TW201213111A - Process for the fabrication of highly electrically-conductive polymer foams with controlled compression set suitable for use in EMI shielding applications - Google Patents

Process for the fabrication of highly electrically-conductive polymer foams with controlled compression set suitable for use in EMI shielding applications Download PDF

Info

Publication number
TW201213111A
TW201213111A TW100126329A TW100126329A TW201213111A TW 201213111 A TW201213111 A TW 201213111A TW 100126329 A TW100126329 A TW 100126329A TW 100126329 A TW100126329 A TW 100126329A TW 201213111 A TW201213111 A TW 201213111A
Authority
TW
Taiwan
Prior art keywords
foam
coating
core component
metal
emi
Prior art date
Application number
TW100126329A
Other languages
Chinese (zh)
Inventor
Shalini Kandoor
Bambore Lokeshwarappa Santhosh Kumar
Sreejith Valiavalappil
Bukkinakere Kapanipathaiya Chandrasekhar
Original Assignee
Laird Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laird Technologies Inc filed Critical Laird Technologies Inc
Publication of TW201213111A publication Critical patent/TW201213111A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/0015Gaskets or seals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed herein are example embodiments of electromagnetic interference (EMI) shields and method of making EMI shields. In an exemplary embodiment, a method generally includes coating at least part of a core member with metallic material, and coating at least part of the metallic material with a polymer to thereby inhibit separation of the metallic material from the core member. An example EMI shield generally includes a core member, a metallic coating covering at least part of the core member, and a polymeric coating covering at least part of the metallic coating to inhibit separation of the metallic coating from the core member.

Description

201213111 六、發明說明: 【相關申請案之交叉引用】 本申請案主張2010年7月26曰申請之印度專利申請 案第2125/CHE/2010號之優先權。以上申請案之全部揭示 内容係以引用方式併入本文中。 【發明所屬之技術領域】 本發明大體而言係關於電磁干擾(EMI )遮蔽及相關方 法。詳言之,本發明係關於EMI遮蔽及製造EMI遮蔽物之 方法,該等EMI遮蔽物可包括至少部分地用金屬塗層及聚 合物塗層覆蓋之發泡體/核心部件,其中該等聚合物塗層作 用以幫助在該等EMI遮蔽物之使用期間阻止該等金屬塗層 與發泡體/核心部件分離,以及提供優異的壓縮永久變形值。 【先前技術】 此章節提供與本發明有關的背景資訊,其未必為先前 技術。 電子器件之操作在設備之電子電路内產生電磁輻射。 此輻射導致可干擾一特定接近度内之其他電子器件之操作 的電磁干擾(EMI )或射頻干擾(rFI八在缺少足夠遮蔽之 情況下,EMI/RFI可造成重要信號之降級或完全丟失,藉此 使電子設備變得無效或不能操作。改進EMI/RFI之效鹿之 一般解決方法為經由使用能夠吸收及/或反射EMI能量之遮 蔽物。此等遮蔽物典型地用以將EMI/RFI侷限在其源内, 且用以使接近EMI/RFI源之其他器件絕緣。 如本文中所使用,術語「EMI」應被視為通常包括且指 4 201213111 代eMI發射及RFI發射,且術語「電磁」應被視為通常包 括且指代來自外部源及内部源之電磁及射頻。因此,術語 遮蔽(如本文中所使用)通常包括且指代(例如)用以防 止(或至少減少)EMI及RFI相對於安置有電子設備之外 殼之進出的EMI遮蔽及RFI遮蔽。 【發明内容】 此章節提供本發明之總體概述,且並非為其完整範疇 或其全部特徵的全面揭示。 本文中揭示電磁干擾(EMI)遮蔽物及製造EMI遮蔽 物之方法的貫例具體實例。在一例示性具體實例中,一種 方法通常包括用金屬材料塗佈一核心部件之至少部分,及 用聚合物塗佈該金屬材料之至少部分以藉此阻止該金屬材 料與該核心部件分離。一實例EMI遮蔽物通常包括一核心 部件、一覆蓋該核心部件之至少部分的金屬塗層及一覆蓋 該金屬塗層之至少部分以阻止該金屬塗層與該核心部件分 離的聚合物塗層。 另一例示性具體實例提供一種用於製造導電發泡體之 方法。在此實例中’該方法通常包括用一界面活性劑清洗 一發泡體及用豨釋酸蝕刻該經清洗之發泡體。該方法亦可 包括藉由利用氯化錫(Π)、氯化把/乙酸纪及硝酸銀或其組合 之處理來活化該經蝕刻之發泡體。該方法可進一步包括用 金屬材料塗佈該經活化之發泡體之至少部分,及用聚合物 塗佈該金屬材料之至少部分以藉此阻止該金屬材料與該發 泡體分離。所得導電發泡體可用於EMI遮蔽應用或其他應 201213111 用0 自本文中所提供之描述,其他應用領域將變得顯而易 見。此概述中之描述及特定實例意欲僅用於說明之目的, 且不欲限制本發明之範疇。 【實施方式】 本文中所描述之圖式僅用於說明選定具體實例而非說 明所有可能實施,且不欲限制本發明之範疇。 提供實例具體實例,使得本發明將詳盡且將範嘴充分 地傳達至熟習此項技術者。闡明眾多特定細節(諸如,特 定組件、器件及方法之實例)以提供對本發明之具體實例 之詳盡理解。熟習此項技術者將顯而易見,未必使用特定 細節’而是可以許多不同形式體現實例具體實例,且不應 解釋為限制本發明之範疇。在一些實例具體實例中,未詳 細描述熟知製程、熟知器件結構及熟知技術。 根據各種態樣,本發明之發明者已揭示電磁干擾(emi ) 遮蔽物之實例具體實例,該等遮蔽物可包括(例如)EMI 遮蔽塾圈、輸入/輸出墊圈、輪廓墊圈(profile gaskets)、導 電發泡體、織物包覆(fabric-over )發泡體墊圈、其他遮蔽 器件等。該等EMI遮蔽物可用於廣泛範圍之應用、裝置及 電子設備中,諸如電腦伺服器、桌上型電腦、數位相機、 内部及外部硬碟機、液晶顯示器、醫療設備、筆記型電腦、 電聚顯示面板、印表機、機上盒、電信封閉櫃、其他電子 器件、其他相關器件等。該等EMI遮蔽物可用於電子設備 中(例如)以幫助阻止EMI發射經由電子設備之結構組件 6 201213111 (例如,門、壁等)中^接頭、間隙、開口等茂漏。 在一些實例具體實例中,該等EMI遮蔽物通常包括一 件式設計,其包含一至少部分地用一金屬塗層及一聚合物 塗層覆蓋之核心部件(例如,發泡體核心部件等)。該金屬 塗層包括覆蓋該核心部件之表面之至少部分的一或多個金 屬粒子層且將電導率(或減小電阻率)提供給該核心部分 (及該EMI遮蔽物)。且,該聚合物塗層界定一覆蓋該金屬 塗層之至少部分之層且幫助在該EMI遮蔽物之使用期間 (例如,在撓曲週期期間、在壓縮週期期間等)阻止與該核 心部件分離(例如,金屬粒子之脫離等)。在一些具體實例 中,該聚合物塗層亦可覆蓋或塗佈該核心部件之至少一部 分。在使用中,該聚合物塗層幫助維持該金屬塗層之完整 性(例如,幫助阻止退化等)且因此維持該EMI遮蔽物之 電導率。在替代具體實例中,該EMI遮蔽物可包括一外部 導電織物層(例如,用鎳及/或銅塗佈之防裂耐綸(NRS ) 織物、鍍鎳之聚酯或塔夫塔綢織物、鍍鎳/鋼之編織網等), 使得該EMI遮蔽物包含一織物包覆發泡體墊圈。在此等替 代具體實例中,織物可在塗佈步驟之後繞著該核心部件纏 繞,且接著(例如)用壓敏黏著劑等結合至經塗佈之核心 部件。 / 在一些實例具體實例中,該核心部件可由發泡體形 成,諸如胞狀聚合物發泡體(例如,開孔發泡體、部分開 孔發泡體、閉孔發泡體等)。且,發泡體可包括聚胺基甲酸 酯發泡體(例如,聚酯發泡體、聚醚發泡體等)、聚氣乙烯 201213111 發泡體、乙烯乙酸乙烯酯發泡體、聚丙烯發泡體、聚氣乙 '廊發泡體、聚笨乙烯發泡體、1甲基丙烯醯亞胺發泡體、 聚^稀發泡體、EPDM發泡體、氱τ橡膠發泡體、㈣㈣ 體等。此等實例具體實例之發泡體核心部件可(例如)視 =有核心部件之ΕΜΙ遮蔽物之使用而具有任何所要形狀二 或尺寸(例如,〇·3毫米或以上之發泡體厚度等)。另外, 發泡體核心部件可包括視需要併入其中、塗覆至其等之阻 燃劑材料。以實例說明,開孔發泡體可具有對應於典型地 30個孔每線性吋至8〇個孔每線性吋之孔。 、,在—些實例具體實例中’該金屬塗層可包括藉由一合 適製程(例如,經由無電電鍍、使用聚合物黏合劑之。 弧喷塗、原位金屬化等)塗覆至核心部件的金屬粒子又之一 或多個層“列如,一個層、多個層等舉例而 塗層可包括覆蓋核心部件之實質上整個表面的第-金屬= 子層,及覆蓋實質上整個第一 ’、 t 至屬粒子層的第二金屬粒子 層(例如,與第一層中所使用 Λ仿… 至屬粒子相同的金屬粒子、 與第一層中所使用之金屬粒 蜀祖千不同的金屬粒子等)。用以形 成該金屬塗層之該等層的金屬 私入力 胃的金屬粒子可包括(但不限於)鈀、 鉑、金、鋁、銀、銅、鎳、錫 體實例中,該金屬塗層可例具 面,或該金屬塗層可完全谇員貝上i個表 70王覆羞核心部件之表面。 在-些實例具體實例中,金屬粒 界定該金屬塗層)t塗覆5 … 飞夕個層(其 ……Ο, ,,使得該-或多個層 各自具有所要(例如,預宕堃、庙六 預疋專)厚度(例如,所要電鍍重 8 201213111 量等)。該金屬塗層可因此具有所 Μ φ α晋厚度(例如,小於約1 破水、約0.3微米、約(Μ微米 M S, ^ m ^ 丁及更大專^此外,此等金 屬層之厚度可與EMI遮蔽物之所i / 物之所要(例如’預定等)電導 年(或電阻率)(例如,約1歐 ^ 。1 ^姆母平方或更小之表面電阻201213111 VI. INSTRUCTIONS: [CROSS-REFERENCE TO RELATED APPLICATIONS] This application claims priority to PCT Application Serial No. 2125/CHE/2010, filed on Jul. 26, 2010. The entire disclosure of the above application is hereby incorporated by reference. TECHNICAL FIELD OF THE INVENTION The present invention generally relates to electromagnetic interference (EMI) shielding and related methods. In particular, the present invention relates to EMI shielding and methods of making EMI shields, which may include foam/core components at least partially covered with a metal coating and a polymer coating, wherein the polymerization The coating acts to help prevent separation of the metal coating from the foam/core component during use of the EMI shields, as well as to provide excellent compression set values. [Prior Art] This section provides background information related to the present invention, which is not necessarily prior art. The operation of the electronic device produces electromagnetic radiation within the electronic circuitry of the device. This radiation causes electromagnetic interference (EMI) or radio frequency interference that can interfere with the operation of other electronic devices within a particular proximity (rFI8) in the absence of adequate shielding, EMI/RFI can cause degradation or complete loss of important signals, This renders the electronic device ineffective or inoperable. The general solution to improve EMI/RFI is to use a shield that absorbs and/or reflects EMI energy. These shields are typically used to limit EMI/RFI. Within its source, and used to insulate other devices close to the EMI/RFI source. As used herein, the term "EMI" shall be taken to include and refer to 4 201213111 generation eMI emissions and RFI emissions, and the term "electromagnetic". It shall be considered to include and refer to electromagnetic and radio frequencies from external sources and internal sources. Therefore, the term mask (as used herein) generally includes and refers to, for example, to prevent (or at least reduce) EMI and RFI. EMI shielding and RFI shielding relative to the access of the housing in which the electronic device is placed. [SUMMARY] This section provides a general overview of the invention and is not intended to be a complete A comprehensive disclosure of all features. A specific