TW201215878A - Imaging method for inspection of chip appearance - Google Patents

Imaging method for inspection of chip appearance Download PDF

Info

Publication number
TW201215878A
TW201215878A TW99133767A TW99133767A TW201215878A TW 201215878 A TW201215878 A TW 201215878A TW 99133767 A TW99133767 A TW 99133767A TW 99133767 A TW99133767 A TW 99133767A TW 201215878 A TW201215878 A TW 201215878A
Authority
TW
Taiwan
Prior art keywords
light
light source
annular
color
image
Prior art date
Application number
TW99133767A
Other languages
Chinese (zh)
Inventor
fei-long Su
Hsun-Ming Li
Original Assignee
Ever Red Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ever Red Technology Co Ltd filed Critical Ever Red Technology Co Ltd
Priority to TW99133767A priority Critical patent/TW201215878A/en
Publication of TW201215878A publication Critical patent/TW201215878A/en

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Disclosed is an imaging method for inspection of chip appearance. A synchronous illumining step is performed, wherein three lights of different incidences and different wavelengths separately from a straight light source, a first annular light source and a second annular light source are emitted into a chip under test in chorus. The lights are reflected separately from the chip to transform into three vertically upward lights, and then the vertically upward lights are received by a color image sensor to get a color information and analyze it into a straight light image, a first angle annular light image and a second angle annular light image for inspecting the chip. Accordingly, there can be obtained images of three direction light sources in one taking motion to increase inspection efficiency.

Description

201215878 六、發明說明: 【發明所屬之技術領域】 本發明係有關於半導體裝置製造或處理過程中之測 試或測量方法’特別係有關於一種晶粒外觀檢測之取像 方法。 【先前技術】 被廣泛 中常見 diode, 密的檢 極體之 晶圓切 的外觀 發光二 率與劣 發光二 是否有 水潰… 檢測平 用一攝 ,以一 攝影機 大角度201215878 VI. Description of the Invention: [Technical Field] The present invention relates to a method of measuring or measuring a semiconductor device during manufacturing or processing, and particularly relates to an image capturing method for detecting the appearance of a crystal grain. [Prior Art] Widely used in a variety of diodes, dense detectors, wafers, the appearance of the cut, the illuminating rate, and the inferior illuminating 2, whether there is a water squeezing... detecting a flat, taking a camera, a camera, a large angle

