TW201214734A - A method for forming the transparent light-trapping structure inside the solar cell - Google Patents

A method for forming the transparent light-trapping structure inside the solar cell Download PDF

Info

Publication number
TW201214734A
TW201214734A TW099131562A TW99131562A TW201214734A TW 201214734 A TW201214734 A TW 201214734A TW 099131562 A TW099131562 A TW 099131562A TW 99131562 A TW99131562 A TW 99131562A TW 201214734 A TW201214734 A TW 201214734A
Authority
TW
Taiwan
Prior art keywords
transparent
forming
solar cell
light
layer
Prior art date
Application number
TW099131562A
Other languages
Chinese (zh)
Other versions
TWI447926B (en
Inventor
Chuang-Chuang Tsai
Cheng-Hang Hsu
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW099131562A priority Critical patent/TWI447926B/en
Publication of TW201214734A publication Critical patent/TW201214734A/en
Application granted granted Critical
Publication of TWI447926B publication Critical patent/TWI447926B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention discloses a method for forming the transparent light-trapping structure inside the thin film solar cell. The light-trapping structure is made by depositing transparent film(s) on transparent substrate. Such a film was treated to create certain roughness. The transparent conducting oxide (TCO) was then deposited on the structure and a conformal structure is formed. The thin film solar cell including second transparent conducting oxide and metal contact was then formed on the structure to complete the process.

Description

201214734 六、發明說明: 【發明所屬之技術領域】 本發明係一種形成透明光捕捉結構的方法,主要係藉由 使用透明薄膜材料於太陽能電池裝置内形成透明光捕捉結構 的方法。 【先前技術】201214734 VI. Description of the Invention: [Technical Field] The present invention is a method of forming a transparent light-trapping structure, mainly by forming a transparent light-trapping structure in a solar cell device using a transparent film material. [Prior Art]