example of electromagnetic interference (EMI) shielding and methods of making EMI shielding is disclosed herein. In an exemplary embodiment, a method generally includes coating a core component with a metallic material. At least partially, and coating at least a portion of the metallic material with a polymer to thereby prevent the metallic material from separating from the core component. An example EMI shield typically includes a core component, a metal coating covering at least a portion of the core component a layer and a polymer coating covering at least a portion of the metal coating to prevent separation of the metal coating from the core component. Another illustrative embodiment provides a method for making a conductive foam. In this example 'The method generally comprises cleaning a foam with a surfactant and etching the cleaned foam with a buffer acid. The method may also include using acetic acid (Π), chlorination / acetic acid And treating the etched foam with a treatment of silver nitrate or a combination thereof. The method may further comprise coating at least the activated foam with a metallic material Portioning, and coating at least a portion of the metal material with a polymer to thereby prevent the metal material from separating from the foam. The resulting conductive foam can be used in EMI shielding applications or other applications that are provided herein. The description and the specific application are intended to be illustrative, and the description and specific examples are intended to be illustrative only, and are not intended to limit the scope of the invention. The specific examples are chosen, and are not intended to be limiting of the scope of the invention, and are not intended to limit the scope of the invention. Specific examples of components, devices, and methods are provided to provide a thorough understanding of the specific embodiments of the invention. It will be apparent to those skilled in the art that <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; In some example embodiments, well-known processes, well-known device structures, and well-known techniques have not been described in detail. In accordance with various aspects, the inventors of the present invention have disclosed example embodiments of electromagnetic interference (emi) shields, which may include, for example, EMI shielding collars, input/output gaskets, profile gaskets, Conductive foam, fabric-over foam gasket, other shielding devices, and the like. These EMI shields can be used in a wide range of applications, devices and electronic devices such as computer servers, desktop computers, digital cameras, internal and external hard drives, liquid crystal displays, medical devices, notebook computers, and electro-polymers. Display panels, printers, set-top boxes, telecommunications enclosures, other electronic devices, and other related devices. Such EMI shields can be used in electronic devices, for example, to help prevent EMI emissions from leaking through connectors, gaps, openings, etc., of structural components 6 201213111 (e.g., doors, walls, etc.). In some example embodiments, the EMI shields generally comprise a one-piece design comprising a core component (eg, a foam core component, etc.) at least partially covered with a metal coating and a polymer coating. . The metal coating includes one or more layers of metal particles covering at least a portion of the surface of the core component and providing electrical conductivity (or reduced resistivity) to the core portion (and the EMI shield). And, the polymer coating defines a layer covering at least a portion of the metal coating and assists in preventing separation from the core component during use of the EMI shield (eg, during a flex cycle, during a compression cycle, etc.) (for example, the detachment of metal particles, etc.). In some embodiments, the polymeric coating can also cover or coat at least a portion of the core component. In use, the polymeric coating helps maintain the integrity of the metallic coating (e.g., helps prevent degradation, etc.) and thus maintains the electrical conductivity of the EMI shield. In an alternative embodiment, the EMI shield can include an outer conductive fabric layer (eg, a nickel and/or copper coated crack resistant nylon (NRS) fabric, nickel plated polyester or taffeta fabric, Nickel/steel woven mesh, etc., such that the EMI shield comprises a fabric-coated foam gasket. In such alternative embodiments, the fabric can be wrapped around the core component after the coating step and then bonded to the coated core component, for example, with a pressure sensitive adhesive or the like. / In some example embodiments, the core member may be formed of a foam such as a cellular polymer foam (e.g., an open cell foam, a partially open cell foam, a closed cell foam, etc.). Further, the foam may include a polyurethane foam (for example, a polyester foam, a polyether foam, etc.), a polyethylene oxide 201213111 foam, an ethylene vinyl acetate foam, and a poly Acrylic foam, polyglycol lenticular foam, polystyrene foam, 1 methacrylimide foam, polycrystalline foam, EPDM foam, 氱τ rubber foam (4) (4) Body, etc. The foam core component of these example embodiments may have any desired shape or size (e.g., foam thickness of 〇 3 mm or more, etc.), for example, depending on the use of the ΕΜΙ shield of the core component. . Additionally, the foam core component can include a flame retardant material that is incorporated therein, coated thereto, and the like. By way of example, the open cell foam may have pores corresponding to typically 30 pores per linear enthalpy to 8 孔 pores per linear enthalpy. In the example embodiments, the metal coating may be applied to the core component by a suitable process (eg, via electroless plating, using a polymer binder, arc spraying, in-situ metallization, etc.). One or more layers of metal particles "column, such as a layer, multiple layers, etc., for example, the coating may include a first metal = sublayer covering substantially the entire surface of the core component, and covering substantially the entire first ', t to the second metal particle layer of the particle layer (for example, the metal particles used in the first layer... the same metal particles as the genus particles, and the metal particles different from the metal particles used in the first layer) Particles, etc.. The metal particles used to form the metal coating of the metal coating may include, but are not limited to, palladium, platinum, gold, aluminum, silver, copper, nickel, tin bodies, The metal coating can be exemplified, or the metal coating can completely cover the surface of the core member of the table 70. In some example embodiments, the metal particles define the metal coating) 5 ... flying eve layer (its ... Ο, ,, The layer or layers are each provided with a desired thickness (e.g., pre-existing, pre-existing) (e.g., a desired plating weight of 8 201213111, etc.). The metal coating may thus have a thickness of Μ φ α For example, less than about 1 water break, about 0.3 micron, about (Μ micron MS, ^ m ^ butyl and more), the thickness of these metal layers can be the same as the EMI shield (for example, 'predetermined, etc. Conductance year (or resistivity) (for example, surface resistance of about 1 ohm ^ 1 ^ m square or less)