目刖’半導體裝置(semiconduct〇r device)早已 地作為各式各樣的電子產品所用的主要組件,其 的半導體裝置如發光二極體⑴ght_emiuing LED),在產品推出市場之前,必須先進行各項精 測工作,而各項檢測工作中最能直接了解發光二 良萎者,莫過於外觀檢測,特別是在發光二極體 割成若干發光二極體晶粒之後。發光二極體晶粒 完整與否常主宰發光品質,即使細微瑕疵發生在 極體晶粒表面,亦將影響發光亮度、降低發光效 化發光二極體之產品功能。 在現今半導體產業中,如需要對一待測物(如 極體晶粒)進行外觀檢測,以掃描該待測物之表面 不該存在的各種異物、#晶、刮傷、線路不良、 等缺陷,it常係先以一正光光源對預先放置於一 台上之該待測物進行第一次打光照明並同時利 影機進行拍攝,以取^呈 -r οι 从取得一正先影像。接著分次地 J角X衣形光源進行第二次打光照明並利用該 拍攝,以取得一小角度環光影像。之後,再以一 201215878 環形光源進行第三次打光照明,並利㈣攝影機拍攝, 以取得-大角度環光影像。也就是說,在每檢測一待測 物之外觀時’必須進行三次拍攝動作,以分別取得該正 光影像、該小角度環光影像與該大角度環光影像。因此, 以往外觀檢測方法須依序對待測物進行多次拍攝與取像 ,動作’故除了有拉長檢測處理時間進而降低了檢測效 率之問題,亦有分批*檢測導致資料混雜之管理問題。 【發明内容】 為了解決上述之問題,本發明之主要目的係在於一種 晶粒外觀檢測之取像方法,可在—次拍攝動作中得到三 向光源影像’以提升檢測效率並易於管理檢測資料。 本發明的目的及解決其技術問題是採用以下技術方 ^來實現的。本發明揭示一種晶粒外觀檢測之取像方 法’用以檢測放置於一檢測平台上之一晶粒待測物,其 特徵為:執行一同步發光步驟,分別由一正光光源、二 第一 J衣形光源斑一^ t 、 第一環形光源同時發射為不同角产且 不至之第二光線與1三純 物之曰a待測物,其中該第—光線係垂直於該晶粒待測 盘該2表面該第二光線之人射角係介於該第-光線 光線rI光線之間,該第—光線、該第二光線與該第三 線、:該晶粒待測物分別反射成垂直向上之-第四光 所接收第五光線與一第六光線’並由一彩色影像感測器 之正朵爭以取得—彩色資訊並分析出由該第四光線構成 '像、由該第五光線構成之第-角度環光影像與 201215878 由該第六光線構成之第二角度環光影像。 &quot; 本發明的目的及解決其技術問題還可採用以下技術 措施進一步實現。 在前述之晶粒外觀檢測之取像方法中,該正光光源、 該第一環形光源與該第一環形光源係可選自於紅色、綠 色、藍色光源之其中之一,但兩兩皆為不相重複之顏色。 在前述之晶粒外觀檢測之取像方法中,該正光光源、 該第一環形光源與該第二環形光源係可為可調式光源。 在前述之晶粒外觀檢測之取像方法中,該正光光源、 該第一環形光源與該第二環形光源係可設置於同一發光 機構内。 在前述之晶粒外觀檢測之取像方法中,該彩色影像感 測器係可選自於彩色感光耦合元件(col〇r CCD)與彩色互 補性氧化金屬半導體(color COMS)之其中之一。 由以上技術方案可以看出,本發明之晶粒外觀檢測之 φ 取像方法,有以下優點與功效: 一、可藉由同步發光步驟作為其中之一技術手段,由於 以正光光源、第一環形光源與第二環形光源同時發 射為不同角度且不同光譜波長之光線至晶粒待測 物’並利用彩色影像感測器接收由晶粒待測物所反 射之光線,進而得到一彩色資訊。因此,可在—次 拍攝動作中得到三向光源影像,以提升檢測效率並 易於管理檢測資料。 【實施方式】 5 201215878 以下將配合所附圖示詳細說明本發明之實施例,然應 注意的是’該些圖示均為簡化之示意圖,僅以示意方法 來說明本發明之基本架構或實施方法,故僅顯示與本案 有關之元件與組合關係’圖中所顯示之元件並非以實際 實施之數目、形狀、尺寸做等比例繪製,某些尺寸比例 與其他相關尺寸比例或已誇張或是簡化處理,以提供更 清楚的描述《實際實施之數目、形狀及尺寸比例為一種 I 選置性之設計’詳細之元件佈局可能更為複雜。 依據本發明之一具體實施例,一種晶粒外觀檢測之取 像方法舉例說明於第1A至1B圖在取像過程程中之元件 截面示意圖、第2圖之影像照片圖以及第3圖繪示其正 光光源、第一環形光源與第二環形光源之立體示意圖。 請先參閱第3圖所示,該晶粒外觀檢測之取像方法係用 以檢測放置於一檢測平台丨丨〇上之一晶粒待測物1 〇,該 晶粒待測物1 〇係可為一已切割分離之發光二極體晶粒 • 或為未分離發光二極體晶圓之某一晶粒部位。詳細步驟 請參閱第1A與1B圖,說明如下。 請參閱第1A圖所示’執行一同步發光步驟,分別由 一正光光源120、一第一環形光源13〇與一第二環形光 源140同時發射為不同角度且不同光譜波長之—第一光 線L 1 第一光線L 2與一第三光線l 3至該晶牴待測物 10。在一較佳型態中,該正光光源12〇、該第一環形光 源130與該第二環形光源14〇係可設置於同一發光機構 1 60内’以減少機構備置成本與減少整合步驟。該發光 201215878 機構160係可位於該檢測平台110之上方,並且包覆該 正光光源120、該第一環形光源13〇與該第二環形光源 140而僅露出位於該發光機構丨6〇下方之開口以使該 第一光線L1、該第二光線L2與該第三光線l3能順利通 過而射至該晶粒待測物1 〇。在本實施例中,該正光光源 120、該第一環形光源13〇與該第二環形光源14〇係可選 自於紅色(R)、綠色(G)、藍色(B)光源之其中之一,但兩 兩皆為不相重複之顏色,例如:當該正光光源丨2〇已選 定紅色’而該第一環形光源130選用綠色,則該第二環 形光源1 4 0僅能選用藍色。依照上述情況而論,該正光 光源1 2 0、該第一環形光源丨3 〇與該第二環形光源丨4 〇 所選用之顏色可具有六種不同之組合方式,分別為紅綠 藍(RGB)、紅藍綠(rbG)、綠紅藍(GRB)、綠藍紅(GBR)、 藍紅綠(BRG)與藍綠紅(BGR)六種組合,即每一光源不可 選用到顏色重複的光源。進一步地來說,所選用紅色光 源之波長係約為630奈米(nm),綠色光源之波長約為530 奈米(nm),而藍色光源之波長約為440奈米(nm),其波 長大小順序為:紅 &gt; 綠 &gt; 藍’故依入射角度不同選用不 同顏色之可視光光源便可分別能以不同光譜波長的光線 多角度照射在待測物。其中’該第一光線L1係垂直於該 晶粒待測物1 〇之一上表面11,該第二光線L2之入射角 係介於該第一光線L1與該第三光線L3之間。詳細而 言,該正光光源120係組設於一 T形管170,並且該τ 形管1 70内係設置有一分光鏡1 80,使得由該正光光源{ s 201215878 120朝向該分光鏡180水平射出之光線能轉變成垂直向 下之該第一光線L1’即該第一光線L1之入射角為〇度 而垂直於該上表面11。在一較佳實施例中,該T形管170 係可選用不透光之材質,以避免該正光光源120發生漏 光與散射之情況,並且該分光鏡1 80係可呈45度角傾斜 而為一 50/50分光鏡(即50%穿透、50%反射)。更進一步 地’如第3圖所示’由於該第一環形光源13〇與該第二 環形光源1 40之型態係可為特定角度之環形,以使所發 射出之該第二光線L2與該第三光線L3呈現錐形匯聚(如 第1A圖所示)’故該第二光線L2與該第三光線L3皆係 由不同角度直接射至該晶粒待測物1 0之該上表面11, 但該第二光線L2之入射角係小於該第三光線l3之入射 角’並且該第二光線L2與該第三光線L3皆不垂直於該 上表面11(即該第一光線L2與該第三光線L3之入射角 皆不等於0度)。 φ 請參閱圖所示’該第一光線L1、該第二光線L2 與該第二光線L 3經由該晶.粒待測物1 〇分別反射成垂直 向上之一第四光線L4、一第五光線L5與一第六光線 L6,並由一彩色影像感測器丨5 〇所接收,以取得一彩色 資訊20(如第2圖所示)。詳細而言,請配合參酌第1A 與1 B圖,該第一光線L 1經反射後會改變為該第四光線 L4,即代表該第四光線L4係為該第一光線L 1之反射頻 譜’該第四光線L4係較該第一光線li衰弱,但並不會 改變原頻譜特性。同理,該第五光線L 5亦為該第二光線.s 8 201215878 L2之反射頻譜,並且該第六光線L6係為該第三光線L3 之反射頻譜,因而該第五光線L5與該第六光線L6係同 樣能表現出上述特性。在一較佳實施例中,該彩色影像 感測器1 50係可選自於彩色感光耦合元件(c〇1〇r ccd)與 彩色互補性氧化金屬半導體(c〇l〇r COMS)之其中之一。 在一變化實施例中,該彩色影像感測器丨5 〇亦可選用由 三個CCD所組成之3cCD,以分別接收紅、綠、藍三色 化號’並交由二個CCD各自負責處理所接收之光線,故 能夠呈現出更準確自然的影像《一般而言,前述之感光 耦合元件與互補性氧化金屬半導體之工作原理皆是將所 接收到的光線信號轉變成電信號,進而呈現於顯示晝 面’倘若再加上彩色濾光片即可用以辨識色彩,目前一 般市售的color CCD、color COMS以及3CCD皆可為三 色資訊(即紅、綠、藍三色)。 特別的疋,如第1A與2圖所示,經由該彩色影像感 測器150所得之該彩色資訊2〇係分析出由該第四光線 L4構成之正光影像2 1、由該第五光線L5構成之第一角 度環光影像22與由該第六光線L6構成之第二角度環光 影像23。詳細而言,因為該彩色資訊2〇係由複數個像 素點所構成,每一像素點(pixel)均由紅、綠、藍三個像 素單元所組成’其中所稱之「像素點」係為顯示晝面的 最小發光單位。因&amp; ’在取得該彩色資訊2〇之後,即可 分析出該正光影像21、該第一角度環光影像22與該第 二角度環光影像23。 