TW201208155A - Packaging structure of light emitting chip - Google Patents

Packaging structure of light emitting chip Download PDF

Info

Publication number
TW201208155A
TW201208155A TW99127098A TW99127098A TW201208155A TW 201208155 A TW201208155 A TW 201208155A TW 99127098 A TW99127098 A TW 99127098A TW 99127098 A TW99127098 A TW 99127098A TW 201208155 A TW201208155 A TW 201208155A
Authority
TW
Taiwan
Prior art keywords
substrate
sub
layer
light
disposed
Prior art date
Application number
TW99127098A
Other languages
Chinese (zh)
Inventor
Gang Li
Original Assignee
Gang Li
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gang Li filed Critical Gang Li
Priority to TW99127098A priority Critical patent/TW201208155A/en
Publication of TW201208155A publication Critical patent/TW201208155A/en

Links

Abstract

The present invention relates to a packaging structure of light emitting chip, which comprises at least a substrate unit, at least a die bond zone configured on said substrate unit, at least an light emitting chip mounted on the die bond zone, and at least two substrate electrodes configured on the substrate unit and insulated with each other, which may implement the conductive conneciton with the outside; and, the substrate unit includes at least two sub-substrates insulated with each other and the light emitting chip is electrically connected to the substrate electrode through the substrate unit. The present invention employs the substrate unit that is composed of at least two sub-substrates insulated with each other as the mounting frame for the light emitting chip, which provides a simple structure and with excellent heat dissipation effect; and, between the sub-substrates, only the insulating layer is required or there is no need of insulating layer. The entire structure does not contain any polymer material, and has the merits of high temperature endurance as well as ultraviolet resistance.

Description

201208155 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及晶片封裝結構,更具體地說’涉及一種發光 晶片的封裝結構。 【先前技術】 [00Θ2] 隨著發光晶片,例如二極體(LED)晶片,發光效率的提 升,LED正從傳統的點線面為特徵的指示和顯示類應用領 域向大尺寸液晶背光和室内室外普通照明類應用領域拓 _ 展。 〇 [0003] 現有的一種用於LED封裝的常見封裝結構如第一圖所示, 該封裝結構包括一電極支架101、LED晶片0 2、金屬引 線1 0 3a和103b、另一電極支架1 〇4丨、和玫架連接片1 〇5。 上述LED晶片102放置在受電極支架1〇1和1〇4支撐的杯中 。其中,電極支架101和104是以細長鐵基鍍銀材質製造 ,散熱能力有限。上述封裝結構的LED通常只能採用絕緣 膠(如環氧樹脂)作為固晶材料。由於絕緣膠的導熱性 〇 能非常差,因此,這種封裝結構主要用在小電流應用場 合0 國3-種用於大功率LED封|的常見封裝結構如第二圖所示 ’該封裝結構包括LED晶片基座2〇卜LED晶片2〇2、金屬 引線203a和203b、電極片2〇43和2〇化和絕緣塑膠反射 杯2〇5上述大功率LED封裝結構採用塊狀⑽晶片基座 201 ’熱沉比較大,其下* 般可與其他散熱機構或器 件形成面接觸’提升散執能六 、、月匕力°然而,上述大功率led封 裝結構比較複雜,成本比較高。 099127098 表單編號A0101 第3頁/共 、47 頁 ηΜ5 201208155 [0005] 上述大功率L E D封裝結構通常採用金屬基結構加高分子有 機材料注塑成形的工藝製造。如第二圖中的絕緣塑膠反 射杯205通常採用高分子材料中耐熱性相對較好的熱塑性 聚脂,如聚對苯二甲酸丁二醇酯(PBT ),和高溫塑膠, 如聚對苯二醯對苯二胺(PPA)。改性的聚對苯二醯對苯 二胺塑膠的熱變形溫度約300 °C,連續使用溫度約170 °C。顯然,高分子材料的耐熱溫度將決定上述支架的最 大可承受溫度和最高可持續工作溫度。 [0006] 然而,通常的共晶焊溫度在285 °C_320 °C。由於採用 上述高分子塑膠或聚脂絕緣材料的上述支架的最大可承 受溫度僅300 °C左右,使得共晶材料的選擇受到了很大 的局限,共晶條件也變得十分苛刻,如溫度控制必須十 分精確,共晶時間不能太長等,導致共晶焊固晶技術要 求高、成本高和良率低。目前,大部分大功率LED仍採用 常規的固晶方式,如使用導熱性能得到改善的矽膠、銀 膠、錫膏等,但其固晶介面的導熱性能明顯不如用共晶 方式產生的合金化介面。大電流或大功率下,由於介面 熱阻導致LED支架内的熱積聚,使晶片的溫度升高,從而 影響到LED晶片的抗衰性和可靠性。由於高分子材料抗紫 外和抗高低溫衝擊的能力很差,使得上述支架如第二圖 中的絕緣塑膠反射杯205在紫外光照射和高低溫衝擊較為 惡劣的露天場合下使用時會加快老化,導致LED的使用壽 命很短,應用產品的可靠性也就很差。 [0007] 對採用金屬芯或陶瓷芯印刷電路板(MCPCB )製作的大功 率LED支架雖然能提供較大的底表面作為導熱面與其他散 099127098 表單編號A0101 第4頁/共47頁 0992047611-0 201208155 熱機構連接,但印刷電路板上餘電極眺緣的高分子 樹月曰材料限制了上述大功率LED支架的使用溫度,通常不 能採用共晶焊㈣方式。上述樹脂對抗紫外光照射和高 低溫衝擊的能力也很差,使得上述大功率LED支架在^外 光照射和高低溫衝擊較為惡劣的露天場合下使用時會加 快老化,導致LED的使用壽命很短,應用產品的可靠性也 就很差。上述起絕緣層作用的高分子樹脂材料,通常是 Ο [0008] ◎ [0009] 5〇〜2〇〇Um。若太厚,能起絕緣作用,防止與金屬基短路 的效果好,但會影響熱量的散發;若λ薄’能較^熱 ’但易引起金屬芯與元件引線短路。 對採用陶竟散熱基板,包括厚細宪基板,低溫共燒多 層陶瓷,和薄膜陶瓷基板,製作的大功率UD支架雖然能 提供較大的底表面作為導熱面與其他散熱機構連接,陶b 瓷材料的散熱性能也優於其他有機材料,但其不導電性 要求在基板表面通過網印或濺鍍,電/電化學沉積,黃光 制程以及低溫燒結等工藝製造導電連接金屬線路層。網 印方式製作的線路因為網版張網問題,容易產生線路粗 糙、對位不精准的現象,濺鍍,電/電化學沉積,黃光制 程工藝複雜,金屬線路易脫落等缺點。 上述被廣泛使有的各類led封裝結構除底部有金屬片與固 定LED的支架相連實現熱傳導外,支架本身通常不具備散 熱功能’這也大大局限了 LED的使用範圍以及自我保飞 能。很顯然’現在被廣泛使用的用於LED封裝的支^ 本質上的缺陷。 【發明内容】 099127098 表單編號A0101 第5頁/共47頁 〇992〇47611-〇 201208155 [0010]本發明要解決的技術問題在於,提供一種結構簡單、耐 同溫、散熱效果良好的發光晶片封裝結構。 _]本發簡決其賴_所制的技術方案是:構造—種 發光晶片封裝結構,包括至少一基板單元、至少一在所 述基板單元上設置的固晶區、安裝在所述固晶區上的至 少一發光晶片、以及在所述基板單元上設置相互隔絕的 至少兩個可與外界實現導電連接的基板電極;所述基板 單元包括至少兩個彼此絕緣的子基板;所述發光晶片通 過所述基板單元與所述基板電極電連接。 ..... .. ... ' [0012] 在本發明的發光晶片封裝結構中,所述子基板為導電子 基板’在相鄰的所述導電子基板之間,設有絕緣層或絕緣 帶’或者,在相鄰的所述導電子基板之間留有空隙,或 者’在所述空隙内填充絕緣灌封材料;或者, [0013] 所述子基板為非導電子基板,在所述非導電子基板上設 有將所述發光晶片電連接至對應所述基板.電極的導電金 屬薄膜;或者, [0014] 所述子基板包括導電子基板和非導電子基板,在所述非 導電子基板上設有將所述發光晶片電連接至對應所述基 板電極的導電金屬薄膜。 [0015] 在本發明的發光晶片封裝結構中’所述基板單元為單層 基板單元,包括至少二個彼此絕緣並在水準方向相互拼 接的所述子基板;或者, [0016] 所述基板單元為多層基板單元’包括至少二個彼此絕緣 並在垂直方向相互疊加的所述子基板;或者, 099127098 表單編號A0101 第6頁/共47頁 0992047611-0 201208155 [0017] 所述基板單元為多層複合基板單元,包括至少—個所述 子基板和至少一個所述單層基板單元,所述子基板與所 述單層基板單元彼此絕緣並在垂直方向相互疊加;所述 單層基板單元包括至少二個彼此絕緣並在水準方向相互 拼接的所述子基板。 [0018] 在本發明的發光晶片封裝結構中,所述固晶區全部設置 在構成所述單層基板單元的同一所述子基板上,或分別 s 史置在構成所述單層基板單元的不同所述子基板上。 〇 [0019]在本發明的發光晶片封裝結構中,所述固晶區全部設置 在構成所述多層基板單元的同一所述子基板上,或分別 設置在構成所述多層基板單元的不同所述子基板上;或 者, 識 [0020]所述固晶區全部設置在構成所述多層複合基板單元的同 一所述子基板上,或分別設置在構成所述多層複合基板 單元的不同所述子基板上。 〇 [0021]在本發明的發光晶片鼓結構中,所述固晶區設置在非 頂層所述子基板上,位於設置所述固晶區的所述子基板 上層的所述子基板設置有與所述固晶區相對應的開口, 所述開口的内侧壁構成放置在所述固晶區内所述發光晶 片的灌封出光空間和反光侧壁。 [0022]在本發明的發光晶片封裝結構中,所述固晶區設置在所 述子基板的上表面;或者,位於所述子基板表面設置的 凹坑内,所述凹坑的内側壁構成放置在所述固晶區内所 述發光晶片的灌封出光空間和反光侧壁。 099127098 表單編號A0101 第7頁/共47頁 〇 201208155 [0023] 在本發明的發光晶片封裝結構中,所述固晶區四周設置 有凸起的圍堰;所述圍堰的内側壁構成放置在所述固晶 區内所述發光晶片的灌封出光空間和反光側壁。 [0024] 在本發明的發光晶片封裝結構中,所述固晶區表面、所 述灌封出光空間的内侧壁可塗覆單層或多層的金屬反射 膜和/或非金屬反射膜。 [〇〇25] 在本發明的發光晶片封裝結構中,所述灌封出光空間的 内側壁包括與所述固晶區表面垂直的光滑表面、和/或與 所述固晶區表面成大幹90度央角的光滑斜面、和/或自所 述固晶區表面向所述基板單元表面延伸的光滑孤面。 [0026]在本發明的發光晶片封裝結構中,所述灌封出光空間的 内侧壁包括至少一階梯,所述階梯的水準段表面設置在 具有所述固晶區的所述子基板表面或具有所述固晶區的 所述子基板上方的所述子基板上。 _林發明的發光晶片封裝結斜’所述發光晶片放置在 所述固晶區㈣央’好料電連_對應的基板電極 ’或者’所述發光晶片為多個,若干所述發光晶片串聯 或並聯或串並聯後再分別導電連接到對應的基板電極。 [0028]在本發明的發光晶片封裝結構中,所述固晶區附近設置 有分別導電連接到對應的所述基板電極的焊線區,所述 發光晶片分別導電連接到對應的所述焊線區,或其中若 干所述發光晶片φ聯或並聯或串並聯後再分別導電連接 到對應的焊線區。 [0029] 099127098 在本發明的發光晶片封裝結構中, 表單編號廳01 S 8頁/共47頁 所述基板單元的裸露 0992047611-0 201208155 [0030] [0031]❹ [0032]201208155 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a chip package structure, and more particularly to a package structure of a light-emitting chip. [Prior Art] [00Θ2] With the improvement of luminous efficiency of light-emitting chips, such as diode (LED) wafers, LEDs are moving from large-scale liquid crystal backlights and indoors to the field of indication and display applications characterized by conventional dot-line surfaces. Outdoor general lighting application field extension _ exhibition. [0003] A conventional package structure for an LED package is as shown in the first figure. The package structure includes an electrode holder 101, an LED chip 0, metal leads 1033 and 103b, and another electrode holder 1 4丨, and the connecting frame of the rose rack 1 〇 5. The above LED chip 102 is placed in a cup supported by the electrode holders 1〇1 and 1〇4. Among them, the electrode holders 101 and 104 are made of a silver-plated material of an elongated iron base, and the heat dissipation capability is limited. LEDs of the above package structure can usually only use an insulating glue (such as epoxy resin) as a solid crystal material. Since the thermal conductivity of the insulating adhesive is very poor, this package structure is mainly used in small current applications. The common package structure for high-power LED sealing is as shown in the second figure. The LED chip base 2 includes an LED chip 2〇2, metal leads 203a and 203b, electrode sheets 2〇43 and 2, and an insulating plastic reflective cup 2〇5. The high-power LED package structure adopts a block (10) wafer base. 201 'The heat sink is relatively large, and the next * can form a surface contact with other heat dissipating mechanisms or devices. 'Improve the dispersive energy. 6. The above-mentioned high-power LED package structure is more complicated and the cost is higher. 099127098 Form No. A0101 Page 3 of 47, ηΜ5 201208155 [0005] The above high-power L E D package structure is usually manufactured by a metal-based structure and a polymer organic material injection molding process. For example, the insulating plastic reflector cup 205 in the second figure is generally made of a thermoplastic polyester having relatively good heat resistance in a polymer material, such as polybutylene terephthalate (PBT), and a high temperature plastic such as polyparaphenylene. P-phenylenediamine (PPA). The modified polyparaphenylene terephthalate plastic has a heat distortion temperature of about 300 ° C and a continuous use temperature of about 170 ° C. Obviously, the heat-resistant temperature of the polymer material will determine the maximum temperature and maximum sustainable operating temperature of the above-mentioned stent. [0006] However, the usual eutectic soldering temperature is 285 ° C - 320 ° C. Since the above-mentioned stent using the above polymer plastic or polyester insulating material has a maximum withstand temperature of only about 300 ° C, the selection of the eutectic material is greatly limited, and the eutectic conditions become very severe, such as temperature control. It must be very precise, the eutectic time should not be too long, etc., resulting in high requirements, high cost and low yield of eutectic bonding. At present, most high-power LEDs still use conventional die-bonding methods, such as silicone, silver paste, solder paste, etc., which have improved thermal conductivity, but the thermal conductivity of the die-bonding interface is not as good as that of the alloyed interface produced by eutectic. . At high current or high power, the heat build-up in the LED holder due to the thermal resistance of the interface causes the temperature of the wafer to rise, thereby affecting the anti-aging and reliability of the LED wafer. Due to the poor ability of the polymer material to resist ultraviolet and high temperature and low temperature impact, the above-mentioned bracket, such as the insulating plastic reflector cup 205 in the second figure, will accelerate aging when used in an open field where ultraviolet light irradiation and high and low temperature impact are severe. As a result, the service life of the LED is very short and the reliability of the application product is very poor. [0007] A high-power LED bracket made of a metal core or ceramic core printed circuit board (MCPCB) can provide a larger bottom surface as a heat-conducting surface and other dispersions. 