太陽能是一種可永續使用並且不會產生污染的綠色能 源,可望解決部分燃燒石化燃料短缺及其所產生的溫室氣體 的問題,其中,太陽能電池可以直接將太陽能轉換為電能, 且產品維護費用低廉,是目前能源環境產業中非常重要的研 究課題。 目剞依所形成的太陽能電池材料可分為石夕晶太陽能電 池,矽基薄膜太陽能電池、銅銦鎵硒(CIGS)太陽能電池、有 機材料電池等領域。其中的矽基薄膜太陽電池目前實驗室的 穩定最高轉換效率約在12%左右,但因薄膜太陽能電池的石夕材 料,用量低、製造過程可大幅降低生產成本,及容易大面積 化量產的優點’可大幅降低每度電的發電成本而使設置成本 =期縮短’ _部分透紋使用的雜亦有其^可取代的 電丰=能Γ也ί—種接受到太陽光即可直接進行發電的光 導體7C件’八工作原理主要是透過光伏特效應,即當 田‘、、、到時’ 70件㈣就可輪出電壓及電流,其基本構造是運 用正型與負型(η吻⑹半導體接合而錢,或在兩 201214734 加-層中性吸收層(undQped Iayer,卜咖小所以 當太陽光照射時’光子能激發電子和電洞對,這些電子和電 洞受到内建電場的影響,藉由漂移(drift)使電子向η型區飄 移’電洞向ρ型區漂移,故此極為光電流(phQt〇—current)。 此時外。卩如果用電極連接起來形成—個迴路,即是太陽電池 發電的原理。 、在光電轉換的過程中,並麵有人射光子.皆能被電池吸 收並轉換為電能’太陽光為-長波段的能量分佈,過高能量 籲之光波長所導致的損耗被視為是目前效率仍無法達到超高效 率的關鍵因素之-,另外其他的損耗機制如pN接面的能量損 耗、半導體-金屬接面處之能量損耗、載子於傳輸過程再複合 之能量損耗及光波長長於材料能隙之能量損耗,皆會降低^ 膜太陽能電池的效率,這些損耗大部分以熱的型式逸失// 然而以上所述為光入射進太陽能電池原建後的損耗,在 太陽此電池的使用上,因為光在入射進元件前會有因為折射 率差異形成反射個造成光的損失’㈣基薄膜太陽電池的 ♦基板通常以玻璃為主,折射率為L 5左右,而TC〇材料的折 射率約在2.G左右,此折射率差異會造成光的反射而減少光 的利用率;同時,一般常見增加光學效率的方法為使用商用 * 具有結構的TC0透明導電玻璃’以減少光的反射同時使光線 - 產生散射以增加光在太陽能電池中的路彳f,以提升光子的利 用效率。 在傳統的光折射與光反射的發展技術上,如美國編號第 2009/0231714A1號專利,該專利技術使用各式方法在與^氣 201214734 接觸的基板表面形成具抗反射功能的結構,且使用於顯示器 螢幕上,如美國編號第2006/0065299號專利,該專利於玻璃 表面沉積多層導電氧化物結構,前述專利技術之目的功能與 本發明之目的與應用領域盡管完全不同,但仍不失為一種可 啟發新發明之不同思考模式。 故而,為了能提高太陽能電池的光捕捉效率,降低太陽能 電池的不必要耗損,故需要研發新式太陽能電池之新式結 構’藉以提高太陽能電池的發電品質且可降低太陽能電池的 • 製造時間與製造成本。 【發明内容】 本發明為一種於太陽能電池裝置内形成透明光捕捉結構 的方法,主要係使用一層或是複數層透明薄膜於太陽能電池 裝置内形成透明光捕捉結構。Solar energy is a kind of green energy that can be used continuously without pollution. It is expected to solve the problem of partial burning of petrochemical fuel and the greenhouse gas generated by it. Among them, solar cells can directly convert solar energy into electrical energy, and product maintenance costs. Low cost is a very important research topic in the current energy and environmental industry. According to the solar cell materials formed, it can be divided into Shihuajing solar cells, silicon-based thin film solar cells, copper indium gallium selenide (CIGS) solar cells, and organic materials. The sulfhydryl thin film solar cell currently has a stable maximum conversion efficiency of about 12% in the laboratory, but due to the low amount of the thin solar cell, the manufacturing process can greatly reduce the production cost, and the mass production is easy. The advantage 'can greatly reduce the power generation cost per kWh and make the installation cost = shortened' _ part of the use of the cross-talk also has its ^ replaceable electric abundance = can also be used to receive sunlight directly The 7C working principle of the photoconductor 7C is mainly through the special effect of photovoltaic, that is, when the field ', ', and then '70 pieces (four) can turn out the voltage and current, the basic structure is to use positive and negative (η Kiss (6) semiconductor bonding and money, or in two 201214734 plus-layer neutral absorption layer (undQped Iayer, so when the sun shines) photons can excite electrons and holes, these electrons and holes are subject to built-in electric field The effect of drifting the electrons to the n-type region drifts 'the hole drifts toward the p-type region, so the extreme photocurrent (phQt〇-current). At this time, if the electrodes are connected to form a The road is the principle of solar cell power generation. In the process of photoelectric conversion, there are people emitting photons on the side. They can be absorbed by the battery and converted into electric energy. The sunlight is the energy distribution of the long band, and the light wave is too high. The loss caused by the long is considered to be the key factor that the current efficiency is still unable to achieve ultra-high efficiency - and other loss mechanisms such as the energy loss of the pN junction, the energy loss at the semiconductor-metal junction, and the carrier during the transmission process. The energy loss of the recombination and the energy loss of the optical wavelength longer than the energy gap of the material will reduce the efficiency of the film solar cell. Most of these losses are caused by the thermal type loss// However, as described above, the light is incident on the solar cell. Loss, in the use of the solar cell, because the light will be reflected by the difference in refractive index before the incident into the component. [4) The base film of the thin-film solar cell is usually glass-based, and the refractive index is L. 5 or so, and the refractive index of the TC〇 material is about 2.G. This difference in refractive index causes light reflection and reduces the utilization of light. At the same time, generally The method of increasing the optical efficiency is to use a commercial * structured TC0 transparent conductive glass to reduce the reflection of light while causing light to scatter to increase the path of light in the solar cell to enhance photon utilization efficiency. The development of light refraction and light reflection is technically, for example, in US Pat. No. 2009/0231714A1, which uses various methods to form an anti-reflective structure on the surface of a substrate in contact with the gas 201214734, and is used on a display screen. For example, U.S. Patent No. 2006/0065299, which deposits a multi-layered conductive oxide structure on the surface of the glass. The purpose of the aforementioned patent technology is completely different from the object and application field of the present invention, but it is still a new invention. Different thinking patterns. Therefore, in order to improve the light-trapping efficiency of solar cells and reduce unnecessary wear of solar cells, it is necessary to develop a new structure of new-type solar cells, in order to improve the power generation quality of solar cells and to reduce the manufacturing time and manufacturing cost of solar cells. SUMMARY OF THE INVENTION The present invention is a method of forming a transparent light-trapping structure in a solar cell device, mainly using a layer or a plurality of transparent films to form a transparent light-trapping structure in a solar cell device.

