TW201030385A - Light reflector and planar light source device using the same - Google Patents

Light reflector and planar light source device using the same Download PDF

Info

Publication number
TW201030385A
TW201030385A TW098141388A TW98141388A TW201030385A TW 201030385 A TW201030385 A TW 201030385A TW 098141388 A TW098141388 A TW 098141388A TW 98141388 A TW98141388 A TW 98141388A TW 201030385 A TW201030385 A TW 201030385A
Authority
TW
Taiwan
Prior art keywords
layer
light reflector
light
filler
brightness
Prior art date
Application number
TW098141388A
Other languages
Chinese (zh)
Other versions
TWI495907B (en
Inventor
Yousuke Hiroi
Takahiko Ueda
Original Assignee
Yupo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yupo Corp filed Critical Yupo Corp
Publication of TW201030385A publication Critical patent/TW201030385A/en
Application granted granted Critical
Publication of TWI495907B publication Critical patent/TWI495907B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a light reflector formed by a layered film having a structure obtained by layering: a brightness increasing layer (II) formed by a single-axis drawn film containing a thermoplastic resin and filler; and a reflection layer (I) formed by a two-axis drawn film containing a thermoplastic resin and filler. The brightness increasing layer (II) has a reflection coefficient in the range from 60 to 100%. The surface of the light reflector at the reflection layer (I) side has a reflection coefficient in the range from 98 to 100% and a relative brightness value in the range from 106 to 115 cd/m2.

Description

201030385 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種用於面光源裝置之反射板、反射器、 以及作為各種照明器具中所使用之光反射用之構件而有用 . 的光反射體。又,本發明係關於一種使用該光反射體之面 光源裝置。 【先前技術】 配置有内置式光源之背光型液晶顯示器正得到廣泛普 • 及。背光型内置光源之中,直下式背光之典型性之構成如 圖6所示般,其包含發揮構造體兼光反射體之作用之外殼 11、擴散板14、以及冷陰極燈15等之光源。側光式背光之 典型性之構成如圖7所示般,其包含於透明之壓克力板 上進行過網點印刷12之導光板’光反射體u,擴散板14, 以及冷陰極燈15、16等之光源。該等均為利用光反射體使 來自光源之光反射’並藉由擴散板形成均勻面狀之光者。 先前,於背光用途之光反射體中較多使用白色聚酯薄膜 ^ (例如曰本專利特開平4-239540號公報)。但是,於使用有聚 酯薄膜之光反射體之情形時,存在因近年來之燈光量之增 加、以及由來自燈之熱所引起之環境溫度之高溫化,而導 - 致光反射體之色調之變化(黃變)成為問題的情況,故而業界 尋求一種變色更少之素材。 因此,近年來提出有使用了白色聚烯烴薄膜之光反射體 (例如曰本專利特開平6_298957號公報、日本專利特開 2002-31704號公報),進而提出有使用了色調之變化較少之 145063.doc 201030385 白色聚烯烴薄膜的光反射體(例如曰本專利特開平8_2622〇8 號公報、曰本專利特開2003-176367號公報)。但是,最近, 液晶顯示器等顯示物之節能化之要求變高,業界正謀求光 源燈之低輸出化或光源燈數量之減少等之改善。伴隨該動 向’對於先前之白色聚酯薄膜或白色聚烯烴薄膜而言亮 度等光學特性變得不充分。因此,業界正尋求一種亮度更 高且反射率更高之光反射體。 先前’為了提高光反射體之亮度,已知只要藉由如下方 法提高反射率即可:藉由使無機填料或有機填料微分散並 延伸而形成微細之孔隙,或者向構成光反射體之薄膜中添 加而使其含有氧化鈦等白色顏料、或螢光增白劑等添加 劑。又’使用兼具防透光與抗鏡面反射功能、且於銘等之 金屬板上塗佈氧化鈦等白色顏料而成者亦廣為人知。但 是,藉由該等方法亦無法充分應對最近之高亮度之要求。 另一方面’提出有以提高光反射體之強度為目的,而於 先前之光反射基材之背面貼合薄膜或發泡片材之型態之光 反射體(例如日本專利特開2004-109990號公報、日本專利特 開2004-309804號公報但是,該等薄膜或發泡片材不僅内 部具有紡錘狀之孔隙,而且就利用積層之亮度提高之效果 的觀點而言亦不充分。 【發明内容】 自先前以來已知之光反射體藉由將改善光學特徵之填料 或添加劑用於光反射體之反射層中,而謀求改善以亮度為 首之光學功能。本發明不將視點放於將具有此種光學特徵 145063.doc 201030385 之成分用於反射層上,而以藉由使光反射體之構造具有特 徵來廉價地實現亮度或反射率之提高作為課題。 本發明者等人向著解決課題而反覆努力研究,結果發現 如圖1所不般,藉由具有如下積層構造之薄膜,該積層構造 . 係於雙軸延伸並具有光反射功能之反射層(I)之光入射面的 背面没置有單軸延伸、其表面之反射率為604 〇〇%並具有 提高亮度之功能的亮度提高層(11)者,可獲得使積層薄膜之 反射層(I)侧之表面為高反射率(98〜100°/❶),且使亮度為高亮 ❿ 度(相對亮度值為1〇6〜11 5%)之光反射體,可達成所期望之 目的即亮度之提高,從而完成本發明。 尤其,先前,於對藉由反射層⑴單體來提高亮度進行研 ' 究時,雖然藉由使反射層(I)側之表面為高反射率可達成某 • 種程度之高亮度化,但存在極限。但是,本發明者等人發 現藉由形成背面設置有上述亮度提高層(II)之積層構造,可 達成僅藉由提高反射層(I)之反射率所無法實現之高亮度 化’從而完成以下所記載之本發明。 Π] —種光反射體’其係包含積層薄膜者,該積層薄膜具 有積層有亮度提高層(II)與反射層(I)之構造,該亮度提高層 (π)包括含有熱塑性樹脂與填料之單軸延伸薄膜,該反射層 - (1)包括含有熱塑性樹脂與填料之雙軸延伸薄膜,亮度提高 • 層(Π)之反射率為60〜100%,光反射體之反射層⑴側表面之 反射率為98〜100%,且相對亮度值為106〜115%。 [2]如[1]之光反射體,其中上述積層薄膜之填料之含有率 為5〜7 5重量%。 145063.doc 201030385 [3] 如[1]或[2]之光反射體,其中上述反射層(1)與上述亮度 提南層(11)之填料含有率均為5〜90重量%。 [4] 如[1]至[3]中任__項之光反射趙,其中上述亮度提高層 (II)之厚度為15〜150 μπι。 [5] 如[1]至[4]中任一項之光反射體,其中上述反射層(工) 與上述亮度提高層(II)中之至少一者所含有之填料包含平 均粒徑為0.054.5 μιη之無機填料及平均分散粒徑為 〇·〇5〜1.5 μπι之有機填料中之至少一者。 [6] 如[1]至[5]中任一項之光反射體,其中上述反射層(ι)❹ 與上述亮度提高層(π)中之至少一者所含有之填料包含經 表面處理之無機填料。 [7] 如[1]至[6]中任一項之光反射體,其中作為上述反射層 (I)之縱向延伸倍率lmd與橫向延伸倍率lcd之積的面積延伸 倍率為3〜80倍。 [8] 如[1]至[7]中任一項之光反射體,其中作為上述反射層 (I) 之縱向延伸倍率lmd與橫向延伸倍率Lcd之比的Lmd/Lcd 為 0.2 5 〜2 7。 [9] 如[1]至[8]中任一項之光反射體’其中上述亮度提高層 (II) 之單軸延伸倍率為3〜20倍。 [1〇]如[1]至[9]中任一項之光反射體,其中藉由下述式(1) 而计算出之上述反射層⑴之孔隙率為15〜6〇%。 孔隙率(%> = -· X 1 00 …式(1)201030385 6. TECHNOLOGICAL FIELD OF THE INVENTION The present invention relates to a reflector for a surface light source device, a reflector, and a light reflection useful as a member for light reflection used in various lighting fixtures. body. Further, the present invention relates to a surface light source device using the light reflector. [Prior Art] Backlit LCDs equipped with built-in light sources are gaining popularity. Among the backlight-type built-in light sources, the typical configuration of the direct type backlight is as shown in Fig. 6, and includes a light source such as a casing 11, a diffusing plate 14, and a cold cathode lamp 15 that function as a structure and a light reflecting reflector. The typical configuration of the edge-lit backlight is as shown in FIG. 7 , and includes a light guide plate 'light reflector u, a diffusion plate 14 , and a cold cathode lamp 15 for performing dot printing 12 on a transparent acrylic plate. 16 light source. These are all those that use light reflectors to reflect light from the source and form a uniform planar light by the diffuser. In the prior art, a white polyester film ^ is often used in a light reflector for backlight use (for example, Japanese Patent Laid-Open No. Hei-4-239540). However, in the case of using a light reflector having a polyester film, there is an increase in the amount of light in recent years, and an increase in the temperature of the ambient temperature caused by the heat from the lamp, and the color tone of the light-reflecting body The change (yellow) becomes a problem, so the industry is looking for a material with less discoloration. Therefore, in recent years, a light-reflecting body using a white polyolefin film has been proposed (for example, Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 2002-31704). .doc 201030385 A light-reflecting body of a white polyolefin film (for example, Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 2003-176367). However, recently, the demand for energy saving of display materials such as liquid crystal displays has been increasing, and the industry is seeking improvement in the low output of the light source lamps or the reduction in the number of light source lamps. Along with this tendency, optical characteristics such as brightness of the conventional white polyester film or white polyolefin film are insufficient. Therefore, the industry is looking for a light reflector with higher brightness and higher reflectivity. Previously, in order to increase the brightness of the light reflector, it is known that the reflectance can be improved by forming a fine pore by microdispersion and stretching of the inorganic filler or the organic filler, or into a film constituting the light reflector. It is added to contain an additive such as a white pigment such as titanium oxide or a fluorescent whitening agent. Further, it has been widely known that a white pigment such as titanium oxide is applied to a metal plate having a function of preventing light transmission and specular reflection. However, with these methods, the recent requirements for high brightness cannot be adequately addressed. On the other hand, a light reflector having a shape in which a film or a foamed sheet is bonded to the back surface of a conventional light-reflecting substrate has been proposed (for example, Japanese Patent Laid-Open No. 2004-109990) However, these films or foamed sheets have not only a spindle-like void inside but also an effect of improving the brightness of the laminate. The light reflector known from the prior art seeks to improve the optical function led by brightness by using a filler or an additive which improves optical characteristics in the reflective layer of the light reflector. The present invention does not have a viewpoint The component of the optical feature 145063.doc 201030385 is used for the reflective layer, and the improvement of the brightness or the reflectance is achieved at a low cost by making the structure of the light reflector characteristic. The inventors have repeatedly worked hard to solve the problem. As a result of the study, it was found that, as shown in Fig. 1, the laminated structure was formed by a film having the following laminated structure, which was biaxially stretched and had a light reflecting function. The light-increasing layer (11) having a function of improving the brightness of the surface of the light-incident surface of the reflective layer (I) without uniaxially extending, having a surface reflectance of 604% and having a function of improving brightness can be used to obtain a reflection of the laminated film. The surface of the layer (I) side is a high reflectance (98 to 100 ° / ❶), and the light reflector having a brightness of high brightness (relative brightness value of 1 〇 6 to 11 5%) can achieve the desired The purpose is to improve the brightness, thereby completing the present invention. In particular, in the prior art, when the brightness is improved by the single layer of the reflective layer (1), the surface of the reflective layer (I) side is made highly reflective. However, the inventors of the present invention have found that by forming a laminated structure in which the above-described brightness improving layer (II) is provided on the back surface, it is possible to achieve only by improving the reflective layer (I). The present invention described below is completed by the high reflectance which cannot be achieved by the reflectance of the reflectance. Π] A kind of light reflector comprising a laminated film having a brightness enhancement layer (II) and reflection Layer (I) configuration, the brightness enhancement layer (π) comprises a uniaxially stretched film comprising a thermoplastic resin and a filler, the reflective layer - (1) comprising a biaxially stretched film comprising a thermoplastic resin and a filler, the brightness is increased, and the reflectivity of the layer (Π) is 60 to 100%, The reflectance of the side surface of the reflective layer (1) of the light reflector is 98 to 100%, and the relative luminance value is 106 to 115%. [2] The light reflector of [1], wherein the content of the filler of the laminated film is 5~7 5 wt%. 145063.doc 201030385 [3] The light reflector of [1] or [2], wherein the filler layer (1) and the brightness-raising layer (11) have a filler content of 5 ~90% by weight. [4] The light reflection of the __ term in [1] to [3], wherein the brightness enhancement layer (II) has a thickness of 15 to 150 μπι. [5] The light reflector of any one of [1] to [4], wherein the filler contained in at least one of the reflective layer (II) and the brightness enhancement layer (II) comprises an average particle diameter of 0.054 The inorganic filler of .5 μηη and at least one of the organic fillers having an average dispersed particle diameter of 〇·〇5 to 1.5 μπι. [6] The light reflector of any one of [1] to [5], wherein the filler contained in at least one of the reflective layer (ι) and the brightness enhancement layer (π) comprises a surface-treated Inorganic filler. [7] The light reflector of any one of [1] to [6], wherein the area extending magnification of the product of the longitudinal stretching magnification lmd and the lateral stretching magnification lcd of the reflective layer (I) is 3 to 80 times. [8] The light reflector of any one of [1] to [7], wherein Lmd/Lcd which is a ratio of the longitudinal stretching magnification lmd to the lateral stretching magnification Lcd of the reflective layer (I) is 0.2 5 to 2 7 . [9] The light reflector of any one of [1] to [8] wherein the brightness enhancement layer (II) has a uniaxial stretching ratio of 3 to 20 times. [1] The light reflector of any one of [1] to [9], wherein the porosity of the reflective layer (1) calculated by the following formula (1) is 15 to 6 %. Porosity (%> = -· X 1 00 ... (1)

