、及位於與 即第2界面層之中的至少任 化物半導體膜之第1及第2 層的氧氣空孔密度低。 又’在專利文獻1,薄 閘極金屬膜、作為第1絕緣 示一種薄膜裝置(thinfilm 緣體、含有至少Zn、Ga、In 化物之氧化物半導體膜、第 積層構造,且使用氧化物半 利文獻,氧化物半導體膜, 之部分亦即第1界面層、及 部分亦即第2界面層之中的 係比在氧化物半導體膜之第 亦即主體層的氧氣空孔密度 第1界面層及第2界面層的 氣空孔密度低。 係揭示一種方法,其係藉由 化物半導體膜之步驟及在氧 緣體上之步驟,來製造具備 導體膜及第2絕緣體且使用 之薄膜裝置之方法。在該專 體、第2絕緣體及氧化物半 由進行氧化性處理,來使在 述第1絕緣體的界面之部分 第2絕緣體的界面之部分亦 一方的氧空孔密度,比在氧 界面層以外的部分亦即主體 臈裝置的積層構造係藉由將 體的閘極絕緣膜、氧化物半 201218384 導體膜、源極.汲極金屬膜、作為第2絕緣體的保護 緣膜依照該順序成膜而形成者。在形成該薄膜裝置的 層構造時’係在閘極絕緣膜成膜後,不暴露在大氣中 依照順序進行氧化性處理及氧化物半導體膜的成膜。 在專利文獻2,係揭示一種電場效果型電晶體, 係在具有含有In或Zn之非晶氧化物膜的通道層之電 效果型電晶體,其中非晶氧化物膜係含有1 〇 16/cm3以 l〇2G/cm3以下的氫原子或氘原子。 該電場效果型電晶體係例如能夠藉由下列等步驟 製.形成閘極電極之步驟,形成閘極.絕緣層之步驟 形成源極電極及汲極電極之步驟;及邊將含氫原子之 體(但是’水蒸氣除外)及氧氣以預定分壓導入成膜裝 内、邊形成由非晶氧化物所構成之通道層之步驟。 [先前技術文獻] [專利文獻] [專利文獻1]特開2008-42088號公報 [專利文獻2]特開2007-103918號公報 [非專利文獻] [非專利文獻 1] APPLIED PHYSICS LETTERS(應用物 學著述)90,1 921 01 2007 年 [非專利文獻 2] APPLIED PHYSICS LETTERS(應用物 學著述)92, 072104 2008 年 【發明内容】 [發明所欲解決之課題] 在專利文獻1 ’構成活性層之氧化物半導體膜的 膜後’係在大氣開放後進行圖案化成為所需要的形狀 絕 積 而 其 場 上 來 7 氣 置 理 理 成 201218384 此時,活性層的背後通道係被暴露在大氣中,且圖案化 時係被暴露在蝕刻液等。因此,背後通道有吸附水分、 吸附氧或混入污染不純物等元素的可能性之問題。如 此,在背後通道的表面吸附有氧、水分等時,已知電晶 體特性會產生變化(參照非專利文獻1、2) ^因此,專利 文獻1有信賴性及再現性差之問題。 又,專利文獻2係具有l〇16/cm3以上、i〇2 0/ cm3以 下的氫原子或氘原子的非晶氧化物膜,藉此來減低遲滯 (hysteresis)。但是,在專利文獻2,為了在非晶氧化物 膜(通道層)添加氫,必須以預定的分壓將含氫原子的氣 體(但是,水蒸氣除外)及氧氣導入至成膜裝置,而有步 驟麻煩 '同時増加步驟數之問題點。 為了消除基於前述先前技術之問題點,本發明之目 的係提供-種信賴性及再現性優良、同時產率高且生產 性優良之薄膜電晶體及其製造方法。 [解決課題之手段] ” 上述目的,本發明的第1態樣係提供一種 薄膜電晶體之製造方法,其係在基板上至少設置閑極電 極閘極、邑、.彖層、作為通道層的功能之活性201218384 VI. Description of the Invention: [Technical Field] The present invention relates to a thin film transistor and a method of manufacturing the same, and more particularly to a film which is excellent in reliability and reproducibility, and which has high yield and excellent productivity. A transistor and a method of manufacturing the same. [Prior Art] At present, a ruthenium film transistor, particularly an electric field effect type transistor, is widely used as a semiconductor memory integrated circuit, a high frequency signal amplification element, and the like. Moreover, as a switch of a flat panel display device (FpD) such as a liquid crystal display device (LCD) or an electroluminescence display device (EL) '% Em Em 〇 Display (FED) 兀Among the electric and chemical-type transistors, a thin film transistor (hereinafter also a private TFT) can be used. The TFT used in the flat thin image display device (hereinafter also referred to as FPD) forms an amorphous f-short film or a polycrystalline silicon film as an active layer on a glass substrate. It is necessary to use a relatively high-temperature thermal step in the living layer using the above amorphous amorphous film or polycrystalline silicon film. Therefore, although a glass substrate ' can be used, it is difficult to use a substrate made of a resin having low heat resistance. Further, the FPD ′ is required to be further reduced in thickness, weight, and breakage resistance. A substrate made of a lightweight and flexible resin is also used instead of the glass substrate. Therefore, the development of a TFT having an amorphous oxide semiconductor film of a low-temperature film formation, such as an In_Ga_Zn_〇-based amorphous oxide, is actively carried out (see, for example, Patent Documents 1 and 2). In the case of Patent Document 1, a device comprising an amorphous oxygen oxide insulator of at least one element of the i-th insulating layer is provided with a conductor film which constitutes an active layer in this order. The oxygen hole density at least one of the interface with the first insulator at the interface with the first insulator is lower than the portion other than the first interface layer. Further, Patent Document 1 discloses that the oxygen pore density is higher than that of the bulk layer. In Patent Document 1, the second insulating layer and the oxide semiconductor oxide are formed on the first insulating body. The semiconductor film constitutes an active layer. In addition to the film formation step of the first insulating conductor film, at least the interface layer between the first and second layers of the oxide semiconductor film and the second interface layer The first and second layers of the guest semiconductor film have a low oxygen pore density. Further, in Patent Document 1, a thin gate metal film, a thin film device as a first insulating material (thin film edge body, an oxide semiconductor film containing at least Zn, Ga, and an indium compound, a buildup layer structure, and a thin oxide layer) In the literature, the first interfacial layer, that is, the first interfacial layer, and the second interfacial layer, the oxygen interfacial density first interface layer of the main layer of the oxide semiconductor film The second interface layer has a low pore density. A method for producing a thin film device including a conductor film and a second insulator by a step of forming a semiconductor film and a step on an oxygen substrate is disclosed. The specific body, the second insulator, and the oxide are half-oxidized, so that the oxygen hole density of the portion of the interface between the second insulator at the interface of the first insulator is higher than that of the oxygen interface layer. The other part, that is, the laminated structure of the main body device, is formed by a gate insulating film, an oxide half 201218384 conductive film, a source, a drain metal film, and a protective edge film as a second insulator. When the layer structure of the thin film device is formed, it is formed after the gate insulating film is formed, and the oxidative treatment and the formation of the oxide semiconductor film are performed in order without being exposed to the atmosphere. Document 2 discloses an electric field effect type transistor which is an electric effect type transistor having a channel layer of an amorphous oxide film containing In or Zn, wherein the amorphous oxide film system contains 1 〇 16 / cm 3 to氢2G/cm3 or less of a hydrogen atom or a ruthenium atom. The electric field effect type electro-optic system can be formed, for example, by the steps of forming a gate electrode to form a gate electrode. The step of forming an insulating layer forms a source electrode and a drain electrode. a step of forming an electrode; and a step of forming a channel layer composed of an amorphous oxide while introducing a hydrogen atom-containing body (except for 'water vapor) and oxygen into a film-forming package with a predetermined partial pressure. [Previous Technical Literature [Patent Document 1] JP-A-2008-42088 [Patent Document 2] JP-A-2007-103918 [Non-Patent Document] [Non-Patent Document 1] APPLIED PHYSICS LETTERS (Applied Literature) 90 , 1 921 01 20 [Non-Patent Document 2] APPLIED PHYSICS LETTERS 92, 072104 2008 [Invention] [Problems to be Solved by the Invention] Patent Document 1 'After forming a film of an oxide semiconductor film of an active layer 'The system is patterned after the atmosphere is opened to become the required shape. On the field, it is treated as a gas. 201218384 At this time, the channel behind the active layer is exposed to the atmosphere, and is exposed when patterned. Etching liquid, etc. Therefore, the back channel has a problem of adsorbing moisture, adsorbing oxygen, or mixing impurities such as impurities. When oxygen, moisture, or the like is adsorbed on the surface of the back channel, it is known that the characteristics of the crystal crystal change (see Non-Patent Documents 1 and 2). Therefore, Patent Document 1 has a problem of poor reliability and reproducibility. Further, Patent Document 2 is an amorphous oxide film having a hydrogen atom or a ruthenium atom of 10 〇 16 /cm 3 or more and i 〇 2 0 / cm 3 or less, thereby reducing hysteresis. However, in Patent Document 2, in order to add hydrogen to the amorphous oxide film (channel layer), it is necessary to introduce a hydrogen atom-containing gas (except water vapor) and oxygen into the film forming apparatus at a predetermined partial pressure. The steps are troublesome' while adding the number of steps. In order to eliminate the problems based on the foregoing prior art, the object of the present invention is to provide a thin film transistor which is excellent in reliability and reproducibility, and which has high yield and excellent productivity, and a method for producing the same. [Means for Solving the Problems] The above aspect of the present invention provides a method of manufacturing a thin film transistor, in which at least a pad electrode, a ruthenium, a ruthenium layer, and a channel layer are provided on a substrate. Functional activity
述活性層的通道區域之 復息月J 通道保達層、源極電極及汲極雷 極而成’其特徵在於具備. w M m ^ .在别述基板上形成前述閘極 電極之步驟,覆盍前述閉極電極而在前述基板上形成第 1絕緣膜,且在前诚坌t切 土低工々成第 it I 、浥緣膜上形成氧化物半導體膜, 並且在則逃氧化物半導w 前述第!絕緣膜、前过竭2絕緣膜而得到由 、別述氧化物半導體膜及前述第2絕緣 201218384 膜所構成之積層體# + . # ^ 之步驟’將前述積層體的前述第1絕 彖膜W述氧化物半導體膜及前述第2絕緣膜圖案化而 各自形成前述間極絕緣層、前述活性層及前述通道保護 層之/驟’及形成前述源極電極及前述汲極電極之步 驟;前述第丨絕緣膜、前述氧化物半導體膜及前述第2 絕緣膜係不暴露於大氣中而連續地被形成。 在本發明’形成前述通道保護層、前述活性層及前 =極絕緣層之步驟’較佳是具備:將前述積層體的前 2絕緣膜圖案化而形成前述通道保護層之步驟;將 前述第1絕緣膜圖案化而形成前述閉極絕緣層之步驟. :將前述氧化物半導體膜圖案化而形成前述活性層之步 又’形成前述源極電極及前❹極電極之步驟 佳疋具備··在前述基板上形成導電膜且在電 ,t f 且將則述通道保護層作為蝕刻阻止層 (步etrg pper)’使用酸的姓刻液將前述導電膜㈣之 而且,前述第"邑緣膜、前述氧化 述第2絕緣膜較佳是使用賤鑛法形成。等體膜及刖 並且,前述第1絕緣膜、前述氧化 述第2絕緣膜較佳是在背壓為 膜及前 q A u x丄υ p a以下 又,前述第2絕緣膜較佳是在氧氣與 0.1%以上且小於10%的條件下形成。”亞的遇合比為 而且’較佳是前述第2絕緣膜係由G“ 構成’且形成前述通道保護層之勿臈所 两彤成前述Ga 201218384 的氧化物膜之半„ ^ 膜之步驟:使Γ 該前述〜的氧化物膜上形成光阻 八、 在别述光阻膜之至少前述通道區域的—部 :成為圖案部而使其他部分成為非圖案部之步驟;及:吏 用驗溶液將箭、+、 1定 述非圖案部除去而形成圖案之步驟;在前 4圖幸形忐+ ^ m 〃成v驟,將前述非圖案部除去時,前述非圖荦 冲的下方之箭、+, 开,Λ 述Ga的氧化物膜係被前述鹼溶液除 %成前述通道保護層。 本’X月的第2態樣係在基板上至少設置閘極電 間絕緣居、彳4 a 為通道保護層的功能之活性層、覆蓋俞 活性層的補、苦 復盖刖迷 、^域之通道保護層、源極電極及汲極雷 前.s * 、.在則述活性層上形成前述通道保護声,The channel region of the active layer, the J-channel retention layer, the source electrode, and the drain-pole, is characterized by having a w M m ^ . The step of forming the gate electrode on a different substrate, Forming a first insulating film on the substrate by covering the closed electrode, and forming an oxide semiconductor film on the front surface of the first I and the germanium film, and then escaping the oxide half Guide w the aforementioned! The insulating film and the front insulating film 2 are obtained, and the first layer of the laminated body is obtained by the step of forming the laminated body #+. # ^ of the oxide semiconductor film and the second insulating layer 201218384. The oxide semiconductor film and the second insulating film are patterned to form the inter-electrode insulating layer, the active layer and the channel protective layer, and the step of forming the source electrode and the drain electrode; The second insulating film, the oxide semiconductor film, and the second insulating film are continuously formed without being exposed to the atmosphere. In the present invention, the step of forming the channel protective layer, the active layer and the front/polar insulating layer preferably includes the step of patterning the front insulating film of the laminated body to form the channel protective layer; 1. The step of patterning the insulating film to form the closed-electrode insulating layer. The step of patterning the oxide semiconductor film to form the active layer and forming the source electrode and the front drain electrode are provided. Forming a conductive film on the substrate and electrically, tf and using the channel protective layer as an etch stop layer (step etrg pper), using the acid surname to engrave the conductive film (4), and the aforementioned "邑 膜 film The second insulating film of the above-described oxidation is preferably formed by a bismuth ore method. Preferably, the first insulating film and the second insulating film of the oxide described above are preferably a back pressure of the film and a front side of the film, and the second insulating film is preferably oxygen and It is formed under conditions of 0.1% or more and less than 10%. The sub-combination ratio is and is preferably a step in which the second insulating film is composed of G and the channel protective layer is formed to form a half of the oxide film of the above Ga 201218384: a step of forming a photoresist on the oxide film of the above-mentioned ?, a portion of at least the channel region of the photoresist film: a portion which becomes a pattern portion and a portion other than a non-pattern portion; and: a test solution for use The step of removing the non-pattern portion by the arrow, +, 1 to form a pattern; in the first 4 diagrams, the shape of the non-pattern portion is removed, and when the non-pattern portion is removed, the arrow below the non-pattern buffer The + oxide film of the Ga is divided into the channel protective layer by the alkali solution. The second aspect of the 'X month is to provide at least a gate inter-electrode insulation on the substrate, 彳 4 a The active layer of the function of the channel protective layer, the patch covering the active layer of the layer, the protective layer of the bitter cover layer, the channel protective layer of the domain, the source electrode and the drain electrode of the front layer are formed on the active layer. The aforementioned channel protection sound,
⑴述通道保護層及前述活性 I 保護声朝尚儿、+, J虱,辰度係攸削述通道 蔓層朝向則述活性層而減少,且、 述活性声之針、+、田 ^、1示護層與前 …述界面附近的氫濃度輪廓係具有極小 :大值,在前述通道保護層與前述活性層值與 :述氫濃度輪廓的微分值係從負變化為正,同時二 1面附近之前述微分值的差異係lxl()'h 别迷 «。'二二是前述活……氫“為 又’較佳是在前述活s & 層使前述通道保護層介於 中間而形成前述源極電極及汲極電極。 "於 成、而且’較佳是前述活性層係將非日日日質半導體作為主 ,,此時,較佳是前述活性層係由含有 乍為主 之非晶氧化物半導體所構成。 及zn 201218384 [發明之效果] 依照本發明的薄膜電晶體之製造方法,藉由將作為 閘極絕緣層之第1絕緣膜、作為活性層之氧化物半導體 膜及作為通道保護層之第2絕緣膜,不暴露於大氣中而 連續地形成,能夠抑制不純物進入活性層與通道保護層 之界面,能夠抑制在活性層之水分、氧、不純物等的影 曰敗*夠抑制®*限值(threshold value)的位移。藉此,能 夠再現性良好且以高產率製造具有良好特性之薄媒電晶 體。 曰曰 依照本發明的薄膜電晶體,通道保護層及活性層内 的氫/辰度係從通道保護層朝向活性層而減少,通道保護 層與活性層之界面附近的氫濃度輪廓係具有極小值及極 大值且在通道保護層與活性層之界面附近’氫濃度輪 庸的微刀值係由負變化為正,同時藉由在界面附近的微 分值之差異為1 X 1 〇2G以上,能夠顯示良好的TFT特性且 提高長期信賴性。 【實施方式】 [用以貫施發明之形態] 以下’基於在附加圖式所表示之較佳實施形態而詳 細地說明本發明的薄膜電晶體及其製造方法。 第1圖係顯示本發明的第1實施形態之薄膜電晶體 之模式性剖面圖。 第1圖所表示之薄膜電晶體(以下亦簡稱為電晶 體)1 〇係電場效果型電晶體之一種,具有:基板丨2 ;閘 極電極1 4 ·’閘極絕緣層1 6 ;作為通道層的功能之活性層 ¢: -10- 201218384 18 ’通道保護層20 ;源極電極22 ;汲極電極24及平坦 化層2 6 °该電晶體i 〇係對閘極電極1 4施加電壓而控制 在活性層1 8的通道區域c流動的電流,且具有進行開關 源極電極22及汲極電極24之間的電流的功能之主動性 兀件。第1圖所表示之電晶體丨〇係通常被稱為下閘極上 接觸(bottom gate top contact)構造者。 在電晶體1 0 ’係在基板12的表面1 2 a形成閘極電 極14,且以覆蓋該閘極電極1 4的方式在基板1 2的表面 1 2 a形成閘極絕緣層1 6。在該閘極絕緣層1 6的表面1 6 a 形成活性層1 8。在該活性層1 8的表面1 8a設置覆蓋活 性層18的通道區域C之通道保護層20。在活性層18的 表面1 8 a使通道保護層2 0介於之間而形成源極電極2 2 及汲極電極2 4。 以覆蓋活性層18的表面18a及通道保護層20的表 面20a的一部分之方式在閘極絕緣膜16的表面16a形成 源極電極22。又,與該源極電極22成一對之汲極電極 24係以覆蓋活性層1 8的表面1 8a及通道保護層20的表 面20a的一部分之方式在閘極絕緣膜1 6的表面1 6a,與 源極電極22相向而形成。亦即,源極電極22與沒極電 極24係敞開通道保護層20的表面2〇a的上方而以覆蓋 活性層18的表面18a及通道保護層20的表面20a的一 部分之方式形成。以覆蓋源極電極22、通道保護層20 及汲極電極24的方式形成平坦化層26。 在電晶體10 ’基板1 2係沒有特別限定。在基板1 2, 係能夠使用例如玻璃及Y S Z(氧化錯安定化銦)等的無機 -11 - 201218384 材料χ ’基板! 2亦能夠使用聚對酞酸乙 咖㈣二酿叫聚蔡二甲酸乙二啊)等的)聚 西曰聚本乙稀、聚碳酸L風(pES)、聚芳香酿、稀 丙土二甘醇碳酸_、聚醯亞胺(ρι)、聚環烯烴、降 樹知、聚(虱三氟乙烯)等的合成樹脂等液晶 的有機材料。 在基板12,使用玻璃時,為了減少從玻璃溶出離子, ^吏用無驗玻璃為佳。X’在基板12 ’使用驗石灰破璃 時’以使用經施行二氧切等的阻障塗覆者為佳。 又,在基板12使用有機材料時,以耐熱性、尺寸安 定性 '耐溶劑性、電絕緣性、加工性、低通氣性及低吸 濕性等優良為佳。 β在基板12,亦能夠使用撓性基板。該撓性基板係較 佳是使厚度為50/zm〜500 //m。這是因為撓性基板的厚 度小於5 0 # m時,基板本身難以保持充分的平坦性之緣 故又’撓性基板的厚度超過500//rn時,因為美拓太 身的挽性變為缺乏,致使基板本身難以自由地; 故。 在此,在本發明,所謂撓性基板係指如以下所表示 的材料及構成之有機系基板及金屬系基板。 作為構成撓性基板之有機系基板,可使用例如飽和 聚醋(PET)系樹脂基板、聚萘二甲酸乙二酯(pen)樹脂基 板 乂聯反丁稀一酸一醋糸樹脂基板、聚碳酸醋(pc)系 樹脂基板、聚醚^(PES)樹脂基板、聚;ε風(psF,PSU)樹脂 基板、聚芳香酯(PAR)樹脂基板、環狀聚烯烴(c〇p、COC) -12- 201218384 樹脂基板、纖維素系樹脂基板、聚醯亞胺(PI)樹脂基板、 聚醯胺醯亞胺(P AI)樹脂基板、順丁烯二醯亞胺-烯烴樹 月曰基板' 聚醢胺(P A )樹脂基板、丙稀酸系樹脂基板、氣 系樹脂基板、環氧系樹脂基板、聚矽氧系樹脂薄膜基板、 聚苯并唑(polybenzazole)系樹脂基板、環硫化物化合物 之基板、液晶聚合物(L C P)基板、氰酸g旨系樹脂基板、芳 香族系樹脂基板。 而且’有機系基板亦包含以下所表示之複合材料的 塑膠基板。作為該複合材料的塑膠基板,係能夠使用例 如與氧化矽粒子之複合材料;與金屬奈米粒子、無機氧 化物奈米粒子、無機氮化物奈米粒子等之複合材料;與 至屬系.無機系的奈米纖維及微纖維之複合材料;與碳 纖維、奈米碳管之複合材料;與玻璃碎片、玻璃纖維、 玻璃珠之複合材料;與具有黏土礦物或雲母衍生結晶構 造的粒子之複合材料;及在,薄玻璃與作為上述有機系基 板所舉出之構成上述樹脂基板的有機材料之間,呈= 少1次的接合界之複合材料。 〃有 入,料㈣成撓性基板之金屬系基板,能夠使用 =不鏽鋼基板、或藉由積層不同金屬而施加抑制敎膨 脹的辦法之金屬多層基板。而且,作為金屬系' 夠使用鋁基板、或藉由在表面施 土 月匕 f. , . m 礼化處理、例如陽極 乳化處理而提升表面的絕緣性 板。 π有虱化破膜的鋁基 電絕緣性不充分時 在基板1 2使用塑膠薄膜等時, 可形成絕緣層而使用。 -13- 201218384 在基板1 2 ’使用撓性基板時,亦可進而按照必要而 °又置硬塗層、底塗層等。又,亦可設置用以防止水蒸氣 及氧的透過而在其表面或背面設置防透濕層(氣體阻障 層)。 作為防透濕層(氣體阻障層)的材料,可’適合使用氮 夕氧化石夕、氧化銘等的無機物。而且,與丙烯酸樹 月曰和%氧樹脂等的有機膜之交替積層的構造亦可。防透 廣層(氣體阻障層)係能夠使用例如高頻濺鍍法等來形 成。 間極電極14係例如能夠使用Al、Mo、Cr ,,,、,,,— v i a 、 i l(1) The channel protective layer and the above-mentioned active I protection sounds toward Shanger, +, J虱, and the degree of 攸 攸 攸 通道 通道 通道 通道 蔓 蔓 蔓 蔓 蔓 蔓 蔓 蔓 蔓 蔓 蔓 蔓 蔓 蔓 蔓 蔓 蔓 蔓 蔓 蔓 蔓1 The thickness of the hydrogen concentration in the vicinity of the interface between the protective layer and the front surface has a very small value: in the channel protective layer and the active layer value and the differential value of the hydrogen concentration profile, the negative value changes from negative to positive, and simultaneously The difference in the aforementioned differential values near the face is lxl()'h. '22 is the aforesaid ... hydrogen "is again" preferably in the above-mentioned living s & layer of the channel protective layer interposed between the formation of the source electrode and the drain electrode. "Yu Cheng, and ' compare Preferably, the active layer is mainly composed of a non-daily solar semiconductor, and in this case, it is preferable that the active layer is composed of an amorphous oxide semiconductor containing ruthenium. And zn 201218384 [Effect of the invention] In the method for producing a thin film transistor of the present invention, the first insulating film as the gate insulating layer, the oxide semiconductor film as the active layer, and the second insulating film as the channel protective layer are continuously exposed without being exposed to the atmosphere. The formation of the ground can suppress the entry of impurities into the interface between the active layer and the channel protective layer, and can suppress the displacement of moisture, oxygen, impurities, and the like in the active layer, thereby suppressing the displacement of the threshold value of the ** threshold. A thin dielectric transistor having good characteristics is produced with good reproducibility and high yield. 薄膜 According to the thin film transistor of the present invention, the channel protective layer and the hydrogen/density in the active layer are oriented from the channel protective layer. The layer is reduced, and the hydrogen concentration profile near the interface between the channel protective layer and the active layer has a minimum value and a maximum value, and the micro-knife value of the hydrogen concentration shift is negatively changed to the vicinity of the interface between the channel protective layer and the active layer. At the same time, the difference in the differential value in the vicinity of the interface is 1 X 1 〇 2G or more, and it is possible to exhibit good TFT characteristics and improve long-term reliability. [Embodiment] [A form for implementing the invention] The thin film transistor of the present invention and the method for producing the same are described in detail with reference to the preferred embodiments shown in the drawings. Fig. 1 is a schematic cross-sectional view showing a thin film transistor according to the first embodiment of the present invention. The thin film transistor (hereinafter also referred to simply as a transistor) is a type of 〇-type electric field effect type transistor having a substrate 丨2; a gate electrode 14 · 'gate insulating layer 16; function as a channel layer Active layer ¢: -10- 201218384 18 'Channel protective layer 20; source electrode 22; drain electrode 24 and planarization layer 2 6 ° The transistor i 施加 is applied to the gate electrode 14 to control the activity Layer 1 8 The current flowing in the track region c has an active element for performing a function of switching the current between the source electrode 22 and the drain electrode 24. The transistor system shown in Fig. 1 is generally referred to as a lower gate. A bottom gate top contact constructor. The gate electrode 14 is formed on the surface 1 2 a of the substrate 12 in the transistor 10', and is on the surface 1 2 of the substrate 12 in such a manner as to cover the gate electrode 14. a forming a gate insulating layer 16. The active layer 18 is formed on the surface 16 6 a of the gate insulating layer 16. A channel protection covering the channel region C of the active layer 18 is provided on the surface 18 8 of the active layer 18. Layer 20. A source electrode 2 2 and a drain electrode 24 are formed on the surface 18 8 of the active layer 18 with the channel protective layer 20 interposed therebetween. The source electrode 22 is formed on the surface 16a of the gate insulating film 16 so as to cover the surface 18a of the active layer 18 and a part of the surface 20a of the channel protective layer 20. Further, the gate electrode 24 which is paired with the source electrode 22 is provided on the surface 16a of the gate insulating film 16 so as to cover the surface 18a of the active layer 18 and a part of the surface 20a of the channel protective layer 20. It is formed to face the source electrode 22. That is, the source electrode 22 and the electrodeless electrode 24 are formed above the surface 2A of the open channel protective layer 20 so as to cover a portion of the surface 18a of the active layer 18 and the surface 20a of the channel protective layer 20. The planarization layer 26 is formed to cover the source electrode 22, the channel protective layer 20, and the drain electrode 24. The transistor 10' substrate 12 is not particularly limited. For the substrate 12, an inorganic -11 - 201218384 material χ ' substrate such as glass or Y S Z (oxidized indium arsenide) can be used! 2 It is also possible to use polypyridyl acid (4), second brewed polycalyte diacetate, etc.), polythene, polyethyl carbonate (pES), polyaromatic brewing, dilute propylene A liquid crystal organic material such as a synthetic resin such as an alcoholic acid, a polyruthenium (ρι), a polycycloolefin, a reduced-chain, or a poly(fluorene trifluoroethylene). When the glass is used for the substrate 12, in order to reduce the elution of ions from the glass, it is preferable to use the non-glass. When X' is used for the substrate 12' to use a limestone, it is preferable to use a barrier coating which is subjected to dioxotomy or the like. Further, when an organic material is used for the substrate 12, it is preferably excellent in heat resistance and dimensional stability, such as solvent resistance, electrical insulating properties, workability, low air permeability, and low moisture absorption. As the substrate 12, a flexible substrate can also be used. The flexible substrate preferably has a thickness of from 50/zm to 500 //m. This is because when the thickness of the flexible substrate is less than 50 # m, it is difficult for the substrate itself to maintain sufficient flatness. When the thickness of the flexible substrate exceeds 500//rn, the pullability of the Maxtor is reduced. , making the substrate itself difficult to free; Here, in the present invention, the flexible substrate refers to an organic substrate and a metal substrate which are materials and structures as described below. As the organic substrate constituting the flexible substrate, for example, a saturated polyester (PET) resin substrate or a polyethylene naphthalate (pen) resin substrate can be used for conjugated anti-butyric acid-acetic acid resin substrate, and polycarbonate. Vinegar (pc) resin substrate, polyether (PES) resin substrate, poly; ε wind (psF, PSU) resin substrate, polyarylate (PAR) resin substrate, cyclic polyolefin (c〇p, COC) - 12- 201218384 Resin substrate, cellulose resin substrate, polyimine (PI) resin substrate, polyamidoximine (P AI) resin substrate, maleimide-olefin tree ruthenium substrate A guanamine (PA) resin substrate, an acrylic resin substrate, a gas resin substrate, an epoxy resin substrate, a polyoxyn resin film substrate, a polybenzazole resin substrate, or an episulfide compound A substrate, a liquid crystal polymer (LCP) substrate, a cyanic acid-based resin substrate, and an aromatic resin substrate. Further, the organic substrate also includes a plastic substrate of the composite material shown below. As the plastic substrate of the composite material, for example, a composite material with cerium oxide particles; a composite material with metal nanoparticles, inorganic oxide nanoparticles, inorganic nitride nanoparticles, or the like; Composite of nanofibers and microfibers; composite with carbon fiber and carbon nanotubes; composite with glass shards, glass fibers, glass beads; composite with particles with clay mineral or mica derived crystalline structure And a composite material in which the thin glass and the organic material constituting the resin substrate exemplified as the organic substrate are one less than one joint. In the case of a metal substrate which is a flexible substrate, it is possible to use a metal substrate which is a stainless steel substrate or a metal layer which is formed by laminating different metals. Further, as the metal system, an aluminum substrate can be used, or an insulating sheet which is raised on the surface by a soiling treatment, for example, an anodic emulsification treatment. When the aluminum base of the π-deposited film is insufficient, the insulating property is formed when the substrate 12 is made of a plastic film or the like. -13- 201218384 When a flexible substrate is used for the substrate 1 2 ', a hard coat layer, an undercoat layer, or the like may be further provided as necessary. Further, it is also possible to provide a moisture-proof layer (gas barrier layer) on the front or back surface thereof for preventing the passage of water vapor and oxygen. As the material of the moisture-proof layer (gas barrier layer), an inorganic substance such as Nitrogen Oxide Oxide or Oxide can be suitably used. Further, a structure in which an organic film such as an acrylic tree or a oxy-resin is laminated may be used. The anti-transmission wide layer (gas barrier layer) can be formed using, for example, a high-frequency sputtering method. The interpole electrode 14 can be, for example, Al, Mo, Cr,,,,,,, - v i a , i l
Au或Ag等的金屬或該等的合金、AiNd、ApC等的合 金氧化錫、氧化辞、氧化銦、氧化銦錫(ITO)、氧化銦 鋅(ΙΖΟ)等的金屬氧化物導電.物f、$苯胺、聚。塞吩、聚 吡咯等的有機導電性化合物或該等的混合物來形成。作 為閘極電们4’就TFT特性的信賴性之觀點,以使用 Mo、Mo合金或Cr為佳。該閘極電極14的厚度,如 Mnm〜1000nm。閘極電極14的厚度係以2〇nm〜5〇〇nm為 較佳’以40nm〜l〇〇nm為更佳。 閘極電極14的形成方法及_力+ 办圾万去係沒有特別限定。閘極電極 =i如能夠使用印刷方式、塗布方式等的濕式方式、 真空瘵鍍法、濺鍍法、離子喑〃 尹卞货鑛法等的物理方式; CVD、電漿CVD法等的化學 及 干万式#來形成。該等 能夠考慮構成閘極電極14的摘人α 的適合性而選擇適當的形 方法。例如使用Mo或Mo合全來# + 形成 宠术形成閘極電極1 4拄 能夠使用DC濺鍍法。又,在 時, J位包極14使用有機道 性化合物時,能夠利用濕式製膜法。 機導電 -14- 201218384 在間極絕緣層16,能夠使用至少含有二種以上之。 Si〇2、SiNx、Si0N、Al2〇3、Ys〇3、Ta2〇5、或 等的 絕緣體或該等的化合物。又’如聚醢亞胺的高分子絕緣 體亦能夠使用在閘極絕緣層1 6。 問極絕緣層16的厚度係以10nm〜1〇//m為佳。問極 、-邑.、彖層1 6係為了減少漏沒電流,必須提高電壓耐性,有 必要某種程度增加膜厚度。但是,增加閘極絕緣層6的 膜厚度時,會造成電晶體10的驅動電壓上升。因此,無 機絕緣體時,閘極絕緣層16的厚度係以MnmqOOk 為較佳’高分子絕緣體的場合,以〇 “m〜5"m為更佳。 又,因為將如Hf〇2的高介電常數絕緣體使用在閘極 絕緣層1 6時,即便增加膜厚度亦以能夠低電壓驅動閑極 絕緣層16,在閘極絕緣層16,以使用高介電常數絕_ 源極電極22及汲極電極24係例如能夠使用、 Mo、Cr、Ta、Ti、Au、或Ag等的金屬或該等的合金、 A卜Nd、APC等的合金、氧化錫、氧化鋅、氧化銦 '氣 銦錫(ιτο)、t化銦辞(IZ〇)等的金屬氧化物導電物 形成。又,關於ΙΤο # ότ w尽非a 士 u你可以疋非晶亦可以是結晶化IT〇。 作為源極電極22及汲極電極24,從TFT特性的 賴性之觀點,以使用M〇或M〇合金為佳。又,源極: 22及没極電極24的厚度係例如i〇nm〜1〇〇〇nm。 源極電極22及汲極電極24,係能夠藉由形成上 組成=導電膜且使用微影術*而在言亥膜形成絲圖素 而且藉由使用酸的蝕刻液將該導電膜蝕刻來形成。 -15- 201218384 又,構成源極電極22及汲極電極24之上述組成的 導電膜的形成方法,係沒有特別限定。上述組成的導電 膜係:列如能夠使用印刷方式、塗布方式等的濕式方式、 真空瘵鍍法、濺鍍法、離子喷鍍法等的物理方式、CVd、 電聚CVD法等的化學方式等來形成。 例如使用Mo < Mo合金、非晶IT〇形成源極電極 22及汲極電極24時,例如能夠形成Μ〇膜或μ〇 或非晶ΙΤΟ膜。 m 然後,使用微影術法在M〇膜或M〇合金膜或非晶 ITO膜形成光阻圖案,並且使用酸的蝕刻液將膜或Metal such as Au or Ag or alloys thereof, alloys such as AiNd or ApC, tin oxide, oxidized, indium oxide, indium tin oxide (ITO), indium zinc oxide (yttrium oxide), etc. $ aniline, poly. It is formed by an organic conductive compound such as phenophene or polypyrrole or a mixture thereof. As the gate electrode 4', it is preferable to use Mo, Mo alloy or Cr from the viewpoint of reliability of TFT characteristics. The thickness of the gate electrode 14 is, for example, Mnm to 1000 nm. The thickness of the gate electrode 14 is preferably 2 〇 nm to 5 〇〇 nm, and more preferably 40 nm to 1 〇〇 nm. The method of forming the gate electrode 14 and the method of forming the gate electrode 14 are not particularly limited. For the gate electrode = i, a wet method such as a printing method or a coating method, a vacuum ruthenium plating method, a sputtering method, an ion 喑〃 卞 卞 卞 mining method, or the like; a chemical method such as CVD or plasma CVD; And dry Wan style # to form. These can be selected in consideration of the suitability of the picker α constituting the gate electrode 14. For example, using Mo or Mo to form a + + formation of a pet electrode to form a gate electrode 1 4 拄 DC sputtering can be used. Further, in the case where the J-bit wrap 14 is an organic compound, a wet film forming method can be used. Conductive Conductor -14- 201218384 At least two or more of the inter-electrode insulating layers 16 can be used. An insulator such as Si〇2, SiNx, SiON, Al2〇3, Ys〇3, Ta2〇5, or the like or a compound thereof. Further, a polymer insulator such as polyimide may be used in the gate insulating layer 16. The thickness of the pole insulating layer 16 is preferably 10 nm to 1 〇//m. In order to reduce the leakage current, it is necessary to increase the voltage resistance, and it is necessary to increase the film thickness to some extent. However, when the film thickness of the gate insulating layer 6 is increased, the driving voltage of the transistor 10 rises. Therefore, in the case of the inorganic insulator, the thickness of the gate insulating layer 16 is preferably a polymer insulator of MnmqOOk, and more preferably "m~5" m. Also, because of the high dielectric like Hf〇2 When the constant insulator is used in the gate insulating layer 16, the pad insulating layer 16 can be driven at a low voltage even if the film thickness is increased, and the gate insulating layer 16 is used to use the high dielectric constant source electrode 22 and the drain electrode. For the electrode 24, for example, a metal such as Mo, Cr, Ta, Ti, Au, or Ag or an alloy thereof, an alloy such as Ab or Nd, APC, or the like, tin oxide, zinc oxide, or indium oxide 'indium tin oxide can be used. Ιτο), the formation of a metal oxide conductive material such as indium yttrium (IZ〇). Also, regarding ΙΤο # ότ w, you can either 疋 amorphous or crystallization IT 〇 as the source electrode 22 And the drain electrode 24 is preferably an M 〇 or M 〇 alloy from the viewpoint of the dependence of the TFT characteristics. Further, the source: 22 and the thickness of the electrodeless electrode 24 are, for example, i 〇 nm 〜1 〇〇〇 nm. The source electrode 22 and the drain electrode 24 can be formed by forming an upper composition=conductive film and using lithography* The wire element is formed by etching the conductive film with an etching solution using an acid. -15- 201218384 Further, a method of forming the conductive film having the above-described composition of the source electrode 22 and the drain electrode 24 is not particularly limited. The conductive film of the above composition may be a wet type such as a printing method or a coating method, a physical method such as a vacuum ruthenium plating method, a sputtering method, or an ion plating method, or a chemical such as a CVd or an electropolymerization CVD method. For example, when the source electrode 22 and the drain electrode 24 are formed using Mo < Mo alloy or amorphous IT, for example, a ruthenium film or a ruthenium film or an amorphous ruthenium film can be formed. m Then, lithography is used. A photoresist pattern is formed on the M 〇 film or the M 〇 alloy film or the amorphous ITO film, and the film is etched using an acid etchant.