本發明提出一種於太陽能電池裝置内形成透明光捕捉矣 構的方法,首先形成一層或是複數層透明薄膜於透明基相 上’、,製程方法進行處理而形成具表面起伏之光捕捉層,异 /成第ifa月導電氧化層於光捕捉層上,該透明導電氧化彩 =該=捕捉層結構產生相仿的結構,後續形成薄膜太陽敍 化屏二:透明導電氧化物層上,再形成第二薄透明導電氧 第二薄透明導電氧化層上。 最後形成金屬電極層於 以提在喊料❹料敵_結構, ^電池的光吸收與捕捉效率,藉以改善目前薄膜 201214734 太陽能電池光電轉換效率的低落問題。故而,關於本發明之 優點與精神可以藉由以下發明詳述及所附圖式得到進一步的 瞭解。 【實施方式】 本發明提供一種於太陽能電池裝置内形成透明光捕捉結 構的方法。請參考第1Α圖至第1Η圖,係為本發明形成方法 ^ 之貫施例連續示意圖,詳細說明如下列: 如第1Α圖所示,首先提供一透明基板1〇1,通常透明基 板101可以選自玻璃基板亦或是塑膠基板。續以化學氣相二 積法(chemical vapor deposition, CVD)、物理氣相沉積法 (Physical Vapor Deposition,PVD)或容易分散圖不等方 法,形成一薄膜層102於該透明基板101上。該薄膜層1〇2 可為氮化物層,如氮化矽(SiNx)層所形成,而亦或為氧化物 層,如氧化矽(Si〇2)、氧化鋁(AhO3)層、或為氮氧化物,戋 鲁 為高分子材料所形成。而該102層的厚度為1〇奈米(nra)至 10000奈米(nm)之間。 繼續如第1B圖所示,除可保留原102薄膜,隨後亦可 以選擇各式的蝕刻法,包括物理性蝕刻法,或化 : 、退火法或是壓印法等方法,以使該薄關1Q2形成具二 凹凸不平的高低差結構的光捕捉層102。在經過製程處理後, 圖中102層的表面因其結構凹凸不平且具有高低差而形成高 低差結構,而高低差結構的表面之高低落差為〇奈米至2〇〇〇 奈米之間,且具有2至1.5之間的特定或漸變折射率,並具 201214734 有透明且可為非導體的性質。而該光捕捉層1〇2具有光捕捉 的功能,且可由-層薄膜或是多層薄膜所構成。 Μ 1C ®所示’以物理氣相沉積法,或是化學氣相沉 積法以形成第-透明導電氧化咖―t C0ndueting Oxide’ TC0)層103於該光捕捉層1〇2上。該第一透明導電氧 化,層1G3通常使用有參雜之氧化錫(如減:ρ)或有參雜 之氧化鋅(如ZnG2:Al) ’該透明導電氧化物層⑽因本發明 光捕捉層1G2之冋低差結構而表面具有相仿的凹凸不平的高 • 低差結構。 再如第1D圖所τ ’經由化學氣相沉積法形成正型 (P,e)導電層HM於該第一透明導電氧制⑽上。 更如第1E圖所示,形成未摻雜層1〇5於該正型(p_type) 導電層104上。 又如第1F圖所不,經由化學氣相沉積法以形成負型 (n-type)導電層1〇6於該未摻雜導電層上。 而如第1G圖所示,形成第二薄透明導電氧化物 —TC0)層107於該負型導電層1〇6上。 /最後如第1H圖所示,以物理氣相沉積法,或以網印法等 形成-金屬電極(Back electrode)層⑽於該第二薄透明 導電氧化層107上,而該金屬電極層1〇8通常以銀、銘、銅、 鎳合金金屬所形成。 而猶如第2圖射光捕捉層之多層薄_意圖,當使用 多層薄膜’如光捕捉層薄膜腦,光趣層薄膜腦,光捕 捉層薄膜102C等多㈣膜以累積形成該光捕捉層1〇2時,1 201214734 目的乃^折射率會產生逐漸的變細產生漸變折射率。 1Ε0=Γ示,其中前述第1D圖之正型導電層_,第 圖之負型導電層騎形成薄膜 太^電池早疋⑽ar Cell) 3Q1,故而第1D圖正 二=1F圖負型導電層106之順序可為相反的順序,亦 :形=3圖薄膜太陽能電池單元削排列順序示意 圖,其溥膜太陽能電池單元由上至下的組合為負型導電層 106,未摻雜層1G5與正型導電層1〇4。故由第1D圖之正型導 電層104,第1E圖之未摻雜層1()5與第ιρ圖之負型導電層 1〇6所述的組合方式僅為薄膜太陽能電池單元3(H的部份例示 和,並非限定該薄敎陽能電解元斯_域成分斑 更應包含未於本發明中所未提及之薄膜太陽能電 本發明藉由光學反繼構之形成以提升太陽能電池裝置 的光吸收與捕捉效率,藉以改善目前薄膜太陽能電池光電轉 換效率的储_。且本發财基板上形成單層❹層光捕 捉薄膜結構’藉以提高太陽能電池的發電品質,且可降低太 陽能電池的製造時間與製造成本。 _ 以上所述僅為本發明之較佳實施例而已,並非用以限定 本教月之中响專利||圍;凡其它未脫離本發明所揭示之精神 下所完成之等效改變或修飾,均應包含在下述之中請專利範 圍内。 【圖式簡單說明】 201214734 第1A圖至第1H圖係為本發明實施例之連續示意圖。 第2圖係為本發明光捕捉層之多層薄膜示意圖。 第3圖係為本發明薄膜太陽能電池單元的排列示意圖。 【主要元件符號說明】 101透明基板 102光捕捉層 102A光捕捉層薄膜 • 102B光捕捉層薄膜 102C光捕捉層薄膜 103第一透明導電氧化層 104正型導電層 105未摻雜層 106負型導電層 107第二薄透明導電氧化層 108金屬電極層 • 301薄膜太陽能電池單元The invention provides a method for forming a transparent light capturing structure in a solar cell device, first forming a layer or a plurality of transparent films on a transparent base phase, and processing a method to form a light-trapping layer having a surface undulation, different / into the first ifa month of the conductive oxide layer on the light-trapping layer, the transparent conductive oxidation color = the = capture layer structure produces a similar structure, followed by the formation of thin film solarization screen 2: transparent conductive oxide layer, and then form a second Thin transparent conductive oxygen on the second thin transparent conductive oxide layer. Finally, a metal electrode layer is formed to improve the light absorption and capture efficiency of