Po (上式中’ P〇為反射層⑴之真密度,P為反射層⑴之密度) 145063.doc -6- 201030385 [11] 如[1]至[10]中任一項之光反射體’其中上述反射層(工) 與上述亮度提高層(Π)中之至少一者所含有之熱塑性樹脂 為聚稀烴系樹脂。 [12] 如[1]至[π]中任一項之光反射體’其中在與設置有亮 度提高層(II)之側相反側之反射層(I)表面上,進而具有表面 層(III)。 [13] 如[12]之光反射體,其中上述表面層(ΠΙ)包含兩層以 上之層 [14] 如[1]至[13]中任一項之光反射體,其中上述亮度提高 層(II)包含兩層以上之層。 [15] 種面光源裝置’其使用如[1]至[14]中任一項之光反 射體。 本發明之光反射體藉由在光入射面(反射面)之相反面設 置亮度提高層,即使與具有相同高反射率之光反射體相 比,冗度亦得到提高。又,使用本發明之光反射體所製造 之面光源裝置的亮度高’且極其有用。 【實施方式】 以下,對本發明之光反射體與面光源裝置之構成及效果 進行詳、’’田說a月以下所記載之構成要件之說明有時係基於 本發明之代表性之實施態樣而成,但本發明並不限定於此 種實施態樣。 再者’本發明中「〜」表示分別包含其前後所記載之數值 作為隶小值及最大值之範圍。 [反射層(I)] 145063.doc 201030385 具有光反射層之功能之反射層⑴係包含雙轴延伸之薄 膜,並用於高效地反射可見光而設置之層。反射層⑴為了 實現南效之光反射,較好的是包含多個控制為可見光之波 長尺寸之厚度的孔隙。 為了控制孔隙之尺寸,較好的是,本發明之反射層⑴包 含10〜95重量%之熱塑性樹脂、以及5〜9〇重量%之平均粒徑 為0.05〜1.5 μπι之無機填料及平均分散粒徑為0054 5 之有機填料中的至少一者,並將縱向延伸倍率與橫向延伸 倍率之積設為3〜80倍,將縱向延伸倍率與橫向延伸倍率之 比設為0.25〜2.7。 [熱塑性樹脂] 本發明之反射層(I)中所使用之熱塑性樹脂之種類並無特 別限制。作為反射層(I)中所使用之熱塑性樹脂,可列舉·· 乙烯系樹脂(例如高密度聚乙烯、中密度聚乙烯、低密度聚 乙烯)、丙烯系樹脂、聚甲基_1_戊烯、乙烯_環狀烯烴共聚 物等聚烯烴系樹脂;尼龍-6、尼龍-6,6、尼龍-6,10、尼龍_6,12 等聚醯胺系樹脂;聚對苯二曱酸乙二酯或其共聚物、聚萘 二甲酸乙二酯、聚對苯二甲酸丁二酯、聚丁二酸丁二醋或 其共聚物、聚乳酸、脂肪族聚酯等熱塑性聚酯系樹脂;聚 碳酸酯;亂排聚苯乙烯、對排聚苯乙烯;聚笨硫醚等,該 等亦可混合兩種以上來使用。該等之中,就耐化學品性或 生產成本等觀點而言,較好的是使用聚烯烴系樹脂,更好 的是使用丙烯系樹脂。 作為丙烯系樹脂,可使用丙烯均聚物,或者作為主成分 I45063.doc 201030385 之丙烯與乙烯、1-丁烯、1_己烯、丨_庚烯、4_曱基_丨_戊烯等 α-稀烴之共聚物。立體規則性並無特別限制,可使用表現 出同排或對排及各種程度之立體規則性者。又,共聚物可 為二元系’亦可為三元系以上之多元系,又,可為無規共 聚物,亦可為嵌段共聚物。 於反射層(I)中,較好的是使用10〜95重量%之此種熱塑性 樹脂,更好的是使用20〜85重量%,進而好的是使用30〜75 重量%,特別好的是使用40〜65重量。/〇。若反射層(I)中之熱 塑性樹脂之含有率為1 〇重量%以上,則存在於下述之積層 薄旗之延伸成形時表面不易產生瑕疵之傾向,若為95重量 %以下,則存在易於獲得足夠之孔隙數之傾向。 於構成反射層(I)之主要的熱塑性樹脂為丙烯系樹脂之情 形時,為了改善延伸性,亦可於反射層(I)中調配3〜25重量 〇/〇之溶點較丙稀系樹脂更低之聚乙稀、乙稀_乙酸乙稀酯等 樹脂。 [填料] 作為於本發明之反射層⑴中與熱塑性樹脂併用之填料, 可列舉各種無機填料或有機填料。 作為無機填料’可例示:重質碳酸鈣、沈澱碳酸鈣、烺 燒黏土、滑石、氧化鈦、硫酸鋇、硫酸铭、二氧化石夕、氧 化辞、氧化鎮、梦藻土等。又,亦可例示上述無機填料之 藉由各種表面處理劑進行處理而得之表面處理品。其中, 若使用重質碳酸鈣、沈澱碳酸鈣及該等之表面處理品、黏 土、矽藻土,則為較廉價且延伸時之孔隙形成性變佳,故 145063.doc -9- 201030385 =劑=是重質碳酸鈣、沈殿碳酸鈣之藉由各種表面 處理劑進仃處理而得之表面處理品。 有機酸’:處:劑’較好的是,例如:樹脂酸,脂肪酸, 活性劑禮8日型陰離子界面活性劑,賴型陰離子界面 Γ劑’石油樹脂酸,該等之納、鉀、銨等之鹽,戍者兮 =之脂肪酸醋、樹脂酸顆、犧、石壤等,又,非離子系; 劑活二稀系聚合物、鈦酸醋系偶合劑,系偶合 性劑η如偶合劑等亦較好。作為硫酸醋型陰離子界面活 =如可列舉:長鏈醇硫酸酿,聚氧乙㈣ 二=油等或該等之納、卸等之鹽,作為績酸型陰離 石蝶〆酸,劑’例如可列舉:院基苯績酸’燒基蔡續酸, 钟α稀Μ酸,垸基續基琥酸等或該等之納、 孤。又,作為脂肪酸,例如可列舉:己酸、辛 壬酸、癸酸、+_#絲 α t _ 十碳酸、月桂酸、肉豆蔻酸、棕櫚酸、@ =酸、二十二碳酸、油酸、亞麻油酸、次亞麻油酸、桐酸 作為有機酸’例如可列舉順丁烯二酸、山梨酸等,作 ^二烯系聚合物’例如可列舉聚丁二缔、異戊二稀等,作 :、、、非離子系界面活性劑,可列舉聚乙二醇型、多元醇型等 之界面活性劑等。該等表面處理劑可使用一種或者組合兩 種以上來使用。作為使用該等表面處理劑之無機填料之表 面處理方法,例如可使用日本專利特開平5_43815號公報、 日本專利特開平5·139728號公報、日本專利特開平7_3〇〇568 號公報、日本專利特開平10_176079號公報日本專利特開 平U-256U4號公報、日本專利特開平1 1 349846號公報、^ 145063.doc 201030385 本專利特開200卜15 8863號公報、日本專利特開2002_22〇547 號公報、曰本專利特開2002-363443號公報等中所記載之方 法。 作為有機填料,使用具有較所使用之熱塑性樹脂之溶點 • 或玻璃轉移點更高之熔點或玻璃轉移點者。例如於所使用 之熱塑性樹;0曰為聚婦煙系樹脂之情形時,可例示:聚對苯 二甲酸乙二酯、聚對苯二甲酸丁二酯、聚醯胺、聚碳酸酯、 聚萘二甲酸乙二醋、聚苯乙烯、三聚氰胺樹脂、環狀稀煙 •肖聚物、環狀烯烴與乙烯之共聚物、聚環硫乙烷、聚醯亞 胺、聚乙賴、聚苯硫驗等。其中,就孔隙形成之觀點而 言,較好的是使用與所使用之熱塑性樹脂不相容之有機填 -料。 於反射層⑴中,既可自無機填料或有機填料之中選擇一 種並單獨使用該填料,亦可選擇兩種以上來組合使用。於 組合兩種以上來使用之情形時,可將有機填料與無機填料 混含使用。 無機填料之平均粒徑例如可藉由微跟蹤法、利用掃描型 電子顯微鏡之一次粒徑之觀察、根據比表面積之換算等而 求出。於本發明中,使用島津製作所(股)製造之粉體比表面 積測定裝置SS-100測定無機填料之比表面積,並對其進行 換算而求出無機填料之平均粒徑。 有機填料之平均分散粒徑例如可藉由利用掃描型電子顯 微鏡觀察薄膜剖面並測定一次粒徑之方法等而求出。 為了調整藉由下述之積層薄膜之延伸成形所產生之孔隙 145063.doc 201030385 的尺寸,較好的是使用上述無機填料之平均粒徑或有機填 料之平均分散粒徑分別為0.05M 5 μηι之範圍,更好的是分 別為之範圍之填料。若使用平均粒徑或平均分二 粒扛為1 _5 μιη以下之填料,則存在易於使孔隙更均句之傾 向。又,若使用平均粒徑或平均分散粒徑為 0 05 μm以上之 填料,則存在更易於獲得特定之孔隙之傾向。 為了調整藉由下述之積層薄膜t延伸成形而產生於反射 層⑴内部之孔隙的量,向構成反射層⑴之延伸薄膜中調配 上述填料之調配量較好的是5〜9〇重量%,更好的是15〜8〇重 量%,進而好的是25〜70重量%,特別好的是35〜6〇重量%。 若填料之調配量為5重量%以上,則存在易於獲得足夠之孔 隙數之傾向。又,若填料之調配量為90重量%以下,則存 在光反射體表面不易產生瑕疵之傾向。 [其他成分] 進而,亦可視需要於本發明之反射層⑴中調配螢光增白 劑、熱穩定劑、光穩定劑、分散劑、潤滑劑等。作為熱穩 定劑,可調配0.001〜1重量〇/〇之位阻酚系或磷系、胺系等之 熱穩定劑,作為光穩定劑,可調配〇 OOiq重量%之位阻胺 或苯并三唑系、二苯基酮系等之光穩定劑,作為無機填料 之分散劑,可調配〇.〇1〜4重量❶/❶之矽烷偶合劑、油酸或硬脂 酸等高級脂肪酸、金屬皂、聚丙烯酸、聚甲基丙烯酸或該 等之鹽等。該等成分亦可同樣地調配於下述詳細說明之構 成本發明之光反射體的各層。 本發明中所使用之反射層(I)既可為單層構造,亦可為多 145063.doc 201030385 層構造。 為了實現高效之光反射’根據JIS-P8 118所測定之反射層 ⑴之厚度較好的是50〜ΙΟΟΟμιη,更好的是ΐ〇〇~400 μπι,進 而好的是120〜300 μιη。又,將本發明之光反射體之總厚度 . 設為100%時之反射層⑴的厚度之比例較好的是40〜98%,更 好的是45〜97%,進而好的是50〜96%。 [亮度提高層(II)] 亮度提高層(II)包含經單軸延伸之薄膜,且藉由配置於反 _ 射層(1)之光入射面之背面而具有高效地提高亮度之作用。 即’本發明係關於一種除了先前之光反射基材以外,於 基材之光入射面(光反射面)之背面積層有含有由單軸延伸 所產生之紡錘狀之孔隙,並具有固定值以上之反射率之亮 • 度提高層(Π)的光反射體。本發明者等人發現該紡錘狀之孔 隙具有較高之光散射效果,其發揮將未由基材(反射層(I)) 反射完而透過之光推回基材側之效果。藉此,可增大朝向 φ 光反射體之光入射面之法線方向的反射光量,結果可獲得 亮度進一步提高之光反射體,從而完成本發明。 亮度提高層(II)為了提高光反射體之亮度提高效率,亮度 提高層(II)之反射率,更具體而言光入射面側(與反射層⑴ 接觸之面側)之反射率越高越好,為60Μ 〇〇%之範圍。該反 射率較好的是70〜100%,更好的是80〜90%。亮度提高層(II) 之反射率可藉由使利用熱塑性樹脂及填料所獲得之薄膜單 轴延伸’並於亮度提高層(II)内形成多個紡錘狀之孔隙,且 將該層之厚度設為15〜150 μιη之範圍而得到提高。 145063.doc -13· 201030385 構成本發明之光反射體之亮度提高層(π)既可為包含一 層者’亦可為包含兩層以上之層者。於該亮度提高層⑴) 為包含一層者之情形時,該層為有助於亮度提高之亮度改 善層’於該亮度提高層(11)包含兩層以上之層之情形時,其 中之至少1層為亮度改善層。 八 根據JIS-P8118所測定之亮度提高層⑻之厚度較好的是 15〜150 μηι,更好的是18〜1〇〇 μιη,特別好的是2〇〜卩爪。 若亮度提高層(II)之厚度為15 μπι以上,則存在因易於賦予 充分之亮度提高性能’故易於達成良好之亮度率之傾向。 若無視成本或組裝作業性,就防止入射光穿透背面之觀點 而言,則該厚度越厚越好。但是,若超過15〇 μιη,則可發 現效果達到頂點之傾向。 於該亮度提高層(II)為包含兩層以上之層者之情形時,其 至少包含一層有助於亮度提高之亮度改善層(於亮度提高· 層(11)包含單'一層之情形時,亮度揭:高層(II)為亮度改善 層)。 儿度改善層之厚度較好的是3〜150 μιη,更好的是4〜95❿ μιη,進而好的是5〜7〇 μ〇ι,特別好的是15〜7〇 。 亮度改善層中可使用與反射層附所使用之熱塑性樹脂 及真料相同之熱塑性樹脂及填料。於所使用之填料為無機 填料之情形時,較好的是平均粒徑為〇 MM 5 者於所 使用之填料為有機填料之情形時,好的是平均分散粒徑. :、 1 ·5 μΐη者。若粒徑為1.5 以下,則於易於形成孔 隙、且易於提高亮度改善層之反射率方面較為有利。 I45063.doc -14· 201030385 為了調整亮度提高性能,向構成亮度改善層之延伸薄膜 中調配上述填料之調配量較好的是5〜9〇重量%,更好的是 5 80重量/〇進而好的疋5〜7〇重量%。若填料之調配量為$ 重量以Ji貝J存在因易於賦予亮度提高性能,故易於獲 得更良好之亮度提高性能之傾向。若調配量為9〇重量%以 下’則下述之延伸成形容易且適合薄膜成形。 又’於在亮度改善層中使用氧化鈦等高折射率之填料作 ❿ 為填料之情形時,該填料之含有率較好的是(M〜50重量%, 更好的是0.3~40重量%,t•鱼;& 董0進而好的是0.5〜35重量%。若含有 率之上限為50重量%以丁 Βι, β 菫/〇以下,則具有下述之延伸成形變得容 易之優點3方面’於在亮度改善層中使用碳酸約等低 折射率之填料作為填料之情形時,該填料之含有率較好的 是1〜85重量%’更好的是5〜75重量。/。,進而好的是9〜65重量 %。若含有率之下限為1重量。以上,則具有延伸時易於形 成孔隙之優點。 於宂度提间層(Π)為包含兩層以上之層者之情形時,使亮 度改善層以外之層為不過度阻礙本發明之效果之層。作為 具體性之層構成,例如可列舉包含中間層與亮度改善層之 雙層構造此時’將與反射層⑴接觸之側設為中間層。中 間層之厚度較好的是2〜1〇〇μιη,更好的是 的是10〜60 μϊη。 逆叫对 較好的是,於 蓉、H反之機械強度(彈性模數 等)時5Χ置中間層。 中間層中可使用與反射層⑴中所使用之 熱塑性樹脂相同之劫 ,、、、塑性樹脂。又,中間層既可含有上述 145063.doc •15· 201030385 填料亦可不3有上述填料。於不含有 可為僅包含熱塑性樹脂者。X,於中間層人2 時,填料之含有率較好的 3料之情形 重量%,進而好的是。. 董量A 尤其’於使用氣斗料榮 高折射率之額作為填料之情形時,該填 的是一量%,更好的是一量有= 0 5-10# ^ 〇/ 〇 ^ ^ ^ ^ °。另—方面,於,間層使用碳酸鈣等低折射率 ㈣n時’該填料之含有率較好的是㈠〇 罝。,更好的是5〜85重量%,進而好的是9〜75重量%。 [表面層(III)] 本發月之光反射體亦可為在與亮度提高層⑼相反側之 反射層⑴之表面進而設置表面層_者。於具有表面層 (ΙΠ)之it形時,表面層(Ιπ)之表面成為光反射體之光入射 面。表面層(1„)較好的是以如下目的而設置者:利用表面 強度之提高來防止光反射體受損、或者防止由光所引起之 光反射體之劣化。X,表面層(m)係以不使光反射體之表 面之反射率或亮度下降至未達本發明之範圍為止的方式而 設置。因4th’較好的是,使表面層(ΠΙ)為儘量不阻礙來自 反射層(I)之反射光之構造。 構成本發明之光反射體之表面層(111)既可為包含一層 者,亦可為包含兩層以上之層者。根據JIS P8丨丨8所測定之 表面層(in)之總厚度較好的是hwo μιη,更好的是2〜8〇 μηι,特別好的是7〜60 μηι。若總厚度為i μιη以上則存在 易於賦予表面層(III)之所期望之性能的傾向。若總厚度為 145063.doc • 16- 201030385 100 μιη以下,則存在易於將本發明之光反射體之反射率或 免度維持為所期望之值的傾向。 構成本發明之光反射體之表面層⑽較好的是包含無延 伸薄膜者、或者包含單軸延伸薄膜者。其中,包含單輛延 伸薄膜者因層厚較薄且均勻,故較好。 表面層⑽中可使㈣反射層⑴巾所使用之熱塑性樹脂 相同之熱塑性樹脂。又,表面層_亦可含有上述填料。 β於表面層(III)包含—層之情形時,填料之含有率較好的 疋90重量/0,更好的是〇 3〜8〇重量%,進而好的是〇 5〜 重量%。尤其,於使用氧化鈦等高折射率之填料作為填料 之情形時,該填料之含有率較好的是Q i〜2()重量%,更好的 是0.3M5重量%,進而好的是〇5〜1〇重量%。另一方面於 使用碳酸約等低折射率之填料作為填料之情形時,該填料 之含有率較好的是1〜90重量%,更好的是3〜80重量%,進而 好的疋5〜75重量%。就易於防止隨時間經過所引起之亮度 下降之觀點而言’較好的是使用聚烯烴系樹脂等由光劣化 所引起之變色較少者作為熱塑性樹脂。 於表面層_包含㈣以上之層之情形時,較好的是積 層填料之含有率不同之層。例如,若以使表面層_包含 最表面層與令間層之兩層以上之層、並使中間層接觸反射 層⑴之方式進打設置㈣形為例進行說明,則最表面層之 厚度較好的是1〜100㈣’更好的是_,特別好的是 2〜20 μιη’又’中間層之厚度較好的是㈣㈣’更好的是 1〜79 μιη,特別好的是5〜58 μηι。 I45063.doc -17· 201030385 又,最表面層之填料之含有率較好的是0〜85重量%,更 好的是5〜75重量%,進而好的是8~65重量%。中間層之填料 之含有率較好的是1〜85重量%,更好的是2〜75重量%,進而 好的是5〜65重量%。 亦可將表面層(III)中所設置之中間層之組成或厚度設為 與亮度提高層(II)中所設置之中間層之組成或厚度相同。 [積層薄膜] 構成本發明之光反射體之積層薄膜如上所述,既可為僅 包含反射層(I)與亮度提高層(II)者,亦可為具有表面層(III)/ 反射層(I)/亮度提高層(II)之構造者。 以下,例示具有反射層(Α)、亮度改善層(Β)、最表面層 (C)、中間層(D1)、中間層(D2)中之2〜5層之本發明之光反射 體之具體性的層構成。反射層(Α)、亮度改善層(Β)、最表 面層(C)、中間層(D1)、中間層(D2)分別為單一層,亮度改 善層(Β)與中間層(D2)係構成亮度提高層(II)者,最表面層 (C)與中間層(D1)係構成表面層(III)者。又,以下,最初所 記載之層成為光入射面。 層構成例1 : (Α)/(Β) 層構成例 2 : (C)/(A)/(B) 層構成例 3 : (A)/(D2)/(B) 層構成例 4 : (C)/(D1)/(A)/(B) 層構成例 5 : (C)/(A)/(D2)/(B) 層構成例6: (C)/(D1)/(A)/(D2)/(B) [成形] 145063.doc -18· 201030385 作為構成本發明之光反射體之積層薄膜之成形方法可 使用通常之樹脂薄膜之積層方法及延伸方法。 —作為積層方法之具體例,可列舉:使用多層之τ字模或I 纟模將溶融樹^積層於模具内部,並將該熔融樹脂播出成 一材狀從而獲得多層之片材之共擠出方法·使用複數個T 帛模或1字模將該炼融樹脂積層於其他片材上,從而獲得多 f之片材之層麼方法等。於本發明中,反射層⑴與亮度提 :層(11)之延伸軸數不同’因此於形成包含反射層⑴與亮度 提间層(II)之積層體時,使用後者之層壓方法來製成積層薄 膜。 作為延伸方法之具體例,可列舉:使用連接於螺旋型擠 出機之單層或多層之τ字模或工字模將溶融樹脂播出並成形 丨片材狀後’利用輥群之周速差使該片材於縱向(流動方法) 上f軸延伸之方法;利用拉幅爐使該片材於橫向(寬度方向) 上早軸延伸之方法;進而將利用輕群之周速差之縱向延伸 •與利用拉幅爐之橫向延伸加以组合的依次雙轴延伸方法; 或者利用拉幅爐與線性馬達之組合之同時雙軸延伸方法; 利用拉幅爐與縮放儀之組合之同時雙軸延伸方法;藉由利 用0字模與壓空之膨脹成形方法(管式法)的同時雙軸延伸 方法等。於本發明中,由於反射層⑴與亮度提高層(11)之延 伸轴數不同,因此最好的是可使用將利用輥群之周速差之 縱向延伸與利用拉幅爐之橫向延伸加以組合的依次雙軸延 伸方法。 作為形成包含反射層(I)與亮度提高層(11)之本發明之積 145063.doc -19· 201030385 層薄膜的方法,例如可使用以下方法等:於反射層(i)之單 軸方向之延伸結束後,將亮度提高層(II)之熔融樹脂組合物 擠出並貼合(層壓)於其上,並使該積層體進而於上述延伸方 向與直角方向上單軸延伸成形;於使反射層(I)及亮度提高 層(II)之原料樹脂個別地延伸成形後,直接或經由易接著層 貼合。 於設置表面層(III)之情形時,亦可採用與亮度提高層(11) 相同之方法。即’可使用以下方法等:於反射層⑴之單軸 方向之延伸結束後,分別將亮度提高層(11)之熔融樹脂組合 ❿ 物與表面層(III)之熔融樹脂組合物同時或依次擠出並貼合 (層壓)於反射層(I)之兩面,並使該積層體進而於與上述延 伸方向垂直之方向上單軸延伸成形;於使反射層、亮度 提高層(II)、表面層(III)之各原料樹脂個別地延伸成形後, 直接或經由易接著層貼合,·於藉由上述方法中之任一者使 包含雙軸延伸薄膜之反射層(I)與包含單軸延伸薄膜之亮度 提南層(II)的積層體成形後,將另外準備之表面層(JH)之薄 膜直接或經由易接著層貼合於反射層⑴側。 馨 再者’於反射層(I)、亮度提尚層(II)、表面層(hi)中之任 一者具有多層構造之情形時,亦可利用與上述方法相同之 方法成形。例如,於亮度提高層(11)具有包含中間層與亮度 - 改善層之雙層構造之情形時,可採用於亮度提高層(H)之延 伸成形前使用多層T字模或I字模將中間層與亮度改善層之 -熔融原料共擠出之方法等。 延伸倍率就向反射層(I)賦予孔隙、以及向亮度提高層(11) 145063.doc -20- 201030385 你蛋:要之要素 賦予亮度提高性能之觀點而 ____^ τ _ 為了調整積層薄膜中所產生之孔隙之大小,包含 伸薄膜之反射層⑴之縱向延伸倍率“與橫向延伸倍率^ 之積即面積延伸倍率較好的是設為3〜80倍之範圍,更好的 是設為7〜70倍之範圍,進而好的是設為22倍^倍,最㈣ 是設為25〜50倍。若面積延伸倍率為3〜8〇倍之範圍内,則易 於獲得微細之孔隙,亦易於抑制反射率之下降。Po (in the above formula, 'P〇 is the true density of the reflective layer (1), and P is the density of the reflective layer (1)) 145063.doc -6- 201030385 [11] The light reflector of any one of [1] to [10] The thermoplastic resin contained in at least one of the reflective layer and the brightness improving layer is a polyolefin resin. [12] The light reflector of any one of [1] to [π] which is on the surface of the reflective layer (I) opposite to the side on which the brightness enhancement layer (II) is provided, and further has a surface layer (III) ). [13] The light reflector of [12], wherein the surface layer (ΠΙ) comprises a layer of two or more layers. [14] The light reflector of any one of [1] to [13], wherein the brightness enhancement layer (II) A layer comprising two or more layers. [15] A surface light source device' which uses the light reflector of any one of [1] to [14]. In the light reflector of the present invention, the brightness enhancement layer is provided on the opposite side of the light incident surface (reflection surface), and the redundancy is improved even when compared with the light reflector having the same high reflectance. Further, the surface light source device manufactured by using the light reflector of the present invention has high brightness and is extremely useful. [Embodiment] Hereinafter, the configuration and effects of the light reflector and the surface light source device of the present invention will be described in detail, and the description of the components described in the following paragraphs may be based on the representative embodiment of the present invention. However, the present invention is not limited to such an embodiment. Further, "~" in the present invention means that the numerical values described before and after are included as the range of the small value and the maximum value, respectively. [Reflective layer (I)] 145063.doc 201030385 The reflective layer (1) having a function of a light-reflecting layer is a film containing a biaxially stretched film and used for efficiently reflecting visible light. In order to realize the reflection of light of the south effect, the reflection layer (1) preferably contains a plurality of pores controlled to have a thickness of a wavelength of visible light. In order to control the size of the pores, it is preferred that the reflective layer (1) of the present invention contains 10 to 95% by weight of a thermoplastic resin, and 5 to 9% by weight of an inorganic filler having an average particle diameter of 0.05 to 1.5 μm and an average dispersion particle. At least one of the organic fillers having a diameter of 0054 5, and the product of the longitudinal stretching ratio and the lateral stretching ratio is set to 3 to 80 times, and the ratio of the longitudinal stretching ratio to the lateral stretching ratio is set to 0.25 to 2.7. [Thermoplastic Resin] The kind of the thermoplastic resin used in the reflective layer (I) of the present invention is not particularly limited. Examples of the thermoplastic resin used in the reflective layer (I) include vinyl resins (for example, high density polyethylene, medium density polyethylene, and low density polyethylene), propylene resins, and polymethyl-1-pentene. , polyolefin resin such as ethylene _ cyclic olefin copolymer; nylon-6, nylon-6,6, nylon-6,10, nylon _6,12 and other polyamine resin; poly(p-benzoic acid) Ester ester or copolymer thereof, polyethylene naphthalate, polybutylene terephthalate, polybutylene succinate or copolymer thereof, thermoplastic polyester resin such as polylactic acid or aliphatic polyester; Carbonate; disordered polystyrene, aligned polystyrene; polystyrene sulfide, etc., may be used in combination of two or more. Among these, from the viewpoints of chemical resistance, production cost, and the like, it is preferred to use a polyolefin resin, and it is more preferable to use a propylene resin. As the propylene-based resin, a propylene homopolymer or a main component I45063.doc 201030385 of propylene and ethylene, 1-butene, 1-hexene, hydrazine-heptene, 4-mercapto-nonylylene, etc. can be used. Copolymer of α-dilute hydrocarbon. The stereoregularity is not particularly limited, and those who exhibit the same row or alignment and various degrees of stereoregularity can be used. Further, the copolymer may be a binary system or a ternary system or more, and may be a random copolymer or a block copolymer. In the reflective layer (I), it is preferred to use 10 to 95% by weight of such a thermoplastic resin, more preferably 20 to 85% by weight, and still more preferably 30 to 75% by weight, particularly preferably Use 40~65 weight. /〇. When the content of the thermoplastic resin in the reflective layer (I) is 1% by weight or more, the surface tends to be less likely to be generated during the stretch forming of the laminated thin flag described below, and if it is 95% by weight or less, it is easy to be used. The tendency to obtain a sufficient number of pores. In the case where the main thermoplastic resin constituting the reflective layer (I) is a propylene-based resin, in order to improve the elongation, a melting point of 3 to 25 wt%/〇 may be formulated in the reflective layer (I) as compared with the acryl-based resin. Resins such as lower polyethylene, ethylene-ethyl acetate. [Filler] Examples of the filler used in combination with the thermoplastic resin in the reflective layer (1) of the present invention include various inorganic fillers or organic fillers. The inorganic filler ' can be exemplified by heavy calcium carbonate, precipitated calcium carbonate, smoldering clay, talc, titanium oxide, barium sulfate, sulfuric acid, sulphur dioxide, oxidized sulphur, oxidized town, and dreamy earth. Further, a surface-treated article obtained by treating the above inorganic filler with various surface treating agents can also be exemplified. Among them, if heavy calcium carbonate, precipitated calcium carbonate, and the like, clay, diatomaceous earth are used, it is cheaper and the pore formation property is better when extended, so 145063.doc -9- 201030385 = agent = is a surface treatment product obtained by treating various kinds of surface treatment agents with heavy calcium carbonate and shoal calcium carbonate. Organic acid ': at: agent' is preferably, for example, resin acid, fatty acid, active agent 8-day anionic surfactant, lysate anionic interfacial agent 'petroleum resin acid, such sodium, potassium, ammonium Salt, etc., such as fatty acid vinegar, resin acid, salt, stone, etc., and non-ionic; agent diuretic polymer, titanic acid vinegar coupling agent, coupling agent η Mixtures and the like are also preferred. As the sulfate vinegar type anion interface activity, for example, long-chain alcohol sulfuric acid brewing, polyoxyethylene (tetra) bis oil, or the like, such as sodium salt, unloading, etc., as an acid-type anionic pterinic acid, an agent' For example, it can be exemplified by the base-based benzoic acid, the sulphur-based sulphuric acid, the sulphur-like sulphuric acid, the decyl succinic acid, or the like. Further, examples of the fatty acid include caproic acid, caprylic acid, capric acid, +_# silk α t _ decacarbonic acid, lauric acid, myristic acid, palmitic acid, @=acid, behenic acid, oleic acid. Examples of the linoleic acid, the linoleic acid, and the citric acid as the organic acid, for example, maleic acid, sorbic acid, etc., and the diene polymer, for example, polybutane, isoprene, etc. Examples of the non-ionic surfactants include surfactants such as polyethylene glycol type and polyol type. These surface treatment agents may be used alone or in combination of two or more. As a surface treatment method of the inorganic filler using the surface treatment agent, for example, Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. Japanese Laid-Open Patent Publication No. H-256U4, Japanese Patent Laid-Open No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. The method described in Japanese Laid-Open Patent Publication No. 2002-363443 or the like. As the organic filler, those having a melting point or a glass transition point higher than the melting point of the thermoplastic resin used or the glass transition point are used. For example, in the case of a thermoplastic tree to be used; in the case of a polybutanyl resin, polyethylene terephthalate, polybutylene terephthalate, polyamine, polycarbonate, poly Naphthalene naphthalate, polystyrene, melamine resin, cyclic flue gas • oligomer, copolymer of cyclic olefin and ethylene, polycyclohexane, polyimide, polyacetonitrile, polyphenylene sulfide Check and so on. Among them, in terms of pore formation, it is preferred to use an organic filler which is incompatible with the thermoplastic resin to be used. In the reflective layer (1), one of inorganic fillers or organic fillers may be selected and used alone or in combination of two or more. When two or more types are used in combination, an organic filler may be used in combination with an inorganic filler. The average particle diameter of the inorganic filler can be determined, for example, by a micro-tracking method, observation of primary particle diameter by a scanning electron microscope, conversion based on specific surface area, and the like. In the present invention, the specific surface area of the inorganic filler is measured by using a powder specific surface area measuring apparatus SS-100 manufactured by Shimadzu Corporation, and the average particle diameter of the inorganic filler is determined. The average dispersed particle diameter of the organic filler can be determined, for example, by observing the cross section of the film by a scanning electron microscope and measuring the primary particle diameter. In order to adjust the size of the pores 145063.doc 201030385 produced by the extension molding of the laminated film described below, it is preferred to use the average particle diameter of the above inorganic filler or the average dispersed particle diameter of the organic filler to be 0.05 M 5 μηι, respectively. The range, and better, is the filler of the range. If a filler having an average particle diameter or an average of two granules of 1 _5 μm or less is used, there is a tendency to make the pores more uniform. Further, when a filler having an average particle diameter or an average dispersed particle diameter of 0 05 μm or more is used, there is a tendency that a specific pore is more easily obtained. In order to adjust the amount of pores generated in the interior of the reflective layer (1) by the formation of the laminated film t, the blending amount of the filler to the stretched film constituting the reflective layer (1) is preferably 5 to 9 % by weight. More preferably, it is 15 to 8 % by weight, further preferably 25 to 70% by weight, particularly preferably 35 to 6 % by weight. If the amount of the filler is 5% by weight or more, there is a tendency to easily obtain a sufficient number of pores. Further, when the amount of the filler is 90% by weight or less, the surface of the light reflector tends to be less likely to be generated. [Other components] Further, a fluorescent whitening agent, a heat stabilizer, a light stabilizer, a dispersing agent, a lubricant or the like may be blended in the reflective layer (1) of the present invention as needed. As a heat stabilizer, it can be formulated with a 0.001~1 weight 〇/〇 sterically hindered phenol system or a phosphorus-based or amine-based heat stabilizer. As a light stabilizer, it can be formulated with 〇OOiq% by weight of hindered amine or benzotriene. A light stabilizer such as an azole or a diphenyl ketone, as a dispersing agent for an inorganic filler, may be formulated with a decane coupling agent of 〜1 to 4 parts by weight/❶, a higher fatty acid such as oleic acid or stearic acid, or a metal soap. , polyacrylic acid, polymethacrylic acid or the like. These components can also be similarly formulated in the respective layers of the light reflector of the invention described in detail below. The reflective layer (I) used in the present invention may have a single layer structure or a multi-layer structure of 145063.doc 201030385. In order to achieve efficient light reflection, the thickness of the reflective layer (1) measured according to JIS-P8 118 is preferably 50 to ΙΟΟΟμιη, more preferably ΐ〇〇~400 μπι, and even more preferably 120 to 300 μηη. Further, the ratio of the thickness of the reflective layer (1) when the total thickness of the light reflector of the present invention is 100% is preferably 40 to 98%, more preferably 45 to 97%, and further preferably 50 to 50. 96%. [Luminance Enhancing Layer (II)] The brightness improving layer (II) includes a film which is uniaxially stretched, and has an effect of efficiently increasing the brightness by being disposed on the back surface of the light incident surface of the counter-reflecting layer (1). That is, the present invention relates to a spindle-shaped back surface layer having a light incident surface (light reflecting surface) of a substrate other than the prior light reflecting substrate, and having a spindle-shaped pore and having a fixed value or more The brightness of the reflectance is increased by the light reflector of the layer (Π). The inventors of the present invention have found that the spindle-shaped pores have a high light-scattering effect, and exhibit the effect of pushing back light that has not been reflected by the substrate (reflecting layer (I)) back to the substrate side. Thereby, the amount of reflected light in the normal direction of the light incident surface of the φ light reflector can be increased, and as a result, a light reflector having further improved brightness can be obtained, thereby completing the present invention. In order to increase the brightness improvement efficiency of the light reflector, the brightness enhancement layer (II) has a higher reflectance of the brightness enhancement layer (II), more specifically, the higher the reflectance of the light incident surface side (the side contacting the reflection layer (1)). Ok, it's 60% 〇〇% range. The reflectance is preferably 70 to 100%, more preferably 80 to 90%. The reflectance of the brightness enhancement layer (II) can be uniaxially stretched by the film obtained by using the thermoplastic resin and the filler, and a plurality of spindle-shaped pores are formed in the brightness enhancement layer (II), and the thickness of the layer is set. It is improved by the range of 15 to 150 μm. 145063.doc -13· 201030385 The brightness enhancement layer (π) constituting the light reflector of the present invention may be either a layer or a layer containing two or more layers. When the brightness enhancement layer (1) is a layer including one layer, the layer is a brightness improvement layer that contributes to brightness enhancement. When the brightness enhancement layer (11) includes two or more layers, at least 1 The layer is a brightness improving layer. 8. The thickness of the brightness enhancement layer (8) measured according to JIS-P8118 is preferably 15 to 150 μηι, more preferably 18 to 1 μm, particularly preferably 2 to 卩. When the thickness of the brightness enhancement layer (II) is 15 μm or more, there is a tendency that it is easy to impart sufficient brightness improvement performance, so that a good luminance ratio is easily achieved. If the cost of the incident light is prevented from penetrating the back surface, the thicker the thickness, the better. However, if it exceeds 15 〇 μιη, the tendency to reach the apex can be found. When the brightness enhancement layer (II) is a layer including two or more layers, it includes at least one brightness improvement layer which contributes to an improvement in brightness (in the case where the brightness enhancement layer (11) includes a single layer, Brightness: The upper layer (II) is the brightness improvement layer). The thickness of the improvement layer is preferably from 3 to 150 μm, more preferably from 4 to 95 μm, and further preferably from 5 to 7 μm, particularly preferably from 15 to 7. As the brightness improving layer, a thermoplastic resin and a filler which are the same as those used for the reflective layer can be used. In the case where the filler used is an inorganic filler, it is preferred that the average particle diameter is 〇MM 5 when the filler used is an organic filler, and the average dispersed particle diameter is preferably: 1 · 5 μΐη By. When the particle diameter is 1.5 or less, it is advantageous in that the pores are easily formed and the reflectance of the brightness improving layer is easily increased. I45063.doc -14· 201030385 In order to adjust the brightness enhancement performance, the blending amount of the above filler is preferably adjusted to 5~9〇% by weight, more preferably 580 wt/〇, to the extended film constituting the brightness improving layer.疋 5~7〇% by weight. If the blending amount of the filler is $weight, it is easy to obtain a brightness-improving performance because it is easy to impart brightness and improve performance. If the blending amount is 9% by weight or less, the following extension molding is easy and suitable for film formation. Further, when a filler having a high refractive index such as titanium oxide is used as a filler in the brightness improving layer, the content of the filler is preferably (M 50% by weight, more preferably 0.3 to 40% by weight). Furthermore, it is preferably 0.5 to 35 wt%. If the upper limit of the content ratio is 50% by weight or less, the following extension molding becomes easy. In the case of using a low refractive index filler such as carbonic acid as a filler in the brightness improving layer, the content of the filler is preferably from 1 to 85% by weight, more preferably from 5 to 75% by weight. Further, it is preferably from 9 to 65% by weight. If the lower limit of the content ratio is 1 part by weight, the above is advantageous in that pores are easily formed during stretching. The interlayer (Π) is a layer containing two or more layers. In the case where the layer other than the brightness improving layer is a layer which does not excessively hinder the effect of the present invention, a specific layer structure includes, for example, a two-layer structure including an intermediate layer and a brightness improving layer. The side of the contact is set as the intermediate layer. The thickness of the intermediate layer is preferably 2 ~1〇〇μιη, more preferably 10~60 μϊη. It is better to use the reverse layer for the middle layer of the alloy, H, and vice versa. The intermediate layer can be used in the middle layer. The thermoplastic resin used in the reflective layer (1) is the same as the plastic resin. Further, the intermediate layer may contain the above-mentioned 145063.doc •15· 201030385 filler or not. The above filler may not be contained. Resin. X, in the middle layer of the human 2, the content of the filler is better than the weight of the three materials, and further good.. Dong A, especially in the use of the gas bucket material Rong high refractive index as the filler In the case of the case, the filling is a quantity of %, and more preferably, the quantity has = 0 5-10 # ^ 〇 / 〇 ^ ^ ^ ^ °. On the other hand, the lower layer uses a low refractive index such as calcium carbonate. (4) When n is 'the content of the filler is preferably (1) 〇罝., more preferably 5 to 85% by weight, and further preferably 9 to 75% by weight. [Surface layer (III)] Light reflection of this month The body may also be a surface layer on the surface of the reflective layer (1) opposite to the brightness enhancement layer (9). When the surface layer (ΙΠ) is in the shape of an it, the surface of the surface layer (Ιπ) becomes the light incident surface of the light reflector. The surface layer (1„) is preferably provided for the purpose of preventing the increase in surface strength. The light reflector is damaged or the deterioration of the light reflector caused by the light is prevented. X, the surface layer (m) is such that the reflectance or brightness of the surface of the light reflector is not lowered to the extent that it does not reach the scope of the present invention. It is preferable to provide the surface layer (ΠΙ) as a structure that does not hinder the reflected light from the reflective layer (I) as much as possible. The surface layer (111) constituting the light reflector of the present invention may be A layer containing one layer may also be a layer containing two or more layers. The total thickness of the surface layer (in) measured according to JIS P8丨丨8 is preferably hwo μιη, more preferably 2 to 8 μm, particularly preferably 7 to 60 μη. If the total thickness is i μm or more, there is a tendency that the desired properties of the surface layer (III) are easily imparted. When the total thickness is 145063.doc • 16 to 201030385 100 μηη or less, there is a tendency that the reflectance or the liberation of the light reflector of the present invention is easily maintained at a desired value. The surface layer (10) constituting the light reflector of the present invention preferably comprises a non-stretched film or a uniaxially stretched film. Among them, a single stretch film is preferred because it is thin and uniform in thickness. In the surface layer (10), the thermoplastic resin of the (four) reflective layer (1) can be made of the same thermoplastic resin. Further, the surface layer _ may also contain the above filler. When β is contained in the surface layer (III), the content of the filler is preferably 重量90 wt/0, more preferably 〇3 to 8% by weight, and further preferably 〇5 to wt%. In particular, when a filler having a high refractive index such as titanium oxide is used as the filler, the content of the filler is preferably Q i 2 2 (% by weight), more preferably 0.3 M 5 % by weight, and further preferably 〇 5 to 1% by weight. On the other hand, when a low refractive index filler such as carbonic acid is used as the filler, the content of the filler is preferably from 1 to 90% by weight, more preferably from 3 to 80% by weight, and further preferably 疋5~ 75 wt%. From the viewpoint of easily preventing the decrease in brightness caused by the passage of time, it is preferable to use a polyolefin resin or the like which is less discolored by photodegradation as a thermoplastic resin. In the case where the surface layer _ contains a layer of (4) or more, a layer having a different content ratio of the build-up filler is preferred. For example, if the surface layer _ includes two or more layers of the outermost layer and the interlaminar layer, and the intermediate layer is in contact with the reflective layer (1), the thickness of the outermost layer is compared. The good is 1 to 100 (four) 'better is _, especially good is 2~20 μιη' and the thickness of the middle layer is better (four) (four) 'better is 1~79 μιη, especially good is 5~58 Ηηι. I45063.doc -17· 201030385 Further, the content of the filler of the outermost layer is preferably from 0 to 85% by weight, more preferably from 5 to 75% by weight, even more preferably from 8 to 65% by weight. The content of the filler of the intermediate layer is preferably from 1 to 85% by weight, more preferably from 2 to 75% by weight, even more preferably from 5 to 65% by weight. The composition or thickness of the intermediate layer provided in the surface layer (III) may be set to be the same as the composition or thickness of the intermediate layer provided in the brightness enhancement layer (II). [Laminated Film] As described above, the laminated film constituting the light reflector of the present invention may include only the reflective layer (I) and the brightness enhancement layer (II), or may have a surface layer (III) / a reflective layer ( I) / The structure of the brightness enhancement layer (II). Hereinafter, specific examples of the light reflector of the present invention having 2 to 5 of the reflective layer (Α), the brightness improving layer (Β), the outermost layer (C), the intermediate layer (D1), and the intermediate layer (D2) are exemplified. Sexual layer composition. The reflective layer (Α), the brightness improving layer (Β), the outermost layer (C), the intermediate layer (D1), and the intermediate layer (D2) are each a single layer, and the brightness improving layer (Β) and the intermediate layer (D2) are formed. In the brightness enhancement layer (II), the outermost layer (C) and the intermediate layer (D1) constitute the surface layer (III). Further, hereinafter, the layer described first becomes a light incident surface. Layer constitution example 1: (Α)/(Β) Layer structure example 2: (C)/(A)/(B) Layer structure example 3: (A)/(D2)/(B) Layer structure example 4 : ( C)/(D1)/(A)/(B) Layer structure example 5: (C)/(A)/(D2)/(B) Layer structure example 6: (C)/(D1)/(A) / (D2) / (B) [Forming] 145063.doc -18· 201030385 As a method of forming the laminated film constituting the light reflector of the present invention, a method of laminating a usual resin film and a method of stretching can be used. - As a specific example of the lamination method, a co-extrusion method in which a molten layer of a molten resin is laminated into a mold by using a multi-layered τ or I 纟 mold, and the molten resin is broadcasted into a single sheet to obtain a multi-layered sheet is exemplified. A method of laminating a refining resin on a plurality of sheets using a plurality of T dies or a 1-word dies to obtain a layer of a plurality of f sheets. In the present invention, the reflective layer (1) and the brightness enhancement layer (11) have different extension axes. Therefore, when forming a laminate including the reflective layer (1) and the brightness extraction layer (II), the latter lamination method is used. A laminated film. Specific examples of the stretching method include: using a single-layer or multi-layered τ-type or I-shaped mold connected to a spiral extruder to spread the molten resin and forming a sheet-like shape, and using the circumferential speed difference of the roll group to make the a method of extending the sheet in the longitudinal direction (flow method) on the f-axis; a method of stretching the sheet in the transverse direction (width direction) by a tenter furnace; and further extending the longitudinal speed difference of the light group a sequential biaxial stretching method using a combination of lateral extension of a tenter furnace; or a simultaneous biaxial stretching method using a combination of a tenter furnace and a linear motor; a simultaneous biaxial stretching method using a combination of a tenter furnace and a pantograph; A simultaneous biaxial stretching method using an expansion molding method (tube method) using a zero-shaped die and a vacuum. In the present invention, since the number of extension axes of the reflective layer (1) and the brightness enhancement layer (11) are different, it is preferable to use a combination of the longitudinal extension of the circumferential speed difference using the roller group and the lateral extension by the tenter furnace. The sequential biaxial extension method. As a method of forming a film of 145063.doc -19· 201030385 of the present invention including the reflective layer (I) and the brightness enhancement layer (11), for example, the following method or the like can be used: in the uniaxial direction of the reflective layer (i) After the stretching, the molten resin composition of the brightness enhancement layer (II) is extruded and laminated (laminated) thereon, and the laminate is further uniaxially stretched in the extending direction and the right direction; After the raw material resins of the reflective layer (I) and the brightness enhancement layer (II) are individually stretched and formed, they are bonded directly or via an easy-adhesion layer. In the case where the surface layer (III) is provided, the same method as the brightness enhancement layer (11) can be employed. That is, the following method can be used: after the extension of the uniaxial direction of the reflective layer (1) is completed, the molten resin composition of the brightness enhancement layer (11) and the molten resin composition of the surface layer (III) are simultaneously or sequentially extruded. And laminating (lamination) on both sides of the reflective layer (I), and further uniaxially extending the laminated body in a direction perpendicular to the extending direction; and forming the reflective layer, the brightness improving layer (II), and the surface The raw material resins of the layer (III) are individually stretched and formed, directly or through an easy-adhesion layer, and the reflective layer (I) comprising the biaxially stretched film and the uniaxial layer are included by any of the above methods. After forming the laminate of the brightness-raising layer (II) of the stretched film, the film of the surface layer (JH) prepared separately is bonded to the side of the reflective layer (1) directly or via an easy-adhesion layer. In the case where the reflective layer (I), the brightness improving layer (II), and the surface layer (hi) have a multilayer structure, they may be formed by the same method as the above method. For example, in the case where the brightness enhancement layer (11) has a two-layer structure including an intermediate layer and a brightness-improving layer, it is possible to use a multilayer T-shaped or I-shaped mode to laminate the intermediate layer before the extension of the brightness-increasing layer (H). The brightness improving layer - a method of co-extruding a molten raw material, and the like. The stretching ratio imparts pores to the reflective layer (I), and to the brightness enhancement layer (11) 145063.doc -20- 201030385 Your egg: the element to give brightness to improve performance. ____^ τ _ In order to adjust the laminated film The size of the resulting pores, including the longitudinal stretching ratio of the reflective layer (1) of the stretched film, and the product of the lateral stretching ratio ^, that is, the area stretching ratio is preferably in the range of 3 to 80 times, more preferably 7 ~70 times the range, and further preferably 22 times ^ times, the most (four) is set to 25 to 50 times. If the area extension ratio is within 3 to 8 times, it is easy to obtain fine pores, and easy Suppresses the decrease in reflectance.

進而’為了高效地反射可見光區域中之光線,且為了形 成控制為可見光之波長尺寸之厚度的孔隙,除了填料粒徑 或延伸倍率以外,反射層⑴之縱向延伸倍率bn與橫向延伸 倍率LCD之比即lmd/lcd較好的是調整為〇 25〜2 7之範圍。 Lmd/Lcd比更好的是〇.3〜2.5之_,進而好的是〇 4〜2 2之範 圍。藉由調整為0.25〜2.7之_(縱向延伸倍率U與橫向延 伸倍率LCD極力成為同等之值)’而所形成之孔隙自面方向 觀察成為圓〜橢圓形狀’可高效地反射自各個方向所入射之 光線。 匕含單軸延伸薄膜之亮度提高層(π)之延伸倍率較好的 是設為3〜20倍之範圍,更好的是設為㈣倍之範圍,進而 好的是設為5倍〜16倍,最好的是設為6〜12倍。若延伸倍率 為3〜20倍之範圍内,則易於形成具有較高之光散射效果之 紡錘狀的孔隙’並可對經延伸之層賦予亮度提高性能。 延伸溫度為較所使用之熱塑性樹脂之熔點低2〜6〇^之溫 度’且較玻璃轉移點高2〜6〇t之溫纟,當樹脂為丙稀均聚 物(熔點為155〜167。〇時,延伸溫度較好的是95〜165。〇,當 145063.doc •21 · 201030385 樹脂為聚對笨二甲酸乙二酯(玻璃轉移點:約7〇{>c)時,延伸 溫度較好的是1〇〇〜13(rc。又,延伸速度較好的是2〇〜35〇 m/min。藉由以上述之延伸溫度使薄膜成形,而易於在薄膜 内部形所需之孔隙。 又,藉由延伸所獲得之積層薄膜視需要亦可進行熱處理 (退火處理),藉此謀求促進結晶化或降低積層薄膜之孰收缩 率等。Further, in order to efficiently reflect the light in the visible light region, and to form a pore having a thickness controlled to a wavelength of visible light, the ratio of the longitudinal stretching ratio bn of the reflective layer (1) to the lateral stretching ratio LCD in addition to the particle diameter or the stretching ratio of the filler That is, lmd/lcd is preferably adjusted to a range of 〇25 to 2 7 . The Lmd/Lcd ratio is preferably 〇.3~2.5 _, and further preferably 〇 4~2 2 range. By adjusting to 0.25 to 2.7 (the longitudinal stretching magnification U and the lateral stretching magnification LCD are equal to each other), the formed pores are observed from the surface direction to become a circle-elliptical shape, which can be efficiently reflected from all directions. Light. The stretching ratio of the brightness enhancement layer (π) of the uniaxially stretched film is preferably in the range of 3 to 20 times, more preferably in the range of (four) times, and more preferably in the range of 5 times to 16 times. Times, the best is set to 6 to 12 times. When the stretching ratio is in the range of 3 to 20 times, it is easy to form a spindle-shaped pore having a high light scattering effect, and it is possible to impart brightness improving performance to the stretched layer. The elongation temperature is a temperature lower than the melting point of the thermoplastic resin used by 2 to 6 〇^ and a temperature higher than the glass transition point by 2 to 6 〇t, when the resin is an acryl homopolymer (melting point is 155 to 167). When 〇, the extension temperature is preferably 95 to 165. 〇, when 145063.doc • 21 · 201030385 The resin is polyethylene terephthalate (glass transition point: about 7 〇 {> c), elongation temperature It is preferably 1 〇〇 13 (rc. Further, the stretching speed is preferably 2 〇 35 〇 m / min. By forming the film at the above extension temperature, it is easy to form a desired pore inside the film. Further, the laminated film obtained by the stretching may be subjected to heat treatment (annealing treatment) as needed, thereby promoting crystallization or reducing the shrinkage ratio of the laminated film.

本發明之反射層(I)之每單位體積所產生之孔隙之量可作 為孔隙率來表現。轉明《反射層⑴之孔隙率較好的是設 為15〜60%,更好的是設為25〜55%,進而好的是設為35〜训 之範圍。於本說明書中’所謂「孔隙率」係指根據下述式 ⑴所计算出之值。式⑴中之p。表示反射層⑴之真密度,p 表示藉由下述方法所求出之反射層(1)之密度。只要延伸前 之材料為不含有大量空氣者,則反射層⑴之真密度等於構 成其之延伸前之樹脂組合物的密度。 00—P 孔隙率(%)--- P 〇 X 1 00 式⑴The amount of pores produced per unit volume of the reflective layer (I) of the present invention can be expressed as porosity. It is stated that the porosity of the reflective layer (1) is preferably from 15 to 60%, more preferably from 25 to 55%, and further preferably set to 35 to the range of training. In the present specification, the term "porosity" means a value calculated according to the following formula (1). p in the formula (1). Indicates the true density of the reflective layer (1), and p represents the density of the reflective layer (1) obtained by the following method. As long as the material before the extension is free of a large amount of air, the true density of the reflective layer (1) is equal to the density of the resin composition before the extension thereof. 00—P Porosity (%)--- P 〇 X 1 00 Formula (1)

本發明中所使用之積層薄膜之密度通常為O M 3 g/cm3 之範圍,較好的SG.5〜0.9 g/em3之範圍。孔㈣乡,密度 越小且孔隙率越大。若孔隙率較大,則存在可進—步大幅 提高表面之反射特性之傾向。但是,若孔隙率過大,則積 層薄膜之機械強度(彈性模數等)欠佳,操作時易於產生彎曲 皺褶等不良情況。 本發月巾所使用之積層薄膜之密度係根據川8而 145063.doc •22· 201030385 測定。反射層(i)之密度係於自積層薄膜剝離亮度提高層 (11)(於具有表面層(111)之情形時亦同樣地剝離),而僅保留 反射層⑴後’以與積層薄膜相.同之方法求出。 又,本發明中所使用之積層薄膜之填料的含有率較好的 - 是5〜75重量%,更好的是15〜65重量%,進而好的是25〜55 重量%,特別好的是35〜45重量%。藉由使填料含有率為該 範圍内,於使積層薄膜如上述般成形時,易於控制孔隙率 或密度。 [光反射體] 本發明之光反射體包含上述之積層薄膜。根據Jlsz8722 之條件d所記載之方法並使用6〇〇 nm波長光所測定的本發 明之光反射體之光入射面(反射層⑴或表面層表面)的 反射率為98%〜100%。若積層薄膜之光入射面之反射率未達 9 8 °/〇 ’則存在亮度下降之傾向,故不佳。 本發明之光反射體可藉由下述之試驗方法而測定亮度。 鲁根據該試驗方法之本發明之光反射體之實測亮度值較好的 是315〜343 cd,更好的是315〜338 cd,進而好的是318〜328 cd。本發明中之光反射體之焭度係以將γ叩〇 c〇卬〇rati〇n(股) 製造之Yupo FPG300(商品名)之實測亮度值(根據該試驗方 法為298 cd)作為〗00%所計算出之相對亮度值來評價。本發 .明之光反射體之光入射面(反射層(A)或最表面層(c)表面) 之相對亮度值為106%〜115%,較好的是1〇6%〜112%,更好 的是107%〜110%。若相對亮度值未達1〇6%,則幾乎無法獲 得由亮度提高層(II)所帶來之亮度改善效果,與先前品相比 145063.doc •23· 201030385 改善效果亦不多。 本發明之光反射體之形狀並無特別限制,可根據使用目 的或使用態樣而適當決定《通常形成為板狀或薄膜狀來使 用’但即使於以其他形狀使用之情形時,只要係用作光反 射體者,則亦包含於本發明之範圍内。 [面光源裝置] 可使用本發明之光反射體來製造面光源裝置。本發明之 面光源裝置之具體性的構成並無特別限制。典型性之面光 源裝置例如可例示如圖6所示之直下式背光、或者如圖7所 示之侧光式背光。於設置於該等面光源裝置中之情形時, 以使本發明之光反射體之光入射面(反射層⑴表面或表面 層(III)表面)側朝向面光源裝置之光源之方式而設置。其 中’本發明之光反射體作為構成直下式背光之光反射體極 其有用。本發明之光反射體可提高朝向光入射面之法線方 向之反射功能,因此使用其之直下式背光可獲得更高之亮 度。 本發明之面光源裝置可較好地配置於液晶顯示器等中。 於應用於液晶顯示器之情形時’可長時間良好地維持書質 或亮度。 [其他用途] 本發明之光反射體不僅可用於此種使用内置式光源之面 光源裝置’亦可用於意圖反射室内光之低耗電型顯示裝 置。又,亦可廣泛地用於室内外照明用、電飾廣告牌用光 源等照明裝置之背面反射體。 145063.doc •24· r 201030385 實施例 以下,揭示實施例、比較例及試驗例來更具體地說明本 發明。以下所示之材料、使用量、比例、操作等只要不脫 離本發明之主旨’可適時變更。因此,本發明之範圍並不 限定於以下所示之具體例。再者,將本實施例中所使用之 • 材料示於表1。 表1 種類 内容 PP1 丙烯均聚物(Japan Polypropylene Coiporation(股)製造,商品名: — Novatec PP EA8, MFR(Melt Flow Rate,熔融流動速率)(230°C ' 2.16 kg荷重):0.8 g/l〇 min,炫點(DSC(differential scanning calorimetry,差示掃描量熱法)峰 值溫度):167°C) PP2 丙稀均聚物(Japan Polypropy丨ene Corporation(股)製造,商品名: Novatec PP MA4 » MFR(230°C、2.16 kg荷重):5 g/10 min,熔點(DSC峰值溫度):167。〇 HDPE 高密度聚乙稀(Japan Polyethylene Corporation(股)製造,商品名: Novatec HD MA4, MFR(230°C、2_16 kg荷重):5 g/10 min,熔點(DSC峰值溫度):167。〇 CaC03 ⑻ 表明處理沈殿碳酸約(MaruoCalcium(股)製造,商品名:Calfine YM30,平均粒徑:0.3 μηι) CaC03(b) 重質碳酸約(BihokuFunkaKogyo(股)製造,商品名:Softonl800,平 均粒徑:1.8 μιη) CaC〇3(c) 重質破酸約(MaruoCalcium(股)製造,商品名:Caltex7,平均粒徑: 1.2 μηι) CaC03(d) 重質破酸約(BihokuFunkaKogyo(股)製造’商品名:BF300,平均粒 徑:8 _ Ti02 金紅石型二氧化鈦(石原產業(股)製造,商品名:CR-60,平均粒徑: 0.2 μιη)The density of the laminated film used in the present invention is usually in the range of O M 3 g/cm 3 , preferably in the range of SG. 5 to 0.9 g/cm 3 . In Kong (4), the density is smaller and the porosity is larger. If the porosity is large, there is a tendency to further increase the reflection characteristics of the surface. However, if the porosity is too large, the mechanical strength (elastic modulus, etc.) of the laminated film is unsatisfactory, and problems such as bending wrinkles are likely to occur during handling. The density of the laminated film used in the hair towel is determined according to Sichuan 8 145063.doc • 22· 201030385. The density of the reflective layer (i) is based on the self-assembled film peeling brightness enhancement layer (11) (the same is also peeled off in the case of the surface layer (111)), and only the reflective layer (1) is retained to be in phase with the laminated film. The same method is used to find out. Further, the content of the filler of the laminated film used in the present invention is preferably from 5 to 75% by weight, more preferably from 15 to 65% by weight, still more preferably from 25 to 55% by weight, particularly preferably 35 to 45 wt%. When the filler content is within this range, when the laminated film is formed as described above, it is easy to control the porosity or density. [Light Reflector] The light reflector of the present invention comprises the above laminated film. The reflectance of the light incident surface (reflective layer (1) or surface layer surface) of the light reflector of the present invention measured by the method described in Condition d of Jlsz8722 and using 6 〇〇 nm wavelength light was 98% to 100%. If the reflectance of the light incident surface of the laminated film is less than 98 ° / 〇 ', the brightness tends to decrease, which is not preferable. The light reflector of the present invention can be measured for brightness by the following test method. The measured brightness value of the light reflector of the present invention according to the test method is preferably 315 to 343 cd, more preferably 315 to 338 cd, and further preferably 318 to 328 cd. The intensity of the light reflector in the present invention is the measured brightness value (298 cd according to the test method) of the Yupo FPG300 (trade name) manufactured by γ叩〇c〇卬〇rati〇n (share) as 00 The relative brightness value calculated by % is evaluated. The relative luminance value of the light incident surface (the surface of the reflective layer (A) or the outermost layer (c)) of the light reflector of the present invention is 106% to 115%, preferably 1〇6% to 112%, more preferably Good is 107%~110%. If the relative brightness value is less than 1〇6%, the brightness improvement effect by the brightness enhancement layer (II) is hardly obtained, and the improvement effect is not much compared with the previous product. 145063.doc •23· 201030385 The shape of the light reflector of the present invention is not particularly limited, and may be appropriately determined according to the purpose of use or the use form, "usually formed into a plate shape or a film shape," but it may be used even when it is used in other shapes. It is also included in the scope of the present invention to be a light reflector. [Face Light Source Device] A surface light source device can be manufactured using the light reflector of the present invention. The specific configuration of the surface light source device of the present invention is not particularly limited. A typical surface light source device can be, for example, a direct type backlight as shown in Fig. 6, or an edge light type backlight as shown in Fig. 7. In the case of being disposed in the surface light source device, the light incident surface (the surface of the reflective layer (1) or the surface of the surface layer (III)) of the light reflector of the present invention is disposed so as to face the light source of the surface light source device. Among them, the light reflector of the present invention is extremely useful as a light reflector constituting a direct type backlight. The light reflector of the present invention can improve the reflection function toward the normal direction of the light incident surface, so that a direct backlight can be used to obtain higher brightness. The surface light source device of the present invention can be preferably disposed in a liquid crystal display or the like. When applied to a liquid crystal display, the book quality or brightness can be maintained well for a long time. [Other uses] The light reflector of the present invention can be used not only for such a surface light source device using an internal light source but also for a low power consumption type display device intended to reflect indoor light. Further, it can be widely used as a back reflector of an illumination device such as a light source for indoor and outdoor lighting or an electric signboard. 145063.doc •24·r 201030385 EXAMPLES Hereinafter, the present invention will be more specifically described by way of examples, comparative examples and test examples. The materials, amounts, ratios, operations, and the like shown below may be changed as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below. Further, the materials used in the present embodiment are shown in Table 1. Table 1 Types of Content PP1 Propylene homopolymer (manufactured by Japan Polypropylene Coiporation, trade name: - Novatec PP EA8, MFR (Melt Flow Rate) (230 ° C ' 2.16 kg load): 0.8 g / l 〇min, DSC (differential scanning calorimetry): 167 ° C) PP2 propylene homopolymer (manufactured by Japan Polypropy丨ene Corporation, trade name: Novatec PP MA4 » MFR (230 ° C, 2.16 kg load): 5 g/10 min, melting point (DSC peak temperature): 167. 〇HDPE high density polyethylene (manufactured by Japan Polyethylene Corporation, trade name: Novatec HD MA4, MFR (230 ° C, 2-16 kg load): 5 g/10 min, melting point (DSC peak temperature): 167. 〇CaC03 (8) indicates that the treatment of Shendian carbonic acid (manufactured by MaruoCalcium), trade name: Calfine YM30, average particle size :0.3 μηι) CaC03(b) Heavy carbonic acid (manufactured by BihokuFunka Kogyo Co., Ltd., trade name: Softonl800, average particle size: 1.8 μιη) CaC〇3(c) Heavy acid-breaking (MaruCalcium) Name: Caltex7, average particle size: 1.2 μηι) CaC03(d) Heavy acid-breaking acid (made by BihokuFunka Kogyo Co., Ltd.) Trade name: BF300, average particle size: 8 _ Ti02 rutile titanium dioxide (manufactured by Ishihara Sangyo Co., Ltd., trade name: CR-60, average particle size : 0.2 μιη)

(實施例1)(Example 1)

使用設定為250°c之擠出機對將表1中所記載之材料以表 2中所記載之調配混合而成的組合物(A)進行熔融混練。其 後,將該組合物擠出為片材狀,並利用冷卻輥冷卻至約60°C 145063.doc -25- 201030385 為止而獲得無延伸片材。將該無延伸片材再次加熱至145^ 後’利用多個輥群之周速差將其於縱向上延伸為表2中所記 載之倍率lmd而獲得延伸片材。又,使用設^為2赃之3 台播出機對將表1中所記載之材料以表2中所記載之調配混 合而成的組合物(B)、(C)、(D)個別地進行熔融混練,然後 將組合物(B)熔融擠出於所獲得之延伸片材之一面將組合 物(C)、(D)熔融共擠出於另一面,並以成為c/d/a/b之方式 而積層。繼而,將該積層物再次加熱至16〇亡後,使用拉幅 機將其於橫向上延伸為表2中所記載之倍率匕⑶。其後於 16〇°C下對其進行退火處理後,冷卻至6〇<>(:為止並將邊緣 部切割,從而獲得具有表2中所記載之厚度之包含最表面層 (C)/中間層(D)/反射層(A)/亮度改善層(B)之四層構造的積 層薄膜(圖3)。此處,最表面層(c)/中間層(D)相當於本發明 之表面層(III卜將該積層薄膜作為光反射體。 (實施例2) 使用設定為2 5 01之擠出機對將表i中所記載之材料以表 2中所記載之調配混合而成的組合物(A)進行熔融混練。其 後,將該組合物擠出為片材狀,並利用冷卻輥冷卻至約6〇艺 為止而獲得無延伸片材。將該無延伸片材再次加熱至145它 後,利用多個輥群之周速差將其於縱向上延伸為表2中所記 載之倍率lmd而獲得延伸片材。又,使用設定為25〇(>c之擠 出機對將表1中所記載之材料以表2中所記載之調配混合而 成的組合物(B)進行熔融混練,然後將組合物(B)熔融擠出於 所獲得之延伸片材之一面,並以成為A/B之方式而積層。 145063.doc -26 - 201030385 而’將該積層物再次加熱至16〇i>c^^,使用拉幅機將其於橫 向上延伸為表2中所記載之倍率LCD。其後,於16(TC下對其 進行退火處理後’冷卻至6(rc為止,並將邊緣部切割從 而獲得具有表2中所記載之厚度之包含反射層(A)/亮度改善 層(B)之雙層構造的積層薄膜。該積層薄膜係圖1中之反射 層⑴與亮度提高層(Π)均包含單一之層者。將該積層薄膜作 為光反射體。 (實施例3) 除了使用將表1中所記載之材料以表2中所記載之調配混 合而成的組合物以外,以與實施例㈠目同之方式獲得光反射 體。 (實施例4) 使用設定為25〇t之擠出機對將表j中所記載之材料以表 2中所記載之調配混合而成的組合物(A)進行熔融混練。其 後’將該組合物擠出為片材狀,並利用冷卻輥冷卻至約6〇它 為止而獲得無延伸片材。將該無延伸片材再次加熱至⑷。c 後,利用多個輥群之周速差將其於縱向上延伸為表2中所記 載之倍率lmd而獲得延伸片材。又’使用設定為2耽之2 台擠出機對將表4所記載之材料以表2中所記載之調配混 合而成的組合物(B)、(D)個別地進行熔融混練,然後將組 合物(B)、(D)熔融共擠出於所獲得之延伸片材之一面,並 以成為A/D/B之方式而積層、繼而,將該積層物再次加熱至 ⑽。c後’使用拉幅機將其於橫向上延伸成表2中所記載之 倍率LCD。其後,於16代下對其進行退火處理後,冷卻至 145063.doc •27- 201030385 60C為止’並將邊緣部㈣’從*獲得具有表2巾所記載之 厚度之包含反射層(A)/中間層(D)/亮度改善層(b)之三層構 造的積層薄膜(圖4)。此處,中間層(D)/亮度改善層(B)相當 於本發明之亮度提高層⑻。將該積層薄臈作為光反射體。 (實施例5 ) 使用設定為25〇t:之擠出機對將们中所記載之材料以表 2中所記載之調配混合而成的組合物⑷進行熔融混練。其 後’將該組合物擠出為片材狀’並利用冷卻輥冷卻至約机 為止而獲得無延伸片材。將該無延伸片材再次加熱至“万它 後’利用多個輥群之周速差將其於縱向上延伸為表2中所記 載之倍率lmd而獲得延伸片材。又,使用設定為2耽之2 台擠出機對將幻中所記載之材料以表2中所記載之調配混 合而成的組合物(B)、(C)個別地進行熔融混練,然後將組合 物(B)熔融擠出於所獲得之延伸片材之一面,將組合物 熔融擠出於另一面,並以成為C/A/B之方式而積層。繼而, 將該積層物再次加熱至副力後,使用拉幅機將其於橫向上 延伸為表2中所記載之倍率LCD。其後,於16(rc下對其進行 退火處理後,冷卻至6(rc為止,並將邊緣部切割從而獲 得具有表2中所記載之厚度之包含最表面層(c)/反射層(八)/ 亮度改善層(B)之三層構造的積層薄膜。該積層薄膜係圖2 中之反射層⑴與亮度提高層(II)及表面層(III)均包含單一 之層者。將該積層薄膜作為光反射體。 (實施例6) 使用設定為2501之擠出機對將表丄中所記載之材料以表 145063.doc -28· 201030385 2中所Z載之調配混合而成的組合物⑷進行熔融混練。其 後將該,·:a σ物擠出為片材狀’並利用冷卻棍冷卻至約60 為止而獲得無延伸片#。將該無延伸月材再次加熱至14yc 後,利用多個輥群之周速差將其於縱向上延伸為表2中所記 載之倍率LMD而獲得延伸片材^又,使用S定為25代之4 台擠出機對將表!中所記載之材料以表2中所記載之調配混 合而成的組合物(B)、(〇、(D)個別地進行熔融混練,然後 將組合物(B)、(D)熔融共擠出於所獲得之延伸片材之一 ❿ ® ’將組合物⑹、⑼炫融共擠出於另一面,並以成為 C/D/A/D/B之方式而積層。繼而,將該積層物再次加熱至 160C後,使用拉幅機將其於橫向上延伸為表2中所記載之 _ 倍率Lcd。其後,於16(TC下對其進行退火處理後,冷卻至 - 60°C為止,並將邊緣部切割,從而獲得具有表2中所記載之 厚度之包含最表面層(C)/中間層(D)/反射層(A)/中間層(D)/ 凴度改善層(B)之五層構造的積層薄膜(圖5)β此處,最表面 _ 層(C)/中間層(D)相當於本發明之表面層(ΠΙ),中間層⑴)/ 受度改善層(Β)相當於本發明之亮度提高層(π)。將該積層 薄膜作為光反射體。 (實施例7〜12) 於實施例7〜12之各實施例中,使用將表1 +所記載之材料 以表2中所記載之調配混合而成的組合物。實施例7及&以與 實施例6相同之方式而製造,實施例9以與實施例1相同之方 式而製造’實施例10以與實施例5相同之方式而製造,實施 例11以與實施例3相同之方式而製造,實施例12以與實施例 145063.doc -29- 201030385 4相同之方式而製造’從而獲得各個光反射體。延伸倍率採 用表2中所記載之條件。 (比較例1) 以與專利文獻3(日本專利特開2〇〇2 3 17〇4號公報)之實施 例5相同之方式而獲得光反射體。 (比較例2) 除了使用將表1中所記載之材料以表2中所記載之調配混 合而成的組合物以外’以與實施例4相同之方式而獲得光反 射體。 (比較例3) 、使用設定為2耽之2台擠出機對將幻中所記載之材料 以表2中所5己載之調配混合而成的組合物⑷、⑻個別地進The composition (A) obtained by mixing the materials described in Table 1 with the ingredients described in Table 2 was melt-kneaded using an extruder set at 250 °C. Thereafter, the composition was extruded into a sheet shape, and cooled to about 60 ° C 145063.doc -25 - 201030385 by a cooling roll to obtain an unstretched sheet. The unstretched sheet was again heated to 145 hr. The extended sheet was obtained by extending it in the longitudinal direction by the peripheral speed difference of the plurality of roll groups to the magnification llm recorded in Table 2. Further, the compositions (B), (C), and (D) obtained by mixing the materials described in Table 1 with the materials described in Table 2 were individually used by using three devices of 2 播. The melt-kneading is carried out, and then the composition (B) is melt-extruded on one side of the obtained stretched sheet, and the compositions (C) and (D) are melt-coextruded on the other side to become c/d/a/. The way of b is layered. Then, the laminate was heated again to 16 Torr, and it was extended in the lateral direction by a tenter to the magnification 匕(3) described in Table 2. Thereafter, it was annealed at 16 ° C, and then cooled to 6 〇 <> (: and the edge portion was cut to obtain the outermost layer (C) having the thickness described in Table 2. /layer film of the four-layer structure of the intermediate layer (D) / reflective layer (A) / brightness improving layer (B) (Fig. 3). Here, the outermost layer (c) / intermediate layer (D) corresponds to the present invention The surface layer (III) is used as a light reflector. (Example 2) The materials described in Table i were mixed and mixed as described in Table 2 using an extruder set to 2 5 01. The composition (A) is melt-kneaded. Thereafter, the composition is extruded into a sheet shape, and cooled to about 6 liters by a cooling roll to obtain an unstretched sheet. The unstretched sheet is heated again. After 145, the stretched sheet was obtained by extending the peripheral speed difference of the plurality of roll groups in the longitudinal direction to the magnification llm described in Table 2. Further, an extruder set to 25 〇 (>c) was used. The composition (B) obtained by mixing the materials described in Table 1 with the ingredients described in Table 2 was melt-kneaded, and then the composition (B) was added. Melt and extrude one side of the obtained extended sheet and laminate it in the form of A/B. 145063.doc -26 - 201030385 and 'reheat the laminate to 16〇i>c^^, use pull The web machine is extended in the lateral direction to the magnification LCD described in Table 2. Thereafter, it is annealed at 16 (TC) and then cooled to 6 (rc, and the edge portion is cut to obtain Table 2 The laminated film including the reflective layer (A)/brightness improving layer (B) has a two-layer structure, and the laminated film (1) and the brightness improving layer (Π) in FIG. 1 each comprise a single layer. The laminated film was used as a light reflector. (Example 3) The same procedure as in Example (1) was carried out except that the composition described in Table 1 was mixed with the materials described in Table 2. The light-reflecting body was obtained in the same manner. (Example 4) The composition (A) obtained by mixing the materials described in Table j with the ingredients described in Table 2 was melt-kneaded using an extruder set at 25 Torr. Thereafter, the composition was extruded into a sheet shape and cooled to about 6 Torr with a chill roll. An unstretched sheet was obtained. The unstretched sheet was again heated to (4). c, and the stretch was obtained by extending the longitudinal direction of the plurality of roll groups in the longitudinal direction to the magnification llm described in Table 2 to obtain an extended piece. Further, the compositions (B) and (D) obtained by mixing the materials described in Table 4 with the materials described in Table 2 were individually melt-kneaded using two extruders set to 2 Torr. Then, the compositions (B) and (D) are melt-extruded on one side of the obtained stretched sheet, and laminated as A/D/B, and then the laminate is heated again to (10). After that, it was extended in the lateral direction by a tenter to the magnification LCD described in Table 2. Thereafter, after annealing for 16 generations, it is cooled to 145063.doc •27-201030385 60C and the edge portion (four)' is obtained from *with a reflective layer (A) having the thickness described in Table 2 / Laminate layer of the three-layer structure of the intermediate layer (D) / brightness improving layer (b) (Fig. 4). Here, the intermediate layer (D) / brightness improving layer (B) is equivalent to the brightness improving layer (8) of the present invention. This laminated thin crucible is used as a light reflector. (Example 5) The composition (4) obtained by mixing the materials described in Table 2 with the extruder set to 25 〇t: was melt-kneaded. Thereafter, the composition was extruded into a sheet shape and cooled to about about 20,000 by a cooling roll to obtain an unstretched sheet. The non-stretched sheet was again heated to "extremely" to obtain an extended sheet by extending the peripheral speed difference of the plurality of roll groups in the longitudinal direction to the magnification llm described in Table 2. Further, the use was set to 2 The two extruders melt and knead the compositions (B) and (C) prepared by mixing the materials described in Table 2 with the materials described in Table 2, and then melt the composition (B). Extrusion is performed on one side of the obtained stretched sheet, and the composition is melt-extruded on the other side, and laminated as C/A/B. Then, the laminate is heated again to a secondary force, and then pulled. The web machine extends in the lateral direction to the magnification LCD described in Table 2. Thereafter, it is annealed at 16 (rc), cooled to 6 (rc, and the edge portion is cut to obtain Table 2 The laminated film including the outermost layer (c)/reflective layer (eight)/brightness improving layer (B) has a thickness of three layers. The laminated film is the reflective layer (1) and the brightness improving layer in FIG. Both II) and the surface layer (III) comprise a single layer. The laminated film is used as a light reflector. Example 6) The composition (4) prepared by mixing the materials described in Table 145063.doc -28· 201030385 2 with the extruder set to 2501 was melt-kneaded. The :·: a σ substance was extruded into a sheet shape 'cooled to about 60 by a cooling bar to obtain an extension-free sheet #. After the unextended moon material was again heated to 14 yc, the circumference of the plurality of roll groups was utilized. The speed difference is extended in the longitudinal direction to the magnification LMD described in Table 2 to obtain the extended sheet, and the extruder is used to define the material described in Table 2 in Table 2 The prepared composition (B), (〇, (D) are separately melt-kneaded, and then the composition (B), (D) is melt-coextruded into one of the obtained extended sheets. ❿ ® 'The composition (6), (9) is co-extruded on the other side and laminated in the form of C/D/A/D/B. Then, after the laminate is heated again to 160C, the tenter is used. The machine is extended in the lateral direction to the _ magnification Lcd described in Table 2. Thereafter, it is annealed at 16 (TC) and then cooled to -60 ° C. And cutting the edge portion to obtain the outermost layer (C) / intermediate layer (D) / reflective layer (A) / intermediate layer (D) / thickness improvement layer having the thicknesses shown in Table 2 ( B) Five-layer structure laminated film (Fig. 5) β Here, the outermost layer _ layer (C) / intermediate layer (D) corresponds to the surface layer (ΠΙ) of the present invention, the intermediate layer (1)) / the degree of improvement layer (Β) corresponds to the brightness enhancement layer (π) of the present invention. The laminated film is used as a light reflector. (Examples 7 to 12) In each of Examples 7 to 12, the use of Table 1 + is used. The materials were mixed and blended as described in Table 2. Example 7 and & produced in the same manner as in Example 6, Example 9 was manufactured in the same manner as in Example 1 and Example 10 was manufactured in the same manner as Example 5, and Example 11 was Example 3 was produced in the same manner as in Example 3, and Example 12 was fabricated in the same manner as in Example 145063.doc -29-201030385 4 to obtain individual light reflectors. The stretching ratios were the conditions described in Table 2. (Comparative Example 1) A light reflector was obtained in the same manner as in Example 5 of Patent Document 3 (Japanese Patent Laid-Open Publication No. Hei. (Comparative Example 2) A light reflector was obtained in the same manner as in Example 4 except that the composition described in Table 1 was mixed with the composition described in Table 2. (Comparative Example 3) The compositions (4) and (8) obtained by blending the materials described in Table 2 with the two materials set in Table 2 were individually introduced using two extruders set to 2 耽.

行溶融混練。其後,將該組合物於1台模具内部以成為A/B 之方式而積層,並將其共擠出為片材狀然後利用冷卻概 冷部至約60。(:為止而獲得無延伸片材。將該無延伸片材再 次加熱至145ΐ後,利用多個輥群之周速差將其於縱向上延 伸為表2中所s己載之倍率Lmd而獲得延伸片材。繼而,將該 乙伸片材再次加熱至⑽。。後,使用拉幅機將其於橫向上延 伸為表2中所5己載之倍率Lcd。其後,於】6代下對其進行退 、處理後冷4卩至6G C為止,並將邊緣部切割,從而獲得 具有表2中所記載之厚度之包含反射層⑷/亮度改善層⑻ 之雙層構造的積層薄膜。將該積層薄膜作為光反射體。 (比較例4〜8) 於比較例4〜8之各比較例中’使用將表^所記載之材料 145063.doc 201030385 乂表2中所§己載之調配混合而成的組合物。比較例*以與實 施例4相同之方式而製造’比較例5以與實施例1相同之方式 而製造,比較例6以與實施例5相同之方式而製造,比較例了 以與實施例3相同之方式而製造,比較例8以與實施例4相同 之方式而製造,從而獲得各個光反射體。延伸倍率採用表2 中所記載之條件。Melt and mix. Thereafter, the composition was laminated in the inside of one mold so as to become A/B, and coextruded into a sheet shape and then cooled to about 60 by cooling. (The obtained unstretched sheet was obtained. After the non-stretched sheet was heated again to 145 Torr, it was obtained by extending the circumferential speed difference of the plurality of roll groups in the longitudinal direction to the magnification Lmd of the load contained in Table 2; The sheet is stretched. Then, the sheet is again heated to (10). Thereafter, it is extended in the lateral direction by a tenter to a magnification Lcd of 5 in Table 2. Thereafter, in the 6th generation This was subjected to retreat and treatment, and then cooled to 4 G to 6 G C, and the edge portion was cut to obtain a laminated film having a two-layer structure including the reflective layer (4)/brightness improving layer (8) having the thickness described in Table 2. The laminated film was used as a light reflector. (Comparative Examples 4 to 8) In each comparative example of Comparative Examples 4 to 8, 'the use of the materials described in Table 145063.doc 201030385 乂 Table 2 Comparative Example * Comparative Example 5 was produced in the same manner as in Example 4, and Comparative Example 6 was produced in the same manner as in Example 1, and Comparative Example 6 was produced in the same manner as in Example 5, Comparative Example Manufactured in the same manner as in Example 3, Comparative Example 8 was the same as in Example 4. Manufacturing manner, thereby obtaining respective light reflector extends ratio using the conditions described in the Table 2.