201215878 因此,本發明可藉由執行該同步發光步驟作為其中之 -技術手段’並利用光頻譜(spectrum)之特性,同時由該 正光光源12 0、該第一環形# ^ 環形先源130與該第二環形光源 發射出不同角度與不同光譜波長之該第—光線U '、、 該第二光線L2與該第— a , 乐—光線L3至該晶粒待測物1〇,再 利用該彩色影像感測器15〇接收由該晶粒待測物1〇反射The semiconductor device (semiconductor device) has long been used as a major component in a wide variety of electronic products. Its semiconductor devices, such as LEDs (1) ght_emiuing LEDs, must be implemented before the product is launched. The precision measurement work, and the most direct understanding of the light-emitting two in the various inspection work, is the appearance detection, especially after the light-emitting diode is cut into several light-emitting diode grains. The integrity of the light-emitting diode grains often dominates the light-emitting quality. Even if fine flaws occur on the surface of the polar body, it will affect the brightness of the light and reduce the function of the light-emitting diode. In the current semiconductor industry, if an object to be tested (such as a polar body grain) needs to be visually inspected, the defects such as various foreign matter, crystal, scratch, poor line, and the like which are not present on the surface of the object to be tested are scanned. , it is often first to use a positive light source to pre-position the object to be tested placed on a station for the first time to illuminate and at the same time to shoot the camera, to obtain a positive image from ^-- οι. Then, the J-angle X-shaped light source is used to perform the second lighting illumination and the shooting is performed to obtain a small-angle ring light image. After that, the third lighting illumination was performed with a 201215878 ring light source, and the camera was photographed to obtain a large angle ring image. That is to say, each time a sample to be tested is detected, it is necessary to perform three shooting operations to obtain the positive light image, the small angle ring light image and the large angle ring light image, respectively. Therefore, in the past, the appearance detection method has to perform multiple shooting and image taking operations in sequence, so that in addition to the lengthening of the detection processing time and thus the detection efficiency, there are also batch* detections that lead to management problems of data mixing. . SUMMARY OF THE INVENTION In order to solve the above problems, the main object of the present invention is to provide an image capturing method for grain appearance detection, which can obtain a three-way light source image in a single shooting operation to improve detection efficiency and to easily manage detection data. The object of the present invention and solving the technical problems thereof are achieved by the following techniques. The invention discloses a method for taking an image of a grain appearance to detect a grain test object placed on a detection platform, which is characterized in that: a synchronous light-emitting step is performed, respectively, by a positive light source, two first J The first shape of the light source is simultaneously emitted by the second ring light source and the second light source and the first three light objects are not detected, wherein the first light source is perpendicular to the crystal grain to be tested. The angle of the second ray of the second surface of the disk is between the first ray and the third ray, and the second ray and the third ray are respectively reflected Vertically upward - the fourth light receives the fifth light and a sixth light 'and is obtained by a positive image of a color image sensor - color information and analyzes that the fourth light constitutes an image, by the first The first-angle ring light image composed of five rays and the second angle ring light image composed of the sixth light beam in 201215878. &lt; The object of the present invention and solving the technical problems thereof can be further realized by the following technical measures. In the image capturing method for detecting the appearance of the grain, the positive light source, the first annular light source and the first annular light source may be selected from one of red, green and blue light sources, but two or two They are all colors that are not repeated. In the foregoing image capturing method for grain appearance detection, the positive light source, the first annular light source and the second annular light source may be adjustable light sources. In the above image capturing method for grain appearance detection, the positive light source, the first annular light source and the second annular light source may be disposed in the same light emitting mechanism. In the above image capturing method for grain appearance detection, the color image sensor may be selected from one of a color photosensitive coupling element (col〇r CCD) and a color complementary metal oxide semiconductor (color COMS). It can be seen from the above technical solution that the φ image capturing method for grain appearance detection of the present invention has