the battery, thereby improving the low photoelectric conversion efficiency of the current film 201214734 solar cell. Therefore, the advantages and spirit of the present invention can be further understood from the following detailed description of the invention and the accompanying drawings. [Embodiment] The present invention provides a method of forming a transparent light capturing structure in a solar cell device. Please refer to FIG. 1 to FIG. 1 for a continuous schematic diagram of a method for forming a method according to the present invention. The detailed description is as follows. As shown in FIG. 1 , a transparent substrate 1 〇 1 is first provided. Generally, the transparent substrate 101 can be It is selected from a glass substrate or a plastic substrate. A thin film layer 102 is formed on the transparent substrate 101 by a chemical vapor deposition (CVD), a physical vapor deposition (PVD) or an easy dispersion pattern. The film layer 1〇2 may be a nitride layer, such as a tantalum nitride (SiNx) layer, or an oxide layer such as a yttrium oxide (Si〇2) layer, an aluminum oxide (AhO3) layer, or a nitrogen layer. Oxide, ruthenium is formed by polymer materials. The 102 layer has a thickness of between 1 nanometer (nra) and 10,000 nanometers (nm). Continuing as shown in FIG. 1B, in addition to retaining the original 102 film, various etching methods, including physical etching, or etching, annealing, or imprinting, may be selected to make the thin film 1Q2 forms a light-trapping layer 102 having a rugged height difference structure. After the process, the surface of the 102 layer in the figure is formed by the unevenness of the structure and the height difference, and the height difference of the surface of the high and low difference structure is between 〇 nanometer and 2 nanometer. It has a specific or graded index of refraction between 2 and 1.5 and has a property of 201214734 that is transparent and non-conducting. The light-trapping layer 1 〇 2 has a light-trapping function and can be composed of a -layer film or a multilayer film. The layer 103 of the first transparent conductive oxide coffee-tC0ndueting Oxide' TC0 layer is formed on the light-trapping layer 1〇 by physical vapor deposition or chemical vapor deposition. The first transparent conductive oxidation, the layer 1G3 usually uses doped tin oxide (such as minus: ρ) or doped zinc oxide (such as ZnG2: Al) 'the transparent conductive oxide layer (10) due to the light-trapping layer of the present invention The 1G2 has a low-difference structure and the surface has a similar high and low-difference structure. Further, a positive (P, e) conductive layer HM is formed on the first transparent conductive oxygen (10) by chemical vapor deposition as shown in Fig. 1D. Further, as shown in FIG. 1E, an undoped layer 1〇5 is formed on the positive (p_type) conductive layer 104. Further, as shown in Fig. 1F, a negative (n-type) conductive layer 1?6 is formed on the undoped conductive layer via a chemical vapor deposition method. As shown in FIG. 1G, a second thin transparent conductive oxide-TC0 layer 107 is formed on the negative conductive layer 1〇6. / Finally, as shown in FIG. 1H, a back electrode layer (10) is formed on the second thin transparent conductive oxide layer 107 by physical vapor deposition or by screen printing, and the metal electrode layer 1 is formed. 