145063.doc • 31 - 201030385 CNl 5 Lmd* Lcd 38.3 38.3 38.3 38.3 38.3 45.0 45.0 31.5 38.3 38.3 38.3 38.3 37.5 38.3 38.3 38.3 38.3 38.3 38.3 38.3 延伸倍丰 m i *r> 00 «η 00 »Λ 00 V» 00 00 10.0 10.0 p «Λ| 00 *〇 oc 〇〇 «η 00 *r> od ob so »Ti od •Λ 00 •Λ 00 «η 00 i «η «Ί «η ΜΙ »η *η — rj* Wl *n m 5 »Λ — »η »r> »ri — *Γι *η 層構成 C/D/A/B 1 C/D/A/B A/D/B C/A/B C/D/A/D/Q C/D/A/D/B C/D/A/D/B C/D/A/B C/A/B C/D/A/B A/D/B C/D/A/D/B A/D/B ? A/D/B C/D/A/B C/A/B C/D/A/B A/D/B 反射層 (A) 孔隙率 (%) «Λ <Ν »η cn Wl m (Ν rs «Λ ΡΊ m ν〇 «η ec 讀?#杯_ Μ 00 Ρ*1 5 O 00 ΓΠ 00 m 00 m - «Λ rs 中問層(D)組成(觸 1 Ti〇2 Ο Ο «ί - — - - — - - Ο ο ο — . — ο CaC〇3 ο Ο ο ' 1 15⑻ 15(a) 15(a) 59(a) * I ο ο O 59⑻ ' 〇( ο HDPE ο ο ο ο ο o o O ο Ο ο o o ο ο g ο ο σν • Ό 00 Wl 00 V) 00 o • 沄 ο S ο OS o • g ο 最表面層(C)组成(重量%) Ti〇2 - — • — - — — m O o • ο — «η ο ο CaCOj 59(a) 59(a) • 59⑷ 59(a) 59(a) 59(a) 59⑻ 9.5(c) o 45(b) • 59(a) 9.5(c) ο • HDPE ο ο ο ο ο O o o o ο • • o ο ο iN & ο ο • ο ο ο o o o • W-i w> o ο ' 亮度改善層(B)組成(重量%) Ti02 i_ ο ιτ> «Λ - 沄 - - - — Ο — — - «η — - 1 CaC〇3 1_ ο Ο ο 59(a) ο 59(a) 59(a) 59(a) 59⑷ 9.5(c) 15(a) 59(a) 45(b) 15(b) 59(a) 59(a) 59(a) 9.5(c) 59(b) HDPE _ ο ο ο ο ο ο ο o o o o ο ο ο ο o o ο ο ο S 袞 VI ΟΝ ιη Ον ο ο ο ο © o 70.5 »n ο W1 «Λ κ> ο o o g g Ο 反射層(A)組成(重量%) i_ ί Ti02 1_ ν> «Λ w-> <η »Λ »n w> •Λ Ο «Λ WV W) «Λΐ V» CaC〇3 1_ 40(a) 1 40(a) 40(a) 35(c) 40(c) 40(a) 40(a) 40(a) 40⑷ 3〇(c) 40(a) 40(a) 15(b) 40(a) 40(a) 35(b) 40(a) 3〇(c) 40(a) 1 40(a) 1 ! HDPE i_ ^r 对 寸 ο 寸 对 s *η •η *η In ίη >Λ jrj In w-> 厚度(μπι) i . . CQ _ S V» Ο Vi Ο fS V» (Ν m Q _ 1 I Ο *η cn • Ο ο 〇 • • ο <Ν *Λ Μ m σ\ ο ίΝ § § § o (N tN O <N g 00 g g 00 O 另 r·» ο (Ν g Ω Ο ' ο ν> r·) cn 〇 t 〇 ' — • o • Ο • m • m I m ο *η »n r*t «Λ r*^ ' ο . ' 衮畸《ί 00 «η <Ν <s 00 Ό ίΝ jn «Λ <Ν 沄 (Ν Ο m fN O ΙΛ fN <N P^l c*"i (N ο fS ο jn o \〇 <N fS ο «Ν Ό <Ν ΓΜ Μ 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 實施例7 賁施例8 實施例9 1實施例10 |實施例11 實施例12 比較例1 比較例2 比較例3 比較例4 比較例5 -1 比較例6 ' 比較例7 比較例8 ! 145063.doc -32- 201030385 (試驗例) 使用實施例1〜8及比較例1〜8中所獲得之光反射體來進行 以下之試驗。 1)厚度 本發明中之積層薄膜之厚度係根據JIS_p8118,並使用厚 度計進行測定。反射層(A)、亮度改善層(b)、最表面層(c)、 中間層(D)之各層之厚度係由以下方法求出:利用液體i將 各積層薄膜冷卻至-6(TC以下之溫度,並使用剃刀(Schick ❿ JaPan(股)製造,商品名:proline blade)於面方向上垂直地 切割而製成剖面觀察用之試樣’然後利用掃描型電子顯微 鏡(日本電子(股)製造,商品名:JSM-6490)觀察所獲得之試 樣之剖面’根據孔隙形狀或組成辨別各層之邊界線並求出 ' 厚度之比率,且根據由上述方法所測定之積層薄膜全層之 厚度計算出各層之厚度。將各測定結果示於表2。 2)光反射體之反射率 φ 本發明中之積層薄膜之反射層⑴側表面之反射率係以如 下方式進行測定:將成為光反射體之光入射面之反射層 或最表面層(C)表面作為測定面,並根據jIS_Z8722之條件d 所記載之方法使用波長為6〇〇 nm之光源光進行測定。將各 ' 測定結果示於表3。 • 3)亮度提高層(Π)之反射率 本發明中之亮度提高層(Π)之反射率係以如下方式進行 測定:於積層薄膜中,當反射層(A)與亮度改善層(B)直= 接觸時僅將亮度改善層(B)—層自反射層⑷剝離,當反射 145063.doc -33· 201030385 層(A)與亮度改善層(B)之間設置有中間層(D)時將中間層 (D)與亮度改善層(b)此兩層自反射層(A)剝離,將與反射層 (A)接觸之面作為測定面,並.根據ns_Z8722之條件d所記載 之方法使用波長為600 nm之光源光進行測定。將各測定結 _ 果示於表3。 4)光反射體之亮度 使用圖6中所例示之直下式背光方式之尺寸為21吋的面 光源裝置。於本試驗方法中’使用内置於索尼製造之液晶 TV(television,電視)(商品名:BraviaKDL-20J3000)中之直 ❹ 下式背光裝置,並將其之光反射體更換後進行試驗。該直 下式背光裝置之鄰接之光源(冷陰極燈)15之中心彼此的距 離a為24mm’自擴散板14之下表面至光源15之中心為止的 距離b為21 mm,自光源15之中心至外殼η之上表面為止的 距離c為3·5 mm。於光源丨丨中流通電流並點燈7小時,光源 之輸出穩定後,將各實施例、比較例中所獲得之光反射體 與Yupo Corporation(股)製造之Yup〇 FPG3〇0(商品名)以使 光入射面成為光源11側之方式而分別設置於圖中之11之位 ❹ 置’並自光源照射光3 0分鐘。 冗度之測定係藉由如下方法實施:於面光源裝置之發光 面17之法線方向,在離發光面17之距離達到120 cm之位置 設置亮度不均測定機(HI-LAND有限公司製造,商品名: 、 R~ISA_C:C)LC)ER/〇NE),使用該測定器以每1秒3次獲取發光 面之圖像’測定均等地配置於各圖像之中心部(實際之面光 原之表面中央部’縱12 cmx橫15 cm之範圍)之縱l〇x橫1〇點 145063.doc •34· 201030385 之合計100點之測定點的亮度值並求出平均值,進而求出3 次之平均值。對1個試樣實施10次該測定,並將其平均值作 為本發明之亮度(實測亮度值)。又,使Yupo FPG300(商品 名)之亮度為100%,亦求出各實施例、比較例中所獲得之光 反射體之相對亮度值。將各測定結果示於表3。 表3 反射率 (%) 亮度提高層(Π) 反射率(%) 實測亮度值 (cd) 相對亮度值 (%) 實施例1 99.5 61.2 319 107 實施例2 99.0 64.0 316 106 實施例3 99.0 87.0 322 108 實施例4 98.5 87.0 319 107 實施例5 99.0 78.8 319 107 實施例6 98.6 74.3 316 106 實施例7 98.4 71.0 316 106 實施例8 98.5 80.3 319 107 實施例9 99.6 78.4 319 107 實施例10 98.0 82.3 316 106 實施例11 98.8 80.8 322 108 實施例12 98.5 63.4 316 106 比較例1 92.0 74.9 286 96 比較例2 98.5 14.2 310 104 比較例3 98.5 62.0 310 104 比較例4 95.0 87.0 292 98 比較例5 99.6 59.0 313 105 比較例6 98.0 20.4 307 103 比較例7 98.8 19.3 313 105 比較例8 98.5 58.2 313 105 再者,使用超促進耐候性試驗機(DAIPLA WINTES(股) 公司製造,商品名:METAL WEATHER),於83 °C、相對濕 度為50%之環境下利用金屬鹵素燈光源對實施例1〜12之光 145063.doc -35- 201030385 反射體照射照明度為90 mW/cm2之紫外線1〇〇小時後,亦未 觀察到黃變等色調變化。 產業上之可利用性 如上所述,根據本發明之光反射體,可不依賴於具有光 學性特徵之成分’而達成優異之亮度與反射率。又,使用 本發明之光反射體所製造之面光源裝置即使於光源燈之低 輸出化或光源燈數之減少化時,亦易於維持高亮度而極其 有用。 【圖式簡單說明】 圖1係表示本發明之光反射體之層構成之一型態的剖面 ran . 圃, 圖2係表示本發明之光反射體之層構成之另一型態 面圖; 圖3係表示本發明之光反射體之層構成之具體例的剖面 園,145063.doc • 31 - 201030385 CNl 5 Lmd* Lcd 38.3 38.3 38.3 38.3 38.3 45.0 45.0 31.5 38.3 38.3 38.3 38.3 37.5 38.3 38.3 38.3 38.3 38.3 38.3 38.3 Extension Bianfeng mi *r> 00 «η 00 »Λ 00 V» 00 00 10.0 10.0 p «Λ| 00 *〇oc 〇〇«η 00 *r> od ob so »Ti od •Λ 00 •Λ 00 «η 00 i «η «Ί «η ΜΙ »η *η — rj* Wl * Nm 5 »Λ — »η »r> »ri — *Γι *η Layer composition C/D/A/B 1 C/D/A/BA/D/BC/A/BC/D/A/D/QC /D/A/D/BC/D/A/D/BC/D/A/BC/A/BC/D/A/BA/D/BC/D/A/D/BA/D/B ? A /D/BC/D/A/BC/A/BC/D/A/BA/D/B Reflective layer (A) Porosity (%) «Λ <Ν »η cn Wl m (Ν rs «Λ ΡΊ m ν〇«η ec Read?#杯_ Μ 00 Ρ*1 5 O 00 ΓΠ 00 m 00 m - «Λ rs middle layer (D) composition (touch 1 Ti〇2 Ο Ο «ί - — - - — - - ο ο ο - . - ο CaC〇3 ο Ο ο ' 1 15(8) 15(a) 15(a) 59(a) * I ο ο O 59(8) ' 〇 ( ο HDPE ο ο ο ο ο oo O ο Ο ο oo ο ο g ο ο σν • Ό 00 Wl 00 V) 00 o • 沄ο S ο OS o • g ο The outermost layer (C) Composition (% by weight) Ti〇2 - — • — — — — m O o • ο — «η ο ο CaCOj 59(a) 59(a) • 59(4) 59(a) 59(a) 59(a 59(8) 9.5(c) o 45(b) • 59(a) 9.5(c) ο • HDPE ο ο ο ο ο O ooo ο • • o ο ο iN & ο ο • ο ο ο ooo • Wi w> o ο ' Brightness improvement layer (B) composition (% by weight) Ti02 i_ ο ιτ> «Λ - 沄- - - - Ο — — - «η — - 1 CaC〇3 1_ ο Ο ο 59(a) ο 59( a) 59(a) 59(a) 59(4) 9.5(c) 15(a) 59(a) 45(b) 15(b) 59(a) 59(a) 59(a) 9.5(c) 59(b HDPE _ ο ο ο ο ο ο ο oo oo ο ο ο 衮 ΟΝ ΟΝ ι ι ι ι © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © Weight %) i_ ί Ti02 1_ ν> «Λ w-><η »Λ »n w> •Λ Ο «Λ WV W) «Λΐ V» CaC〇3 1_ 40(a) 1 40(a) 40 (a) 35(c) 40(c) 40(a) 40(a) 40(a) 40(4) 3〇(c) 40(a) 40(a) 15(b) 40(a) 40(a) 35 (b) 40(a) 3〇(c) 40(a) 1 40(a) 1 ! HDPE i_ ^r versus inch ο 对 s * η • η * η I n ίη >Λ jrj In w-> Thickness (μπι) i . . CQ _ SV» Ο Vi Ο fS V» (Ν m Q _ 1 I Ο *η cn • Ο ο 〇• • ο <Ν * Λ Μ m σ\ ο ί § § § o (N tN O <N g 00 gg 00 O another r·» ο (Ν g Ω Ο ' ο ν> r·) cn 〇t 〇' — • o • Ο • m • m I m ο *η »nr*t «Λ r*^ ' ο . ' 衮 《 "ί 00 «η <Ν <s 00 Ό ίΝ jn «Λ <Ν 沄(Ν Ο m fN O ΙΛ fN <NP^lc*"i (N ο fS ο jn o \〇<N fS ο «Ν Ό <Ν ΓΜ 实施 Example 1 Example 2 Example 3 Example 4 Example 5 Implementation Example 6 Example 7 Example 8 Example 9 1 Example 10 | Example 11 Example 12 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 -1 Comparative Example 6 'Comparative Example 7 Comparative Example 8 145063.doc -32- 201030385 (Test Example) The following tests were carried out using the light reflectors obtained in Examples 1 to 8 and Comparative Examples 1 to 8. 1) Thickness The thickness of the laminated film in the present invention is measured in accordance with JIS_p8118 using a thickness meter. The thickness of each layer of the reflective layer (A), the brightness improving layer (b), the outermost layer (c), and the intermediate layer (D) is determined by cooling the laminated film to -6 (TC or less) by the liquid i. Temperature, and using a razor (manufactured by Schick ❿ JaPan, trade name: proline blade) to cut vertically in the plane direction to prepare a sample for cross-section observation> and then using a scanning electron microscope (Japan Electronics Co., Ltd.) Manufactured, trade name: JSM-6490) Observing the profile of the obtained sample 'determine the boundary line of each layer according to the shape or composition of the pores and determine the ratio of the thickness, and according to the thickness of the full layer of the laminated film measured by the above method The thickness of each layer is calculated. The results of the respective measurements are shown in Table 2. 2) Reflectance of light reflector φ The reflectance of the side surface of the reflective layer (1) of the laminated film of the present invention is measured as follows: The surface of the reflection layer or the outermost layer (C) of the light incident surface of the body is used as a measurement surface, and is measured by a light source having a wavelength of 6 〇〇 nm according to the method described in Condition d of JIS_Z8722. The results of each 'measurement are shown in Table 3. • 3) Reflectance of brightness enhancement layer (Π) The reflectance of the brightness enhancement layer (Π) in the present invention is measured in the following manner: in the laminate film, when the reflection layer (A) and the brightness improvement layer (B) Straight = When the contact is made, only the brightness improving layer (B) layer is peeled off from the reflecting layer (4), and when the intermediate layer (D) is provided between the reflecting layer 145063.doc -33· 201030385 layer (A) and the brightness improving layer (B) The intermediate layer (D) and the brightness improving layer (b) are peeled off from the two layers of the self-reflecting layer (A), and the surface in contact with the reflecting layer (A) is used as a measuring surface, and is used according to the method described in condition d of ns_Z8722. The light source with a wavelength of 600 nm was measured. The results of each measurement are shown in Table 3. 4) Brightness of light reflector A surface light source device having a size of 21 inches using the direct type backlight method illustrated in Fig. 6 was used. In the test method, a direct-type backlight device incorporated in a liquid crystal TV (television) manufactured by Sony (trade name: Bravia KDL-20J3000) was used, and the light reflector was replaced and tested. The distance a between the centers of the adjacent light sources (cold cathode lamps) 15 of the direct type backlight device is 24 mm'. The distance b from the lower surface of the diffusion plate 14 to the center of the light source 15 is 21 mm, from the center of the light source 15 to The distance c from the upper surface of the outer casing η is 3·5 mm. After the current was passed through the light source 并 and the light was turned on for 7 hours, and the output of the light source was stabilized, the light reflector obtained in each of the examples and the comparative examples and the Yup 〇 FPG 3 〇 0 (trade name) manufactured by Yupo Corporation were used. The light incident surface was placed on the side of the light source 11 so as to be placed at the position 11 of the figure and irradiated with light from the light source for 30 minutes. The measurement of the degree of redundancy is carried out by setting a brightness unevenness measuring machine (manufactured by HI-LAND Co., Ltd.) at a position of 120 cm from the light-emitting surface 17 in the normal direction of the light-emitting surface 17 of the surface light source device. Product name: R, ISA_C: C) LC) ER / 〇 NE), using this measuring device to acquire the image of the light-emitting surface three times per second 'measurement is equally placed in the center of each image (actual surface) The central portion of the surface of the light source is 12 cm long and 15 cm horizontally. The longitudinal l〇x horizontal 1 point 145063.doc •34·201030385 The total brightness of the measurement points at 100 points and the average value is obtained. The average of 3 times. The measurement was carried out 10 times on one sample, and the average value thereof was taken as the brightness (measured brightness value) of the present invention. Further, the luminance of the Yupo FPG 300 (trade name) was set to 100%, and the relative luminance values of the light reflectors obtained in the respective examples and comparative examples were also determined. The results of each measurement are shown in Table 3. Table 3 Reflectance (%) Brightness Enhancement Layer (Π) Reflectance (%) Measured Luminance Value (cd) Relative Luminance Value (%) Example 1 99.5 61.2 319 107 Example 2 99.0 64.0 316 106 Example 3 99.0 87.0 322 108 Example 4 98.5 87.0 319 107 Example 5 99.0 78.8 319 107 Example 6 98.6 74.3 316 106 Example 7 98.4 71.0 316 106 Example 8 98.5 80.3 319 107 Example 9 99.6 78.4 319 107 Example 10 98.0 82.3 316 106 Example 11 98.8 80.8 322 108 Example 12 98.5 63.4 316 106 Comparative Example 1 92.0 74.9 286 96 Comparative Example 2 98.5 14.2 310 104 Comparative Example 3 98.5 62.0 310 104 Comparative Example 4 95.0 87.0 292 98 Comparative Example 5 99.6 59.0 313 105 Comparison Example 6 98.0 20.4 307 103 Comparative Example 7 98.8 19.3 313 105 Comparative Example 8 98.5 58.2 313 105 Further, a super-promoting weather resistance tester (manufactured by DAIPLA WINTES Co., Ltd., trade name: METAL WEATHER) was used at 83 °C. In the environment with a relative humidity of 50%, the light of the light of 145063.doc -35-201030385 of the light of the embodiment 1~12 is irradiated by the metal halogen light source for 1 hour, and the ultraviolet light of the illumination of 90 mW/cm2 is irradiated for 1 hour or less. A change in hue such as yellowing was observed. Industrial Applicability As described above, according to the light reflector of the present invention, excellent brightness and reflectance can be achieved without depending on the component having optical characteristics. Further, the surface light source device manufactured by using the light reflector of the present invention is extremely useful in that it is easy to maintain high luminance even when the light source lamp is reduced in output or the number of light source lamps is reduced. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a layer configuration of a light reflector of the present invention. Fig. 2 is a view showing another configuration of a layer structure of a light reflector of the present invention; Fig. 3 is a cross-sectional view showing a specific example of the layer configuration of the light reflector of the present invention,

圖4係表示本發明之光反射體之層構成之另一具體例的 剖面圖; 圖5係表示本發明之光反射體之層構成之又一具體例的 剖面圖; 圖6係表示直下式背光之構成之一型態的剖面圖;及 圖7係表示側光式背光之構成之一型態的剖面圖。 【主要元件符號說明】 I 反射層(I) II 亮度提高層(II) 145063.doc -36 - 201030385Fig. 4 is a cross-sectional view showing another specific example of the layer configuration of the light reflector of the present invention; Fig. 5 is a cross-sectional view showing still another specific example of the layer configuration of the light reflector of the present invention; A cross-sectional view of one of the configurations of the backlight; and FIG. 7 is a cross-sectional view showing one of the configurations of the edge-lit backlight. [Explanation of main component symbols] I Reflective layer (I) II Brightness enhancement layer (II) 145063.doc -36 - 201030385

III 表面層(III) A 反射層(A) B 亮度改善層(B) C 最表面層(C) D 中間層(D) 1 光入射面 11 光反射體(外殼) 12 網點印刷 13 壓克力板 14 擴散板 15、16 冷陰極燈 17 發光面III Surface layer (III) A Reflective layer (A) B Brightness improving layer (B) C Most surface layer (C) D Intermediate layer (D) 1 Light incident surface 11 Light reflector (shell) 12 Dot printing 13 Acrylic Plate 14 diffusion plate 15, 16 cold cathode lamp 17 luminous surface

145063.doc 37-145063.doc 37-

Claims (1)

201030385 七、申請專利範圍: 1· -種光反射體,其係包含積層薄膜者,該積層薄膜具有 積層有亮度提高層(11)與反射層⑴之構造,該亮度提高層 ' (π)包括含有熱塑性樹脂與填料之單軸延伸薄膜,該反射 . 層⑴包括含有熱塑性樹脂與填料之雙轴延伸薄膜,亮度 提南層(II)之反射率為60〜100%,光反射體之反射層⑴側 表面之反射率為98〜1〇〇%,且相對亮度值為1〇6〜115〇/〇。 2·如請求項!之光反射體,其令上述積層.薄膜之填料之含有 率為5~75重量%。 “請求項!之光反射體,其中上述反射層⑴與上述亮度提 高層(II)之填料含有率均為5〜9〇重量%。 -4.如請求項反射體,其中上述亮度提高層⑼之厚度 為 1 5〜150 μηι 〇 5·如請求们之光反射體,其中上述反射層⑴與上述亮度提 高層(Π)中之至少一者所含有之填料包含平均粒徑為 0.05〜L5 4瓜之無機填料及平均分散粒徑為〇 〇5〜丨5 •冑機填料中之至少一者。 6·如請求項⑴中任一項之光反射體,其中上述反射層⑴ 與上述亮度提高層(11)中之至少一者所含有之填料包含 . 經表面處理之無機填料。 • 7.如請求項!至5中任一項之光反射體,其中上述反射層⑴ L延伸倍率Lmd與橫向延伸倍率La之積即面積 倍率為3〜80倍。 8. 如請求項1至5中任一項之光反射體, 其中上述反射層⑴ 145063.doc 201030385 之縱向延伸倍率lmd與橫向延伸倍率Lcd之比即lmd/Lcd 為 0.25〜2.7 。 9. 如請求項1至5中任一項之光反射體,其中上述亮度提高 層(II)之早轴延伸倍率為3~20倍。 10. 如請求項1至5中任一項之光反射體,其中藉由下述式(1) 計算出之上述反射層(I)之孔隙率為15~60〇/〇, Pq — P 孔隙率(%) = --- X 1 00 · · 式(1) P〇 (於上式中’ p〇為反射層(I)之真密度,P為反射層⑴之密 度)。 11. 如請求項1至5中任一項之光反射體,其中上述反射層(工) 與上述亮度提高層(II)中之至少一者所含有之熱塑性樹 脂為聚稀烴系樹脂。 12. 如請求項1至5中任一項之光反射體,其中在與設置有亮 度提高層(II)之側相反侧之反射層⑴表面上,更包括表面 層(III)。 13. 如請求項12之光反射體,其中上述表面層(ΠΙ)包含兩層以 上之層。 14. 如請求項1至5中任一項之光反射體,其中上述亮度提高 層(II)包含兩層以上之層。 15· —種面光源裝置,其使用如請求項1至14中任一項之光反 射體。 145063.doc -2-201030385 VII. Patent application scope: 1. A light reflector comprising a laminated film having a structure in which a brightness enhancement layer (11) and a reflection layer (1) are laminated, the brightness enhancement layer '(π) includes a uniaxially stretched film comprising a thermoplastic resin and a filler, the reflection. The layer (1) comprises a biaxially stretched film comprising a thermoplastic resin and a filler, and the reflectance of the brightness enhancement layer (II) is 60 to 100%, and the reflection layer of the light reflector (1) The reflectance of the side surface is 98 to 1%, and the relative brightness value is 1〇6 to 115〇/〇. 2. If requested! The light reflector is such that the content of the filler of the laminated film is 5 to 75% by weight. The light reflector of the claim item, wherein the filler layer (1) and the brightness enhancement layer (II) have a filler content of 5 to 9% by weight. - 4. The request item reflector, wherein the brightness enhancement layer (9) The thickness of the filler is 1 5 to 150 μηι 〇5. The light reflector of the present invention, wherein the filler contained in at least one of the reflective layer (1) and the brightness enhancement layer (Π) comprises an average particle diameter of 0.05 to L5 4 The inorganic filler of the melon and the average dispersed particle size is at least one of 〇〇5 丨5 胄5 胄 胄 。 6 6 6 6 6 6 6 , , , , , , , , , , , , , , , , , , , , , , The filler contained in at least one of the layers (11) comprises: a surface-treated inorganic filler. The light-reflecting body according to any one of claims 5 to 5, wherein the reflective layer (1) has a L extension ratio Lmd and The product of the lateral extension magnification La is an area magnification of 3 to 80. 8. The light reflector of any one of claims 1 to 5, wherein the longitudinal stretching magnification lmd and the lateral stretching ratio of the reflective layer (1) 145063.doc 201030385 The ratio of Lcd is lmd/Lcd is 0.25~2.7 9. The light reflector of any one of claims 1 to 5, wherein the brightness enhancement layer (II) has an early axis stretching ratio of 3 to 20 times. 10. The light of any one of claims 1 to 5 a reflector in which the porosity of the reflective layer (I) calculated by the following formula (1) is 15 to 60 Å/〇, Pq — P porosity (%) = --- X 1 00 · · (1) P〇 (in the above formula, 'p〇 is the true density of the reflective layer (I), and P is the density of the reflective layer (1). 11. The light reflector of any one of claims 1 to 5, wherein The thermoplastic resin contained in at least one of the above-mentioned reflective layer (II) and the above-mentioned brightness enhancement layer (II) is a polyolefin resin. The light reflector according to any one of claims 1 to 5, wherein The surface layer (III) is further included on the surface of the reflective layer (1) opposite to the side on which the brightness enhancement layer (II) is disposed. 13. The light reflector of claim 12, wherein the surface layer (ΠΙ) comprises two or more layers The light reflector of any one of claims 1 to 5, wherein the brightness enhancement layer (II) comprises two or more layers. , Such as a requested item using the light reflector of any one of 1 to 14. 145063.doc -2-
TW098141388A 2008-12-04 2009-12-03 Light reflector and planar light source device using the same TWI495907B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008309886 2008-12-04

Publications (2)

Publication Number Publication Date
TW201030385A true TW201030385A (en) 2010-08-16
TWI495907B TWI495907B (en) 2015-08-11

Family

ID=42233089

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098141388A TWI495907B (en) 2008-12-04 2009-12-03 Light reflector and planar light source device using the same

Country Status (5)

Country Link
JP (1) JP2010156966A (en)
KR (1) KR20110102383A (en)
CN (1) CN102239433A (en)
TW (1) TWI495907B (en)
WO (1) WO2010064431A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103229077A (en) * 2010-12-31 2013-07-31 可隆工业株式会社 Brightness-enhancing film, and backlight unit comprising same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091481A2 (en) * 2010-12-31 2012-07-05 코오롱인더스트리 주식회사 Brightness-enhancing film, and backlight unit comprising same
CN106908989B (en) * 2016-01-13 2020-09-01 宁波长阳科技股份有限公司 Method for manufacturing split lamination reflecting film
CN107092046A (en) * 2017-04-26 2017-08-25 上海默奥光学薄膜器件有限公司 A kind of high reflective mirror of wide spectrum

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW344032B (en) * 1995-01-27 1998-11-01 Mitsui Toatsu Chemicals Light reflective sheet and light reflector using it
JP3683965B2 (en) * 1995-01-27 2005-08-17 三井化学株式会社 Light reflector and light reflector using the same
JP4688339B2 (en) * 2000-04-26 2011-05-25 株式会社ユポ・コーポレーション Light reflector
JP4933060B2 (en) * 2004-05-31 2012-05-16 株式会社ユポ・コーポレーション Light reflector and surface light source device using the same
CN101084458B (en) * 2004-12-17 2011-11-30 优泊公司 Light reflector and surface light source device using the same
JP5086606B2 (en) * 2005-10-31 2012-11-28 株式会社ユポ・コーポレーション Light reflector and surface light source device and illumination device using the same
CN101346227B (en) * 2005-12-22 2011-03-16 三菱树脂株式会社 Reflective film
JP2008233339A (en) * 2007-03-19 2008-10-02 Mitsubishi Plastics Ind Ltd Reflection film and reflection plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103229077A (en) * 2010-12-31 2013-07-31 可隆工业株式会社 Brightness-enhancing film, and backlight unit comprising same
CN103229077B (en) * 2010-12-31 2016-05-04 可隆工业株式会社 Brightness enhancement film and the back light unit that comprises this brightness enhancement film

Also Published As

Publication number Publication date
KR20110102383A (en) 2011-09-16
TWI495907B (en) 2015-08-11
JP2010156966A (en) 2010-07-15
WO2010064431A1 (en) 2010-06-10
CN102239433A (en) 2011-11-09

Similar Documents

Publication Publication Date Title
TWI354162B (en)
TW200916845A (en) Reflective sheet
JP4933060B2 (en) Light reflector and surface light source device using the same
WO2006064907A1 (en) Light reflector and surface light source device
KR102078451B1 (en) White polyester film and reflective sheet using the same
TW201030385A (en) Light reflector and planar light source device using the same
JP5270409B2 (en) Light reflector and surface light source device and illumination device using the same
JP5464997B2 (en) Light reflector and surface light source device
JP2015230351A (en) Reflection film, and liquid crystal display device, illumination device, and decorative article including the same
JP4866075B2 (en) Light reflector and surface light source device using the same
TWI463190B (en) Light reflector and planar light source device
JP6459951B2 (en) Reflective film, and liquid crystal display device, lighting device, and decorative article comprising the same
JP4229667B2 (en) Light transflective reflector
KR101574190B1 (en) White polyester reflective film and method for manufacturing the same and reflective sheet using the same
JP4049659B2 (en) Light reflector
WO2004113969A1 (en) Light-reflecting body and surface light source using same
JP2011069988A (en) Reflection sheet
KR101466346B1 (en) Low hardness white polyester film
KR102096671B1 (en) White multi-layered polyester film with high stiffness and reflective sheet using the same
JP5897884B2 (en) Reflective film and reflective material
KR102001118B1 (en) MULTILAYERED WHITE POLYESTER FILM FOR REFLECTOR of LCD UNIT
JP2018192737A (en) Stretched film
KR101350748B1 (en) Multilayered white polyester film for liquid crystal display reflector
JP2018176679A (en) Extension film
JP2009186930A (en) Method for manufacturing reflection sheet