TW201211115A - Method for producing organic substituted polygermane compound - Google Patents

Method for producing organic substituted polygermane compound Download PDF

Info

Publication number
TW201211115A
TW201211115A TW100105200A TW100105200A TW201211115A TW 201211115 A TW201211115 A TW 201211115A TW 100105200 A TW100105200 A TW 100105200A TW 100105200 A TW100105200 A TW 100105200A TW 201211115 A TW201211115 A TW 201211115A
Authority
TW
Taiwan
Prior art keywords
compound
substituted
polyfluorene
polyfluorene compound
organic
Prior art date
Application number
TW100105200A
Other languages
Chinese (zh)
Inventor
Takehiro Nagasawa
Akira Hirooka
Akira Watanabe
Tokuji Miyashita
Original Assignee
Nissan Chemical Ind Ltd
Univ Tohoku
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Ind Ltd, Univ Tohoku filed Critical Nissan Chemical Ind Ltd
Publication of TW201211115A publication Critical patent/TW201211115A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/30Germanium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/14Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing two or more elements other than carbon, oxygen, nitrogen, sulfur and silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L85/00Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers

Abstract

Disclosed is a production method for polygermane compounds having organic substituents (hereinafter referred to as organopolygermane compounds). Specifically disclosed is a production method such that organopolygermane compounds capable of forming a thin film that has a high refractive index can be produced with an improved yield. The method for producing polygermane compound having an organic substituent (R) is characterized by the reaction of an organohalogen represented by formula (1), a germanium tetrahalide and an alkali metal or alkaline rare earth metal. (1) R-X (In Formula (1), R represents an optionally substituted aliphatic hydrocarbon group with 1-20 carbon atoms, an optionally substituted alicyclic hydrocarbon group with 1-20 carbon atoms or an optionally substituted aromatic hydrocarbon group with 4-20 carbon atoms, and X represents a halogen atom.)