〇8 is usually formed of silver, inscription, copper, and nickel alloy metal. As with the multilayer thin film of the light-trapping layer of Fig. 2, it is intended to use a multilayer film such as a light-trapping film brain, a light-film thin film brain, a light-trapping film 102C, and the like to form the light-trapping layer. At 2 o'clock, 1 201214734 aims to produce a gradual refraction to produce a graded index. 1 Ε 0 = , , , , , , 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第The order may be reversed. Also, the shape of the thin film solar cell unit is shown in FIG. 3, and the combination of the tantalum solar cell from top to bottom is the negative conductive layer 106, the undoped layer 1G5 and the positive type. Conductive layer 1〇4. Therefore, the combination of the positive conductive layer 104 of FIG. 1D, the undoped layer 1 () 5 of FIG. 1E and the negative conductive layer 1〇6 of the ιρ diagram is only a thin film solar cell unit 3 (H). Partially exemplified and not limited to the thin solar energy electrolysis element _ domain component plaque should contain a thin film solar energy not mentioned in the present invention. The invention is formed by optical reverse structuring to enhance the solar cell device. Light absorption and capture efficiency, in order to improve the current photoelectric conversion efficiency of thin-film solar cells _. And the formation of a single-layer ❹ layer light-harvesting film structure on the financial substrate to improve the power generation quality of solar cells, and reduce the manufacture of solar cells Time and manufacturing cost. The above is only the preferred embodiment of the present invention, and is not intended to limit the patents of the present teachings; The effect change or modification should be included in the scope of the following patent. [Simplified illustration] 201214734 1A to 1H are continuous schematic views of the embodiment of the present invention. Schematic diagram of the multilayer film of the light trapping layer. Fig. 3 is a schematic view showing the arrangement of the thin film solar cell of the present invention. [Main component symbol description] 101 transparent substrate 102 light capturing layer 102A light capturing layer film • 102B light capturing layer film 102C light capturing Layer film 103 first transparent conductive oxide layer 104 positive conductive layer 105 undoped layer 106 negative conductive layer 107 second thin transparent conductive oxide layer 108 metal electrode layer • 301 thin film solar cell