2例如’沿著χ-γ軸等)及/或約丨歐姆-公分或更小之Z 電阻率等)相關聯。因而,可控制/調整該等金屬塗層(及 構成該等金屬塗層之該等金 w 萄層)之;度以猎此控制/調整 ㈣贿遮蔽物之電導率。舉例而言,刪遮蔽物可經製 備有具有所要數目個金屬層、由所要金屬形成且具有所要 厚度之金屬塗層’使得所得EMI遮蔽物展現所要(且實質 上預定之)電導率。 f-些實例具體實例中,該聚合物塗層可由諸如乙烯_ 丙烯早體(EPM )、乙烯-丙烯二烯單體(EPDM )、其組合等 的乙烯丙烯共聚物形成。在此等實例具體實例中之:些 中,該聚合物塗層可覆蓋實質上整個該金屬、塗|。在此等 實例具體實例中之其他具體實例中,該聚合物塗層可不覆 蓋貝質上整個S亥金屬塗層,或該聚合物塗層可完全覆蓋該 金屬塗層。在一些具體實例中’該聚合物塗層亦可直接覆 蓋、塗佈或接觸核心部件之至少一部分。在各種例示性具 體實例中’該聚合物塗層可包含EPM、EPDM、胺基甲酸酿、 乙稀·系聚合物(vinyl )、腈橡膠、丙烯酸系聚合物() 及/或石夕氧烧中之一或多者。 本發明之EMI遮蔽物之實例具體實例可展現良好電導 率(及電阻率)。舉例而言,EMI遮蔽物之一些實例具體實 201213111 例可展現約0.1歐姆每平方或更小之表面電阻率(例如,沿 著X-Y軸等)及/或約0 03歐姆-公分或更小之z軸電阻率。 EMI遮蔽物之實例具體實例亦可提供高程度之遮蔽效率, 例如大於約50分貝(自約100千赫至約5千兆赫)。EMI 遮蔽物之實例具體實例可進一步展現低壓縮永久變形,例 如約20%或更小(例如,約10%或更小等)。此外,emi遮 蔽物之實例具體實例可具有高達至少約攝氏85度之工作溫 度。因而,在單一組份產品中,EMI遮蔽物之實例具體實 例可提供EMI遮蔽所需之有效電導率以及極低的閉合力。 另外,例示性具體實例亦提供用於製造導電發泡體之 方法。在一個此類例示性具體實例中,一方法通常包括用 界面活性劑清洗發泡體及用稀釋酸蝕刻該經清洗之發泡 體°該方法亦可包括藉由利用氯化錫(11)、氣化鈀/乙酸鈀及 石肖酸銀或其組合之處理來活化該經蝕刻之發泡體。該方法 可進一步包括用金屬材料塗佈該經活化之發泡體之至少部 分’及用聚合物塗佈該金屬材料之至少部分以藉此阻止該 金屬材料與該發泡體分離。所得導電發泡體可用於EMI遮 蔽應用。但是,根據此方法製造之導電發泡體(本文中所 揭示之其他導電發泡體亦可)亦可在除EMI遮蔽之外的其 他應用中使用。 現將參看隨附圖式更全面地描述實例具體實例。 圖1說明用於製造包括本發明之一或多個態樣之EMI 遮蔽物之實例方法1 〇〇。在此實例具體實例中,根據方法 1 〇〇形成之EMI遮蔽物通常包括一發泡體核心部件。因而, 10 201213111 所說明之方法刚通常包括.用於製備發泡體之表面以接收 銅粒子及鎳粒子之金屬塗層(同時阻止金屬塗層自發泡體 之後續剝落)的各種預處理操作(例如,操作1〇2、1〇4、 106等)。該方法因而包括用於在發泡體核心部件之表面上 塗覆金屬塗層(以使發泡體導電)之操作(例如,操作_ 等)’及用於在金屬塗層上塗覆乙蝉丙烯共聚物(諸如,乙 烯-丙烯單體(職)、乙烯调二稀單體(EPDM)W塗 層(以在EMI遮蔽物之使用期間阻止銅粒子及錄粒子與發 泡體核〜件分離)之操作(例如,操作等)4PM/EPDM 之此塗層亦促進經塗佈發泡體之經改良之壓縮永久變形。 如圖1所示’所說明之方法1〇〇包括調節(例如,清 洗等)發泡體核心部件之操作102以為用金屬塗層及乙婦 丙漆共聚物塗層覆蓋發泡體核心部件之表面做準備。調節 :紅作,102 it常包括用清洗溶液清洗發泡體核心部件且接著 用水漂洗經清洗之發泡體核心部件。清洗溶液經組態以自 發泡體核心部件移除污染物(例如,灰塵、碎片、油脂等), 但亦可作用以將電荷給予發泡體核心部件(例如,負電荷 等),此促進發泡體核心部件之表面上的金屬塗層之金屬粒 子之接收。漂洗水經組態以在應用清洗溶液之後自發泡體 核心部件移除任何殘餘清洗溶液。作為調節操# 1〇2之部 分,清洗及漂洗發泡體核心部件可包括經由包括(例如) 連續流法、喷塗法、浸泡法(bath)(將核心部件浸在一容 積之/月洗溶液内)、纟組合等的任何合適製程將清洗溶液及 /或漂洗水塗覆至發泡體核心部件,使得發泡體核心部件之 201213111 實質上整個表面(例如,聂+ 溶液及/或漂洗水。 ’°、路 φ等)得以接觸清洗 :為實例,適用於調節操作ι〇2中之清洗溶 水基界面活性劑溶液。 括 ^ ,, 1面活性劑可包括任何合適之界面 /舌性劑,例如陰離子界 ^ '舌性蜊、陽離子界面活性劑、非 離子界面活性劑、其組合 Μ非 丄、 且’界面活性劑可以介於(你丨 如)約0.1體積%與約8 ” '(例 在介於(例如)約攝氏_二 Γ,,, ^ 覆核心邛件歷時一所要持續時間 (例如’介於約3分鐘與約3。分鐘之間等 在本發明之範嘴内’用以自發泡體核心 清洗溶液之漂洗水可包括(^丨Λ、丄 戈餘 來水箸… 例如)去離子水、蒸鶴水 '自 ^ ^ ^ 、(例如)約攝氏10度與約攝氏50 度之間專的溫度下塗覆至經清洗之發 所要持續時間“列如,介於約!分鐘與約3。分鐘之:等2 is associated with, for example, 'along the χ-γ axis, etc., and/or about Z ohm-cm or less, Z resistivity, etc.). Thus, the metal coatings (and the layers of the gold coatings that make up the metal coatings) can be controlled/adjusted; the degree of conductivity is controlled/adjusted (4). For example, the erased mask can be prepared with a metal coating having the desired number of metal layers, formed of the desired metal and having the desired thickness, such that the resulting EMI shield exhibits the desired (and substantially predetermined) conductivity. In some example embodiments, the polymer coating may be formed from an ethylene propylene copolymer such as ethylene-propylene precursor (EPM), ethylene-propylene diene monomer (EPDM), combinations thereof, and the like. In these example embodiments, the polymer coating can cover substantially the entire metal, coating. In other embodiments of these example embodiments, the polymeric coating may not cover the entire S-coat metal coating on the shellfish, or the polymeric coating may completely cover the metal coating. In some embodiments, the polymeric coating can also directly cover, coat or contact at least a portion of the core component. In various exemplary embodiments, the polymer coating may comprise EPM, EPDM, urethane, vinyl, vinyl, acrylic, and/or Oxygen. One or more of them. Example specific examples of the EMI shield of the present invention can exhibit good electrical conductivity (and resistivity). For example, some examples of EMI shields may represent a surface resistivity of about 0.1 ohms per square or less (eg, along the XY axis, etc.) and/or about 0 03 ohm-cm or less. Z-axis resistivity. Example embodiments of EMI shields can also provide a high degree of shading efficiency, such as greater than about 50 decibels (from about 100 kHz to about 5 GHz). Example specific examples of EMI shields may further exhibit low compression set, such as about 20% or less (e.g., about 10% or less, etc.). Moreover, example embodiments of emi opaque can have an operating temperature of up to at least about 85 degrees Celsius. Thus, in a single component product, an example embodiment of an EMI shield provides the effective conductivity required for EMI shielding and an extremely low closing force. Additionally, illustrative embodiments provide methods for making electrically conductive foams. In one such exemplary embodiment, a method generally includes cleaning the foam with a surfactant and etching the cleaned foam with a dilute acid. The method may also include utilizing tin chloride (11), The etched foam is activated by treatment of vaporized palladium/palladium acetate and silver tartaric acid or a combination thereof. The method may further comprise coating at least a portion of the activated foam with a metallic material and coating at least a portion of the metallic material with a polymer to thereby prevent the metallic material from separating from the foam. The resulting conductive foam can be used in EMI shielding applications. However, conductive foams made according to this method (other conductive foams disclosed herein may also be used) may also be used in other applications than EMI shielding. Example embodiments will now be described more fully with reference to the accompanying drawings. 1 illustrates an example method 1 for fabricating an EMI shield comprising one or more aspects of the present invention. In this example embodiment, the EMI shield formed according to Method 1 typically includes a foam core component. Thus, the method described in 10 201213111 just typically includes various pretreatment operations for preparing the surface of the foam to receive the metal coating of the copper particles and the nickel particles while preventing subsequent peeling of the metal coating from the foam ( For example, operations 1〇2, 1〇4, 106, etc.). The method thus includes an operation (e.g., operation, etc.) for coating a metal coating on the surface of the core member of the foam (to make the foam conductive) and for coating ethylene propylene copolymer on the metal coating. (such as ethylene-propylene monomer (ISO), ethylene diene monomer (EPDM) W coating (to prevent copper particles and recorded particles from separating the foam core - during the use of EMI shielding) Operation (eg, operation, etc.) of the 4PM/EPDM coating also promotes improved compression set of the coated foam. The method illustrated in Figure 1 includes adjustment (eg, cleaning, etc.) The operation of the core part of the foam 102 is to prepare for coating the surface of the core part of the foam with a metal coating and a coating of a copolymer of propylene oxide. Adjustment: Red, 102 it often includes cleaning the foam with a cleaning solution The core component and then rinse the washed foam core component with water. The cleaning solution is configured to remove contaminants (eg, dust, debris, grease, etc.) from the foam core component, but may also act to impart a charge to the hair Bubble core (eg, negative charge, etc.) which facilitates the receipt of metal particles of the metal coating on the surface of the core component of the foam. The rinse water is configured to remove any residual cleaning solution from the core of the foam after application of the cleaning solution. As part of the conditioning operation #1〇2, cleaning and rinsing the foam core components may include, for example, continuous flow, spray coating, bathing (immersing the core components in a volume/month) Any suitable process, such as washing solution, hydrazine combination, etc., applies a cleaning solution and/or rinsing water to the foam core component such that the foam core component has substantially the entire surface of 201213111 (eg, Nie+ solution and/or Rinsing water. '°, road φ, etc.) can be contact cleaned: for example, it is suitable for adjusting the cleaning solution-based surfactant solution in operation ι〇2. Included, 1 surfactant can include any suitable interface / A lingual agent, such as an anionic boundary, a lingual sputum, a cationic surfactant, a nonionic surfactant, a combination thereof, and a surfactant can be between about 0.1% by volume. And about 8 ′′ (for example, between (for example) about _ Γ Γ, , , ^ 覆 core components for a duration (for example, between about 3 minutes and about 3. minutes, etc.) The rinse water used in the self-foaming core cleaning solution may include (^丨Λ, 丄戈余来水箸... for example) deionized water, steamed crane water 'from ^ ^ ^, for example, about 10 degrees Celsius The duration to be applied to the cleaned hair at a temperature between about 50 degrees Celsius and "50 degrees Celsius", for example, between about! minutes and about 3. minutes: etc.

斤說月之方法1〇0 '亦包括用酸溶液蝕刻發泡體核心邛 件以使發泡體核心部件之表面變粗糙(例如, L 促進發泡體核心部件之表面上的金屬層之大體上均勻之沈 積及黏附的操作1G4。酸溶液可包括在本發明之料内的任 何合適酸溶液,包括(例如)氫氣酸(HCO溶液、硫酸(h2S〇4) 溶液、其組合等。可使用任何合適濃度之酸溶液,包括(例 如)具有介於約2體積%與約35體積%之間等的濃度之酸 溶液。酸溶液可在介於(例如)約攝氏H)度與約攝氏6〇 度之間等的溫度下塗覆至發泡體核心部件歷時一所要持續 201213111 夺間(例如,介於約2分鐘與約分鐘之間等)。另外, 酸溶液可經由肖;^i N + 括(例如)連續流法、喷塗法、浸泡法、 其組合等的任何合適製程塗覆至發泡體核心部件,使得發 泡體核心部件之實質上整個表面得以接觸酸溶液。接著可 視需要用水⑼洗發泡體核心部件以幫助在㈣操作刚之 後自發泡體核心部件移除任何殘餘酸溶液。 在其他實例具體實例中,方法可包括用具有介於約〇 25 體積%與約40體積%之間等的渡度之驗溶液(諸如,氯氧 化鈉(Na〇H)溶液、氩氧化鉀(KOH)溶液、其組合等) 蚀刻核心部件之择彳七。+ '、 在此專貫例具體實例中,驗溶液可 在&quot;於、’勺攝氏1〇度與約攝氏1〇〇度之間的溫度下塗覆至核 心部件歷時所要持續時間(例如,介於約丨分鐘與約 鐘之間等)。 爾說明之方法1〇〇亦可包括一中和操作,纟包括在触 刻刼作104之後將中和溶液塗覆至發泡體核心部件。中和 溶液幫財和來自_操作m的在發泡體心部件上剩 餘之任何酸(或驗)溶液。當使操料,在本發 之I&amp;可内可使用任何合適中和溶液,包括(例如)氣氧 化鈉(NaOH)溶液、氫氧化卸(職)溶液、其組合等(或 者當使用驗㈣操作時’可使用氫氣酸(hci)溶液、硫酸 h2so4)溶液等)。且,可使用任何合適濃度之中和溶液, :如具有介於約2體積%與約28體積%之間的酸(或驗) ί農度之中和溶液。g &amp; , 卜,中和丨谷液可經由任何合適製程( 々連續抓法、噴塗法、浸泡法、其組合等)在介於(例 13 201213111 如)約攝氏ίο度與約攝氏60度之間等的溫度下塗覆至發 泡體核心部件歷時一所要持續時間(例如,介於約丨分鐘 與约30分鐘之間等)’使得發泡體核心部件之實質上整個 表面得以接觸t和溶液。接著可視需要用水漂洗發泡體核 心部件以幫助在中和操作之後自發泡體核心部件移除任何 殘餘中和溶液。 繼續參看圖1,所說明之方法100亦包括活化發泡體核 心部件以用於接收金屬塗層之操作丨06。此操作i 〇6包括將 敏化溶液及活化溶液兩者塗覆至發泡體核心部件(單獨地 或組合地)。敏化溶液使發泡體核心部件準備好與活化溶液 接觸。舉例而言,敏化溶液可包括與發泡體核心部件結合 且接著促進活化溶液至其之後續黏附之材料。活化溶液接 著在發泡體核心部件之表面上建立催化部位(例如,經由 敏化溶液之操作等),該等催化部位幫助將金屬塗層之金屬 粒子保持在發泡體核心部件上。 適用於活化操作106中之實例敏化溶液可包括鹽、溶 劑及水之溶液。鹽(其與核心部件結合)可包括(例如) 氣化亞錫(SnCh )、氯化錫(SnC14)、其組合等。且,溶劑 可包括(例如)諸如乙醇之醇、諸如氫氣酸(Hc丨)之酸、 其組合等。鹽可以介於(例如)約8克/升與約250克/升之 間的體積濃度存在於敏化溶液中;且溶劑可以介於(例如) 約2體積%與約30體積%之間的濃度存在於敏化溶液中。 敏化溶液可在介於(例如)約攝氏丨〇度與約攝氏45度之 間等的溫度下塗覆至發泡體核心部件歷時一所要持續時間 201213111 、例如’介於約3分鐘與約45分鐘之間等)❶另外,敏化溶 液可經由包括(例如)連續流法、喷塗法、浸泡法、其組 合等的任何合適製程塗覆至發泡體核心部件,使得發泡體 核心部件之實質上整個表面得以接觸敏化溶液。 適用於活化操作1 〇6中之實例活化溶液可包括金屬、 溶劑及水之溶液(其中金屬溶解於溶劑中)。金屬可包括任 何合適金屬(例如,金、銀、鈀、鉑、其組合等)或金屬 化合物(例如,氣化金(AuC12 )、確酸銀(AgN〇3 )、氣化 鈀(PdCU )、氯化鉑(PtCi2 )、其組合等)。且溶劑可包 括(例如)酸溶液,諸如乙酸(CH3C〇〇H)、氫氯酸(hci) 溶液、硫酸(邮〇4)溶液、其組合等。溶劑(及溶解之金 屬)可以介於(例如)約5體積%與約7〇體積%之間的濃 度存在於活化溶液中。如氫氧化銨之試劑之添加亦可促進 《硝酸銀之還原。活化溶液可經由任何合適製程,連 續流法、喷塗法、浸泡法、其組合等)在介於(例如)約 攝氏度與約攝氏75度之間等的溫度下塗覆至發泡體核 心部件歷時一所要持續時間(例如,介於約i分鐘與約60 分鐘之間等),使得發泡體核心部件之實質上整個表面得以 接觸活化溶液。 實例方法1〇0亦包括用-具有至少約0」微米或更大之 厚度的金屬塗層(例如,經 大之 、,、电電鑛、使用聚合物黏人 劑之浸塗、狐噴塗、原位金屬化塗 泡體核心部件之操作1G8。在所說明之方法活化=發 化操作108包括用銅粒子及鎳 ,此金屬 卞電鍍(例如,無電電鍍 201213111 等)發泡體核心部件以形成金屬塗層。舉例而言,金屬化 操作1 0 8包括用第一銅層電鍍發泡體核心部件,且接著用 第二鎳層電鍍第一銅層。作為此金屬化操作1〇8之部分, 在用第一銅層電鍍發泡體核心部件之後且在用第二錄層電 鍍發泡體核心部件之前,可使發泡體核心部件經受一額外 活化操作(例如,活化操作106等)。因此,發泡體核心部 件(作為所說明之方法100及金屬化操作1〇8之部分)經 文兩次活化操作及兩次電鍍操作。在金屬化操作丨〇8之後, 可用抗蝕劑進一步處理經電鍍之發泡體核心部件之表面以 幫助改良金屬塗層之抗蝕性。在其他實例具體實例中發 泡體核心部件可經受多次活化操作及多次電鍍操作以製備 發泡體核心部件且用多個相同(或不同)金屬粒子層覆蓋 發泡體核心部件。 繼續參看圖1,實例方法亦包括用乙烯丙烯共聚物(諸 如,乙烯-丙烯單體(EPM)、乙烯_丙烯二烯單體(EpDM) 等)塗層覆蓋(例如,塗佈等)發泡體核心部件上之金屬 塗層之操作110。如此做時’乙烯丙稀共聚物塗層在金屬塗 層上(且大體上在發泡體核心部件上)界定一層,該層作 用以在EMI遮蔽物之使用期間(例如,在挽曲週期期間、 在壓縮週期期間等)阻止金屬塗層(例如,其金屬粒子等) 與核心部件分離(例如,脫離等)。關於EPM/EPDM之塗佈 工序’將1重量%至10重量%之EPM/EPDM溶解於90體 料至99體積%之溶劑(諸如,甲苯、四氫μ、二氯甲 等) 乙烯丙烯共聚物溶液可經由任何合適製程(例 16 201213111 如’連續流法、喑涂、1 如) 、’、法、次泡法、其組合等)在介於(例 如)約攝氏10度盥约 /、、、攝氏75度之間等的溫度下塗覆至發 泡體核心部件歷時一痒 厅要持只時間(例如’介於約1分鐘 與約60分鐘之門楚、 s寺使得經金屬塗佈之發泡體核心部件 之實質上整個表面得以接觸聚合物溶液。 *月注忍别述細作(例如,操作102、104、1〇6、108、 等)中之4壬者可作為批式製程、連續製程、其組合等 '執行另外該等操作中之每一者可視需要以任何合適 順序執订及/或同時執行。此外,方&amp; 1〇〇可包括更少操作 或除所述彼等步驟外之額外操作。舉例而言,在特定情況 下,例如,當使用特定類型之發泡體形成核心部件時(例 如,當經淬滅之聚合物發泡體用於EMI遮蔽物之核心部件 時等),可消除用於製備發泡體核心部件之表面以接收金屬 塗β層的s亥等操作(或其部分)中之一或多者。 圖2至圖.4說明根據實例方法ι〇〇製造的εΜΙ遮蔽物 之實例具體實例。EMI遮蔽物通常包括用銅及鎳之金屬層 塗佈之核心部件,用乙烯-丙烯二烯單體(EPDM )層進一 步塗佈s亥專金屬層以阻止銅層及錄層與核心部件分離。更 具體言之’圖2為用銅及鎳之金屬層及EPDM塗佈之例示 性聚胺基甲酸自旨發泡體之照片。圖3為圖2之經塗佈發泡 體之一部分之掃描電子顯微鏡(SEM )顯微圖,其以放大 5 Ox之方式展示且說明用金屬及EPDM均勻塗佈之發泡體 之壁。圖4為圖2之經塗佈發泡體之一部分之SEM顯微圖, 其以放大ΙΟΟχ之方式展示且說明單一孔及藉由EPDM塗層 17 201213111 將金屬粒子保持完整之例示性方式。 下表1提供關於具有不同於圖2至圖4所示之EMI遮 蔽材料之厚度(5.08毫米及5.33毫米)之兩個樣本獲得的 典型X-Y電導率(表面電阻,以歐姆每平方為單位)、Z電 導率(Z軸電阻率,以歐姆-公分為單位)、壓縮永久變形(百 分比,70°C下歷時22小時)及遮蔽效率(負分貝)。 表1 樣本1 樣本2 厚度(mm) 5.08 5.33 表面電阻 (歐姆每平方) 1 0.086 0.073 2 0.083 0.073 平均值 0.085 0.073 Z軸電阻率 (歐姆-公分) 1 0.009 0.014 2 0.012 0.011 3 0.014 0.014 4 0.017 0.014 5 0.014 0.013 平均值 0.013 0.013 遮蔽效率 (負分貝(-dB)) 500 MHz -86.73 -79.87 1 GHz -88.35 -82.89 2 GHz -88.05 -87.18 壓縮永久變形(%) (7〇°C下歷時22小時) 1 10.86% 11.85% 2 13.27% 11.87% 3 13.46% 11.81% 4 12.01% 11.75% 5 11.09% 11.38% 6 11.99% 14.26% 平均值 12.11% 12.15% 實施例 僅以實施例說明且非用於限制,現將提供用於製造、 生產或形成導電聚胺基甲酸酯發泡體之例示性方法之描 述0 18 201213111 實施例1 在此第一實施例中,可藉由以下步驟形成導電聚胺基 甲酸酯發泡體: A.在2 5 °C下使用2 %之界面活性劑水溶液清洗聚胺基 甲酸酯發泡體; Β·在25°C下用5 vol%(體積百分比)之氫氯酸(HC1) 溶液進行表面處理歷時2分鐘; C-在25°C下用20 g/Ι (克/升)之氣化亞錫(SnCl2) 溶液及35 v〇l%之HC1溶液敏化歷時45分鐘; D.在25°C下用20 gM之硝酸銀(AgN03)溶液及25 v〇l%之氨活化歷時45分鐘; Ε· 在30°C下使用15 g/1之硫酸銅、39 ml之曱醛(37 至.41 .重量/體積百分比(w/v% ) )、3 7 g/丨之酒石酸鉀鈉及 u.:ga,之氮氧化鈉(NaOH) (pH〜12至13)進行銅之無電 電it歷時30分鐘; F. 在80°C至85°C下使用4g/l之氯化鎳、50毫升(ml) 之氨(25 v〇i%.)、2 g/丨之硫酸銨、1〇 g/1之次磷酸鈉及6〇 ml 之肼進行鎳之無電電鍍歷時30分鐘;及 G. 在30 °C下使用5 vol%之曱苯溶液進行乙烯丙烯單 體(EPM )塗佈歷時2分鐘。 在步驟之間用水漂洗發泡體。 實施例2 在此第二實施例中,可藉由以下步驟形成導電聚胺基 曱酸酯發泡體: 19 201213111 A. 在25°C下使用2%之界面活性劑水溶液清洗聚胺基 曱酸酯發泡體; B. 在25°C下用5 vol0/。之氫氣酸(HC1)溶液進行表面 處理歷時2分鐘; C. 在25°C下用20 gM之氣化亞錫(SnCl2)溶液及35 vol%之HC1溶液敏化歷時45分鐘; D. 在25°C下用20 g/Ι之硝酸銀(AgN03)溶液及25 vol%之氨活化歷時45分鐘; E. 在3 0°C下使用18 g/Ι之硫酸銅、50 ml之甲酸(37 至41 w/v。/。)、45 gH之酒石酸鉀鈉及13 gy^之氣氧化納 (NaOH) ( pH〜12至13 )進行銅之無電電鍍歷時%分鐘. F·在8(TC至85°C下使用4 g/Ι之氣化鎳、5〇 ml之氨 (25 vol%)、2 g/Ι之硫酸銨、10 g/Ι之次磷酸鈉及6〇之 肼進行鎳之無電電鍍歷時30分鐘;及 G.在3〇°C下使用5 V0丨〇/〇之曱苯溶液進行乙烯丙烯單 體(EPM )塗佈歷時2分鐘。 在步驟之間用水漂洗發泡體。 本文中所使用之術語僅用於描述特定實例具體實例之 目的且不欲為限制性的。如本文中所使用,單數形式「一 及「該」可意欲亦包括複數形式,除非上下文另有清晰^ 示。術語「包含」、「包括」及「具有」為包括性的且因^ 規定所述特徵、整數、步驟、操作、元件及/或組件之存在 但不排除一或多個其他特徵、整數、步驟、操作、元件 組件及/或前述各者之群組之存在或添加。本文中所描述: 20 201213111 =::、製程及操作不應被解釋為必須需要其以所論述 或所㈣之特定次序執行,除非特定識別為某—執行次 序。亦應理解’可使用額外或替代步驟。 當-元件或層被稱為「在另—元件或層上」、「鳴合 至」、「連接至」或「轉接至」另—元件或層時’該元件或 層可直接在另-元件或層上1合至、連接至或㈣至另 -兀件或層,或可存在介入元件或層。與之相比,當一元 件被稱為「直接在另—元件或層上」、「直㈣合至」、「直 接連接至」或「直接轉接至」另_元件或層時,可不存在 介入元件或層。用以描述元件之間的關係之其他詞語應以 相似方式來解譯(例如,「在之間」對「直接在……之 門」鄰近」對直接鄰近」等)。如本文中所使用,術語 「及/或」包括相關聯所列項目中之—或多者之任一及所有組 合0 —雖然本文中可使用術語第_、第二、第三等來描述各 種7G件,.且件、區域、層及/或區段,但此等元件、組件、 區域、層及/或區段不廄為上 又+愿文此等術語限制。此等術語可僅用 於區另!㈤7L件、組件、區域、層或區段與另一區域、層 或區段。諸如「第一,、「笛_ 」 弟一」及其他數字術語之術語在 本文中使用時並不暗示一順序或次序,除非由上下文清晰 才曰示0 在不脫離實例具體實例之教示的情況下,可 將下文所論述之第一元件、組件'區域、層或區段稱作第 二元件、組件、區域、層或區段。 為了便於述,本文中可使用空間相關術語(諸如,「内 21 201213111 部」、「外部」、「在···之下 「士 「 ,·之下」、「在......下方」、「下部」、「在...... 」上邻」及其類似術語)來描述一個元件或特徵與 (夕個)元件或特徵之關係、,如圖中所說明。除圖中 所4田繪之定向外,pq 士 目 二間相關術語亦可意欲涵蓋器件在使用 或操作中的不同定向。蛊 … 牛例而δ ,若圖中之器件翻轉,則 描述為在其他元件或特傲「: + — 干飞特被下方」或「之下」之元件將會 疋向於其他元件或特微「 &gt; 上方」。因此,實例術語「下方」 可涵蓋上方及下方兩插宁a 兩種疋向。可另外定向器件(旋轉90度 或處於其他定向)且可相廄沾站總丄 相應地解釋本文中所使用之空間相 關描述詞。 本文中關於給定參數之鮮 ^ ^ 心麥数之特疋值及特定值範圍之揭示並 不排除可在本文尽- β 他^ ^ 貫例中之&quot;'或多者中使用的其 他值及值範圍。此外,預 何兩個特定值可界定可搞用述之特定參數之任 給定參1㉟用於給/ζ•參數之值範圍之端點。 第 —值及第二值之揭示可解譯為揭示第一值與 的任何值亦可用於給定參數。類似地,預見到 少數的兩個或兩個以上值範圍之描 套、會遇η 值1巳圍之揭不(不管此等範圍是嵌 值範圍μ〜 匕3 了使用所揭不關之端點主張之 值範圍的所有可能組合。 為了說明及描述,已提供具體實 述不欲為後蚩&gt; 貝1夕J之先剛描述。該描 ‘” D盡的或限制本發明。特定且 一冰 戋牯料,s A 心八體實例之個別7C件 等元=不限於該特定具體實例,但在適用情況下,該 未具體::可互換且可在選定具體實例中使用,即使其 展不或描述。本發明亦可以件容 J J 乂 °干夕方式改變。此等變 22 201213111 化不應被視為與本發明脫離,且所有此等修改意欲包括於 本發明之範疇内。 【圖式簡單說明】 圖1為根據本發明之一或多個態樣說明用於製造包含 發泡體/核心部件、金屬蜜層及聚合物塗層之電磁干擾 (EMI )遮蔽物之例示性方法之各種步驟的流程圖; 圖2為根據本發明之一或多個態樣的用金屬及乙稀-丙 稀二烯單體(EPDM )塗佈之例示性聚胺基甲酸酯發泡體之 照片; 圖3為根據本發明之一或多個態樣的圖2之經塗佈發 泡體之一部分之掃描電子顯微鏡(SEM )顯微圖,其以放大 50x之方式展示且說明用金屬及epdM均勻塗佈之發泡體 之壁;及 圖4為根據本發明之一或多個態樣的圖2之經塗佈發 泡體之一部分之SEM顯微圖,其以放大l〇〇x之方式展示且 說明單一孔及藉由EPDM塗層將金屬粒子保持完整之例示 性方式。 對應參考數字貫穿圖式之若干視圖指示對應部分。 【主要元件符號說明】 10 〇 :方法 1 02 :調節發泡體核心部件操作 1 04 :蝕刻發泡體核心部件操作 1 〇6 :活化發泡體核心部件操作 1 〇8 :用一金屬塗層覆蓋發泡體核心部件操作 23 110 : 110 :201213111 用一聚合物塗層覆蓋發泡體核心部件及金屬塗層 操作 24The method of weighing the moon 1〇0' also includes etching the foam core member with an acid solution to roughen the surface of the foam core member (for example, L promotes the general thickness of the metal layer on the surface of the foam core member) Operation for uniform deposition and adhesion 1G4. The acid solution may include any suitable acid solution within the material of the present invention, including, for example, hydrogen acid (HCO solution, sulfuric acid (h2S〇4) solution, combinations thereof, etc. Any suitable concentration of acid solution, including, for example, an acid solution having a concentration of between about 2% by volume and about 35% by volume, etc. The acid solution can be at a level of, for example, about 10,000 degrees Celsius and about 6 degrees Celsius. The temperature applied between the twists and the like to the core part of the foam lasts for a period of time of 20121311 (for example, between about 2 minutes and about minutes, etc.). In addition, the acid solution can pass through Xiao; ^i N + Any suitable process, including, for example, a continuous flow process, a spray process, a dipping process, combinations thereof, etc., is applied to the foam core component such that substantially the entire surface of the foam core component is contacted with the acid solution. Water The foam core component is washed to help remove any residual acid solution from the foam core component immediately after the (iv) operation. In other example embodiments, the method can include having between about 25 vol% and about 40 vol% Inter-measurement solution (such as sodium oxychloride (Na〇H) solution, argon oxyhydroxide (KOH) solution, combinations thereof, etc.) etching the core components. ' ', in this specific case specific In the example, the test solution can be applied to the core component for a duration of time between the temperature of 1 °C and about 1 Celsius (for example, between about 丨 minutes and minutes) Etc.) The method 1 can also include a neutralization operation, including applying a neutralizing solution to the core of the foam after the engraving operation 104. The neutralizing solution helps the wealth and comes from the operation m Any acid (or test) solution remaining on the foam core member. When the material is used, any suitable neutralizing solution may be used in the present invention, including, for example, a sodium oxyhydroxide (NaOH) solution. , hydroxide dehydration (job) solution, combination thereof, etc. Alternatively, a hydrogen acid (hci) solution, a sulfuric acid h2so4 solution, or the like may be used when the test (4) is used. Also, any suitable concentration of neutralization solution can be used, such as an acid (or test) neutralization solution having between about 2% by volume and about 28% by volume. g &amp; , Bu, Zhonghe Shibuya liquid can be placed in any suitable process (々 continuous grabbing method, spray method, soaking method, combination thereof, etc.) between (Example 13 201213111), about ί ° degrees and about 60 degrees Celsius The application of the temperature to the foam core member for a duration (e.g., between about 丨 minute and about 30 minutes, etc.) allows the substantially entire surface of the foam core member to contact t and Solution. The foam core component can then be rinsed with water as needed to help remove any residual neutralizing solution from the foam core component after the neutralization operation. Continuing to refer to Fig. 1, the illustrated method 100 also includes an operation 丨06 of activating the foam core member for receiving a metal coating. This operation i 〇 6 involves applying both the sensitizing solution and the activation solution to the foam core member (alone or in combination). The sensitizing solution prepares the foam core component in contact with the activation solution. For example, the sensitizing solution can include a material that bonds to the core component of the foam and then promotes subsequent adhesion of the activation solution to it. The activation solution then establishes a catalytic site on the surface of the core component of the foam (e.g., via operation of a sensitizing solution, etc.) that assists in retaining the metal particles of the metal coating on the core component of the foam. An example sensitizing solution suitable for use in activation operation 106 can include a solution of a salt, a solvent, and water. Salts (which are combined with core components) can include, for example, vaporized stannous (SnCh), tin chloride (SnC14), combinations thereof, and the like. Further, the solvent may include, for example, an alcohol such as ethanol, an acid such as hydrogen acid (Hc丨), a combination thereof, and the like. The salt may be present in the sensitizing solution at a volume concentration of, for example, between about 8 grams per liter and about 250 grams per liter; and the solvent may be between, for example, between about 2% by volume and about 30% by volume. The concentration is present in the sensitizing solution. The sensitizing solution can be applied to the foam core component at a temperature between, for example, about Celsius and about 45 degrees Celsius, for a duration of 201213111, such as 'between about 3 minutes and about 45. In addition, the sensitizing solution may be applied to the core portion of the foam via any suitable process including, for example, continuous flow, spray coating, dipping, combinations thereof, etc., such that the core component of the foam Substantially the entire surface is exposed to the sensitizing solution. An example activation solution suitable for use in the activation operation 1 〇 6 may include a solution of a metal, a solvent, and water (wherein the metal is dissolved in a solvent). The metal may comprise any suitable metal (eg, gold, silver, palladium, platinum, combinations thereof, etc.) or a metal compound (eg, gasified gold (AuC12), silver (AgN〇3), palladium (PdCU), Platinum chloride (PtCi2), combinations thereof, etc.). And the solvent may include, for example, an acid solution such as acetic acid (CH3C〇〇H), hydrochloric acid (hci) solution, sulfuric acid (mail 4) solution, combinations thereof and the like. The solvent (and the dissolved metal) may be present in the activation solution at a concentration of, for example, between about 5% by volume and about 7% by volume. The addition of a reagent such as ammonium hydroxide can also promote the reduction of silver nitrate. The activation solution can be applied to the foam core component over any suitable process, continuous flow process, spray coating process, immersion process, combinations thereof, etc., at temperatures between, for example, about degrees Celsius and about 75 degrees Celsius. A desired duration (e.g., between about 1 minute and about 60 minutes, etc.) causes substantially the entire surface of the foam core component to contact the activation solution. The example method 1 亦 0 also includes the use of a metal coating having a thickness of at least about 0" microns or greater (eg, by, for example, electroporation, dip coating using a polymer binder, fox spraying, In-situ metallization of the core member of the foam body 1G8. In the illustrated method activation = development operation 108 includes the use of copper particles and nickel, which are plated (e.g., electrolessly plated 201213111, etc.) into a core portion of the foam to form Metallic coating. For example, the metallization operation 108 includes electroplating the foam core component with a first copper layer, and then electroplating the first copper layer with a second nickel layer. As part of this metallization operation 1〇8 The foam core component may be subjected to an additional activation operation (e.g., activation operation 106, etc.) after plating the foam core component with the first copper layer and prior to plating the foam core component with the second recording layer. Thus, the foam core component (as part of the illustrated method 100 and metallization operation 〇8) is subjected to two activation operations and two plating operations. After the metallization operation 丨〇8, the resist can be further used. Treatment The surface of the foamed core component is plated to help improve the corrosion resistance of the metal coating. In other example embodiments, the foam core component can be subjected to multiple activation operations and multiple plating operations to prepare the foam core component and The foam core component is covered with a plurality of identical (or different) metal particle layers. Continuing to refer to Figure 1, the example process also includes the use of an ethylene propylene copolymer (such as ethylene-propylene monomer (EPM), ethylene-propylene diene). (EpDM), etc.) a coating that covers (eg, coats, etc.) a metal coating on the core component of the foam. When doing so, the 'ethylene propylene copolymer coating is on the metal coating (and substantially Delimiting a layer on the core of the foam that acts to prevent metal coatings (eg, metal particles, etc.) from during use of the EMI shield (eg, during a bending cycle, during a compression cycle, etc.) Separation of core components (eg, detachment, etc.). Coating process for EPM/EPDM 'Dissolve 1% to 10% by weight of EPM/EPDM in 90 to 99% by volume of solvent (such as toluene, tetrahydro-μ Dichloromethyl, etc.) The ethylene propylene copolymer solution can be interposed (for example) by any suitable process (Example 16 201213111 such as 'continuous flow method, sputum coating, 1 as), ', method, secondary bubble method, combinations thereof, etc.) Applying to the core of the foam at a temperature of about 10 degrees Celsius, or between 75 degrees Celsius, etc., it takes only a little time (for example, 'about 1 minute and about 60 minutes, The temple allows the substantially entire surface of the metal coated foam core component to contact the polymer solution. * Monthly note 4 of the details (eg, operations 102, 104, 1〇6, 108, etc.) The latter may be executed as a batch process, a continuous process, a combination thereof, etc. 'performing each of the other operations, as desired, in any suitable order, and/or concurrently. In addition, the party &amp; 1 may include fewer operations or additional operations in addition to those described. For example, in certain cases, for example, when a core component is formed using a particular type of foam (eg, when the quenched polymer foam is used as a core component of an EMI shield), One or more of the operations (or portions thereof) for preparing the surface of the core portion of the foam to receive the metal coated beta layer. 2 to 4 illustrate an example specific example of an εΜΙ mask manufactured according to the example method 〇〇. The EMI shield typically comprises a core component coated with a metal layer of copper and nickel, and a layer of sigma metal is further coated with an ethylene-propylene diene monomer (EPDM) layer to prevent separation of the copper layer and the recording layer from the core component. More specifically, Fig. 2 is a photograph of an exemplary polyurethane foam coated with a metal layer of copper and nickel and EPDM. Figure 3 is a scanning electron microscope (SEM) micrograph of a portion of the coated foam of Figure 2, shown in enlarged 5 Ox and illustrating the walls of the foam uniformly coated with metal and EPDM. 4 is an SEM micrograph of a portion of the coated foam of FIG. 2, which is shown in enlarged scale and illustrates a single aperture and an exemplary manner of maintaining the metal particles intact by EPDM coating 17 201213111. Table 1 below provides typical XY conductivity (surface resistance in ohms per square) obtained for two samples having different thicknesses (5.08 mm and 5.33 mm) than the EMI shielding materials shown in Figures 2 to 4, Z conductivity (Z-axis resistivity in ohm-cm), compression set (percentage, 22 hours at 70 °C) and shielding efficiency (negative decibel). Table 1 Sample 1 Sample 2 Thickness (mm) 5.08 5.33 Surface resistance (ohms per square) 1 0.086 0.073 2 0.083 0.073 Average 0.085 0.073 Z-axis resistivity (ohm-cm) 1 0.009 0.014 2 0.012 0.011 3 0.014 0.014 4 0.017 0.014 5 0.014 0.013 Average 0.013 0.013 Shading efficiency (negative decibel (-dB)) 500 MHz -86.73 -79.87 1 GHz -88.35 -82.89 2 GHz -88.05 -87.18 Compression set (%) (22 hours at 7 °C) 1 10.86% 11.85% 2 13.27% 11.87% 3 13.46% 11.81% 4 12.01% 11.75% 5 11.09% 11.38% 6 11.99% 14.26% Average 12.11% 12.15% The examples are only illustrated by the examples and are not intended to be limiting, A description of an exemplary method for making, producing or forming a conductive polyurethane foam will now be provided. 