the following advantages and effects: 1. The synchronous light emitting step can be used as one of the technical means, due to the positive light source and the first ring. The light source and the second annular light source simultaneously emit light of different angles and different spectral wavelengths to the crystal object to be tested ′ and use the color image sensor to receive the light reflected by the crystal object to be tested, thereby obtaining a color information. Therefore, a three-way source image can be obtained in the same shooting operation to improve the detection efficiency and to easily manage the detection data. [Embodiment] 5 201215878 The embodiments of the present invention will be described in detail below with reference to the accompanying drawings, in which <RTIgt; Method, so only the components and combinations related to the case are shown. 'The components shown in the figure are not drawn in proportion to the actual number, shape and size of the actual implementation. Some ratios of scales are exaggerated or simplified. Processing to provide a clearer description "The number, shape, and size ratio of actual implementations is an I-optional design." Detailed component layouts can be more complex. According to an embodiment of the present invention, an image capturing method for detecting the appearance of a crystal grain is illustrated in the cross-sectional view of the element in the image capturing process in FIGS. 1A to 1B, the image photo view in FIG. 2, and the positive light in the third image. A schematic view of the light source, the first annular light source and the second annular light source. Please refer to FIG. 3, the image appearance detection method is used to detect a grain test object 1 放置 placed on a detection platform 〇, the grain test object 1 〇 system It can be a cut-off light-emitting diode die or a die part of an undivided light-emitting diode wafer. Detailed steps Please refer to Figures 1A and 1B for the following. Please refer to FIG. 1A for performing a synchronous illumination step, which is respectively emitted by a positive light source 120, a first annular light source 13A and a second annular light source 140 at different angles and different spectral wavelengths - the first light L 1 a first light L 2 and a third light 13 to the crystal sample 10 . In a preferred embodiment, the positive light source 12A, the first annular light source 130, and the second annular light source 14 can be disposed within the same illumination mechanism 160 to reduce the cost of the mechanism and reduce the integration step. The illuminating 201215878 mechanism 160 can be located above the detection platform 110 and enclose the positive light source 120, the first annular light source 13 〇 and the second annular light source 140 to be exposed only below the illuminating mechanism 丨6〇 The opening is such that the first light L1, the second light L2, and the third light L3 can pass through to the die to be tested. In this embodiment, the positive light source 120, the first annular light source 13A and the second annular light source 14 can be selected from the red (R), green (G), and blue (B) light sources. One, but both of them are colors that are not repeated, for example, when the positive light source 丨 2 〇 has selected red ' and the first ring light source 130 selects green, the second annular light source 1 4 0 can only be selected blue. According to the above situation, the color of the positive light source 120, the first ring source 丨3 〇 and the second ring source 丨4 〇 may be selected in six different combinations, respectively, red, green and blue ( RGB), red blue green (rbG), green red blue (GRB), green blue red (GBR), blue red green (BRG) and blue green red (BGR) six combinations, that is, each light source is not available for color repeat Light source. Further, the selected red light source has a wavelength of about 630 nanometers (nm), the green light source has a wavelength of about 530 nanometers (nm), and the blue light source has a wavelength of about 440 nanometers (nm). The order of the wavelengths is: red &gt; green &gt; blue. Therefore, depending on the angle of incidence, different visible light sources of different colors can be used to illuminate the object to be tested at different angles of light of different spectral wavelengths. Wherein the first light ray L1 is perpendicular to the upper surface 11 of the dies 1 〇, and the incident angle of the second light ray L2 is between the first light ray L1 and the third light ray L3. In detail, the positive light source 120 is disposed in a T-shaped tube 170, and a beam splitter 180 is disposed in the τ-shaped tube 170 so that the positive light source { s 201215878 120 is horizontally emitted toward the beam splitter 180. The light beam can be converted into the first light ray L1' vertically downward, that is, the incident angle of the first light ray L1 is a twist and perpendicular to the upper surface 11. In a preferred embodiment, the T-shaped tube 170 may be made of an opaque material to avoid light leakage and scattering of the positive light source 120, and the beam splitter 180 may be inclined at a 45 degree angle. A 50/50 spectroscope (ie 50% penetration, 50% reflection). Further, as shown in FIG. 3, the shape of the first annular light source 13A and the second annular light source 140 may be a ring of a specific angle so that the second light L2 emitted is And the third light ray L3 exhibits a conical convergence (as shown in FIG. 1A). Therefore, the second light ray L2 and the third light ray L3 are directly incident on the die object to be tested 1 0 from different angles. a surface 11, but the incident angle of the second light ray L2 is smaller than the incident angle ' of the third light ray l3 and the second light ray L2 and the third light ray L3 are not perpendicular to the upper surface 11 (ie, the first light ray L2) The incident angle with the third light ray L3 is not equal to 0 degrees). φ, as shown in the figure, the first light ray L1, the second light ray L2 and the second light ray L 3 are respectively reflected by the crystal grain test object 1 成 into a vertical upward fourth light L4, a fifth The light L5 and the sixth light L6 are received by a color image sensor 丨5 , to obtain a color information 20 (as shown in FIG. 2). In detail, please refer to the figures 1A and 1B, the first light ray L 1 is changed to the fourth light ray L4 after being reflected, that is, the fourth light ray L4 is the reflection spectrum of the first light ray L 1 . The fourth ray L4 is weaker than the first ray li, but does not change the original spectral characteristics. Similarly, the fifth ray L 5 is also the reflection spectrum of the second ray s 8 201215878 L2, and the sixth ray L6 is the reflection spectrum of the third ray L3, and thus the fifth ray L5 and the first ray The six-ray L6 system can also exhibit the above characteristics. In a preferred embodiment, the color image sensor 150 is selected from the group consisting of a color photosensitive coupling element (c〇1〇r ccd) and a color complementary metal oxide semiconductor (c〇l〇r COMS). one. In a variant embodiment, the color image sensor 丨5 〇 may also select a 3cCD composed of three CCDs to respectively receive the red, green and blue tri-color numbers ' and handle them by the two CCDs respectively. The received light can present a more accurate and natural image. Generally speaking, the above-mentioned photosensitive coupling element and complementary metal oxide semiconductor work on the principle that the received light signal is converted into an electrical signal, and then presented in Displaying the surface 'If you add a color filter to identify the color, the current commercially available color CCD, color COMS and 3CCD can be three-color information (ie red, green, blue). In particular, as shown in FIGS. 1A and 2, the color information obtained by the color image sensor 150 analyzes the positive light image 2 1 composed of the fourth light L4, and the fifth light L5. The first angle ring image 22 and the second angle ring image 23 formed by the sixth light L6 are formed. In detail, since the color information 2 is composed of a plurality of pixels, each pixel (pixel) is composed of three pixel units of red, green, and blue, and the so-called "pixel point" is Shows the smallest illuminating unit of the face. After obtaining the color information 2, the positive light image 21, the first angle ring light image 22 and the second angle ring light image 23 can be analyzed. 201215878 Therefore, the present invention can perform the synchronous illumination step as a technical means and utilize the characteristics of the optical spectrum while the positive light source 120, the first ring #^ ring source 130 and The second annular light source emits the first light ray U′ of different angles and different spectral wavelengths, the second light ray L2 and the first _ a, the light ray L3 to the die object to be tested, and then The color image sensor 15〇 receives the reflection from the die to be tested

而具有不同光譜波長之該第四光線L4、該第五光線U 與該第六光線L6,進而得到可分析出該正光影像Η、該 第-角度環光影像22與該第二角度環光影像23之該彩 色資訊20。因此,可在一次拍攝動作中得到三向光源影 像’以提升檢測效率。 請參閱第4圖所示,在一變化實施例中,該正光光源 120、該第一環形光源13〇與該第二環形光源14〇係可為 可調式光源。換言之,在該正光光源12G、該第一環形 光源1 3 0與该第二環形光源i 4〇處均同時存在紅色(汉)、 綠色(G)、藍色(B)三種不同顏色之光源,以提供使用者 自行切換,但該正光光源120、該第一環形光源13〇與 該第二環形光源14〇必須使用不同顏色之光源。或者, 在另變化例中’亦可預先設計三個治具分別具有紅、 綠、藍三種顏色之正光光源,三個治具分別具有紅、綠、 藍二種顏色之第一環形光源’以及三個治具分別具有 紅、綠、藍三種顏色之第二環形光源’即正光光源、第 —環形光源與第二環形光源分別具有三種顏色(RGB)之 一個治具’再設計一種機構讓使用者進行切換即可依據m 10 201215878 使用者之需求自行組配,以得到所需要之不同治具組 合’以利於檢測之進行。然而,無論使用者採取上述何 種方式進行檢測,皆必須注意該正光光源120、該第— 環形光源130與該第二環形光源140之顏色須不相互重 複’並且須調整該正光光源120、該第一環形光源13〇 與該第二環形光源140之位置,以使所發射之光線均能 朝向該晶粒待測物1 〇射入》 此外’在另一變化例中,該彩色資訊2 〇可以分析出 更多角度與光譜波長之光源,例如四個顏色分別為綠 (G)、黃(Ye)、青(Cy)與紫紅(Mg),或者六個顏色分別為 綠(G)、黃(Ye)、藍(B)、青(Cy)、紅(R)與紫紅(Mg),而 可一次拍攝得到四個角度影像或六個角度影像或更多角 度影像。 請參閱第5圖所示,其為該影像感測器1 50對照紅、 綠、藍光光譜波長之光譜圖。由於本發明所使用的紅色 光源之波長可設定為63〇奈米(nm),綠色光源之波長可 定為530奈求(nm) ’而藍色光源之波長可設定為44〇 奈米(nm),皆分別位於該彩色影像感測器i 5〇之紅光、 綠光及藍光波段之範圍内,其中所稱之「波段(band)」 係指在指定的最低波長與最高波長之間的可透射波長範 圍,並且該衫色影像感測器! 5〇之紅光、綠光及藍光波 段對應於不同波長的光線可表現出不同之透射率 (tranSmiSSiVity),通常透射率越高則代表光線通過的強 度也越高。由圖t可知,波長為63〇奈米(nm)的紅光時, 201215878 該影像感測器150之透射率約為32% ;波長為53〇奈米 (nm)時,其透射率約為87% ,波長為44〇奈米(nm)時, 其透射率為80%,即代表由該正光光源12〇、該第一環 形光源1 3〇與該第二環形光源1 40所發出之光線(包含 紅、綠、藍三色)皆能夠穿透該彩色影像感測器15〇之不 同波段濾光而被個別接收’進而將接受到的光線信號轉 化為電信蜋輸出至一電腦(圖中未繪出),以利於檢定與 測試之進行。 以上所述,僅是本發明的較佳實施例而已,並非對本 七明作任何形式上的限制,雖然本發明已以較佳實施例 揭露如上’然而並非用以限定本發明,任何熟悉本項技 術者,在不脫離本發明之技術範圍内,所作的任何簡單 C改等效性變化與修飾,均仍屬於本發明的技術範 内〇 【圖式簡單說明】 至1B圖.依據本發明之—具體實施例的一種晶粒 外觀檢測之取像方法在取像過程中之元件截面 示意圖。 第2圖.依據本發明之—具體實施例的晶粒外觀檢測之 取像方法之影像照片圖。 第3圖:依據本發明之—具體實施例的晶粒外觀檢測之 取像方法繪示其使用之正光光源、第一環形光 源與第二環形光源之立體示意圖。 依據本發明之一具體實施例的晶粒外觀檢測之 12 201215878 取像方法繪示其使用之正光光源、 源與第二環形光源在一變化例中 圖。 第5圖:依據本發明之一具體實施例的晶求 取像方法繪示其使用之影像感測 綠、藍光光譜波長之光譜圖。 【主要元件符號說明】 第一環形光 之截面示意 外觀檢測之 器對照紅、The fourth light ray L4 having the different spectral wavelengths, the fifth light ray U and the sixth light ray L6, thereby obtaining the positive light image Η, the first angle ring light image 22 and the second angle ring light image 23 of the color information 20. Therefore, the three-way light source image can be obtained in one shooting operation to improve the detection efficiency. Referring to FIG. 4, in a variant embodiment, the positive light source 120, the first annular light source 13A and the second annular light source 14 can be adjustable light sources. In other words, at the positive light source 12G, the first annular light source 1 30 and the second annular light source i 4 〇, there are three different colors of light (Han), green (G), and blue (B). In order to provide the user to switch, the positive light source 120, the first annular light source 13A and the second annular light source 14 must use different colors of light sources. Or, in another variation, 'three fixtures can be pre-designed with positive light sources of red, green, and blue, respectively, and the three fixtures have the first annular light source of red, green, and blue colors respectively. And the third ring light source of the three fixtures having red, green and blue colors respectively, that is, the positive light source, the first ring light source and the second ring light source respectively have one of three colors (RGB), and a mechanism is designed. Users can switch to the user's needs according to the requirements of m 10 201215878 to get the different fixture combinations needed to facilitate the detection. However, regardless of the manner in which the user performs the above detection, it must be noted that the colors of the positive light source 120, the first annular light source 130 and the second annular light source 140 must not overlap each other' and the positive light source 120 must be adjusted. The position of the first annular light source 13 〇 and the second annular light source 140 is such that the emitted light can be incident toward the die to be tested 1 ′′. In addition, in another variation, the color information 2 〇You can analyze light sources with more angles and spectral wavelengths. For example, the four colors are green (G), yellow (Ye), cyan (Cy), and purple (Mg), or the six colors are green (G). Yellow (Ye), Blue (B), Blue (Cy), Red (R), and Violet (Mg), and can take four angle images or six angle images or more angle images at a time. Please refer to FIG. 5, which is a spectrum diagram of the image sensor 150 to the spectral wavelengths of red, green and blue light. Since the wavelength of the red light source used in the present invention can be set to 63 nanometers (nm), the wavelength of the green light source can be set to 530 (nm) and the wavelength of the blue light source can be set to 44 nanometers (nm). ) are respectively located in the range of the red, green and blue bands of the color image sensor i 5 , wherein the term "band" means between the specified minimum wavelength and the highest wavelength. Transmits the wavelength range and the shirt color image sensor! The red, green and blue wavelengths of the 5th ray can correspond to different wavelengths of light and can exhibit different transmittances (tranSmiSSiVity). Generally, the higher the transmittance, the higher the intensity of light passing. It can be seen from Fig. t that the transmittance of the image sensor 150 is about 32% at a wavelength of 63 nanometers (nm), and the transmittance is about 32% at a wavelength of 53 nanometers (nm). 87%, when the wavelength is 44 nanometers (nm), the transmittance is 80%, that is, the positive light source 12 〇, the first annular light source 13 〇 and the second annular light source 140 Light (including red, green, and blue) can penetrate the different color bands of the color image sensor 15 and be individually received', and then convert the received light signal into a telecom output to a computer (Figure Not shown in the middle) to facilitate the verification and testing. The above is only a preferred embodiment of the present invention, and is not intended to limit the present invention in any way, although the present invention has been disclosed in the above preferred embodiments, however, it is not intended to limit the invention. Any simple C change equivalence change and modification made by the skilled person without departing from the technical scope of the present invention is still within the technical scope of the present invention. [Simple Description of the Drawing] to 1B. According to the present invention - A schematic cross-sectional view of an element in the image taking process in the image taking process of the specific embodiment. Fig. 2 is a photographic photograph of an image taking method for detecting the appearance of a crystal grain according to the present invention. Fig. 3 is a perspective view showing the positive light source, the first annular light source and the second annular light source used in the image appearance detection method according to the present invention. The method for detecting the appearance of a grain according to an embodiment of the present invention 12 201215878 The image capturing method shows a positive light source, a source and a second ring light source used in a variation. Fig. 5 is a view showing a spectrum of green and blue spectral wavelengths of an image for use in accordance with an embodiment of the present invention. [Description of main component symbols] The cross section of the first ring light is shown.

10 晶 粒 待 測 物 11 上 表 面 20 彩 色 資 訊 21 正 光 影像 22 第 — 角 度 環 光 影像 23 第 二 角 度 環 光 影像 110 檢 測 平 台 120 正 光 光 源 130 第 _ - 環 形 光 源 140 第 二 環 形 光 源 150 彩 色 影 像感 測; 器 1 60 發 光 機 構 170 T形管 180 L1 第 一— 光 線 L2 第 二 光線 L3 L4 第 四 光線 L5 第 五 光線 L6 分光鏡 第三光線 第六光線 1310 Grain test object 11 Upper surface 20 Color information 21 Positive light image 22 First - angle ring light image 23 Second angle ring light image 110 Detection platform 120 Positive light source 130 _ - Annular light source 140 Second ring light source 150 Color image sense Measurer 1 60 illuminating mechanism 170 T-shaped tube 180 L1 first - light L2 second light L3 L4 fourth light L5 fifth light L6 splitter third light sixth light 13

Claims (1)

201215878 七、申請專利範圍: 1、一種晶粒外觀檢測之取像方法’用以檢測放置於一 檢測平台上之一晶粒待測物’其特徵為:執行一同 步發光步驟,分別由一正光光源、—第一環形光源 與一第二環形光源同時發射為不同角度且不同光譜 波長之一第一光線、一第二光線與一第三光線至該 晶粒待測物,其中該第一光線係垂直於該晶粒待測 • 物之—上表面,該第二光線之入射角係介於該第一 光線與該第三光線之間,該第一光線、該第二光線 與該第,三光線經由該晶粒待測物分別反射成垂直向 上之一第四光線、一第五光線與一第六光線,並由 彩色影像感測器所接收,以取得一彩色資訊並分 析出由该第四光線構成之正光影像、由該第五光線 構成之第一角度環光影像與由該第六光線構成之第 二角度環光影像。 • 2、依據申請專利範圍第1項之晶粒外觀檢測之取像方 法,其中該正光光源、該第一環形光源與該第二環 形志源係選自於紅色、綠色、藍色光源之其中之_, 但兩兩皆為不相重複之顏色。 3、 依據申請專利範圍第2項之晶粒外觀檢測之取像方 法,其中該正光光源、該第一環形光源與該第二環 形光源係為可調式光源。 4、 依據申請專利範圍第1項之晶粒外觀檢測之取像方 法,其中該正光光源、該第一環形光源與該第二環: 14 201215878 形光源係設置於同一發光機構内。 * 5、依據申請專利範圍第1項之晶粒外觀檢測之取像方 法,其中該彩色影像感測器係選自於彩色感光耦合 元件(color CCD)與彩色互補性氧化金屬半導體 (color COMS)之其中之一。201215878 VII. Patent application scope: 1. A method for taking out the appearance of a crystal grain to detect a grain test object placed on a detection platform. The feature is: performing a synchronous light-emitting step, respectively, by a positive light The first light source, the first annular light source and the second annular light source simultaneously emit a first light, a second light and a third light, which are different angles and different spectral wavelengths, to the die object, wherein the first light source The light is perpendicular to the upper surface of the die to be tested, and the incident angle of the second light is between the first light and the third light, the first light, the second light and the first The three light rays are respectively reflected into the vertical fourth upward light, the fifth light and the sixth light, and are received by the color image sensor to obtain a color information and analyzed by the die. The fourth light ray forms a positive light image, the first angle ring light image formed by the fifth light ray, and the second angle ring light image formed by the sixth light ray. 2. The method according to claim 1, wherein the positive light source, the first annular light source and the second annular source are selected from red, green and blue light sources. Among them, _, but both are non-repeating colors. 3. The method according to claim 2, wherein the positive light source, the first annular light source and the second annular light source are adjustable light sources. 4. The method according to claim 1, wherein the positive light source, the first annular light source and the second ring are: 14 201215878 The light source is disposed in the same illumination mechanism. * 5. The image capturing method according to the first aspect of the patent application scope, wherein the color image sensor is selected from a color photosensitive CCD and a color complementary metal oxide semiconductor (color COMS). One of them. 1515
TW99133767A 2010-10-04 2010-10-04 Imaging method for inspection of chip appearance TW201215878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99133767A TW201215878A (en) 2010-10-04 2010-10-04 Imaging method for inspection of chip appearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99133767A TW201215878A (en) 2010-10-04 2010-10-04 Imaging method for inspection of chip appearance

Publications (1)

Publication Number Publication Date
TW201215878A true TW201215878A (en) 2012-04-16

Family

ID=46786989

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99133767A TW201215878A (en) 2010-10-04 2010-10-04 Imaging method for inspection of chip appearance

Country Status (1)

Country Link
TW (1) TW201215878A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884723A (en) * 2012-12-20 2014-06-25 山东新华医疗器械股份有限公司 Synchronous tracking image acquisition mechanism of automatic light inspector
CN104132946A (en) * 2013-05-03 2014-11-05 政美应用股份有限公司 LED wafer detection apparatus and method thereof
TWI490482B (en) * 2013-06-06 2015-07-01 Chroma Ate Inc Defect inspection method for semiconductor element
TWI491871B (en) * 2013-07-05 2015-07-11 Machvision Inc Illumination system for use in optical inspection, illumination system-based inspection system, and illumination system-based inspection method
CN105225991A (en) * 2015-02-06 2016-01-06 苏州均华精密机械有限公司 Crystal grain picking device with multi-surface detection capability and method thereof
CN111982931A (en) * 2020-08-27 2020-11-24 惠州高视科技有限公司 High-precision wafer surface defect detection device and detection method thereof
CN112881401A (en) * 2019-11-29 2021-06-01 峻鼎科技股份有限公司 Optical detection method using composite light source and device thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884723A (en) * 2012-12-20 2014-06-25 山东新华医疗器械股份有限公司 Synchronous tracking image acquisition mechanism of automatic light inspector
CN103884723B (en) * 2012-12-20 2016-02-10 山东新华医疗器械股份有限公司 The synchronized tracking image acquisition mechanism of automatic lamp-checking machine
CN104132946A (en) * 2013-05-03 2014-11-05 政美应用股份有限公司 LED wafer detection apparatus and method thereof
TWI490482B (en) * 2013-06-06 2015-07-01 Chroma Ate Inc Defect inspection method for semiconductor element
TWI491871B (en) * 2013-07-05 2015-07-11 Machvision Inc Illumination system for use in optical inspection, illumination system-based inspection system, and illumination system-based inspection method
CN105225991A (en) * 2015-02-06 2016-01-06 苏州均华精密机械有限公司 Crystal grain picking device with multi-surface detection capability and method thereof
TWI578428B (en) * 2015-02-06 2017-04-11 均華精密工業股份有限公司 Die picking apparatus with plurality faces inspection ability and method thereof
CN105225991B (en) * 2015-02-06 2018-05-08 苏州均华精密机械有限公司 Crystal grain picking device with multi-surface detection capability and method thereof
CN112881401A (en) * 2019-11-29 2021-06-01 峻鼎科技股份有限公司 Optical detection method using composite light source and device thereof
CN111982931A (en) * 2020-08-27 2020-11-24 惠州高视科技有限公司 High-precision wafer surface defect detection device and detection method thereof

Similar Documents

Publication Publication Date Title
JP6629455B2 (en) Appearance inspection equipment, lighting equipment, photography lighting equipment
TW201215878A (en) Imaging method for inspection of chip appearance
CN105865630B (en) For showing the colorimetric system of test
JP5419304B2 (en) Light emitting element inspection apparatus and inspection method thereof
JP5652537B2 (en) Observation device
US7471381B2 (en) Method and apparatus for bump inspection
TWI345053B (en) Image-acquiring system with high-spectrum resolution and method for the same
TWI447361B (en) A light emitting component testing system and the method thereof
TWI620929B (en) Inspecting device and method for inspecting inspection target
JP4669889B2 (en) Spectral color measuring device and spectral color measuring method
TWI495867B (en) Application of repeated exposure to multiple exposure image blending detection method
JP2013164371A (en) Inspection device and inspection method for phosphor-containing glass member
TWI598580B (en) Led wafer testing device and method thereof
CN103376555A (en) Optical image capture device
TW201629470A (en) Separable multiple illumination sources in optical inspection
WO2019117802A1 (en) A system for obtaining 3d images of objects and a process thereof
US11825211B2 (en) Method of color inspection by using monochrome imaging with multiple wavelengths of light
JP2006337352A (en) Pearl luster inspection method and pearl luster inspection device
JP2014130130A (en) Inspection apparatus
TWM606486U (en) Testing equipment and light receiving device
JPWO2022113369A5 (en)
CN112461762A (en) HSV model-based solution turbidity detection method, medium and image processing system
US11686669B2 (en) Optical measurement device including a light splitting module comprising light splitters and a light inspecting module comprising a plurality of inspecting cameras
JP2020016497A (en) Inspection device and inspection method
TWI759864B (en) Detection apparatus and light-receiving device thereof