099127098 Form No. A0101 Page 4 of 47 Page 0992047611-0 201208155 Thermal mechanism connection, but the polymer tree mooncake material on the edge of the remaining electrode on the printed circuit board limits the use temperature of the above-mentioned high-power LED bracket, and usually cannot adopt the eutectic soldering (four) method. The above-mentioned resin is also inferior to ultraviolet light irradiation and high-low temperature impact, so that the above-mentioned high-power LED bracket will accelerate aging when used in an outdoor environment where external light irradiation and high and low temperature impact are severe, resulting in a short service life of the LED. The reliability of the application product is also very poor. The above polymer resin material functioning as an insulating layer is usually Ο [0008] ◎ [0009] 5 〇 2 〇〇 Um. If it is too thick, it can act as an insulator to prevent short-circuiting with the metal base, but it will affect the heat dissipation; if the λ thinness is better than the heat, it will easily cause the metal core and the component lead to be short-circuited. For high-power UD brackets made of ceramic heat-dissipating substrates, including thick and thin substrates, low-temperature co-fired multilayer ceramics, and thin-film ceramic substrates, although a large bottom surface can be provided as a heat-conducting surface to connect with other heat-dissipating mechanisms, ceramic b porcelain The heat dissipation performance of the material is also superior to other organic materials, but its non-conductivity requires the manufacture of conductive connection metal circuit layers on the surface of the substrate by screen printing or sputtering, electric/electrochemical deposition, yellow light processing and low temperature sintering. The circuit produced by the screen printing method is prone to rough lines, inaccurate alignment, sputtering, electric/electrochemical deposition, complicated yellow light process, and easy to fall off metal lines. The above-mentioned various types of LED package structures are widely connected to the brackets with fixed metal LEDs at the bottom for heat conduction, and the bracket itself usually does not have a heat dissipation function. This also greatly limits the use range of LEDs and self-protection. It is clear that the defects that are now widely used for LED packaging are inherently flawed. SUMMARY OF THE INVENTION 099127098 Form No. A0101 Page 5 of 47 〇992〇47611-〇201208155 [0010] The technical problem to be solved by the present invention is to provide a light-emitting chip package with simple structure, good isothermal temperature and good heat dissipation effect. structure. The technical solution of the present invention is: a light-emitting chip package structure comprising at least one substrate unit, at least one die-bonding region disposed on the substrate unit, and mounting on the die-bonding layer At least one illuminating wafer on the region, and at least two substrate electrodes that are electrically isolated from each other are disposed on the substrate unit; the substrate unit includes at least two sub-substrates insulated from each other; The substrate unit is electrically connected to the substrate electrode. [0012] In the light emitting chip package structure of the present invention, the sub-substrate is a conductive sub-substrate 'between adjacent conductive sub-substrates, and an insulating layer or Insulating tape 'either, leaving a gap between adjacent conductive sub-substrate, or 'filling the gap with an insulating potting material; or, [0013] the sub-substrate is a non-conductive sub-substrate, The non-conductive sub-substrate is provided with a conductive metal film electrically connecting the light-emitting chip to the corresponding electrode of the substrate; or [0014] the sub-substrate comprises a conductive sub-substrate and a non-conductive sub-substrate, in the non- The electron-conducting substrate is provided with a conductive metal film electrically connecting the light-emitting chip to the electrode corresponding to the substrate. [0015] In the illuminating chip package structure of the present invention, the substrate unit is a single-layer substrate unit including at least two sub-substrates insulated from each other and spliced to each other in a horizontal direction; or, [0016] the substrate unit The multi-substrate unit 'includes at least two sub-substrates insulated from each other and superimposed on each other in the vertical direction; or, 099127098 Form No. A0101 Page 6 / Total 47 Page 0992047611-0 201208155 [0017] The substrate unit is a multilayer composite a substrate unit comprising at least one of the sub-substrate and at least one of the single-layer substrate units, the sub-substrate and the single-layer substrate unit are insulated from each other and superposed on each other in a vertical direction; the single-layer substrate unit includes at least two The sub-substrates are insulated from each other and spliced to each other in the horizontal direction. [0018] In the light emitting chip package structure of the present invention, the die bonding regions are all disposed on the same sub-substrate constituting the single-layer substrate unit, or are respectively disposed on the single-layer substrate unit. Different on the sub-substrate. [0019] In the light emitting chip package structure of the present invention, the die bonding regions are all disposed on the same sub-substrate constituting the multi-layer substrate unit, or are respectively disposed in different ones constituting the multi-layer substrate unit On the sub-substrate; or, [0020] the solid crystal regions are all disposed on the same sub-substrate constituting the multi-layer composite substrate unit, or respectively disposed on different sub-substrates constituting the multi-layer composite substrate unit on. [0021] In the luminescent wafer drum structure of the present invention, the die bonding region is disposed on the non-top layer sub-substrate, and the sub-substrate located on the upper layer of the sub-substrate in which the die-bonding region is disposed is provided with The corresponding opening of the die bonding region, the inner sidewall of the opening constitutes a potting light exiting space and a reflective sidewall of the light emitting wafer placed in the die bonding region. [0022] In the light emitting chip package structure of the present invention, the die bonding region is disposed on an upper surface of the sub-substrate; or, in a pit disposed on a surface of the sub-substrate, an inner sidewall of the pit constitutes a placement The light-emitting wafer encapsulates the light-emitting space and the reflective sidewall in the die-forming region. 099127098 Form No. A0101, page 7 / 47, 〇 201208155 [0023] In the light emitting chip package structure of the present invention, the solid crystal region is provided with a raised coaming around the inside; the inner side wall of the cofferdam is placed at The light-emitting wafer in the solid crystal region encapsulates the light-emitting space and the reflective sidewall. In the light emitting chip package structure of the present invention, the surface of the die bonding region and the inner sidewall of the potting light emitting space may be coated with a single layer or a plurality of metal reflective films and/or non-metal reflective films. [125] In the light emitting chip package structure of the present invention, the inner sidewall of the potting light exiting space includes a smooth surface perpendicular to the surface of the die bonding region, and/or is substantially dry with the surface of the die bonding region A smooth bevel of a 90 degree central angle, and/or a smooth orphan that extends from the surface of the solid crystal region toward the surface of the substrate unit. [0026] In the light emitting chip package structure of the present invention, the inner sidewall of the potting light exiting space includes at least one step, and the surface level surface of the step is disposed on the surface of the sub-substrate having the solid crystal region or has On the sub-substrate above the sub-substrate of the die bonding region. The invention discloses a light-emitting chip package junction obliquely. The light-emitting chip is placed in the solid crystal region (four), and the plurality of light-emitting wafers are connected in series. Or connected in parallel or in series and parallel, and then electrically connected to the corresponding substrate electrodes. [0028] In the light emitting chip package structure of the present invention, a wire bonding region respectively electrically connected to the corresponding substrate electrode is disposed in the vicinity of the die bonding region, and the light emitting wafers are electrically connected to the corresponding bonding wires respectively The region, or a plurality of the light-emitting wafers φ are connected in parallel or in parallel or in parallel, and then electrically connected to the corresponding bonding wire regions. [0029] 099127098 In the light-emitting chip package structure of the present invention, the form number hall 01 S 8 pages / total 47 pages of the substrate unit bare 0992047611-0 201208155 [0031] [0032]

G 在本發㈣發^麟裝結構中,所述絕緣層為-層或 多層複合__ ;所料緣層_述子基板之間設有 一層或多層過渡金屬薄膜和/或合金薄膜。 實施本㈣具有以下有益效果:切❹至少兩個彼此 絕緣的子基板組成的基板單元作為發光晶片的安裝支架 ,結構簡單,並具有良好的散熱致果;而且在子基板之 間僅需採用絕_或者根本㈣絕緣層,整個結構不含 有任何高分子材質,具有耐高溫、抗紫外的優點。 【實施方式】 本發明和本發明的各種用於LED封裝的潘先晶片封裝結構 的實施方案可以通過以下優選方案的描述得到充分理解 ,以下優選方案也可視為本發明權利要求舞實例。顯然 ,應該充分理解到由本發明權利要求所定義的本發明所 涵蓋的内容要比以下籀k的優選實施方案更加廣泛。在 不偏離本發明精神和範圍的情況下’借助於平常的技能 可以產生更多的經過變更和修改的實施方案。所以,以 下描述的實施方案僅僅是為了舉例說明而不是用來局限 由本發明權利要求所定義的本發明的涵蓋範圍。 [0033] 如第三圖a、3b所示,是本發明的發光晶片封裴結構的第 一實施例,其包括絕緣底層子基板305、在該絕緣底層子 基板上設置的二層導電子基板3〇1和3〇2、固晶區、金屬 引線303和304、基板電極308a、308b、以及在子基板 099127098 表單編號A0101 第9頁/共47頁 0992047611-0 201208155 [0034] [0035] [0036] [0037] [0038] 3 〇 1和3 0 2之間設有絕緣帶3 0 7。 在本實施例中,底層子基板305可採用絕緣材料做成,例 如陶兗材料或其他無機非金屬材料,可以為單層結構、 也可以為多層結構,也可以是一絕緣薄膜,例如,通過 蒸錄或濺射的方式將無機絕緣薄膜,例如,二氧化;5夕或 I化石夕’塗布在所述基板的背面。 二層導電子基板301和302設置在底層子基板3〇5上,可 採用導電材料做成,例如金屬、合金等,可以為單層結 構、也可以為多層結構◊ ·.;. .......: :. ... . 在導電子基板301和302之間設置絕緣帶307,從而將導 電子基板301和302絕緣隔開《該絕緣帶307可以採用氧 化物基、氮化物基或其他無機絕緣材料基單層薄膜材料 或由上述材料組成的多層複合薄膜材料做成,並與導電 子基板301和302之間形成緊密牢固的接觸。該絕緣帶 307的形狀可以為任意形狀。 由導電子基板301、302和底母基板305組成的基板單 元為夕層複合基板單元。其中,在水準方向上絕緣拼接 的導電子基板301、302為單層基板單元,底層子基板 305與單層基板單元彼此絕緣並在垂直方向相互疊加。 該固晶區可以設置在導電子基板301和/或導電子基板302 上,作為發光晶片306的安裝位置。當然,固晶區的大小 、位置等,可以根據發光晶片3〇6的數量、大小等進行調 整。 [0039] 099127098 基板電極308a、308b分別設置在導電子基板3〇1和3〇2的 表單編號A0101 第10頁/共47頁 0992047611-0 201208155 [0040] Ο [0041] [0042] Ο [0043] 兩側,可與外界實現導電連接,為發光晶片306提供工作 電源。 如圖所示,本實施例僅示意性的給出了 一個發光晶片306 的封裝,該發光晶片306通過固晶的方法設置在導電子基 板302上,發光晶片306的正、負電極分別通過金屬引線 303和304導電連接到導電子基板301和302上,而且由於 導電子基板301和302本身就是導電的,因此也就是將發 光晶片306的正、負電極分別與基板電極308a、308b導 電連接,由基板電極308a、308b引入外界電源。 當然,如第三圖c所示,發光晶片也可以為多個,可以分 別通過固晶設置在導電基板301和302上,多個發光晶片 可以並聯和/或串聯後再分別與基板電極308a、308b導 電連接。 進一步的,如第三圖d所示,還可以在晶片的週邊加上灌 封圍堰309,形成灌封出光空間,該灌封_堰309的形狀 可以為任意的形狀,如方環形、圓環形、橢圓環形等各 種形狀,以起到將灌封材料圍起來的作用。當然,也可 以不設置灌封圍堰,直接利用灌封材料的表面張力自成 型〇 進一步的,如第三圖e所示,是第三圖a的一種變形,通 過增加絕緣帶307a,將導電子基板分隔成四個彼此絕緣 的導電子基板單元,並且可以在各個獨立導電子基板單 元上設置對應的發光晶片,從而方便發光晶片的佈局、 顏色的調配等。其電極對應分為四個獨立的電極308a、 099127098 表單編號A0101 第11頁/共47頁 0992047611-0 201208155 308b、308c、308d,分別與各個獨立的導電子基板單元 相連’並彼此絕緣。可以理解的,可以增加更多的絕緣 帶來分隔更多的導電子基板單元,從而適應不同場合的 要求。 [0044] 如第四圖a、4b所示’是本發明的第二實施方案,一種用 於LED封裝的有雙層基板結構的發光晶片封裝結構,包括 底層基板401、絕緣層402、二層基板403、在底層基板 401上設置的固晶區、通過固晶設置在固晶區上的LED晶 片406、與晶片連接的頂層焊線區4〇4a和底層焊線區 404b、金屬引線4減&和4051)、輿外界電源或/和信號介 面相連的底層電極407a和頂層電極4〇7b、固定通孔408a ,408b,408c和408d、灌封出光空間40 9、二層基板下 側壁410a和上侧壁410b。該底層基板((Π和二層基板403 作為子基板’組成了導電基板單元,該灌封出光空間4〇9 同時作為LED晶片406的出光空間和灌封空間。 [0045] 第四圖a、4b的實施方案是解中央有一障梯狀開口的二層 基板403放置在底層基板4 舞上,二基板之間設置有一 絕緣層402。底層基板401和二層基板4〇3通常採用具良 導熱和良導電的金屬材料’如鋼、鋁、鎢鉬和其他金屬 材料或它們的合金’當然還可以採用陶瓷基或其他無機 非金屬基材料並在表面形成導電薄膜組成,一般呈片狀 疊加在一起。通常單一基板的厚度介於幾百微米與幾毫 米之間。單一基板也可採用由上述材料構成的多層結構 。