0 18 201213111 Example 1 In this first embodiment, a conductive polyamine group can be formed by the following steps. Formate foam: A. Wash the polyurethane foam with 2% aqueous surfactant solution at 25 ° C; Β · use 5 vol% (volume percent) at 25 ° C Hydrochloric acid (HC1) solution for surface treatment lasts 2 C- sensitized with 20 g/Ι (g/L) of vaporized stannous (SnCl 2 ) solution and 35 v〇l% of HC1 solution at 25 ° C for 45 minutes; D. at 25 ° C Activated with 20 gM silver nitrate (AgN03) solution and 25 v〇1% ammonia for 45 minutes; Ε· 15 g/1 copper sulfate, 39 ml furfural at 37 ° C (37 to .41 . / volume percent (w / v%)), 3 7 g / 丨 of sodium potassium tartrate and u.: ga, sodium oxynitride (NaOH) (pH ~ 12 to 13) for copper electroless electricity it lasts 30 minutes; F. 4g/l nickel chloride, 50ml (ml) ammonia (25 v〇i%.), 2 g/丨 ammonium sulfate, 1〇g/1 at 80 ° C to 85 ° C Electroless plating of nickel was carried out for 30 minutes with sodium hypophosphite and 6 〇ml; and G. Ethylene propylene monomer (EPM) coating was carried out for 2 minutes using a 5 vol% benzene solution at 30 °C. The foam is rinsed with water between the steps. Example 2 In this second embodiment, a conductive polyaminophthalate foam can be formed by the following steps: 19 201213111 A. Cleaning the polyamine hydrazine at 25 ° C using a 2% aqueous surfactant solution Acid ester foam; B. 5 vol0/ at 25 °C. Hydrogen acid (HC1) solution was surface treated for 2 minutes; C. sensitized with 20 gM of vaporized stannous (SnCl 2 ) solution and 35 vol% of HC1 solution at 25 ° C for 45 minutes; D. at 25 Activated with 20 g/Ι silver nitrate (AgN03) solution and 25 vol% ammonia for 45 minutes at °C; E. 18 g/Ι copper sulfate, 50 ml formic acid (37 to 41) at 30 °C w/v./.), 45 gH of sodium tartrate and 13 gy^ of gas oxidized sodium (NaOH) (pH ~ 12 to 13) for electroless plating of copper for a period of minutes. F· at 8 (TC to 85 ° Electroless electroplating of nickel using 4 g/Ι of vaporized nickel, 5 ml of ammonia (25 vol%), 2 g/Ι of ammonium sulfate, 10 g/Ι of sodium hypophosphite and 6 〇 of C 30 minutes; and G. Ethylene propylene monomer (EPM) coating was carried out for 2 minutes using a 5 V0 丨〇/〇 benzene solution at 3 ° C. The foam was rinsed with water between the steps. The singular terms "a" and "the" are used in the singular and " Operation "Include", "including" and "having" are intended to be inclusive and are intended to exclude the presence of the features, integers, steps, operations, components and/or components, but do not exclude one or more other features, integers, steps, The presence or addition of operations, component components, and/or groups of the foregoing. As described herein: 20 201213111 =::, processes, and operations should not be construed as requiring that they be performed in the specific order discussed or (d) Unless specifically identified as a certain order of execution, it should be understood that 'additional or alternative steps may be used. When a component or layer is referred to as "on another component or layer", "mingming to", "connecting to" or "Transfer to" another element or layer 'the element or layer may be directly joined to, connected to, or (4) to another member or layer on another element or layer, or an intervening element or layer may be present. In contrast, when a component is referred to as "directly on another component or layer", "straight (four) is connected to", "directly connected to" or "directly transferred to" another component or layer, there may be no intervention. a component or layer that describes the relationship between components Words should be interpreted in a similar manner (for example, "between" and "directly adjacent to", "directly adjacent", etc.) As used herein, the term "and/or" includes an association. Any one or all of the combinations in the column item and all combinations 0 - although the terms _, second, third, etc. may be used herein to describe various 7G pieces, and the parts, regions, layers, and/or sections, However, such elements, components, regions, layers and/or sections are not limited by the terms of the above and the meaning of the terms. These terms may be used only for the zone! (5) 7L pieces, components, regions, layers or sections and Another area, layer or section. Terms such as "first, "di", and other numerical terms are used in this document to not imply a sequence or order unless the context clearly clarifies that 0 does not depart from the teachings of the example embodiments. In the following, a first element, component, region, layer or section discussed below may be referred to as a second element, component, region, layer or section. For the sake of convenience, space-related terms (such as "Inside 21 201213111", "External", "under", "under", "under", "under" , "lower", "on" and "similar terms" are used to describe the relationship of an element or feature to an element or feature, as illustrated. In addition to the orientation of the 4 fields in the figure, the two related terms of pq can also be used to cover different orientations of the device in use or operation.蛊... Cattle and δ, if the device in the figure is flipped, the component described as being "below" or "below" in other components or arrogant ": + - dry fly" or "below" will be directed to other components or special " &gt; above". Therefore, the example term "below" can cover both directions above and below. The device can be additionally oriented (rotated 90 degrees or at other orientations) and can be used to interpret the spatially related descriptors used herein. The disclosure of the eigenvalues and the specific range of values for a given parameter in this paper does not exclude other values that can be used in &quot;' or more in this article. And the range of values. In addition, any two specific values may define any of the specified parameters 135 that can be used to specify the endpoints of the value range of the parameter. The disclosure of the first and second values can be interpreted to reveal that any value of the first value and can also be used for a given parameter. Similarly, it is foreseen that a small number of two or more value ranges will be covered by the η value of 1 (regardless of the range of the embedded value range μ~ 匕3) All possible combinations of the range of values claimed. For the purposes of illustration and description, specific details have been provided that are not intended to be hereinafter referred to as "before", which describes or otherwise limits the invention. An ice cube, an individual 7C piece of the s A heart instance = not limited to this particular instance, but where applicable, this is not specifically: interchangeable and can be used in selected specific instances, even if The present invention may also be modified in a manner that is not limited to the present invention, and all such modifications are intended to be included within the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an illustrative method for fabricating an electromagnetic interference (EMI) shield comprising a foam/core component, a metal honey layer, and a polymer coating in accordance with one or more aspects of the present invention. Flow chart of various steps; Figure 2 is the root Photograph of an exemplary polyurethane foam coated with metal and ethylene-propylene diene monomer (EPDM) according to one or more aspects of the invention; FIG. 3 is a view of one of the present invention Or a scanning electron microscope (SEM) micrograph of a portion of the coated foam of Figure 2, which is shown in a magnified 50x and illustrates the wall of the foam uniformly coated with metal and epdM And FIG. 4 is an SEM micrograph of a portion of the coated foam of FIG. 2 in accordance with one or more aspects of the present invention, which is shown in an enlarged manner and illustrates a single aperture and An exemplary manner in which the EPDM coating maintains the metal particles intact. Corresponding reference numerals indicate corresponding parts throughout the drawings. [Main component symbol description] 10 〇: Method 1 02: Adjusting the foam core component operation 1 04 : Etching Foam core part operation 1 〇6 : Activated foam core part operation 1 〇 8 : Covering the foam core part with a metal coating Operation 23 110 : 110 :201213111 Covering the foam core with a polymer coating Parts and metal coating operations 24

Claims (1)

201213111 七、申請專利範圍: 1·一種用於製造電磁干擾(EMI)遮蔽物之方法,該方 法包含: 用金屬材料塗佈核心部件之至少部分.及 用一種聚合物塗佈該金屬材料之至少部分以藉此阻止 該金屬材料與該核心部件分離。 2. 如申請專利範圍第i項之方法,其中用金屬材料塗佈 -亥核〜4 #·之至少部分包括帛f亥金屬材料無電電鍵該核心 部件之至少部分。 3. 如申請專利範圍第【項或第2項之方法,其中用金屬 材料塗佈該核心部件之至少部分包括用該金屬材料塗佈整 個該核心部件。 項或第2項之方法,其中: 部件之至少部分包括用該金屬 4.如申請專利範圍第1 用金屬材料塗佈該核心 〇·ι微米或更大之 材料將該核心部件之至少部分塗佈至約 厚度;及/或 用金屬材料塗佈該核心部件 卞〈主夕部分包括以預定厚 度用該金屬材料塗佈該核心部件 丨卞疋主少部分,使得該ΕΜΙ 遮蔽物展現所要電導率及ΕΜΙ效率;及/或 用該聚合物塗佈該金屬材料之至少部分包括用一種聚 合物塗佈整個該金屬材料。 5.如申請專利範圍第丨項或 &amp;步κ項之方法,其中該核 部件包括發泡體。 ' τ λ ^ 6 ·如申請專利範圍第 5項之方法,其中該發泡體包含聚 25 201213111 胺基甲酸酯發泡體、聚酯發泡體、聚醚發泡體、聚氣乙烯 發泡體、乙烯乙酸乙烯酯發泡體、聚丙烯發泡體、聚氣乙 烯發泡體、聚苯乙烯發泡體、聚曱基丙烯醯亞胺發泡體、 聚乙婦發泡體、EPDM發泡體、氣丁橡膠發泡體及/或橡膠 發泡體中之至少一者。 7.如申請專利範圍第1項或第2項之方法,其中: 該核心部件包含聚胺基甲酸醋、聚_、㈣、聚氣乙 烯、乙酸乙稀乙稀醋、聚丙稀、聚氯乙婦'聚苯乙烯、聚 曱基丙烯醯亞胺、聚乙烯、Ερ·、氣丁橡膠及/或橡膠中之 至少一者;及/或 該核心部件具有約〇·3毫米或更高之厚度;及/或 該金屬材料包括銅、金、鋁、銀、錫及鎳中之至少一 者;及/或 該聚合物包括乙烯㈣單體(EPM)、乙烯丙烯二稀軍 體(EPDM)、胺基甲酸醋、乙烯系聚合物、腈橡膠、丙烯 酸系聚合物及矽氧烧中之至少_者。 8·如申請專利範圍第U或第2項之方法,其中該麵 遮蔽物: 具有約1歐姆每平方或更小之表面電阻率;及/或 具有約1歐姆-公分或更小之z軸電阻率;及,或 具有約50分貝或更大之遮蔽效率;及/或 經組態以在局達約攝氏8 5度之工你、w也 沒之工作溫度下操作;及/ 或 具有約20%或更小之壓縮永久變形 26 201213111 9.如申請專利範圍第】項或第2項之方法,其中該金屬 材料包括銅及錦’且其中該方法進一步包含,纟用銅及錄 塗佈該核心部件之至少部分之前: 用界面活性劑清洗該核心部件; 用稀釋酸银刻該經清洗之核心部件;及 藉由利用氯化錫(II)、氯化鈀/乙酸鈀及硝酸銀或其組合 之處理來活化該經蚀刻之核心部件。 1〇·如申請專利範圍第丨項或第2項之方法,其中該核 心部件之至少部分經聚合物塗佈。 11. 如申請專利範圍第1項或第2項之方法,其進一步 包含在該等塗佈步驟之後繞著該核心部件之至少一部分纏 繞導電織物材料,以藉此提供織物包覆發泡體塾圈。 12. —種根據申請專利範圍第i項或第2項之方法製造 之E;M I遮蔽物。 13. —種電磁干擾(EMI)遮蔽物,其包含: 核心部件; 金屬塗層,其覆蓋該核心部件之至少部分;及 聚合物塗層,其覆蓋該金屬塗層之至少部分以阻止該 金屬塗層與該核心部件分離》 14. 如申請專利範圍第13項之EMI遮蔽物,其中: 該金屬塗層覆蓋整個該核心部件;及/或 該金屬塗層具有約0.1微米或更大之厚度;及/或 該金屬塗層具有對應於該EMI遮蔽物之所要電導率之 預定厚度;及/或 27 201213111 該聚合物塗層覆蓋整個該金屬塗層;及/或 該核心部件之至少部分經聚合物塗佈。 15. 如申晴專利範圍第13項或第14項之EMI遮蔽物, 其中該核心部件包括發泡體。 16. 如申請專利範圍第15項之EMI遮蔽物,其中該核 心部件包含聚胺基甲酸酯發泡體、聚酯發泡體、聚醚發泡 體、聚氣乙烯發泡體、乙烯乙酸乙烯酯發泡體、聚丙烯發 泡體、聚氯乙烯發泡體、聚笨乙烯發泡體、聚甲基丙烯醯 亞胺發泡體、聚乙烯發泡體、βΡΕ)Μ發泡體、氯丁橡膠發泡 體及/或橡膠發泡體中之至少—者。 17. 如申請專利範圍第13項或第14項之EMI遮蔽物, 其中該核心部件包含聚胺基曱酸酯、聚酯、聚醚、聚氯乙 烯、乙酸乙烯乙烯酯、聚丙烯、聚氣乙烯、聚苯乙烯、聚 甲基丙烯醯亞胺、聚乙烯、EPDM、氣丁橡膠及/或橡膠中之 至少一者。 18. 如申請專利範圍第13項或第14項之EMI遮蔽物, 其中: 該金屬塗層由銅、金、銘、銀、錫及鎖中之至少一者 形成;及/或 該聚合物塗層由乙烯丙烯單體(EPM)及乙烯-丙烯二 烯單體(EPDM )、胺基曱酸酯、乙烯系聚合物、腈橡膠、 丙烯酸系聚合物及/或矽氧烷中之至少一者形成;及/或 該金屬塗層包括至少一層銅粒子及/或至少一層鎳粒 子0 28 201213111 19_如申請專利範圍第〗3項或第14項之EMI遮蔽物, 其中該EMI遮蔽物: 具有約1歐姆每平方或更小之表面電阻率;及/或 具有約1歐姆-公分或更小之Z軸電阻率;及/或 具有約50分貝或更大之遮蔽效率;及/或 經組態以在高達約攝氏85度之工作溫度下操作;及/ 或 具有約20%或更小之壓縮永久變形。 20. 如申請專利範圍第13項或第14項之EMI遮蔽物, 其進一步包含外部導電織物層。 21. —種電磁十擾(EMI )遮蔽物,其包含: 經諸如銀或鈀之活化劑塗佈的發泡體核心部件; 金屬塗層’其包含銅及鎳且覆蓋該發泡體核心部件之 至少:’部分;及 聚合物塗層,其包含乙烯丙烯共聚物且覆蓋該金屬塗 層之至少部分以阻止該金屬塗層與該發泡體核心部件分 離; 其令該金屬塗層具有約〇.丨微米或更大之厚度; 其中5亥EMI遮蔽物具有約1歐姆每平方或更小之表面 電阻率及/或約1歐姆-公分或更小之Z軸電阻率;且 其中該EMI遮蔽物具有約2〇%或更小之壓縮永久變形。 22· —種用於製造導電發泡體之方法,該方法包含: 用界面活性劑清洗發泡體; 用稀釋酸蝕刻該經清洗之發泡體;及 29 201213111 藉由利用氣化錫(π)、氣化鈀/乙酸鈀及硝酸銀或其組合 之處理來活化該經蝕刻之發泡體; 用金屬材料塗佈該經活化之發泡體之至少部分;及 用一種聚合物塗佈該金屬材料之至少部分以藉此阻止 該金屬材料與該發泡體分離。 23.如申請專利範圍第22項之方法,其中: 該發泡體包含聚胺基甲酸酯發泡體、聚酯發泡體、聚 醚發泡體、聚氣乙烯發泡體、乙烯乙酸乙烯酯發泡體、聚 丙烯發泡體、聚氣乙烯發泡體、聚苯乙烯發泡體、聚甲基 丙烯醯亞胺發泡體、聚乙烯發泡體、EpdM發泡體、氣丁橡 膠發泡體及/或橡膠發泡體中之至少一者;且 該聚合物包含乙烯丙烯單體(EPM)、乙烯_丙烯二烯單 體(EPDM )、胺基甲酸醋、乙稀系聚合物、腈橡膠、丙稀 酸系聚合物及矽氧烷中之至少一者;且 该金屬材料包括銅、金、鋁、銀、錫及鎳中之至少一 者0 八、圖式: (如次頁) 30201213111 VII. Patent Application Range: 1. A method for manufacturing an electromagnetic interference (EMI) shield, the method comprising: coating at least a portion of a core component with a metal material, and coating at least a portion of the metal material with a polymer Partly to thereby prevent the metal material from separating from the core component. 2. The method of claim i, wherein the coating of the metal material - at least part of the nucleus ~ 4 # · comprises at least a portion of the core component of the metal material. 3. The method of claim 2, wherein the coating the at least part of the core component with a metallic material comprises coating the entire core component with the metallic material. The method of item 2, wherein: at least a portion of the component comprises the metal. 4. Applying at least a portion of the core component to the core material of the core material, as described in claim 1 Spreading the thickness to the thickness; and/or coating the core member with a metal material. The main portion includes coating the core member with the metal material at a predetermined thickness so that the 遮蔽 shield exhibits a desired conductivity. And ΕΜΙ efficiency; and/or coating at least a portion of the metal material with the polymer comprises coating the entire metal material with a polymer. 5. The method of claim </ RTI> or the &amp; step κ, wherein the core component comprises a foam. τ λ ^ 6 The method of claim 5, wherein the foam comprises poly 25 201213111 urethane foam, polyester foam, polyether foam, polyethylene fumes Foam body, ethylene vinyl acetate foam, polypropylene foam, polyethylene foam, polystyrene foam, polydecyl acrylonitrile imide foam, polyethylene foam, EPDM At least one of a foam, a gas rubber foam, and/or a rubber foam. 7. The method of claim 1 or 2, wherein: the core component comprises polyurethane condensate, poly-, (iv), polyethylene, ethyl acetate, polypropylene, polypropylene, polyvinyl chloride At least one of polystyrene, polydecyl acrylimide, polyethylene, ruthenium, butyl rubber, and/or rubber; and/or the core component has a thickness of about 3 mm or more And/or the metallic material comprises at least one of copper, gold, aluminum, silver, tin and nickel; and/or the polymer comprises ethylene (tetra) monomer (EPM), ethylene propylene dilute body (EPDM), At least one of urethane carboxylic acid, vinyl polymer, nitrile rubber, acrylic polymer, and xenon fire. 8. The method of claim U or claim 2, wherein the face shield: has a surface resistivity of about 1 ohm per square or less; and/or has a z-axis of about 1 ohm-cm or less. Resistivity; and, or having a shielding efficiency of about 50 decibels or more; and/or configured to operate at a working temperature of about 85 degrees Celsius, and no operating temperature; and/or having an approximate 20% or less compression set 26 201213111 9. The method of claim 2, wherein the metal material comprises copper and brocade, and wherein the method further comprises: bismuth copper and coating At least part of the core component: cleaning the core component with a surfactant; engraving the cleaned core component with dilute acid silver; and utilizing tin (II) chloride, palladium chloride/palladium acetate, and silver nitrate or The combined treatment activates the etched core component. The method of claim 2, wherein the core component is at least partially coated with a polymer. 11. The method of claim 1 or 2, further comprising wrapping a conductive fabric material around at least a portion of the core component after the coating step to thereby provide a fabric-coated foam 塾ring. 12. An E-M I shield made according to the method of claim i or item 2 of the patent application. 13. An electromagnetic interference (EMI) shield comprising: a core component; a metal coating covering at least a portion of the core component; and a polymer coating covering at least a portion of the metal coating to block the metal The coating is separated from the core component. 14. The EMI shield of claim 13 wherein: the metal coating covers the entire core component; and/or the metal coating has a thickness of about 0.1 micron or greater And/or the metal coating has a predetermined thickness corresponding to a desired electrical conductivity of the EMI shield; and/or 27 201213111 the polymer coating covers the entire metal coating; and/or at least a portion of the core component Polymer coating. 15. The EMI shield of claim 13 or claim 14, wherein the core component comprises a foam. 16. The EMI shield of claim 15 wherein the core component comprises a polyurethane foam, a polyester foam, a polyether foam, a polyethylene foam, an ethylene acetate Vinyl ester foam, polypropylene foam, polyvinyl chloride foam, polystyrene foam, polymethacrylimide foam, polyethylene foam, βΡΕ) Μ foam, At least one of a neoprene foam and/or a rubber foam. 17. The EMI shield of claim 13 or 14, wherein the core component comprises a polyamine phthalate, a polyester, a polyether, a polyvinyl chloride, a vinyl acetate, a polypropylene, a gas gathering At least one of ethylene, polystyrene, polymethacrylimide, polyethylene, EPDM, butyl rubber, and/or rubber. 18. The EMI shield of claim 13 or 14, wherein: the metal coating is formed from at least one of copper, gold, inscription, silver, tin, and a lock; and/or the polymer is coated The layer is composed of at least one of an ethylene propylene monomer (EPM) and an ethylene-propylene diene monomer (EPDM), an amino phthalate, an ethylene polymer, a nitrile rubber, an acrylic polymer, and/or a siloxane. Forming; and/or the metal coating comprising at least one layer of copper particles and/or at least one layer of nickel particles. 0 28 201213111 19_ EMI shielding according to claim 3 or item 14, wherein the EMI shielding: having a surface resistivity of about 1 ohm per square or less; and/or a Z-axis resistivity of about 1 ohm-cm or less; and/or a shielding efficiency of about 50 dB or more; and/or a group State operates at an operating temperature of up to about 85 degrees Celsius; and/or has a compression set of about 20% or less. 20. The EMI shield of claim 13 or 14, further comprising an outer conductive fabric layer. 21. An electromagnetic ten-disturbance (EMI) shield comprising: a foam core component coated with an activator such as silver or palladium; a metal coating comprising copper and nickel and covering the foam core component At least: a portion; and a polymeric coating comprising an ethylene propylene copolymer and covering at least a portion of the metal coating to prevent separation of the metal coating from the foam core component;丨. 丨 micron or greater thickness; wherein the 5 Hz EMI shield has a surface resistivity of about 1 ohm per square or less and/or a Z-axis resistivity of about 1 ohm-cm or less; and wherein the EMI The shield has a compression set of about 2% or less. 22. A method for producing an electrically conductive foam, the method comprising: cleaning a foam with a surfactant; etching the cleaned foam with a dilute acid; and 29 201213111 by using a vaporized tin (π a treatment of vaporized palladium/palladium acetate and silver nitrate or a combination thereof to activate the etched foam; coating at least a portion of the activated foam with a metallic material; and coating the metal with a polymer At least a portion of the material thereby preventing the metal material from separating from the foam. 23. The method of claim 22, wherein: the foam comprises a polyurethane foam, a polyester foam, a polyether foam, a polyethylene foam, and an ethylene acetate. Vinyl ester foam, polypropylene foam, polyethylene foam, polystyrene foam, polymethacrylimide foam, polyethylene foam, EpdM foam, gas At least one of a rubber foam and/or a rubber foam; and the polymer comprises ethylene propylene monomer (EPM), ethylene propylene oxide monomer (EPDM), amino carboxylic acid vinegar, ethylene polymerization At least one of a material, a nitrile rubber, an acrylic polymer, and a siloxane; and the metal material comprises at least one of copper, gold, aluminum, silver, tin, and nickel. Next page) 30
TW100126329A 2010-07-26 2011-07-26 Process for the fabrication of highly electrically-conductive polymer foams with controlled compression set suitable for use in EMI shielding applications TW201213111A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IN2125CH2010 2010-07-26

Publications (1)

Publication Number Publication Date
TW201213111A true TW201213111A (en) 2012-04-01

Family

ID=45559982

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100126329A TW201213111A (en) 2010-07-26 2011-07-26 Process for the fabrication of highly electrically-conductive polymer foams with controlled compression set suitable for use in EMI shielding applications

Country Status (3)

Country Link
CN (1) CN103026807B (en)
TW (1) TW201213111A (en)
WO (1) WO2012018595A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130251977A1 (en) * 2012-03-20 2013-09-26 Joinset Co., Ltd. Conductive polymer foam elastic member
US9179537B2 (en) 2012-12-13 2015-11-03 Apple Inc. Methods for forming metallized dielectric structures
US9357683B2 (en) * 2014-09-26 2016-05-31 Laird Technologies, Inc. Electromagnetic interference (EMI) shielding apparatus including electrically-conductive foam
FR3051140B1 (en) * 2016-05-11 2018-06-08 Marie-Anne Cloarec Au Nom Et Pour Le Compte De La Societe Box Populi S.A.S. (Societe En Formation) ELECTROMAGNETIC ANTI-WAVE MULTILAYER MATERIAL, AND CONTAINING ISOLATED WITH ELECTROMAGNETIC WAVES USING THE MATERIAL
WO2018231938A1 (en) 2017-06-13 2018-12-20 Houn Simon Hsia Compositions and methods for enhancing hyperthermia therapy
CN107326347B (en) * 2017-07-04 2019-09-20 西北工业大学 Hard PMI foam integrated waveguide surface chemical plating copper method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900383B2 (en) * 2001-03-19 2005-05-31 Hewlett-Packard Development Company, L.P. Board-level EMI shield that adheres to and conforms with printed circuit board component and board surfaces
US6818291B2 (en) * 2002-08-17 2004-11-16 3M Innovative Properties Company Durable transparent EMI shielding film
NZ553043A (en) * 2006-02-15 2008-08-29 Laminex Group Pty Ltd Electromagnetic interference shielding laminate and method of making same
KR101212671B1 (en) * 2008-12-10 2012-12-14 제일모직주식회사 Emi/rfi shielding polymer composite

Also Published As

Publication number Publication date
WO2012018595A2 (en) 2012-02-09
WO2012018595A3 (en) 2012-05-18
CN103026807B (en) 2016-01-20
CN103026807A (en) 2013-04-03

Similar Documents

Publication Publication Date Title
TW201213111A (en) Process for the fabrication of highly electrically-conductive polymer foams with controlled compression set suitable for use in EMI shielding applications
US6395402B1 (en) Electrically conductive polymeric foam and method of preparation thereof
JP4485508B2 (en) Method for producing conductive particles and anisotropic conductive film using the same
CN101705615B (en) Preparation method of nickel-plated and copper-plated aromatic polyamide conductive fibers
CN104452272A (en) Preparation method of silver-plated aromatic polysulphonamide fiber
KR101468074B1 (en) Conductive thin film by direct plating and method for manufacturing the same
KR101226773B1 (en) Conductive thin layer cushion seat with excellent impact absorbing function and electromagnetic waveshielding function and preparation method thereof
KR101326266B1 (en) Method for producing conductive non-woven fabric and Multi-fuctional Electro Magnetic Interference shield tape using conductive non-woven fabric
US20130133942A1 (en) Process for the fabrication of highly electrically-conductive polymer foams with controlled compression set suitable for use in emi shielding applications
JP2007327131A (en) Method of electroless plating on resin surface
KR102225688B1 (en) Method for manufacturing low specific gravity conductive powder and Low specific gravity conductive powder
US20020094433A1 (en) Electrically conductive foam and method of preparation thereof
KR100798870B1 (en) Conductive metal plated polyimide substrate including coupling agent and method for producing the same
CN114105494B (en) Coupling agent compounded ionic nickel palladium-free activation solution and method for preparing conductive basalt fiber
JP2001200376A (en) Method for depositing electro-magnetic wave shield film
KR101375237B1 (en) The fabrication method of thin electromagnetic shield film and electromagnetic shield film thereby
JP4355870B2 (en) Highly flame retardant electromagnetic shielding gasket and method for producing the same
JP2987556B2 (en) Method for forming metal conductive layer on fluororesin body surface
KR100831649B1 (en) Method of manufacturing a cushion sheet having an electromagnetic wave shielding property
TWI594690B (en) Preparation method of conductive sponge possessing electromagnetic interference shielding effectiveness
JP2005199581A (en) Method for producing plated foam for preventing electromagnetic wave interference, plated foam for preventing electromagnetic wave interference produced by the method, and electromagnetic wave interference preventing material produced by using the foam
KR101926094B1 (en) Manufacturing method of silver coated hollow glass powder
KR20200144716A (en) Wet surface treatment method of nonconductive plastic
JP2013251356A (en) Electromagnetic wave shielding film
KR0176299B1 (en) Electroless plating for shielding electromagnetic wave