Mo合金膜或非晶IT〇膜蝕刻而形成源極電極22及汲極 電極24。 在源極電極22及汲極電極24使用Mo膜或Mo合 金膜時,作為蝕刻液,能夠使用被稱為磷硝乙酸水之磷 西欠、硝酸及乙酸的混合水溶液。磷硝乙酸水係通常作為 PAN 液(PAN:Phosphoric-Acetic-Nitric-acid)而被知道, 有按照目的用途之各式各樣的調配組成者,磷硝乙酸水 的各成分之比率係任意。又,作為磷硝乙酸水,例如能 夠使用關東化學公司製的混酸A1蝕刻液、林純藥工業公 司製的Mo用蝕刻劑Tsl。 又’在源極電極22及汲極電極24使用非晶ITO時, 作為餘刻液’能夠使用草酸。作為該草酸,例如能夠使 用關東化學公司製的IT〇_〇6N。 活性層1 8係作為通道層的功能者,能夠使用氡化物 半導體來構成。作為構成活性層1 8之氧化物半導體,例 -16 - 201218384The Mo alloy film or the amorphous IT film is etched to form the source electrode 22 and the drain electrode 24. When a Mo film or a Mo alloy film is used for the source electrode 22 and the gate electrode 24, a mixed aqueous solution called phosphorus phosphatidyl phosphate, nitric acid, and acetic acid can be used as the etching liquid. The phosphorus-nitrocetic acid water system is generally known as a PAN (Phosphoric-Acetic-Nitric-acid), and the ratio of each component of the phosphorus-nitroacetic acid water is arbitrary, depending on the composition of the various applications. Further, as the phosphorus nitroacetic acid water, for example, a mixed acid A1 etching solution manufactured by Kanto Chemical Co., Ltd. or a Mo etchant Ts1 manufactured by Azusa Pure Chemical Industries Co., Ltd. can be used. Further, when amorphous ITO is used as the source electrode 22 and the gate electrode 24, oxalic acid can be used as the residual liquid. As the oxalic acid, for example, IT〇_〇6N manufactured by Kanto Chemical Co., Ltd. can be used. The active layer 18 is a function of the channel layer and can be formed using a germanide semiconductor. As an oxide semiconductor constituting the active layer 18, for example -16 - 201218384
如能夠使用 ln203 、 ZnO ' Sn02 、 CdOIf you can use ln203, ZnO 'Sn02, CdO
Indium-Zinc-Oxide(銦-鋅-氧;IZO)、Indium-Tin-Oxide(銦 -錫-氧;ITO)、Gallium-Zinc-Oxide(鎵-辞-氧;GZO)、 Indium-Gallium- Oxide(銦-鎵-氧 ; IGO)、Indium-Zinc-Oxide (Indium-Zinc-Oxygen; IZO), Indium-Tin-Oxide (Indium-Tin-Oxygen; ITO), Gallium-Zinc-Oxide (Gallium-D-Oxygen; GZO), Indium-Gallium-Oxide (indium-gallium-oxygen; IGO),
Indium-Gallium-Zinc-Oxide(銦-鎵-鋅-氧;IGZO)。 活性層1 8係以將非晶質半導體作為主成分為佳。而 且,在活性層1 8 ’氧化物半導體之中,以使用能夠在耐 熱性低的塑膠薄膜形成之非晶質氧化物半導體來構成為 佳。如此,作為能夠在低溫製造之良好的非晶質氧化物 半導體’係至少含有In及Zn之非晶質氧化物半導體。 作為在此種活性層1 8所使用之非晶質氧化物半導體,係 以含有In-Ga-Zn-Ο而構成且在結晶狀態之組成為以Indium-Gallium-Zinc-Oxide (indium-gallium-zinc-oxygen; IGZO). The active layer 18 is preferably an amorphous semiconductor as a main component. Further, among the active layer 18'' oxide semiconductors, it is preferable to use an amorphous oxide semiconductor which can be formed of a plastic film having low heat resistance. As described above, the amorphous oxide semiconductor which is excellent in low temperature production is an amorphous oxide semiconductor containing at least In and Zn. The amorphous oxide semiconductor used in the active layer 18 is composed of In-Ga-Zn-Ο and is composed in a crystalline state.
InGa〇3(ZnO)m (m係小於6的自然數)表示之非晶質氧化 物半導體為佳,特別是以InGaZn〇4表示之非晶質氧化物 半導體為更佳。作為該組成的非晶質氧化物半導體之特 徵,係顯示隨著導電率增加,電子移動度增加之傾向❶ 又,控制導電率係能夠藉由成膜中的氧分壓來控制。 又,活性層18的厚度係以lnm〜1〇〇nm為佳,以 2.5 n m〜5 0 nm為更佳。 而且 氧化物膜 將構成活性層18之In_Ga_Zn_〇系的非晶質 亦簡稱為IGZO膜。 、,果产圖⑷係在縱軸採用氫濃度且在橫轴採用 冰度而顯不在閘極絕緣層、活性層及通道保護層 布之圖表’ (b)係顯示將第2圖⑷的重要部位: 圖表,而⑷係顯示在第2圖⑷之曲線的微分值之圖 -17- 201218384 表。第2圖(a)〜(c)的橫軸之深度係將通道保護層20的表 面設作零。 又,在第2圖(a)~(c)所表示之Di係對應通道保護層 20者,第2圖(a)〜(c)所表示之D2係對應活性層18者, 在第2圖(a)〜(c)所表示之D3係對應閘極絕緣層16者。 第2圖(a)、(b)所表示之曲線A係顯示本實施形態的 電晶體1 0的氫濃度輪廓的一個例子,且顯示後述實施例 1的電晶體之測定結果。又,在第2圖(c)所表示之曲線 E顯示本實施形態的電晶體1 0的微分值的一個例子,且 顯示後述實施例1的電晶體之測定結果。又,氫濃度係 使用SIMS(二次離子質量分析法)而求得。 在本實施形態的電晶體10,如在第2圖(a)、(b)所 表示之曲線A,通道保護層20(區域D,)及活性層18(區 域D2)内的氫濃度,係從通道保護層20朝向活性層1 8 而減少。如第2圖(b)所表示之曲線A,通道保護層 20 與活性層1 8的界面a附近、亦即活性層1 8的表面1 8 a 附近的氫濃度輪廓係具有極小值/3 1及極大值/3 2。 而且,如在第2圖(a)、(b)所表示之曲線(B),係顯 示先前的電晶體的氫濃度之一個例子,且顯示後述比較 例1的電晶體的氫濃度。在先前的電晶體,雖然區域 (通道保護層)及區域D2(活性層)内的氫濃度係從區域 D,(通道保護層)朝向區域D2(活性層)而減少,但是沒有 極值。 又,在本實施形態的電晶體1 0,如第2圖(c)的曲線 E所表示,在通道保護層2 0與活性層1 8的界面α附近, -18- 201218384 乳濃度輪廓的微分值係、由負變為正,同時在界面^附近 之微分值的差異為1χ1〇2。以上。亦即,在第2圖⑷的油 線Ε之界面α附近的微分值的極小值r i與極大值^ 2的 差異為ΙχΙΟ20以上。例如第2圖⑷的曲線ε係在界面α 附近的微分值之差異為2.85χΐ〇20。 又第2圖(c)的曲線F係顯示先前的電晶體的微分 值之-個例子’且顯示後述比較你"的電晶體的微分 值。先前的電晶體係例如第2圖⑷的曲線F所表示,雖 然在界面α附近的氫濃度輪廓的微分值係由負變為正, 但是界面α附近的微分值的差異& 8 59χ1〇19,微分值的 差異小。又,微分值的差里為 2 〇 臨限值的位移。 差“lxl。以上時,能夠抑制 在本實施形態的電晶體10,如第2圖⑷、㈨的區 5 ^所表不’活性層18内的氫濃度為1〇2lat〇ms/cm3以 上及活性層1 8内的氫濃度係藉由後面詳述的製造方 能夠成為1〇2丨atoms/cm3以上。 在此,構成活性層18之非晶氧化物的載體濃度 ^夠藉由各種手段來調整為所需要的數值。該非晶氧化 物的載體濃度係沒有特別限定,以丨χ丨〇丨5气爪3以上古 區域為佳。以1Xl〇b/cm3〜lxl〇21/cm3為更佳。、阿 非晶氧化物的載體濃度係能夠藉由在以下詳述之 用氧缺陷的調整手段、利用組成比的調整手段、利 純物的調整手段及利用氧化物半導體材料的調整手段 各種調整手段來調整。而且,關於非晶氧化 二 度的調整,可單獨使用各種調整手段,亦可適當心: 各種調整手段。 。 -19- 201218384 首先,在利用氧缺陷之調整手段,已 一 導體產生氧缺陷時,活性層的載體濃度增加,使:= =載整氧缺陷量,能夠控制氧化物半 ν體的載體辰度。作為控制氧缺陷量之呈 膜中的氧分壓、成膜後之後處理時 濃;:,有成 ^ ^ 乳’晨度及處理時間 等。在此’所謂後處理,具體上# 1〇吖以上理、 氧氣電黎處理、UV臭、氧處王里。該等方法之中,從生產性 的觀點,以控制成膜中的氧分壓之方法為佳。藉由調整 成膜中的氧分Μ ’能夠㈣氧化物半導體的載體濃产' 又,在利用組成比之調整手段,已知藉由變更:化 物半導體的金屬組成比,載體濃度會產生變化。例如在、An amorphous oxide semiconductor represented by InGa〇3(ZnO)m (m is a natural number less than 6) is preferable, and an amorphous oxide semiconductor represented by InGaZn〇4 is more preferable. The characteristics of the amorphous oxide semiconductor having such a composition are such that the electron mobility increases as the conductivity increases, and the control conductivity can be controlled by the oxygen partial pressure during film formation. Further, the thickness of the active layer 18 is preferably from 1 nm to 1 nm, more preferably from 2.5 nm to 50 nm. Further, the oxide film is also simply referred to as an IGZO film of In_Ga_Zn_〇-based amorphous material constituting the active layer 18. The fruit production diagram (4) is a graph in which the vertical axis uses hydrogen concentration and the horizontal axis uses ice to show the gate insulating layer, the active layer, and the channel protective layer cloth. (b) shows the importance of Fig. 2 (4) Part: Chart, and (4) shows the differential value of the curve in Figure 2 (4) in Figure -17-201218384. The depth of the horizontal axis of Figs. 2(a) to (c) is such that the surface of the channel protective layer 20 is set to zero. Further, in the case of the Di-based channel protective layer 20 shown in Figs. 2(a) to 2(c), the D2 shown in Figs. 2(a) to 2(c) corresponds to the active layer 18, and Fig. 2 The D3 shown in (a) to (c) corresponds to the gate insulating layer 16. The curve A shown in Fig. 2 (a) and (b) shows an example of the hydrogen concentration profile of the transistor 10 of the present embodiment, and shows the measurement results of the transistor of the first embodiment described later. Further, the curve E shown in Fig. 2(c) shows an example of the differential value of the transistor 10 of the present embodiment, and shows the measurement results of the transistor of the first embodiment to be described later. Further, the hydrogen concentration was determined by SIMS (Secondary Ion Mass Spectrometry). In the transistor 10 of the present embodiment, the hydrogen concentration in the channel protective layer 20 (region D) and the active layer 18 (region D2) is shown by the curve A shown in Figs. 2(a) and 2(b). It is reduced from the channel protective layer 20 toward the active layer 18. As shown by the curve A in Fig. 2(b), the hydrogen concentration profile near the interface a of the channel protective layer 20 and the active layer 18, that is, near the surface 18 8 of the active layer 18 has a minimum value / 3 1 And the maximum value / 3 2 . Further, as shown in the graph (B) of Figs. 2(a) and 2(b), an example of the hydrogen concentration of the prior transistor is shown, and the hydrogen concentration of the transistor of Comparative Example 1 to be described later is displayed. In the prior transistor, although the hydrogen concentration in the region (channel protective layer) and the region D2 (active layer) decreased from the region D (the channel protective layer) toward the region D2 (active layer), there was no extreme value. Further, in the transistor 10 of the present embodiment, as shown by the curve E of Fig. 2(c), in the vicinity of the interface α of the channel protective layer 20 and the active layer 18, the differential of the milk concentration profile of -18-201218384 The value system changes from negative to positive, and the difference in the differential value near the interface ^ is 1χ1〇2. the above. That is, the difference between the minimum value r i and the maximum value ^ 2 of the differential value in the vicinity of the interface α of the oil line 第 in Fig. 2 (4) is ΙχΙΟ20 or more. For example, the curve ε of Fig. 2 (4) has a difference of 2.85 χΐ〇 20 in the vicinity of the interface α. Further, the curve F of Fig. 2(c) shows an example of the differential value of the previous transistor and shows the differential value of the transistor which compares you later. The previous electro-crystal system is represented by, for example, the curve F of Fig. 2 (4), although the differential value of the hydrogen concentration profile near the interface α changes from negative to positive, but the difference in differential value near the interface α & 8 59χ1〇19 The difference in differential values is small. Also, the difference between the differential values is the displacement of 2 临 threshold. When the difference is "lxl" or more, it is possible to suppress the hydrogen concentration in the active layer 18 of the transistor 10 of the present embodiment as shown in the second region (4) and (9) of Fig. 2 (4) and (9) being 1 〇 2 lat 〇 / cm 3 or more and The concentration of hydrogen in the active layer 18 can be 1 〇 2 丨 atoms/cm 3 or more by the production described in detail later. Here, the carrier concentration of the amorphous oxide constituting the active layer 18 can be sufficiently obtained by various means. It is adjusted to the required value. The carrier concentration of the amorphous oxide is not particularly limited, and it is preferably 古5 gripper 3 or more. It is preferably 1×10 〇 b/cm 3 〜 lxl 〇 21/cm 3 . The carrier concentration of the amorphous oxide can be adjusted by the adjustment means using oxygen defects, the adjustment means using the composition ratio, the adjustment means of the pure substance, and the adjustment means using the oxide semiconductor material, which will be described in detail below. Means to adjust. Moreover, regarding the adjustment of the second degree of amorphous oxidation, various adjustment means can be used alone, or appropriate: various adjustment means. -19- 201218384 First, in the use of oxygen defect adjustment means, a conductor has been produced Active when oxygen is deficient The concentration of the carrier of the layer is increased so that: = = the amount of oxygen-deficient defects can be controlled, and the carrier degree of the oxide half-body can be controlled. The oxygen partial pressure in the film which is the amount of oxygen deficiency control, and the concentration after the film formation; :, there are ^ ^ milk 'morning and processing time, etc.. Here's the so-called post-processing, specifically #1〇吖 or more, oxygen electric treatment, UV odor, oxygen at the king. Among these methods, From the viewpoint of productivity, it is preferable to control the partial pressure of oxygen in the film formation. By adjusting the oxygen content in the film formation, it is possible to "enrich the carrier of the oxide semiconductor" and adjust the composition ratio. It is known that the carrier concentration changes by changing the metal composition ratio of the compound semiconductor. For example,
InGaZni-xMgx〇4,Mg的比率增加時,載體濃度會^小。' 又,在(Ιη203)口(Ζη0)χ的氧化物系,Zn/in比為以 上時,隨著Zn比率的增加,載體濃度會變小。作為變更 該等組成比之具體方法,例如在利用濺鍍之成膜方法, 係使用組成比不同的標靶。又,藉由利用多元的標靶, 進行共濺鍍且個別地調整其濺鍍速度,能夠改組膜的組 成比。 又,在利用不純物之調整手段,藉由在氧化物半導 體Li,Na’ Mn,Ni,Pd,Cu,Cd,C,N,或P等的元素作為不 純物,能夠減少載體濃度。作為添加不純物之方法,有 藉由將氧化物半導體與不純物元素共濺鍍來進行,及藉 由在已成膜之氧化物半導體摻雜不純物元素的離子之離 子摻雜法等來進行。 201218384 上述載體濃度的調整手段,係在_ 系之載體濃度的調整方法。但是,—同—氧化物半導體 體材料’能夠改變载體濃度。 文吏氧化物半導 在利用S亥氧化物半導體之調整手& ΙΠ2〇3系氧化物半導體,已知通奮认 段’例如相較於 ◦方遇吊的s 體係載體濃度較小。如此,藉由變 2糸氧化物半導 能夠調整載體濃度。 初牛導體材料, 由非晶氧化物所構成之活性層丨8,〃处 化物半導體的多晶燒結體使用作I標靶係能夠藉由將氧 膜法來形成。氣相成膜法之中,濺二1且使用氣相成 法(PLD法)係適合於形成活性層又/ 、脈衝雷射蒸鍍 ,而且,從大方 性之觀點,乃是較佳。活性層丨8係 ώ: S、+曰,, ^糟由可控制真空 度及氧^、例如使用RF磁”較法來形成。又/ 流量越多,能夠使活性層18的導電率變為越小。 通道保護層20,其功能係作為在形成源極電極22 及没極電極24時,保護活性層18、特別是通道區域c 而不會被姓刻之飯刻阻止層(etching st〇pper)。該通道保 護層20係以至少覆蓋活性層1 8的通道區域C之方式設 置。又’通道保護層20係使用Ga的氧化物所構成。該InGaZni-xMgx〇4, when the ratio of Mg is increased, the carrier concentration is small. Further, in the oxide system of (Ιη203) mouth (Ζη0)χ, when the Zn/in ratio is above, the carrier concentration becomes smaller as the Zn ratio increases. As a specific method of changing the composition ratios, for example, in the film formation method by sputtering, a target having a different composition ratio is used. Further, by using a multi-component target, co-sputtering and individually adjusting the sputtering rate, the composition ratio of the film can be reorganized. Further, in the adjustment means using impurities, the carrier concentration can be reduced by using an element such as an oxide semiconductor Li, Na' Mn, Ni, Pd, Cu, Cd, C, N, or P as an impurity. The method of adding an impurity is carried out by co-sputtering an oxide semiconductor and an impurity element, and by an ion doping method of ion-doping an impurity element in an oxide semiconductor which has been formed. 201218384 The above-mentioned means for adjusting the concentration of the carrier is a method for adjusting the concentration of the carrier in the system. However, the same-oxide semiconductor material can change the carrier concentration. The s 吏 半 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在Thus, the carrier concentration can be adjusted by changing the 半 oxide semiconducting. The primary bovine conductor material, the active layer 丨8 composed of an amorphous oxide, and the polycrystalline sintered body of the ruthenium compound semiconductor can be formed by using an oxygen film method as the I target system. Among the vapor phase film formation methods, sputtering 2 and vapor phase formation (PLD method) are suitable for forming an active layer and/or pulsed laser deposition, and are preferable from the viewpoint of generosity. The active layer 丨8 system ώ: S, +曰,, ^ is formed by a controllable degree of vacuum and oxygen, for example, using RF magnetics. Also / the more the flow rate, the conductivity of the active layer 18 can be changed. The smaller the channel protective layer 20, the function is to protect the active layer 18, especially the channel region c, when the source electrode 22 and the electrodeless electrode 24 are formed, without being etched by the surname. The channel protective layer 20 is disposed to cover at least the channel region C of the active layer 18. The channel protective layer 20 is formed using an oxide of Ga.
Ga的氧化物係例如Ga203。 而且’通道保護層20的厚度係以lnm〜l〇〇nm為佳, 以5nm〜1 Οητη為更佳。 平坦化層26係為了保護通道保護層20、源極電極 22及汲極電極24避免大氣引起的劣化之目的、且為了 將在電晶體上所製造的電子元件絕緣之目的而形成者。 -21 - 201218384 本實施形態的平坦化層26係感光性丙烯酸樹脂在 氮氣環境下經加熱硬化處理而形成者。該感光性丙烯酸 樹脂係能夠使用例如JSR公司製PC405G。 平坦化層 26係除了上述的感光性丙烯酸樹脂以 外,亦能夠使用例如 MgO、SiO、Si〇2、A1203、GeO、 NiO、CaO、BaO、Fe203、Y203 ' 或 Ti02 等的金屬氧化 物;SiNx、SiNxOy 等的金屬氮化物;MgF2、LiF、A1F3、 或CaF2等的金屬氟化物;聚乙烯;聚丙烯;聚甲基丙烯 酸甲醋,聚二氣二氣乙烯' 一氣三氟乙晞與二氯二敗乙 烯的共聚物;使含有四氟乙烯與至少1種的共聚單體之 單體混合物而得到之共聚物;在共聚合主鏈含有環狀構 造之含氟共聚物,吸水率1 %以上的吸水性物質;吸水率 為0.1 %以下的防濕性物質等。 平坦化層26的形成方法係沒有特別限定。平坦化層 2 6係此夠應用例如真空洛鍍法、濺鍍法、反應性濺鍍法、 MBE(分子射線磊晶)法、簇離子射束i〇n 法、離子喷鍍法、電漿聚合法(高頻激發離子喷鍍法)、 電聚CVD法、雷射CVD法、熱CVD法、氣體源CVD 法、塗覆法、印刷法、或轉印法。 在本實施形態的電晶體1〇,如第2圖⑷的曲線£所 表示,藉由在通道保護層2Q與活㈣18的界面“附近 之虱漢度輪廓的微分值係由負轡為 ^ . _ 吗貝欠马正,同時在界面α附 近之微分值的差異為lxl〇2〇w U上’臨限值不會往負值位 移’而能夠顯示良好的TFT牲Μ B^ Λ c 1将性且提高電晶體10之長 期信賴性。 -22- 201218384 其-人’基於第3圖(a)〜(g)來說明本實施形態的電晶 體10之製造方法。 首先,作為基板12,係例如準備無鹼玻璃板。 其次,例如依照順序使用純水15分鐘、使用丙酮 15分鐘:使用純7jc 15》鐘,對基12進行超音波洗淨。 其-入,對基板12的表面i 2a,使用D(:磁控管濺鍍 法形成厚度為4〇nm的鉬膜(未圖示)。又,DC磁控管濺 鍍法係例如使用Ar氣為濺鍍氣體,且在導入Μ氣時之 壓力係以0.2 P a的條件進行。 ,其次,在鉬膜上形成光阻膜(未圖示),且使用微影 術法曝光成為所需要的jg!安 m而受扪圖案,而且藉由顯像來形成光阻 圖案。 其次’作為酸的蝕刻&,係例如使用磷硝乙酸水而 蝕刻鉬膜。隨後,㉟光阻剝離。藉此,如第3圖⑷能 夠在基板12的表面i2a形成由鉬所構成之閘極電極丄扣 、其次,如$ 3圖(b)所表示’以覆蓋閘極電極14的 方式在基板12的表面12a的全面’例如使用RF錢錢法 以200nm的厚度形成當作閘極絕緣層“的膜(第工 絕緣膜)15。又,RF賤鍵法係例如使用训2為㈣且 使用Ar氣及〇2氣為濺鍍氣體而進行,此時,例如^ 氣的流量A 4〇Sccm、〇2氣的流量為4 5seem、&氣及 〇2氣導入時的壓力為〇 16Pa。 ” 其次’不進行大氣釋放、亦即不破真空,而在⑽ 膜15的表面15a,例如以5〇nm的厚度使用π賤錢法 形成當作活性層18的讎膜(氧化物半導體膜”7。該 IGZO膜17的組成係例如InGaZn〇4。 -23- 201218384 又,DC錢鍵法係使用具有InGaZn〇4的組成之多晶 燒結體為標靶,且使用Ar氣及A氣為濺鍍氣體而進行^ 此時Ar氣的流量為97Sccm、〇2氣的流量為4上“爪、 Ar氣及〇2氣導入時的壓力為〇.37Pa。 其次,不進行大氣釋放、亦即不破真空,而在igz〇 膜17的表面17a’例如以40nm的厚度使用rf濺鑛法形 成當作通道保護層20的Ga氧化物膜(第2絕緣膜)丨9。 又,RF濺鍍係使用氧化鎵(Ga2〇3)為標靶’且使用 Ar氣及〇2氣為錢鍍氣體而進行。例如αγ氣的流量為 97seem、〇2氣的流量為5.0seem、Ar氣及〇2氣導入時的 壓力為〇.4Pa。 如此,不進行大氣釋放、亦即不破真空,而將以〇2 膜15、IGZ0膜17及Ga氧化物膜19依照其順序在基板2 U上連續地形成,如第3圖(b)所表示,得到由^山膜 1 5 IGZ〇膜17及Ga氧化物膜19所構成之積層體23。 其次,如第3圖(c)所表示,在Ga氧化物膜19的表 面19a,例如形成光阻膜40。然後,使用微影術法,在 光阻膜40’以覆盖IGZO膜17的通道區域c(參_两第1 圖)的至少一部分之部分成為圖案部42、且其他的部分成 為非圖案部44的方式將光阻膜40曝光而形成圖案部42 及非圖案部44。 其次’將曝光後之光阻膜40的非圖案部44,在顯 像液中,例如使用氫氧化四曱銨水溶液作為鹼性溶液而 除去作為该臉性洛液,係例如能夠使用Τ μ Α η 2.3 8 % (商 品名、多摩化學工業公司製)。 -24 - 201218384 在本實施形態,除去非圖案部44時,因為Ga氧化 物膜19係能夠溶解於鹼性溶液,所以在該Ga氧化物膜 1 9,使用圖案部42作為遮罩而非圖案部的下方之氧 化物膜1 9係與非圖案部44同時被鹼性溶液除去^藉此, 圖案部42及在該圖案部42的下方之〇3氧化物膜^係 殘留。隨後,將圖案部42剝離。藉此,能夠形成如第3 圖(d)所表示之通道保護層2〇。如此,能夠在相同的步 驟,同時完成用以形成光阻膜4〇的圖案部42之顯像步 驟及Ga氧化物膜1 9的蝕刻步驟。 又,光阻膜係只要能夠在相當於在IGZ〇膜17之活 性層18的通道區域C(參照第丨圖)的部分形成圖案部', 正型或負型均可。 其-人,在IGZO膜17的表面m形成光阻膜(未圖 示)’且使用微影術法形成光阻圖案 '錢,例如使 酸水將IGZO膜17钮刻。隨後,將光阻膜剝離。藉此, 能夠形成如第3圖(e)所表示之活性層1 8。 gThe oxide of Ga is, for example, Ga203. Further, the thickness of the channel protective layer 20 is preferably from 1 nm to 1 nm, more preferably from 5 nm to 1 Οητη. The planarizing layer 26 is formed for the purpose of protecting the channel protective layer 20, the source electrode 22, and the drain electrode 24 from deterioration by the atmosphere and for insulating the electronic component fabricated on the transistor. -21 - 201218384 The flattening layer 26 of the present embodiment is formed by subjecting a photosensitive acrylic resin to heat hardening treatment in a nitrogen atmosphere. For the photosensitive acrylic resin, for example, PC405G manufactured by JSR Corporation can be used. The planarizing layer 26 may be a metal oxide such as MgO, SiO, Si 2 , A1203, GeO, NiO, CaO, BaO, Fe203, Y203' or TiO 2 in addition to the above-mentioned photosensitive acrylic resin; SiNx, Metal nitrides such as SiNxOy; metal fluorides such as MgF2, LiF, A1F3, or CaF2; polyethylene; polypropylene; polymethyl methacrylate, polydioxane, ethylene, trifluoroethylene, dichloroethylene a copolymer of ethylene; a copolymer obtained by mixing a monomer containing tetrafluoroethylene and at least one comonomer; and a fluorine-containing copolymer having a cyclic structure in a copolymerization main chain, having a water absorption ratio of 1% or more A water-absorbent substance; a moisture-proof substance having a water absorption ratio of 0.1% or less. The method of forming the planarization layer 26 is not particularly limited. The planarization layer 26 is sufficient for applications such as vacuum plating, sputtering, reactive sputtering, MBE (molecular ray epitaxy), cluster ion beam i〇n, ion plating, plasma Polymerization method (high-frequency excitation ion plating method), electropolymerization CVD method, laser CVD method, thermal CVD method, gas source CVD method, coating method, printing method, or transfer method. In the transistor 1 of the present embodiment, as indicated by the curve of Fig. 2 (4), the differential value of the vicinity of the interface at the interface between the channel protective layer 2Q and the living (4) 18 is negative 辔. _ yue yue Ma Zheng, at the same time the difference in the differential value near the interface α is lxl 〇 2 〇 w U 'the threshold will not shift to a negative value' and can show good TFT Μ B ^ Λ c 1 will In addition, the long-term reliability of the transistor 10 is improved. -22-201218384 The method for manufacturing the transistor 10 of the present embodiment will be described based on Fig. 3 (a) to (g). For example, an alkali-free glass plate is prepared. Next, for example, pure water is used for 15 minutes in this order, and acetone is used for 15 minutes: the base 12 is ultrasonically washed using a pure 7jc 15" clock. It is introduced into the surface i 2a of the substrate 12. Using D (: magnetron sputtering method to form a molybdenum film (not shown) having a thickness of 4 〇 nm. Further, the DC magnetron sputtering method uses, for example, Ar gas as a sputtering gas, and introduces helium gas. The pressure at the time is 0.2 P a. Secondly, a photoresist film (not shown) is formed on the molybdenum film, and is used. The photolithography method is exposed to the desired jg! and is subjected to the enamel pattern, and the photoresist pattern is formed by development. Next, as the etching of the acid, the molybdenum film is etched, for example, using phosphorus nitrate water. 35, the photoresist is peeled off. Thus, as shown in Fig. 3 (4), a gate electrode made of molybdenum can be formed on the surface i2a of the substrate 12, and second, as shown in Fig. 3 (b), to cover the gate electrode. The method of 14 is to form a film (the working insulating film) 15 which is a gate insulating layer at a thickness of 200 nm on the entire surface 12a of the substrate 12, for example, the RF 贱 key method is used, for example, 2 is (4) and Ar gas and helium 2 gas are used as a sputtering gas. In this case, for example, the flow rate of A 4 〇 Sccm and the flow rate of 〇 2 gas is 4 5 seem, & The pressure is 〇16 Pa. ” Secondly, no atmospheric release, that is, no vacuum is broken, and a ruthenium film as the active layer 18 is formed on the surface 15a of the film 15 (for example, at a thickness of 5 〇 nm). The semiconductor film "7. The composition of the IGZO film 17 is, for example, InGaZn〇4. -23- 201218384 In the bonding method, a polycrystalline sintered body having a composition of InGaZn〇4 is used as a target, and Ar gas and A gas are used as a sputtering gas. At this time, the flow rate of Ar gas is 97 Sccm, and the flow rate of 〇2 gas is 4 "The pressure at which the claw, Ar gas, and helium gas are introduced is 〇37 Pa. Secondly, the atmosphere is not released, that is, the vacuum is not broken, and the surface 17a' of the igz diaphragm 17 is used, for example, at a thickness of 40 nm using the rf sputtering method. A Ga oxide film (second insulating film) 丨9 serving as the channel protective layer 20 is formed. Further, RF sputtering is performed using gallium oxide (Ga2〇3) as a target', and Ar gas and helium gas are used as a gas plating gas. For example, the flow rate of αγ gas is 97seem, the flow rate of 〇2 gas is 5.0seem, and the pressure at the time of introduction of Ar gas and 〇2 gas is 〇.4Pa. Thus, without releasing the atmosphere, that is, without breaking the vacuum, the 〇2 film 15, the IGZ0 film 17, and the Ga oxide film 19 are continuously formed on the substrate 2 U in accordance with the order thereof, as shown in Fig. 3(b). A laminate 23 composed of a yam film 1 5 IGZ yttrium film 17 and a Ga oxide film 19 was obtained. Next, as shown in Fig. 3(c), a photoresist film 40 is formed on the surface 19a of the Ga oxide film 19, for example. Then, by using the lithography method, at least a part of the channel region c (refer to the two first drawings) covering the IGZO film 17 in the photoresist film 40' becomes the pattern portion 42, and the other portion becomes the non-pattern portion 44. The photoresist film 40 is exposed to form the pattern portion 42 and the non-pattern portion 44. Next, the non-pattern portion 44 of the photoresist film 40 after the exposure is removed in the developing solution by using, for example, an aqueous solution of tetraammonium hydroxide as an alkaline solution, for example, Τ μ Α can be used. η 2.3 8 % (trade name, manufactured by Tama Chemical Industry Co., Ltd.). -24 - 201218384 In the present embodiment, when the non-pattern portion 44 is removed, since the Ga oxide film 19 can be dissolved in the alkaline solution, the pattern portion 42 is used as the mask instead of the pattern in the Ga oxide film 19. The oxide film IX under the portion and the non-pattern portion 44 are simultaneously removed by the alkaline solution, whereby the pattern portion 42 and the 〇3 oxide film under the pattern portion 42 remain. Subsequently, the pattern portion 42 is peeled off. Thereby, the channel protective layer 2A as shown in Fig. 3(d) can be formed. Thus, the development step of the pattern portion 42 for forming the photoresist film 4 and the etching step of the Ga oxide film 19 can be simultaneously performed in the same step. Further, the resist film may be formed into a pattern portion 'in a portion corresponding to the channel region C (see the second drawing) of the active layer 18 of the IGZ yttrium film 17, either positive or negative. In the case of a person, a photoresist film (not shown) is formed on the surface m of the IGZO film 17 and a photoresist pattern is formed using a lithography method, for example, the acid water is used to etch the IGZO film 17. Subsequently, the photoresist film was peeled off. Thereby, the active layer 18 as shown in Fig. 3(e) can be formed. g
Si。:表覆面盍通道保護層20及活性I 18的方式在 術1法V成光阻圖牵15a形成光阻膜(未圖示),且使用微影 ::二_ 然後,例如使用緩衝氫氟酸(bUffered hydrofluoncacnd)將以〇2膜 15 蝕刻來 出用接觸洞。隨後,將光阻腹4 ^電極取 膜"形成接觸:,:夠:成^ 絕緣膜16。 ^成…圖⑷所表示之閘極 其人如第3圖(f)所表示,以覆蓋通道伴罐風 的方式在活性層1 8 0 I £ 1 V, θ 0 的表面18a及閘極絕緣層i6的表面 -25- 201218384 16a,例如使用0(:磁控管濺鍍法以…“爪的 膜21作為導電膜。 X形成鉬 又,DC磁控管濺鍍係例如使用 將臟力使用。.2Pa來進行。 “歲鍍氣體且 其次,在鉬膜21的表面2la形成光阻膜(未 使用微影術法,例如對能夠得到第1 θ不且 β尸汀表示的调搞Φ 極22及汲極電極24之圖案進行曝光 ’: 阻圖案。 从騎,來形成光 其次’例如使用磷硝乙酸水為酸的蝕刻液,且 阻圖案作為遮罩而將鉬膜2丨蝕刻 ^ J此時,因為使用Ga 氧化 斤屯成之通道保護層20,传非堂雞、Α 诉非㊉難以溶解於磷硝 乙酸水’其功能係作為對磷硝乙 a Q 0文水之姓刻阻止層,能 夠防止對於相當於在活性層2〇之诵道F梡 4通迢區域C的部分進行 蝕刻,又’因為閘極絕緣層H由田c · a , 承尽ίο亦使用Sl〇2膜形成,所 以不會被蝕刻。藉此,如第3圖 戈弟J圖(g)所表示,能夠在活性 層18的表面18a,夾住通道仅崎旺 1遇逼保濩層20而形成源極電極 22及汲極電極24。 電極 塗布 後,進行預烘烤 後使用微衫術法圖案形成丙稀酸樹脂膜。其次, 例如於溫度1啊進行後烘、烤i小時。藉此,能夠形成 平坦化層26。如以上推;^_ τ 上運订把夠形成第1圖所表示之電 晶體10。 其次,以覆蓋通道保護層2〇、源極電極22及汲極 .J 土 ’τ偶从 1 . j μ m的/手 皿公司製PC_405G作為感光性丙稀酸樹脂, 铭分箱.ω .也 24的方式’例如使用旋轉塗布機以】爪的厚度 J S R /入彐制 ^ 隨 -26- 201218384 如上述,先前係形成構成活性層之氧化物半導體膜 之後’進行大氣釋放後,圖案化成為所需要的形狀。此 時,由於活性層係被暴露於大氣中,或是在圖案化時被 暴露在蝕刻液等。但是’在本實施形態,藉由不進行大 氣釋放、亦即不破真空’而將Si〇2膜15、IGZ0膜17 及G a乳化物膜1 9依照其順序在基板1 2上連續地形成, 能夠不將活性層1 8與通道保護層2 0的界面暴露在大氣 中而進行製造。因能夠抑制水分、氧氣、不純物等進入 活性層1 8與通道保護層20的界面,能夠抑制在活性層 1 8之水分、氧氣、不純物等的影響,而能夠抑制臨限值 的位移。藉此’能夠再現性良好且以高產率形成具有良 好特性之薄膜電晶體1 0。如此,能夠得到信賴性優良之 電晶體1 0。 又,依照本實施形態的電晶體1 0之製造方法,如第 2圖(a)、(b)所表示之曲線A,通道保護層20(區域 及活性層1 8(區域DO内的氫濃度,係從通道保護層2〇 朝向活性層1 8而減少’同時通道保護層2 0與活性層1 8 的界面α附近’亦即活性層1 8的表面1 8 a附近的氫濃度 輪廓係能夠得到具有極小值点1及極大值点2之氫濃度輪 廓。 而且,依照本實施形態的電晶體1 〇之製造方法,如 第2圖(c)的曲線E所表示,在通道保護層2〇與活性層 1 8的界面α附近’氫濃度輪廓的微分值係由負變為正, 同時在界面α附近之微分值的差異為1 χ 102〇以上。亦 即’在第2圖(c)的曲線Ε之界面α附近的微分值的極小 值7* ,與極大值r 2的差異為lxl〇2〇以上。 -27- 201218384 而且’依照本實施形態的電晶體1 〇之製造方法,雖 然沒有用以添加氫之特別的步驟,亦能夠使活性層1 8内 的氫農度成為1 〇21 atoms/cm3以上。如此,在本實施形 態’能夠減少步驟數,能夠將步驟簡略化。藉此,亦能 夠降低電晶體1 〇的製造成本,且電晶體1 0亦能夠價廉。 又’在本實施形態的電晶體10之製造方法,藉由將 通道保護層20設作Ga氧化物,在除去光阻膜的非圖案 部時’藉由使用鹼性溶液的顯像液,能夠除去通道保護 層20以外的Ga氧化物膜19。因此’除去Ga氧化物膜 1 9之步驟係不需要。藉此’能夠進一步減少步驟數,能 夠進一步將步驟簡略化,亦能夠進一步降低製造成本。 而且,使用SIN膜、Si〇2膜作為通道保護層且嘗試濕式 姓刻情況,有必要使用氫氟酸(hydr〇flu〇ric acid),但是 本實施形態,因為不必使用氫氟酸,能夠更安全地形成 通道保護層20。 八,仕本實 ---邮·…〜衣运乃凌,措Si. : The method of covering the surface of the channel protective layer 20 and the active I 18 forms a photoresist film (not shown) in the method of forming a photoresist pattern 15a, and uses lithography:: _ then, for example, using buffered hydrogen fluoride The acid (bUffered hydrofluoncacnd) will be etched with a 〇2 film 15 to expose the contact holes. Subsequently, the photoresist 4* electrode is taken as a film "forming contact:,: enough: into the insulating film 16. ^成... Figure (4) shows the gate as extremely shown in Figure 3 (f), covering the channel with the can wind in the active layer 1 8 0 I £ 1 V, θ 0 surface 18a and gate insulation The surface of i6-25-201218384 16a, for example, uses 0 (: magnetron sputtering method to "paw film 21" as a conductive film. X forms molybdenum, and DC magnetron sputtering is used, for example, to use dirty force. .2Pa is carried out. "After the age of the gas, and secondly, a photoresist film is formed on the surface 2la of the molybdenum film 21 (the lithography method is not used, for example, the Φ pole 22 which can be obtained by the first θ and the β cadence is obtained. And the pattern of the drain electrode 24 is exposed ': resist pattern. From the ride, to form the light second, for example, using phosphoric acid water as the acid etching solution, and the resist pattern is used as a mask to etch the molybdenum film 2 At the time, because of the use of Ga oxidized jinjin into the channel protective layer 20, Chuanfeitang, 诉 非 非 难以 难以 难以 难以 难以 难以 难以 难以 难以 难以 难以 难以 其 其 其 其 其 其 其 其 其 其 其 其 其 其 其 其 其 其 其It is possible to prevent etching of a portion corresponding to the pass region C of the tunnel F 梡 4 in the active layer 2, and because The pole insulating layer H is formed by the field C · a , and is also formed using the S 〇 2 film, so that it is not etched. Thereby, as shown in FIG. 3 (G), it can be on the surface of the active layer 18 18a, the source channel 22 and the drain electrode 24 are formed by sandwiching the channel only. The electrode is coated, and after pre-baking, the acrylic resin film is formed by using a micro-shirt method. For example, it is post-baked and baked for 1 hour at a temperature of 1. Thus, the planarization layer 26 can be formed. As described above, the operation of the ^_τ is sufficient to form the transistor 10 shown in Fig. 1. Secondly, Covering the channel protective layer 2〇, the source electrode 22 and the drain electrode. J soil 'τ 偶 偶 1 . j 1 PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC PC ω ω ω ω ω ω ω ω ω ω ω ω ω ω The method 'for example, using a spin coater to the thickness of the claws JSR / 彐 ^ ^ -26-201218384 As described above, after the formation of the oxide semiconductor film constituting the active layer, the patterning becomes necessary after the atmospheric release Shape. At this time, because the active layer is exposed to the atmosphere, or is patterned It is exposed to an etching solution or the like. However, in the present embodiment, the Si〇2 film 15, the IGZ0 film 17 and the Ga emulsion film 19 are arranged on the substrate in accordance with the order without releasing the atmosphere, that is, without breaking the vacuum. The formation of 1 2 is continuous, and it is possible to manufacture the interface of the active layer 18 and the channel protective layer 20 without being exposed to the atmosphere. It is possible to suppress entry of moisture, oxygen, impurities, and the like into the active layer 18 and the channel protective layer 20. The interface can suppress the influence of moisture, oxygen, impurities, and the like in the active layer 18, and can suppress the displacement of the threshold. Thereby, the thin film transistor 10 having good characteristics can be formed with good reproducibility and high yield. Thus, the transistor 10 having excellent reliability can be obtained. Further, according to the manufacturing method of the transistor 10 of the present embodiment, as shown by the curve A shown in Figs. 2(a) and 2(b), the channel protective layer 20 (region and active layer 18 (hydrogen concentration in the region DO) , reducing the hydrogen concentration profile near the surface 1 8 a of the active layer 18 from the channel protective layer 2 〇 toward the active layer 18 and decreasing 'the vicinity of the interface α of the channel protective layer 20 and the active layer 18 ′ A hydrogen concentration profile having a minimum value of 1 and a maximum value of 2 is obtained. Further, the manufacturing method of the transistor 1 according to the present embodiment is as shown by the curve E of Fig. 2(c), in the channel protective layer 2 The differential value of the 'hydrogen concentration profile' near the interface α with the active layer 18 changes from negative to positive, and the difference in the differential value near the interface α is 1 χ 102 〇 or more. That is, 'in the second figure (c) The minimum value of the differential value near the interface α of the curve 77*, and the difference from the maximum value r 2 is lxl〇2〇 or more. -27- 201218384 Further, the manufacturing method of the transistor 1 according to the present embodiment, although There is no special step for adding hydrogen, and the hydrogen concentration in the active layer 18 can also be made 1 〇21 atoms/cm3 or more. Thus, in the present embodiment, the number of steps can be reduced, and the steps can be simplified. Thereby, the manufacturing cost of the transistor 1 can be reduced, and the transistor 10 can be inexpensive. Further, in the method of manufacturing the transistor 10 of the present embodiment, by using the channel protective layer 20 as a Ga oxide and removing the non-pattern portion of the photoresist film, it is possible to use an imaging solution of an alkaline solution. The Ga oxide film 19 other than the channel protective layer 20 is removed. Therefore, the step of removing the Ga oxide film 19 is not required. Thus, the number of steps can be further reduced, and the steps can be further simplified, and the manufacturing cost can be further reduced. Moreover, it is necessary to use hydrofluoric acid (hydrum flu〇ric acid) when using a SIN film or a Si〇2 film as a channel protective layer and attempting a wet type, but in this embodiment, since it is not necessary to use hydrofluoric acid, It is possible to form the channel protection layer 20 more safely. Eight, Shiben Shi---Post·...~Yi Yun Nai Ling,
㈤2膜(第i絕緣膜⑴⑼如膜(氧化物半導體膜)17 以氧化物膜(第2絕緣膜)19,成膜時的背壓W =下:此成膜時的水分量變少’能夠抑制對活性層的 曰。口此,成膜時的背壓係以10xl0-4pa以下為佳。 而且’ Ga氧化物膜(第2絕緣膜”使 氬氣的混合比為〇 ] 〇/以μ ,从 了 乂便用乳風 在本〜為ο·1,。以上小於10%的條件形成為佳。 在本A施形態的電晶體10之製造方法, 成、光阻圖荦的丑彡占、夂從2 大i阻膜的 -的开,成、各種膜的形成、平(5) 2 films (i-th insulating film (1) (9) such as film (oxide semiconductor film) 17 with oxide film (second insulating film) 19, back pressure at film formation W = lower: water content at the time of film formation is reduced" For the active layer, the back pressure at the time of film formation is preferably 10x10-4 Pa or less. Moreover, the 'Ga oxide film (the second insulating film) makes the mixing ratio of argon gas 〇] 〇 / μ. From the squatting, it is better to use the milk wind in the present ~ ο·1. The above conditions are less than 10%. In the manufacturing method of the transistor 10 in the form of the A, the ugly occupation of the photoresist pattern is夂From the opening of the 2 large i-resist film, the formation of various films, and the flatness
成,係任一者均在溫度為2 a J I 乂卜進仃。如此,因 -28- 201218384 各步驟均在2 0 0 °C以下的溫度進行,能夠使用 例如PET、PEN、PI、LCP、PES等為基板。因為 PEN、PI、LCP、PES係具有撓性者,能夠得 電晶體。 其次,說明本發明的第2實施形態。 第4圖係顯示本發明的第2實施形態之 之模式性剖面圖。又,在本實施形態,與第 之第1實施形態的電晶體1 〇相同構成物係賦 而省略其詳細的說明。 相較於第1圖所表示之電晶體1 〇,第4 電晶體1 〇a係通道保護層2 8與活性層1 8 面,及通道區域C係較廣闊方面為不同’其 與第1圖所表示之電晶體1 〇相同的構造。第 之電晶體l〇a係以覆蓋通道保護層28的表面 分之方式在閘極絕緣層1 6的表面1 6 a形成源 又,因為通道保護層28係除了形狀以外,與 態的通道保護層2 0為相同’所以省略其詳知 在本實施形態的電晶體l〇a,與第1實 地,如第2圖(a)、(b)所表示之曲線a,通道命 當於區域D1)及活性層1 8 (相當於區域D2)内 係從通道保護層2 8朝向活性層1 8而減少, 護層2 8與活性層1 8的界面α附近,亦即活十 面1 8 a附近的氫濃度輪廓係具有極小值冷1及 而且,在本實施形態的電晶體1 〇 a,如: 曲線E所表示,在通道保護層2 8與活性層 财熱性低、 ,該等PET、 到具撓性之 薄膜電晶體 1圖所表示 予相同符號 圖所表示之 相同形狀方 他的構造係 4圖所表示 2 8 a的一部 i極電極22。 第1實施形 *的說明。 施形態同樣 &護層28(相 的氩濃度, 同時通道保 4·層1 8的表 極大值冷2。 第2圖(c)的 1 8的界面附 -29- 201218384 近,氫濃度輪廓的微分值係由負變為正,同時在界面附 近之微分值的差異為1X1 〇2G以上。而且,活性層1 8内 的氫濃度為l〇21atoms/cm3以上。 又,因為在本實施形態的電晶體10a,係只有通道 保護層2 8的形狀不同,所以能夠得到與第1實施形態的 電晶體 1 0同樣的效果。因此,在本實施形態的電晶體 1 0 a,其臨限值亦不會往負值位移,而成為顯示良好的 TFT特性且長期信賴性高者。 其次,說明本實施形態1 〇a的製造方法。 第5圖(a)〜(f)係依照步驟順序顯示本發明的第2實 施形態之薄膜電晶體的製造方法之模式性剖面圖。 又,在電晶體l〇a的製造方法,關於與第3圖(a)〜(g) 所表示之第1實施形態的電晶體1 0的製造方法相同步 驟,係省略其詳細的說明。 本實施形態的電晶體1 〇a之製造方法係除了通道保 護層28的形成步驟為與第1實施形態的電晶體10之製 造方法不同以外,與第1實施形態的電晶體1 〇之製造方 法係基本上為同樣的製造方法。 在本實施形態,第5圖(a)、(b)所表示之步驟,因為 係與第1實施形態的第3圖(a)、(b)所表示之步驟為同樣 的製造方法,省略其詳細的說明。因此,從第5圖(c)的 步驟說明。 如第5圖(c)所表示,在Ga氧化物膜19的表面19a, 例如形成光阻膜40a。然後,使用微影術法,以在IGZO 膜1 7形成與活性層1 8大致相同大小之保護層28、且與 -30- 201218384 活性層18匹配& " 成為非圖案部44::方:成為圖案部仏、且其他部分係 ψ ^ 42a m ,,將光阻膜4〇a曝光而形成圖 茶W Wa及非圖案部4蚀。 液中t使?^Γ膜4Ga的非圖案_,在顯像 冬H舍飞氧化四甲銨水溶液作為鹼性溶液而除In any case, the temperature is 2 a J I. In this way, since each step of -28-201218384 is performed at a temperature of 200 ° C or lower, for example, PET, PEN, PI, LCP, PES or the like can be used as the substrate. Since PEN, PI, LCP, and PES are flexible, a transistor can be obtained. Next, a second embodiment of the present invention will be described. Fig. 4 is a schematic cross-sectional view showing a second embodiment of the present invention. Further, in the present embodiment, the same configuration as that of the transistor 1 第 of the first embodiment is omitted, and detailed description thereof will be omitted. Compared with the transistor 1 表示 shown in Fig. 1, the fourth transistor 1 〇a is formed by the channel protective layer 28 and the active layer 18, and the channel region C is wider than the first one. The transistor 1 is represented by the same structure. The first transistor l〇a forms a source on the surface 16 a of the gate insulating layer 16 in such a manner as to cover the surface of the channel protective layer 28, because the channel protective layer 28 is in addition to the shape, and the channel protection of the state The layer 20 is the same 'so that the transistor 10a of the present embodiment is omitted, and the curve a shown by the first field, as shown in the second figure (a) and (b), the channel is in the region D1. And the active layer 18 (corresponding to the region D2) is reduced from the channel protective layer 28 toward the active layer 18, and the interface α between the sheath 28 and the active layer 18 is near, that is, the living surface is 18 a The nearby hydrogen concentration profile has a minimum value of 1 and further, in the transistor 1 〇a of the present embodiment, as shown by the curve E, the channel protective layer 28 and the active layer have low heat, and the PET, The structure of the flexible film transistor 1 is shown in the same figure as the same symbol, and the structure of the structure 4 shows a portion of the i-electrode 22 of 28 a. Description of the first embodiment *. The morphology of the same layer & layer 28 (the argon concentration of the phase, while the surface of the channel is 4, the maximum value of the surface of the layer 2 is cold 2. The interface of 18 of Figure 2 (c) is attached -29-201218384 near, hydrogen concentration profile The differential value is changed from negative to positive, and the difference in the differential value near the interface is 1×1 〇 2G or more. Moreover, the hydrogen concentration in the active layer 18 is l〇21 atoms/cm 3 or more. Since the transistor 10a has only the shape of the channel protective layer 28, the same effect as that of the transistor 10 of the first embodiment can be obtained. Therefore, the threshold of the transistor 10a of the present embodiment is limited. In the meantime, it is not necessary to shift to a negative value, and it has a good TFT characteristic and has high long-term reliability. Next, a manufacturing method of the first embodiment 〇a will be described. Fig. 5 (a) to (f) are displayed in the order of steps. A schematic cross-sectional view showing a method of manufacturing a thin film transistor according to a second embodiment of the present invention. Further, in the method of manufacturing the transistor 10a, the first embodiment shown in Figs. 3(a) to 3(g) The manufacturing method of the transistor 10 of the form is the same, and the detailed description thereof is omitted. The manufacturing method of the transistor 1 〇a of the present embodiment is the same as that of the transistor 10 of the first embodiment except that the step of forming the channel protective layer 28 is different from that of the transistor 10 of the first embodiment. The manufacturing method is basically the same manufacturing method. In the present embodiment, the steps shown in Figs. 5(a) and 5(b) are based on the third embodiment (a) and (b) of the first embodiment. The steps shown in the same manner are the same, and the detailed description thereof will be omitted. Therefore, the procedure of Fig. 5(c) will be described. As shown in Fig. 5(c), the surface 19a of the Ga oxide film 19 is formed, for example. The photoresist film 40a. Then, using the lithography method, a protective layer 28 of substantially the same size as the active layer 18 is formed on the IGZO film 17, and is matched with the -30-201218384 active layer 18 &" Part 44:: square: the pattern portion is formed, and the other portion is ψ ^ 42a m , and the photoresist film 4〇a is exposed to form the pattern tea W Wa and the non-pattern portion 4 etch. 4Ga non-pattern _, in addition to the imaging winter H Schein oxidized tetramethylammonium solution as an alkaline solution
::鹼随'合液,係例如能夠使用TMAH 2.38%(商 品名、多摩化學工業公司製)。 (H 物胺1 Q 形態除去非圖案部44a時,因為Ga氧化The base can be used, for example, TMAH 2.38% (trade name, manufactured by Tama Chemical Industry Co., Ltd.). (H the amine amine 1 Q form removes the non-pattern portion 44a because of Ga oxidation
、疋此夠溶解於鹼性溶液,所以在該Ga氧化物 膜19,使用圖杳A 、°P42a作為遮罩而非圖案部44a的下方 之G a氧化物肢1 n / 4 、 係與非圖案部44a同時被鹼性溶液除 。错此’圖案部42a及在該圖案部“a的下方之以 媒化物膜19係殘留。而且’光阻膜係與第1實施形態同 樣地,正型或負型均可。 |J- 丨Therefore, it is sufficient to dissolve in the alkaline solution. Therefore, in the Ga oxide film 19, FIG. A and °P42a are used as masks instead of the G a oxide limb 1 n / 4 under the pattern portion 44a, and the pattern is non-patterned. The portion 44a is simultaneously removed by the alkaline solution. The pattern portion 42a and the carrier film 19 are left under the pattern portion "a." The photoresist film can be either positive or negative as in the first embodiment. |J- 丨