Claims (1)

201214734 七、申請專利範圍·· 1.種於太陽%電池裝置内形成透明光捕捉結構的方法,至 少包含: *提供—透明細,該剌基板上具有單減複數層透明 薄膜; 製程處理該透明薄膜以成為一光捕捉層; 形成一第一透明導電氧化層於該光捕捉層上; 形成一薄臈太陽能電池單元於該第一透明導電氧化層 •上; 曰 形成一第二透明導電氧化層於該薄膜太陽能電池單元 上;以及 形成一金屬電極層於該第二透明導電氧化層上,藉以形 成於該太陽能電池裝置内形成透明光捕捉結構的方法。 2.如申請專利範圍第丨項所述於太陽能電池裝置内形成透明 光捕捉結構的方法,其中該透明基板係由一玻璃基板,以 及一塑膠基板之群組中所選出。 • 3· #申請專利範圍第1項所述於太陽能電池裝置内形成透明 光捕捉結構的方法,其中該透明薄膜係由氮化物、氧化物、 氮氧化物以及高分子材料之群組中所選出。 4·如申請專利範圍第1項所述於太陽能電池裝置内形成透明 光捕捉結構的方法,其中製作該透明薄膜的方法係由物理 氣相沉積法、化學氣相沉積法以及塗佈法之群组中所選出。 5.如申請專利範圍第1項所述於太陽能電池裂置内形成透明 光捕捉結構的方法’其中該光捕捉層的厚度包含1〇奈米至 201214734 10000奈米之間。 6.如申請專利範圍第1頊所述於太陽能電池裝置内形成透明 光捕捉結構的方法,其中該光捕捉層的表面包含有凹凸不 平的高低差結構,其高低落差約為〇奈米至2 〇 〇 〇奈米之間。 ’ 7.如申請專利範圍第1頊所述於太陽能電池裝置内形成透明 光捕捉結構的方法,其中處理該單數或複數層透明薄膜之 技術係由物理性敍刻法、化學性姓刻法、退火法以及壓印 法之群組中所選出。 % 8.如申請專利範圍第1項所述於太陽能電池裝置内形成透明 光捕捉結構的方法,其中形成該金屬電極層之方法係由物 理氣相沉積法,以及網印法之群組中所選出。 9.如申請專利範圍第丨項所述於太陽能電池裝置内形成透明 光捕捉結構的方法,其中該金屬電極層係由銀、鋁、銅、 鎳合金金屬之群組中所選出。201214734 VII. Scope of Application for Patenting·· 1. A method for forming a transparent light-trapping structure in a solar cell device, comprising at least: * providing - transparent fine, having a single reduced complex transparent film on the substrate; process processing the transparent Forming a light-receiving layer; forming a first transparent conductive oxide layer on the light-trapping layer; forming a thin tantalum solar cell on the first transparent conductive oxide layer; and forming a second transparent conductive oxide layer And forming a metal electrode layer on the second transparent conductive oxide layer to form a transparent light capturing structure in the solar cell device. 2. A method of forming a transparent light-trapping structure in a solar cell device as described in the scope of the invention, wherein the transparent substrate is selected from the group consisting of a glass substrate and a plastic substrate. • 3. The method of forming a transparent light-trapping structure in a solar cell device as described in claim 1, wherein the transparent film is selected from the group consisting of nitrides, oxides, oxynitrides, and polymer materials. . 4. A method of forming a transparent light-trapping structure in a solar cell device as described in claim 1, wherein the method of fabricating the transparent film is a group of physical vapor deposition, chemical vapor deposition, and coating. Selected in the group. 5. The method of forming a transparent light-trapping structure in a solar cell split as described in claim 1 wherein the thickness of the light-trapping layer comprises between 1 nanometer and 201214734 and 10,000 nanometers. 6. The method of forming a transparent light-trapping structure in a solar cell device according to claim 1, wherein the surface of the light-trapping layer comprises a rugged height difference structure, and the height difference is about 〇 nanometer to 2 Between 〇〇〇 nano. 7. A method of forming a transparent light-trapping structure in a solar cell device as described in claim 1, wherein the technique of processing the singular or plural transparent film is performed by a physical characterization method, a chemical surrogate method, Selected in the group of annealing and imprinting methods. % 8. The method for forming a transparent light-trapping structure in a solar cell device as described in claim 1, wherein the method of forming the metal electrode layer is performed by a physical vapor deposition method and a group of screen printing methods. Elected. 9. A method of forming a transparent light-trapping structure in a solar cell device as described in the scope of claim 2, wherein the metal electrode layer is selected from the group consisting of silver, aluminum, copper, and nickel alloy metal.
TW099131562A 2010-09-17 2010-09-17 A method for forming the transparent light-trapping structure inside the solar cell TWI447926B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099131562A TWI447926B (en) 2010-09-17 2010-09-17 A method for forming the transparent light-trapping structure inside the solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099131562A TWI447926B (en) 2010-09-17 2010-09-17 A method for forming the transparent light-trapping structure inside the solar cell