Description

201211115 六、發明說明 【發明所屬之技術領域】 本發明係關於以有機基取代之聚鍺化合物(以下稱爲 有機取代聚鍺化合物)之製造方法鍺,更詳言之,本發明 係關於可使其收率顯著改善而製造可製作具有高折射率之 薄膜的有機取代聚鍺化合物之製造方法。 【先前技術】 聚鍺化合物作爲光阻、有機感光體、光記憶體等之 光•電子材料等方面備受矚目。尤其,近年來,在光學領 域中高折射率材料之必要性提高,而期待僅以有機聚合物 難以實現之顯示1.7以上折射率之聚鍺化合物於高折射率 材料之應用。 過去,聚鍺化合物之製造方法已知有利用鹼金屬或鹼 土類金屬使二鹵鍺或三鹵鍺還原偶合之方法。然而,該等 起始物質製造困難,市售品之種類亦受限,故可導入於聚 鍺化合物中之有機取代機之構造受到限制。 另外,亦揭示利用鍺四鹵化物與封端劑(capping agent)反應之製造方法(參照專利文獻1)。該方法由於係 對於鍺四鹵化物使鹼金屬或鹼土類金屬作爲縮合劑而反應 後,利用有機鹵化物封端末端而獲得聚鍺化合物,故可製 造具有各樣有機基之聚鍺化合物。然而,由於鍺四鹵化物 爲無反應選擇性之四官能基化合物,故其縮合之際交聯反 應過度進行而產生不溶物。因此,整體而言該反應之收率 -5- 201211115 低。 [先前技術文獻] [專利文獻] [專利文獻1]特開2009 145872號公報 【發明內容】 [發明欲解決之課題] 本發明係鑑於該等狀況而完 可導入聚鍺化合物之有機基之適 過去之方法獲得之經有機基取代 之收率製造可製作更高折射率之 物之製造方法。 [用以解決課題之手段] 本發明人等爲達成上述目的 發現藉由使有機鹵化物、鍺四鹵 金屬在共存下反應,可顯著改善 率及由該有機取代聚鍺化合物製 完成本發明。 亦即,本發明之第一觀點爲 成者’其目的係提供一種 用範圍廣泛,且相較於以 之聚鍺化合物,可以良好 薄膜之有機取代聚鍺化合 而重複積極檢討之結果, 化物、及鹼金屬或鹼土類 有機取代聚鍺化合物之收 作之薄膜的折射率,因而 —種經有機基R取代之聚 鍺化合物之製造方法,其特徵爲使以下述式Π]表示之有 機鹵化物、鍺四鹵化物、鹼金屬或鹼土類金屬在共存下反 應, 201211115 【化1】 R-X [1] (式Π]中,R表示可經取代之碳原子數1至20之脂肪 族烴基、可經取代之碳原子數1至20之脂環式烴基、或 可經取代之碳原子數4至20之芳香族烴基,X表示鹵素 原子)。 第二觀點係關於第一觀點所述之聚鍺化合物之製造方 法,其係將前述鍺四鹵化物與以前述式[1]表示之有機鹵 化物同時添加於前述鹼金屬或前述鹼土類金屬中。 第三觀點係關於第二觀點中所述之聚鍺化合物之製造 方法,其係將前述鍺四鹵化物與以前述式[1]表示之有機 鹵化物之混合物添加於前述鹼金屬或前述鹼土類金屬中。 第四觀點係關於第一觀點中所述之聚鍺化合物之製造 方法,其係將前述鍺四鹵化物與相對於前述鍺四鹵化物之 化學計量量的一部份量之以前述式[丨]表示之有機鹵化物 同時添加於前述鹼金屬或前述鹼土類金屬中’隨後再添加 成爲化學計量量之剩餘量的以前述式[U表示之有機鹵化 物。 第五觀點係關於第一觀點至第四觀點之任一項中所述 之聚鍺化合物之製造方法,其中前述鹼金屬或前述鹼土類 金屬爲鎂。 第六觀點係關於第一觀點至第五觀點任—項中所述之 聚鍺化合物之製造方法,其中前述x表示氯原子、溴原 子或碘原子》 201211115 第七觀點係關於第一觀點至第六觀點任一項中所述之 聚鍺化合物之製造方法,其中前述R表示可經取代之碳原 子數4至20之芳香族烴基。 第八觀點係關於一種經有機基R(R係與第一觀點所述 之定義同義)取代聚鍺化合物,其係依循第一觀點至第七 觀點任一項中所述之方法製造。 第九觀點係關於第八觀點中所述之聚鍺化合物,其以 凝膠滲透層析(GPC)測定之聚苯乙烯換算之重量平均分子 量爲 500 至 1 00,000。 第十觀點係關於一種漆料,其含有第八觀點或第九觀 點所述之聚鍺化合物。 第十一觀點係關於一種薄膜,其係由第八觀點或第九 觀點所述之聚鍺化合物構成。 第十二觀點係關於一種樹脂組成物,其含有第八觀點 或第九觀點所述之聚鍺化合物,以及熱可塑性樹脂及/或 硬化性樹脂。 第十三觀點係關於一種樹脂成型體,其係由第十二觀 點所述之樹脂組成物作成。 [發明之效果] 依據本發明之有機取代聚鍺化合物之製造方法,可以 簡易操作收率良好地製造具有高溶解性之有機取代聚鍺化 合物。進而以所得之有機聚鍺化合物製作之薄膜由於顯示 高的折射率,故該有機取代聚鍺化合物適用作爲光學材 -8- 201211115 料。 【實施方式】 以下針對本發明詳細加以說明。 [有機鹵化物] 本發明之製造方法中使用之有機鹵化物係以下 表示。 【化2】 R-X [1] (式Π]中,R表示可經取代之碳原子數1至20 族烴基、可經取代之碳原子數1至20之脂環式烴 可經取代之碳原子數4至20之芳香族烴基,X表 原子)。 上述可經取代之碳原子數1至20之脂肪族烴 有直鏈狀或分支狀之脂肪族烴基之任一種,另亦可 素原子。 該等可經取代之碳原子數1至20之脂肪族烴 爲例如甲基、乙基、正丙基、異丙基、正丁基、異 第二丁基、第三丁基、正戊基、2_甲基丁基、異戊 戊基、第二異戊基、第三戊基、正己基、1-甲基戊 己基、新己基、2,3-二甲基丁基、1,1,2-三甲基丙 基、辛基、壬基、癸基、十一烷基、十二烷基、 基、苄基、苯乙基、1-萘基甲基、2-萘基甲基、2- 述式[1] 之脂肪 基、或 示鹵素 基可含 含有鹵 基列舉 丁基、 基、新 基、異 基、庚 二十烷 噻吩基 -9 - 201211115 甲基、3-噻吩基甲基、甲硫基甲基、乙硫基甲基、正丙硫 基甲基 '異丙硫基甲基、環丙硫基甲基、正丁硫基甲基、 異丁硫基甲基、第二丁硫基甲基、第三丁硫基甲基、環丁 硫基甲基、正戊硫基甲基、2-甲基丁硫基甲基、異戊硫基 甲基、新戊硫基甲基、第二異戊硫基甲基、第三戊硫基甲 基、環戊硫基甲基、正己硫基甲基、1-甲基戊硫基甲基、 異己硫基甲基、新己硫基甲基、2,3-二甲基丁硫基甲基、 1,1,2-三甲基丙硫基甲基、環己硫基甲基、金剛烷硫基甲 基、(甲硫基甲硫基)甲基、(乙硫基甲硫基)甲基、((甲硫 基甲硫基)甲硫基)甲基、((乙硫基甲硫基)甲硫基)甲基、 2-(乙硫基)乙基、2-(2-(甲硫基)乙硫基)乙基、2-(2-(乙硫 基)乙硫基)乙基、2-(2-(丙硫基)乙硫基)乙基、2-(2-(2-(乙 硫基)乙硫基)乙硫基)乙基、苯硫基甲基、1-萘硫基甲基、 2_萘硫基甲基、2-噻吩基硫甲基、3·噻吩基硫甲基、苄硫 基甲基、苯乙硫基甲基、1-萘基甲硫基甲基、2-萘基甲硫 基甲基、2·噻吩基甲硫基甲基、3-噻吩基甲硫基甲基等。 又,上述可經取代之碳原子數1至20之脂環式烴基 亦可含有雜原子,列舉爲例如環丙基、環丁基、環戊基、 環己基、金剛烷基、硫代環丙基 '二硫代環丙基、硫代環 丁基、1,2-二硫代環丁基、1,3-二硫代環丁基、三硫代環 丁基、2_硫代環戊基、3-硫代環戊基、1,2-二硫代環戊 基、1,3-二硫代環戊基、1,2,3-三硫代環戊基、1,2,4-三硫 代環戊基、四硫代環戊基、硫代環己基(thianyl)、1,2-二 硫代環己基、1,3-二硫代環己基、1,4-二硫代環己基、 -10- 201211115 1,2,3-三硫代環己基、1,2,4-三硫代環己基、1,3,5-三硫代 環己基、1,2,3,4-四硫代環己基、1,2,4,5-四硫代環己基、 五硫代環己基、硫代環庚基(thiepanyl)、1,2-二硫代環庚 基、1,3-二硫代環庚基、1,4-二硫代環庚基、1,2,3-三硫代 環庚基、1,2,4-三硫代環庚基、1,2,5-三硫代環庚基、 1,3,5-三硫代環庚基、1,2,3,4-四硫代環庚基、1,2,3,5-四 硫代環庚基、1,2,4,5ι四硫代環庚基、1,2,4,6-四硫代環庚 基、1,2,3,4,5-五硫代環庚基、1,2,3,4,6-五硫代環庚基、 1,2,3,5,6-五硫代環庚基、六硫代環庚基等。 再者,上述可經取代之碳原子數4至20之芳香族烴 基亦可爲雜環,列舉爲例如苯基、聯苯基、鄰-三聯苯 基、間-三聯苯基、對-三聯苯基、蒹基、萘基、1-苯基萘 基、2-苯基萘基、蒽基、芘基、呋喃基、苯并呋喃基、噻 吩基、苯并噻吩基、二苯并噻吩基等。 上述鹵素原子列舉爲氯原子、溴原子及碘原子,且由 控制反應之觀點而言較好爲溴原子。 有機鹵化物之使用量相對於鍺四鹵化物較好爲0.1至 4莫耳當量,更好爲0.5至3莫耳當量。少於〇.1莫耳當 量時,由於副產物之不溶物量增加而使收率下降,且多於 4莫耳當量時無法使鍺骨架之成長順利進行。 另外,有機鹵化物亦可視需要使用兩種以上。 [鍺四鹵化物] 本發明之製造方法中使用之鍺四鹵化物列舉爲鍺四_ -11 - 201211115 化物、鍺四氯化物、鍺四溴化物及鍺四碘化物,就控制反 應及成本之觀點而言較好爲鍺四氯化物。 [驗金屬或鹼土類金屬] 本發明之製造方法中使用之鹼金屬或鹼土類金屬列舉 爲鋰、鈉、鉀等鹼金屬;鋇、鎂、鈣等鹼土類金屬,就作 業性之觀點而言較好爲鎂。 且’鹼金屬及鹼土類金屬之使用量相對於鍺四鹵化物 較好爲2至8莫耳當量,更好爲3至6莫耳當量。 [反應溶劑] 本發明之製造方法中使用之反應溶劑只要對反應沒有 影響即可使用各種溶劑類,具體而言列舉爲正戊烷、正己 烷、正庚烷、正辛烷、環己烷等脂肪族烴系溶劑;二乙 醚、二異丙基醚、二丁基醚、環戊基甲基醚、四氫呋喃、 1,4-二噁烷等醚系溶劑;苯、甲苯、二甲苯、均三甲苯 (mesitylene)等芳香族烴系溶劑等。該等溶劑可單獨使 用,亦可視需要使用兩種以上之混合溶劑。 溶劑之使用量相對於鍺四鹵化物之質量較好爲1至 3 0倍量,更好爲5至2 0倍量。比1倍量少時,由於副產 出無機鹽導致反應系統固體化而難以進行反應,超過30 倍量時由於過度稀釋使反應性顯著下降。 另外,反應溫度較好在1 〇 °C以上、溶劑之沸點以 下。比其低之低溫時反應速度顯著下降。 -12- 201211115 再者,反應時間隨著使用之有機鹵化物而不同,但整 體而言以3至2 4小時較佳。 [添加劑] 本發明可視需要添加使反應活性化之活性化劑。該等 活性化劑列舉爲例如溴、碘等鹵素分子;二溴乙烷、二碘 乙烷等鹵化烷等。 且,活性化劑之量相對於鹼金屬及鹼土類金屬較好爲 〇 . 5莫耳當量以下。 [反應方法] 本發明之製造方法可藉由使有機鹵化物、鍺四鹵化 物、與鹼金屬或鹼土類金屬共存下反應,獲得有機取代之 鍺化合物。 此處,各化合物之饋入方法並無特別限制,列舉爲例 如於含鹼金屬或鹼土類金屬之反應液中添加鍺四鹵化物與 有機鹵化物之混合物之方法;於含鹼金屬或鹼土類金屬之 反應液中同時添加鍺四鹵化物及有機鹵化物之方法;於含 有鍺四鹵化物及有機鹵化物之反應液中添加鹼金屬或鹼土 類金屬之方法;調製含有鍺四鹵化物、有機鍺化物及鹼金 屬或鹼土類金屬之反應液後,升溫至反應起始溫度之方法 等。 另外,於驗金屬或鹼土類金屬中可同時添加鍺四鹵化 物與對於鍺四鹵化物之化學計量量之一部份量的有機鍺化 -13- 201211115 合物’隨後再添加化學計量量之剩餘量的該有機鹵化物^ 據此,可使未反應之鍺活性部位減少,進一步提高收率。 [純化方法] 本發明中產物之純化並無特別限制,但較好以一般有 機合成中使用之純化方法進行。較好以再沉澱純化。 以本發明之製造方法製造之有機取代聚鍺化合物之聚 苯乙烯換算之重量平均分子量爲500至1〇〇,〇〇〇之高分子 化合物,較好爲500至50,000之高分子化合物,更好爲 500至3 0,000之高分子化合物,分子量未達500時,不易 獲得充分之折射率値,超過1〇〇,〇〇〇時溶解性下降。 [含有有機取代聚鍺化合物之漆料] 以本發明之製造方法獲得之有機取代聚鍺化合物可作 爲溶解於溶劑中之漆料之形態。又,常溫下顯示液狀之有 機取代聚鍺化合物亦可作爲溶解於溶劑中之漆料之形態。 上述漆料之形態中使用之溶劑列舉爲例如草酸二乙 酯、乙醯基乙酸乙酯、乙酸乙酯、乙酸異丁酯、丁酸乙 酯、乳酸乙酯、3-甲氧基丙酸乙酯、2-羥基異丁酸甲酯、 4-丁內酯等酯系溶劑;乙基甲基酮、異丁基甲基酮、2-己 酮、環己酮等酮系溶劑;丙二醇單甲基醚、丙二醇單甲基 醚乙酸酯等丙二醇系溶劑;甲基溶纖素、甲基溶纖素乙酸 酯等溶纖素溶劑;二丁基醚、四氫呋喃、1,4-二噁烷等醚 系溶劑;乙醇、異丙醇、異戊醇等醇系溶劑;甲苯、二甲 -14- 201211115 苯等芳香族烴系溶劑;二氯甲烷、氯仿、1,2 -二氯乙烷、 三氯乙烷等鹵化烴系溶劑等。該等溶劑可單獨使用,亦可 視需要使用兩種以上之混合溶劑。 又,反應結束後之溶液可直接(有機取代聚鍺化合物 未經單離)作爲漆料。此時,亦可添加上述溶劑。 再者,溶解於上述溶劑中之濃度爲任意,但相對於有 機取代聚鍺化合物與溶劑之總質量(合計質量),有機取代 聚鍺化合物之濃度較好爲1至30質量%。 [由有機取代聚鍺化合物所成之薄膜] 使用本發明之漆料形成薄膜之具體方法爲首先,將以 本發明之製造方法獲得之有機取代聚鍺化合物溶解於上述 溶劑中成爲漆料之形態(膜形成材料),將該漆料以輥塗 法、微凹版塗佈法、凹版塗佈法、流塗法、棒塗佈法、噴 霧塗佈法、模嘴塗佈法、旋轉塗佈法、浸漬塗佈法、刮板 法、蘭目爾-布羅吉(Langmuir-Blodgett)塗佈法等塗佈於 基材上,隨後視需要經乾燥獲得。 上述基材列舉爲例如聚碳酸酯、聚甲基丙烯酸酯、聚 苯乙烯、聚酯、聚烯烴、環氧樹脂、丙烯酸酯、三聚氰 胺、三乙醯基纖維素、ABS、AS、降冰片烯系樹脂等之塑 膠;金屬;玻璃;矽等。 另外,塗佈方法並無特別限制,可由上述方法中,考 慮生產性、膜厚控制性、良率等之均衡,而決定最適之塗 佈法。 •15- 201211115 另外,乾燥溫度較好爲40至150 °C。考慮溶劑種 類、溶劑量、生產性等,可自該等溫度決定最適之乾燥溫 度。 由如此獲得之有機取代聚鍺化合物所成之薄膜相較於 由以過去方法獲得之有機取代聚鍺化合物所成之薄膜具有 更高折射率之特徵。 [樹脂組成物] 本發明另關於含有上述有機取代聚鍺化合物與樹脂 (熱可塑性樹脂及/或硬化性樹脂)之樹脂組成物。 本發明中,所謂熱可塑性樹脂意指藉由加熱至玻璃轉 移溫度或熔點而軟化,可成形成目標形狀之·樹脂或該樹脂 之混合物,且可適當含有任意添加劑。 又,本發明中,所謂硬化性樹脂意指藉由加熱引起聚 合而形成高分子之網目構造之熱硬化性樹脂’藉由照光引 起聚合而形成高分子之網目構造之光硬化性樹脂’以及該 等樹脂之混合物,且含有交聯劑 '起始劑等添加劑。 上述樹脂之具體例並無特別限制’至於熱可塑性樹脂 列舉爲例如PE(聚乙烯)、PP(聚丙烯)、EVA(乙烯-乙酸乙 烯酯共聚物)、EE A(乙烯-丙烯酸乙酯共聚物)等聚烯烴系 樹脂;PS(聚苯乙烯)、HIPS(高衝擊性聚苯乙嫌)、AS(丙 烯腈-苯乙烯共聚物)、ABS(丙烯腈-丁二烯-苯乙烯共聚 物)、MS(甲基丙烯酸甲酯·苯乙烯共聚物)等聚苯乙烯系樹 脂:聚碳酸酯樹脂;氯化乙烯樹脂;聚醯胺樹脂:聚醯亞 -16- 201211115 胺樹脂;PMMA(聚甲基丙烯酸甲酯)等(甲基)丙稀酸樹 脂;PET(聚對苯二甲酸乙二酯)、聚對苯二甲酸丁二酯、 聚萘二甲酸乙二酯、聚萘酸丁二酯、PLA(聚乳酸)、聚-3-羥基丁酸、聚己內酯、聚丁二酸丁二酯、聚丁二酸乙二酯 /聚己二酸乙二酯等聚酯樹脂;聚苯醚樹脂;改質之聚苯 醚樹脂;聚乙縮醛樹脂;聚碾樹脂;聚苯硫醚樹脂;聚乙 烯醇樹脂;聚乙醇酸;改質澱粉;乙酸纖維素、三乙酸纖 維素;甲殼質;殼聚糖;木質素等。 另硬化性樹脂列舉爲例如酚樹脂、脲樹脂、三聚氰胺 樹脂、不飽和聚酯樹脂、聚胺基甲酸酯樹脂、環氧樹脂、 矽樹脂等熱硬化性樹脂;丙烯酸樹脂、環氧丙烯酸樹脂、 矽樹脂等光硬化性樹脂等。 該樹脂相對於有機取代聚鍺化合物100質量份較好以 1至10,000質量份之範圍使用,更好爲1至1,〇〇〇質量份 之範圍。 例如,樹脂組成物爲含有有機取代聚鍺化合物與(甲 基)丙烯酸酯樹脂之組成物時,可藉由使(甲基)丙烯酸酯 化合物與前述有機取代聚鍺化合物混合,且使該(甲基)丙 烯酸酯化合物聚合而獲得。 上述(甲基)丙烯酸酯化合物之例列舉爲例如(甲基)丙 儲酸甲酯、(甲基)丙烯酸乙酯、乙二醇二(甲基)丙烯酸 酯、四乙二醇二(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯 酸醋、丁二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯 酸醋、1,4-丁二醇二(甲基)丙烯酸酯、^―己二醇二(甲基) -17- 201211115 丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、三羥甲基丙烷三 氧基乙基(甲基)丙烯酸酯、三環癸烷二甲醇二(甲基)丙烯 酸酯、三環癸烷二(甲基)丙烯酸酯、三羥甲基丙烷三氧基 丙基(甲基)丙烯酸酯、參-2-羥基乙基異氰脲酸酯三(甲基) 丙烯酸酯、參-2-羥基乙基異氰脲酸酯二(甲基)丙烯酸酯、 1,9-萘二醇二(甲基)丙烯酸酯、季戊四醇二(甲基)丙烯酸 酯、甘油甲基丙烯酸酯丙烯酸酯、季戊四醇三(甲基)丙烯 酸酯、甲基丙烯酸苄酯、9,9-雙(4-(2-丙烯醯氧基乙氧基) 苯基)弗、三羥甲基丙烷三甲基丙烯酸酯、(甲基)丙烯酸 烯丙酯、(甲基)丙烯酸乙烯酯、環氧(甲基)丙烯酸酯、聚 酯(甲基)丙烯酸酯、胺基甲酸酯(甲基)丙烯酸酯等。 該等(甲基)丙烯酸酯化合物之聚合可視需要在光自由 基起始劑或熱自由基起始劑存在下,藉由照光或加熱進 行。 光自由基聚合起始劑列舉爲例如苯乙酮類、二苯甲酮 類、米査(Michael)酮類、戊醯肟酯、四甲基秋蘭姆單硫 醚、咕噸酮類等》 尤其,以光開裂型之光自由基聚合起始劑較佳。光開 裂型之光自由基聚合起始劑敘述於最新UV硬化技術(159 頁,發行人:高薄一弘,發行所:技術情報協會(股), 1991年發行)。 市售之光自由基聚合起始劑可列舉爲例如BASF公司 製造之商品名:Irgacure(註冊商標)184、369、651、 500 、 819 、 907 、 784 、 2959 、 CGI 1 700 、 CGI 1 750 、 -18 - 201211115 CGI1 850、CG24-61 、Darocure 1116、 1173、Lucirin201211115 VI. Description of the Invention [Technical Field of the Invention] The present invention relates to a method for producing a polyfluorene compound (hereinafter referred to as an organically substituted polyfluorene compound) substituted with an organic group. More specifically, the present invention relates to The yield is remarkably improved to produce a method for producing an organically substituted polyfluorene compound which can produce a film having a high refractive index. [Prior Art] Polyfluorene compounds have attracted attention as light and electronic materials such as photoresists, organic photoreceptors, and optical memories. In particular, in recent years, the necessity of a high refractive index material in an optical field has been increased, and a polyfluorene compound exhibiting a refractive index of 1.7 or more which is difficult to realize only with an organic polymer is expected to be applied to a high refractive index material. In the past, a method for producing a polyfluorene compound has been known to reduce or couple a dihalopurine or a trihalide with an alkali metal or an alkaline earth metal. However, these starting materials are difficult to manufacture, and the types of commercially available products are also limited, so that the structure of the organic replacing machine which can be introduced into the polyfluorene compound is limited. Further, a production method in which a ruthenium tetrahalide is reacted with a capping agent is also disclosed (see Patent Document 1). In this method, since an alkali metal or an alkaline earth metal is reacted as a condensing agent for a perylene tetrahalide, a polyfluorene compound is obtained by blocking an end with an organic halide, whereby a polyfluorene compound having various organic groups can be produced. However, since the ruthenium tetrahalide is a tetrafunctional compound which is non-reactive, the crosslinking reaction is excessively carried out at the time of condensation to cause insoluble matter. Therefore, the overall yield of the reaction is -5 - 201211115 low. [PRIOR ART DOCUMENT] [Patent Document 1] JP-A-2009-145872 SUMMARY OF THE INVENTION [Problems to be Solved by the Invention] The present invention is based on the above-mentioned conditions and is suitable for introducing an organic group of a polyfluorene compound. The production method of producing a higher refractive index by the yield of the organic group obtained by the conventional method. [Means for Solving the Problem] In order to achieve the above object, the present inventors have found that the organic halide and the perylene tetrahalide metal can be reacted in the coexistence, and the present invention can be remarkably improved and the organic substituted polyfluorene compound can be obtained. That is, the first aspect of the present invention is that the purpose of the present invention is to provide a wide range of results, and to repeat the positive review of the organic compound-substituted polyfluorene compound of the film compared to the polyfluorene compound. And a method for producing a polyfluorene compound substituted with an organic group R, and an organic halide represented by the following formula: , 锗 tetrahalide, alkali metal or alkaline earth metal in the coexistence reaction, 201211115 [Chemical 1] RX [1] (in the formula), R represents a substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, The substituted alicyclic hydrocarbon group having 1 to 20 carbon atoms or the optionally substituted aromatic hydrocarbon group having 4 to 20 carbon atoms, and X represents a halogen atom). The second aspect is the method for producing a polyfluorene compound according to the first aspect, wherein the ruthenium tetrahalide and the organic halide represented by the above formula [1] are simultaneously added to the alkali metal or the alkaline earth metal. . The third aspect relates to a method for producing a polyfluorene compound according to the second aspect, wherein a mixture of the above-described cerium tetrahalide and an organic halide represented by the above formula [1] is added to the alkali metal or the alkaline earth. In metal. The fourth aspect relates to a method for producing a polyfluorene compound according to the first aspect, which is characterized in that the above-mentioned cerium tetrahalide and a stoichiometric amount relative to the above-mentioned cerium tetrahalide are in the aforementioned formula [丨] The organic halide represented by the above-mentioned alkali metal or the above-mentioned alkaline earth metal is added 'subsequently added to the remaining amount of the stoichiometric amount of the organic halide represented by the above formula [U]. The fifth aspect is the method for producing a polyfluorene compound according to any one of the first aspect to the fourth aspect, wherein the alkali metal or the alkaline earth metal is magnesium. The sixth aspect relates to a method for producing a polyfluorene compound described in the first aspect to the fifth aspect, wherein the above x represents a chlorine atom, a bromine atom or an iodine atom. 201211115 The seventh viewpoint relates to the first viewpoint to the first The method for producing a polyfluorene compound according to any one of the six aspects, wherein the above R represents an optionally substituted aromatic hydrocarbon group having 4 to 20 carbon atoms. The eighth aspect relates to a method of substituting a polyfluorene compound with an organic group R (R system is synonymous with the definition described in the first aspect), which is produced by the method described in any one of the first to seventh aspects. The ninth aspect is the polyfluorene compound described in the eighth aspect, which has a weight average molecular weight of from 500 to 1,000,000 as measured by gel permeation chromatography (GPC). The tenth point relates to a paint comprising the polyfluorene compound described in the eighth aspect or the ninth point of view. The eleventh aspect relates to a film comprising the polyfluorene compound described in the eighth aspect or the ninth aspect. The twelfth aspect relates to a resin composition comprising the polyfluorene compound according to the eighth aspect or the ninth aspect, and a thermoplastic resin and/or a curable resin. The thirteenth aspect relates to a resin molded body which is produced from the resin composition described in the twelfth aspect. [Effects of the Invention] According to the method for producing an organic-substituted polyfluorene compound of the present invention, an organically-substituted polyfluorene compound having high solubility can be produced with a good yield in a simple operation. Further, since the film made of the obtained organic polyfluorene compound exhibits a high refractive index, the organic-substituted polyfluorene compound is suitable as an optical material -8-201211115. [Embodiment] Hereinafter, the present invention will be described in detail. [Organic halide] The organic halide used in the production method of the present invention is shown below. R 2 [1] (wherein R represents a carbon atom of 1 to 20 carbon atoms which may be substituted, and a carbon atom which may be substituted by an alicyclic hydrocarbon having 1 to 20 carbon atoms which may be substituted A number of 4 to 20 aromatic hydrocarbon groups, X atom). The above-mentioned aliphatic hydrocarbon having 1 to 20 carbon atoms which may be substituted may have any one of a linear or branched aliphatic hydrocarbon group, and may be an atom. The aliphatic hydrocarbons having 1 to 20 carbon atoms which may be substituted are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, iso-t-butyl, tert-butyl, n-pentyl. , 2-methylbutyl, isopentyl, second isopentyl, third amyl, n-hexyl, 1-methylpentyl, neohexyl, 2,3-dimethylbutyl, 1,1 ,2-trimethylpropyl, octyl, decyl, decyl, undecyl, dodecyl, benzyl, phenethyl, 1-naphthylmethyl, 2-naphthylmethyl 2, the aliphatic group of the formula [1], or the halogen group may contain a halogen group, a butyl group, a group, a new group, an iso group, a heptadecanethiophene-9 - 201211115 methyl group, a 3-thienyl group. Methyl, methylthiomethyl, ethylthiomethyl, n-propylthiomethyl 'isopropylthiomethyl, cyclopropylthiomethyl, n-butylthiomethyl, isobutylthiomethyl, Second butylthiomethyl, tert-butylthiomethyl, cyclobutylthiomethyl, n-pentylthiomethyl, 2-methylbutylthiomethyl, isopentylthiomethyl, neopentylsulfide Methyl group, second isoamylthiomethyl group, third pentylthiomethyl group, cyclopentylthiomethyl group, positive Hexylthiomethyl, 1-methylpentylthiomethyl, isohexylthiomethyl, neohexylthiomethyl, 2,3-dimethylbutylthiomethyl, 1,1,2-trimethyl Propylthiomethyl, cyclohexylthiomethyl, adamantylthiomethyl, (methylthiomethylthio)methyl, (ethylthiomethylthio)methyl, ((methylthiomethylthio) Methylthiomethyl), ((ethylthiomethylthio)methylthio)methyl, 2-(ethylthio)ethyl, 2-(2-(methylthio)ethylthio) Base, 2-(2-(ethylthio)ethylthio)ethyl, 2-(2-(propylthio)ethylthio)ethyl, 2-(2-(2-(ethylthio)) Thio)ethylthio)ethyl, phenylthiomethyl, 1-naphthylthiomethyl, 2-naphthylthiomethyl, 2-thienylthiomethyl, 3·thienylthiomethyl, benzyl sulfide Methyl, phenylethylthiomethyl, 1-naphthylmethylthiomethyl, 2-naphthylmethylthiomethyl, 2·thienylmethylthiomethyl, 3-thienylmethylthiomethyl Wait. Further, the above-mentioned alicyclic hydrocarbon group having 1 to 20 carbon atoms may further contain a hetero atom, and is exemplified by, for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, an adamantyl group, or a thiocyclopropene group. 'Dithiocyclopropyl, thiocyclobutyl, 1,2-dithiocyclobutyl, 1,3-dithiocyclobutyl, trithiocyclobutyl, 2-thiocyclopentane , 3-thiocyclopentyl, 1,2-dithiocyclopentyl, 1,3-dithiocyclopentyl, 1,2,3-trithiocyclopentyl, 1,2,4 - trithiocyclopentyl, tetrathiocyclopentyl, thiocyclohexyl, 1,2-dithiocyclohexyl, 1,3-dithiocyclohexyl, 1,4-dithio Cyclohexyl, -10- 201211115 1,2,3-trithiocyclohexyl, 1,2,4-trithiocyclohexyl, 1,3,5-trithiocyclohexyl, 1,2,3,4 - tetrathiocyclohexyl, 1,2,4,5-tetrathiocyclohexyl, pentathiocyclohexyl, thiocycloheptyl, 1,2-dithiocycloheptyl, 1,3 -dithiocycloheptyl, 1,4-dithiocycloheptyl, 1,2,3-trithiocycloheptyl, 1,2,4-trithiocycloheptyl, 1,2,5 -trithiocycloheptyl, 1,3,5-trithiocycloheptyl, 1 2,3,4-tetrathiocycloheptyl, 1,2,3,5-tetrathiocycloheptyl, 1,2,4,5,tetrathiocycloheptyl, 1,2,4,6- Tetrathiocycloheptyl, 1,2,3,4,5-pentathiocycloheptyl, 1,2,3,4,6-pentathiocycloheptyl, 1,2,3,5,6 - pentathiocycloheptyl, hexathiocycloheptyl, and the like. Further, the above-mentioned aromatic hydrocarbon group having 4 to 20 carbon atoms may be a heterocyclic ring, and is exemplified by, for example, a phenyl group, a biphenyl group, an ortho-terphenyl group, a m-terphenyl group, a p-terphenyl group. Base, fluorenyl, naphthyl, 1-phenylnaphthyl, 2-phenylnaphthyl, anthracenyl, fluorenyl, furyl, benzofuranyl, thienyl, benzothienyl, dibenzothiophenyl, etc. . The halogen atom is exemplified by a chlorine atom, a bromine atom and an iodine atom, and is preferably a bromine atom from the viewpoint of controlling the reaction. The organic halide is preferably used in an amount of from 0.1 to 4 moles, more preferably from 0.5 to 3 moles, per equivalent of the ruthenium tetrahalide. When the amount is less than 〇1 mol, the yield is lowered due to an increase in the amount of insoluble matter of the by-product, and when the amount is more than 4 mol equivalent, the growth of the ruthenium skeleton cannot be smoothly performed. Further, two or more organic halides may be used as needed. [锗tetrahalide] The ruthenium tetrahalide used in the production method of the present invention is exemplified by 锗4_-11 - 201211115, ruthenium tetrachloride, ruthenium tetrabromide and ruthenium tetraiodide, in order to control the reaction and cost. From the viewpoint, it is preferably ruthenium tetrachloride. [Metal or alkaline earth metal] The alkali metal or alkaline earth metal used in the production method of the present invention is exemplified by an alkali metal such as lithium, sodium or potassium; and an alkaline earth metal such as barium, magnesium or calcium, from the viewpoint of workability. It is preferably magnesium. Further, the amount of the alkali metal and the alkaline earth metal to be used is preferably from 2 to 8 mole equivalents, more preferably from 3 to 6 moles, per equivalent of the ruthenium tetrahalide. [Reaction solvent] The solvent to be used in the production method of the present invention may be any solvent, and specific examples thereof include n-pentane, n-hexane, n-heptane, n-octane, cyclohexane, and the like. An aliphatic hydrocarbon solvent; an ether solvent such as diethyl ether, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether, tetrahydrofuran or 1,4-dioxane; benzene, toluene, xylene, and a uniformity An aromatic hydrocarbon solvent such as mesylene or the like. These solvents may be used singly or as a mixture of two or more kinds as needed. The amount of the solvent to be used is preferably from 1 to 30 times, more preferably from 5 to 20 times, based on the mass of the perylene tetrahalide. When the amount is less than 1 time, the reaction system is solidified by the by-product generation of the inorganic salt, and it is difficult to carry out the reaction. When the amount exceeds 30 times, the reactivity is remarkably lowered due to excessive dilution. Further, the reaction temperature is preferably at least 1 〇 ° C and below the boiling point of the solvent. The reaction rate is significantly lower than the lower temperature. -12- 201211115 Further, the reaction time varies depending on the organic halide used, but it is preferably from 3 to 24 hours as a whole. [Additive] In the present invention, an activator which activates the reaction may be added as needed. These activators are exemplified by halogen molecules such as bromine and iodine; halogenated alkane such as dibromoethane or diiodoethane. Further, the amount of the activating agent is preferably not more than 5 mol equivalents based on the alkali metal and the alkaline earth metal. [Reaction method] The production method of the present invention can be carried out by reacting an organic halide, a perylene tetrahalide, and an alkali metal or an alkaline earth metal to obtain an organically substituted ruthenium compound. Here, the feeding method of each compound is not particularly limited, and examples thereof include a method of adding a mixture of a cerium tetrahalide and an organic halide to a reaction liquid containing an alkali metal or an alkaline earth metal; and an alkali metal or alkaline earth. a method of simultaneously adding a cerium tetrahalide and an organic halide to a reaction liquid of a metal; a method of adding an alkali metal or an alkaline earth metal to a reaction liquid containing a cerium tetrahalide and an organic halide; preparing a cerium tetrahalide, organic A method of raising the temperature to the reaction starting temperature after the reaction solution of the hydrazine compound and the alkali metal or the alkaline earth metal. In addition, in the metal or alkaline earth metal, a cerium tetrahalide and a part of the stoichiometric amount of the cerium tetrahalide may be simultaneously added to the organic deuterated-13-201211115 compound, and then a stoichiometric amount is added. The remaining amount of the organic halide can reduce the unreacted hydrazine active site and further increase the yield. [Purification method] The purification of the product in the present invention is not particularly limited, but it is preferably carried out by a purification method generally used in organic synthesis. It is preferably purified by reprecipitation. The polysubstituted polyanthracene compound produced by the production method of the present invention has a weight average molecular weight of 500 to 1 Å, a high molecular compound of cerium, preferably a polymer compound of 500 to 50,000, more preferably When the molecular weight of the polymer compound is from 500 to 300,000, the molecular weight is less than 500, and it is difficult to obtain a sufficient refractive index 値, and when it is more than 1 Torr, the solubility at the time of ruthenium is lowered. [Lens containing organically substituted polyfluorene compound] The organically substituted polyfluorene compound obtained by the production method of the present invention can be used as a form of a paint dissolved in a solvent. Further, it is also possible to use a liquid-like organic polysubstituted compound at normal temperature as a form of a paint dissolved in a solvent. The solvent used in the form of the above paint is exemplified by, for example, diethyl oxalate, ethyl acetoacetate, ethyl acetate, isobutyl acetate, ethyl butyrate, ethyl lactate, and 3-methoxypropionic acid Ester, ester solvent such as methyl 2-hydroxyisobutyrate or 4-butyrolactone; ketone solvent such as ethyl methyl ketone, isobutyl methyl ketone, 2-hexanone or cyclohexanone; propylene glycol monomethyl ether a propylene glycol solvent such as propylene glycol monomethyl ether acetate; a cellulosic solvent such as methyl cellosolve or methyl cellosolve acetate; an ether such as dibutyl ether, tetrahydrofuran or 1,4-dioxane; Solvent; alcoholic solvent such as ethanol, isopropanol or isoamyl alcohol; toluene, dimethyl-14-201211115 aromatic hydrocarbon solvent such as benzene; dichloromethane, chloroform, 1,2-dichloroethane, trichloro A halogenated hydrocarbon solvent such as ethane. These solvents may be used singly or in combination of two or more kinds as needed. Further, the solution after the completion of the reaction can be directly used (the organically substituted polyfluorene compound is not isolated) as a paint. At this time, the above solvent may also be added. Further, the concentration in the above solvent is arbitrary, but the concentration of the organically substituted polyfluorene compound is preferably from 1 to 30% by mass based on the total mass (total mass) of the organically substituted polyfluorene compound and the solvent. [Thin film formed by organically replacing a polyfluorene compound] A specific method of forming a film using the paint of the present invention is to first dissolve an organic-substituted polyfluorene compound obtained by the production method of the present invention in the above solvent to form a paint. (film forming material), the paint is subjected to roll coating, micro gravure coating, gravure coating, flow coating, bar coating, spray coating, die coating, and spin coating. A dip coating method, a doctor blade method, a Langmuir-Blodgett coating method, or the like is applied to a substrate, followed by drying as needed. The above substrate is exemplified by, for example, polycarbonate, polymethacrylate, polystyrene, polyester, polyolefin, epoxy resin, acrylate, melamine, triethyl cellulose, ABS, AS, norbornene. Plastics such as resin; metal; glass; Further, the coating method is not particularly limited, and the optimum coating method can be determined by considering the balance between productivity, film thickness controllability, and yield in the above method. •15- 201211115 In addition, the drying temperature is preferably 40 to 150 °C. The optimum drying temperature can be determined from these temperatures in consideration of the solvent type, solvent amount, productivity, and the like. The film formed from the thus obtained organically substituted polyfluorene compound has a higher refractive index than the film formed by the organically substituted polyfluorene compound obtained by the conventional method. [Resin Composition] The present invention further relates to a resin composition containing the above-described organic-substituted polyfluorene compound and a resin (thermoplastic resin and/or curable resin). In the present invention, the thermoplastic resin means softening by heating to a glass transition temperature or a melting point, and can form a resin of a target shape or a mixture of the resins, and may appropriately contain any additives. In the present invention, the curable resin means a thermosetting resin which forms a polymer network structure by heating, and a photocurable resin which forms a polymer network structure by polymerization by irradiation. A mixture of resins, etc., and an additive such as a crosslinking agent 'starting agent. Specific examples of the above resin are not particularly limited. As for the thermoplastic resin, for example, PE (polyethylene), PP (polypropylene), EVA (ethylene-vinyl acetate copolymer), and EE A (ethylene-ethyl acrylate copolymer) are exemplified. Polyolefin resin; PS (polystyrene), HIPS (high impact polystyrene), AS (acrylonitrile-styrene copolymer), ABS (acrylonitrile-butadiene-styrene copolymer) Polystyrene resin such as MS (methyl methacrylate styrene copolymer): polycarbonate resin; vinyl chloride resin; polyamide resin: poly phthalate - 201211115 amine resin; PMMA Methyl acrylate resin; PET (polyethylene terephthalate), polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate , PLA (polylactic acid), poly-3-hydroxybutyric acid, polycaprolactone, polybutylene succinate, polyethylene succinate / polyethylene adipate and other polyester resins; poly benzene Ether resin; modified polyphenylene ether resin; polyacetal resin; poly-rolled resin; polyphenylene sulfide resin; polyvinyl alcohol resin; ; Modified starch; cellulose acetate, triacetate cellulose; chitin; chitosan; lignin and the like. The curable resin is exemplified by a thermosetting resin such as a phenol resin, a urea resin, a melamine resin, an unsaturated polyester resin, a polyurethane resin, an epoxy resin, or a enamel resin; an acrylic resin, an epoxy acrylate resin, Photocurable resin such as enamel resin. The resin is preferably used in an amount of from 1 to 10,000 parts by mass, more preferably from 1 to 1, in parts by mass based on 100 parts by mass of the organically substituted polyfluorene compound. For example, when the resin composition is a composition containing an organic substituted polyfluorene compound and a (meth) acrylate resin, the (meth) acrylate compound may be mixed with the aforementioned organic substituted polyfluorene compound, and the The acrylate compound is obtained by polymerization. Examples of the above (meth) acrylate compound are, for example, methyl (meth) acrylate, ethyl (meth) acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (methyl) Acrylate, polyethylene glycol di(meth)acrylic acid vinegar, butanediol di(meth)acrylate, polypropylene glycol di(meth)acrylate vinegar, 1,4-butanediol di(meth)acrylic acid Ester, hexanediol di(methyl) -17- 201211115 acrylate, neopentyl glycol di(meth) acrylate, trimethylolpropane trioxyethyl (meth) acrylate, tricyclic Decane dimethanol di(meth)acrylate, tricyclodecane di(meth)acrylate, trimethylolpropane trioxypropyl (meth) acrylate, cis-2-hydroxyethyl isocyanide Urea tris(meth)acrylate, cis-2-hydroxyethyl isocyanurate di(meth)acrylate, 1,9-naphthalenediol di(meth)acrylate, pentaerythritol di(a) Acrylate, glycerin methacrylate acrylate, pentaerythritol tri(meth) acrylate, methacryl Benzyl acetate, 9,9-bis(4-(2-propenyloxyethoxy)phenyl), trimethylolpropane trimethacrylate, allyl (meth)acrylate, (A) Vinyl acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) acrylate, and the like. The polymerization of the (meth) acrylate compounds may be carried out by irradiation or heating in the presence of a photoradical initiator or a thermal radical initiator. The photoradical polymerization initiators are exemplified by, for example, acetophenones, benzophenones, Michael ketones, pentamidine esters, tetramethyl thiuram monosulfide, xanthone ketones, and the like. In particular, a photo-cleaving type photoradical polymerization initiator is preferred. The photocleaving type photoradical polymerization initiator is described in the latest UV hardening technology (159 pages, issuer: Takahiro Ichihiro, issuer: Technical Information Association (share), issued in 1991). Commercially available photoradical polymerization initiators are, for example, trade names manufactured by BASF Corporation: Irgacure (registered trademark) 184, 369, 651, 500, 819, 907, 784, 2959, CGI 1 700, CGI 1 750, -18 - 201211115 CGI1 850, CG24-61, Darocure 1116, 1173, Lucirin

TPO; UCB 公司製造之商品名:Ubcryl P36; Furatetsuri Lamberti 公司製造之商品名:Ezacure KIP150、 KIP65LT、KIP100F、KT37、KT55、KT046、KIP75/B 等。 光聚合起始劑相對於(甲基)丙烯酸酯化合物100質量 份較好在15質量份以下之範圍使用,更好爲10質量份以 下之範圍。 熱自由基聚合起始劑並無特別限制,列舉爲例如乙醯 基過氧化物、苯甲醯基過氧化物、甲基乙基酮過氧化物、 環己酮過氧化物、過氧化氫、第三丁基過氧化氫、枯烯過 氧化氫、二第三丁基過氧化物、二枯基過氧化物、二月桂 醯基過氧化物、第三丁基過氧基乙酸酯、第三丁基過氧基 特戊酸酯、第三丁基過氧基-2-乙基己酸酯等過氧化物 類;2,2’-偶氮雙異丁腈、2,2’-偶氮雙(2,4-二甲基戊腈)、 (1-苯基乙基)偶氮二苯基甲烷、2,2’-偶氮雙(4-甲氧基-2,4-二甲基戊腈)、2,2’-偶氮雙異丁酸二甲酯、2,2’-偶氮 雙(2-甲基丁腈)、1,1’-偶氮雙(1-環己烷甲腈)、2-(胺基甲 醯基偶氮)異丁腈、2,2’-偶氮雙(2,4,4-三甲基戊烷)、2-苯 基偶氮·2,4-二甲基-4-甲氧基戊腈、2,2’-偶氮雙(2-甲基丙 烷)等之偶氮系化合物類;過硫酸銨、過硫酸鈉、過硫酸 鉀等過硫酸鹽類等。 熱聚合起始劑相對於(甲基)丙烯酸酯化合物100質量 份較好在15質量份以下之範圍使用,更好爲10質量份以 -19- 201211115 下之範圍。 [樹脂成形體] 本發明又關於由上述樹脂組成物製備之樹脂成形體。 本發明之樹脂成形體可依據過去一般之樹脂成形法, 使含有上述有機取代之鍺化合物之樹脂組成物成形獲得》 具體而言,含有熱可塑性樹脂作爲樹脂之樹脂組成物 時,藉由使之加熱熔融或軟化,或於含有硬化性樹脂之樹 脂組成物時,藉由熱或照光使其成形體熱硬化或光硬化而 獲得。 亦即,本發明之樹脂組成物藉由含有上述有機取代之 鍺化合物,而具有高的熱安定性,故即使進行上述之加熱 或硬化處理,仍可獲得維持高的折射率及透明性之樹脂成 形體。 而且,本發明之樹脂成形體藉由含有有機取代之鍺化 合物,即使在高溫條件下使用仍可維持高的折射率及透明 性。 [實施例] 以下列舉實施例及比較例更具體說明本發明,但本發 明並不受限於下述之實施例。又,實施例中所用之各測定 裝置如下。 ['H-NMR] 機種:曰本電子(股)製造之JNM-ECX300(3 00MHz) -20- 201211115 測定溶劑:CDC13 基準物質:四甲基矽烷(O.OOppm) [GPC(凝膠滲透層析儀)]TPO; UBB company's trade name: Ubcryl P36; Furatetsuri Lamberti company's trade name: Ezacure KIP150, KIP65LT, KIP100F, KT37, KT55, KT046, KIP75/B and so on. The photopolymerization initiator is preferably used in an amount of 15 parts by mass or less based on 100 parts by mass of the (meth) acrylate compound, more preferably in a range of 10 parts by mass or less. The thermal radical polymerization initiator is not particularly limited, and examples thereof include, for example, acetonitrile peroxide, benzhydryl peroxide, methyl ethyl ketone peroxide, cyclohexanone peroxide, hydrogen peroxide, Tert-butyl hydroperoxide, cumene hydroperoxide, di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, tert-butylperoxyacetate, Peroxides such as tributylperoxypivalate and tert-butylperoxy-2-ethylhexanoate; 2,2'-azobisisobutyronitrile, 2,2'-even Nitrogen bis(2,4-dimethylvaleronitrile), (1-phenylethyl)azodiphenylmethane, 2,2'-azobis(4-methoxy-2,4-dimethyl Divaleronitrile), 2,2'-azobisisobutyric acid dimethyl ester, 2,2'-azobis(2-methylbutyronitrile), 1,1'-azobis(1-cyclohexyl) Alkylonitrile), 2-(aminomethylmercaptoazo)isobutyronitrile, 2,2'-azobis(2,4,4-trimethylpentane), 2-phenylazo-2 , azo compounds such as 4-dimethyl-4-methoxyvaleronitrile and 2,2'-azobis(2-methylpropane); ammonium persulfate, sodium persulfate, potassium persulfate, etc. Sulfur Salts. The thermal polymerization initiator is preferably used in an amount of 15 parts by mass or less based on 100 parts by mass of the (meth) acrylate compound, more preferably 10 parts by mass in the range of -19 to 201211115. [Resin molded body] The present invention also relates to a resin molded body prepared from the above resin composition. The resin molded article of the present invention can be obtained by molding a resin composition containing the above-mentioned organically substituted ruthenium compound according to a conventional resin molding method. Specifically, when a thermoplastic resin is used as a resin composition of a resin, It is obtained by heat-melting or softening, or in the case of a resin composition containing a curable resin, by thermally or illuminating the molded body to be thermally cured or photocured. That is, since the resin composition of the present invention has high thermal stability by containing the above-mentioned organically substituted ruthenium compound, a resin which maintains a high refractive index and transparency can be obtained even if the above-described heating or hardening treatment is carried out. Shaped body. Further, the resin molded article of the present invention can maintain a high refractive index and transparency even when it is used under high temperature conditions by containing an organically substituted ruthenium compound. [Examples] Hereinafter, the present invention will be specifically described by way of examples and comparative examples, but the present invention is not limited to the examples described below. Further, each measuring device used in the examples is as follows. ['H-NMR] Model: JNM-ECX300 (3 00MHz) -20- 201211115 manufactured by Sakamoto Electronics Co., Ltd. Determination solvent: CDC13 Reference material: tetramethyl decane (0.0 ppm) [GPC (gel permeation layer) Analyzer)]

裝置:TOSOH(股)製造之 HLC-8200 GPCDevice: HLC-8200 GPC manufactured by TOSOH

管柱:Shodex(註冊商標)KF-804L + KF-805L 參考管柱:Shodex(註冊商標)GPC KF-800RHx2根Column: Shodex (registered trademark) KF-804L + KF-805L Reference column: Shodex (registered trademark) GPC KF-800RHx2 root

管柱溫度:40°CColumn temperature: 40 ° C

偵測器:RI 溶離液:四氫呋喃 管柱流速:l.OmL/分鐘 參考管柱流速:l.OmL/分鐘 [旋轉塗佈器] 機種:MIKASA(股)製造 1H-D7 [橢圓測厚儀(e 11 i p s 〇 m e t e r )]Detector: RI Dissolving solution: Tetrahydrofuran column flow rate: 1.0 mL/min Reference column flow rate: 1.0 mL/min [Rotary coater] Model: MIKASA (share) manufacturing 1H-D7 [Elliptical thickness gauge ( e 11 ips 〇meter )]

機種:日本J.A.Woolam(股)製造之高速分光橢圓測厚 儀 M2000-VIModel: High-speed spectroscopic elliptical thickness gauge manufactured by Japan J.A.Woolam Co., Ltd. M2000-VI

[稜鏡稱合器(Prism Coupler)] 機種:Metricon公司製造 MODEL 2010 [紫外線可見光近紅外線分光光度計] 機種:島津製作所製造之UV-3600 測定波長:700nm~l600nm [實施例1]〈苯基取代之聚鍺化合物之合成〉 在氮氣氛圍下,於lOOmL之四頸燒瓶中添加粉末鎂 -21 - 201211115 (關東化學(股)製造)1.8g(75mmol)及四氫呋喃(以下簡稱爲 THF) 40g後,滴加二溴乙烷(東京化成工業(股)製造) 3.5g(19 mmol),在室溫(約25°C)攪拌10分鐘。接著於該 反應液中滴加四氯化鍺(YAMANAKA HUTECH(股)製造) 4.0g(19 mmol)、 溴苯(東京化成工業(股)製 造)3.0g(19mmol)及THF 12g之混合物,於室溫(約25°C) 攪拌 30分鐘。隨後,於該反應液中再滴加溴苯 1.5g(9mmol)及THF 2g之混合物。接著,於室溫(約25°C) 攪拌18小時後,將該反應液添加於甲醇200g中再沉澱, 濾取析出之固體。使所得固體溶解於80g甲苯中,藉過濾 去除不溶物。餾除濾液之溶劑後,所得殘留物再溶解於 4g氯仿中,添加於甲醇100g中再度進行再沉澱。濾取析 出之固體,獲得標的物之經苯基取代之聚鍺化合物(以下 簡稱爲PGe-P)1.9g。假設聚鍺化合物中之鍺原子:苯基 =1 : 1 (m ο 1比)時,收率爲6 5 %。 所得PGe-P之1H NMR光譜之測定結果示於圖1。以 GPC進行聚苯乙烯換算所測定之重量平均分子量Mw爲 1,200,分散度:Mw(重量平均分子量)/Mn(數平均分子量) 爲 1.20。 [實施例2]〈 4-甲苯基取代之聚鍺化合物之合成〉 實施例1中,除將溴苯換成相同莫耳數之4-溴甲苯 (東京化成工業(股)製造)3.2g(19mmol)及1.6g(9mmol)以 外’餘進行同樣之操作,獲得4-甲苯基取代之聚鍺化合 -22- 201211115 物(以下簡稱爲PGe-To)1.0g。假設聚鍺化合物中之鍺原 子:4 -甲苯基=1 : l(mol比)時,收率爲32%。 所得PGe-To之1H NMR光譜之測定結果示於圖2。 以GPC進行換算聚苯乙烯所測定之重量平均分子量Mw 爲1,800,分散度:Mw(重量平均分子量)/Mn(數平均分子 量)爲1.23。 [實施例3]〈4-甲氧基苄基取代之聚鍺化合物之合 成〉 實施例1中,除將溴苯換成相同莫耳數之4-溴苯甲 醚(東京化成工業(股)製造)3.6g(19mmol)及1.8g(9mmol)以 外,餘進行同樣之操作,獲得4-甲氧基苄基取代之聚鍺 化合物(以下簡稱爲PGe-A)1.4g。假設聚鍺化合物中之鍺 原子:4 -甲氧基节基=1 : l(mol比)時,收率爲43%。 所得PGe-A之1H NMR光譜之測定結果示於圖3。以 GPC進行聚苯乙烯換算測定之重量平均分子量Mw爲 2,1〇〇,分散度:Mw(重量平均分子量)/Mn(數平均分子量) 爲 1.25。 [實施例4]〈第三丁基取代之聚鍺化合物之合成〉 實施例1中,除將溴苯換成相同莫耳數之2-溴-2-甲 基丙烷(東京化成工業(股)製造)2.6g(19mmol)及 1.3g(9mm〇l)以外,餘進行同樣之操作,獲得第三丁基取 代之聚鍺化合物(以下簡稱爲PGe-tB)0.9g»假設聚鍺化合 -23- 201211115 物中之鍺原子:第三丁基=1: l(mol比)時,收率爲33%。 所得PGe-tB之1H NMR光譜之測定結果示於圖4。 以GPC進行聚苯乙烯換算所測定之重量平均分子量Mw 爲1,800,分散度:Mw(重量平均分子量)/Mn(數平均分子 量)爲1.46 » [實施例5]〈 2-噻吩基取代之聚鍺化合物之合成〉 實施例1中,除將溴苯換成相同莫耳數之2-溴噻吩 (東京化成工業(股)製造)3.18(1911^1〇1)及1.68(9111111〇1)以 外,餘進行同樣之操作,獲得2_噻吩基取代之聚鍺化合 物(以下簡稱爲PGe-Th)1.2g。假設聚鍺化合物中之鍺原 子:2-噻吩基=1 : 1 (mol比)時,收率爲41%。 所得PGe-Th之1H NMR光譜之測定結果示於圖5。 以GPC進行算聚苯乙烯換所測定之重量平均分子量Mw 爲1,1〇〇,分散度:Mw(重量平均分子量)/Mn(數平均分子 量)爲1.39。 [實施例6]〈5-甲基噻吩-2-基取代之聚鍺化合物之合 成〉 實施例1中,除將溴苯換成相同莫耳數之2-溴-5-甲 基噻吩(東京化成工業(股)製造)3.3g(19mmol)及 1.7g(9mmol)以外,餘進行同樣之操作,獲得5-甲基噻吩-2-基取代之聚鍺化合物(以下簡稱爲PGe-ThM)l.lg。假設 聚鍺化合物中之鍺原子:5·甲基噻吩-2-基=1: 1 (mol比) -24- 201211115 時,收率爲3 5 %。 所得PGe-ThM之1H NMR光譜之測定結果示於圖6。 以GPC進行聚苯乙烯換算所測定之重量平均分子量Mw 爲1,3 00,分散度:Mw(重量平均分子量)/Mn(數平均分子 量)爲1 ♦ 3 4。 [實施例7]〈苯基取代之聚鍺化合物之合成2〉 在氮氣氛圍下,於10 〇mL之四頸燒瓶中添加粉末鎂 (關東化學(股)製造)1.4g(56mm〇l)及四氫呋喃40g後,滴 加碘(純正化學(股)製造)〇.〇2g,在室溫(約25°C)攪拌1〇 分鐘。接著於加熱至回流狀態之該反應液中滴加四氯化鍺 (YAMANAKA HUTECH(股)製造)4.0g(19mmol)、溴苯(東 京化成工業(股)製造)3.〇g(19mmol)及THF 12g之混合物, 於加熱回流下攪拌30分鐘。隨後,於該反應液中再滴加 溴苯1.5g(9mmol)及THF 2g之混合物《接著,於加熱回 流下攪拌30分鐘後,於室溫(約25°C)繼續攪拌18小時 後,將該反應液添加於甲醇200g中再沉澱,濾取析出之 固體。使所得固體溶解於8 Og甲苯中,以過濾去除不溶 物。餾除濾液之溶劑後,使所得殘留物再溶解於4g氯仿 中,添加於甲醇l〇〇g中再度進行再沉澱。過取析出之固 體,獲得標的物之PGe-P 1.5g。假設聚鍺化合物中之鍺原 子:苯基=1: l(mol比)時,收率爲53%。 所得PGe-P之1H NMR光譜之測定結果示於圖7。以 GPC進行聚苯乙烯換算所測定之重量平均分子量Mw爲 -25- 201211115 1,1〇〇,分散度:Mw(重量平均分子量)/Mn(數平均分子量) 爲 1.28 » [比較例1]〈以過去方法進行之苯基取代之聚鍺化合 物之合成〉 在氮氣氛圍下,於lOOmL之四頸燒瓶中添加粉末鎂 (關東化學(股)製造)1.8g(75mmol)及四氫呋喃(以下簡稱爲 THF) 40g後,滴加二溴乙烷(東京化成工業(股)製造) 3.5g(19 mmol),在室溫(約25 °C)攪拌1〇分鐘。接著於該 反應液中滴加四氯化鍺(YAMANAKA HUTECH(股)製 造)4.0g(19mmol)及THF 12g之混合物,於室溫(約25°C) 攪拌30分鐘。隨後,於該反應液中再滴加溴苯(東京化成 工業(股)製造)4.5g(2.8 mmol)及THF 2g之混合物。接 著,於室溫(約25 °C)攪拌18小時後,將該反應液添加於 甲醇200g中再沉澱,濾取析出之固體。使所得固體溶解 於8Og甲苯中,以過濾去除不溶物。餾除濾液之溶劑後, 使所得殘留物再溶解於4g氯仿中,添加於甲醇100g中再 度進行再沉澱。瀘取析出之固體,獲得標的物之以苯基取 代之聚鍺化合物(以下簡稱爲PGe-P” l.lg»假設聚鍺化 合物中之鍺原子:苯基=1 : l(mol比)時,收率爲38%。 所得PGe-P*之1H NMR光譜之測定結果示於圖8。以 GPC進行聚苯乙烯換算所測定之重量平均分子量Mw爲 1,〇〇〇,分散度:Mw(重量平均分子量)/Mn(數平均分子量) 爲 1 · 1 0。 -26- 201211115 [比較例2]〈以過去方法進行之4-甲苯基取代之聚鍺 化合物之合成〉 比較例1中,除將溴苯換成4-溴甲苯(東京化成工業 (股)製造)4.8g(28mmol)以外’餘進行同樣之操作,獲得4-甲苯基取代之聚鍺化合物(以下簡稱爲PGe-To*)0.5g。假 設聚鍺化合物中之鍺原子:4-甲苯基=1 : 1 (mol比)時,收 率爲1 6 %。 所得PGe-To*之1H NMR光譜之測定結果示於圖9。 以GPC進行聚苯乙烯換算所測定之重量平均分子量Mw 爲1,500,分散度:Mw(重量平均分子量)/Mn(數平均分子 量)爲1.15。 [比較例3]〈以過去方法進行之4-甲氧基苄基取代之 聚鍺化合物之合成〉 比較例1中,除將溴苯換成4-溴苯甲醚(東京化成工 業(股)製造)5.4g(28mm〇l)以外,餘進行同樣之操作,獲得 4-甲氧基苄基取代之聚鍺化合物(以下簡稱爲PGe-A*)〇.8g。假設聚鍺化合物中之鍺原子:4-甲氧基苄基 =1 : 1 (mο 1比)時,收率爲25%。 所得PGe-A*之1H NMR光譜之測定結果示於圖10。 以GPC進行聚苯乙烯換算所測定之重量平均分子量Mw 爲1,3 00,分散度:Mw(重量平均分子量)/Mn(數平均分子 量)爲1.12。 -27- 201211115 [比較例4]〈以過去方法進行之第三丁基取代之聚鍺 化合物之合成〉 比較例1中’除將溴苯換成2 -溴-2-甲基丙院(東京化 成工業(股)製造)3.9g(28mmol)以外,餘進行同樣之操作, 獲得第三丁基取代之聚鍺化合物(以下簡稱爲PGe-tB*)1.2g。假設聚鍺化合物中之鍺原子:第三丁基=1: 1 (m ο 1比)時,收率爲4 2 %。 所得PGe-tB*之1 H NMR光譜之測定結果示於圖11。 以GPC進行聚苯乙烯換算所測定之重量平均分子量Mw 爲4,000,分散度:Mw(重量平均分子量)/Mn(數平均分子 量)爲2.27。 [比較例5]〈以過去方法進行之2-噻吩基取代之聚鍺 化合物之合成〉 比較例1中,除將溴苯換成2-溴噻吩(東京化成工業 (股)製造)4.7g(28mmol)以外,餘進行同樣之操作,獲得2-噻吩基取代之聚鍺化合物(以下簡稱爲PGe-Th*)0.9g。假 設聚鍺化合物中之鍺原子:2-噻吩基=1 : 1 (mol比)時’收 率爲3 1 %。 所得PGe-Th*之1H NMR光譜之測定結果示於圖12。 以GPC進行聚苯乙烯換算所測定之重量平均分子量Mw 爲800,分散度:Mw(重量平均分子量)/Mn(數平均分子量) 爲 1.14。 -28- 201211115 [比較例6]〈以過去方法進行之5-甲基噻吩-2 ·基取代 之聚鍺化合物之合成〉 比較例1中,除將溴苯換成2-溴-5-甲基噻吩(東京化 成工業(股)製造)5.0g(28min〇l)以外,餘進行同樣之操作, 獲得5-甲基噻吩-2-基取代之聚鍺化合物(以下簡稱爲PGe-ThM*)1.3g。假設聚鍺化合物中之鍺原子:5-甲基噻吩-2-基=1 : 1 (mol比)時,收率爲41 %。 所得PGe-ThM*之4 NMR光譜之測定結果示於圖 13。以GPC進行聚苯乙烯換算所測定之重量平均分子量 Mw爲900,分散度:Mw(重量平均分子量)/Mn(數平均分 子量)爲1 · 2 3。 實施例1至實施例7及比較例1至比較例6中獲得之 有機取代聚鍺化合物之收率,以GPC進行聚苯乙烯換算 所測定之重量平均分子量Mw,及分散度:Mw(重量平均 分子量)/Mn(數平均分子量)式於表1。 表1 有機取代 實施例/丨 1 實施例X 比較例X —化合物 比較例編號 丨收率Μ Mw Mw/Mn 收率Μ Mw Mw/Mn PGe-Pw 1 I 65 1,200 1.20 38 1,000 1.10 PGe-Tow 2 32 1,800 1.23 16 1,500 1.15 PGe-Aw 3 43 2,100 1.25 25 1,300 1.12 PGe-tBw 4 33 1,800 1.46 42 4,000 2.27 PGe-Thw 5 41 1,100 1.39 31 800 1.14 PGe-ThMw 6 35 1,300 1.34 41 900 1.23 PGe-P 7 53 1,100 1.28 -29- 201211115 如表1所示,依據本發明之製造方法,尤其是芳香族 烴基取代之聚鍺化合物之製造中確認收率明顯提高,顯示 本發明之優越性。 [實施例8]〈由有機取代聚鍺化合物所成之薄膜之製 作〉 將實施例1至7及比較例1至6中合成之有機取代聚 鍺化合物分別溶解於甲苯(關於PGe-Th(”及PGe-ThM(M則 爲7-丁內酯),調製有機取代聚鍺化合物濃度3質量%之 漆料。以旋轉塗佈法(轉數l,500rpmx30秒(關於PGe-Th(” 及 PGe-ThM(*)轉數爲 300rpmx5 秒 +轉數 1,500rpmx30 秒) 將漆料塗佈於基板上。使該塗佈膜以1〇〇°C之加熱板加熱 處理10分鐘去除薄膜中之溶劑,獲得個別之薄膜。 利用橢圓測厚儀測定所得個別薄膜在波長633HH1之 折射率。結果示於表.2。 表2 有機取代 聚鍺化雜 實施例/ 比較例編號 實施例X 比較例X ^0[nm] 折射率 [nm] 折射率 PGe-PW 1 79 1.82 77 1.78 PGe-Tow 2 86 1.77 90 1.72 PGe-AW 3 81 1.79 83 1.74 PGe-tBW 4 80 1.75 77 1.70 PGe-Thw 5 25 1.87 52 1.81 PGe-ThMw 6 43 1.82 28 1.76 PGe-P 7 77 1.84 -30- 201211115 如表2所示,依據本發明之製造方法,相較於以過去 方法獲得之有機取代聚鍺化合物,確認可獲得折射率更高 之由有機取代聚鍺化合物所成之薄膜,顯示本發明之優越 性。 [實施例9]〈含有有機取代聚鍺化合物之丙烯酸酯樹 脂膜之製作〉 以表3所示之分量混合實施例1中合成之聚鍺化合物 PGe-P、聚合性丙烯酸酯化合物的A-DCP(商品名)(新中村 化學工業(股)製造,三環癸烷二甲醇二丙烯酸酯)及甲苯 2mL。以蒸發器餾除所得混合溶液之甲苯後,對於A-DCP 100質量份添加2質量份之過氧化物系熱自由基聚合起始 劑KYAESTER O-50E(商品名)(化藥AGUZO(股)製造)並攪 拌,調製PGe-P與A-DCP之樹脂組成物。 將調製之樹脂組成物滴加於各載玻片中央,自上方被 覆載玻片後,以120°C之加熱板加熱1〇分鐘,使樹脂組成 物熱硬化(熱聚合)。冷卻至室溫(約25°C)後,剝離上部之 載玻片,製作於載玻片上之含有聚鍺化合物之丙烯酸酯樹 脂膜(熱硬化膜)。 又,混合 A-DCP 0.50g 與 KYAESTER O-50E o.oi 〇g,調製不含聚鍺化合物之樹脂組成物,以相同之操 作製作不含聚鍺化合物之丙烯酸酯樹脂膜(熱硬化膜)。 利用橢圓測厚儀測定各熱硬化膜在波長633nm之折 射率。又,以目視評價各熱硬化膜之透明性。評價係以 -31 - 201211115 〇:透明,X:混濁的兩階段進行。各結果合倂示於表 表3 FGe~Pmt [質量%] PGe-P [g] A-DCP [g]. KYAESTER O-50E [g] 折射率 透明性 0 0.00 0.50 0.010 1.52 .〇 30 0.15 0.35 0.007 1.59 〇 40 0.20 0.30 0.006 1,61 〇 50 0.25 0.25 0.005 1.64 〇 如表3所示,由本發明獲得之有機取代聚鍺化合物具 有與丙烯酸酯樹脂之高的相溶性,且確認藉由含有有機取 代聚鍺化合物,可提高丙烯酸酯樹脂膜之折射率。 [實施例10]〈含有有機取代聚鍺化合物之丙烯酸酯樹 脂膜之製作〉 混合實施例1中合成之聚鍺化合物PGe-P 0.10g、聚 合性丙烯酸酯化合物的A-BPEF(商品名)(新中村化學工業 (股)製造,9,9-雙(4-(2-丙烯醯氧基乙氧基)苯基) 弗)0.20g、甲基丙烯酸苄酯(以下簡稱爲BzMA)(Aldrich公 司製造)0.20g及甲苯2mL。以蒸發器餾除所得混合溶液之 甲苯後,添加〇.〇〇8g之過氧化物系熱自由基聚合起始劑 KYAESTER O-50E(商品名)(化藥A G U Z 0 (股)製造)並經攪 拌,調製PGe-P、A-BPEF及BzMA之樹脂組成物(PGe-P 濃度20質量%)。 將調製之樹脂組成物滴加於各載玻片中央,自上方被 -32- 201211115 覆500μιη之載玻片後,以120°C之加熱板加熱30分鐘, 使樹脂組成物熱硬化(熱聚合)。冷卻至室溫(約25°C)後, 剝離上下之載玻片,製作膜厚約500μιη之含有聚鍺化合 物之丙烯酸酯樹脂膜(熱硬化膜)。 又,混合 A-BPEF 0.25g、BzMA 0.2 5 g 及 K Y A E S T E R O-50E O.Olg,調製不含聚鍺化合物之樹脂組成物,以相 同操作製作不含聚鍺化合物之丙烯酸酯樹脂膜(熱硬化 膜)。 利用紫外線可見光近紅外光分光光度計測定各熱硬化 膜之透過率。所得光譜示於圖14。其結果,確認含有聚 鍺化合物之丙烯酸酯樹脂膜在近紅外線區域中顯示高的透 明性。 [產業上之可能利用性] 依據本發明之製造方法獲得之有機取代聚鍺化合物可 作爲高折射率材料而可期待於光學鏡片、光導波路、抗反 射膜等之應用。因此,本發明之製造方法爲工業上極有利 者。 【圖式簡單說明】 圖1係表示實施例1中獲得之有機取代聚鍺化合物之 W-NMR光譜之圖。 圖2係表示實施例2中獲得之有機取代聚鍺化合物之 W-NMR光譜之圖。 圖3係表示實施例3中獲得之有機取代聚鍺化合物之 -33- 201211115 W-NMR光譜之圖。 圖4係表示實施例4中獲得之有機取代聚鍺化合物之 W-NMR光譜之圖。 圖5係表示實施例5中獲得之有機取代聚鍺化合物之 W-NMR光譜之圖。 圖6係表示實施例6中獲得之有機取代聚鍺化合物之 W-NMR光譜之圖。 圖7係表示實施例7中獲得之有機取代聚鍺化合物之 W-NMR光譜之圖。 圖8係表示比較例丨中獲得之有機取代聚鍺化合物之 H-NMR光譜之圖。 圖9係表示比較例2中獲得之有機取代聚鍺化合物之 W-NMR光譜之圖。 圖係表示比較例3中獲得之有機取代聚鍺化合物 之1H-NMR光譜之圖。 圖11係表示比較例4中獲得之有機取代聚鍺化合物 之1H-NMR光譜之圖。 圖12係表示比較例5中獲得之有機取代聚鍺化合物 之1H-NMR光譜之圖。 圖1 3係表示比較例6中獲得之有機取代聚鍺化合物 之1H-NMR光譜之圖。 圖14係表示實施例1〇中獲得之含有有機取代聚鍺化 合物之丙烯酸酯樹脂及未含有機取代聚鍺化合物之丙烯酸 樹脂膜之光透過光譜之圖。 -34 -[Prism Coupler] Model: Metricon Corporation manufactures MODEL 2010 [UV-Visible Near-Infrared Spectrophotometer] Model: UV-3600 manufactured by Shimadzu Corporation Measurement wavelength: 700 nm to l600 nm [Example 1] <Phenyl Synthesis of a substituted polyfluorene compound> After adding a powder of magnesium-21 - 201211115 (manufactured by Kanto Chemical Co., Ltd.) 1.8 g (75 mmol) and tetrahydrofuran (hereinafter abbreviated as THF) 40 g in a 100 mL four-necked flask under a nitrogen atmosphere Dibromoethane (manufactured by Tokyo Chemical Industry Co., Ltd.) 3.5 g (19 mmol) was added dropwise, and stirred at room temperature (about 25 ° C) for 10 minutes. Then, a mixture of 4.0 g (19 mmol) of ruthenium tetrachloride (manufactured by YAMANAKA HUTECH Co., Ltd.), 3.0 g (19 mmol) of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.), and 12 g of THF was added dropwise to the reaction mixture. Stir at room temperature (about 25 ° C) for 30 minutes. Subsequently, a mixture of 1.5 g (9 mmol) of bromobenzene and 2 g of THF was further added dropwise to the reaction mixture. Then, after stirring at room temperature (about 25 ° C) for 18 hours, the reaction liquid was added to 200 g of methanol to reprecipitate, and the precipitated solid was collected by filtration. The obtained solid was dissolved in 80 g of toluene, and insoluble matter was removed by filtration. After distilling off the solvent of the filtrate, the obtained residue was redissolved in 4 g of chloroform, and re-precipitated by adding to 100 g of methanol. The precipitated solid was collected by filtration to obtain 1.9 g of a phenyl-substituted polyfluorene compound (hereinafter abbreviated as PMe-P) as a target. Assuming that the ruthenium atom in the polyfluorene compound: phenyl = 1 : 1 (m ο 1 ratio), the yield is 65 %. The measurement results of the 1H NMR spectrum of the obtained PGe-P are shown in Fig. 1. The weight average molecular weight Mw measured by polystyrene conversion by GPC was 1,200, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.20. [Example 2] <Synthesis of 4-tolyl-substituted polyfluorene compound> In Example 1, except that bromobenzene was replaced with 4-bromotoluene (manufactured by Tokyo Chemical Industry Co., Ltd.) 3.2 g of the same molar number ( The same operation was carried out except that 19 mmol) and 1.6 g (9 mmol) were used to obtain 1.0 g of a 4-tolyl-substituted polyfluorene compound-22-201211115 (hereinafter abbreviated as PMe-To). Assuming that the ruthenium atom in the polyfluorene compound: 4-tolyl = 1 : 1 (mol ratio), the yield was 32%. The measurement results of the 1H NMR spectrum of the obtained PGe-To are shown in Fig. 2 . The weight average molecular weight Mw measured by GPC-converted polystyrene was 1,800, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.23. [Example 3] Synthesis of <4-methoxybenzyl-substituted polyfluorene compound> In Example 1, except that bromobenzene was replaced with 4-bromoanisole of the same molar number (Tokyo Chemical Industry Co., Ltd.) The same operation was carried out except for 3.6 g (19 mmol) and 1.8 g (9 mmol) to obtain 1.4 g of a 4-methoxybenzyl-substituted polyfluorene compound (hereinafter abbreviated as PMe-A). Assuming that the ruthenium atom in the polyfluorene compound: 4-methoxyl group = 1: l (mol ratio), the yield was 43%. The measurement results of the 1H NMR spectrum of the obtained PGe-A are shown in Fig. 3. The weight average molecular weight Mw measured by GPC in terms of polystyrene was 2,1 Å, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.25. [Example 4] <Synthesis of a tert-butyl-substituted polyfluorene compound> In Example 1, except that bromobenzene was replaced with 2-bromo-2-methylpropane of the same molar number (Tokyo Chemical Industry Co., Ltd.) Except for 2.6 g (19 mmol) and 1.3 g (9 mm 〇l), the same operation was carried out to obtain a third butyl-substituted polyfluorene compound (hereinafter abbreviated as PMe-tB) 0.9 g»assuming polyfluorene-23 - The amount of ruthenium atom in the 201211115: tributyl group = 1: l (mol ratio), the yield is 33%. The measurement results of the 1H NMR spectrum of the obtained PGe-tB are shown in Fig. 4 . The weight average molecular weight Mw measured by GPC in terms of polystyrene was 1,800, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.46 » [Example 5] < 2-Thienyl group substituted Synthesis of Polyfluorene Compounds In Example 1, except that bromobenzene was replaced with 2-bromothiophene (manufactured by Tokyo Chemical Industry Co., Ltd.) of the same molar number, 3.18 (1911^1〇1) and 1.68 (9111111〇1). Except for the same operation, 1.2 g of a 2-thiophene-substituted polyfluorene compound (hereinafter abbreviated as PMe-Th) was obtained. Assuming that the anthracene atom in the polyfluorene compound: 2-thienyl group = 1 : 1 (mol ratio), the yield was 41%. The measurement results of the obtained 1H NMR spectrum of PGe-Th are shown in Fig. 5 . The weight average molecular weight Mw measured by GPC for polystyrene exchange was 1,1 Å, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.39. [Example 6] Synthesis of <5-methylthiophen-2-yl-substituted polyfluorene compound> In Example 1, except that bromobenzene was replaced with the same molar number of 2-bromo-5-methylthiophene (Tokyo In the same manner as 3.3 g (19 mmol) and 1.7 g (9 mmol) manufactured by Chemical Industry Co., Ltd., the same operation was carried out to obtain a 5-methylthiophen-2-yl-substituted polyfluorene compound (hereinafter abbreviated as PGe-ThM). .lg. Assume that the ruthenium atom in the polyfluorene compound: 5 · methylthiophen-2-yl = 1: 1 (mol ratio) -24 - 201211115, the yield is 35 %. The measurement result of the 1H NMR spectrum of the obtained PGe-ThM is shown in Fig. 6. The weight average molecular weight Mw measured by polystyrene conversion by GPC was 1,300, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1 ♦ 3 4 . [Example 7] <Synthesis of a phenyl-substituted polyfluorene compound 2> In a nitrogen atmosphere, a powder of magnesium (manufactured by Kanto Chemical Co., Ltd.) 1.4 g (56 mm 〇l) was added to a 10 〇mL four-necked flask. After 40 g of tetrahydrofuran, 2 g of iodine (manufactured by Pure Chemical Co., Ltd.) was added dropwise, and the mixture was stirred at room temperature (about 25 ° C) for 1 minute. Then, 4.0 g (19 mmol) of ruthenium tetrachloride (manufactured by YAMANAKA HUTECH Co., Ltd.), bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.), 〇g (19 mmol), and the like were added dropwise to the reaction liquid heated to reflux. A mixture of 12 g of THF was stirred under heating and reflux for 30 minutes. Then, a mixture of 1.5 g (9 mmol) of bromobenzene and 2 g of THF was further added dropwise to the reaction mixture. Then, after stirring under heating and reflux for 30 minutes, stirring was continued at room temperature (about 25 ° C) for 18 hours. The reaction liquid was added to 200 g of methanol to reprecipitate, and the precipitated solid was collected by filtration. The obtained solid was dissolved in 8 Og of toluene to remove insolubles by filtration. After distilling off the solvent of the filtrate, the obtained residue was redissolved in 4 g of chloroform, and re-precipitated by adding to methanol. The precipitated solid was taken out to obtain a PGe-P 1.5 g of the target substance. Assuming that the ruthenium atom in the polyfluorene compound: phenyl = 1: l (mol ratio), the yield was 53%. The measurement results of the 1H NMR spectrum of the obtained PGe-P are shown in Fig. 7 . The weight average molecular weight Mw measured by polystyrene conversion by GPC was -25 - 201211115 1,1 Å, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.28 » [Comparative Example 1] Synthesis of a phenyl-substituted polyfluorene compound by a conventional method. In a four-necked flask of 100 mL, a powder of magnesium (manufactured by Kanto Chemical Co., Ltd.) 1.8 g (75 mmol) and tetrahydrofuran (hereinafter abbreviated as THF) were added under a nitrogen atmosphere. After 40 g, 3.5 g (19 mmol) of dibromoethane (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise, and the mixture was stirred at room temperature (about 25 ° C) for 1 minute. Then, a mixture of 4.0 g (19 mmol) of ruthenium tetrachloride (manufactured by YAMANAKA HUTECH Co., Ltd.) and 12 g of THF was added dropwise to the reaction mixture, and the mixture was stirred at room temperature (about 25 ° C) for 30 minutes. Subsequently, a mixture of 4.5 g (2.8 mmol) of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) and 2 g of THF was further added dropwise to the reaction mixture. Then, after stirring at room temperature (about 25 ° C) for 18 hours, the reaction liquid was added to 200 g of methanol to reprecipitate, and the precipitated solid was collected by filtration. The obtained solid was dissolved in 8Og of toluene to remove insoluble matter by filtration. After distilling off the solvent of the filtrate, the obtained residue was redissolved in 4 g of chloroform, and added to 100 g of methanol to reprecipitate. The precipitated solid is taken to obtain a polyphenyl compound substituted by a phenyl group (hereinafter referred to as PGe-P). l.lg»assuming a germanium atom in the polyfluorene compound: phenyl=1: l (mol ratio) The yield was 38%. The measurement result of the 1H NMR spectrum of the obtained PGe-P* is shown in Fig. 8. The weight average molecular weight Mw measured by GPC in terms of polystyrene was 1, 〇〇〇, dispersion: Mw ( Weight average molecular weight) / Mn (number average molecular weight) is 1 · 1 0. -26 - 201211115 [Comparative Example 2] <Synthesis of a 4-tolyl-substituted polyfluorene compound by a conventional method> In Comparative Example 1, except The same operation was carried out except that bromobenzene was replaced by 4-bromotoluene (manufactured by Tokyo Chemical Industry Co., Ltd.) of 4.8 g (28 mmol) to obtain a 4-tolyl-substituted polyfluorene compound (hereinafter referred to as PGe-To*). 0.5 g. Assuming that the ruthenium atom in the polyfluorene compound: 4-tolyl = 1 : 1 (mol ratio), the yield was 16%. The measurement results of the 1H NMR spectrum of the obtained PGe-To* are shown in Fig. 9. The weight average molecular weight Mw measured by GPC in terms of polystyrene was 1,500, and the degree of dispersion was Mw (weight average molecular weight) / Mn (number The average molecular weight was 1.15. [Comparative Example 3] <Synthesis of 4-methoxybenzyl-substituted polyfluorene compound by the conventional method> In Comparative Example 1, except that bromobenzene was changed to 4-bromoanisole ( Except for 5.4 g (28 mm 〇l) manufactured by Tokyo Chemical Industry Co., Ltd., the same operation was carried out to obtain a 4-methoxybenzyl-substituted polyfluorene compound (hereinafter abbreviated as PGe-A*) 〇.8 g. When the ruthenium atom in the polyfluorene compound: 4-methoxybenzyl group = 1: 1 (mο 1 ratio), the yield was 25%. The measurement result of the 1H NMR spectrum of the obtained PGe-A* is shown in Fig. 10. The weight average molecular weight Mw measured by polystyrene conversion of GPC was 1,300, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.12. -27 - 201211115 [Comparative Example 4] Synthesis of a third butyl-substituted polyfluorene compound by the method> In Comparative Example 1, 'Replace bromobenzene to 2-bromo-2-methylpropene (manufactured by Tokyo Chemical Industry Co., Ltd.) 3.9 g (28 mmol) Except for the same operation, 1.2 g of a tert-butyl-substituted polyfluorene compound (hereinafter abbreviated as PMe-tB*) was obtained. The yield of the 1 H NMR spectrum of the obtained PGe-tB* is shown in Fig. 11 in the case of the terpene atom: tributyl group = 1: 1 (m ο 1 ratio). The weight average molecular weight Mw measured by ethylene conversion was 4,000, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 2.27. [Comparative Example 5] <Synthesis of a 2-thienyl-substituted polyfluorene compound by a conventional method> In Comparative Example 1, bromobenzene was replaced by 2-bromothiophene (manufactured by Tokyo Chemical Industry Co., Ltd.) 4.7 g ( Except for 28 mmol), the same operation was carried out to obtain 0.9 g of a 2-thienyl-substituted polyfluorene compound (hereinafter abbreviated as PMe-Th*). Assuming that the ruthenium atom in the polyfluorene compound: 2-thienyl group = 1: 1 (mol ratio), the yield is 31%. The measurement results of the 1H NMR spectrum of the obtained PGe-Th* are shown in Fig. 12 . The weight average molecular weight Mw measured by GPC in terms of polystyrene was 800, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.14. -28-201211115 [Comparative Example 6] <Synthesis of 5-methylthiophene-2-based substituted polyfluorene compound by the conventional method> In Comparative Example 1, except that bromobenzene was changed to 2-bromo-5-methyl Except for 5.0 g (28 min〇l) of thiophene (manufactured by Tokyo Chemical Industry Co., Ltd.), the same operation was carried out to obtain a 5-methylthiophen-2-yl-substituted polyfluorene compound (hereinafter referred to as PGe-ThM*). 1.3g. Assuming that the ruthenium atom in the polyfluorene compound: 5-methylthiophen-2-yl = 1 : 1 (mol ratio), the yield was 41%. The results of measurement of the 4 NMR spectrum of the obtained PGe-ThM* are shown in Fig. 13. The weight average molecular weight Mw measured by polystyrene conversion by GPC was 900, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1 · 2 3 . The yield of the organic-substituted polyfluorene compound obtained in Example 1 to Example 7 and Comparative Example 1 to Comparative Example 6, the weight average molecular weight Mw measured by GPC in terms of polystyrene, and the degree of dispersion: Mw (weight average) The molecular weight) / Mn (number average molecular weight) is shown in Table 1. Table 1 Organic Substituted Example / 丨 1 Example X Comparative Example X - Compound Comparative Example No. 丨 Yield Μ Mw Mw / Mn Yield Μ Mw Mw / Mn PGe - Pw 1 I 65 1,200 1.20 38 1,000 1.10 PGe-Tow 2 32 1,800 1.23 16 1,500 1.15 PGe-Aw 3 43 2,100 1.25 25 1,300 1.12 PGe-tBw 4 33 1,800 1.46 42 4,000 2.27 PGe-Thw 5 41 1,100 1.39 31 800 1.14 PGe-ThMw 6 35 1,300 1.34 41 900 1.23 PGe- P 7 53 1,100 1.28 -29- 201211115 As shown in Table 1, in the production method of the present invention, in particular, the production of the aromatic hydrocarbon-substituted polyfluorene compound was confirmed to be markedly improved, showing the superiority of the present invention. [Example 8] <Preparation of film formed from organic-substituted polyfluorene compound> The organic-substituted polyfluorene compounds synthesized in Examples 1 to 7 and Comparative Examples 1 to 6 were each dissolved in toluene (for PGe-Th (" And PFe-ThM (M is 7-butyrolactone), and modulating the organic-substituted polyfluorene compound concentration of 3% by mass. Rotating coating method (revolution l, 500 rpm x 30 seconds (about PGe-Th (" and Pge - ThM (*) number of revolutions is 300 rpm x 5 seconds + revolutions 1,500 rpm x 30 seconds) The paint is applied to the substrate. The coated film is heat treated at 1 ° C for 10 minutes to remove the solvent in the film. Individual films were obtained. The refractive index of the obtained individual films at a wavelength of 633HH1 was measured by an elliptical thickness gauge. The results are shown in Table 2. Table 2 Organic Substituted Polyfluorene Examples / Comparative Examples No. Example X Comparative Examples X ^ 0 [nm] Refractive index [nm] Refractive index PGe-PW 1 79 1.82 77 1.78 PGe-Tow 2 86 1.77 90 1.72 PGe-AW 3 81 1.79 83 1.74 PGe-tBW 4 80 1.75 77 1.70 PGe-Thw 5 25 1.87 52 1.81 PGe-ThMw 6 43 1.82 28 1.76 PGe-P 7 77 1.84 -30- 201211115 As shown in Table 2, according to the invention According to the method, it is confirmed that a film formed of an organically substituted polyfluorene compound having a higher refractive index can be obtained as compared with the organically substituted polyfluorene compound obtained by a conventional method, and the advantages of the present invention are exhibited. [Example 9] Preparation of acrylate resin film substituted with polyfluorene compound> A-DCP (trade name) of polymerized acrylate compound synthesized in Example 1 was mixed with the components shown in Table 3 (Xin Nakamura Chemical Co., Ltd.) Manufactured by industrial (stock), tricyclodecane dimethanol diacrylate) and toluene 2 mL. After distilling off the toluene of the obtained mixed solution by an evaporator, 2 parts by mass of peroxide-based thermal freedom was added to 100 parts by mass of A-DCP. The base polymerization initiator KYAESTER O-50E (trade name) (manufactured by AGUZO Co., Ltd.) was stirred and prepared to prepare a resin composition of PGE-P and A-DCP. The prepared resin composition was dropped on each glass. In the center of the sheet, after the slide is coated from above, it is heated by a heating plate at 120 ° C for 1 minute to thermally cure the resin composition (thermal polymerization). After cooling to room temperature (about 25 ° C), the upper part is peeled off. Slide, made on glass slide An acrylate resin film (thermosetting film) containing a polyfluorene compound. Further, A-DCP 0.50g and KYAESTER O-50E o.oi 〇g are mixed to prepare a resin composition containing no polyfluorene compound, and the same operation is performed. An acrylate resin film (thermosetting film) containing no polyfluorene compound was produced. The refractive index of each thermosetting film at a wavelength of 633 nm was measured by an elliptical thickness gauge. Moreover, the transparency of each thermosetting film was visually evaluated. The evaluation was carried out in two stages of -31 - 201211115 〇: transparent, X: turbidity. The results are shown in Table 3 FGe~Pmt [% by mass] PGe-P [g] A-DCP [g]. KYAESTER O-50E [g] Refractive index transparency 0 0.00 0.50 0.010 1.52 .〇30 0.15 0.35 0.007 1.59 〇40 0.20 0.30 0.006 1,61 〇50 0.25 0.25 0.005 1.64 As shown in Table 3, the organic-substituted polyfluorene compound obtained by the present invention has high compatibility with an acrylate resin, and is confirmed to contain an organic substitution. The polyfluorene compound can increase the refractive index of the acrylate resin film. [Example 10] <Preparation of acrylate resin film containing organic-substituted polyfluorene compound> 0.10 g of the polyfluorene compound PMe-P synthesized in Example 1 and A-BPEF (trade name) of the polymerizable acrylate compound ( Manufactured by Shin-Nakamura Chemical Industry Co., Ltd., 9,9-bis(4-(2-propenyloxyethoxy)phenyl) fluorene 0.20 g, benzyl methacrylate (hereinafter referred to as BzMA) (Aldrich Manufactured) 0.20 g and 2 mL of toluene. After distilling off the toluene of the obtained mixed solution by an evaporator, 8 g of a peroxide-based thermal radical polymerization initiator KYAESTER O-50E (trade name) (manufactured by AGUZ 0 (stock)) was added and passed through The resin composition of PGE-P, A-BPEF, and BzMA (PGe-P concentration: 20% by mass) was prepared by stirring. The prepared resin composition was dropped on the center of each slide, and a 500 μm glass slide was coated with -32-201211115 from above, and then heated at 120 ° C for 30 minutes to thermally harden the resin composition (thermal polymerization). ). After cooling to room temperature (about 25 ° C), the upper and lower slides were peeled off to prepare an acrylate resin film (thermosetting film) containing a polyfluorene compound having a film thickness of about 500 μm. Further, A-BPEF 0.25 g, BzMA 0.2 5 g, and KYAESTER O-50E O.Olg were mixed to prepare a resin composition containing no polyfluorene compound, and an acrylate resin film containing no polyfluorene compound was produced by the same operation (thermosetting) membrane). The transmittance of each of the thermosetting films was measured by an ultraviolet visible light near-infrared spectrophotometer. The spectrum obtained is shown in Fig. 14. As a result, it was confirmed that the acrylate resin film containing the polyfluorene compound showed high transparency in the near-infrared region. [Industrial Applicability] The organic-substituted polyfluorene compound obtained by the production method of the present invention can be expected to be used as an optical lens, an optical waveguide, an antireflection film or the like as a high refractive index material. Therefore, the manufacturing method of the present invention is industrially extremely advantageous. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the W-NMR spectrum of the organic-substituted polyfluorene compound obtained in Example 1. Fig. 2 is a graph showing the W-NMR spectrum of the organo-substituted polyfluorene compound obtained in Example 2. Fig. 3 is a graph showing the -33 - 201211115 W-NMR spectrum of the organo-substituted polyfluorene compound obtained in Example 3. Fig. 4 is a graph showing the W-NMR spectrum of the organo-substituted polyfluorene compound obtained in Example 4. Fig. 5 is a graph showing the W-NMR spectrum of the organo-substituted polyfluorene compound obtained in Example 5. Fig. 6 is a graph showing the W-NMR spectrum of the organo-substituted polyfluorene compound obtained in Example 6. Fig. 7 is a graph showing the W-NMR spectrum of the organo-substituted polyfluorene compound obtained in Example 7. Fig. 8 is a view showing the H-NMR spectrum of the organic-substituted polyfluorene compound obtained in Comparative Example. Fig. 9 is a graph showing the W-NMR spectrum of the organo-substituted polyfluorene compound obtained in Comparative Example 2. The graph shows the 1H-NMR spectrum of the organic-substituted polyfluorene compound obtained in Comparative Example 3. Fig. 11 is a chart showing the 1 H-NMR spectrum of the organo-substituted polyfluorene compound obtained in Comparative Example 4. Fig. 12 is a chart showing the 1 H-NMR spectrum of the organo-substituted polyfluorene compound obtained in Comparative Example 5. Fig. 1 is a view showing the 1H-NMR spectrum of the organic-substituted polyfluorene compound obtained in Comparative Example 6. Fig. 14 is a view showing the light transmission spectrum of the acrylate resin containing the organic-substituted polyfluorene compound obtained in Example 1 and the acrylic resin film not containing the organic-substituted polyfluorene compound. -34 -

Claims (1)

201211115 七、申請專利範園 :造方法, 鍺四鹵化 1. 一種經有機基R取代之聚鍺化合物之丨 其特徵爲使以下述式[1]表示之有機鹵化物、 物、鹼金屬或鹼土類金屬在共存下反應, 【化1】201211115 VII. Patent application: Manufacture method, 锗tetrahalogenation 1. A ruthenium compound substituted with an organic group R is characterized by an organic halide, an alkali metal or an alkaline earth represented by the following formula [1] Metals react in coexistence, [Chemical 1] (式[1]中,R表示可經取代之碳原子數1至 族烴基、可經取代之碳原子數1至20之脂環式 可經取代之碳原子數4至20之芳香族烴基,X 原子)》 2-如申請專利範圍第1項之聚鍺化合物 法,其係將前述鍺四鹵化物與以前述式[1]表示 化物同時添加於前述鹼金屬或前述鹼土類金屬中 3 .如申請專利範圍第2項之聚鍺化合物 法,其係將前述鍺四鹵化物與以前述式[1]表示 化物之混合物添加於前述鹼金屬或前述鹼土類金 4. 如申請專利範圍第1項之聚鍺化合物 法,其係將前述鍺四鹵化物與相對於前述鍺四鹵 學計量量的一部份量之以前述式[1]表示之有機 時添加於前述鹼金屬或前述鹼土類金屬中,隨後 爲化學計量量之剩餘量的以前述式[1]表示之 物。 5. 如申請專利範圍第1至4項中任一項之 物之製造方法,其中前述鹼金屬或前述鹼土類金 2〇之脂肪 ,烴基、或 表示鹵素 之製造方 之有機鹵 〇 之製造方 之有機鹵 屬中。 之製造方 化物之化 鹵化物同 再添加成 有機鹵化 聚鍺化合 屬爲鎂。 -35- 201211115 6_如申請專利範圍第1至5項中任—項之聚鍺化合 物之製造方法,其中前述X表示氯原子、溴原子或碘原 子。 7. 如申請專利範圍第1至6項中任一項之聚鍺化合 物之製造方法’其中前述R表示可經取代之碳原子數4至 20之芳香族烴基。 8. —種聚鍺化合物,其係依循申請專利範圍第1至 7項中任一項之方法製造,且以有機基R(R係與申請專利 範圍第1項之定義同義)取代。 9. 如申請專利範圍第8項之聚鍺化合物,其以凝膠 滲透層析(GPC)換算聚苯乙烯之重量平均分子量爲500至 100,000 · 10. —種漆料,其含有申請專利範圍第8或9項之聚 鍺化合物。 11. —種薄膜,其係由申請專利範圍第8或9項之聚 鍺化合物構成。 12. —種樹脂組成物,其含有申請專利範圍第8或9 項之聚鍺化合物,以及熱可塑性樹脂及/或硬化性樹脂。 1 3 . —種樹脂成型體,其係由申請專利範圍第1 2項 之樹脂組成物做成。 -36-(In the formula [1], R represents a substitutable carbon number of 1 to a hydrocarbon group, and an optionally substituted alicyclic carbon atom-substituted aromatic hydrocarbon group having 4 to 20 carbon atoms; The atomic compound method according to claim 1, wherein the bismuth tetrahalide is added to the alkali metal or the alkaline earth metal simultaneously with the compound represented by the above formula [1]. The polyfluorene compound method according to claim 2, wherein the mixture of the above-mentioned cerium tetrahalide and the compound represented by the above formula [1] is added to the alkali metal or the alkaline earth gold. 4. And a method for the addition of the above-mentioned cerium tetrahalide to the above-mentioned alkali metal or the above-mentioned alkaline earth when the above-mentioned cerium tetrahalide is organically represented by the above formula [1] with respect to a part of the above-mentioned cerium tetrahalide stoichiometric amount. In the metal, the remainder of the stoichiometric amount is represented by the above formula [1]. 5. The method for producing the article according to any one of claims 1 to 4, wherein the alkali metal or the alkaline earth metal ruthenium, a hydrocarbon group or an organic halogen oxime which is a manufacturer of the halogen is manufactured. The organic halogen is in the middle. The compound is compounded and the halide is added to the organic halogenated polyfluorene compound. The method for producing a polyfluorene compound according to any one of claims 1 to 5, wherein the aforementioned X represents a chlorine atom, a bromine atom or an iodine atom. 7. The method for producing a polyfluorene compound according to any one of claims 1 to 6, wherein R represents a substituted aromatic hydrocarbon group having 4 to 20 carbon atoms. 8. A polyfluorene compound which is produced by the method of any one of claims 1 to 7 and which is substituted with an organic radical R (R is synonymous with the definition of claim 1). 9. The polyfluorene compound according to claim 8 of the patent application, wherein the weight average molecular weight of the polystyrene converted by gel permeation chromatography (GPC) is 500 to 100,000 · 10. - a paint containing the patent application scope 8 or 9 polyfluorene compounds. 11. A film comprising the polyfluorene compound of claim 8 or 9. A resin composition comprising the polyfluorene compound of claim 8 or 9 and a thermoplastic resin and/or a curable resin. A resin molded body made of a resin composition of the first aspect of the patent application. -36-
TW100105200A 2010-02-16 2011-02-16 Method for producing organic substituted polygermane compound TW201211115A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010031876 2010-02-16

Publications (1)

Publication Number Publication Date
TW201211115A true TW201211115A (en) 2012-03-16

Family

ID=44482965

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100105200A TW201211115A (en) 2010-02-16 2011-02-16 Method for producing organic substituted polygermane compound

Country Status (3)

Country Link
JP (1) JP5762392B2 (en)
TW (1) TW201211115A (en)
WO (1) WO2011102380A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111801388A (en) * 2018-09-20 2020-10-20 株式会社Lg化学 High refractive composition, high refractive film, and method for manufacturing high refractive film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102543067B1 (en) * 2018-09-20 2023-06-14 주식회사 엘지화학 High refractive composition, high refractive film and method for manufacturing high refractive film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254593A (en) * 2006-03-23 2007-10-04 Jsr Corp Germanium polymer, process for producing the same and method for forming germanium film
JP2009145872A (en) * 2007-11-22 2009-07-02 Tohoku Univ Germanium containing photosensitive resin composition and refractive index control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111801388A (en) * 2018-09-20 2020-10-20 株式会社Lg化学 High refractive composition, high refractive film, and method for manufacturing high refractive film
CN111801388B (en) * 2018-09-20 2022-04-01 株式会社Lg化学 High refractive composition, high refractive film, and method for manufacturing high refractive film
US11866584B2 (en) 2018-09-20 2024-01-09 Lg Chem, Ltd. High-refractive-index composition, high-refractive-index film, and method for manufacturing high-refractive-index film

Also Published As

Publication number Publication date
JPWO2011102380A1 (en) 2013-06-17
JP5762392B2 (en) 2015-08-12
WO2011102380A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5187825B2 (en) Hyperbranched polymer and method for producing the same
JP5748076B2 (en) Hyperbranched polymer and method for producing the same
JP5240798B2 (en) Refractive index improver, and resin composition, polymerization or curable composition and optical material containing the same
Nakabayashi et al. RAFT polymerization of S-vinyl sulfide derivatives and synthesis of block copolymers having two distinct optoelectronic functionalities
TW201111398A (en) Fluorine-containing highly branched polymer and resin composition containing the ploymer
CN106029721B (en) Polymerizable composition, polymerizable composition containing reactive silesquioxane compound
JP5264491B2 (en) Photoactive aromatic polymer and process for producing the same
JP5654050B2 (en) NOVEL FLUORINE COMPOUND, COMPOSITION CONTAINING THE SAME, MOLDED BODY USING THE SAME, AND METHOD FOR PRODUCING MOLDED BODY
TW201522391A (en) Polymerizable composition containing reactive silicone compound
He et al. N-coordinated organoboron in polymer synthesis and material science
TW201211115A (en) Method for producing organic substituted polygermane compound
JP5877507B2 (en) Curing composition having resistance to curing shrinkage, cured product obtained by curing said curable composition, and method
US10400070B2 (en) Self-healing polysilsesquioxanes and hybrid film using the same
JP5233704B2 (en) Block copolymer and method for producing the same
WO2012074051A1 (en) Fluorinated hyperbranched polymer and process for production thereof
JP5762391B2 (en) High heat resistance sulfur-containing organic substituted polygermane compound
JP2012233062A (en) Divinyl ether homopolymer, method for producing the same, and use of the same
JP2006299170A (en) Acrylic polymer containing cyclodextrine
JP2007231227A (en) Vinyl ether copolymer
JP5759302B2 (en) Polymer comprising alicyclic structure and triazine structure, and transparent material comprising said polymer
KR101701175B1 (en) UV crosslinkable high refractive index polymer and the method of manufacturing the same
KR100592067B1 (en) Photoactive diarylethene polymer and manufacturing method thereof
CN102177184B (en) Modified triaroylbenzene-based polymer
JP2019006721A (en) Poly (oxyalkyleneoxynaphthylene) compound, method for producing the same, and use therefor