底層基板和二基板可以選用相同或不同的材料、相同 或不同的厚度、相同或不同的大小、相同或不同的形狀 099127098 表單編號A0101G In the hair supply structure of the present invention, the insulating layer is a layer or a multilayer composite __; the edge layer of the material layer is provided with one or more layers of transition metal film and/or alloy film. The implementation of the present (4) has the following beneficial effects: the substrate unit composed of at least two sub-substrates insulated from each other is used as a mounting bracket for the illuminating wafer, and has a simple structure and good heat dissipation; and only needs to be used between the sub-substrates. _ or fundamental (four) insulation layer, the entire structure does not contain any polymer material, has the advantages of high temperature resistance and UV resistance. [Embodiment] The embodiments of the present invention and the various Pan-chip package structures for LED packages of the present invention can be fully understood by the following description of the preferred embodiments, and the following preferred embodiments can also be considered as examples of the dance of the claims of the present invention. It will be apparent that the scope of the invention as defined by the claims of the invention is more broadly than the preferred embodiments of the following. More modified and modified embodiments can be produced with the aid of ordinary skill without departing from the spirit and scope of the invention. Therefore, the embodiments described below are intended to be illustrative only and not to limit the scope of the invention as defined by the appended claims. [0033] As shown in the third figures a, 3b, is a first embodiment of the light-emitting chip package structure of the present invention, comprising an insulating underlayer sub-substrate 305, and a two-layer conductive sub-substrate disposed on the insulating underlayer sub-substrate 3〇1 and 3〇2, solid crystal region, metal leads 303 and 304, substrate electrodes 308a, 308b, and sub-substrate 099127098 Form No. A0101 Page 9/47 pages 0992047611-0 201208155 [0034] [0035] [0038] [0038] An insulating tape 3 0 7 is provided between 3 〇 1 and 3 0 2 . In this embodiment, the bottom sub-substrate 305 may be made of an insulating material, such as a ceramic material or other inorganic non-metal material, and may be a single layer structure, a multi-layer structure, or an insulating film, for example, An inorganic insulating film, for example, dioxide; 5 or I fossil, is applied to the back surface of the substrate by steaming or sputtering. The two-layer conductive sub-substrate 301 and 302 are disposed on the underlying sub-substrate 3〇5, and may be made of a conductive material, such as a metal, an alloy, etc., and may be a single-layer structure or a multi-layer structure ◊..; An insulating tape 307 is disposed between the conductive sub-substrates 301 and 302 to insulate the conductive sub-substrate 301 and 302. The insulating tape 307 may be an oxide-based or nitride-based substrate. Or other inorganic insulating material-based single-layer film material or a multilayer composite film material composed of the above materials, and form a tight and firm contact with the conductive sub-substrates 301 and 302. The shape of the insulating tape 307 may be any shape. The substrate unit composed of the conductive sub-substrates 301 and 302 and the bottom mother substrate 305 is an integrated layer substrate unit. The conductive sub-substrate 301, 302 insulated and spliced in the horizontal direction is a single-layer substrate unit, and the underlying sub-substrate 305 and the single-layer substrate unit are insulated from each other and superposed on each other in the vertical direction. The die bonding region may be disposed on the conductive sub-substrate 301 and/or the conductive sub-substrate 302 as a mounting position of the light-emitting wafer 306. Of course, the size, position, and the like of the solid crystal region can be adjusted in accordance with the number, size, and the like of the light-emitting chips 3〇6. [0039] 099127098 The substrate electrodes 308a, 308b are respectively disposed on the conductive sub-substrate 3〇1 and 3〇2, Form No. A0101, Page 10/47, 0992047611-0 201208155 [0040] Ο [0041] [0042] Ο [0043] On both sides, an electrically conductive connection can be made to the outside to provide a working power source for the light-emitting chip 306. As shown in the figure, the present embodiment only schematically shows a package of an illuminating wafer 306. The illuminating wafer 306 is disposed on the conductive sub-substrate 302 by a die bonding method. The positive and negative electrodes of the luminescent wafer 306 are respectively passed through a metal. The leads 303 and 304 are electrically connected to the conductive sub-substrates 301 and 302, and since the conductive sub-substrates 301 and 302 are electrically conductive, the positive and negative electrodes of the luminescent wafer 306 are electrically connected to the substrate electrodes 308a, 308b, respectively. An external power source is introduced from the substrate electrodes 308a, 308b. Of course, as shown in the third figure c, there may be a plurality of illuminating wafers, which may be respectively disposed on the conductive substrates 301 and 302 by solid crystal, and the plurality of illuminating wafers may be connected in parallel and/or in series to the substrate electrodes 308a, respectively. 308b conductive connection. Further, as shown in the third figure d, a potting coaming 309 may be added to the periphery of the wafer to form a potting light-emitting space. The shape of the potting_堰309 may be any shape, such as a square ring or a circle. Various shapes such as a ring shape and an elliptical ring shape serve to enclose the potting material. Of course, it is also possible to directly use the surface tension of the potting material without forming a potting cofferdam, as shown in the third figure e, which is a deformation of the third figure a, by adding the insulating tape 307a, The electronic substrate is divided into four conductive sub-substrate units insulated from each other, and corresponding illuminating wafers can be disposed on the respective independent conductive sub-substrate units, thereby facilitating layout of the illuminating wafer, color matching, and the like. The electrodes are divided into four independent electrodes 308a, 099127098. Form No. A0101 Page 11/47 pages 0992047611-0 201208155 308b, 308c, 308d are respectively connected to the respective conductive sub-substrate units and insulated from each other. It can be understood that more insulation can be added to separate more conductive sub-substrate units, so as to adapt to different occasions. [0044] As shown in the fourth figure a, 4b' is a second embodiment of the present invention, a light-emitting chip package structure having a two-layer substrate structure for an LED package, comprising a bottom substrate 401, an insulating layer 402, and a second layer The substrate 403, the die bonding region disposed on the underlying substrate 401, the LED wafer 406 disposed on the die bonding region by the die bonding, the top bonding wire region 4〇4a and the bottom bonding wire region 404b connected to the wafer, and the metal lead 4 are reduced. & and 4051), the bottom electrode 407a and the top electrode 4〇7b connected to the external power source or/and the signal interface, the fixed through holes 408a, 408b, 408c and 408d, the potting light exiting space 409, and the lower layer substrate lower side wall 410a And upper side wall 410b. The underlying substrate (the Π and the two-layer substrate 403 as the sub-substrate constituting the conductive substrate unit, the potting light-emitting space 4〇9 serves as both the light-emitting space and the potting space of the LED wafer 406. [0045] FIG. The embodiment of 4b is that the two-layer substrate 403 having a barrier-shaped opening in the center is placed on the base substrate 4, and an insulating layer 402 is disposed between the two substrates. The bottom substrate 401 and the two-layer substrate 4〇3 generally have good heat conduction. And conductive metal materials such as steel, aluminum, tungsten molybdenum and other metal materials or alloys thereof can of course be made of ceramic or other inorganic non-metal based materials and form a conductive film on the surface, generally stacked in a sheet form. Usually, the thickness of a single substrate is between several hundred micrometers and several millimeters. A single substrate may also adopt a multilayer structure composed of the above materials. The bottom substrate and the two substrates may be the same or different materials, the same or different thicknesses, and the same Or different sizes, same or different shapes 099127098 Form number A0101

第12頁/共47 I 0992047611-0 201208155 等,可以根據設計要求進行調整。 [0046] Ο 該底層基板401和二層基板403在垂直方向上疊加,均為 導電基板,而絕緣層402設置在底層基板401和二層基板 403之間,將兩者絕緣隔絕。該絕緣層402通常採用氧化 物基或氮化物基或其他無機絕緣材料基的單層或複合多 層薄膜材料,如氧化矽和氮化矽等。通常其厚度介於幾 微米與幾百微米之間。為增強絕緣層402與底層基板401 和二層基板403之間的粘著力,在絕緣層402與底層基板 401和二層基板403之間通常設置有改善粘著力的薄膜, 通常採用諸如鈦,鎳,和鎢等金屬材料或由上述金屬組 成的合金層或由上述金屬和合金組成的多層結構,通常 其厚度介於幾十納米與幾百納米之間。 [0047] 第四圖a、4b實施方案中的底層基板401不僅作為發光晶 片封裝結構的基礎,同時又提供了與晶片和外界的一組 電連接點,基板401本身兼具導電電極的功能。該底層基 板401包括底層導電基板主體,在底層導電基板主體上設 Ο 置供發光晶片(LEE晶片406 )安裝的固晶區、底層焊線 區404b和底層電極407a。 [0048] 二層基板403的中央通孔側壁不僅為放置在底層基板4〇1 上的晶片406提供了出光通道,反射側表面,也提供了與 晶片和外界的一組電連接點,二層基板403本身兼具導電 電極的功能。該二層基板403作為頂層導電基板,包括頂 層導電基板主體,在頂層導電基板上設有導電連通的頂 層焊線區404b和頂層電極407b。 099127098 表單編號A0101 第13頁/共47頁 0992047611-0 201208155 [〇_]該LED晶片406的正負電極分別通過金屬引線4〇5M〇4〇5b 電連接到頂層焊線區4 0 4 a和底層焊線區4 〇 4 b,再通過頂 層電極407b和底層電極407a與外界連接,即如電源和控 制信號。 [0050] 進一步的,該二層基板403中央的階梯狀開口與固晶區對 應’形成了灌封出光空間409。下侧壁41〇a和上側壁 410b圍成的上下二區可灌注相同或不同的透光性封裝材 料。如下侧壁410a圍成的下灌封區灌注含螢光粉的矽膠 和上側壁41 Ob圍成的上灌封區灌注矽膠或環氧樹脂則可 以製備出通常所述的白光LED。通過改良底層基板4〇 ^和 二層基板403的外觀結構,在灌封區4〇9上方還可灌封其 他透光性封裝材料和/或放置各類預成形的透鏡或其他光 于器件。底層基板401和—層基板403的:外形可以相同或 不同,大小可以相同也可以不同。通常採用方形,矩形 或圓形。 [0051] 第四圖a、4b實施方案中的下側壁410a和上側壁41〇1}圍 成的上下二區灌封區可以是對稱疼〆和不對稱,不同或/ 和相同的形狀,從而實現不同的光形和光強度分佈,通 常採用方形,矩形,橢圓形或圓形。下側壁41〇9與底層 基板401表面之間和上側壁41 〇b與二層基板4〇3的臺階表 面之間可以成垂直或成斜角,下侧壁41〇a和上側壁41仳 本身可以是光滑平面或光滑弧面’用以控制灌封區4〇9内 的光線分佈,繼而改變出光效率,光形和光強度分佈。 [〇〇52]通常上述侧壁410a和410b内壁面塗有高反射材料,如紅 或非金屬反射材料,形成單層或多層金屬反射膜和/或非 099127098 表單編號A0101 第14頁/共47頁 0992047611-0 201208155 [0053] Ο [0054]❹ [0055] 099127098 金屬反射膜。底層基板401和二層基板403未鋪設電極或 焊線區的裸露部分(即固晶區表面)也通常塗有高反射 材料,如Ag,以減少吸收。為避免短路,上述基板單元 四周未鋪設電極或焊線區的裸露部分也可塗敷一層絕緣 膜,如氧化矽和氮化矽等。 如第五圖a、5b所示,是本發明的另一種實施方案,一種 用於LED封裝的有内凸雙層基板結構的發光晶片封裝結構 ,包括底層基板501、絕緣層5〇2、二層基板503、灌封 區圍堰509、與灌封區圍堰509平齊的二層基板圍堰5〇3a 、固晶區、通過固晶設置在固晶區上的LEI)晶片5〇6、與 LED晶片506連接的基板焊線區5〇4a和基板焊線區504b、 金屬引線505a和505b、與外界電源或/和信號介面相連 的基板電極507a和507b、固定通孔508a,508b,508c 和 5 0 8 d 〇 第五圖a、5b實施方案中的LED晶片;5叶為多個,所有LED 晶片506的一種電極(正電極或負電極)均分別通過金屬 引線505b與金屬基底層基板501的1焊線區504b相連,而 上述LED晶片506的另一種電極均分別通過金屬引線5〇5a 與金屬—層基板503的焊線區504a相連’形成放置在底層 基板501之上的上述LED晶片506的並聯接法。 固晶區的上表面、二層基板斜側壁面51〇、二層基板上表 面510a、灌封區圍堰内側上側壁51 ia和下側壁51 ib共同 圍成灌封出光空間。上侧壁51 la和下侧壁51 lb圍成的上 下二區可灌注相同或不同的透光性封裝材料。如下侧壁 51 lb圍成的下灌封區灌注含螢光粉的矽膠和上側壁51 la 表單編號A0101 第15頁/共47頁 0992047611-0 201208155 [0056] [0057] [0058] 099127098 圍成的上灌封區灌注矽膠或環氧樹脂則可以製備出通常 所述的白光LED。另外,可通過改良底層基板5〇丨和灌封 區圍堰509的外觀結構,在灌封區上方還可灌封其他透先 性封裝材料和/或放置各類預成形的透鏡或其他光學器件 〇 灌封區圍堰509可以是導電或不導電材料,其外形和大小 可以與底層基板501相同或不同,例如採用方形、矩形、 圓形或其他各種形狀。 第五圖a、5b實施方案中的上側壁511 &和下側壁5丨丨b圍 成的上下一區灌封區可以是對稱或/和不對稱,不同或/ 和相同的形狀,從而實現不同的光形和光強度分佈,例 如採用方形、矩形、橢圓形、圓形或其他各種形狀。上 側壁511 a、下側壁511 b與底層基板5 〇 1表面之間可以成 垂直或成斜角或成弧狀,上侧壁511 a和下侧壁511 b本身 可以是光滑平面或光滑弧两,用爾控制灌封區5〇9内的光 線分佈,繼而改變出光效率,光释和光強度分佈。通常 ... .. 上側壁511a和下側壁511b表面塗有高反射材料,如蛇。 底層基板501和二層基板503未鋪設電極或焊線區的裸露 部分也通常塗有尚反射材料,如Ag,以減少吸收,提高 出光效率。 如第六圖a、6b所示,是本發明的另一種用於LEI)封裝的 有凹槽雙層基板的發光晶片封裝結構的實施方式,包括 底層基板601、絕緣層602、二層基板6〇3&和6〇31)、二層 基板之間的絕緣隔斷帶6〇3c和603d、設置在底層基板 1上的固晶區、通過固晶設置在固晶區上的LED晶片 表單編號A0101 第16頁/共47頁 0992047611-0 201208155 [0059] Ο [0060]Page 12 / 47 I 0992047611-0 201208155, etc., can be adjusted according to design requirements. [0046] The underlying substrate 401 and the two-layer substrate 403 are stacked in a vertical direction, which are both conductive substrates, and the insulating layer 402 is disposed between the underlying substrate 401 and the two-layer substrate 403 to insulate the two. The insulating layer 402 is typically a single or composite multi-layer film material based on an oxide or nitride based or other inorganic insulating material such as hafnium oxide and tantalum nitride. Usually its thickness is between a few microns and a few hundred microns. In order to enhance the adhesion between the insulating layer 402 and the underlying substrate 401 and the two-layer substrate 403, a film for improving the adhesion is usually disposed between the insulating layer 402 and the underlying substrate 401 and the two-layer substrate 403, and is usually made of, for example, titanium, nickel. And a metal material such as tungsten or an alloy layer composed of the above metal or a multilayer structure composed of the above metal and alloy, usually having a thickness of between several tens of nanometers and several hundred nanometers. [0047] The underlying substrate 401 of the fourth embodiment a, 4b is not only used as a basis for the light-emitting wafer package structure, but also provides a set of electrical connection points with the wafer and the outside, and the substrate 401 itself has the function of a conductive electrode. The underlying substrate 401 includes an underlying conductive substrate body, and a die attach region, a bottom bond wire region 404b, and a bottom electrode 407a for mounting the light emitting wafer (LEE wafer 406) are disposed on the underlying conductive substrate body. [0048] The central via sidewall of the two-layer substrate 403 not only provides a light exit path for the wafer 406 placed on the underlying substrate 4〇1, but also provides a set of electrical connection points with the wafer and the outside, a two-layer substrate. 403 itself has the function of a conductive electrode. The two-layer substrate 403 serves as a top conductive substrate, and includes a top conductive substrate body. The top conductive substrate is provided with an electrically conductive top wire bond region 404b and a top electrode 407b. 099127098 Form No. A0101 Page 13 of 47 0992047611-0 201208155 [〇_] The positive and negative electrodes of the LED chip 406 are electrically connected to the top wire bond area 4 0 4 a and the bottom layer through metal leads 4〇5M〇4〇5b, respectively. The wire bonding area 4 〇 4 b is connected to the outside through the top electrode 407b and the bottom electrode 407a, that is, a power source and a control signal. [0050] Further, the stepped opening in the center of the two-layer substrate 403 forms a potting light-emitting space 409 corresponding to the solid crystal region. The upper and lower two regions enclosed by the lower side wall 41a and the upper side wall 410b may be filled with the same or different light transmissive packaging materials. The white-light LED as described generally can be prepared by injecting the phosphor-containing silicone and the upper potting region of the upper side wall 41 Ob into the lower potting zone as follows. By improving the appearance of the underlying substrate 4 〇 ^ and the two-layer substrate 403, other light-transmissive encapsulating materials and/or various types of pre-formed lenses or other optical devices may be potted over the potting regions 4 〇 9 . The bottom substrate 401 and the layer substrate 403 may have the same or different outer shapes, and may have the same or different sizes. Usually square, rectangular or round. [0051] The upper and lower two-zone potting regions enclosed by the lower sidewall 410a and the upper sidewall 41〇1} in the fourth embodiment a, 4b may be symmetrically asymmetrical and asymmetrical, different or/and the same shape, thereby Achieve different light shapes and light intensity distributions, usually square, rectangular, elliptical or circular. The lower side wall 41〇9 and the surface of the base substrate 401 and the upper side wall 41〇b and the step surface of the two-layer substrate 4〇3 may be perpendicular or oblique, and the lower side wall 41〇a and the upper side wall 41仳 themselves It can be a smooth plane or a smooth arc surface' to control the distribution of light within the potting zone 4〇9, which in turn changes the light efficiency, light shape and light intensity distribution. [〇〇52] Generally, the inner wall surfaces of the above-mentioned side walls 410a and 410b are coated with a highly reflective material such as a red or non-metallic reflective material to form a single or multiple layer metal reflective film and/or non-zero 99127098 Form No. A0101 Page 14 of 47 Page 0992047611-0 201208155 [0054] 99 [0055] 099127098 Metal reflective film. The exposed portions of the underlying substrate 401 and the two-layer substrate 403 which are not laid with electrodes or wire regions (i.e., the surface of the die attach region) are also typically coated with a highly reflective material, such as Ag, to reduce absorption. In order to avoid short circuit, the exposed portions of the electrode unit or the wire bonding area around the substrate unit may also be coated with an insulating film such as yttrium oxide and tantalum nitride. As shown in FIG. 5 and FIG. 5b, another embodiment of the present invention, an illuminating chip package structure having a convex double-layer substrate structure for an LED package, comprising an underlying substrate 501, an insulating layer 5〇2, and 2 The layer substrate 503, the potting zone cofferdam 509, the two-layer substrate coaming 5〇3a flush with the potting zone cofferdam 509, the solid crystal region, and the LEI) wafer 5通过6 disposed on the solid crystal region by die bonding a substrate bonding wire region 5〇4a and a substrate bonding wire region 504b connected to the LED chip 506, metal leads 505a and 505b, substrate electrodes 507a and 507b connected to an external power source or/and a signal interface, and fixed via holes 508a and 508b, 508c and 5 0 8 d LED The LED wafer in the fifth embodiment a, 5b embodiment; five leaves are multiple, and one electrode (positive electrode or negative electrode) of all the LED chips 506 passes through the metal lead 505b and the metal base layer respectively. The first wire bonding region 504b of the substrate 501 is connected, and the other electrode of the LED chip 506 is connected to the bonding wire region 504a of the metal-layer substrate 503 through the metal wires 5〇5a, respectively, to form the above-mentioned upper substrate 501. The parallel connection method of the LED chip 506. The upper surface of the solid crystal region, the inclined side wall surface 51 of the two-layer substrate, the surface 510a of the two-layer substrate, the upper side wall 51 ia and the lower side wall 51 ib of the potting area co-enclose the light-emitting space. The upper and lower two regions surrounded by the upper side wall 51 la and the lower side wall 51 lb may be filled with the same or different light transmissive encapsulating material. The lower potting area surrounded by the side wall 51 lb is filled with the phosphor-containing silicone and the upper side wall 51 la. Form No. A0101 Page 15 / Total 47 Page 0992047611-0 201208155 [0056] [0058] 099127098 Enclosed The above-mentioned white light LED can be prepared by injecting silicone or epoxy resin into the upper potting area. In addition, other transmissive encapsulating materials and/or various types of pre-formed lenses or other optical devices can be potted over the potting area by improving the appearance of the underlying substrate 5 and the potting zone coam 509. The potting region 509 can be a conductive or non-conductive material that can be the same or different in shape and size as the bottom substrate 501, such as square, rectangular, circular, or other various shapes. The upper and lower areas of the upper side wall 511 & and the lower side wall 5丨丨b in the fifth embodiment a, 5b may be symmetrical or/and asymmetrical, different or/and the same shape, thereby realizing Different light shapes and light intensity distributions, for example, square, rectangular, elliptical, circular or other various shapes. The upper side wall 511 a, the lower side wall 511 b and the surface of the bottom substrate 5 〇 1 may be perpendicular or beveled or curved, and the upper side wall 511 a and the lower side wall 511 b may be smooth or smooth arc. , the use of the control of the light distribution in the potting zone 5〇9, and then change the light efficiency, light release and light intensity distribution. Usually, the upper side wall 511a and the lower side wall 511b are coated with a highly reflective material such as a snake. The exposed portions of the underlying substrate 501 and the two-layer substrate 503 which are not laid with electrodes or wire bonding regions are also usually coated with a reflective material such as Ag to reduce absorption and improve light extraction efficiency. As shown in FIG. 6 and FIG. 6b, another embodiment of the light-emitting chip package structure of the grooved double-layer substrate for LEI) package of the present invention comprises an underlying substrate 601, an insulating layer 602, and a two-layer substrate 6. 〇3& and 6〇31), insulating partition strips 6〇3c and 603d between the two substrates, a die bonding region disposed on the underlying substrate 1, and an LED wafer form number A0101 disposed on the solid crystal region by die bonding Page 16 of 47 0992047611-0 201208155 [0059] Ο [0060]

G 606、與LED晶片606連接的焊線區604a和604b、金屬引 線605a ’ 605b ’ 605c和605b,以及LED晶片606之間的 連線605、與外界電源或/和信號介面相連的二層基板電 極607a和607b、固定通孔6〇8a,608b,608c和608d、 由二層基板下侧壁61〇a、上侧壁610b和底層基板6〇ι的 固晶區上表面共同圍成的灌封出光空間609。 第六圖a、6b實施方案中的固晶區有二組LED晶片606, 每組6個晶片。每組晶片的第一晶片第一電極與基板焊線 區604b相連接,第六晶片的_二電板與基板焊線區6〇4a 相連’第一晶片的第夂電極與第二晶片的第一電極相連 ’以此類推,實現6個晶片串聯連接。整個LED支架内晶 片實現6串二並的連線方式。可以理解的,;LED晶片的數 量、組數等,可以根據需要進行調整。 第六圖a、6b的實施方案是將二片形狀、大小和厚度相同 的二層基板6〇3a和6〇3b對接敢置在底層基板601之上, 並且二層基板60 3 a和6 03b之間設置有絕緣隔斷帶60 3c和 603d,形成單層基板單元; 而二層基板603a和603b與底 層基板601在垂直方向疊加’並在二層基板603a和603b 與底層基板6〇ι之間設置有一絕緣層602,形成多層基板 單元。底層基板601和二層基板603a和603b通常採用具 良導熱和良導電的金屬材料,如銅、鋁、鎢、鉬和其他 金屬材料成匕們的合金,一般呈片狀疊加在一起。通常 單一基板的厚度介於幾百微米與幾毫米之間。單一基板 可採用由上逑材料構成的單層結構或多層結構。 [0061] 099127098 絕緣層6G2$常採用氧化物或氣化物薄膜材料 如氧化石夕 表單編號A0101 第17頁/共47頁 0992047611-0 201208155 和氮化矽等。通常其厚度介於幾微米與幾百微米之間。 為增強絕緣層602與底層基板601和二層基板6〇33和6〇31) 之間的粘著力,在絕緣層6〇2與底層基板6〇1和二層基板 603a和603b之間通常設置有改善粘著力的薄膜,通常採 用諸如鈦、鎳和鎢等金屬材料或由上述金屬組成的合金 層或由上述金屬和合金組成的多層結構,通常其厚度介 於幾十納米與幾百納米之間。 [0062] [0063] 絕緣隔斷帶603c和603d通常採用在二層基板6033和 603b之間設置一空隙,由後續灌封過程中自動填入通常 絕緣的透光性封襞材料或在二層基板6 〇 3 a和6 〇 3 b相對的 端面塗敷一層無機非金屬絕緣材料或在空隙嵌入無機非 金屬絕緣材料^ 、 第六圖a、6b實施方案中的底層基板6〇1主要作為封裝結 構的基礎和導熱通道,二層基板6〇3&和6〇31)的内側壁不 僅為放置在底層基板601上的辱|6〇6提舞了出光通道, 反射侧表面,也提供了與晶片和外界的電連接點,二層 基板603a和603b本身兼具導電電極的功能。二層基板 603a和603b的階梯狀内壁形成了灌封出光空間6〇9。上 側壁610b和下侧壁610a圍成的上下二區可灌注相同或不 同的透光性封裝材料。如下側壁61 〇 a圍成的下灌封區灌 注含螢光粉的矽膠和上側壁61〇1)圍成的上灌封區灌注矽 膠或環氧樹脂則可以製備出通常的白光LED。通過改良二 層基板603a和603b的外觀結構,在灌封區6〇9上方還可 灌封其他透光性封裝材料和/或放置各類預成形的透鏡或 其他光學ϋ件。底層基板601和二層基板6〇33和6〇扑的 099127098 表單編號A010】 第]8頁/共47頁 〇992〇47611-〇 201208155 外形可以相同或不同,大小可以相同也可以不同,例如 採用方形、矩形、圓形或其他任意形狀。 [0064] Ο 第六圖a、6b實施方案中的上側壁610b和下側壁610a圍 成的上下二區灌封區可以是對稱或不對稱、具有不同或 相同的形狀,從而實現不同的光形和光強度分佈,例如 採用方形、矩形、橢圓形、圓形或其他形狀。下側壁 610a與底層基板601表面之間和上側壁61 Ob與二層基板 603a和603b的臺階表面之間可以成垂直或成斜角,上侧 壁610b和下侧壁610a本身可以是光滑平面或光滑弧面, 用以控制灌封區&09ϋ的光線分佈,繼而改變出光效率, 光形和光強度參佈。通常上述上側壁610b和下側壁610a 表面塗有南反射材料,如Ag。底層基板601和二層基板 6 03a和6 03b未鋪設電極或焊線區的裸露部分也通常塗有 高反射材料,如Ag,以減少吸收。為避先短路,上述支 架四周未鋪設電極或焊線區的裸露部分也可塗敷一層絕 緣膜’如氧化碎和氣化發等.。 Ο [0065] 如第七圖a、7b所示’是本發明的另一種用於led封裝的 帶散熱結構的發光晶片封裝結構的實施方式,包括底層 基板701、絕緣層702a和702b,二層基板703、在底層基 板701上設置的固晶區、通過固晶設置在固晶區上的led 晶片706、與LED晶片706連接的基板焊線區7〇4a和7〇4b 、金屬引線705a和705b,與外界電源或/和信號介面相 連的基板電極707a ’ 7〇7b,707c,707d,707e,和 707f、固定通孔708a,7〇8b,708c和708d、頂部散熱 柱陣列7U、散熱柱陣列基板711a、散熱柱陣列内側灌封 099127098 表單編號A0101 第19頁/共47頁 0992047611-0 201208155 區圍堰711b、在底層基板701周邊設置的散熱凹槽712、 底層基板701底面設置的散熱凹槽陣列713、和LED晶片 下方熱沉714。二層基板703的内側壁710a、圍堰71 lb的 内侧壁711c、固晶區的上表面等共同圍成了灌封出光空 間 709。 [0066] 第七圖a、7b的實施方案是將中央有一通孔的二層基板 703放置在底層基板701之上,兩者之間設置有一絕緣層 702a。底層基板701和二層基板703通常採用具良導熱和 良導電的金屬材料,如銅、铭、鶴、翻和其他金屬材料 或它們的合金,一般呈片狀疊加在一起;當然,也可以 採用絕緣材料做成,而在絕緣基板的表面製作導電薄膜 即可。通常單一基板的厚度介於幾百微米與幾毫米之間 。單一基板也可採用由上述材料構成的多層結構。 [0067] 絕緣層702a通常採用氧化物或氮化物薄膜材料,如氧化 矽和氮化矽等。通常其厚度介於幾微米與幾百微米之間 。為增強絕緣層702a與底層基板701和二層基板703之間 的粘著力,在絕緣層702a與底層基板701和二層基板703 之間通常設置有改善粘著力的金屬薄膜,例如採用諸如 鈦、鎳和鎮等金屬材料或由上述金屬組成的合金層或由 上述金屬和合金組成的多層結構,通常其厚度介於幾十 納米與幾百納米之間。 [0068] 第七圖a、7b實施方案中的散熱基板71 la放置在二層基板 703之上,二基板之間設置有一絕緣層702b。散熱基板 711a上設置有散熱柱陣列711 (第七圖b中只示意晝了其 中的右上四分之一區内的散熱柱陣列,省略了其餘部分 099127098 表單編號 A0101 第 20 頁/共 47 頁 0992047611-0 201208155 的散熱柱陣列),其内側為灌封區圍堰711b,圍堰内侧 有圍堰内側壁711c。散熱基板711a、散熱柱陣列711和 灌封區圍堰71 lb採用具良導熱的金屬材料或非金屬材料 製成,形成散熱結構,進行散熱。通常單一散熱柱的直 徑,高度和散熱柱間距介於幾百微米與幾毫米之間。如 果散熱基板為絕緣材料,絕緣層702b就可以省略。 [0069] 絕緣層702b設置在散熱基板711a和二層基板703之間, 通常採用氧化物或氮化物薄膜材料,如氧化矽和氮化矽 等,通常其厚度介於幾微米與幾百微米之間。為增強絕 〇 緣層702b與散熱基板711 a和二層基板703之間的粘著力 ,在絕緣層702b與散熱基板711a和二層基板703之間通 常設置有改善粘著力的金屬薄膜,通常採用諸如鈦、鎳 和嫣等金屬材料或由上述金屬組成的合金層或由上述金 屬和合金組成的多層結構,通常其厚度介於幾十納米與 幾百納米之間。 [0070] 可以理解的,第七圖a、7b實施方案中也可以不設置絕緣 〇 層702b,將頂部散熱柱陣列711,散熱柱陣列基板711a 、散熱柱陣列内侧灌封區圍堰711b、散熱柱陣列内側灌 封區圍堰内壁711c直接設置在二層基板703之上,也可以 直接在加厚的二層基板703上製備支架頂部散熱柱陣列 711、散熱柱陣列基板711a、散熱柱陣列内侧灌封區圍堰 711b、散熱柱陣列内側灌封區圍堰内側壁711c。散熱柱 陣列基板71 la也可以通過粘貼的辦法粘貼在二層基板703 之上。 [0071] 第七圖a、7b實施方案中的底層基板701不僅作為發光晶 099127098 表單編號A0101 第21頁/共47頁 0992047611-0 201208155 片封裝結構的基礎,同時又提供了與晶片和外界的组 基板電極707a和707b,底層基板701本身兼具導電電極 的功此。一層基板7 0 3的中央通孔侧壁不僅為放置在底層 基板701上的晶片706提供了出光通道、反射側表面,也 提供了與LED晶片和外界的—組基板電極7〇7e,, 707c和707d,二層基板703本身兼具導電電極的功能。 LED晶片的兩個電極通過金屬引線分別與底層基板7〇1和 一層基板703的基板電極進行電連接。 [0072] [0073] 二層基板703 t央的内孔形成了灌封出光空間7〇9的下部 ,散熱柱陣列内側灌#區圍堰内侧壁7Uc形成了灌封出 光空間709的上部。灌封出光空間7〇9上下二部町灌注相 同或不同的透光性封裝材料。如下灌封區灌注含螢光粉 的矽膠和上灌封區灌注矽膠或環氧樹脂則可以製備出通 常所述的白光LED。通過改良底層基板7〇1二層基板703 和散熱柱陣列内側灌封區圍堰711 b的外觀妹構,在灌射 區709上方還可灌封其他透先性封裝封料或放置各類 預成形的透鏡或其他考學-件。底層基板7〇1、二層基板 703和散熱柱陣列基板711a可以有相同或不同的外形,大 小’和厚度,例如通常上小下A、採用方形、矩形或圓 形,單層厚度介於幾百微米到幾毫米之間。 第七圖a、7b實施方案中的散熱柱陣列内側灌封區圍堰内 侧壁川c形成的灌封區上部和二層基板7〇3的中央通孔側 壁71〇a形成的下部可以是對稱或不對稱 '不同或相同的 形狀’從而實現不同的絲和光強度分佈,例如採用方 形 '矩形、橢圓形、圓形或其他形狀。中央通孔側壁 099127098 表單編號A0101 第22頁/共47頁 0992047611-0 201208155 Ο [0074] 710a與底層基板701表面之間、散熱柱陣列内侧灌封區圍 堰内側壁711c與二層基板703的臺階表面之間可以成垂直 或成斜角,中央通孔侧壁71 0 a和散熱柱陣列内側灌封區 圍堰内側壁711 c本身可以是光滑平面或光滑弧面,用以 控制灌封區709内的光線分佈,繼而改變出光效率,光形 和光強度分佈。通常,中央通孔側壁71 0 a和散熱柱陣列 内侧灌封區圍堰:内側壁711 c表面塗有高反射材料,如Ag 。底層基板701和二層基板703未鋪設電極或焊線區的裸 露部分也通常塗有高反射材料,如Ag,以減少吸收。為 避免短路,上述支架四周未鋪設電極或焊線區的裸露部 分也可塗敷一層絕緣膜,如氧化矽和氮化矽等。 Ο 進一步的,底層基板701的下部設置有散熱凹槽陣列713 ,並且位於LED晶片706下方設置有良導熱作為熱沉714 。散熱凹槽陣列713的寬度、深度和凹槽間距介於幾百微 米與幾毫米之間。交叉排布的散熱凹槽陣列可形成散熱 柱陣列,進一步增加散熱面積。為增強與其他部件或散 熱機構的接觸面積,避免在接觸區内形成空洞,上述散 熱凹槽陣列713可設置在不與其他部件或散熱機構接觸的 底層基板下表面;並且散熱凹槽陣列713可以排列成各 種形狀。在與其他部件或散熱機構接觸的底層基板下通 常可加設具良好導熱性能的熱沉714。 [0075] 如第八圖a、8b所示,是本發明的一種用於LED封裝的帶 散熱結構多晶片集成的發光晶片封裝結構,包括底層基 板801、底板中央設置的固晶區801a、絕緣層802a, 802b,802c,802d,802e和802f、四片二層基板803a 099127098 表單編號A0101 第23頁/共47頁 0992047611-0 201208155 ’ 80 3b,803c和803d、通過固晶設置在固晶區上的LED 晶片806a,806b,806c和806d、金屬引線805、與外界 電源或/和信號介面相連的基板電極8〇7a,807b,807c ’ 807d ’ 807e ’ 807f ’ 807g和807h、固定通孔808a, 80 8b,808c和808d、灌封區頂部圍堰812。在四片二層 基板上分別設有裸露的焊線區8iia,811b,811c和 811 d。固晶區的上表面、四片二層基板相對應的斜側壁 810a ’ 81 Ob,810c,和810d和灌封區頂部圍堰内側壁 813共同圍成灌封出光空間809,供設置在固晶區的led 晶片出光。在灌封區頂鄭圍堰8 i 2上設有散熱柱陣列8 i 4 ,從而提高散熱效率。 [0076] [0077] 第八圖a、8b的實施方案是將四片方形二層基板8〇3a, 803b ’ 8〇3c,和803d放置在圓形的底層基板801之上, 一基板之間設置有一絕緣層8〇2a。底層基板801和二層基 板803a,803b,803c和803d通常採用具良導熱和良導 電的金屬材料,如銅、鋁、鎢、鉬和其化各屬材料或它 們的合金,一般呈片狀叠加喪一起,通常單一基板的厚 度介於幾百微米與幾毫米之間。單—基板也可採用由上 述材料構成的多層結構。 絕緣層802a設置在底層基板801和二層基板803a ,803b ,803c和803d之間,通常採用氧化物或氮化物薄膜材料 ,如氧化矽和氮化矽等。通常其厚度介於幾微米與幾百 微米之間。為增強絕緣層8〇2a與底層基板8〇1和二層基板 8〇3a,803b,803(;和8〇3(1之間的粘著力,在絕緣層 8〇2a與底層基板8〇1和二層基板8〇3&,8〇3b,觀c和 099127098 表單編號A0101 第24頁/共47頁 0992047611-0 201208155 803d之間通常設置有改善粘著力的金屬薄膜,通常採用 諸如鈦、錄和鶴等金屬材料或由上述金屬組成的合金層 或由上述金屬和合金組成的多層結構,通常其厚度介於 幾十納米與幾百納米之間。 [0078] Ο G [0079] 四片二層基板803a,803b,803c和803d之間設置有一 絕緣帶802c,802d,802e和802f。絕緣層 802c,802d ,802e和802f通常採用氧化物薄膜材料或氮化物薄膜材 料或無機非金屬絕緣材料或設置一空隙在由後續灌封過 程中自動填入通常絕緣的透光性封裝材料或在空隙嵌入 無機非金屬絕緣材料。通常其厚度或空隙介於幾微米與 幾百微米之間。為增強絕緣層802c,802d,802e和 802f與二層基板803a,803b,803c和803d之間的粘著 力,在絕緣層802a與二層基板803a,803b,803c和 803d之間通常設置有改善粘著力的金屬薄膜,通常採用 諸如欽、錄和鶴等金屬材料或由上述金屬組成的合金層 或由上述金屬和合金組成的多層結構,通常其厚度介於 幾十納米與幾百納米之間。 四片二層基板803a,803b,803c和803d内侧設置有斜 側壁810a,810b,810c和810d和裸露焊線區811a, 811b,811c和81 Id。斜側壁810a,810b,810c和810d 圍成灌封出光空間809下部。底層基板801和二層基板 803a,803b,803c和803d外側設置有與外界電源或/和 信號介面相連的基板電極807a,807b,807c,807d, 807e,807f,807g和807h,底層基板801外側設置固定 通孑L808a,808b,808c和808d ° 099127098 表單編號A0101 第25頁/共47頁 0992047611-0 201208155 [0080]灌封區頂部圍堰812設置在二層基板803a,803b,8〇3c 和803d之上。灌封區頂部圍堰812通常採用具良導熱的金 屬材料或陶瓷材料,其中金屬材料可以為銅、鋁 '鎢、 鉬和其他金屬材料或它們的合金。灌封區頂部圍堰和 二層基板803a,803b,803c和803d—般呈片狀疊加在 起。通常灌封區頂部圍堰812的厚度介於幾百微米與幾 毫米之間。如果灌封區頂部圍堰812為導電材質,灌封區 頂部圍堰812和二層基板8〇3a,803b,803c和803d之間 設置有一絕緣層802b。絕緣層802b通常採用氧化物或氮 化物薄膜材料,如矽和氮化參等p通常其厚度介於 幾微米與幾百微米之間。為增強缉緣層8〇2b與灌封區頂 部圍堰812和二層基板8〇3a,803b,803c和803d之間的 粘著力,在絕緣層802b與灌封區頂部圍堰812和二層基板 803a,803b,803c和803d之間通常設置有改善粘著力 的薄膜,通常採用諸如鈦、鎳和鎢等金屬材料或由上述 金屬組成的合金層或由上述金屬和合金组成的多層結構 ’通常其厚度介於幾十納米與幾百納米之間。如果灌封 區頂部圍堰812為非導電材質,灌封區頂部圍堰812和二 層基板803a,803b,803c和803d之間設置有改善枯著 力的金屬溥膜,通常採用諸如鈦、錄和鎢等金屬材料或 由上述金屬組成的合金層或由上述金屬和合金組成的多 層結構’通常其厚度介於幾十納米與幾百納米之間。灌 封區頂部圍堰81 2也可以通過粘貼的辦法粘貼在二層基板 803a,803b,803c和803d之上。 [0081]灌封區頂部圍堰81 2内側壁81 3圍成灌封出光空間809的 099127098 表單編號A0101 第26頁/共47頁 0992047611-0 201208155 上部。灌封區頂部圍堰812頂部還設置有散熱柱陣列8 i 4 ,以增大散熱面積《通常單一散熱柱的直徑,高度和散 熱柱間距介於幾百微米與幾毫米之間。 [0082] Ο [0083] ❹ 四組LED晶片806a ’ 80 6b ’ 806c和806d (每組二顆)放 置在底層基板801的固晶區8〇la,其中底層基板go〗的固 晶區801a表面設置有固晶材料。led晶片806a,806b, 806c和806d的其令一電極均與底層基板8〇ι的固晶區 801 a上的焊線區連接,另一電極分別與二層基板8〇3a, 803b ’ 803c和803d的裸露焊線區811a,811b,811c和 811d相接,形成四組LED晶片8〇6a,806b,806c和806d 共陽極或陰極’但不同陰極或腸極的連接方式。組内晶 片為並聯連接。實際應用每組可以有不同顆數的晶片, 組内晶片也可以串或並或串並結合。四组晶片組可以相 同也可以疋不同的晶片。如果採用一紅一綠一紅一黃, 則可以產生高品質全彩顯示點。 第八圖a、8b實施方案中的二層基板内斜側壁81 〇a, 81 Ob ’ 810c和810d形成了灌封出光空間809下部,灌封 區頂部圍堰内侧壁813形成了灌封出光空間809下部上部 。灌封出光空間809上下二區可灌注相同或不同的透光性 封裝材料。如灌封出光空間80 9下二區灌注含螢光粉的石夕 膠和灌封出光空間809上二區灌注矽膠或環氧樹脂則可以 製備出通常所述的白光LED。通過改良灌封區頂部圍堪 812的外觀結構,在灌封區809上方還可灌封其他透光性 封裝材料和/或放置各類預成形的透鏡或其他光學器件。 底層基板801 ’四片二層基板803a,803b,803c和803d 099127098 表單編號A0101 第27頁/共47頁 0992047611-0 201208155 圍成的外形,灌封區頂部圍堰81 2的外形可以相同或不同 ,大小可以相同也可以不同。例如採用方形、矩形、圓 形或其他形狀。 [0084] 第八圖a、8b實施方案中的二層基板内斜侧壁81〇a , 810b,810c和810d形成了灌封出光空間8〇9下部,灌封 區頂部圍堰内側壁81 3形成了灌封出光空間8 〇 9上部可以 是對稱或不對稱、不同或相同的形狀,從而實現不同的 光形和光強度分佈,例如採用方形、矩形、橢圓形、圓 形或其他形狀。二層基板内斜侧壁81彻,8l〇b,810c和 810d與底層基板801表面之間和灌封區須部圍堰内側壁 813與二層基板8〇3a,803b ’ 803c和803d的裸露焊線區 811a,811b,811c和81 Id表面之間可以成垂直或成斜 角’一層基板内斜侧壁810a ’ 810b,810c和81 0d和灌 封區頂部圍堰内側壁813本身可以是光滑平面或光滑弧面 ’用以控制灌封區8 〇 9内的光線分佈,繼而改變出光效率 ,光形和光強度分佈。通常上述二層基被内斜侧壁810a ’ 81 Ob,81 〇c和810d和灌封區頂部圍堰内侧壁813表面 塗有高反射材料’如Ag ◊底層基板801,二層基板8〇3a ,803b ’ 803c和803d和灌封區頂部圍堰812未鋪設電極 或焊線區的裸露部分也通常塗有高反射材料,如Ag,以 減少吸收。為避免短路,上述支架四周未鋪設電極或焊 線區的裸露部分也可塗敷一層絕緣膜,如氧化矽和氮化 矽等。 如第九圖a、9b所示,是本發明的另一種用於LED封裝的 晶片封裝結構的實施方式,包括子基板901和9〇2、在子 099127098 表單編號A0101 第28頁/共47頁 0992047611-0 [0085] 201208155 基板901和/或902上設置的固晶區、通過固晶設置在固曰 區上的LED晶片906、分別在子基板901和902設置焊線區 和基板電極904a和904b、金屬引線9〇5a和905b。 [0086] Ο [0087] 本實施方式中’子基板901和902為非導電子基板,例如 採用陶瓷基板等’通過在水準方向相互拼接組成單層其 板爭元。同時’為了使付焊線區與基板電極9〇4a和9〇4b 之間實現導電連接’可以在子基板901和902的上表面製 作導電金屬薄膜,例如採用諸如欽、鎳和鎢等金屬材料 或由上述金屬組成的合金層或由上述金屬和合金組成的 多層結構,通常其厚度介於幾十納米與幾官納米之間。 進一步的,固晶區可以根據需要在子基板9〇1和9〇2上任 意設置,例如在子基板上表面設置的凹坑等,凹坑本身 構成了發光晶片的灌封出光空間。當然,還可以在凹坑 的四周設置突起的圍堰,形成更好的灌封出光空間。 [0088] Ο [0089] 可以理解的,上述實施例的結構特徵寸反^據需要進行 任意組合而組成新的實施方式,本發保護範圍不限 於上述的實施方式,應為上述結構特徵的任意組合。 由於上述發光晶片封裝結構内不包含任何高分子材料, 其抗紫外光照射和高低溫衝擊能力很強,基本不受環境 的影響,大大提高了 LED的可靠性,上述發光晶片封裝結 構可以承受200 °C-500。〇以上的溫度,使得LED晶片可 以通過共晶焊技術固定到底層基板上。底基底板再通過 固定通孔用螺絲將其固定到其他部件或散熱機構上,達 成十分良好的散熱通道。如果在底層基板與其他部件或 099127098 表單編號A0101 第29頁/共47頁 0992047611-0 201208155 散熱機構之間能墊充散熱粘接材料,則其散熱性能將更 佳。大電流或大功率下,由於介面熱阻很低,整個支架 又是一個金屬基良導體,使得LED晶片產生熱量能迅速傳 導出來,使LED支架内的熱積聚降到了最低,從而大大提 高了 LED晶片的抗衰性和可靠性。另外,該封裝結構除了 可以應用到LED晶片的封裝,也可以應用到其他的發光晶 片的封裝。 【圖式簡單說明】 [0090] 下面將結合附圖及實施例對本發明作進一步說明,附圖 中·· [0091] 第一圖:現有一種用於LED封裝的常見支架和連接方式。 [0092] 第二圖:現有另一種用於大功率LED封裝的常見支架和連 接方式。 [0093] 第三圖a、3b :本發明的發光晶片封裝結構的第一實施例 的示意圖。 [0094] 第四圖a、4b :本發明的發光晶片封裝結構的第二實施例 的示意圖。 [0095] 第五圖a、5b :本發明的發光晶片封裝結構的第三實施例 的示意圖。 [0096] 第六圖a、6b :本發明的發光晶片封裝結構的第四實施例 的示意圖。 [0097] 第七圖a、7b :本發明的發光晶片封裝結構的第五實施例 的示意圖。 099127098 表單編號A0101 第30頁/共47頁 0992047611-0 201208155 [0098] 第八圖a、8b :本發明的發光晶片封裝結構的第六實施例 [0099] 的示意圖。 第九圖a、9b :本發明的發光晶片封裝結構的第七實施例 的示意圖。 [0100] 【主要元件符號說明】 電極支架101、104 LED晶片102 [0101] 金屬引線103a、103b支架連接片105 [0102] 〇 [0103] 基座201 LED晶片202 金屬引線203a、203b電極片204a、204b [0104] 反射杯205子基板301、302 [0105] 金屬引線303、304底層子基板305 [0106] 發光晶片306絕緣帶307 [0107] 基板電極 308a、308b、3:鱗 l: p " : .r.-'* 'IliiU . i -; !./'i - ’ [0108] 〇 [0109] ..~3、丨 β.' :…-.l~% «; 灌封圍堰30Θ 底層基板401絕緣層402 [0110] 二層基板403底層焊線區404a [0111] 頂層焊線區404b金屬引線405a、405b [0112] LED晶片406底層電極407a [0113] 頂層電極407b固定通孔408a、408b、408c、408d [0114] 灌封出光空間409下側壁410a 099127098 表單編號A0101 第31頁/共47頁 0992047611-0 201208155 [0115] [0116] [0117] [0118] [0119] [0120] [0121] [0122] [0123] [0124] [0125] [0126] [0127] [0128] [0129] [0130] [0131] [0132] [0133] 099127098 上側壁410b 底層基板501絕緣層502 二層基板503二層基板圍堰503a 基板焊線區504a、504b金屬引線505a、505b LED晶片506基板電極507a、507b 固定通孔508a、508b、508c、508d灌封區圍堰509 斜側壁面510上表面510a 上側壁511a下侧壁511b 底層基板601絕緣層602 二層基板 603a、603b 隔斷帶 603c、603d 焊線區604a、604b連線605 金屬引線 605a、605b、605c、605b LED晶片 606 二層基板電極607a、607b固定通孔608a、608b、 608c 、 608d 灌封出光空間609 底層基板701絕緣層702a、702b 二層基板703焊線區704a、704b 金屬引線705a、705b LED晶片706 基板電極 707a、707b、707c、707d、707e、707f 固定通孔 708a、708b、708c、708d 表單編號A0101 第32頁/共47頁 0992047611-0 201208155 [0134] 灌封出光空間709内側壁710a [0135] 頂部散熱柱陣列711熱柱陣列基板711a [0136] 圍堰711b内側壁711c [0137] 散熱凹槽712散熱凹槽陣列713 [0138] 熱沉714 [0139] 底層基板801固晶區801a [0140] 〇 [0141] 絕緣層 802a、802b、802c、802d、802e、802f 二層基板 803a、803b、803c、803d [0142] 金屬引線805 [0143] LED晶片 80 6a、806b、80 6c、806d [0144] 基板電極 807a、807b、807c、807d、807e、807f、 807g 、 807h [0145] 固定通孔 808a、808b、808c、808d 〇 则 灌封出光空間809斜側壁810a' 810b、810c、810d [0147] 焊線區 811a、811b、811c、811d 頂部圍堰 812 [0148] 内側壁813散熱柱陣列814 [0149] 子基板901、902基板電極904a、904b [0150] 金屬引線905a、905b LED晶片906 099127098 表單編號A0101 第33頁/共47頁 0992047611-0G 606, bond wire regions 604a and 604b connected to the LED chip 606, metal leads 605a' 605b' 605c and 605b, and a wiring 605 between the LED chip 606, a two-layer substrate connected to an external power source or/and a signal interface The electrodes 607a and 607b, the fixed through holes 6〇8a, 608b, 608c and 608d, and the upper surface of the solid crystal region of the lower substrate side wall 61〇a, the upper side wall 610b and the bottom substrate 6〇1 The light space 609 is sealed. The die attach region in the sixth embodiment a, 6b embodiment has two sets of LED chips 606, each set of 6 wafers. The first electrode of each of the first wafers of the wafer is connected to the substrate bonding wire region 604b, and the second electrode of the sixth wafer is connected to the substrate bonding wire region 6〇4a, the first electrode of the first wafer and the second wafer. One electrode is connected 'and so on, and six wafers are connected in series. The entire LED holder inner chip realizes the 6-string parallel connection method. It can be understood that the number of LED chips, the number of groups, and the like can be adjusted as needed. The embodiment of the sixth figure a, 6b is that two two-layer substrates 6〇3a and 6〇3b having the same shape, size and thickness are butt-joined on the base substrate 601, and the two-layer substrates 60 3 a and 6 03b Insulation partition strips 60 3c and 603d are disposed therebetween to form a single-layer substrate unit; and the two-layer substrates 603a and 603b are superimposed in the vertical direction with the underlying substrate 601 and between the two-layer substrates 603a and 603b and the underlying substrate 6〇 An insulating layer 602 is provided to form a multilayer substrate unit. The base substrate 601 and the two-layer substrates 603a and 603b are usually made of a metal material having good heat conductivity and good electrical conductivity, such as copper, aluminum, tungsten, molybdenum and other metal materials, which are generally laminated in a sheet form. Typically a single substrate has a thickness between a few hundred microns and a few millimeters. The single substrate may be a single layer structure or a multilayer structure composed of a top material. [0061] 099127098 Insulation layer 6G2$ is often made of an oxide or vapor film material such as oxidized oxide eve Form No. A0101 Page 17 of 47 0992047611-0 201208155 and tantalum nitride. Usually its thickness is between a few microns and a few hundred microns. In order to enhance the adhesion between the insulating layer 602 and the underlying substrate 601 and the two-layer substrates 6〇33 and 6〇31), a common setting between the insulating layer 6〇2 and the underlying substrate 6〇1 and the two-layer substrates 603a and 603b is generally provided. a film having improved adhesion, usually a metal material such as titanium, nickel, and tungsten or an alloy layer composed of the above metal or a multilayer structure composed of the above metal and alloy, usually having a thickness of several tens of nanometers and several hundred nanometers between. [0063] The insulating partition strips 603c and 603d are generally provided with a gap between the two-layer substrates 6033 and 603b, which is automatically filled with a normally insulating translucent sealing material or a two-layer substrate during the subsequent potting process. 6 〇3 a and 6 〇3 b opposite end faces coated with an inorganic non-metallic insulating material or embedded in the voids of inorganic non-metallic insulating material ^, the bottom substrate 6 〇 1 in the embodiment of the sixth figure a, 6b is mainly used as a package structure The base and heat conduction channels, the inner sidewalls of the two-layer substrates 6〇3& and 6〇31) not only dance the light-emitting channel on the underlying substrate 601, but also reflect the side surface, also provided with the wafer. The electrical connection points to the outside, the two-layer substrates 603a and 603b themselves have the function of a conductive electrode. The stepped inner walls of the two-layer substrates 603a and 603b form a potting light-emitting space 6〇9. The upper and lower two regions enclosed by the upper side wall 610b and the lower side wall 610a may be filled with the same or different light transmissive encapsulating materials. A conventional white LED can be prepared by injecting silicone or epoxy resin into the lower potting area of the side wall 61 〇 a, which is filled with the phosphor powder and the upper side wall 61〇1). By modifying the appearance of the two-layer substrates 603a and 603b, other light-transmissive encapsulating materials and/or various types of pre-formed lenses or other optical elements can be potted over the potting regions 6〇9. The base substrate 601 and the two-layer substrate 6〇33 and 6〇099127098 Form No. A010] The 8th page/total 47 pages 〇992〇47611-〇201208155 The shapes may be the same or different, the sizes may be the same or different, for example, Square, rectangular, round, or any other shape. [0064] The upper and lower two-zone potting regions enclosed by the upper side wall 610b and the lower side wall 610a in the sixth embodiment a, 6b embodiment may be symmetric or asymmetric, have different or the same shape, thereby achieving different light shapes. And light intensity distribution, for example, square, rectangular, elliptical, circular or other shapes. The lower sidewall 610a and the surface of the base substrate 601 and the upper sidewall 61 Ob may be perpendicular or oblique between the stepped surfaces of the two substrates 603a and 603b, and the upper sidewall 610b and the lower sidewall 610a may themselves be smooth planes or Smooth curved surface, used to control the light distribution in the potting area & 09ϋ, and then change the light efficiency, light shape and light intensity. Typically, the upper sidewall 610b and the lower sidewall 610a are coated with a south reflective material such as Ag. The underlying substrate 601 and the two-layer substrate 6 03a and 630b are also uncoated with exposed portions of the electrode or wire bond regions which are also typically coated with a highly reflective material, such as Ag, to reduce absorption. In order to avoid short-circuiting, the exposed portion of the electrode or the wire bonding area around the above-mentioned bracket may also be coated with an insulating film such as oxidized powder and gasified hair. [0065] As shown in FIG. 7 and FIG. 7b, FIG. 2 is another embodiment of the light-emitting chip package structure with a heat dissipation structure for a led package of the present invention, including an underlying substrate 701, insulating layers 702a and 702b, and a second layer. a substrate 703, a die bonding region disposed on the underlying substrate 701, a led wafer 706 disposed on the die bonding region by die bonding, a substrate bonding region 7〇4a and 7〇4b connected to the LED chip 706, and a metal lead 705a and 705b, substrate electrodes 707a' 7〇7b, 707c, 707d, 707e, and 707f connected to the external power source or/and signal interface, fixed through holes 708a, 7〇8b, 708c and 708d, top heat dissipating column array 7U, heat dissipating column Array substrate 711a, heat sink array inside potting 099127098 Form No. A0101 Page 19 / Total 47 page 0992047611-0 201208155 Area 堰 711b, heat dissipation groove 712 provided around the bottom substrate 701, heat dissipation concave provided on the bottom surface of the bottom substrate 701 A slot array 713, and a heat sink 714 beneath the LED wafer. The inner side wall 710a of the second layer substrate 703, the inner side wall 711c of the bank 71b, the upper surface of the die bonding area, and the like collectively enclose the potting light space 709. [0066] The embodiment of the seventh embodiment a, 7b is such that a two-layer substrate 703 having a through hole in the center is placed on the underlying substrate 701 with an insulating layer 702a disposed therebetween. The bottom substrate 701 and the second substrate 703 are generally made of a metal material having good heat conductivity and good electrical conductivity, such as copper, inscriptions, cranes, flips, and other metal materials or alloys thereof, and are generally stacked in a sheet shape; of course, insulation may also be used. The material is made, and a conductive film can be formed on the surface of the insulating substrate. Typically a single substrate has a thickness between a few hundred microns and a few millimeters. A single substrate may also be a multilayer structure composed of the above materials. [0067] The insulating layer 702a is usually made of an oxide or nitride thin film material such as hafnium oxide and tantalum nitride. Usually its thickness is between a few microns and a few hundred microns. In order to enhance the adhesion between the insulating layer 702a and the underlying substrate 701 and the two-layer substrate 703, a metal film for improving the adhesion is usually disposed between the insulating layer 702a and the underlying substrate 701 and the two-layer substrate 703, for example, using titanium, A metal material such as nickel or a town or an alloy layer composed of the above metal or a multilayer structure composed of the above metal and alloy usually has a thickness of between several tens of nanometers and several hundred nanometers. [0068] The heat dissipation substrate 71 la in the embodiment of the seventh embodiment a, 7b is placed on the two-layer substrate 703, and an insulating layer 702b is disposed between the two substrates. A heat dissipating column array 711 is disposed on the heat dissipating substrate 711a (only the heat dissipating column array in the upper right quarter region is illustrated in the seventh figure b, and the rest is omitted. 099127098 Form No. A0101 Page 20 of 47 0992047611 -0 201208155 Heatsink array), the inside is the potting zone cofferdam 711b, and the inside of the cofferdam has the cofferdam inner side wall 711c. The heat dissipation substrate 711a, the heat dissipation column array 711, and the potting zone cofferdam 71 lb are made of a metal material or a non-metal material having good heat conductivity to form a heat dissipation structure for heat dissipation. Usually the diameter of a single heat sink, the height and the distance between the heat sinks are between a few hundred microns and a few millimeters. If the heat dissipation substrate is an insulating material, the insulating layer 702b can be omitted. [0069] The insulating layer 702b is disposed between the heat dissipation substrate 711a and the two-layer substrate 703, and is usually made of an oxide or nitride film material, such as yttrium oxide and tantalum nitride, and the thickness thereof is usually between several micrometers and several hundred micrometers. between. In order to enhance the adhesion between the insulating layer 702b and the heat dissipation substrate 711a and the two-layer substrate 703, a metal film for improving the adhesion is usually disposed between the insulating layer 702b and the heat dissipation substrate 711a and the two-layer substrate 703, and is usually used. A metal material such as titanium, nickel, and niobium or an alloy layer composed of the above metal or a multilayer structure composed of the above metals and alloys usually has a thickness of between several tens of nanometers and several hundred nanometers. [0070] It can be understood that the insulating layer 702b may not be disposed in the embodiment of the seventh embodiment a, 7b, the top heat dissipation column array 711, the heat dissipation column array substrate 711a, the heat dissipation column array inner potting area encircling area 711b, and the heat dissipation. The inner wall 711c of the inner side of the column array is directly disposed on the two-layer substrate 703, and the heat-dissipating column array 711, the heat-dissipating column array substrate 711a, and the inner side of the heat-dissipating column array may be directly prepared on the thickened two-layer substrate 703. The enclosing area 711b of the potting area and the inner side wall 711c of the enclosing area of the inner side of the heat dissipating column array. The heat dissipation column array substrate 71 la may be pasted on the two-layer substrate 703 by pasting. [0071] The bottom substrate 701 in the seventh embodiment a, 7b embodiment not only serves as the basis of the package structure of the light crystal 099127098 Form No. A0101 page 21/47 page 0992047611-0 201208155, but also provides the same with the wafer and the outside world. The substrate electrodes 707a and 707b are combined, and the underlying substrate 701 itself has the function of a conductive electrode. The central via sidewall of a substrate 703 provides not only the light exit path and the reflective side surface of the wafer 706 placed on the underlying substrate 701, but also the set substrate electrodes 7〇7e, 707c and the LED chip and the outside. At 707d, the two-layer substrate 703 itself functions as a conductive electrode. The two electrodes of the LED chip are electrically connected to the substrate electrodes of the underlying substrate 7〇1 and the substrate 703 via metal leads, respectively. [0073] The inner hole of the second layer substrate 703 forms a lower portion of the potting light exiting space 7〇9, and the inner side wall 7Uc of the inner side of the heat dissipating column array forms the upper portion of the potting light exiting space 709. Potting and venting space 7〇9 up and down two parts of the same perfusion of the same or different translucent packaging materials. The commonly described white LEDs can be prepared by infusing the fluorite-containing enamel and the potting zone with enamel or epoxy in the potting zone as follows. By improving the appearance of the bottom substrate 7〇1 two-layer substrate 703 and the inner side of the heat-dissipating column array potting area 711 b, other transparent sealing materials or various types of pre-filling can be potted above the filling area 709. Formed lenses or other exam-pieces. The bottom substrate 7〇1, the two-layer substrate 703, and the heat-dissipating column array substrate 711a may have the same or different shapes, sizes 'and thicknesses, for example, generally smaller than A, square, rectangular or circular, and the thickness of the single layer is several Between 100 microns and a few millimeters. The lower portion of the upper portion of the potting zone formed by the inner side wall of the inner wall of the heat-dissipating column array in the seventh embodiment of the heat-dissipating column array and the central through-hole side wall 71〇a of the two-layer substrate 7〇3 may be symmetrical or Asymmetric 'different or identical shapes' to achieve different filament and light intensity distributions, for example using square 'rectangular, elliptical, circular or other shapes. Central through-hole sidewall 099127098 Form No. A0101 Page 22 / Total 47 Page 0992047611-0 201208155 Ο [0074] 710a and the surface of the bottom substrate 701, the inner side of the heat-dissipating column array, the inner side wall 711c of the potting area and the step of the two-layer substrate 703 The surfaces may be perpendicular or beveled, and the central through-hole side wall 71 0 a and the inner side wall 711 c of the inner side of the heat-dissipating column array may be a smooth plane or a smooth curved surface for controlling the potting area 709. The distribution of light, which in turn changes the light efficiency, light shape and light intensity distribution. Typically, the central through-wall side wall 71 0 a and the inner side of the heat-dissipating column array are encircled: the inner side wall 711 c is coated with a highly reflective material such as Ag. The exposed portions of the underlying substrate 701 and the two-layer substrate 703 that are not laid with electrodes or wire bonds are also typically coated with a highly reflective material, such as Ag, to reduce absorption. In order to avoid short circuit, the exposed portion of the above-mentioned bracket or the bare portion of the wire bonding area may also be coated with an insulating film such as yttrium oxide and tantalum nitride. Further, a lower portion of the bottom substrate 701 is provided with a heat dissipation groove array 713, and a good heat conduction is disposed under the LED wafer 706 as a heat sink 714. The width, depth, and groove pitch of the heat sink groove array 713 are between several hundred micrometers and a few millimeters. The array of heat dissipating grooves arranged in a crosswise manner forms an array of heat dissipating columns to further increase the heat dissipating area. In order to enhance the contact area with other components or the heat dissipating mechanism and avoid the formation of voids in the contact area, the above-mentioned heat dissipating groove array 713 may be disposed on the lower surface of the underlying substrate not in contact with other components or heat dissipating mechanisms; and the heat dissipating groove array 713 may Arranged into various shapes. A heat sink 714 having good thermal conductivity can be added to the underlying substrate in contact with other components or heat sinks. [0075] As shown in FIG. 8 and FIG. 8b, a light-emitting chip package structure with a heat dissipation structure multi-wafer integration for an LED package of the present invention includes an underlying substrate 801, a die bonding region 801a disposed at the center of the substrate, and insulation. Layers 802a, 802b, 802c, 802d, 802e and 802f, four-piece two-layer substrate 803a 099127098 Form No. A0101 Page 23/47 pages 0992047611-0 201208155 '80 3b, 803c and 803d, through the die-bonding in the die-bonding zone The upper LED chips 806a, 806b, 806c and 806d, the metal leads 805, the substrate electrodes 8〇7a, 807b, 807c' 807d ' 807e ' 807f ' 807g ' 807e ' 807f ' 807g and 807h, the fixed through holes 808a connected to the external power source or/and the signal interface , 80 8b, 808c and 808d, the top of the potting area 812. Exposed solder wire areas 8iia, 811b, 811c and 811d are respectively disposed on the four two-layer substrates. The upper surface of the solid crystal region, the corresponding oblique sidewalls 810a' 81 Ob, 810c, and 810d of the four-layer two-layer substrate and the inner wall 813 of the top cofferdam of the potting region are enclosed by a potting light-emitting space 809 for setting in the solid crystal The led chip of the area is lighted out. A heat dissipating column array 8 i 4 is arranged on the top of the Guanzheng 8 i 2 in the potting area to improve the heat dissipation efficiency. [0077] The embodiment of the eighth embodiment a, 8b is to place four square two-layer substrates 8〇3a, 803b′ 8〇3c, and 803d on the circular base substrate 801, between the substrates. An insulating layer 8〇2a is provided. The base substrate 801 and the two-layer substrates 803a, 803b, 803c, and 803d are generally made of a metal material having good heat conductivity and good electrical conductivity, such as copper, aluminum, tungsten, molybdenum, and various materials thereof or alloys thereof, which are generally stacked in a sheet form. Together, typically a single substrate has a thickness between a few hundred microns and a few millimeters. The single-substrate may also adopt a multilayer structure composed of the above materials. The insulating layer 802a is disposed between the underlying substrate 801 and the two-layer substrates 803a, 803b, 803c, and 803d, and is usually made of an oxide or nitride thin film material such as hafnium oxide and tantalum nitride. Usually its thickness is between a few microns and a few hundred microns. To enhance the adhesion between the insulating layer 8〇2a and the underlying substrate 8〇1 and the two-layer substrate 8〇3a, 803b, 803 (; and 8〇3 (1, between the insulating layer 8〇2a and the underlying substrate 8〇1) And a two-layer substrate 8〇3&, 8〇3b, view c and 099127098 Form No. A0101 Page 24/47 pages 0992047611-0 201208155 803d is usually provided with a metal film to improve the adhesion, usually using titanium, recorded a metal material such as a crane or an alloy layer composed of the above metal or a multilayer structure composed of the above metal and alloy, usually having a thickness of between several tens of nanometers and several hundred nanometers. [0078] Four pieces of two [0079] An insulating tape 802c, 802d, 802e and 802f is disposed between the layer substrates 803a, 803b, 803c and 803d. The insulating layers 802c, 802d, 802e and 802f are usually made of an oxide film material or a nitride film material or an inorganic non-metal insulating material or A gap is provided to automatically fill the normally insulating light-transmissive encapsulating material during the subsequent potting process or to embed the inorganic non-metallic insulating material in the void. Usually, the thickness or the gap is between several micrometers and several hundred micrometers. Layer 802c, 802d The adhesion between 802e and 802f and the two-layer substrates 803a, 803b, 803c and 803d is usually provided with a metal film for improving the adhesion between the insulating layer 802a and the two-layer substrates 803a, 803b, 803c and 803d, usually such as A metal material such as Qin, Lu, and crane, or an alloy layer composed of the above metal or a multilayer structure composed of the above metal and alloy, usually having a thickness of between several tens of nanometers and several hundred nanometers. Four sheets of two-layer substrates 803a, 803b The inner sides of 803c and 803d are provided with inclined side walls 810a, 810b, 810c and 810d and bare wire areas 811a, 811b, 811c and 81 Id. The oblique side walls 810a, 810b, 810c and 810d enclose the lower part of the potting light exiting space 809. The substrate electrodes 807a, 807b, 807c, 807d, 807e, 807f, 807g and 807h connected to the external power source or/and the signal interface are disposed outside the 801 and the two-layer substrates 803a, 803b, 803c and 803d, and the outer substrate 801 is fixedly disposed outside.孑L808a, 808b, 808c and 808d ° 099127098 Form No. A0101 Page 25 of 47 0992047611-0 201208155 [0080] The potting area top cofferdam 812 is placed on the two-layer substrates 803a, 803b, 8〇3c and 803d The top cofferdam 812 of the potting zone is usually made of a metal material or a ceramic material having good heat conductivity, wherein the metal material may be copper, aluminum 'tungsten, molybdenum and other metal materials or alloys thereof. The top cofferdam of the potting zone and the two-layer substrates 803a, 803b, 803c and 803d are superimposed in a sheet shape. Typically, the thickness of the top pot 812 of the potting zone is between a few hundred microns and a few millimeters. If the top cofferdam 812 of the potting zone is a conductive material, an insulating layer 802b is disposed between the top cofferdam 812 of the potting zone and the second substrate 8〇3a, 803b, 803c and 803d. The insulating layer 802b is typically made of an oxide or nitride film material, such as tantalum and nitrided, etc., typically having a thickness between a few microns and a few hundred microns. In order to enhance the adhesion between the edge layer 8〇2b and the top enclosing 812 of the potting zone and the two substrates 8〇3a, 803b, 803c and 803d, the insulating layer 802b and the top of the potting zone cofferdam 812 and the second layer A film for improving the adhesion between the substrates 803a, 803b, 803c and 803d is usually provided, and a metal material such as titanium, nickel and tungsten or an alloy layer composed of the above metals or a multilayer structure composed of the above metals and alloys is usually employed. Its thickness is between tens of nanometers and several hundred nanometers. If the top cofferdam 812 of the potting zone is a non-conductive material, a metal ruthenium film with improved dryness is disposed between the top cofferdam 812 of the potting zone and the second layer substrates 803a, 803b, 803c and 803d, usually using titanium, recording and A metal material such as tungsten or an alloy layer composed of the above metal or a multilayer structure composed of the above metals and alloys generally has a thickness of between several tens of nanometers and several hundred nanometers. The top cofferdam 81 2 of the potting area can also be pasted on the two-layer substrates 803a, 803b, 803c and 803d by pasting. [0081] The top side of the potting zone 81 2 inner side wall 81 3 encloses the enclosing light space 809 099127098 Form No. A0101 Page 26 of 47 0992047611-0 201208155 Upper part. The top of the top of the potting 812 is also provided with a heat sink array 8 i 4 to increase the heat dissipation area. “The diameter of a single heat sink is usually between a few hundred microns and a few millimeters. ❹ [0083] ❹ Four sets of LED chips 806a ' 80 6b ' 806c and 806d (two in each group) are placed on the solid crystal region 8〇1a of the underlying substrate 801, wherein the surface of the die-bonding region 801a of the underlying substrate A solid crystal material is provided. The led wafers 806a, 806b, 806c and 806d are such that one electrode is connected to the bonding line region on the solid crystal region 801a of the underlying substrate 8〇, and the other electrode is respectively connected to the two-layer substrate 8〇3a, 803b' 803c and The bare bond wire areas 811a, 811b, 811c and 811d of 803d are joined to form a joint pattern of four sets of LED chips 8〇6a, 806b, 806c and 806d with common anodes or cathodes but different cathodes or intestinal poles. The intra-group wafers are connected in parallel. Practical applications Each group can have a different number of wafers, and the intra-group wafers can also be serial or combined or combined. The four sets of chips can be the same or different wafers. If one red, one green, one red, one yellow is used, a high quality full color display point can be produced. In the eighth embodiment a, 8b embodiment, the two-layer substrate inner side wall 81 〇a, 81 Ob ' 810c and 810d form the lower part of the potting light-emitting space 809, and the top wall 813 of the top wall of the potting area forms a potting light-emitting space. Upper part of 809 lower part. The upper and lower areas of the potting light space 809 can be filled with the same or different light transmissive packaging materials. For example, a white LED that is generally described can be prepared by injecting a phosphor powder-containing Shixi gum and a potting 809 or a two-zone potting gel or epoxy resin in the second chamber of the potting light-emitting space. By modifying the appearance of the top of the potting zone, other light transmissive encapsulating materials and/or various types of pre-formed lenses or other optical components can be potted over the potting zone 809. Substrate 801 'four-piece two-layer substrate 803a, 803b, 803c and 803d 099127098 Form No. A0101 Page 27 of 47 0992047611-0 201208155 The shape of the enclosing area, the top of the potting area 81 2 can be the same or different The sizes can be the same or different. For example, square, rectangular, circular or other shapes are used. [0084] In the eighth embodiment a, 8b embodiment, the two-layer substrate inner side walls 81〇a, 810b, 810c and 810d form a lower part of the potting light-emitting space 8〇9, and the top side wall of the potting area of the potting area is 81 3 The upper portion of the potting light exiting space 8 〇9 may be symmetrical or asymmetrical, different or identical in shape to achieve different light shape and light intensity distribution, for example, square, rectangular, elliptical, circular or other shapes. The inner side of the two-layer substrate is 81, the edges of the inner layer 801, the 810c and 810d and the bottom substrate 801, and the inner side wall 813 of the potting area and the bare side of the two layers of the substrate 8〇3a, 803b' 803c and 803d The surface of the wire bond areas 811a, 811b, 811c and 81 Id may be perpendicular or beveled. 