不將圖案部42a剝離,例如使用草酸將IGZO 膜17 ♦虫刻。随你 • 後,將光阻膜4〇a剝離。藉此,形成第5 =()所表不之活性層丨8。隨後與第1實施形態同樣地進 订在Si02膜15形成接觸、洞,且形成如第$圖⑷所表 不之閘極絕緣膜1 6。 其次,與第1實施形態同樣地進行,如第5圖(勾所 八以覆蓋通道保護層2 8的方式在閘極絕緣層1 6的 =面16a形成銷犋21,隨後,如帛$圖⑴所表示,使通 C保羞層28介於之間而形成源極電極22及汲極電極 4其—人’與第1實施形態同樣地進行而形成平坦化層 士以上進行’能夠形成如第4圖所表示之電晶體1 〇a。 -31 - 201218384 相較於第1實施形態的電晶體10之製造方法,在本 實施形態的電晶體1 〇a之製造方法,因為係只有變f 、皆 4 &通 ^保護層2 8的大小而形成方面、及形成活性層時省略了 形成光阻圖案方面不同’能夠得到與第1實施形態的電 晶體1 0之製造方法同樣的效果。 因此,在本實施形態’亦是藉由不進行大氣釋玫 亦即不破真空,而將si02膜15、IGZ0膜17及Ga氧化 物膜19依照其順序在基板12上連續地形成,能夠 水分、& # 市 虱氣、不純物等進入活性層1 8與通道保護層2 8 ==面,能夠抑制在活性層丨8之水分、氧氣、不純物等 、衫響,而能夠抑制臨限值的位移。藉此,能夠再現性 又好且以高產率形成具有良好特性之薄膜電晶體1〇a。 士〇此1 ’能夠得到信賴性優良之電晶體1 Oa。 又’在本貫施形態,在通道保護層2 8與活性層工$ 内的氫濃度,亦是從通道保護層28朝向活性層丨8而減 ;,在通道保護層28與活性層丨8的界面附近,亦 活’[生® 1 主 H 的表面l8a的附近之氫濃度輪廓係與第2 所弟- ^ \ 〇) 不之曲線A同樣地,能夠得到具有極小值沒1及 大值々2之氫濃度輪廓。 。 而且,在本實施形態,亦與第2圖(c)所表示之曲線 &同樣地,在通道保護層2 8與活性層1 8的界面附近, 氫/辰度輪廓的微分值係由負變為正,同時在界面附近之 微刀值的差異為丨x丨〇2〇以上。亦即,界面附近的微分值 勺極小值7 1與極大值7 2的差異為i χ J 〇2〇以上。 又’依照本實施形態的電晶體丨〇a之製造方法,雖 -32- 201218384 然沒有用以添加氫之特別的步驟,亦能夠使活性層 的氫’辰度成為1 〇21 atoms/cm3以上。如此,在本實 態’能夠減少步驟數,能夠將步驟簡略化。藉此, 夠降低電晶體10a的製造成本,且電晶體1 〇a亦能 廉。 而且’在本實施形態的電晶體丨〇a之製造方法 由使通道保護層28與活性層1 8同一形狀,能夠使 门光罩所形成的光阻圖案而形成通道保護層28及 層1 8。藉此,能夠減少形成光阻圖案所必要的光罩类 能夠降低成本,同時能夠將步驟簡略化。藉此,亦 使生產效率提升。 又’本實施形態亦與第i實施形態同樣地,能 去當作通道保護層28的Ga氧化物膜19以外之物 此,能夠進一步減少步驟數,能夠進一步將步驟簡略 亦能夠進-步降低製造成本。而且,在本實施形態 第1實施形態同樣地,使用SIN膜、Si〇2骐作為通 護層且嘗試濕式蝕刻情況,有必要使用氫 (hydrofluoric acid),但是本實施形態,亦是因為不 用氫氟酸,能夠更安全地形成通道保護層28。 又,在電晶體1 〇a的製造步驟,光阻膜的形成 阻圖案的形成、各種膜的形成、平坦化層26的形成 任一者亦均在溫度為2〇〇<>c以下進行。如此,因為 驟均在200°C以下的溫度進行,能夠使用如ρΕτ、 等耐熱性低的基板1 2。藉此,能夠得到具撓性之電蓋 其次’說明本發明的第3實施形態。 1 8内 施形 亦能 夠價 ,藉 用相 活性 t量, 能夠 夠除 。因 -化, 亦與 道保 氟酸 必使 、光 ,係 各步 PEN k體。 -33- 201218384 實施形態之薄膜電晶體 1圖所表示之帛1實施形 歟予相同符號而省略其詳 第6圖係顯示本發明的第 之模式性别面圖。 又,在本實施形態,與第 態的電晶體10相同構成物係 細的說明。 第6圖所表示之電晶體1〇b係通常被稱為上閘 接觸(top gate top contact)構造者。相較於第1圖所 之電晶體ίο,該電晶體i〇b係除了閘極電極14的配2 位置與通道保護層20及活性層18、和與源極電極。及 沒極電極24的配置位置係上下相反方面不同,其他的構 造係與第1圖所表示之電晶體10相同的構造。 如第6圖所表示之電晶體i〇b係在基板12的表面 12a形成活性層18。在該活性層18的表面i8a係形成有 通道保護層20。以覆蓋活性層18的表面18a及通道保 護層20的表面20a的一部分之方式在基板12的表面i2a 形成源極電極2 2。又,與該源極電極2 2成一對之汲極 電極24係以覆蓋活性層18的表面18a及通道保護層2〇 的表面20a的一部分之方式在基板12的表面12a,與源 極電極22相向而形成。以覆蓋通道保護層2〇及活性層 18和源極電極22及汲極電極24的方式在基板I〗上形 成絕緣膜30。在該絕緣膜30的表面3〇a形成閘極電極 14。以覆蓋該閘極電極1 4的方式在該絕緣膜3 〇的表面 30a形成平坦化層26。 又’絕緣膜3 0係用以將通道保護層2 〇及活性層1 8 和源極電極22及汲極電極24與閘極電極14絕緣者。因 -34- 201218384 為絕緣膜3 0係與第1圖所表示之電晶體1 0的閘極絕緣 層1 6同樣的結構,省略其詳細的說明。 在該電晶體1 Ob亦是與第1實施形態同樣地,如第 2圖(a)、(b)所表示之曲線A,通道保護層20(相當於區 域D!)及活性層18(相當於區域D2)内的氫濃度,係從通 道保護層20朝向活性層1 8而減少,同時通道保護層20 與活性層1 8的界面附近,亦即活性層1 8的表面1 8 a附 近的氫濃度輪廓係具有極小值/5 1及極大值/3 2。 而且,在本實施形態的電晶體1 Ob,如第2圖(c)的 曲線E所表示,在通道保護層20與活性層1 8的界面附 近,氫濃度輪廓的微分值係由負變為正,同時在界面附 近之微分值的差異為1 X 1 02 G以上。而且,活性層1 8内 的氫濃度為l〇21atoms/cm3以上。 又,在本實施形態的電晶體1 Ob,因為活性層1 8及 通道保護層20的構造,氫濃度及在界面附近之微分值的 差異係與第1實施形態的電晶體1 〇同樣,所以能夠得到 與第1實施形態的電晶體1 0同樣的效果。因此,在本實 施形態的電晶體1 0 b,其臨限值亦不會往負值位移,而 成為顯示良好的TFT特性且長期信賴性高者。 其次,說明第4實施形態。 第7圖係顯示本發明的第4實施形態之薄膜電晶體 之模式性剖面圖。 又,在本實施形態,與第6圖所表示之第3實施形 態的電晶體1 〇b相同構成物係賦予相同符號而省略其詳 細的說明。 -35- 201218384 相較於第6圖所表示之電晶體10b,第7圖所表示 之電晶體1 〇c,因為除了通道保護層28與活性層1 8為 相同形狀方面不同,其他的構造係與第6圖所表示之電 晶體1 〇b相同的構造,省略其詳細說明。又,通道保護 層28係除了形狀不同以外,與第3實施形態的通道保護 層2 0係相同。 在本實施形態的電晶體1 0c,與第3實施形態係只 有通道保護層28的大小不同。因此,在本實施形態1 0c 亦能夠得到與第3實施形態同樣、且與第1實施形態同 樣地,如第2圖(a)、(b)所表示之曲線A,通道保護層28(相 當於區域D,)及活性層18(相當於區域D2)内的氫濃度, 係從通道保護層2 8朝向活性層1 8而減少,同時通道保 護層2 8與活性層1 8的界面附近,亦即活性層1 8的表面 1 8 a附近的氫濃度輪廓係具有極小值/5 1及極大值万2。 而且,在本實施形態的電晶體10c,如第2圖(c)的 曲線E所表示,在通道保護層2 8與活性層1 8的界面附 近,氫濃度輪廓的微分值係由負變為正,同時在界面附 近之微分值的差異為1 X 1 02G以上。而且,活性層1 8内 的氫濃度為l〇21atoms/cm3以上。 在本實施形態的電晶體1 0c,因為與第3實施形態 係只有通道保護層2 8的大小不同,能夠得到與第1實施 形態的電晶體1 0同樣的效果。因此,在本實施形態的電 晶體1 〇c,其臨限值亦不會往負值位移,而成為顯示良 好的TFT特性且長期信賴性高者。 -36- 201218384 又,上述任一實施形態的電晶體1 0、1 0a~ 1 0C係能 夠使用作為使用液晶、EL元件之影像顯示裝置、特別是 作為FPD的開關元件、驅動元件。而且,使用上述任一 實施形態的電晶體1 0、1 Oa〜1 Oc之影像顯示裝置係能夠 應用在包含行動電話顯示器、個人數位助理(PDA : Personal Digital Assistant)、電腦顯示器、汽車資訊顯示 器、TV用監控器或通常的照明之範圍廣闊的領域。而 且,亦能夠將上述任一實施形態的電晶體 10、10a〜10c 的基板作為塑膠薄膜等的撓性基板而應用於1C卡或ID 標籤等。 本發明係基本上如以上所述者。以上詳細說明了本 發明的薄膜電晶體及其製造方法,但是本發明係不被上 述的實施形態限定,在不脫離本發明的主旨之範圍,當 然亦可進行各種改良或變更。 [實施例1] 以下,具體地說明本發明的薄膜電晶體之實施例。 在本實施例,係製造以下所表示之實施例1的電晶 體及比較例1的電晶體,且對各實施例1的電晶體及比 較例1的電晶體進行評價經時變化。 實施例1的電晶體與第1圖所表示之第1實施形態 的電晶體10係相同構造,且使用在第3圖(a)〜(g)所表示 之上述的第1實施形態的電晶體1 0之製造方法所製成 者。 比較例1的電晶體與第8圖(g)所表示的電晶體100 係相同構造,且係使用第8圖(a)〜(g)所表示之製造方法 -37- 201218384 所製成者。又,+结。門 _ 在第8圖(g)所表示的電晶體100與第i 圖所表示的雷曰邮 /、 造。 的電日日姐10,係除了製造方法以外為同樣的構 ^•例1的電晶體,係在基板i 2使用無鹼玻璃。 如第3圖(a)所表示,係在該基板12上如以下進行 而形成閘極雷搞Μ ^ 友/電極14。首先’藉由dc磁控管濺鍍法且使 :二乳為錢鍍氣體,而且以Ar氣的流量為⑸咖、^ :、入時的壓力為〇 2Pa的條件,在基板12上形成厚度 1 的鉬膜。然後,在該鉬膜使用微影術法形成光 阻2案且使用M〇用蝕刻劑TSL(林純藥工業(股)製)以 液胤為2 5 C的條件將鉬膜蝕刻而形成閘極電極丨4。 人,將第3圖(b)所表示之當作閘極絕緣層丨6的 Si〇2膜1 5,以覆蓋閘極電極丨4的方式使用rf濺鍍法以 2〇〇ηΠ1厚度形成在基板12的表面12a之全面。又,RF 濺鍍法係使用Sl〇2為標靶,且使&氣的流量為4㈦ccm, 使〇2氣的流置為4 5sccm,而且使氣及〇2氣導入時 的壓力為〇.16Pa而進行。 其-人’不進行大氣釋放而在81〇2膜15的表面15a, 以5〇nm的厚度使用DC濺鍍法形成第3圖0)所表示之 田作活眭層18之IGZO膜17。又,DC濺鍍係使用具有 I_nGaZn〇4的組成之多晶燒結體為標耙,且使八犷氣的流 量為97SCCm,使A氣的流量為4 2sccm ,而且使Ar氣 及〇2氣導入時的壓力為0.37Pa而進行。 其次,不進行大氣釋放而在lGz〇膜17的表面17a, 以4〇nm的厚度使用RF濺鍍法形成第3圖(b)所表示之當 -38- 201218384 作通道保護層20之Ga氧化物膜19。又,rf濺鍵係使 用氧化鎵(Ga2〇3)為標靶’且使Ar氣的流量為97seem, 使〇2氣的流量為5.0sccm,而且使Ar氣及02氣導入時 的壓力為0.4Pa而進行。如此進行,不進行大氣釋放而 形成第3圖(b)所表示之積層體23。 其次,如第3圖(c)所表示,在Ga氧化物膜19的表 面1 9a形成光阻膜40。然後,使用微影術法以形成上述 圖案部42及非圖案部44的方式進行曝光。 其次,將曝光後之光阻膜40的非圖案部44,使用 TMAH 2.3 8%(商品名、多摩化學工業公司製)除去,隨 後,亦將圖案部42除去而形成第3圖(d)所表示之通道 保護層20。 其次’在IGZO膜17的表面17a,使用微影術法形 成光阻圖案。然後,使用草酸水(IT〇_〇6N(關東化學公司 製)),於液溫35°C將IGZO膜17蝕刻,而形成第3圖(e) 所表示之活性層1 8。 其次’以覆蓋通道保護層2 0及活性層1 8的方式進 行而在Si〇2膜15的表面15a形成光阻膜(未圖示),且使 用微影術法形成光阻圖案。然後,使用將緩衝氫氟酸以 水稀釋而成之HF濃度為6質量%者,於液溫25。(:將Si〇2 膜1 5蝕刻而形成閘極電極取出用接觸洞。如此進行而形 成第3圖(e)所表示之閘極絕緣膜丨6。 其次’以覆蓋通道保護層20的方式在活性層1 8的 表面18a及閘極絕緣層16的表面16a,使用DC磁控管 濺鍍法以lOOnm的厚度形成第3圖⑴所表示之鉬膜2卜 •39- 201218384 DC磁控管濺鍍法係使 ^ # Λ 15sc 你 札為濺鍍氣體,且使Ar氣的 抓虿马15sccm,使Ar氣導入拄从矿 A ,如 札V入時的壓力為0.2Pa而進行。 其次,在钥膜21的表面2la p阻圖案。 使用微影術法形成光The pattern portion 42a is not peeled off, and for example, the IGZO film 17 is etched using oxalic acid. After you •, the photoresist film 4〇a is peeled off. Thereby, the active layer 丨8 represented by the fifth = () is formed. Then, in the same manner as in the first embodiment, the contact and the hole are formed in the SiO 2 film 15, and the gate insulating film 16 as shown in Fig. 4 (4) is formed. Then, in the same manner as in the first embodiment, as shown in Fig. 5 (the hook surface is formed to cover the channel protective layer 28, the pin 21 is formed on the = surface 16a of the gate insulating layer 16 and then, as shown in Fig. (1) It is shown that the source electrode 22 and the drain electrode 4 are formed between the pass-through layer 12 and the drain electrode 4 is formed in the same manner as in the first embodiment to form a flattening layer or more. The transistor 1 〇a shown in Fig. 4. -31 - 201218384 The method of manufacturing the transistor 1 〇a of the present embodiment is different from the method of manufacturing the transistor 10 of the first embodiment. In the case of forming the size of the protective layer 28 and the formation of the active layer, the difference in the formation of the photoresist pattern is omitted, and the same effect as the method of manufacturing the transistor 10 of the first embodiment can be obtained. Therefore, in the present embodiment, the SiO2 film 15, the IGZ0 film 17, and the Ga oxide film 19 are continuously formed on the substrate 12 in accordance with the order without releasing the vacuum, that is, without breaking the vacuum, and moisture can be formed. &#市虱气, impurity, etc. into the active layer 18 The channel protective layer 2 8 == surface can suppress the moisture, oxygen, impurities, and the like in the active layer 丨8, and can suppress the displacement of the threshold value. Thereby, the reproducibility is good and the formation is high yield. Thin film transistor with good characteristics 1〇a. This kind of 1' can obtain a transistor with excellent reliability, 1 Oa. In the present embodiment, the concentration of hydrogen in the channel protective layer 28 and the active layer is It is also reduced from the channel protective layer 28 toward the active layer 丨8; in the vicinity of the interface between the channel protective layer 28 and the active layer 丨8, the hydrogen concentration profile of the vicinity of the surface l8a of the [Life® 1 main H] is also The second brother - ^ \ 〇) Similarly, the curve A has the same hydrogen concentration profile with a minimum value of 1 and a large value of 々2. . Further, in the present embodiment, similarly to the curve & shown in Fig. 2(c), the differential value of the hydrogen/length profile is negative near the interface between the channel protective layer 28 and the active layer 18. It becomes positive, and the difference in micro knife value near the interface is 丨x丨〇2〇 or more. That is, the difference between the differential value 7 1 and the maximum value 7 2 of the differential value near the interface is i χ J 〇 2 〇 or more. Further, according to the method for producing the transistor 丨〇a of the present embodiment, although the special step of adding hydrogen is not carried out at -32 to 201218384, the hydrogen 'length of the active layer can be 1 〇 21 atoms/cm 3 or more. . Thus, in this embodiment, the number of steps can be reduced, and the steps can be simplified. Thereby, the manufacturing cost of the transistor 10a can be reduced, and the transistor 1a can also be inexpensive. Further, in the method of manufacturing the transistor 丨〇a of the present embodiment, the channel protective layer 28 and the active layer 18 have the same shape, and the channel protective layer 28 and the layer 18 can be formed by the photoresist pattern formed by the gate mask. . Thereby, it is possible to reduce the number of masks necessary for forming the photoresist pattern, thereby reducing the cost and simplifying the steps. This also increases production efficiency. Further, in the present embodiment, as in the case of the i-th embodiment, the number of steps can be further reduced, and the number of steps can be further reduced, and the steps can be further reduced. manufacturing cost. Further, in the same manner as in the first embodiment of the present embodiment, it is necessary to use a hydrofluoric acid in the case of using a SIN film or Si〇2骐 as a protective layer and attempting wet etching. However, this embodiment also does not use Hydrofluoric acid can form the channel protective layer 28 more safely. Further, in the manufacturing step of the transistor 1a, any of the formation of the resist pattern of the photoresist film, the formation of various films, and the formation of the planarization layer 26 are also at a temperature of 2 〇〇 <> get on. In this manner, since the steps are all performed at a temperature of 200 ° C or lower, a substrate 12 having low heat resistance such as ρ Ετ can be used. Thereby, a flexible electric cover can be obtained. Next, a third embodiment of the present invention will be described. The shape in 1 8 can also be priced, and the amount of phase activity t can be used to remove. Because of the -, it is also compatible with the Daobao fluoric acid, light, and each step of the PEN k body. -33-201218384 The thin film transistor of the embodiment is denoted by the same reference numerals and the detailed description is omitted. Fig. 6 is a view showing the first mode of the present invention. Further, in the present embodiment, the same components as those of the transistor 10 of the first embodiment will be described in detail. The transistor 1〇b shown in Fig. 6 is generally referred to as a top gate top contact constructor. The transistor i〇b is in addition to the position 2 of the gate electrode 14 and the channel protective layer 20 and the active layer 18, and the source electrode, as compared to the transistor ίο of FIG. The position of the electrodeless electrode 24 is different from the upper and lower sides, and the other structures are the same as those of the transistor 10 shown in Fig. 1. The transistor i〇b as shown in Fig. 6 forms the active layer 18 on the surface 12a of the substrate 12. A channel protective layer 20 is formed on the surface i8a of the active layer 18. The source electrode 2 2 is formed on the surface i2a of the substrate 12 so as to cover the surface 18a of the active layer 18 and a portion of the surface 20a of the channel protective layer 20. Further, the drain electrode 24 which is paired with the source electrode 22 is disposed on the surface 12a of the substrate 12 and the source electrode 22 so as to cover a surface 18a of the active layer 18 and a portion of the surface 20a of the channel protective layer 2A. Formed in opposite directions. The insulating film 30 is formed on the substrate I so as to cover the channel protective layer 2A and the active layer 18, the source electrode 22, and the drain electrode 24. A gate electrode 14 is formed on the surface 3A of the insulating film 30. A planarization layer 26 is formed on the surface 30a of the insulating film 3A so as to cover the gate electrode 14. Further, the insulating film 30 is used to insulate the channel protective layer 2 and the active layer 18 and the source electrode 22 and the drain electrode 24 from the gate electrode 14. In the case of -34-201218384, the insulating film 30 is the same as the gate insulating layer 16 of the transistor 10 shown in Fig. 1, and detailed description thereof will be omitted. Similarly to the first embodiment, the transistor 1 Ob has the channel protection layer 20 (corresponding to the region D!) and the active layer 18 (corresponding to the curve A shown in Figs. 2(a) and 2(b). The concentration of hydrogen in the region D2) decreases from the channel protective layer 20 toward the active layer 18, while the vicinity of the interface between the channel protective layer 20 and the active layer 18, that is, near the surface 18 8 of the active layer 18. The hydrogen concentration profile has a minimum value of /5 1 and a maximum value of /3 2 . Further, in the transistor 1 Ob of the present embodiment, as shown by the curve E of Fig. 2(c), the differential value of the hydrogen concentration profile changes from negative to near the interface between the channel protective layer 20 and the active layer 18. Positive, the difference in differential values near the interface is 1 X 1 02 G or more. Further, the hydrogen concentration in the active layer 18 is 10 ato 21 atoms/cm 3 or more. Further, in the transistor 1 Ob of the present embodiment, the difference in the hydrogen concentration and the differential value in the vicinity of the interface is the same as that of the transistor 1 in the first embodiment, because of the structure of the active layer 18 and the channel protective layer 20. The same effects as those of the transistor 10 of the first embodiment can be obtained. Therefore, in the transistor 10b of the present embodiment, the threshold value is not shifted to a negative value, and the TFT characteristics are excellent and the long-term reliability is high. Next, a fourth embodiment will be described. Fig. 7 is a schematic cross-sectional view showing a thin film transistor of a fourth embodiment of the present invention. In the present embodiment, the same components as those of the transistor 1 〇b of the third embodiment shown in Fig. 6 are denoted by the same reference numerals, and detailed description thereof will be omitted. -35- 201218384 The transistor 1 〇c shown in Fig. 7 is different from the transistor 10b shown in Fig. 6, because the channel protection layer 28 and the active layer 18 are different in shape, and other structures are different. The same structure as the transistor 1 〇b shown in Fig. 6 is omitted, and detailed description thereof will be omitted. Further, the channel protective layer 28 is the same as the channel protective layer 20 of the third embodiment except for the shape. The transistor 10c of the present embodiment differs from the third embodiment only in the size of the channel protective layer 28. Therefore, in the present embodiment 10c, as in the third embodiment, as in the first embodiment, the channel protection layer 28 (corresponding to the curve A shown in Figs. 2(a) and 2(b) can be obtained. The concentration of hydrogen in the region D,) and the active layer 18 (corresponding to the region D2) decreases from the channel protective layer 28 toward the active layer 18, while the interface between the channel protective layer 28 and the active layer 18 is That is, the hydrogen concentration profile near the surface 18 8 of the active layer 18 has a minimum value of /5 1 and a maximum value of 2. Further, in the transistor 10c of the present embodiment, as shown by the curve E of Fig. 2(c), the differential value of the hydrogen concentration profile changes from negative to near the interface between the channel protective layer 28 and the active layer 18. Positive, the difference in differential values near the interface is 1 X 1 02G or more. Further, the hydrogen concentration in the active layer 18 is 10 ato 21 atoms/cm 3 or more. In the transistor 10c of the present embodiment, since the size of the channel protective layer 28 is different from that of the third embodiment, the same effects as those of the transistor 10 of the first embodiment can be obtained. Therefore, in the transistor 1 〇c of the present embodiment, the threshold value is not shifted to a negative value, and the TFT characteristics are excellent and the long-term reliability is high. Further, the transistor 10, 10a to 10C of any of the above embodiments can be used as a display device using a liquid crystal or an EL element, in particular, as a switching element or a driving element of an FPD. Further, the image display device using the transistor 10, 1 Oa to 1 Oc according to any of the above embodiments can be applied to a mobile phone display, a personal digital assistant (PDA: Personal Digital Assistant), a computer display, a car information display, TV monitors or a wide range of areas of general illumination. Further, the substrate of the transistors 10, 10a to 10c of any of the above embodiments can be applied to a 1C card or an ID tag or the like as a flexible substrate such as a plastic film. The invention is essentially as described above. Although the thin film transistor of the present invention and the method for producing the same are described in detail above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made without departing from the spirit and scope of the invention. [Example 1] Hereinafter, examples of the film transistor of the present invention will be specifically described. In the present embodiment, the electromorph according to Example 1 shown below and the transistor of Comparative Example 1 were produced, and the evaluation of the transistor of each Example 1 and the transistor of Comparative Example 1 with time was performed. The transistor of the first embodiment has the same structure as the transistor 10 of the first embodiment shown in Fig. 1, and the transistor of the first embodiment shown in Figs. 3(a) to 3(g) is used. The manufacturer of the 10 0 manufacturing method. The transistor of Comparative Example 1 has the same structure as that of the transistor 100 shown in Fig. 8(g), and is produced by the manufacturing method -37-201218384 shown in Figs. 8(a) to 8(g). Also, + knot. Door _ The transistor 100 shown in Fig. 8(g) and the Thunder mail/, shown in Fig. i. In the same configuration as in the manufacturing method, the electric Japanese and Japanese sisters 10 are made of an alkali-free glass on the substrate i 2 . As shown in Fig. 3(a), the gate electrode 14 is formed on the substrate 12 as follows. First, 'by dc magnetron sputtering method, the two emulsions are made of money, and the flow rate of Ar gas is (5) coffee, ^:, the pressure at the time of entering is 2 Pa, and the thickness is formed on the substrate 12. 1 molybdenum film. Then, the molybdenum film was formed into a photoresist 2 by a lithography method, and a molybdenum film was etched to form a gate using a etchant TSL (manufactured by Lin Chun Pharmaceutical Co., Ltd.) with a liquid helium of 25 C. The electrode is 丨4. The Si〇2 film 15 as the gate insulating layer 丨6 shown in FIG. 3(b) is formed by covering the gate electrode 丨4 with a thickness of 2〇〇ηΠ1 by rf sputtering. The surface 12a of the substrate 12 is comprehensive. In addition, the RF sputtering method uses Sl2 as a target, and the flow rate of the & gas is 4 (seven) ccm, the flow of the helium gas is set to 45 sccm, and the pressure at which the gas and the helium gas are introduced is 〇. 16Pa is carried out. The IGZO film 17 of the field active layer 18 shown in Fig. 3) is formed by DC sputtering on the surface 15a of the 81〇2 film 15 at a thickness of 5 〇 nm without the release of the atmosphere. Further, in the DC sputtering, a polycrystalline sintered body having a composition of I_nGaZn〇4 is used as a standard, and a flow rate of the helium gas is 97 SCCm, a flow rate of the A gas is 4 2 sccm, and Ar gas and helium gas are introduced. The pressure at the time was 0.37 Pa. Next, the surface of the lGz ruthenium film 17 is not subjected to RF sputtering at a thickness of 4 〇 nm using a thickness of 4 〇 nm to form a Ga-oxidation of the channel protective layer 20 as shown in Fig. 3(b). Film 19. Further, the rf splash bond uses gallium oxide (Ga2〇3) as the target 'and the flow rate of the Ar gas is 97seem, the flow rate of the helium gas is 5.0 sccm, and the pressure at which the Ar gas and the 02 gas are introduced is 0.4. Pa is carried out. In this manner, the layered body 23 shown in Fig. 3(b) is formed without releasing the atmosphere. Next, as shown in Fig. 3(c), a photoresist film 40 is formed on the surface 19a of the Ga oxide film 19. Then, exposure is performed so as to form the pattern portion 42 and the non-pattern portion 44 by the lithography method. Then, the non-pattern portion 44 of the exposed photoresist film 40 is removed by using TMAH 2.3 8% (trade name, manufactured by Tama Chemical Co., Ltd.), and then the pattern portion 42 is removed to form the third image (d). The channel protection layer 20 is shown. Next, a photoresist pattern is formed on the surface 17a of the IGZO film 17 by lithography. Then, IGZO film 17 was etched at a liquid temperature of 35 ° C using oxalic acid water (IT〇_〇6N (manufactured by Kanto Chemical Co., Ltd.) to form active layer 18 shown in Fig. 3(e). Next, a photoresist film (not shown) is formed on the surface 15a of the Si〇2 film 15 so as to cover the channel protective layer 20 and the active layer 18, and a photoresist pattern is formed by photolithography. Then, the HF concentration obtained by diluting buffered hydrofluoric acid with water was 6 mass%, and the liquid temperature was 25. (: The Si〇2 film 15 is etched to form a contact hole for gate electrode extraction. Thus, the gate insulating film 丨6 shown in Fig. 3(e) is formed. Next, 'the way to cover the channel protective layer 20 On the surface 18a of the active layer 18 and the surface 16a of the gate insulating layer 16, a molybdenum film represented by Fig. 3 (1) is formed by a DC magnetron sputtering method at a thickness of 100 nm, and a 39-201218384 DC magnetron is used. The sputtering method is such that ^ # Λ 15sc is a sputtering gas, and the Ar gas is captured by 15 sccm, and Ar gas is introduced into the crucible from the mine A, and the pressure at the time of entering is 0.2 Pa. A pattern of 2 p p is blocked on the surface of the key film 21. Light is formed using lithography
其-人,使用酸的韻刻液(M 酱w、制、、 V 〇用姓刻劑TSL(林純藥工 業(版)製)),以液溫為25〇Γ的基 如笛3…件將銷膜21蝕刻而形成 第3圖(g)所表示之源極電極22及沒極電極“。 其次,以覆蓋通道保護層2〇、源極電極22及汲極 電極24的方式,使用旋錄涂 口。 轉塗布态以1.5/zm的厚度塗布 JSR公司製PC-405G,而曰冷— 而且進仃預供烤。然後,使用微 影彳U將丙烯酸樹脂膜形成圖案。其次’於溫度18代 進行後洪烤1小時而形成平坦化層26(參照第i圖)。如 以上進行而形成實施例1的電晶體。 關於實施例1的電晶體,使用SIMS測定氫濃度時, 旎夠得到上述第2圖(a)〜(c)所表示之曲線A、曲線E的 結果6 相較於上述實施例丨的電晶體之製造方法,比較例 1的電晶體之製造方法係形成第8圖0)所表示之閘極電 極1 4,且形成當作閘極絕緣層丨6之si〇2膜丨5,隨後, 至不暴露於大氣中而連續地形成當作活性層18之IGZ〇 膜1 7為止之步驟,因為係與實施例i的電晶體之製造方 法同樣,省略其詳細的說明。 在比較例1的電晶體之製造方法,其次’係在IGz〇 膜ί 7的表面1 7 a,使用微影術法而形成光阻圖案。然後, 使用將緩衝氫氟酸以水稀釋而成之HF濃度為6質量% -40- 201218384 者’於液溫2 5 °C將S i Ο2膜1 5 I虫刻而形成如第8圖(b)所 表示之閘極絕緣膜1 6。 其次’在IGZO膜17的表面17a ’使用微影術法形 成光阻圖案。然後,使用草酸水(ITO-06N(關東化學公司 製))’於液溫35°C將IGZO膜17 1虫刻,而形成第8圖(b) 所表示之活性層1 8。 其次’如第8圖(c)所表示,以覆蓋活性層18的方 式在閘極絕緣膜16的表面16a,使用RF濺鍍法以40nm 的厚度形成當作通道保護層2〇之Ga氧化物膜1 9。該 RF藏鍍法係使用氧化鎵(Ga2〇3)為標靶,且使Ar氣的流 量為97sccm,使〇2氣的流量為5.0sccm,而且使Ar氣 及〇2氣導入時的壓力為〇4Pa而進行。 其次’使用與實施例1的電晶體之製造方法同樣的 方法’將Ga氧化物膜1 9加工而形成如第8圖(d)所表示 之活性層20。 其次’與實施例1的電晶體之製造方法同樣地進 行’形成第8圖(e)所表示之鉬膜21,且隨後,形成第8 圖(0所表示之源極電極22及汲極電極24。It is a human, using the rhyme of acid (M sauce w, system, V 〇 using the surname TSL (Lin Chun Pharmaceutical Industry Co., Ltd.)), with a liquid temperature of 25 〇Γ base such as flute 3... The pin film 21 is etched to form the source electrode 22 and the electrodeless electrode shown in Fig. 3(g). Next, the channel protective layer 2, the source electrode 22, and the drain electrode 24 are used. Rotating the coating. The coated state was coated with PC-405G manufactured by JSR Co., Ltd. at a thickness of 1.5/zm, and was cooled and pre-baked. Then, the acrylic film was patterned using lithography U. The film was aged for 18 hours and then baked for 1 hour to form a planarization layer 26 (see Fig. i). The transistor of Example 1 was formed as described above. With respect to the transistor of Example 1, when the hydrogen concentration was measured by SIMS, 旎The result of obtaining the curve A and the curve E shown in the above FIGS. 2(a) to 2(c) is compared with the method of manufacturing the transistor of the above-described embodiment, and the method for producing the transistor of the comparative example 1 is formed. 8 Figure 0) shows the gate electrode 14 and forms a Si〇2 film 5 as a gate insulating layer ,6, and then, to no violence The step of forming the IGZ ruthenium film 17 as the active layer 18 continuously in the atmosphere is the same as that of the transistor of the embodiment i, and detailed description thereof will be omitted. The transistor of Comparative Example 1 is used. The manufacturing method is followed by forming a photoresist pattern by using a lithography method on the surface of the IGz film ί 7 , and then using a HF concentration of the buffered hydrofluoric acid diluted with water to 6 mass % - 40-201218384 'The gate electrode insulating film 16 as shown in Fig. 8(b) is formed by etching the S i Ο 2 film 1 5 I at a liquid temperature of 2 5 ° C. Next, 'the surface 17a of the IGZO film 17 'The photoresist pattern was formed by the lithography method. Then, the IGZO film 17 1 was inscribed at a liquid temperature of 35 ° C using oxalic acid water (ITO-06N (manufactured by Kanto Chemical Co., Ltd.)) to form an image (8). The active layer 18 is shown. Next, as shown in Fig. 8(c), the surface 16a of the gate insulating film 16 is formed as a channel at a thickness of 40 nm by RF sputtering in such a manner as to cover the active layer 18. The protective layer 2 is a Ga oxide film 19. The RF deposition method uses gallium oxide (Ga2〇3) as a target, and the flow rate of the Ar gas is 97 sc. The pressure of 〇2 gas is 5.0 sccm, and the pressure at the time of introduction of Ar gas and 〇2 gas is 〇4 Pa. Next, 'Ga is oxidized by the same method as the method for producing a transistor of Example 1. The film 19 is processed to form the active layer 20 as shown in Fig. 8(d). Next, 'the molybdenum film 21 shown in Fig. 8(e) is formed in the same manner as the method for producing the transistor of the first embodiment. Then, the source electrode 22 and the drain electrode 24 shown in Fig. 8 are formed.