Publications (2)

Publication Number Publication Date
TW201214734A true TW201214734A (en) 2012-04-01
TWI447926B TWI447926B (en) 2014-08-01

Family

ID=46786557

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099131562A TWI447926B (en) 2010-09-17 2010-09-17 A method for forming the transparent light-trapping structure inside the solar cell

Country Status (1)

Country Link
TW (1) TWI447926B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200905896A (en) * 2007-07-19 2009-02-01 Atomic Energy Council Fabricating method of polysilicon thin-film solar cell
TWI371112B (en) * 2007-10-02 2012-08-21 Univ Chang Gung Solar energy photoelectric conversion apparatus
TW201025653A (en) * 2008-09-19 2010-07-01 Ulvac Inc Solar battery and manufacturing method thereof
KR20100093291A (en) * 2009-02-16 2010-08-25 엘지디스플레이 주식회사 Method of fabricating solar sell

Also Published As

Publication number Publication date
TWI447926B (en) 2014-08-01

Similar Documents

Publication Publication Date Title
TWI446555B (en) Back contact for solar cell
KR100974226B1 (en) Backside surface passivation and reflection layer for Si solar cell by high-k dielectrics
CN102709402B (en) Thin film solar cell of graphic based metal substrate and preparation method thereof
TWI402992B (en) Solar cell and method for fabricating the same
TW201135949A (en) Holey electrode grids for photovoltaic cells with subwavelength and superwavelength feature sizes
US20110186119A1 (en) Light-trapping plasmonic back reflector design for solar cells
JP2013544024A (en) Electrode and manufacturing method thereof
Hsueh et al. Crystalline-Si photovoltaic devices with ZnO nanowires
KR101076611B1 (en) Solar cell and manufacturing method of the same
CN209104182U (en) Amorphous silicon/crystalline silicon heterojunction solar battery
KR20090067350A (en) Thin film type solar cell and method for manufacturing the same
Varnamkhasti et al. Design and fabrication of nanometric TiO2/Ag/TiO2/Ag/TiO2 transparent conductive electrode for inverted organic photovoltaic cells application
KR101190197B1 (en) Solar cells using substrate integrated with antireflection nano structure and method for fabricating the same
US20140083486A1 (en) Solar cell and method for manufacturing same
KR20120060185A (en) Solar cells using substrate integrated with antireflection nano structure and method for fabricating the same
Nowak et al. Optimizing folded silicon thin-film solar cells on ZnO honeycomb electrodes
US20110247692A1 (en) Thin Film Type Solar Cell and Method for Manufacturing the Same
TW201214734A (en) A method for forming the transparent light-trapping structure inside the solar cell
KR20120036115A (en) Flexible solar cell and method of fabricating the same
JP2012089712A (en) Thin film solar cell and method for manufacturing the same
Patel et al. A study of the optical properties of wide bandgap oxides for a transparent photovoltaics platform
JP5542025B2 (en) Photoelectric conversion device
JP5405923B2 (en) Photoelectric conversion element and manufacturing method thereof
KR101541108B1 (en) solar cell and manufacturing method thereof
Ding et al. Photovoltaics: Nanoengineered Materials and Their Functionality in Solar Cells

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees