TW201213129A - Reflective material - Google Patents

Reflective material Download PDF

Info

Publication number
TW201213129A
TW201213129A TW100125072A TW100125072A TW201213129A TW 201213129 A TW201213129 A TW 201213129A TW 100125072 A TW100125072 A TW 100125072A TW 100125072 A TW100125072 A TW 100125072A TW 201213129 A TW201213129 A TW 201213129A
Authority
TW
Taiwan
Prior art keywords
resin
resin layer
reflective material
layer
material according
Prior art date
Application number
TW100125072A
Other languages
Chinese (zh)
Other versions
TWI482706B (en
Inventor
Taketoshi Tsutsumi
Daiki Nozawa
Masahiko Kawano
Jun Takagi
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Publication of TW201213129A publication Critical patent/TW201213129A/en
Application granted granted Critical
Publication of TWI482706B publication Critical patent/TWI482706B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a new reflective material excellent in reflectivity, especially excellent in light-diffusing property. The reflective material provided is characterized in having a resin layer (B) containing 2 or more kinds of thermoplastic resins with different solubility parameters (SP values ) on at least one side of a resin layer (A) having voids inside, wherein the resin layer (B) has an arithmetic average roughness (Sa) for three-dimensional surface roughness of 0.5 μ m or more, which is obtained by the combination of thermoplastic resins with different solubility parameters (SP values).

Description

201213129 六、發明說明: 【發明所屬之技術領域】 本發明係關於適於使用為:液晶顯示器、 _ …、h月益具、布昭 明看板4之構成構件的反射材。 —“、、 【先前技術】 在以液晶顯示器為首之照明器具或照明看板等多項領 中均有使用反射材。最近,就液晶顯示器的領域正朝裝置大 型化與顯示性能高度化演進,至少要求將較多的光供應給液 晶以便提升背光單元的性能,對反射材亦要求更加優異的光 反射性(亦簡稱「反射性」)。 反射材例如已知有使用以芳香族聚酯系樹脂為主原料之 白色聚酯薄膜的液晶顯示器用反射薄膜(參照專利文獻U。 但是,當反射材的材料係使用芳香族聚酯系樹脂的情況, 因為方香族聚s旨糸樹脂分子鍵中所含的芳香環會吸收紫外 線,因而會有由於從液晶顯示裝置等的光源所發出紫外線, 導致薄膜劣化、變黃,造成反射薄膜的光反射性降低之問題。 再者,亦已知有:藉由將在聚丙烯樹脂中添加填充劑而形 成的薄膜施行延伸,而在薄膜内形成細微空隙,俾使產生光 散射反射的反射材(參照專利文獻2);及由含烯烴系樹脂與 填充劑的基材層、以及含烯烴系樹脂的層所構成之積層構造 的烯烴系樹脂光反射體(參照專利文獻3)。 使用此種烯烴系樹脂的反射薄膜具有因紫外線所造成之 100125072 4 201213129 '薄膜出現劣化與變黃問題較少的特徵。 卞為由未大1含有無機粉末的樹脂組祕所構成之 •反射片’係已知有含有聚丙稀樹脂、以及與該聚丙烯樹脂呈 ‘非相溶性的樹脂之至少i種以上,且熱收縮率減低的雙軸延 伸反射片(參照專利文獻4)。 /反射片係具有未大量含有無機粉末,且相較於基重、密 度相同私度的習知反射片,齡較高的反料的特徵。 再者因為上述反射片的表面比較平滑且正反射性強,因 若.、且裝於液晶顯示器並使光源亮燈時,便會有發生畫面亮 度出現不均(所謂「輝度斑」)問題的情況。所以,為解決此 員旦面輝度斑的問題,便有提案藉由在表面塗佈有機微粒子 等而形成凹凸’俾賦予高光擴散性的反射片(參照專利文獻 5)。 [先行技術文獻] [專利文獻] 專利文獻1.日本專利特開平04-239540號公報 專利文獻2.日本專利特開平11_174213號公報 專利文獻3 :日本專利特開2005-031653號公報 專利文獻4 :日本專利特開2008-158134號公報 專利文獻5 :日本專利特開2010-085843號公報 【發明内容】 (發明所欲解決之問題) 100125072 5 201213129 如上述,截至目前雖提案有各種反射材,但為能獲得高輝 度的背光,而依然渴求更進一步改善反射性的反射材。 再者,使用烯烴系樹脂的反射材,如上述,因紫外線所造 成的薄膜劣化與變黃問題較少,有用性較高。但是,因為耐 熱性不;I,因㈣使用為要求雜性的液晶㈣賴成構件 時,會有因熱而導致薄膜出現收縮、產生起皺等問題。 在液晶顯示器、照明器具、照明看板等領域,近年已使用 LED等會伴隨高溫發熱的光源,故對反射材要求更進一步 的耐熱性。 另方面有時會將經施行彎折加工等的反射材組裝於液 晶顯示裝置内使用,對反射材亦要求此種彎折加工性(以下 稱「耐彎折性」)。 緣是,本發明之目的係在於:提供具優異反射性、特別係 優異光擴散性,較佳係耐熱性與耐彎折性均優異,即便高溫 裱境下仍不會發生起皺的新穎反射材。 (解決問題之手段) 本舍明者|現藉由作成在含微粉狀填充材的樹脂層⑷之 至/單®^ „又|含有玻璃轉移溫度⑽⑽川以〜He之非 晶性樹脂的樹脂層之積 J層構造,便具有優異的反射性, 且而t熱性與财彎折性均 ’即便在高溫環境下仍不會收縮 的新穎反射材。 、以及與其呈非相溶之樹 本發明者尚針對含有 100125072 6 201213129 脂的樹脂層(B),進行更進一步探討,結果發現如下事項, 遂完成本發明。 ' ⑴發現上述經摻合2種樹脂的樹脂層⑼係具有三次元表 •面粗糙度的算術平均粗糖度(%)_ _以上的特徵性表^ . 狀態,可達高光擴散性的效果。 ⑺再者’究明之所以會成為此種表面狀態,係由所混合 之2種樹脂的溶解度參數(sp值)所弓丨起。 即,本發明係提案-種反射材’其係在内部具有空隙的樹 脂層⑷之至少單面’具備含有溶解度參數(sp值)不同之2 種以上熱可塑性樹脂的樹脂詹⑻;且樹脂層⑼係藉由溶解 度參數(SP值)不同的熱可塑性樹脂之組合,使三次元表面粗 糙度的算術平均粗糙度(Sa;)成為〇 5/mi以上。 (發明效果) 本發明所提案的反射材,因為在内部具有空隙的樹脂層(A) 之至少單面’具備含有溶解度參數(sp值)不同之2種以上熱 可塑性樹脂的樹脂層(B),且樹脂層(B)係藉由溶解度參數 (SP值)不同的熱可塑性樹脂之組合,使三次元表面粗糙度的 算術平均粗糙度(Sa)成為〇.5/xm以上,因而具有優異的光擴 散性’當組裝於背光件使用時,可獲得高輝度。 再者,作為構成樹脂層(B)的樹脂之一,係使用玻璃轉移 溫度(JISK7121)為85〜150°C的非晶性樹脂,藉此可確保耐彎 折性與耐熱性,即便高溫環境下仍不會發生起皺。所以,本 100125072 ^ 201213129 發明的反射材可適用為液晶顯示器、.照明器具、或照明看板 等的反射材。 【實施方式】 以下’針對本發明實施形態一例的反射材(稱「本反射材」) 進行說明。惟,本發明不侷限於該本反射材。 &lt;本反射材&gt; 本反射材的特徵在於:係在内部具有空隙的樹脂層(Α)之 至少單面’具備樹脂層(Β)的積層構造反射材,該樹脂層(Β) 係含有:熱可塑性樹脂(〇、以及與其呈非相溶之熱可塑性樹 月曰(II) ’且該樹脂層(Β)係三次元表面粗縫度的算術平均粗糙 度(Sa)達〇.5μιη以上。 〈樹脂層(Α)&gt; 樹脂層(Α)係内部具有空隙的層,屬於對本反射材賦予反 射f生’且車父佳係能提尚本反射材之财彎折性的層。 (樹脂層(A)之空隙率) 樹脂層(A)係内部具有空隙的層,其空隙率(即空隙佔該層 的體積比例)就從確保反射性的觀點,較佳為10〜90%。藉由 設成此種範圍的空隙,便可充分地進行反射材的白化,因而 達成高反射性,且不會有反射材的機械強度降低,而發生斷 裂之情形。 就從此種觀點,樹脂層(A)的空隙率係在上述範圍中,特 佳為20%以上或80%以下,其中較佳為25%以上或75%以 100125072 8 201213129 下,其中尤佳為30%以上或70%以下。 在樹脂層(A)中形成空隙的方法,可舉例如:化學發泡法、 物理發泡法、超臨界發泡法、延伸法、抽出法等。該等之中, 對本反射材而言,就從製膜性、連續生產性、安定生產性等 觀點,較佳為延伸法。 延伸方法的具體例係可舉例如:輥延伸法、軋延法、拉幅 延伸法等。該等之中,對本發明而言,因為輥延伸法及/或 拉幅延伸法的延伸條件之選擇幅度較寬,因而較適宜採取該 等單獨使用或組合使用,並朝至少1方向進行延伸的方法。 該延伸係可舉例如:利用輥延伸法等朝縱向(MD)延伸的 單軸延伸法、在朝縱向的單軸延伸後接著利用拉幅延伸法等 朝橫向(TD)延伸的逐次雙轴延伸法、或者使用拉幅延伸法同 時朝縱向與橫向進行延伸的同步雙軸延伸法。 另外,就從提高反射性的觀點,較佳為雙軸延伸。 (基質樹脂) 構成樹脂層(A)主成分的樹脂(基質樹脂),可舉例如:稀 烴系樹脂、聚酯系樹脂、丙烯酸系樹脂、聚氯乙稀系樹脂、 聚偏二氯乙稀系樹脂、氟系樹脂、聚醚系樹脂、聚醯胺系樹 脂、聚胺曱酸酯系樹脂、二烯系樹脂等。其中,就從提高反 射性的觀點,較佳係烯烴系樹脂。 烯烴系樹脂係可舉例如:聚丙烯、丙烯-乙烯共聚物等聚 丙烯樹脂;聚乙烯、高密度聚乙烯、低密度聚乙烯等聚乙烯 100125072 9 201213129 環輯煙共聚物等環烯μ樹 4系树月曰),從乙烯·丙烯橡膠(epr)、 物(epdM)等烯烴系彈性體中選擇之至小^烯烯三共聚 該等之巾,職機錄#、綠料 ^聚馳樹月曰 :且二Γ_Ε)’其中’就從相較於P”熔點較 冋且耐熱性優異,且彈性模數等機械 為聚丙烯樹脂(ρρ)。 的觀點’較佳 再者,就從擠出成形性的觀點,聚内稀樹脂㈣之中,特 :圭係峨⑽。C、21.服)為G丨〜2Q、特佳為㈣、 &quot;中尤佳為0.5〜5的聚丙烯樹脂(pp)。 另外’樹脂層⑷中所含有的基質樹脂,相對於樹脂層㈧ 整體的質量,較佳係30質量%以上、更佳係40質量%以上、 特佳係5〇質量%以上(含1 〇〇〇/〇)。 (微粉狀填充劑) ^脂層(A)為能獲得優異的反雜,難係含有微粉狀填 充劑°藉由含有微錄填充#1 ’除可從因基質難與微粉狀 填充劑間之折射率差所造成之折射散射而獲得反射性之 外’另外亦可從:利用與在微粉狀填充劑周圍所形成空洞間 之折射率差造成的折射散射、以及因在微粉狀填充劑周圍所 形成空洞與微粉狀填充綱之折料差造成的折射散射等 獲得反射性。 微粉狀填充劑係可例示如無機質微粉體、有機質微粉體 100125072 201213129 等。 :碳酸鈣、碳酸鎂、碳酸鋇、硫201213129 SUMMARY OF THE INVENTION [Technical Field] The present invention relates to a reflective material suitable for use as a constituent member of a liquid crystal display, a y ..., a yue yy, and a stencil 4 . - "," [Prior Art] In the field of lighting fixtures or lighting kanbans, such as liquid crystal displays, reflective materials have been used. Recently, the field of liquid crystal displays is evolving toward device size and display performance, at least More light is supplied to the liquid crystal to improve the performance of the backlight unit, and more excellent light reflectivity (also referred to as "reflectivity") is required for the reflective material. For the reflective material, for example, a reflective film for a liquid crystal display using a white polyester film containing an aromatic polyester resin as a main raw material is known (see Patent Document U. However, when the material of the reflective material is an aromatic polyester resin) In the case, the aromatic ring contained in the molecular bond of the resin of the scented scent of the resin absorbs ultraviolet rays, and thus ultraviolet rays are emitted from a light source such as a liquid crystal display device, and the film is deteriorated and yellowed, resulting in light of the reflective film. Further, it is also known that a film formed by adding a filler to a polypropylene resin is stretched to form a fine void in the film to cause a light-scattering reflection material ( Refer to Patent Document 2); and an olefin-based resin light-reflecting body having a laminated structure comprising a base material layer containing an olefin-based resin and a filler, and a layer containing an olefin-based resin (see Patent Document 3). The resin-reflecting film has a characteristic that the film is deteriorated and yellowed due to ultraviolet rays, which is caused by ultraviolet rays. The reflection sheet constituting the resin group of the machine powder is known to have at least one type of a resin containing a polypropylene resin and a resin which is incompatible with the polypropylene resin, and a biaxial extension having a reduced heat shrinkage ratio. The reflection sheet (refer to Patent Document 4). The reflection sheet has a characteristic that the conventional reflection sheet having a large amount of inorganic powder is not contained in a large amount and having the same density as the basis weight and density, and has a higher age. The surface of the reflection sheet is relatively smooth and highly specular, and if it is mounted on a liquid crystal display and the light source is turned on, there is a problem that unevenness in brightness of the screen (so-called "luminance spot") occurs. In order to solve the problem of the brightness of the surface of the surface, there is a proposal to form a reflection sheet having high light diffusibility by applying an organic fine particle or the like on the surface (see Patent Document 5). [Prior Art Document] [Patent Literature] [Patent Document 1] Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. JP-A-2008-158134, JP-A-2010-085843, SUMMARY OF INVENTION [Problems to be Solved by the Invention] 100125072 5 201213129 As described above, various reflective materials have been proposed so far, but It is possible to obtain a high-intensity backlight, and still desire to further improve the reflective material. Further, as a reflection material using an olefin resin, as described above, there is less problem of deterioration and yellowing of the film due to ultraviolet rays, and the usefulness is higher. However, since heat resistance is not used; I, because (4) is used as a liquid crystal (four) which is required to be a component, there is a problem that the film shrinks and wrinkles due to heat. In liquid crystal displays, lighting fixtures, lighting In the field of kanban and the like, in recent years, a light source such as an LED that is accompanied by high-temperature heat has been used, so that further heat resistance is required for the reflective material. On the other hand, a reflecting material subjected to bending processing or the like is incorporated in a liquid crystal display device, and such bending workability (hereinafter referred to as "bending resistance") is required for the reflecting material. The purpose of the present invention is to provide a novel reflection which is excellent in reflectivity, particularly excellent in light diffusibility, and which is excellent in heat resistance and bending resistance, and which does not wrinkle even in a high temperature environment. material. (Means for Solving the Problem) The present invention is now produced by a resin layer (4) containing a fine powder filler to a single resin, and a glass transition temperature (10) (10) The J-layer structure of the resin layer has excellent reflectivity, and the t-heat and the financial bending property are both novel reflective materials that do not shrink even in a high-temperature environment, and are incompatible with the tree. The inventors of the present invention further studied the resin layer (B) containing 100125072 6 201213129 grease, and found the following, and completed the present invention. '(1) It was found that the above-mentioned resin layer (9) blended with two kinds of resins has a three-dimensional table. • Arithmetic mean coarseness (%) of surface roughness _ _ above characteristic table ^. State, the effect of high light diffusivity can be achieved. (7) Furthermore, the reason why the surface state is such a surface state is mixed The solubility parameter (sp value) of the two types of resins is entangled. In other words, the present invention proposes a reflective material which is characterized in that at least one side of the resin layer (4) having a void therein has a solubility parameter (sp value). More than 2 types of thermoplastic The resin resin (8); and the resin layer (9) is a combination of thermoplastic resins having different solubility parameters (SP values), and the arithmetic mean roughness (Sa;) of the ternary surface roughness is 〇5/mi or more. Advantageous Effects of the Invention The reflective material of the present invention has a resin layer (B) containing at least two types of thermoplastic resins having different solubility parameters (sp values), at least one side of the resin layer (A) having voids therein. Further, the resin layer (B) is a combination of thermoplastic resins having different solubility parameters (SP values), and the arithmetic mean roughness (Sa) of the three-dimensional surface roughness is 〇.5/xm or more, and thus has excellent light. In the case of the resin used in the resin layer (B), an amorphous resin having a glass transition temperature (JISK7121) of 85 to 150 ° C is used. Therefore, the bending resistance and the heat resistance can be ensured, and wrinkles do not occur even in a high temperature environment. Therefore, the reflective material of the invention of 100125072 ^ 201213129 can be applied to the reverse of a liquid crystal display, a lighting fixture, or a lighting board. Material. [Embodiment] The following 'for showing an embodiment of the present invention, the reflective member (called the "reflection sheet") will be described. However, the present invention is not limited to the present reflective material. &lt;The present reflective material&gt; The present reflective material is characterized by a laminated structure including a resin layer (at least one side of a resin layer having a void therein), and the resin layer (Β) contains : Thermoplastic resin (〇, and its incompatible thermoplastic tree 曰(II)' and the arithmetic mean roughness (Sa) of the three-dimensional surface roughness of the resin layer (Β) is 〇.5μιη or more <Resin layer (Α)&gt; The resin layer (Α) is a layer having a void inside, and is a layer which imparts reflection to the present reflecting material and which is good for the fuel material. (Void ratio of resin layer (A)) The resin layer (A) is a layer having voids therein, and the void ratio (that is, the void ratio of the layer) is preferably from 10 to 90% from the viewpoint of ensuring reflectivity. By providing the voids in such a range, the whitening of the reflecting material can be sufficiently performed, so that high reflectivity is achieved, and the mechanical strength of the reflecting material is not lowered, and the film is broken. From this point of view, the resin layer The void ratio of (A) is in the above range, particularly preferably 20% or more or 80% or less, preferably 25% or more or 75% to 100125072 8 201213129, and particularly preferably 30% or more or 70% or less. A method of forming a void in the resin layer (A), for example, chemical reaction The foaming method, the physical foaming method, the supercritical foaming method, the stretching method, the extraction method, etc. Among these, the present reflecting material is preferably from the viewpoints of film forming property, continuous productivity, and stable productivity. Specific examples of the stretching method include, for example, a roll stretching method, a rolling method, a tenter stretching method, etc. Among these, for the present invention, because of the roll stretching method and/or the tenter stretching method The extension condition has a wide selection range, and thus it is preferable to adopt such a method of using it alone or in combination and extending in at least one direction. The extension may be, for example, a sheet extending in the machine direction (MD) by a roll stretching method or the like. A shaft extension method, a uniaxial extension in the longitudinal direction, followed by a sequential biaxial stretching method extending in a lateral direction (TD) by a tenter stretching method, or a simultaneous biaxial stretching extending in the longitudinal direction and the lateral direction using a tenter stretching method In addition, from The resin (matrix resin) constituting the main component of the resin layer (A) may, for example, be a hydrocarbon resin, a polyester resin, an acrylic resin, or the like. Polyvinyl chloride resin, polyvinylidene chloride resin, fluorine resin, polyether resin, polyamine resin, polyamine phthalate resin, diene resin, etc. The olefin-based resin is preferably a polypropylene resin such as polypropylene or a propylene-ethylene copolymer, or a polyethylene such as polyethylene, high-density polyethylene or low-density polyethylene. 201213129 Cyclomethicone, such as cyclomethine copolymer, is selected from olefin-based elastomers such as ethylene/propylene rubber (epr) and (epdM) to small olefinic copolymers. , job machine record #, green material ^ gather Chi tree month: and two Γ Ε ' ' ' 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 相 相 相 相 熔点 熔点 熔点 熔点 熔点 熔点 熔点 熔点 熔点 熔点 熔点 熔点 熔点 熔点 熔点 熔点 熔点 熔点 熔点 熔点 熔点 熔点 熔点 熔点. The viewpoint is preferable. Further, from the viewpoint of extrusion moldability, among the polyemene resin (four), it is special (10). C, 21. Service) is a polypropylene resin (pp) of G丨~2Q, especially good (four), &quot; In addition, the matrix resin contained in the resin layer (4) is preferably 30% by mass or more, more preferably 40% by mass or more, and particularly preferably 5% by mass or more based on the total mass of the resin layer (8) (including 1 〇〇). 〇/〇). (Micro-powder filler) ^Lipid layer (A) is able to obtain excellent anti-hybrid, difficult to contain micro-powder filler ° by containing micro-recording filling #1 ', except for matrix hard and micro-powder filling In addition to the refraction and scattering caused by the difference in refractive index between the agents, it is also possible to obtain: from the refraction scattering caused by the difference in refractive index between the voids formed around the micronized filler, and in the fine powder. Reflectivity is obtained by refraction scattering or the like caused by the difference between the void formed around the filler and the fine powder filling. The fine powder filler may, for example, be an inorganic fine powder or an organic fine powder 100125072 201213129 or the like. : calcium carbonate, magnesium carbonate, barium carbonate, sulfur

無機質微粉體係可舉例如:碳 酸鎂、硫酸鋇、硫酸鈣、氧化鋅、 氧化鋅、氧化鋁、氫氧化鋁、MExamples of the inorganic fine powder system include magnesium carbonate, barium sulfate, calcium sulfate, zinc oxide, zinc oxide, aluminum oxide, aluminum hydroxide, and M.

7 «人只工寸'^竑哥1尔3便用任j 種以上。該等之中,若考慮與椹忐 &amp;、氧化鎂、氧化鈣、氧化鈦、 風氧 W 灰石(hydroxyapatite)、 、玻璃粉、石棉粉、 種、或混合使用2 若考慮與構成薄片的樹脂間之折射率 ^ ’較佳係折射率較大者,特佳係使用折射率達16以上的 碳酸鈣、硫酸鋇、氧化鈦或氧化鋅。 古再者’氧化鈦相較於其他錢填麵之下,折射率明顯較 问’可使與基質樹脂間之折射率差_變大,因而相較於使 用其他填充劑的情況,可以較少摻合量獲得優異反射性。 1’藉由❹氧化鈦’即便㈣反射材厚度仍可獲得高反射 性。 所以,更佳係使用至少含有氧化鈦的填充劑,此情況,氧 化鈦的量較佳係達無機填充劑合計質量的30%以上,或者當 、’’ α使用有機填充劑與無機填充劑的情況,較佳係達其合計 質量的30°/。以上。 八〇 β 再者,為提升無機質微粉體對樹脂的分散性,亦可使用經 對微粉狀填充義表面,利用㈣化合物、多元醇系化合 物、胺系化合物、脂肪酸、脂㈣g旨等施行表面處理者。 另一方面,有機質微粉體係可舉例如:聚合物球珠、聚合 100125072 201213129 物中空粒子等’該等係可使用任1種、或混合使用2種以上。 再者亦可組合使用無機質微粉體與有機質微粉體。 微秦狀填充劑較佳係粒徑0.05/mi以上且15/mi以下、更 佳係粒L 〇.!_以上且訂。若填充劑的粒經達 0.05#m以上’對基質樹脂的分散性便不會降低,因而可獲 得句g 。又’若粒徑在以m以下,則基質樹脂與微 私狀填充劑的界面便可緻密形成,俾可獲得高反射性的反射 材。 再者,微粉狀填充劑的含有量若考慮反射材的反射性、機 械強度、生產性等’相對於樹脂層(A)整體的質量,較佳為 10:80質里/。、更佳為2Q〜% f量%。若微粉狀填充劑的含 有里達彳里%以上’便可充分確保基質樹脂與微粉狀填 充劑間之界__,俾可岐射材賦予^祕。若微粉 狀填充劑的含有量在7〇質量%以 要的機械強度。^从下’便可確保反射材所必 樹脂層㈧中,基質樹脂與微粉狀填充劑的含有比例,就 脂:微粉狀填充劑,:2G〜3G 點’較佳設為基質樹 特佳係80 : 20〜60 : 40。 (其他成分) 樹脂層⑷亦可含有除上述以外的其他樹脂。又,亦可含 有抗氧化劑、終定劑、熱安定劑、分散劑、紫外線吸收劑、 榮光增白劑、相容劑、滑劑、及其他添加劑。 100125072 12 201213129 (樹脂層(A)之形態) 樹脂層⑷係可為由薄片體構成的層,亦可為將溶融樹脂 組成物利用擠出或塗佈等施行薄膜形成(並非形成薄片)而 構成的層。 當由薄片體構成的情況,該薄片體係可為未延伸薄膜、亦 可為單㈣雙軸延伸薄膜,較佳係至少單轴方向延伸u倍 以上而獲得的延伸薄膜’特佳係雙轴延伸薄膜。 &lt;樹脂層(B)&gt; 樹脂層⑼齡有:熱可塑性難…以及與其呈非相溶 之熱可塑性樹脂(II)的層。 办 樹脂層⑻係只要屬於含有上述熱可塑性樹脂樹脂⑴、及 與其呈非相溶的熱可塑性樹脂(π),且三次元表面粗趟度的 ί術平均麵綱編上者便可,絲成為此種 异術平均祕度(Sa)的前提τ,上述討塑軸脂⑴、以及 與其呈非相溶之熱可錄樹师),並無_的限制,均可 使用。 (表面粗糙度) 樹脂層⑻的表面,重點在於三次元表面教輪 均粗輪度⑽達0·_以上。就從消除畫 _ 算術平均粗_Sa)較佳係0.5卿以上且7 〇又斑的觀點 係Ι.Ο/im以上且3.〇μπι以下。 用於形成此種樹脂層(Β)的方法係例如只要著驴於发合 100125072 125072 _ 201213129 2種樹脂的溶解度參數(以下記為「sp值」)便可,更具體而 言’只要選擇所混合樹脂的SP值絕對值差為 (Cal/cm )、更佳為 0.5〜1.5(cal/cm3)0·5 的組合便可。 ,藉由周t為此種範圍,便適度調整2種樹月旨的分散性,所 :成糾日層(B)的二次元表面粗糙度之算術平均粗糖度㈣ s在上述圍内’俾可發揮高光擴散性。若所混合樹脂的 SP值,對值差達〇 5(calW)。5以上,樹脂層(B)中便可形成 2 :熱可塑性樹脂(Π)的分散相,使樹脂層⑻表面變粗 ^ 可獲得高光擴散性,因而較佳。 另方面,若所混合樹脂的SP值絕對值差在 3.〇(calW’5以下,便可安定形成樹脂層⑻中的非相溶熱 可塑性樹脂(Π)之分散相’且樹脂層(B)的製臈性亦呈安定, 因而車乂佳。另外’ ^ sp值的絕對值差過大,便會引發相八 離’會有例如熱可雜樹脂(職熔融樹脂組成物中: 離之It形,導致引發在τ型模頭喷絲嘴周圍出現附 等情況的可能性。 ㈢垢) 值較佳係 5以上或 更具體而言’其117 一熱可塑性樹脂⑴的sp 5.0〜15.〇(cai/cm3)〇,5、其中更佳係 ㈣/咖3) 12.0(cal/Cm3)o.5 以下。 为—熱可塑性樹脂(II)的SP值較 5.3〜14.7(cai/cm3)o’5、其巾更佳係 7 ⑽3)。 11.7(cal/cm3)°·5 以下。 上 100125072 201213129 就從此種技術思想,將sp值在上述範圍的熱可塑性樹脂 ⑴當作候選樹脂1而進行篩選,進一步將SP值在上述範圍 之非相溶於熱可塑性樹脂⑴的熱可望性樹脂(11)當作候選樹 月曰2而進行篩選,再從由遠專候選樹脂1與2的組合所形成 樹脂層中,選擇三次元表面粗糙度的算術平均粗糙度(Sa)達 〇·5以上者,便可形成樹脂層(B)。 另外,SP值係將構成熱可塑性樹脂(I)或非相溶的熱可塑 性樹脂(II)的原子及原子團之蒸發能(Aei)與莫耳體積 (△vi) ’代入下述Fedors公式便可求得。 sp 值知1/。1113)°.5=口心^^)0.5 其中’ Aei與Δνί係使用Fedors所提案的常數(參照表i)。 表1係Fedors所提案的原子及原子團之蒸發能與莫耳體 積摘錄。 [表1] 原子/基 --— Aei (cal/m〇n Δνί (cm3/mol) -^H&lt; 820 -1.0 -ch2. 1 1 Q〇 16.1 -- X S ·、Τ Τ'—-- 1,125 33.5 —的環 - 250 16 本基 7,630 71.4 另外’樹脂層(B)中,熱可塑性樹脂⑴、及與其呈非相溶 的…、可塑性樹脂(H),分別可為單】種樹脂、亦可為2種以 、十知。例如可含有:單1種熱可塑性樹脂(1_1)、以及與 其呈非相溶的2種熱可塑性樹脂(ΙΜ)、(π_2)。又,除含有 100125072 15 201213129 ’、、、可迎糾9(1_1)、及與其呈非相溶的熱可雜樹脂(叫) 之外’亦可含有熱可塑性樹脂(1-2)、以及與其呈非相溶的熱 可塑性樹脂(II-2)之2種以上的組合。 但’就從能使樹脂層⑻表面的算術平均㈣度(sa)成為 0.5/mi以上之效果的觀點,熱可塑性樹脂⑴、及與其呈非相 溶的熱可塑性樹脂(11),換言之’ sp值的絕對值差成為 0·3 3.0(cal/cm)的組合中所含樹脂量,較佳係佔構成樹脂 層⑻的總樹脂中之70 f量%以上、其中較佳係8〇質量%以 上、其中較佳係90質量%以上。 再者,熱可塑性樹脂(I)、及與其呈非相溶的熱可塑性樹脂 (II)之含有比例,就從安定形成分散相,並將樹脂層(B)表面 予以粗面化的效果之觀點,較佳係6〇 : 4〇〜9〇 : 1〇、或4〇 : 60〜10 : 90,其中較佳係70 : 30〜80 : 2〇、或3〇 : 7〇〜2〇 : 80 ° 但,因為熱可塑性樹脂⑴及熱可塑性樹脂(π)何者較多, 何者會成為母相或分散相便有所不同,就從將樹脂層汨)表 面予以粗面化的效果之觀點,係為相同。 (更進一步的特性賦予) 藉由使用玻璃轉移溫度(JISK7121,Tg)為85〜150°C的非 晶性樹脂作為構成樹脂層(B)的樹脂的一種,較佳係基質樹 脂的一種’例如熱可塑性樹脂⑴或(II),亦可對本反射材靖 予耐熱性。 100125072 16 201213129 =外’樹脂層⑻的基質樹脂係指相對於樹辟層⑻整 質莖,較佳佔20質量%以上、更佳估3〇 佔5〇質量%以上的樹脂。 質里如上、特佳 此處所謂「非晶性樹脂」係表示未觀察到隨結晶化所衍生 的放熱尖峰’或即使有觀察到,但仍屬結晶融解熱量在_ 以下的結晶化度極低之樹脂。 非晶性樹脂係即便環境溫度有變化,在玻璃轉移點以下仍 呈現安定雜,制玻_移麟近的溫度,心現 小、尺寸安定性優異的性質,因而可對反射輯予較高的耐 熱性。 所以树月曰層(B)的基質樹脂係例如只要熱可塑性樹脂⑴ 的玻璃轉移溫度⑽為以〜贿,則即便使用為液晶顯示 器等的構成構件時,耐祕仍充足,因而較佳。 就從此觀點,樹脂層(B)的基質樹脂之玻璃轉移溫度 (Tg) ’更佳係9Gt以上且_以下、其中更佳係赋以 上且150°C以下。 此種非晶性樹脂係可舉例如:環稀煙系樹脂、聚苯乙稀、 聚碳義、丙職系樹脂、非晶性聚_脂、聚籠亞胺、 熱可塑H亞料。其t,t考慮延伸性、麵轉移溫度 範圍透明性的if況’較佳為環雜系樹脂、聚苯乙稀、聚 碳酸賴脂,其中特佳為___。 此處树月日層(B)的環烯煙系樹脂亦可為環烯烴均聚物、 100125072 17 201213129 環烯烴共聚物中任—者。 ,卜斤口月%稀1系樹脂」係主鏈由碳-碳鍵結構成 ,主鏈至 二:。卩刀具有%狀烴構造的高分子化合物。該環狀烴構 1系藉=使料如降細、四環十二碳烯所代表之環狀烴構 造中至少具有烴性雙_化合物(環稀烴)作為單體 而導。 &quot;%烯經系樹脂係可分類為:環婦煙的加成⑻聚合體或其 氫化物 ' 與―烴的加成共聚物或其氫化物、環稀 k的開%、(共)聚合體或其氫化物,均可使用於本反射材。 環烯煙系樹脂的具體例,係可舉例如:環戊稀、環己稀、 壤辛烯;環戊二稀、1,3_環己二料單環的環烯烴;雙環[⑴] 庚-2_烯(俗稱:降福烯)、5_曱基雙環[2.2.1]庚-2-烯、5,5-二 曱基-雙壤[2.2.1]庚-2·烯、5-乙基-雙環[2.2.1]庚-2-烯、5-丁 基-雙壤[2.2.1]庚-2-烯、5-亞乙基-雙環[2 21]庚_2_烯、5_己 基-雙壤[2.2.1]庚-2-烯、5-辛基-雙環[2.2.1]庚-2-烯、5-十八 烷基-雙環[2.2.1]庚-2-烯、5-亞曱基-雙環[2.2.1]庚-2-烯、5-乙烯基_雙環[2.2.1]庚-2-烯、5-丙烯基-雙環[2.2.1]庚-2-烯等 雙環的環烯烴; 三環[4.3.0.12,5]癸-3,7-二烯(俗稱:二環戊二烯)、三環 [4.3.0.12,5]癸-3-烯;三環[4.4.0.12,5]十一碳-3,7-二烯或三環 [4.4.0.12,5]十一碳-3,8-二烯、或屬於該等的部分氫化物(或 環戊二烯與環己烯的加成物)之三環[4.4.〇.12,5]十一碳-3- 100125072 18 201213129 烯;5-環戊基-雙環[2.2.1]庚-2-烯、5-環己基雙環[2.21]庚_2 烯、5-環己烯基雙環[2.2.1]庚-2-烯、5-苯基-雙環[2 21]庚·2 烯之類的三環的環烯烴; 四環[4.4.0.12,5.17,10]十二碳·3_烯(亦簡稱「四環十二碳 烯」)、8-甲基四環[4.4.0.12,5.17,10]十二碳_3_稀、8_乙基四 環[4.4.0.12,5.17,10]十二碳-3-烯、8-亞曱其四環 [4.4·0.12,5.17,10]十二碳 _3_ 烯、8_ 亞乙基四環 [4.4.0.12,5.17,10]十二碳-3-烯、8_ 乙烯基四環 [4,4.0.12,5.17,10]十二碳-3-烯、8·丙烯基四環 [4.4.0.12,5.17,10]十二碳_3_稀之類的四環的環稀炉. 8-環戊基-四環[4.4.0.12,5.17,10]十二碳_3_稀、8環己基_ 四環[4·4.0.12,5.17,10]十二碳-3_烯、8_環己烯基·四環 [4.4.0.12,5.17,10]十二碳-3-烯、8_苯基_環戊基-四環 [4.4.0.12,5.17,10]十二碳-3-烯;四環[7.4.13,6.〇1,9.〇2,7]十四 碳-4,9,11,13-四烯(亦稱「Μ_亞曱基'仏,〜四氫第」)、 四環[8.4.14,7.01,10.03,8]十五碳-5,10,12,14_四烯(亦稱「1,4_ 亞曱基-l,4,4a,5,10,l〇a-六氫蒽」);五$ [6.6.1·13,6.02,7·09,14]_4-十 [6.5.1.13,6.02,7.09,13]-4-十 [7.4.0.02,7.13,6·110,13]-4-十 [8.7.0.12,9.14,7.111,17.03,8.012 [8.7.0.12,9.03,8.14,7.012,17.113 碳 烯 、 五 環 五 碳 烯 、 五 環 五 碳 稀 ; 七 環 16]-5-廿 碳稀 、 七 環 100125072 19 201213129 四聚體等多環的環烯烴等等 該等環稀煙係分别可單獨使用、或 能與環烯烴共聚合 U 2種以上。 . 、-烯烴具體例,係可舉例如.7 @ 丙炼、I-丁稀、“戊缔、“已烯、3 二.乙烯、 戊烯、3-乙基-1-戊烯、 丁烯、3-甲基-;u 二甲—4:_ :基—^ -己稀、辛稀、1二 六碳烯、1-十八碳烯 -奴烯、“十四碳烯、1_十 W的乙稀或等&quot;'碳烯等碳數2〜2G、較佳係碳數 該等_烴分财單較用、植合❹ 環烯烴或環稀烴與喻的 種以上。 :=料的公知方=聚合體 以上的糸樹脂中,就從耐熱性的觀點 轉移溫度_ m辑_似160^璃 其中尤佳為85Ϊ以上且l5(rc以下的環烯烴樹脂。 此時’亦可組合混合2稽以μ t一从, 上的%締煙树脂,將混合樹脂 的玻璃轉移溫度(Tg)調整於上述範圍内。 環稀烴系樹脂係可使用市售製品。例如:日本江⑽八 司製的「ZE0N0R(註冊商標)」(化學名,環狀烯烴的開㈣ 合體之氫化物)、三井化學公司製的「Apel(註冊商標K乙 婦與四環十二碳烯的加成共聚物)、或聚塑公司製的 「TOPAS(註冊商標)」(乙晞與降相稀的加成共聚物)等。其 100125072 201213129 中’若使用曰本ΖΕΟΝ公司製的「ZEONOR(註冊商標)」(化 學名’環狀烯烴的開環聚合體之氩化物)、及/或聚塑公司掣 的「TOPAS(註冊商標)」(乙烯與降稻稀的加成共聚物),便 可獲彳于具有高反射性能的反射材’因而特佳。 ' 另外,當環烯烴係使用烯烴與降稻烯的共聚物時,降稻烯 的含有量較佳係60〜9〇wt%、特佳係65wt%以上且8〇^%以 下。 上述非晶性樹脂(當含2成分以上的非晶性樹脂時,便為 該等的合計量),相對於樹脂層(B)整體的質量,較佳係% 質量%以上、更佳係70質量%以上、特佳係9() f量%以上 (100%除外)。 如上述,當樹脂層⑻的基質樹脂[例如熱可塑性樹脂⑴] 係使用玻师移溫度為85〜15代_肖,若加上 提高耐料性峨點,其他樹糊如熱可難樹脂则較 佳係含有稀歧糸樹脂、熱可塑性彈性體等 例如藉由在環烯㈣樹脂中摻合人除環稀㈣樹脂以外 的烯烴系樹脂及/或熱可錄彈性體而形成樹脂層⑻,便可 確保單獨環烯㈣難所無法獲得的耐”性、以及單 烴系樹脂所無法獲得的耐熱性。 此時’除環烯烴系樹脂以外的烯烴系樹脂及/或献可塑性 彈性體之熔體流動料(稱「腿」),較㈣、或 2〇以下(皿謂,靴、荷重2U8N),尤其更佳係w 100125072 21 201213129 以上、或1 〇以下。 再者’環稀煙系樹脂的MFR較佳亦調整為上述範圍内。 若依此調整:者的MFR,除環_純脂以外的烯烴系樹 脂及/或熱可難雜體便會切__脂巾進行配向, 不會有使當作反㈣用的機械特性極端惡化之顧慮,因而特 佳0 除環烯烴系樹脂以外的烯 邱敁糸樹月曰,係可舉例如:聚| 烯、丙烯-乙烯共聚物等聚 乙烯、低密度聚乙稀等聚乙缔:湖曰4乙稀、高密度: 、乙埽糸樹脂等等,可使用兮笙 -種、或組合使用二種以上 * H亥專中, 聚丙烯樹脂㈣,就從炫點較佳為聚乙烯樹脂㈣ 優異,且彈性模數等機械特性乙稀樹脂㈣且耐熱‘ 烯樹脂(PP)。 乂南的觀點’其中特佳為聚 再者,就從擠出成形㈣⑼ 佳係MFR(23(TC 21.18ν)α Λ 敬丙烯樹脂(冲)中,較 ·、、U.1〜2〇、特伟 佳為0.5〜5的聚丙烯樹脂(冲)。 馬〇.2〜10、其中尤 阳々ιΑ)(δ)間的密 有與樹脂層(Α)的烯烴系樹 生觀點,較1 脂。 印為相同單體單位之烯* 朴另-方面’熱可紐彈性體係可舉例如〜 苯乙烯系彈性體、胺甲酸烯烴系彈性體、 •曰恭輝*性體、平 使用該等中之一種、或組合 A ®曰系彈性體等,可 义用一種以上。 画25072 ’、 ’因為笨乙 22 201213129 烯系彈性體會與烯烴系樹脂、特別係聚丙烯樹脂相溶,因而 就從提升樹脂層(A)與樹脂層(B)間之接著性的觀點,屬較 佳。 苯乙烯系彈性體係可舉例如苯乙烯與丁二烯或異戍二烯 等共軛二烯的共聚物、及/或其氫化物等。苯乙烯系彈性體 係將苯乙烯當作硬鏈段,且將共軛二烯當作軟鏈段的嵌段共 聚物,因為不需要加硫步驟,因而較佳。又,經施行氫化者 的熱安定性較高,因而更佳。 苯乙烯系彈性體的較佳例係可舉例如:苯乙烯-丁二烯-苯 乙烯嵌段共聚物、苯乙烯-異戊二烯-苯乙烯嵌段共聚物、苯 乙烯-乙烯-丁烯-苯乙烯嵌段共聚物、苯乙烯-乙烯-丙烯-苯 乙烯嵌段共聚物。 其中,較佳係利用氫化消除共輛二烯成分之雙鍵的苯乙稀 -乙烯-丁烯-苯乙烯嵌段共聚物、苯乙烯-乙烯-丙烯-苯乙烯 嵌段共聚物(亦稱「經氫化的苯乙烯系彈性體」)。 (微粉狀填充劑) 樹脂層(B)係在三次元表面粗糖度的算術平均粗糙度(Sa) 成為0.5/rni以上之前提下,亦可含有微粉狀填充劑。關於微 粉狀填充劑的種類、粒徑及表面處理方法,係與樹脂層(A) 中所說明的内容相同,較佳例亦同。 (其他成分) 樹脂層(B)亦可含有抗氧化劑、光安定劑、熱安定劑、紫 100125072 23 201213129 外線吸收劑、螢光增白劑、滑劑、及其他添加劑。 另外’若掺合入相容劑、分散劑及擴散珠等,因為較難將 三次元表面粗縫度的算術平均粗缝度㈣調整為所需範 圍’因而在樹脂層(B)中基本上不要摻合該等,但若屬少量 亦可摻合。 (樹脂層(B)之形態) 樹脂層⑻係可為由薄片體構成的層,且亦可將熔融樹脂 組成物利賴出或塗佈等施行薄卿成(非形成薄片)而構 成的層。 由薄片體構成的情況,該薄片體係可為未延伸薄膜、亦可 為單軸或雙軸延伸薄膜,較佳係至少朝單轴方向延伸⑴立 以上而獲得的延伸薄膜,特佳係雙軸延伸薄膜。 &lt;積層構造&gt; 、本f射材需具備設有樹脂層㈧與樹脂層⑼的積層構 仏。猎由汉為此種構造’便可對樹脂層⑷賦予反射性,且 ㈣耐彎折性等加卫性’並可對樹脂層刚予高光擴散性。 佩’本反射材係藉由樹脂層⑷與⑻的相互作用便可發 揮相乘效果,可達極優異的反射性。 再者藉由、擇树脂層⑻的樹脂,亦可賦予财熱性,具 有能在發揮更高反射性的情況下,可賦予耐熱性與加工性等 優點。所以,此種積層構造中,較佳係樹脂層⑻位於光所 照射側(反射使用面側)的最外層。藉由設為此種構造,便可 100125072 24 201213129 對反射材賦予高反射性。 再者,其他的積層構造,係可舉例如在樹脂層(A)的雙面 設置樹脂層(B)的3層積層構造。且,除樹脂層(A)與樹脂層 (B)之外,亦可具備其他層,亦可在樹脂層(A)與樹脂層(B) 的各層間介設其他層。例如亦可在樹脂層(A)、樹脂層(B) 間介設接著層。 &lt;厚度&gt; 本反射材的厚度並無特別的限定,較佳係例如 30μπι〜1500/xm,特別是,若考慮實用面的處置性,則較佳 為 50μιη〜l〇〇〇jum 左右。 例如當作液晶顯示器用途的反射材時,厚度較佳係 50μιη〜700μιη ’當作例如照明器具、照明看板用途的反射材 時,厚度較佳係ΙΟΟμηι〜l〇〇〇pm。 由後述實施例的結果中亦可得知,即便樹脂層(Β)較薄, 仍可提高反射材整體的耐熱性,另一方面,若樹脂層(Β)過 厚,便會導致财彎折性降低。 。就從此種觀點,樹脂層(八)與7 «People only work in size' ^竑哥一尔3 will use more than j kinds. Among these, consider using 椹忐 &amp;, magnesia, calcium oxide, titanium oxide, oxyapatite, glass powder, asbestos powder, seed, or mixed use. The refractive index between the resins is preferably a larger refractive index, and particularly preferably calcium carbonate, barium sulfate, titanium oxide or zinc oxide having a refractive index of 16 or more. Compared with other money fillings, the ancient recursor's titanium oxide has a refractive index that is significantly higher than that of the base resin, so that it can be made larger than that of other fillers. The blending amount gives excellent reflectivity. 1' can achieve high reflectivity by the thickness of the titanium oxide, even if the thickness of the (four) reflective material. Therefore, it is more preferable to use a filler containing at least titanium oxide. In this case, the amount of the titanium oxide is preferably 30% or more of the total mass of the inorganic filler, or when the α is used as an organic filler and an inorganic filler. In the case, it is preferably 30 ° / of its total mass. the above. In addition, in order to improve the dispersibility of the inorganic fine powder to the resin, it is also possible to use a surface filled with a fine powder to form a surface, and to use (4) a compound, a polyol compound, an amine compound, a fatty acid, a fat (4) g, and the like. Processor. On the other hand, the organic fine powder system may be, for example, a polymer bead or a polymer 100125072 201213129 hollow particle or the like. These may be used alone or in combination of two or more. Further, an inorganic fine powder and an organic fine powder may be used in combination. The micro-Qin-like filler preferably has a particle diameter of 0.05/mi or more and 15/mi or less, more preferably a granule L 〇. If the particle size of the filler reaches 0.05#m or more, the dispersibility of the matrix resin is not lowered, so that the sentence g can be obtained. Further, when the particle diameter is not more than m, the interface between the matrix resin and the micro-preferable filler can be densely formed, and a highly reflective reflective material can be obtained. In addition, the content of the fine powder filler is preferably 10:80,000 in terms of the reflectivity, mechanical strength, productivity, etc. of the reflective material with respect to the mass of the entire resin layer (A). More preferably, it is 2Q~% f%. If the fine powder filler contains more than 5% of the Ridori, the boundary between the matrix resin and the fine powder filler can be sufficiently ensured. If the content of the fine powder filler is 7 〇 mass%, the mechanical strength is required. ^ From the bottom 'ensure that the resin layer (8) of the reflective material, the ratio of the matrix resin to the micro-powder filler, the grease: micro-powder filler, 2G ~ 3G point 'is better set to the matrix tree Good 80: 20~60: 40. (Other Components) The resin layer (4) may contain other resins than the above. Further, it may contain an antioxidant, a finalizing agent, a heat stabilizer, a dispersing agent, a UV absorber, a glare brightener, a compatibilizer, a slip agent, and other additives. 100125072 12 201213129 (Form of the resin layer (A)) The resin layer (4) may be a layer composed of a sheet, or may be formed by forming a film (not forming a sheet) by extrusion or coating of the molten resin composition. Layer. In the case of a sheet, the sheet system may be an unstretched film or a single (four) biaxially stretched film, preferably an extended film obtained by extending at least u times in a uniaxial direction. film. &lt;Resin layer (B)&gt; The resin layer (9) is a layer which is difficult to be thermoplastic and has a thermoplastic resin (II) which is incompatible with it. The resin layer (8) may be a thermoplastic resin (1) containing the above-mentioned thermoplastic resin (1), and a non-cohesive thermoplastic resin (π), and the surface roughness of the three-dimensional surface may be The premise τ of the average secretness (Sa) of the different artisan, the above-mentioned plastic axis (1), and the heat-recordable tree incompatibility with it, are not limited by _ and can be used. (Surface roughness) The surface of the resin layer (8) is mainly focused on the three-dimensional surface teaching wheel with a coarse rotation (10) of more than 0·_. From the viewpoint of eliminating the drawing _ arithmetic mean coarse _Sa), it is preferably 0.5 or more and 7 〇 and then Ι. Ο/im or more and 3. 〇μπι or less. The method for forming such a resin layer may be, for example, a solubility parameter (hereinafter referred to as "sp value") of two kinds of resins of 100125072 125072 _ 201213129, and more specifically, The absolute value difference of the SP value of the mixed resin is (Cal/cm), and more preferably 0.5 to 1.5 (cal/cm3) of 0·5. By the week t being such a range, the dispersibility of the two types of tree-shaped is appropriately adjusted, and the arithmetic mean coarse sugar content (four) s of the surface roughness of the secondary element of the correction layer (B) is in the above-mentioned range. Can exhibit high light diffusivity. If the SP value of the mixed resin, the value difference is 〇 5 (calW). 5 or more, in the resin layer (B), 2: a dispersed phase of a thermoplastic resin (Π) can be formed, and the surface of the resin layer (8) can be made thick, and high light diffusibility can be obtained, which is preferable. On the other hand, if the absolute value of the SP value of the mixed resin is 3. 〇 (calW'5 or less, the dispersed phase of the incompatible thermoplastic resin (Π) in the resin layer (8) can be stably formed and the resin layer (B) The system is also stable, so the car is good. In addition, the absolute difference of the '^ sp value is too large, it will cause the phase to leave 'there will be, for example, hot resin (the molten resin composition: from it) The shape causes the possibility of occurrence of an attachment around the spinneret of the τ-type die. (3) The scale value is preferably 5 or more or more specifically - its 117 a thermoplastic resin (1) sp 5.0~15. (cai/cm3) 〇, 5, which is better (four) / coffee 3) 12.0 (cal / Cm3) o. 5 or less. The thermoplastic resin (II) has an SP value of 5.3 to 14.7 (cai/cm3) o'5 and a towel of 7 (10) 3). 11.7 (cal/cm3) °·5 or less. In the above-mentioned technical idea, the thermoplastic resin (1) having the sp value in the above range is selected as the candidate resin 1, and the thermal compatibility of the non-phase-dissolving thermoplastic resin (1) having the SP value in the above range is further exemplified. The resin (11) is selected as the candidate tree 曰2, and the arithmetic mean roughness (Sa) of the ternary surface roughness is selected from the resin layer formed by the combination of the remote candidate resins 1 and 2. When it is 5 or more, the resin layer (B) can be formed. In addition, the SP value is obtained by substituting the evaporation energy (Aei) and the molar volume (Δvi) of the atoms and radicals constituting the thermoplastic resin (I) or the incompatible thermoplastic resin (II) into the following Fedors formula. Seek. The sp value is known as 1/. 1113)°.5=mouth^^)0.5 where 'Aei and Δνί use the constants proposed by Fedors (refer to Table i). Table 1 is an excerpt from the evaporation energy and molar volume of the atoms and radicals proposed by Fedors. [Table 1] Atom/Base--- Aei (cal/m〇n Δνί (cm3/mol) -^H&lt; 820 -1.0 -ch2. 1 1 Q〇16.1 -- XS ·,Τ Τ'--- 1,125 33.5 - Ring - 250 16 Base 7,630 71.4 In the 'resin layer (B), the thermoplastic resin (1), and the non-compatible with it, the plastic resin (H), respectively, may be a single resin, or For example, it may contain: one type of thermoplastic resin (1_1), and two kinds of thermoplastic resins (ΙΜ) and (π_2) which are incompatible with each other. In addition, it contains 100125072 15 201213129 ' ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (II-2) A combination of two or more types. However, from the viewpoint of the effect that the arithmetic mean (four) degree (sa) of the surface of the resin layer (8) is 0.5/mi or more, the thermoplastic resin (1) and the non-phase are different therefrom. The dissolved thermoplastic resin (11), in other words, the amount of the resin contained in the combination of the absolute value of the sp value of 0·3 3.0 (cal/cm) is preferably the total amount of the constituent resin layer (8). 70 f% or more of the fat, more preferably 8% by mass or more, more preferably 90% by mass or more. Further, the thermoplastic resin (I), and the thermoplastic resin which is incompatible with it (II) From the viewpoint of the effect of forming a dispersed phase from the stability and roughening the surface of the resin layer (B), it is preferably 6〇: 4〇~9〇: 1〇, or 4〇: 60~ 10: 90, of which 70: 30~80 is preferred: 2〇, or 3〇: 7〇~2〇: 80 ° However, because of the thermoplastic resin (1) and the thermoplastic resin (π), which one will become The mother phase or the dispersed phase differs, and the effect of roughening the surface of the resin layer is the same. (Additional property imparting) By using an amorphous resin having a glass transition temperature (JISK7121, Tg) of 85 to 150 ° C as one of the resins constituting the resin layer (B), a kind of a matrix resin is preferable. The thermoplastic resin (1) or (II) can also impart heat resistance to the present reflective material. 100125072 16 201213129 = The resin of the outer resin layer (8) refers to a resin which is preferably 20% by mass or more, more preferably 3 Å by mass or more, based on the stalk of the sap (8). As mentioned above, the term "amorphous resin" as used herein means that no exothermic peak derived from crystallization is observed or, even if observed, the crystal melting heat is extremely low below _. Resin. The amorphous resin is stable in the temperature below the glass transition point, and the temperature is small, the core is small, and the dimensional stability is excellent. Therefore, the amorphous resin can be highly reflective. Heat resistance. Therefore, as long as the glass transition temperature (10) of the thermoplastic resin (1) is such as a liquid crystal display device, the resin is sufficient, and therefore, the matrix resin is preferably sufficient. From this point of view, the glass transition temperature (Tg) of the matrix resin of the resin layer (B) is more preferably 9 Gt or more and _ or less, more preferably 150 ° C or less. Examples of such an amorphous resin include a ring-type flue-cured resin, a polystyrene, a polycarbide, a C-based resin, an amorphous poly-lipid, a poly-cageimide, and a thermoplastic H-based material. The t-t is considered to be a ring-like resin, a polystyrene, or a poly-carbonate by considering the extensibility and the transparency of the surface transition temperature range. Among them, ___ is particularly preferable. Here, the cycloolefin resin of the tree layer (B) may be any of a cycloolefin homopolymer, 100125072 17 201213129 cycloolefin copolymer. , Bu Jikou month% thin 1 series resin" main chain is composed of carbon-carbon bond structure, the main chain to two:. The boring tool has a polymer compound having a structure of a hydrocarbon. The cyclic hydrocarbon structure is characterized in that at least a hydrocarbon bis-compound (cycloaliphatic hydrocarbon) is contained as a monomer in a cyclic hydrocarbon structure represented by a finely divided or tetracyclododecene. &quot;% olefinic resin can be classified as: addition of cyclamate (8) polymer or its hydride's addition copolymer with hydrocarbon or its hydride, ring % K, (co)polymerization The body or its hydride can be used in the present reflective material. Specific examples of the cycloolefin-based resin include, for example, cyclopentene, cyclohexene, and octene octene; cyclopentadiene, 1,3-cyclohexanedicyclic monocyclic cycloolefin; bicyclo [(1)] g -2_ene (commonly known as: norbornene), 5_mercaptobicyclo[2.2.1]hept-2-ene, 5,5-dimercapto-double soil [2.2.1]heptane-2·ene, 5 -ethyl-bicyclo[2.2.1]hept-2-ene, 5-butyl-double soil [2.2.1]hept-2-ene, 5-ethylene-bicyclo[2 21]hept-2-ene , 5-hexyl-double soil [2.2.1] hept-2-ene, 5-octyl-bicyclo[2.2.1]hept-2-ene, 5-octadecyl-bicyclo[2.2.1]heptane- 2-ene, 5-indenyl-bicyclo[2.2.1]hept-2-ene, 5-vinyl-bicyclo[2.2.1]hept-2-ene, 5-propenyl-bicyclo[2.2.1] a bicyclic cycloolefin such as hept-2-ene; tricyclo[4.3.0.12,5]indole-3,7-diene (commonly known as dicyclopentadiene), tricyclo[4.3.0.12,5]癸-3 - alkene; tricyclo[4.4.0.12,5]undeccarbon-3,7-diene or tricyclo[4.4.0.12,5]undec-3,8-diene, or partial hydrogenation a tricyclic ring of an object (or an adduct of cyclopentadiene and cyclohexene) [4.4.〇.12,5]undec-3-100125072 18 201213129 olefin; 5-cyclopentyl-bicyclo[2.2.1 Hept-2-ene, 5-cyclohexylbicyclo[2.21]hept_2 a tricyclic cycloalkene such as a olefin, a 5-cyclohexenylbicyclo[2.2.1]hept-2-ene or a 5-phenyl-bicyclo[2 21]heptanene; a tetracyclic ring [4.4.0.12, 5.17,10]Dodecaine·3_ene (also referred to as “tetracyclododecene”), 8-methyltetracyclo[4.4.0.12, 5.17,10] twelve carbon_3_lean, 8_B Tetracyclic [4.4.0.12, 5.17, 10] dodec-3-ene, 8-adenine tetracyclo[4.4.0.12, 5.17,10]dodecyl_3_ene, 8_ethylenetetracyclo[ 4.4.0.12, 5.17, 10] dodec-3-ene, 8-vinyltetracyclo[4,4.0.12,5.17,10]dodec-3-ene,8·propenyltetracyclo[4.4.0.12 , 5.17, 10] 12-carbon _3_ thin four-ring ring rare furnace. 8-cyclopentyl-tetracyclic [4.4.0.12, 5.17, 10] twelve carbon _3_ thin, 8-cyclohexyl _ tetracyclo[4·4.0.12, 5.17,10]dodecy-3-ene, 8-cyclohexenyl·tetracyclo[4.4.0.12,5.17,10]dodec-3-ene, 8_ Phenyl-cyclopentyl-tetracyclo[4.4.0.12, 5.17,10]dodec-3-ene; tetracyclo[7.4.13,6.〇1,9.〇2,7]tetradec-4 , 9,11,13-tetraene (also known as "Μ_亚曱基'仏, ~tetrahydro"), tetracyclic [8.4.14,7.01,10.03,8]15 carbon-5,10,12 , 14_tetraene (also known as "1,4_ arylene-l, 4, 4a,5,10,l〇a-hexahydropurine"); five $ [6.6.1·13,6.02,7·09,14]_4-ten [6.5.1.13,6.02,7.09,13]-4- Ten [7.4.0.02,7.13,6·110,13]-4-ten [8.7.0.12,9.14,7.111,17.03,8.012 [8.7.0.12,9.03,8.14,7.012,17.113 carbene, pentacyclopentene , five-ring, five-carbon thin; seven-ring 16]-5-廿 carbon thin, seven-ring 100125072 19 201213129 tetramer and other polycyclic cycloolefins, etc. These ring-thin flue gases can be used alone or in combination with cyclic olefins Two or more kinds of U are copolymerized. Specific examples of the olefins include, for example, .7 @ propylene, I-butadiene, "pentane, hexene, 3, ethylene, pentene, 3-ethyl-1-pentene, butene , 3-methyl-; u dimethyl - 4: _: yl - ^ - hexaplode, octane, hexacarbene, 1-octadecene-nene, "tetradecene, 1_10 W, Ethylene, etc., such as carbon number, 2 to 2G, preferably carbon number, etc., such as hydrocarbons, more than planting, cyclopentene or cycloaliphatic hydrocarbons. Known party of the material = the resin of the polymer or higher, the temperature is shifted from the viewpoint of heat resistance, and it is particularly preferably 85 Å or more and 15 (cyclohexane resin of rc or less). The glass transition temperature (Tg) of the mixed resin is adjusted to be in the above range by mixing and mixing the above-mentioned % smog resin. The commercially available product can be used as the cycloaliphatic resin. For example, Japan River (10) "ZE0N0R (registered trademark)" (chemical name, olefin of cyclic olefin (four) hydride), and "Apel" (registered trademark K and four-cyclododecaene) by Mitsui Chemicals Co., Ltd. Copolymer), or polyplastic company "TOPAS (registered trademark)" (Ethylene Hydroxide and Coordinating Addition Copolymer), etc. 100125072 201213129 "When using ZEONOR (registered trademark)" (chemical name 'cyclic olefin" manufactured by 曰本ΖΕΟΝ The occluded polymer of the open-loop polymer, and/or the "TOPAS (registered trademark)" (additional copolymer of ethylene and rice-lowering) of Polyplastics Co., Ltd., can be obtained from reflective materials with high reflection properties. Further, when the cycloolefin is a copolymer of an olefin and a olefin, the content of the decene is preferably 60 to 9 Å by weight, particularly preferably 65 to 8% by weight or less. The amorphous resin (in the case of an amorphous resin containing two or more components, the total amount thereof) is preferably at least % by mass or more based on the total mass of the resin layer (B). 70% by mass or more, particularly preferably 9 () f% or more (excluding 100%). As described above, when the matrix resin of the resin layer (8) [for example, the thermoplastic resin (1)] is used, the glass shift temperature is 85 to 15 generations_ Xiao, if it is added to improve the resistance of the material, other tree pastes such as heat and hard resin are preferred. The resin layer (8) can be formed by, for example, dispersing a resin layer (8) by mixing an olefin resin and/or a thermo-recordable elastomer other than the cycloaliphatic resin in a cycloolefin (tetra) resin, thereby ensuring a separate ring. The heat resistance which cannot be obtained by the olefin (4) and the heat resistance which cannot be obtained by the monohydrocarbon resin. At this time, the olefin resin other than the cycloolefin resin and/or the melt flow material of the plastic elastomer (called " Legs"), more than (four), or less than 2 inches (dish, boots, load 2U8N), especially better w 100125072 21 201213129 or more, or less than 1 。. Further, the MFR of the 'ring-smoke-type resin is preferably adjusted to the above range. If the MFR is adjusted according to this, the olefin resin and/or the heat-resistant hard body other than the ring_pure fat will be cut by the __ grease towel, and there will be no extreme mechanical properties for the reverse (four). In particular, it is a problem of deterioration, and it is particularly preferable that the vinylene sulfonate other than the cycloolefin resin may be a polyethylene such as a poly-olefin or a propylene-ethylene copolymer, or a polyethylene having a low-density polyethylene. : Lake 曰 4 Ethylene, high density: acetal resin, etc., can be used 兮笙-type, or a combination of more than two kinds of * H Hai special, polypropylene resin (four), from the bright point is better to gather Vinyl resin (IV) Excellent, mechanical properties such as elastic modulus, ethylene resin (IV) and heat resistant 'ene resin (PP). The viewpoint of Minnan's which is especially good for gathering, from extrusion molding (4) (9) Jiajun MFR (23 (TC 21.18ν) α Λ 丙烯 acrylic resin (rushing), compared with, ·, U.1~2〇, Teweijia is 0.5~5 polypropylene resin (rushing). Maji.2~10, among which Yiyang 々ιΑ) (δ) is dense with the resin layer (Α). . For example, the olefinic elastomer, the urethane olefin elastomer, the 曰 辉 辉 * 性 、 、 、 印 印 热 热 热 热 热 热 热 热 热 热 热 热 热One type or a combination of A ® lanthanum elastomers or the like can be used in one or more kinds. Drawing 2,072 ', 'Because the stupid B 22 201213129 olefinic elastomer is compatible with the olefin resin and the special polypropylene resin, so from the viewpoint of improving the adhesion between the resin layer (A) and the resin layer (B) Preferably. The styrene-based elastic system may, for example, be a copolymer of styrene and a conjugated diene such as butadiene or isoprene, and/or a hydrogenated product thereof. The styrene-based elastomer has styrene as a hard segment, and the conjugated diene is regarded as a block copolymer of a soft segment, and since a sulfur addition step is not required, it is preferred. Further, the heat stability of the hydrogenated person is preferably higher. Preferred examples of the styrene-based elastomer include styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, and styrene-ethylene-butene. a styrene block copolymer, a styrene-ethylene-propylene-styrene block copolymer. Among them, a styrene-ethylene-butylene-styrene block copolymer and a styrene-ethylene-propylene-styrene block copolymer which are hydrogenated to eliminate a double bond of a common diene component are preferably used (also referred to as " Hydrogenated styrene elastomer"). (Micronized filler) The resin layer (B) may be added before the arithmetic mean roughness (Sa) of the ternary surface roughness is 0.5/rni or more, and may also contain a fine powder filler. The type, particle diameter and surface treatment method of the fine powder filler are the same as those described in the resin layer (A), and preferred examples are also the same. (Other components) The resin layer (B) may also contain an antioxidant, a light stabilizer, a heat stabilizer, and a purple 100125072 23 201213129 external absorbent, a fluorescent whitening agent, a slip agent, and other additives. In addition, if a compatibilizer, a dispersant, a diffusion bead, etc. are blended, it is difficult to adjust the arithmetic mean rough degree (4) of the three-dimensional surface rough seam to a desired range, and thus basically in the resin layer (B) Do not mix these, but if it is a small amount, it can be blended. (Form of the resin layer (B)) The resin layer (8) may be a layer composed of a sheet, and may be a layer formed by applying a thin resin (not forming a sheet) to the molten resin composition. . In the case of a sheet, the sheet system may be an unstretched film, or may be a uniaxial or biaxially stretched film, preferably an extended film obtained by extending at least one direction in a uniaxial direction, preferably a double shaft. Extend the film. &lt;Laminar structure&gt; The present F-object is required to have a laminated structure in which a resin layer (8) and a resin layer (9) are provided. The hunting structure is such a structure that the resin layer (4) can be provided with reflectivity, and (4) the bending resistance and the like are enhanced, and the resin layer can be highly diffused. The present reflective material can be multiplied by the interaction of the resin layers (4) and (8) to achieve excellent reflectivity. Further, by selecting the resin of the resin layer (8), it is possible to impart heat resistance, and it is possible to impart heat resistance and workability while exhibiting higher reflectivity. Therefore, in such a laminated structure, the resin layer (8) is preferably located on the outermost side of the side on which the light is irradiated (on the side of the reflective use surface). By adopting such a configuration, it is possible to impart high reflectivity to the reflective material at 100125072 24 201213129. In addition, as another laminated structure, for example, a three-layer laminated structure in which a resin layer (B) is provided on both sides of the resin layer (A) can be mentioned. Further, in addition to the resin layer (A) and the resin layer (B), another layer may be provided, and another layer may be interposed between the resin layer (A) and the resin layer (B). For example, an adhesive layer may be interposed between the resin layer (A) and the resin layer (B). &lt;Thickness&gt; The thickness of the present reflective material is not particularly limited, but is preferably, for example, 30 μm to 1500/xm, and particularly preferably 50 μm to l〇〇〇jum in consideration of the handleability of the practical surface. For example, when it is used as a reflecting material for a liquid crystal display, the thickness is preferably 50 μm to 700 μm, and the thickness is preferably ΙΟΟμηι to l〇〇〇pm when used as a reflecting material for lighting fixtures and lighting panels. It can also be seen from the results of the examples described later that even if the resin layer is thin, the heat resistance of the entire reflective material can be improved. On the other hand, if the resin layer is too thick, it causes a financial bending. Reduced sex. . From this point of view, the resin layer (eight) and

&lt;平均反射率&gt; 本反射材係至少單面的平均反射率,&lt;Average reflectance&gt; The present reflective material is an average reflectance of at least one side,

可設定為對波長 反射材 100125072 25 201213129 便可呈良㈣反射雜,組料較料 可實現畫面的充分亮度。 日日頌示器等 &lt;空隙率&gt; 本反射材為提高反射性而在樹脂層(A) 層,而關於樹脂層(A)的空隙率,當利用正 空隙的 空隙率係以構成樹脂層⑷的薄膜為對象,^^成空隙時’ 空隙率(%)={(延伸前的薄膜密度_ ^下式求取。 伸前的薄膜密度}&gt;&lt;100 I專膜密度)/延 &lt;耐折強度&gt; 次以上 本反射材可使依下述試驗方法所Μ的耐折強度達_ 此時的試驗方法係使用ΜΙΤ耐曲折疲答 狡劳试驗機,對經切 斷成長l〇cm、寬l〇mm的試料施加9 # 何重,在往復彎折 速度175rpm、振動角左右135。條件下 卜’測定直到斷裂為止 的彎折次數。 &lt;製造方法&gt; 本反射材的製造方法並無特別的限制,可採用公知方法。 以下,針對具備積層構造的反射材之製造方法,舉一例進行 說明,惟並不僅侷限於下述製造方法。 首先’製作在稀fe系樹脂等之中’視必要經摻合入微粉狀 填充劑、其他添加劑等的樹脂組成物A。具體而言,在主成 分的稀fe糸樹脂中視必要添加微粉狀填充劑等,經利用帶狀 100125072 26 201213129 摻合機、轉鼓、亨舍爾攪拌機(Henschel mixer)等進行混合 後,再使用班㈣混合機(Bunburymixer)、單轴或雙== 機等’在樹脂⑫點以上的溫度(例如19(rc〜27〇D進行混 練,藉此便可獲得樹脂組成物A。或者,藉由將缔煙系樹脂、 微粉狀填充劑等利用各自的進料器等添加既定量,便可奸 樹脂組成物A。又,預先將微粉狀填充劑、其他添加劑^ 激度摻合入烯烴系樹脂中而製作所謂的母料,再將該母料: =樹脂進行私,亦可形成所需妓的樹脂組成物A I 方面’在環稀烴系樹脂等非晶性樹脂中,視必要換入 =:及/或熱可™、其他添加劑,: /或熱可塑性+ 添加烯«樹腊及 轉鼓、亨舍二其=r:利用帶狀摻合機、 單轴或雙軸擠出機等;Υ後,再使用班布瑞混合機、 細。C〜戰)進行1在树腊炫點以上的溫度(例如 環婦烴系樹脂、埽&quot;樹^可獲得樹脂組成物Β。或者,將 自的進料器等添加既定旦或熱可塑性彈性體等利用各 先將稀烴_及/或二r獲得樹脂組成㈣。又,預 等高濃度摻合人”作;、Μ其他抗氧化劑 系樹脂、烯烴系樹脂:科’再將該母料、與環烯烴 形成所__一物^塑性彈性體進行混合,亦可 J00125072 27 201213129 其次’使依如下述所獲得樹脂組成物A及b乾燥後,分 別供應給其他的擠出機’分別加熱至既定溫度以上而使、熔 融。 擠出溫度等條件’需要考慮因分解所導致分子量降低等因 素再行設定’例如較佳係樹脂組成物A的擠出溫度為 190C〜270°C ’樹脂組成物b的擠出溫度為220°C〜28(TC。 然後,使熔融的樹脂組成物A及樹脂組成物B合流於2 種3層用T型模頭,再從τ型模頭的狹縫狀吐出口擠出呈 積層狀,經冷卻輥使其密接固化便形成澆鑄片。 所獲得澆鑄片較佳係至少朝單軸方向延伸。藉由施行延 伸,樹脂層(A)内部的烯烴系樹脂與微粉狀填充劑的界面便 會剝離而形成空隙,而進行薄片的白化,便可提高薄膜的光 反射性。又,澆鑄片特佳係朝雙軸方向延伸。僅施行單軸延 伸所开&gt;成的空隙僅能成為朝一方向延伸的纖維狀形態,但藉 由施行雙軸延伸,該空隙便成為朝縱橫二方向延伸,而形成 圓盤狀形態。 即’藉由施行雙軸延伸,樹脂層㈧内部的婦烴系樹脂、 與微粉狀填充劑間之界面的剝離面積便會增加,而更加進行 薄片的白化,結果便可更加提高薄膜的光反射性。又,因為 若施行雙軸延伸,則薄膜收縮方向的異向性會變少,因而可 使薄膜提升耐熱性’且亦可増加薄膜的機械強度。 延伸洗鑄片時的延伸溫度,較佳係樹脂層⑻的非晶性樹 100125072 28 201213129 月曰之玻璃轉移溫度(Tg)以上、且(Tg+5or、 衫以下之範圍内的 溫度。 若延伸溫度達玻_移溫度(了伽上,纽料可於不合 使薄膜斷裂情況下安定地進行。X,若延伸溫度録 (Tg+50°C)以下的溫度,因為延料向會提高,結果導致空 隙率變大,因而較容易獲得高反射性薄膜。 雙軸延伸的延伸順序並㈣制限制,例如同步雙轴延伸 與逐-人延伸均無妨。可使用延伸設備施行溶融製膜後,利用 輥延伸朝薄膜的牵引方向(MD)施行延伸後,利用拉幅延伸 朝MD的正交方向(TD)施行延伸,亦可利用輥筒延伸等施行 雙軸延伸。施行雙軸延伸時的延伸倍率,較佳係施行面積倍 率達6倍以上的延伸。藉由施行面積倍率達6倍以上的延 伸’便會有可實現由樹脂層(A)與樹脂層(B)所構成之反射薄 膜整體的空隙率達40%以上之情況。 經延伸後’為能對反射薄膜賦予尺寸安定性(空隙的形態 安定性),較佳係施行熱固定。對薄膜施行熱固定的處理溫 度,較佳係110°C〜170°C。熱固定所需要的處理時間,較佳 係1秒〜3分鐘。又’關於延伸設備等並無特別的限定’較 佳係施行在延伸後可進行熱固定處理的拉幅延伸。 &lt;用途&gt; 本反射材係可直接使用為反射材,亦可將本反射材形成積 層於金屬板或樹脂板上的構造而使用,可有效使用為例如液 100125072 29 201213129 曰曰顯不裔等液晶顯示裝置、照明器具、照明看板等所使用的 反射板。 此時’積層本反射材的金屬板係可舉例如:銘板、不錄鋼 板、鍍鋅鋼板等。 在金屬板或樹脂板上積層本反射材的方法,可舉例如:使 接著背j的方法、未使用接著劑而施行熱溶接的方法、經由 接著性4片進行接著的方法、擠出並塗佈的方法等。惟,並 不僅侷限於該等方法。 更具體而言,在金屬板或樹脂板(統稱「金屬板等」)貼合 反射材之側的面上,塗佈聚酯系、聚胺甲酸酯系、環氧系等 接著劑,便可貼合反射材。 •该方法係使用反向輥式塗佈機、輕觸輥式塗佈機等一般所 使用的塗佈設備’在使反射材貼合的金屬板等之表面上,依 乾燥後的接著劑膜厚成為2μιη〜4μιη左右之方式塗佈接著 劑。 接著,利用紅外線加熱器與熱風加熱爐施行塗佈面的乾燥 與加熱,在將金屬板等的表面保持於既定溫度情況下,立即 使用親貼面壓機被覆反射材,經冷卻,便可獲得反射板。 就本反射材的用途而言,係可有效使用為液晶顯示器等液 晶顯示裝置、照明器具、照明看板等所使用的反射構件。 一般液晶顯示器係由:液晶面板、偏光反射片、擴散片、 導光板、反射片、光源、光源反射器等構成。 100125072 30 201213129 本反射材亦可使用為具有使來自光源的光能效率良好地 入射至液晶面板或導光板之作用的反射材,亦可使用為具有 使來自邊緣部所配置光源的照射光進行聚光並入射至導光 板之作用的光源反射器。 &lt;用語說明&gt; 一般所謂「薄膜」係指相較於長度與寬度之下,厚度極小, 最大厚度任意限定的薄扁平製品,通常係依捲筒形式進行供 應(日本工業規格JISK6900),而一般所謂「薄片」係指就 JIS的定義上,薄而且一般其厚度遠小於長度與寬度的扁平 製品。但是,薄片與薄膜的界線並無確定,本發明中,因為 在文句上並不需要區分二者,因而本發明中,稱「薄膜」的 情況亦涵蓋「薄片」,而稱「薄片」的情況亦涵蓋「薄膜」。 再者,本說明書中記載為「主成分」時,在無特別聲明的 前提下,係涵蓋在不妨礙該主成分機能的範圍内,容許含有 其他成分的涵義。此時,該主成分的含有比例並無特定,但 主成分(當以2成分以上為主成分的情況,便為該等的合計 量)係佔組成物中的50質量%以上、較佳係70質量%以上、 特佳係90質量%以上(含100%)。 本發明中,當記載為「X〜Y」(X、Y係任意數字)時,在 無特別聲明的前提下,係涵蓋「X以上且Y以下」的涵義, 以及「較佳為大於X」及「較佳為小於Y」的涵義。 再者,本發明中,當記載為「X以上」(X係任意數字)的 100125072 31 201213129 情況,在無特別聲明的前提了,係涵蓋「較佳為大於χ」的 涵義’當記載為「Υ以下」(Υ係任意數字)的情況,在無特 別聲明的前提下,係涵蓋「較佳小於Υ」的涵義。 &lt;實施例&gt; 以下例示實施例,針對本發明進行更具體說明,惟本發明 並不僅侷限於該等’舉凡在不背離本發明技術思想的範嘴内 均可進行各種應用。 &lt;測定及評估方法&gt; 首先’針對依實施例、比較例所獲得之樣品的各種物性值 之測定方法及評估方法進行說明。以下’將薄膜的牽引(流 動)方向稱「MD」,將其正交方向稱「TD」。 机 (空隙率) 測定延伸制賴密度(記為「未延伸薄卿度」)、 伸後的薄膜密度(記為「延伸薄臈密度」),並代入下弋〃、 取薄膜的空隙率(%)。 工而求 空隙率W=«未延伸薄膜密度-延伸薄膜密度)/未 膜密度}X100 94 (平均反射率) 在分光光度計(「⑽圖」,日立製作所(股)製)中安 分球,橫跨波長420麵〜700腿,依〇.5nm間隔測定將氣 紹白板設4 100%時的反射率。計算所獲得測定值的 值,並將該值視為平均反射率(%)。 二 100125072 32 201213129 (反射材的起皺評估) 對模擬20吋型TV的背光單元構造(參照圖1)之SUS板, 依在SUS板與反射材間不會有間隙的方式黏貼反射材(樣 品)’投入80°C熱風爐.中。經3小時後取出,冷卻至室溫。 然後’測定SUS板與反射材間的距離(反射材對SUS板起敏 多少mm)。 (耐折強度) 使用MIT耐曲折疲勞試驗機,將由實施例與比較例所製 作的樣品切斷成長1 〇cm、寬10mm,施加9·8N荷重,在往 復彎折速度175rpm、振動角左右135。條件下,測定直到斷 裂為止的彎折次數。 (二次元表面粗糙度的算術平均粗糖度(sa)) 利用下述裝置、條件,觀察反射材(樣品)的表面(樹脂層 B)’並針對所獲得影像進行解析,並計算算術平均粗糙度(以 下己為Sa」)。另外,進行計算時係根據JIS Β〇6〇ι : 。 裝置 .電子束三次元粗糙度解析裝置「ERA-4000」 (ELIONIX公司製) 蒸鍍條件 :lOmAxlOOsec、Pt-Pd 蒸鑛 加速電壓 :10kV 觀察倍率 :250 倍 解析區域 • 360(μιη)χ480(μηι) (光擴散性) 100125072 33 201213129 利用下述的裝置與條件,測定反射材(樣品)的反射光強 度,並代入下式,計算出正反射成分與擴散反射成分的強度 比0 反射成分強度比〇^2(-5度〜5度的反射光強度):(25度〜35 度的反射光強度) 反射成分強度比/3=Σ(55度〜65度的反射光強度)/Σ(25度 〜35度的反射光強度) 裝置:自動變角光度計「GP-1R型」(村上色彩技術研究 所公司製) 光源:_素燈 光束光圈孔徑:10.5mm 受光光圈孔徑:4.5mm 光入射方向:薄膜的TD 光入射角:-30度 反射光的受光測定範圍:-30度〜90度 測定間隔:1度 上述反射成分強度比ce與/3係依照下述評估基準進行光擴 散性的評估。其中,符號「〇」與「△」係屬於實用水準以 上。 =評估基準= 「〇」:反射成分強度比〇:與/3均達0.5以上 「△」:反射成分強度比a或中任一者達0.5以上 100125072 34 201213129 x」:反射成分強度比Of與0均未滿0.5 &lt;實施例1&gt; (樹脂層(A)的樹脂組成物a之製作) 將聚丙烯樹脂(日本聚丙烯股份有限公司叙、商品名 「NOVATEC PP FY6HA」、密度(JISK7112) : 0.9g/cm3、 MFR(230°C、21.18N、JISK-7210) : 2.4g/10min)的顆粒、與 氧化鈦(KR0N0S公司製、商品名「KRONOS2230」、密度 4.2g/cm3、金紅石型氧化鈦、Al,Si表面處理、Ti02含有量 96.0%、製造法:氯法),依50的質量比例進行混合後, 使用加熱至270°C的雙軸擠出機施行顆粒化,便製得樹脂組 成物A。 (樹脂層(B)的樹脂組成物B之製作) 將非晶性環烯烴系樹脂A(日本ΖΕΟΝ股份有限公司製、 商品名「ZEONOR 1430R」、密度(ASTMD792): 1.01g/cm3、 玻璃轉移溫度Tg(JISK7121) : 133°C、SP值:7.4)的顆粒、 與非晶性環烯烴系樹脂B(曰本ΖΕΟΝ股份有限公司製、商 品名「ZEONOR1060R」、密度(ASTMD792) : 1.01g/cm3、 MFR(230°C、21,18N、JISK-7210): 14g/10min、玻璃轉移溫 度Tg(JISK7121) : 100°C、SP值:7.4)的顆粒、以及聚丙烯 樹脂(曰本聚丙烯股份有限公司製、商品名「NOVATEC PPEA9」、密度(JISK7112): 0.9g/cm3、MFR(230°C、21·18Ν、 JISK-7210) : 0.5g/10min、SP 值:8.0)的顆粒,依 50 : 25 : 100125072 35 201213129 25的質量比例進行混合後,使用經加熱至230¾的雙軸擠出 機施行顆粒化,便製得樹脂組成物B。 (反射材之製作) 將上述樹脂組成物A、B分別供應給經加熱至200。(3、Can be set to the wavelength of the reflective material 100125072 25 201213129 can be good (four) reflection miscellaneous, the material is expected to achieve sufficient brightness of the picture. Daily display, etc. &lt;void ratio&gt; The present reflective material is in the resin layer (A) layer for improving the reflectivity, and the void ratio of the resin layer (A) is used to form the resin by using the void ratio of the positive void. The film of the layer (4) is a target, and when the void is formed, the void ratio (%) = {(film density before stretching _ ^ is obtained by the following formula: film density before stretching} &gt;&lt; 100 I film density) / Extension &lt;Fold-resistant strength&gt; The above-mentioned reflective material can achieve the folding strength according to the following test method. The test method at this time is to use the ΜΙΤ 曲 曲 疲 疲 狡 狡 狡 试验 test machine The sample which grows l〇cm and the width l〇mm is applied with 9 # heavy, and the reciprocating bending speed is 175 rpm and the vibration angle is about 135. Under the conditions, the number of bends until the break was measured. &lt;Manufacturing Method&gt; The method for producing the present reflective material is not particularly limited, and a known method can be employed. Hereinafter, a method of manufacturing a reflective material having a laminated structure will be described as an example, but it is not limited to the following manufacturing method. First, a resin composition A which is blended into a fine powder filler or other additives as necessary in a rare-fee resin or the like is prepared. Specifically, a fine powder filler or the like is added to the rare-component resin of the main component, and the mixture is mixed by a belt-shaped 100125072 26 201213129 blender, a drum, a Henschel mixer, or the like. Use a class (4) mixer (Bunburymixer), uniaxial or double == machine, etc. at a temperature of 12 or more points of the resin (for example, 19 (rc~27〇D), the resin composition A can be obtained. By adding a certain amount of the flue-curable resin, the fine powder filler, or the like to each of the feeders or the like, the resin composition A can be smeared. Further, the micronized filler and other additives are blended in advance. In the olefin-based resin, a so-called masterbatch is prepared, and the masterbatch is: = the resin is allowed to be private, and the resin composition AI in which the desired ruthenium is formed. Change =: and / or thermal TM, other additives,: / or thermoplastic + add ene «tree wax and drum, Henshe two = r: using ribbon blender, uniaxial or biaxial extrusion Machine, etc.; then, use the Banbury mixer, fine. C ~ war) to carry out 1 in the tree wax dazzle The above temperature (for example, a hydrocarbon-based resin, 埽&quot; tree can be obtained as a resin composition. Alternatively, a predetermined or a thermoplastic elastomer can be added from a feeder or the like to each of the first hydrocarbons _ and / Or two r to obtain the resin composition (4). In addition, the pre-equal concentration of the blended human"; Μ other antioxidant-based resin, olefin-based resin: Branch 'the masterbatch, and the formation of cycloolefins __ one ^ The plastic elastomer may be mixed, or J00125072 27 201213129. Next, the resin compositions A and b obtained as follows are dried, and then supplied to other extruders, respectively, to be heated to a predetermined temperature or higher, and melted. Conditions such as temperature 'need to be considered in consideration of factors such as molecular weight decrease due to decomposition', for example, the extrusion temperature of the preferred resin composition A is 190 C to 270 ° C. The extrusion temperature of the resin composition b is 220 ° C. 28 (TC) Then, the molten resin composition A and the resin composition B are combined in two types of three-layer T-die, and are extruded from the slit-shaped discharge port of the τ-type die in a layered form, and are cooled. The roll is bonded to form a cast sheet. Preferably, the cast sheet is extended at least in a uniaxial direction. By stretching, the interface between the olefin resin and the fine powder filler in the resin layer (A) is peeled off to form a void, and the sheet is whitened. The light reflection property of the film can be improved. Further, the cast piece is preferably extended in the biaxial direction. Only the uniaxial stretching is performed, and the formed void can only be a fibrous form extending in one direction, but by performing a double axis When the gap is extended, the gap is formed in a direction perpendicular to the longitudinal direction and the transverse direction to form a disk-shaped form. That is, the peeling area of the interface between the hydrocarbon resin and the fine powder filler in the resin layer (8) by biaxial stretching is performed. It will increase, and the whitening of the sheet will be further improved, and as a result, the light reflectivity of the film can be further improved. Further, when biaxial stretching is performed, the anisotropy in the film shrinkage direction is reduced, so that the film can be improved in heat resistance and the mechanical strength of the film can be increased. The elongation temperature at the time of extending the cast piece is preferably a temperature at which the glass transition temperature (Tg) of the amorphous tree of the resin layer (8) is 100125072 28 201213129, and (Tg+5or, the temperature within the range of the shirt. The temperature reaches the glass-shift temperature (the gamma is applied, and the material can be stably carried out without breaking the film. X, if the temperature is below the temperature (Tg+50°C), the elongation will increase, the result As a result, the void ratio becomes large, so that it is easier to obtain a highly reflective film. The extension sequence of the biaxial stretching is limited by the (4) system, for example, the simultaneous biaxial stretching and the person-by-human extension are possible. The stretching device can be used to perform the melt filming and use. After the roller extension is extended in the pulling direction (MD) of the film, the stretching is performed in the orthogonal direction (TD) of the MD by the tenter stretching, and the biaxial stretching may be performed by the extension of the roller or the like. The stretching ratio when performing the biaxial stretching is performed. Preferably, the extension of the area magnification is 6 times or more. By performing the extension of the area magnification of 6 times or more, the reflective film composed of the resin layer (A) and the resin layer (B) can be realized as a whole. Void ratio 40% or more. After the extension, in order to impart dimensional stability to the reflective film (the shape stability of the void), it is preferred to perform heat fixation. The treatment temperature for heat-fixing the film is preferably 110 ° C. 170 ° C. The treatment time required for heat setting is preferably from 1 second to 3 minutes. Further, 'there is no particular limitation on the stretching device or the like' is preferably performed by stretching the tenter which can be thermally fixed after stretching. &lt;Application&gt; The present reflective material can be used as a reflective material as it is, and the present reflective material can be used to form a structure laminated on a metal plate or a resin plate, and can be effectively used as, for example, a liquid 100125072 29 201213129 A reflecting plate used for a liquid crystal display device, a lighting fixture, a lighting panel, etc. At this time, the metal plate of the laminated reflecting material may be, for example, a name plate, a non-recorded steel plate, a galvanized steel plate, or the like. The method of laminating the present reflective material may, for example, be a method of subsequently bonding the back j, a method of performing thermal fusion without using an adhesive, a method of performing the subsequent bonding via four sheets of the adhesive, and a method of extrusion and coating. In addition, it is not limited to these methods. More specifically, a polyester or polyurethane is coated on the side of the metal plate or resin plate (collectively referred to as "metal plate or the like") to which the reflective material is bonded. An adhesive such as an acid ester or an epoxy resin can be used to bond a reflective material. • This method uses a coating device such as a reverse roll coater or a light touch roll coater to make a reflection. On the surface of the metal plate to which the material is bonded, the adhesive is applied so that the thickness of the adhesive film after drying is about 2 μm to 4 μm. Next, drying and heating of the coated surface are performed by an infrared heater and a hot air heating furnace. When the surface of the metal plate or the like is maintained at a predetermined temperature, the reflective material is immediately coated with a surface-contacting press, and after cooling, a reflecting plate can be obtained. In the use of the present reflective material, a reflective member used for a liquid crystal display device such as a liquid crystal display, a lighting fixture, a lighting panel, or the like can be effectively used. Generally, a liquid crystal display is composed of a liquid crystal panel, a polarizing reflection sheet, a diffusion sheet, a light guide plate, a reflection sheet, a light source, a light source reflector, and the like. 100125072 30 201213129 The present reflective material can also be used as a reflective material having an effect of efficiently inputting light from a light source to a liquid crystal panel or a light guide plate, or can be used to condense light from a light source disposed at an edge portion. Light is incident on the light source reflector that acts on the light guide plate. &lt;Explanation of Terms&gt; Generally, the term "film" refers to a thin flat product having a very small thickness and a maximum thickness as compared with the length and the width, and is usually supplied in the form of a reel (Japanese Industrial Standard JISK6900). Generally, "slice" refers to a flat article which is thin and generally has a thickness much smaller than the length and width in terms of JIS. However, the boundary between the sheet and the film is not determined. In the present invention, since it is not necessary to distinguish between the two in the sentence, in the present invention, the case of "film" also covers "sheet", and the case of "sheet" is called. Also covers "film". In addition, when it is described as "main component" in this specification, unless otherwise stated, the meaning of the other component is allowed to be included in the range that does not impede the function of the main component. In this case, the content ratio of the main component is not specified, but the main component (in the case where the two components or more are the main components, the total amount thereof) is 50% by mass or more, preferably in the composition. 70% by mass or more, and particularly preferably 90% by mass or more (including 100%). In the present invention, when it is described as "X to Y" (X, Y is an arbitrary number), the meaning of "X or more and Y or less" and "better than X" are included unless otherwise stated. And the meaning of "preferably less than Y". In the present invention, in the case of 100125072 31 201213129, which is described as "X or more" (X-type arbitrary number), the meaning of "better than χ" is included in the case of no special statement. In the case of the following ("any number"), the meaning of "better than Υ" is covered unless otherwise stated. &lt;Examples&gt; The following examples are given to illustrate the present invention, but the present invention is not limited to the above, and various applications can be made without departing from the technical idea of the present invention. &lt;Measurement and Evaluation Method&gt; First, the measurement methods and evaluation methods of various physical property values of the samples obtained in the examples and comparative examples will be described. Hereinafter, the direction of the traction (flow) of the film is referred to as "MD", and the direction of the orthogonal direction is referred to as "TD". Machine (void ratio) Measure the density of the extension (denoted as "unstretched thinness"), the density of the film after stretching (denoted as "extended thinness density"), and substitute it into the lower jaw to obtain the porosity of the film ( %). The void ratio W = «unstretched film density - stretched film density" / unfilmed density} X100 94 (average reflectance) In the spectrophotometer ("(10) map", manufactured by Hitachi, Ltd.) Between the wavelengths of 420 and 700 legs, the reflectivity of the gas-whiteboard was set at 4 100%. The value of the obtained measured value is calculated and regarded as the average reflectance (%). (2) Ref. ) 'Invest in a hot air oven at 80 ° C. After 3 hours, it was taken out and cooled to room temperature. Then, the distance between the SUS plate and the reflective material was measured (how many mm the reflective material became sensitive to the SUS plate). (Fightening strength) The samples prepared in the examples and the comparative examples were cut to a length of 1 〇cm and a width of 10 mm by a MIT flexural fatigue tester, and a load of 9·8 N was applied, and the reciprocating bending speed was 175 rpm and the vibration angle was about 135. . Under the conditions, the number of bends until the breakage was measured. (Arithmetic mean coarse sugar (sa) of the surface roughness of the secondary element) The surface (resin layer B) of the reflective material (sample) was observed by the following apparatus and conditions, and the obtained image was analyzed, and the arithmetic mean roughness was calculated. (The following is Sa). In addition, the calculation is based on JIS Β〇6〇ι : . Device. Electron beam three-dimensional roughness analysis device "ERA-4000" (manufactured by ELIONIX) Evaporation conditions: lOmAxlOOsec, Pt-Pd evaporation acceleration voltage: 10kV Observation magnification: 250 times analysis area • 360 (μιη) χ 480 (μηι (Light diffusibility) 100125072 33 201213129 The reflected light intensity of the reflective material (sample) is measured by the following apparatus and conditions, and the intensity ratio of the specular reflection component to the diffuse reflection component is calculated by substituting the following equation: 〇^2 (reflected light intensity of -5 degrees to 5 degrees): (reflected light intensity of 25 degrees to 35 degrees) Reflected component intensity ratio /3 = Σ (reflected light intensity of 55 degrees to 65 degrees) / Σ (25 Light intensity of ~35 degrees) Device: Automatic variable angle photometer "GP-1R type" (Murata Color Technology Research Co., Ltd.) Light source: _ plain lamp beam aperture: 10.5mm Light aperture: 4.5mm Direction: TD light incident angle of film: -30 degree reflected light receiving range: -30 degrees to 90 degrees Measurement interval: 1 degree The above-mentioned reflected component intensity ratio ce and /3 are light diffused according to the following evaluation criteria. Evaluation. Among them, the symbols "〇" and "△" are above the practical level. = evaluation standard = "〇": the intensity ratio of the reflection component 〇: and /3 are both 0.5 or more "△": the intensity ratio of the reflection component is a or 0.5 or more. 100125072 34 201213129 x": the intensity ratio of the reflection component is Hof and 0 is less than 0.5 &lt;Example 1&gt; (Preparation of resin composition a of resin layer (A)) Polypropylene resin (Nippon Polypropylene Co., Ltd., trade name "NOVATEC PP FY6HA", density (JISK7112) : 0.9 g/cm3, MFR (230 ° C, 21.18 N, JISK-7210): 2.4 g/10 min), and titanium oxide (KR0N0S company, trade name "KRONOS 2230", density 4.2 g/cm3, rutile Type of titanium oxide, Al, Si surface treatment, TiO2 content: 96.0%, production method: chlorine method), mixing at a mass ratio of 50, and then pelletizing using a twin-screw extruder heated to 270 ° C Resin composition A was obtained. (Production of Resin Composition B of Resin Layer (B)) Amorphous cycloolefin resin A (trade name "ZEONOR 1430R", density (ASTMD792): 1.01 g/cm3, glass transfer) Temperature Tg (JISK7121): 133 ° C, SP value: 7.4), and amorphous cycloolefin resin B (manufactured by Sakamoto Co., Ltd., trade name "ZEONOR 1060R", density (ASTMD792): 1.01 g/ Cm3, MFR (230 ° C, 21, 18 N, JISK-7210): 14 g/10 min, glass transition temperature Tg (JISK7121): 100 ° C, SP value: 7.4) particles, and polypropylene resin (曰本polypropylene Co., Ltd., product name "NOVATEC PPEA9", density (JISK7112): 0.9g/cm3, MFR (230°C, 21·18Ν, JISK-7210): 0.5g/10min, SP value: 8.0) After mixing at a mass ratio of 50:25:100125072 35 201213129 25, granulation was carried out using a twin-screw extruder heated to 2,303⁄4 to obtain a resin composition B. (Production of Reflective Material) The above resin compositions A and B were respectively supplied and heated to 200. (3,

230°C的擠出機A及B,並在各擠出機中於200¾與230〇C 施行炼融混練後,使其合流於2種3層用T型模頭中,並 依成為樹脂層(B)/樹脂層(A)/樹脂層(B)的3層構造之方式擠 出成薄片狀,經冷卻固化,便形成積層薄片。 將所獲得積層薄片於溫度130°C朝MD施行2倍親延伸 後’再於130°C朝TD施行3倍拉幅延伸,藉此而施行雙軸 延伸,便獲得厚225μιη(樹脂層(A) : 185μηι、樹脂層(b): 20μπι、積層比A : B=4.6 : 1)的反射材(樣品)。 針對所獲得反射材,施行空隙率、平均反射率、反射材起 皺、以及耐折強度的評估。 另外,關於空隙率,針對樹脂層(Α)施行評估。即,將樹 脂組成物Α供應給擠出機A,依照上述操作獲得僅有樹脂 層(A)的單層薄臈(厚Ι85μιη),並施行評估。 &lt;實施例2&gt; 除在實施例1的樹脂組成物Β之製作中,將非晶性環烯 烴系樹脂Α(曰本ΖΕΟΝ股份有限公司製、商品名「ZEONOR 1430R」、SP值:7.4)的顆粒、與聚丙烯樹脂(日本聚丙烯股 份有限公司製、商品名「NOVATEC ΡΡΕΑ9」、SP值:8.0) 100125072 36 201213129 的顆粒,依75 : 25的質量比例進行混合,以及在實施例i 的反射材之製作中’將所獲得積層薄片於溫度138。〇朝M]D 施行2倍輥延伸,再於丨“^朝TD施行3倍拉幅延伸,藉 此而施行雙軸延伸之外,其餘均與實施例i同樣地獲得厚 228μηι(樹脂層(A) : ΐ9〇μιη、樹脂層(B) : 19/mi、積層比 a : B=5: 1)的反射材(樣品)。針對所獲得反射材施行與實施例1 同樣的評估。 &lt;實施例3&gt; (樹脂層(A)的樹脂組成物a之製作) 將聚丙烯樹脂(日本聚丙烯股份有限公司製、商品名 「NOVATEC PP FY6HA」、密度(JISK7112) : 〇.9g/cm3、 MFR(230 C、21.18N、JISK-7210) : 2.4g/10min、SP 值:8.0) 的顆粒、以及氧化鈦(KR〇N〇s公司製、商品名 「KRONOS2230」、密度4.2g/cm3、金紅石型氧化鈇、Al,Si 表面處理、Ti〇2含有量96.0%、製造法:氣法),依50 : 50 的質量比例進行混合後,使用加熱至270。〇的雙轴擠出機施 行顆粒化’便製得樹脂組成物A。 (樹脂層(B)的樹脂組成物b之製作) 將非晶性環烯烴系樹脂C(日本ΖΕΟΝ股份有限公司製、 商品名「ZEONORRCY50」、環狀烯烴的開環聚合體之氫化 物、密度(IS01183) : l.〇lg/cm3、MFR(23(TC、21.18Ν、 JISK7210: 1.2g/10min、玻璃轉移溫度 Tg(JISK7121): 127°C、 100125072 37 201213129 3?值:7.4)的顆粒、與非晶性環烯烴系樹脂扒日本2£〇]^ 股份有限公司製、商品名「ZEONOR 1060R」、環狀烯烴的 開環聚合體之氫化物、密度(IS01183) : 1.01g/cm3、 MFR(230°C、21.18N、JISK7210) : 12g/10min、玻璃轉移溫 度Tg(JISK7121) : 10(TC、SP值:7,4)的顆粒、以及聚丙埽 樹脂(日本聚丙烯股份有限公司製、商品名「NOVATEC Pp ΕΑ9」、密度(JISK7112) : 〇.9g/cm3、MFR(230°C、21.18Ν、 JISK-7210) : 0_5g/10min、SP 值:8.0)的顆粒,依 50 : 25 : 25的質量比例進行混合後,使用經加熱至23(TC的雙韩擠出 機施行顆粒化,便製得樹脂組成物B。 (反射材之製作) 將上述樹脂組成物A、B分別供應給經加熱至2〇〇。(2、 230°C的擠出機A及B,並在各擠出機中於200。(:與230¾ 施行熔融混練後,使其合流於2種3層用T型模頭中,並 層構造之方式擠 依成為樹脂層(B)/樹脂層(A)/樹脂層(B)的3 出成薄片狀,經冷卻固化,便形成積層薄片。 將所獲得積層薄片於溫度130°C朝MD施行2倍觀延伸 後’再於130°C朝TD施行3倍拉幅延伸,藉此而施行雙幸由 延伸’便獲得厚225μηι(樹脂層(A) : 191卿、樹脂層(B). 17/mi、積層比a : B=5.6 : 1)的反射材(樣品)。 針對所獲得反射材,施行與實施例1同樣的評估。 算術平均粗糙度(Sa)及光擴散性的評估。 且施行 100125072 38 201213129 &lt;實施例4&gt; (樹脂層(A)的樹脂組成物a之製作) 將聚丙烯樹脂(曰本聚丙烯股份有限公司製、商品名 「NOVATEC PP FY6HA」、密度(JISK7112) : 0.9g/cm3、 MFR(230°C、21.18N、JISK-7210) : 2.4g/10min、SP 值:8.0) 的顆粒、與氧化鈦(KRONOS公司製、商品名 「KRONOS2230」、密度4.2g/cm3、金紅石型氧化欽、A1,si 表面處理、Ti〇2含有量96.0%、製造法:氣法),依5〇 : 5〇 的質量比例進行混合後,使用加熱至270°C的雙軸擠出機施 行顆粒化,便製得樹脂組成物A。 (樹脂層(B)的樹脂組成物B之製作)Extruders A and B at 230 ° C, and smelting and kneading at 2003⁄4 and 230 〇C in each extruder, and then merging them into two 3-layer T-dies, and forming a resin layer (B) / The resin layer (A) / the resin layer (B) has a three-layer structure and is extruded into a sheet shape, and is solidified by cooling to form a laminated sheet. The obtained laminated sheet was stretched 2 times at a temperature of 130 ° C toward the MD, and then stretched 3 times at 130 ° C toward the TD, thereby performing biaxial stretching to obtain a thickness of 225 μm (resin layer (A). : 185 μm, resin layer (b): 20 μm, laminate ratio A: B = 4.6 : 1) of the reflective material (sample). For the obtained reflective material, void ratio, average reflectance, wrinkle of the reflective material, and evaluation of the folding strength were performed. In addition, regarding the void ratio, evaluation was performed on the resin layer (Α). Namely, the resin composition Α was supplied to the extruder A, and a single-layer thin enamel (thickness μ 85 μm) of only the resin layer (A) was obtained in accordance with the above operation, and evaluation was performed. &lt;Example 2&gt; In addition to the production of the resin composition of Example 1, an amorphous cycloolefin resin (manufactured by Sakamoto Co., Ltd., trade name "ZEONOR 1430R", SP value: 7.4) was used. The granules and the granules of the polypropylene resin (manufactured by Nippon Polypropylene Co., Ltd., trade name "NOVATEC ΡΡΕΑ9", SP value: 8.0) 100125072 36 201213129 are mixed at a mass ratio of 75:25, and in the example i In the fabrication of the reflective material, the obtained laminated sheet is at a temperature of 138. The M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M A): 反射9〇μηη, resin layer (B): 19/mi, laminate ratio a: B=5: 1) Reflective material (sample). The same evaluation as in Example 1 was performed on the obtained reflective material. Example 3&gt; (Preparation of resin composition a of resin layer (A)) Polypropylene resin (product name "NOVATEC PP FY6HA", density (JISK7112): 〇.9g/cm3, MFR (230 C, 21.18N, JISK-7210): 2.4 g/10 min, SP value: 8.0), and titanium oxide (KR〇N〇s company, trade name "KRONOS 2230", density 4.2 g/cm3, Rutile-type cerium oxide, Al, Si surface treatment, Ti〇2 content: 96.0%, production method: gas method), mixed at a mass ratio of 50:50, and then heated to 270. Resin composition A was obtained by performing granulation on a crucible biaxial extruder. (Preparation of the resin composition b of the resin layer (B)) Amorphous cycloolefin resin C (manufactured by Nippon Steel Co., Ltd., trade name "ZEONORRCY50", hydrogenated product of a ring-opening polymer of a cyclic olefin, density (IS01183) : l. 〇 lg / cm3, MFR (23 (TC, 21.18 Ν, JISK7210: 1.2g/10min, glass transition temperature Tg (JISK7121): 127 ° C, 100125072 37 201213129 3? value: 7.4) particles Manufactured under the trade name "ZEONOR 1060R", a hydride of a ring-opening polymer of a cyclic olefin, and a density (IS01183): 1.01 g/cm3, which is made of a non-crystalline cycloolefin resin, manufactured by Japan Co., Ltd. MFR (230 ° C, 21.18 N, JIS K7210): 12 g/10 min, glass transition temperature Tg (JISK7121): 10 (TC, SP value: 7, 4) particles, and polypropylene resin (made by Nippon Polypropylene Co., Ltd.) Product name "NOVATEC Pp ΕΑ9", density (JISK7112): 〇.9g/cm3, MFR (230°C, 21.18Ν, JISK-7210): 0_5g/10min, SP value: 8.0), according to 50: 25 After the mass ratio of 25 was mixed, the resin composition B was obtained by performing granulation using a twin Han extruder heated to 23 (TC). (Production of Reflective Material) The above resin compositions A and B were respectively supplied to an extruder 2 and B which were heated to 2 Å (2, 230 ° C, and 200 in each extruder). After melt-kneading with 2303⁄4, it is combined into two 3-layer T-dies, and is layered to form a resin layer (B) / resin layer (A) / resin layer (B) In the form of flakes, after cooling and solidification, a laminated sheet is formed. The obtained laminated sheet is stretched 2 times toward the MD at a temperature of 130 ° C, and then stretched by 3 times at 130 ° C toward the TD, thereby performing the lamination. Double-fortunately obtained a reflective material (sample) of thickness 225μηι (resin layer (A): 191 qing, resin layer (B). 17/mi, laminate ratio a: B = 5.6: 1). The material was subjected to the same evaluation as in Example 1. Evaluation of arithmetic mean roughness (Sa) and light diffusibility. Further, 100125072 38 201213129 &lt;Example 4&gt; (Production of resin composition a of resin layer (A)) Polypropylene resin (trade name "NOVATEC PP FY6HA", density (JISK7112): 0.9 g/cm3, MFR (230 °C) , 21.18N, JISK-7210): 2.4 g/10 min, SP value: 8.0) particles, and titanium oxide (KRONOS company, trade name "KRONOS 2230", density 4.2 g/cm3, rutile oxide, A1, Si surface treatment, Ti〇2 content: 96.0%, production method: gas method), mixing at a mass ratio of 5〇: 5〇, and then granulating using a twin-screw extruder heated to 270°C. Resin composition A was obtained. (Production of Resin Composition B of Resin Layer (B))

將苯乙烯系共聚物(東洋苯乙烯公司製、商品名「Τ〇8〇」、 苯乙烯-曱基丙烯酸共聚物、密度(IS01183) : l.〇7ctn3、玻璃 轉移溫度 Tg(JISK-7121) : 123。(:、MFR(200°C、49N、 JISK-7210) : 1.7g/10min、SP 值:1〇·6)的顆粒、與聚丙烯樹 脂(曰本聚丙烯股份有限公司製、商品名r NO VATEC PP FY6HA」、密度(JISK7112) : 〇.9g/cm3、MFR(230°C、21.18N、 JISK-7210) : 2.4g/10min、SP 值:8·0)的顆粒,依 75 : 25 的 質量比例進行混合後’使用經加熱至230°C的雙軸擠出機施 行顆粒化,便製得樹脂組成物B。 (反射材之製作) 將上述樹脂組成物A、B分別供應給經加熱至20(TC、 100125072 39 201213129 230°C的擠出機A及B,並在各擠出機中於200°C與230¾ 施行熔融混練後,使其合流於2種3層用T型模頭_,並 依成為樹脂層(B)/樹脂層(A)/樹脂層(B)的3層構造之方式擠 出成薄片狀,經冷卻固化,便形成積層薄片。 將所獲得積層薄片於溫度130°C朝MD施行2倍輥延伸 後,再於130。(:朝TD施行3倍拉幅延伸,藉此而施行雙轴 延伸,便獲得厚225/im(樹脂層A: 191/mi、樹脂層Β: Ι7μηι、 積層比A : B=5.6 : 1)的反射材(樣品)。 針對所獲得反射材,施行與實施例1同樣的評估。 針對實施例1〜4的反射材’將空隙率、平均反射率、起皺、 及耐折強度的結果示於表2。又,針對實施例3與4的反射 材,將SP值的絕對值差、Sa、反射成分強度比、及光擴散 性的結果示於表3。 [表2] 實施例 [表3] 2 空隙率(%) 6\ 63 60 平均反射率(%) 99.70 99.80 98.90 起皺 以下 耐折強度(次) &gt; 1000 &gt; 1000 &gt; 1000 57 98.50 實施例 SP值差 Sa 反射成分強/ (cal/cm3)0·5 (μπι) 強度比α 強&gt;5 3 0.6 0.85 0.94 0 4 2.6 5.5 0.83 0 〇·6〇 &gt; 1000 :b 光擴散性 ) 〇 $ — 〇 值在0.3〜3.0(eal/em3)G_5範圍内的2種樹脂,便可使表面粗 100125072 40 201213129 糙度(Sa)成為〇.5μπι以上’且可顯現出高光擴散性。 再者,就從sp值的差之絕對值、與表面粗糙度(Sa)間之 相關關係觀之,得知摻合樹脂的SP值之絕對值差會對表面 粗糙度(Sa)構成影響。又,得知關於摻合樹脂,在考慮sp 值的差之絕對值之情況下,選擇所摻合的樹脂,藉此便可提 升耐熱性與财彎折性。 其次’關於本反射材的樹脂層B,為確認藉由使用sp值 的絕對值差在特定範圍内之摻合樹脂,而設計成特定表面粗 才造度(Sa),便可顯現出光擴散性,便施行如下述實驗(參照參 考例1與2)。 &lt;參考例1&gt; (樹脂層B的樹脂組成物B之製作) 將非晶性環稀烴系樹脂C(日本ΖΕΟΝ股份有限公司製、 商品名「ZEONORRCY50」、SP值:7.4)的顆粒、與非晶性 環烯烴系樹脂Β(曰本ΖΕΟΝ股份有限公司製、商品名 「2丑〇期11 1060尺」、3?值:7.4)的顆粒,依67:33的質量 比例進行混合後,使用經加熱至2 3 0 ΐ的雙軸擠出機施行顆 粒化,便製得樹脂組成物Β。 (雙軸延伸薄片之製作) 將上述樹脂組成物Β供應給經加熱至230。(:的擠出機,經 在擠出機中於230°C施行熔融混練後,從τ型模頭擠出成薄 片狀,經冷卻固化而形成薄片。將所獲得薄片於溫度13(rc 100125072 41 201213129 朝MD施行2倍輥延伸後,再於13〇。〇朝τΒ施行3倍拉幅 延伸’藉此而施行雙軸延伸,便獲得厚18〇j[im的雙軸延伸 薄片。 針對所獲得雙軸延伸薄片如同實施例3,施行算術平均粗 糙度(Sa)與光擴散性的評估。 &lt;參考例2 &gt; (樹脂層B的樹脂組成物B之製作) 直接將苯乙烯系共聚物(東洋苯乙烯公司製、商品名 「丁080」、8?值:10.6)的顆粒當作樹脂組成物3。 (反射材之製作) 將上述樹脂組成物B依加熱溫度190°C、沖壓壓力2MPa、 加壓時間10分鐘、冷卻時間15分鐘的條件施行沖壓成形, 獲得厚180/xm的壓製薄片(樣品)。 針對所獲得壓製薄片施行與參考例1同樣的評估。 針對參考例1與2的薄片’將sp值的絕對值差、Sa、反 射成分強度比、及光擴散性之結果示於表4。 [表4]Styrene-based copolymer (manufactured by Toyo Styrene Co., Ltd., trade name "Τ〇8〇", styrene-methacrylic acid copolymer, density (IS01183): l.〇7ctn3, glass transition temperature Tg (JISK-7121) : 123. (:, MFR (200 ° C, 49 N, JISK-7210): 1.7 g/10 min, SP value: 1 〇 · 6) granules, and polypropylene resin (manufactured by Sakamoto Polypropylene Co., Ltd., Name r NO VATEC PP FY6HA", density (JISK7112): 〇.9g/cm3, MFR (230°C, 21.18N, JISK-7210): 2.4g/10min, SP value: 8·0), according to 75 : After the mass ratio of 25 is mixed, the granules are obtained by using a twin-screw extruder heated to 230 ° C to obtain a resin composition B. (Production of a reflective material) The above resin compositions A and B are respectively supplied. Extruder A and B heated to 20 (TC, 100125072 39 201213129 230 °C, and melt-kneaded at 200 ° C and 2303⁄4 in each extruder, and then combined into two 3 layers for T The die _ is extruded into a sheet form in a three-layer structure of the resin layer (B) / the resin layer (A) / the resin layer (B), and is solidified by cooling to form a laminated sheet. The laminated sheet was obtained by performing a 2-fold roll extension to the MD at a temperature of 130 ° C, and then at 130. (: 3 times stretching was performed toward the TD, thereby performing biaxial stretching to obtain a thickness of 225 / im (resin layer A) : 191/mi, resin layer Β: Ι7μηι, laminate ratio A: B = 5.6 : 1) of the reflective material (sample). The same evaluation as in Example 1 was carried out for the obtained reflective material. For Examples 1 to 4 The results of the void ratio, the average reflectance, the wrinkle, and the folding strength of the reflecting material are shown in Table 2. Further, with respect to the reflecting materials of Examples 3 and 4, the absolute value difference of the SP value, Sa, and the intensity of the reflecting component were obtained. The results of the ratio and the light diffusibility are shown in Table 3. [Table 2] Example [Table 3] 2 Void ratio (%) 6\ 63 60 Average reflectance (%) 99.70 99.80 98.90 Wrinkle below the folding strength (times) &gt; 1000 &gt; 1000 &gt; 1000 57 98.50 Example SP value difference Sa reflection component strong / (cal / cm3) 0 · 5 (μπι) intensity ratio α strong &gt; 5 3 0.6 0.85 0.94 0 4 2.6 5.5 0.83 0 〇·6〇&gt; 1000 :b Light diffusivity) 〇$ — Two kinds of resins with a 〇 value of 0.3 to 3.0 (eal/em3)G_5 can make the surface coarser 100 125072 40 201213129 The roughness (Sa) becomes 〇.5 μπι or more and the high light diffusibility can be exhibited. Further, from the relationship between the absolute value of the difference in sp value and the surface roughness (Sa), it is understood that the absolute value difference of the SP value of the blended resin affects the surface roughness (Sa). Further, it has been found that with respect to the blended resin, in consideration of the absolute value of the difference in the sp value, the blended resin is selected, whereby the heat resistance and the financial bending property can be improved. Next, 'the resin layer B of the present reflective material is designed to have a specific surface roughness (Sa) by using a blended resin having a specific value of the sp value in a specific range, thereby exhibiting light diffusibility. Then, the following experiment was carried out (refer to Reference Examples 1 and 2). &lt;Reference Example 1&gt; (Production of Resin Composition B of Resin Layer B) A pellet of an amorphous cycloaliphatic resin C (manufactured by Nippon Steel Co., Ltd., trade name "ZEONORRCY 50", SP value: 7.4), After mixing with a non-crystalline cycloolefin resin (manufactured by Sakamoto Co., Ltd., trade name "2 ugly period 11 1060 ft", 3 valence: 7.4), the granules are mixed at a mass ratio of 67:33. The resin composition was prepared by granulation using a twin-screw extruder heated to 2,300 Torr. (Production of Biaxially Stretched Sheet) The above resin composition Β was supplied to be heated to 230. The (: extruder) was melt-kneaded at 230 ° C in an extruder, extruded into a sheet shape from a τ-type die, and solidified by cooling to form a sheet. The obtained sheet was at a temperature of 13 (rc 100125072). 41 201213129 After the 2x roll extension of the MD, and then 13 〇. 3 Β Β 3 3 times stretcher extension 'by this biaxial extension, you get a thickness of 18 〇 j [im biaxially extended sheet. The biaxially stretched sheet was obtained, and the arithmetic mean roughness (Sa) and the light diffusibility were evaluated as in Example 3. <Reference Example 2 &gt; (Preparation of Resin Composition B Resin Composition B) Directly styrene copolymerization A pellet of the product (trade name "Ding 080", 8: value: 10.6) was used as the resin composition 3. (Production of Reflective Material) The resin composition B was pressed at a heating temperature of 190 ° C. Pressing was carried out under the conditions of a pressure of 2 MPa, a pressurization time of 10 minutes, and a cooling time of 15 minutes to obtain a pressed sheet (sample) having a thickness of 180/xm. The same evaluation as in Reference Example 1 was carried out on the obtained pressed sheet. 2 sheets 'the absolute value difference of the sp value, Sa Reflection component intensity ratio, and the result of the light diffusion are shown in Table 4. [Table 4]

SP值差 (cal/cm3)0'5 Sa (μπι) 反射成分強度比 光擴散性 強度比Of 強度比iS 參考例 1 0 0.41 0 0 X 2 0 0.61 0.16 0.25 X 參考例1與2係假設將本反射材的樹脂層(B)設為非摻合 樹脂的情況,該等情況因為係屬於單體樹脂,因而SP值無 差,由表4所示反射成分強度比亦確認到並沒有顯現出光擴 100125072 42 201213129 散性。 故,得知為使本反射材的樹脂層(B)顯現出光擴散性,必 須利用摻合樹脂使樹脂層(B)的表面粗糙度(Sa)成為0.5μιη • 以上。 * 【圖式簡單說明】 圖1係用於說明實施例所實施之起皺評估方法的圖。 100125072 43SP value difference (cal/cm3) 0'5 Sa (μπι) Reflected component intensity ratio light diffusivity intensity ratio Of intensity ratio iS Reference example 1 0 0.41 0 0 X 2 0 0.61 0.16 0.25 X Reference examples 1 and 2 are assumed The resin layer (B) of the present reflective material was set to be a non-blended resin. Since these were specific to the monomer resin, the SP value was not deteriorated, and the intensity ratio of the reflected component shown in Table 4 was also confirmed to show no light. Expansion 100125072 42 201213129 Diversification. Therefore, it has been found that the resin layer (B) of the present reflecting material exhibits light diffusibility, and the surface roughness (Sa) of the resin layer (B) must be 0.5 μm or more by the blending resin. * BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view for explaining a wrinkle evaluation method carried out in the embodiment. 100125072 43

Claims (1)

201213129 七、申請專利範圍: 1. 一種反射材,係在内部具有空隙的樹脂層(A)之至少單 面’具備有溶解度參數(SP值)不同的2種以上熱可塑性樹脂 之樹脂層(B);其中, 樹月曰層(B)係利用溶解度參數(sp值)不同的熱可塑性樹脂 之組合’使三次元表面粗縫度的算術平均粗糙度(Sa)成為 0.5μιη 以上。 2. —種反射材,係在内部具有空隙的樹脂層(Α)之至少單 面’具備含有溶解度參數(sp值)的絕對值差為 〇·3〜S.OM/cm3)0·5之2種以上熱可塑性樹脂的樹脂層⑻。 3. 如申請專利範圍第2項之反射材,其中,溶解度參數(Sp 值)的絕對值差為0.3〜S.C^cal/cm3)0·5之2種以上熱可塑性樹 脂’係佔構成樹脂層(B)的樹脂整體之7〇質量%以上。 4. 如申請專利範圍第1至3項中任一項之反射材,其中, 構成樹脂層(B)的樹脂之至少一種,係玻璃轉移溫度 (JISK7121)為85〜15〇t:的非晶性樹脂。 5. 如申請專利範圍第4項之反射材,其中,上述非晶性樹 脂係環烯烴系樹脂。 6. 如申請專利範圍第1至5項中任一項之反射材,其中, 樹脂層(A)係含有微粉狀填充劑。 7. 如申請專利範圍第1至6項中任一項之反射材,其中, 樹脂層(A)的空隙率係2〇%以上且70%以下。 100125072 44 201213129 8. 如申請專利範圍第1至7項中任一項之反射材,其中, 樹脂層(A)係含有烯烴系樹脂。 9. 如申請專利範圍第1至8項中任一項之反射材,其中, 樹脂層(B)係位於作為反射材之反射使用面的最外層。 10. 如申請專利範圍第1至9項中任一項之反射材,其中, 樹脂層(A)與樹脂層(B)的各層合計厚度比係(A) : (B)=3 : 1〜15 : 1 。 11. 如申請專利範圍第1至10項中任一項之反射材,係使 用為液晶顯示器、照明器具、或照明看板的構成構件。 100125072 45201213129 VII. Patent application scope: 1. A reflective material having at least one side of a resin layer (A) having a void therein, and having a resin layer of two or more thermoplastic resins having different solubility parameters (SP values) (B) In the case where the tree layer (B) is a combination of thermoplastic resins having different solubility parameters (sp values), the arithmetic mean roughness (Sa) of the three-dimensional surface roughness is 0.5 μm or more. 2. A reflective material having at least one side of a resin layer having a void therein, having an absolute value difference containing a solubility parameter (sp value) of 〇·3 to S.OM/cm 3 ) 0·5 Two or more resin layers (8) of thermoplastic resin. 3. In the case of the reflective material of claim 2, the absolute difference in solubility parameter (Sp value) is 0.3 to SC^cal/cm3). The two or more thermoplastic resins are composed of the resin layer. The total amount of the resin of (B) is 7 〇 mass% or more. 4. The reflective material according to any one of claims 1 to 3, wherein at least one of the resins constituting the resin layer (B) is amorphous having a glass transition temperature (JISK7121) of 85 to 15 〇t: Resin. 5. The reflective material according to claim 4, wherein the amorphous resin is a cycloolefin resin. 6. The reflective material according to any one of claims 1 to 5, wherein the resin layer (A) contains a fine powder filler. 7. The reflective material according to any one of claims 1 to 6, wherein the resin layer (A) has a porosity of 2% or more and 70% or less. The reflective material according to any one of the first to seventh aspects of the present invention, wherein the resin layer (A) contains an olefin resin. 9. The reflective material according to any one of claims 1 to 8, wherein the resin layer (B) is located at the outermost layer as a reflective use surface of the reflective material. 10. The reflective material according to any one of claims 1 to 9, wherein the total thickness ratio of each of the resin layer (A) and the resin layer (B) is (A): (B) = 3 : 1~ 15 : 1 . 11. The reflective material according to any one of claims 1 to 10, which is used as a constituent member of a liquid crystal display, a lighting fixture, or a lighting kanban. 100125072 45
TW100125072A 2010-07-16 2011-07-15 Reflective material TWI482706B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010161446 2010-07-16
JP2011002741 2011-01-11

Publications (2)

Publication Number Publication Date
TW201213129A true TW201213129A (en) 2012-04-01
TWI482706B TWI482706B (en) 2015-05-01

Family

ID=45469453

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100125072A TWI482706B (en) 2010-07-16 2011-07-15 Reflective material

Country Status (5)

Country Link
JP (1) JP5739255B2 (en)
KR (1) KR101455542B1 (en)
CN (1) CN103003067B (en)
TW (1) TWI482706B (en)
WO (1) WO2012008456A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6356408B2 (en) * 2013-11-05 2018-07-11 住友化学株式会社 Method for producing laminated optical film
CN104406083A (en) * 2014-10-15 2015-03-11 巢湖市金鼎盛电子灯饰有限公司 Novel flexible neon tube lamp
CN107615109B (en) * 2015-07-21 2020-05-08 东丽株式会社 White reflective film
KR101673848B1 (en) * 2016-05-12 2016-11-08 인스엘이디 주식회사 High illumination reflector and led light apparatus with the same
CN109975902A (en) * 2017-12-27 2019-07-05 宁波长阳科技股份有限公司 A kind of liquid crystal display reflectance coating

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688339B2 (en) * 2000-04-26 2011-05-25 株式会社ユポ・コーポレーション Light reflector
EP1760498B1 (en) * 2004-05-31 2012-11-28 Yupo Corporation Light reflector and surface light source device using the same
JP4933060B2 (en) * 2004-05-31 2012-05-16 株式会社ユポ・コーポレーション Light reflector and surface light source device using the same
US20100104883A1 (en) * 2007-03-29 2010-04-29 Mitsubishi Plastics, Inc. Aliphatic polyester series resin composition, aliphatic polyester series film, reflective film and reflective plate
JP2009013384A (en) * 2007-07-09 2009-01-22 Nippon Paint Co Ltd Easily slipable anti-blocking photocurable resin composition, anti-blocking structure with the same coated and cured on base material, and method of manufacturing the same
WO2009096261A1 (en) * 2008-02-01 2009-08-06 Sumitomo Chemical Company, Limited Light-diffusing laminated resin film and manufacturing method thereof, and antiglare film, antiglare polarization plate, and image display device
JP2010241005A (en) * 2009-04-07 2010-10-28 Mitsubishi Plastics Inc White laminated cycloolefin-based resin reflecting material
JP2011118088A (en) * 2009-12-02 2011-06-16 Konica Minolta Opto Inc Long polarizing plate and liquid crystal display device

Also Published As

Publication number Publication date
JP5739255B2 (en) 2015-06-24
KR20130043652A (en) 2013-04-30
JP2012158167A (en) 2012-08-23
TWI482706B (en) 2015-05-01
CN103003067B (en) 2015-03-04
CN103003067A (en) 2013-03-27
KR101455542B1 (en) 2014-10-27
WO2012008456A1 (en) 2012-01-19

Similar Documents

Publication Publication Date Title
TWI441862B (en) Reflective material
TW200927802A (en) White film and surface light source using the same
TW201213129A (en) Reflective material
JP6424474B2 (en) Reflective film, liquid crystal display device comprising the same, lighting device, decorative article
JP6072754B2 (en) Reflective material
TW201338976A (en) Reflective material
TWI551922B (en) Reflective material
JP6459951B2 (en) Reflective film, and liquid crystal display device, lighting device, and decorative article comprising the same
JP2020166260A (en) Reflector
JP2013083792A (en) Reflective material
JP2013148607A (en) Reflector
JP2024054898A (en) Reflective Film
JP2019117225A (en) Reflective material
JP2019061162A (en) Reflector
WO2020196760A1 (en) Reflecting material
TW202043043A (en) Reflecting material
JP2020011430A (en) Reflector
JP2021149060A (en) Reflector
JP2020060671A (en) Reflector
JP2013148605A (en) Reflector
JP2012096494A (en) Reflector