其次’與實施例1的電晶體之製造方法同樣地進 行’形成第8圖(g)所表示之平坦化層26。如此進行而得 到比較例1的電晶體。關於比較例1的電晶體,使用SIMS 測定氫濃度時,能夠得到上述第2圖(a)〜(c)所表示之曲 線B、曲線F的結果。 對貫施例1的電晶體及比較例1的電晶體,進行測 定初期的臨限值(初期Vth)。隨後,將實施例1的電晶體 -41 - 201218384 及比較例1的電晶體各自保管在乾燥器(2rc、相對濕度 為60%)内,且各自測定2星期後之臨限值及“固月後之 臨限值。冑上述各臨限值的測定結果顯示在下述表卜 而且’下述表1所表示之初期臨限值(初期糧)係對 於100mm□内的9點,使 且使Vg(閘電壓)為—1〇v〜 值之平均值。Then, in the same manner as in the method of producing a transistor of the first embodiment, the planarization layer 26 shown in Fig. 8(g) is formed. Thus, the transistor of Comparative Example 1 was obtained. With respect to the transistor of Comparative Example 1, when the hydrogen concentration was measured by SIMS, the results of the curve B and the curve F shown in Figs. 2(a) to 2(c) above were obtained. For the transistor of Example 1 and the transistor of Comparative Example 1, the initial value (initial Vth) at the initial stage of measurement was measured. Subsequently, the transistors of the transistor-41 - 201218384 of the first embodiment and the transistor of the comparative example 1 were each stored in a desiccator (2rc, relative humidity of 60%), and the threshold value and "solid moon" after 2 weeks were each measured. The subsequent limit value. The measurement results of the above-mentioned thresholds are shown in the following table and the initial threshold (initial grain) indicated in Table 1 below is 9 points in 100 mm □, and Vg is made. (gate voltage) is the average of -1〇v~ values.
Vds(源極汲極間電壓)為1〇v —15V並且進行掃描而求得的 又’下述表1所表示之2星期後的臨限值及1個月 後的臨限值亦是各自對於於1〇〇mm□内的9點使 Vds(源極沒極間電麼)為1〇v且使Vg(問電壓)為—ι〇ν〜 一 1 5 V並且進行掃描而求得的值之平均值。 [表1]Vds (source-drain voltage) is 1〇v - 15V and is obtained by scanning. The threshold after 2 weeks and the threshold after 1 month are also shown in Table 1 below. For 9 points in 1〇〇mm□, Vds (source no-electrode) is 1〇v and Vg (question voltage) is -ι〇ν~1 5 V and is scanned. The average of the values. [Table 1]
-1.3V -4.3V __ 2星期後 1個月後 如上述表1所表示,-1.3V -4.3V __ After 2 weeks 1 month later, as shown in Table 1 above,
-1.3V -5.lv 貫施例1的電晶體係經玉 1個 月後之臨限值的變化小而長期信賴性高。 另一方面’比較例的電晶體係臨限值的變化大,時 間經過^同時,臨限值係往負值側位移,長期信賴性低。 認為這是因為比較例丨的電晶體係與實施例1的電晶體 不同,其未採用不破真空來連續地形成當作活性層之 IGZO膜、當作通道保護層之GA氧化物瞑,致使污染不 純物混入活性層的表面之緣故。 '42- 201218384 【圖式簡單說明】 第1圖係顯示本發明的第1實施形態之薄膜電晶體 之模式性剖面圖。 第2圖(a)係在縱軸採用氫濃度且在橫軸採用深度而 顯示在閘極絕緣層、活性層及通道保護層之氫濃度的分 布之圖表,(b)係顯示將第 2圖(a)的重要部位放大之圖 表,而(c)係顯示在第2圖(b)之曲線的微分值之圖表。 第3圖(a)〜(g)係依照步驟順序顯示本發明的第1實 施形態之薄膜電晶體的製造方法之模式性剖面圖。 第4圖係顯示本發明的第2實施形態之薄膜電晶體 之模式性剖面圖。 第5圖(a)〜(f)係依照步驟順序顯示本發明的第2實 施形態之薄膜電晶體的製造方法之模式性剖面圖。 第6圖係顯示本發明的第3實施形態之薄膜電晶體 之模式性剖面圖。 第7圖係顯示本發明的第4實施形態之薄膜電晶體 之模式性剖面圖。 第8圖(a)〜(g)係依照步驟順序顯示本發明的比較例 1之薄膜電晶體的製造方法之模式性剖面圖。 【主要元件符號說明】 10、10a、10b、10c、100 薄膜電晶體(電晶體) 12 基板 12a 基板的表面 14 閘極電極 15 Si02膜 -43- 201218384 15a Si02膜的表面 16 閘極絕緣膜 16a 閘極絕緣膜的表面 17 IZGO 膜 17a IZGO膜的表面 18 活性層 18a 活性層的表面 19 Ga氧化物膜 19a Ga氧化物膜的表面 20、28 通道保護層 20a' 28a 通道保護層的表面 22 源極電極 23 積層體 24 汲極電極 26 平坦化層 30 絕緣膜 30a 絕緣膜的表面 40 光阻膜 40a 光阻膜的表面 42 圖案部 42a 圖案部的表面 44 非圖案部 44 a 非圖案部的表面 C 通道區域 -44--1.3V -5.lv The electro-crystalline system of Example 1 has a small change in the threshold value after 1 month of jade and has high long-term reliability. On the other hand, the change in the threshold value of the electro-crystalline system of the comparative example is large, and the time passes through the same period, and the threshold value is shifted to the negative side, and the long-term reliability is low. This is considered to be because the electromorphic system of the comparative example is different from the crystal of the first embodiment in that it does not continuously form an IGZO film as an active layer and a GA oxide ruthenium as a channel protective layer without breaking the vacuum, resulting in contamination. The impurities are mixed into the surface of the active layer. '42-201218384 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing a thin film transistor according to a first embodiment of the present invention. Fig. 2(a) is a graph showing the distribution of hydrogen concentration in the gate insulating layer, the active layer, and the channel protective layer by using the hydrogen concentration on the vertical axis and the depth on the horizontal axis, and (b) showing the second figure. (a) is an enlarged chart of important parts, and (c) is a graph showing the differential value of the curve in Fig. 2(b). Fig. 3 (a) to (g) are schematic cross-sectional views showing a method of manufacturing a thin film transistor according to a first embodiment of the present invention in order of steps. Fig. 4 is a schematic cross-sectional view showing a thin film transistor of a second embodiment of the present invention. Fig. 5 (a) to (f) are schematic cross-sectional views showing a method of manufacturing a thin film transistor according to a second embodiment of the present invention in order of steps. Fig. 6 is a schematic cross-sectional view showing a thin film transistor of a third embodiment of the present invention. Fig. 7 is a schematic cross-sectional view showing a thin film transistor of a fourth embodiment of the present invention. Fig. 8 (a) to (g) are schematic cross-sectional views showing a method of manufacturing the thin film transistor of Comparative Example 1 of the present invention in order of steps. [Major component symbol description] 10, 10a, 10b, 10c, 100 Thin film transistor (transistor) 12 Substrate 12a Substrate surface 14 Gate electrode 15 Si02 film-43- 201218384 15a Surface of Si02 film 16 Gate insulating film 16a Surface of gate insulating film 17 IZGO film 17a Surface of IZGO film 18 Active layer 18a Surface of active layer 19 Ga oxide film 19a Surface 20 of Ga oxide film 20 Channel protective layer 20a' 28a Surface 22 of channel protective layer Source Electrode electrode 23 Laminated body 24 Bipolar electrode 26 Flattening layer 30 Insulating film 30a Surface of insulating film 40 Photoresist film 40a Surface 42 of resist film Pattern portion 42a Surface portion of pattern portion Non-pattern portion 44 a Surface of non-pattern portion C channel area -44-
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010123207A JP2011249674A (en) | 2010-05-28 | 2010-05-28 | Thin-film transistor and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201218384A true TW201218384A (en) | 2012-05-01 |
TWI517409B TWI517409B (en) | 2016-01-11 |
Family
ID=45414534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100118451A TWI517409B (en) | 2010-05-28 | 2011-05-26 | Thin film transistor and method for manufacturing the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2011249674A (en) |
KR (1) | KR101792258B1 (en) |
TW (1) | TWI517409B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI640492B (en) * | 2016-02-29 | 2018-11-11 | 日商住友金屬礦山股份有限公司 | Oxide semiconductor thin film, manufacturing method of oxide semiconductor thin film, and thin film transistor using the same |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI580047B (en) * | 2011-12-23 | 2017-04-21 | 半導體能源研究所股份有限公司 | Semiconductor device |
WO2013111725A1 (en) | 2012-01-26 | 2013-08-01 | シャープ株式会社 | Semiconductor device and method for manufacturing same |
JP6236792B2 (en) * | 2013-02-07 | 2017-11-29 | 凸版印刷株式会社 | THIN FILM TRANSISTOR, ITS MANUFACTURING METHOD, AND IMAGE DISPLAY DEVICE |
JP5960626B2 (en) * | 2013-03-08 | 2016-08-02 | 富士フイルム株式会社 | Manufacturing method of semiconductor device provided with thin film transistor |
JP5936568B2 (en) * | 2013-03-08 | 2016-06-22 | 富士フイルム株式会社 | Oxide semiconductor thin film transistor substrate and semiconductor device using the substrate |
JP6501385B2 (en) * | 2014-10-22 | 2019-04-17 | 日本放送協会 | Thin film transistor and method of manufacturing the same |
JP2017152656A (en) * | 2016-02-26 | 2017-08-31 | Tianma Japan株式会社 | Image sensor and manufacturing method thereof |
KR102071768B1 (en) * | 2016-05-09 | 2020-01-31 | 한양대학교 산학협력단 | Thin film comprising zinc and nitrogen method of fabricating the same, and thin film transistor comprising the same |
JP7030285B2 (en) * | 2016-09-14 | 2022-03-07 | 天馬微電子有限公司 | Semiconductor device, display device, manufacturing method of semiconductor device and manufacturing method of display device |
JP7055285B2 (en) * | 2016-09-14 | 2022-04-18 | 天馬微電子有限公司 | Semiconductor device, display device, manufacturing method of semiconductor device and manufacturing method of display device |
KR102308097B1 (en) | 2017-04-24 | 2021-10-05 | 주성엔지니어링(주) | Thin film transistor and method for manufacturing the same |
KR102217043B1 (en) | 2018-10-30 | 2021-02-18 | 연세대학교 산학협력단 | Oxide thin film transistor and method of manufacturing the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5105842B2 (en) * | 2006-12-05 | 2012-12-26 | キヤノン株式会社 | Display device using oxide semiconductor and manufacturing method thereof |
TWI627757B (en) * | 2008-07-31 | 2018-06-21 | 半導體能源研究所股份有限公司 | Semiconductor devices |
US8129718B2 (en) * | 2008-08-28 | 2012-03-06 | Canon Kabushiki Kaisha | Amorphous oxide semiconductor and thin film transistor using the same |
CN102165570A (en) * | 2008-08-29 | 2011-08-24 | 株式会社爱发科 | Method and device for manufacturing field-effect transistor |
JP5274165B2 (en) * | 2008-09-08 | 2013-08-28 | 富士フイルム株式会社 | Thin film field effect transistor and method of manufacturing the same |
JP2010118407A (en) * | 2008-11-11 | 2010-05-27 | Idemitsu Kosan Co Ltd | Thin-film transistor having etching resistance, and production method thereof |
-
2010
- 2010-05-28 JP JP2010123207A patent/JP2011249674A/en not_active Abandoned
-
2011
- 2011-05-26 TW TW100118451A patent/TWI517409B/en active
- 2011-05-26 KR KR1020110049988A patent/KR101792258B1/en active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI640492B (en) * | 2016-02-29 | 2018-11-11 | 日商住友金屬礦山股份有限公司 | Oxide semiconductor thin film, manufacturing method of oxide semiconductor thin film, and thin film transistor using the same |
Also Published As
Publication number | Publication date |
---|---|
KR20110131120A (en) | 2011-12-06 |
JP2011249674A (en) | 2011-12-08 |
KR101792258B1 (en) | 2017-11-20 |
TWI517409B (en) | 2016-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201218384A (en) | Thin film transistor and method for manufacturing the same | |
TWI478308B (en) | Wiring construction and display device | |
Ryu et al. | Amorphous-InGaZnO4 thin-film transistors with damage-free back channel wet-etch process | |
JP2022050414A (en) | Semiconductor device | |
KR102358093B1 (en) | A method for manufacturing semiconductor device | |
Kim et al. | Chemical stability and electrical performance of dual-active-layered zinc–tin–oxide/indium–gallium–zinc–oxide thin-film transistors using a solution process | |
CN102082170B (en) | Amorphous oxide semiconductor material, field-effect transistor and display unit | |
KR101758538B1 (en) | Thin film transistor and display device | |
KR101408445B1 (en) | Wiring structure, method for manufacturing wiring structure, and display device provided with wiring structure | |
US9614098B2 (en) | Thin film transistor and manufacturing method thereof, array substrate and display device | |
TW201248783A (en) | Wiring structure and sputtering target | |
CN107146816A (en) | A kind of oxide semiconductor thin-film and thin film transistor (TFT) prepared therefrom | |
JP5512144B2 (en) | Thin film transistor and manufacturing method thereof | |
TW201140850A (en) | Thin-film field-effect transistor and method for manufacturing the same | |
JP2010199307A (en) | Top gate type field-effect transistor, manufacturing method therefor, and display including the same | |
US9818605B2 (en) | Oxide TFT, preparation method thereof, array substrate, and display device | |
KR20150038310A (en) | Thin film transistor and display device | |
CN105633170A (en) | Metal oxide thin film transistor and preparation method therefor, array substrate and display apparatus | |
JP5507133B2 (en) | Manufacturing method of bottom gate thin film transistor | |
JP2012028481A (en) | Field-effect transistor and manufacturing method of the same | |
Choudhary | Flexible substrate compatible solution processed PN heterojunction diodes with indium-gallium-zinc oxide and copper oxide | |
JP2012099661A (en) | Method of manufacturing oxide semiconductor | |
JP5857432B2 (en) | Thin film transistor manufacturing method | |
CN104049464B (en) | Gate insulating film, radiation-sensitive composition, cured film, semiconductor element, method for manufacturing semiconductor element, and display device | |
TW201216374A (en) | Method for producing oxide semiconductor thin film, and oxide semiconductor from the said method, thin film transistor and device with thin film transistor produced |