'One layer of the substrate inner side walls 810a' 810b, 810c and 81 0d and the potting area top coaming inner side wall 813 may themselves be smooth. A flat or smooth curved surface is used to control the distribution of light within the potting zone 8 〇 9 , which in turn changes the light efficiency, light profile and light intensity distribution. Generally, the above two-layer base is coated with a highly reflective material such as an Ag ◊ base substrate 801, a two-layer substrate 8 〇 3a by the inner oblique sidewalls 810a ' 81 Ob, 81 〇 c and 810d and the top surface of the top wall 813 of the potting zone. The exposed portions of the 803b '803c and 803d and the top of the potting zone 812 without the electrode or wire bond area are also typically coated with a highly reflective material, such as Ag, to reduce absorption. In order to avoid short circuit, the exposed portion of the electrode or the exposed portion of the wire area around the bracket may also be coated with an insulating film such as yttrium oxide and tantalum nitride. As shown in the ninth diagrams a and 9b, another embodiment of the chip package structure for an LED package of the present invention includes sub-substrate 901 and 〇2, at sub-9919127098, form number A0101, page 28/total page 47 0992047611-0 [0085] 201208155 A die bonding region provided on the substrate 901 and/or 902, an LED chip 906 disposed on the solid region by die bonding, and a bonding wire region and a substrate electrode 904a are disposed on the sub substrates 901 and 902, respectively. 904b, metal leads 9〇5a and 905b. [0086] In the present embodiment, the sub-substrates 901 and 902 are non-conductive sub-substrates, for example, ceramic substrates or the like, and are spliced in a horizontal direction to form a single layer. At the same time, in order to achieve an electrically conductive connection between the bonding wire region and the substrate electrodes 9〇4a and 9〇4b, conductive metal films can be formed on the upper surfaces of the sub-substrates 901 and 902, for example, metal materials such as chin, nickel and tungsten are used. Or an alloy layer composed of the above metals or a multilayer structure composed of the above metals and alloys, usually having a thickness of between several tens of nanometers and a few nanometers. Further, the solid crystal region may be arbitrarily disposed on the sub-substrate 9〇1 and 9〇2 as needed, for example, a pit provided on the surface of the sub-substrate, and the pit itself constitutes a potting light-emitting space of the light-emitting chip. Of course, it is also possible to provide a raised cofferdam around the dimple to form a better potting light exiting space. [0089] It can be understood that the structural features of the above embodiments need to be combined in any way to form a new embodiment. The scope of the present invention is not limited to the above embodiments, and should be any of the above structural features. combination. Since the above-mentioned light-emitting chip package structure does not contain any polymer material, its resistance to ultraviolet light irradiation and high-low temperature impact is strong, and is basically not affected by the environment, thereby greatly improving the reliability of the LED, and the above-mentioned light-emitting chip package structure can withstand 200. °C-500. The temperature above 〇 allows the LED wafer to be attached to the underlying substrate by eutectic bonding techniques. The bottom base plate is then screwed to other components or heat sinks through the fixed through holes to achieve a very good heat dissipation path. If the underlying substrate and other components or 099127098 Form No. A0101 Page 29 of 47 0992047611-0 201208155 heat sink can be filled with heat-dissipating bonding material, the heat dissipation performance will be better. At high current or high power, the thermal resistance of the interface is very low, and the whole bracket is a good metal-based conductor, so that the heat generated by the LED chip can be quickly transmitted, so that the heat accumulation in the LED bracket is minimized, thereby greatly improving the LED chip. Anti-aging and reliability. In addition, the package structure can be applied to other LED packages as well as packages for LED chips. BRIEF DESCRIPTION OF THE DRAWINGS [0090] The present invention will be further described with reference to the accompanying drawings and embodiments, in which: [0091] The first figure: a conventional bracket and connection method for LED packaging. [0092] Second figure: Another common bracket and connection method for high power LED packages. Third FIG. 3, 3b is a schematic view of a first embodiment of the light emitting chip package structure of the present invention. Fourth FIG. 4, 4b is a schematic view of a second embodiment of the light emitting chip package structure of the present invention. [0095] Fifth Figures a, 5b: A schematic view of a third embodiment of the light emitting chip package structure of the present invention. [0096] Fig. 6a, 6b are schematic views of a fourth embodiment of the light emitting chip package structure of the present invention. [0097] Seventh FIGS. a, 7b are schematic views of a fifth embodiment of the light emitting chip package structure of the present invention. 099127098 Form No. A0101 Page 30 of 47 0992047611-0 201208155 [0098] Eighth Figures a, 8b: A schematic view of a sixth embodiment of the light emitting chip package structure of the present invention. Ninth Diagram a, 9b: A schematic view of a seventh embodiment of the light-emitting chip package structure of the present invention. [Explanation of main component symbols] Electrode holder 101, 104 LED wafer 102 [0101] Metal lead 103a, 103b Bracket connecting piece 105 [0102] Base 201 LED chip 202 Metal lead 203a, 203b Electrode piece 204a , 204b [0104] reflective cup 205 sub-substrate 301, 302 [0105] metal lead 303, 304 underlying sub-substrate 305 [0106] luminescent wafer 306 insulating tape 307 [0107] substrate electrode 308a, 308b, 3: scale l: p " : .r.-'* 'IliiU . i -; !./'i - ' [0108] 〇[0109] ..~3, 丨β.' :...-.l~% «; Potting Cofferdam 30 底层 Substrate 401 Insulation Layer 402 [0110] Two-layer Substrate 403 Bottom Wire Bond Region 404a [0111] Top Shield Wire 404b Metal Leads 405a, 405b [0112] LED Wafer 406 Bottom Electrode 407a [0113] Top Electrode 407b Fixed Through Hole 408a, 408b, 408c, 408d [0114] Potting light exiting space 409 lower side wall 410a 099127098 Form No. A0101 Page 31 / Total 47 page 0992047611-0 201208155 [0115] [0117] [0118] [0119] [0120 [0126] [0128] [0126] [0128] [0128] [0133] [0133] 099127098 upper side wall 410b bottom substrate 501 Insulation layer 502 two-layer substrate 503 two-layer substrate bank 503a substrate wire region 504a, 504b metal wire 505a, 505b LED chip 506 substrate electrode 507a, 507b fixed through hole 508a, 508b, 508c, 508d potting area cofferdam 509 oblique Side wall surface 510 upper surface 510a upper side wall 511a lower side wall 511b bottom substrate 601 insulating layer 602 two-layer substrate 603a, 603b partitioning strip 603c, 603d bonding line area 604a, 604b connecting line 605 metal lead 605a, 605b, 605c, 605b LED chip 606 two-layer substrate electrodes 607a, 607b fixed through holes 608a, 608b, 608c, 608d potting light space 609 bottom substrate 701 insulating layer 702a, 702b two-layer substrate 703 bond wire area 704a, 704b metal lead 705a, 705b LED chip 706 substrate Electrodes 707a, 707b, 707c, 707d, 707e, 707f fixed through holes 708a, 708b, 708c, 708d Form No. A0101 Page 32 / Total 47 Page 0992047611-0 201208155 [0134] Encapsulating the light-emitting space 709 inner side wall 710a [0135] Top Heatsink Array 711 Hot Column Array Substrate 711a [0136] Heat Sink 712 Heat Sink Array 713 [0138] Heat Sink 714 [0139] Substrate 801 Solid Crystal Area 801a [0140] 〇 [ 0141] Insulating layers 802a, 802b, 802c, 802d, 802e, 802f Two-layer substrates 803a, 803b, 803c, 803d [0142] Metal leads 805 [0143] LED wafers 80 6a, 806b, 80 6c, 806d [0144] Substrate electrodes 807a, 807b, 807c, 807d, 807e, 807f, 807g, 807h [0145] The fixed through holes 808a, 808b, 808c, 808d 灌 enclose the light space 809 oblique side walls 810a' 810b, 810c, 810d [0147] 811a, 811b, 811c, 811d top bank 812 [0148] inner side wall 813 heat sink column array 814 [0149] sub-substrate 901, 902 substrate electrode 904a, 904b [0150] metal lead 905a, 905b LED chip 906 099127098 Form No. A0101 33 pages / total 47 pages 0992047611-0

Claims (1)

201208155 七、申請專利範圍: 1 . 一種發光晶片封裝結構,其特徵在於,包括至少一基板單 /0、至少一在所述基板單元上設置的固晶區、安裝在所述 固曰曰區上的至少一發光晶片'以及在所述基板單元上設置 相互隔絕的至少兩個可與外界實現導電連接的基板電極; 所述基板單元包括至少兩個彼此絕緣的子基板;所述發光 晶片通過所述基板單元與所述基板電極電連接。 2 ·如申請專利範圍第i項所述的發光晶片封裝結構,其特徵 在於,所述子基板為導電子基板,年相鄰的所述導電子基 板之間設有絕緣層或絕緣帶,或者,在相鄰的所述導電子 基板之間留有空隙,或者,在所述空隙内填充絕緣灌封材 料;或者, 所述子基板為非導電子基板,在所述非導電子基板上設有 將所述發光晶片電連接至對應所述基板電極的導電金屬薄 膜;或者, 所述子基板包括導電子基板和非導電子基板,在所述非導 電子基板上設有將所述發光晶片電連接至對應所述基板電 極的導電金屬薄膜。 3 .如申請專利範圍第1項所述的發光晶片封裝結構,其特徵 在於,所述基板單元為單層基板單元,包括至少二個彼此 絕緣並在水準方向相互拼接的所述子基板;或者, 所述基板單70為多層基板單元,包括至少二個彼此絕緣並 在垂直方向相互疊加的所述子基板;或者, 所述基板單元為多層複合基板單元,包括至少一個所述子 基板和至少一個所述單層基板單元,所述子基板與所述單 099127098 表單編號A0101 第34頁/共47頁 0992047611 201208155 層基板單元彼此絕緣並在垂直方向相互疊加;所述單層基 板單元包括至少二個彼此絕緣並在水準方向相互拼接的所 述子基板。 4 .如申請專利範圍第3項所述的發光晶片封裝結構,其特徵 在於,所述固晶區全部設置在構成所述單層基板單元的同 一所述子基板上,或分別設置在構成所述單層基板單元的 不同所述子基板上。 5 .如申請專利範圍第3項所述的發光晶片封裝結構,其特徵 在於,所述固晶區全部設置在構成所述多層基板單元的同 一所述子基板上,或分別設置在構成所述多層基板單元的 不同所述子基板上;或者, 所述固晶區全部設置在構成所述多層複合基板單元的同一 所述子基板上,或分別設置在構成所述多層複合基板單元 的不同所述子基板上。 6 .如申請專利範圍第5項所述的發光晶片封裝結構,其特徵 在於,所述固晶區設置在非頂層所述子基板上,位於設置 所述固晶區的所述子基板上層的所述子基板設置有與所述 固晶區相對應的開口,所述開口的内側壁構成放置在所述 固晶區内所述發光晶片的灌封出光空間和反光側壁。 7 .如申請專利範圍第4、5或6項所述的發光晶片封裝結構, 其特徵在於,所述固晶區設置在所述子基板的上表面;或 者,位於所述子基板表面設置的凹坑内,所述凹坑的内侧 壁構成放置在所述固晶區内所述發光晶片的灌封出光空間 和反光側壁。 8 .如申請專利範圍第7項所述的發光晶片封裝結構,其特徵 在於,所述固晶區四周設置有凸起的圍堰;所述圍堰的内 099127098 表單編號A0101 第35頁/共47頁 0992047611-0 201208155 侧壁構成放置在所述固晶區内所述發光晶片的灌封出光空 間和反光側壁。 9 .如申請專利範圍第7項所述的發光晶片封裝結構,其特徵 在於,所述固晶區表面、所述灌封出光空間的内側壁可塗 覆單層或多層的金屬反射膜和/或非金屬反射膜。 10 .如申請專利範圍第7項所述的發光晶片封裝結構,其特徵 在於,所述灌封出光空間的内側壁包括與所述固晶區表面 垂直的光滑表面、和/或與所述固晶區表面成大於90度夾 角的光滑斜面、和/或自所述固晶區表面向所述基板單元 表面延伸的光滑弧面。 11 .如申請專利範圍第7項所述的-發光晶片封裝結構,其特徵 在於,所述灌封出光空間的内側壁包括至少一階梯,所述 階梯的水準段表面設置在具有所述固晶區的所述子基板表 面或具有所述固晶區的所述子基板上方的所述子基板上。 12 .如申請專利範圍第1項所述的發光晶片封裝結構,其特徵 在於,所述發光晶片放置在所述固晶區的中央,並分別導 電連接到對應的基板電極;或者,所述發光晶片為多個, 若干所述發光晶片串聯或並聯或串Μ聯後再分別導電連接 到對應的基板電極。 13 .如申請專利範圍第1項所述的發光晶片封裝結構,其特徵 在於,所述固晶區附近設置有分別導電連接到對應的所述 基板電極的焊線區,所述發光晶片分別導電連接到對應的 所述焊線區,或其中若干所述發光晶片串聯或並聯或串並 聯後再分別導電連接到對應的焊線區。 14 .如申請專利範圍第1項所述的發光晶片封裝結構,其特徵 在於,所述基板單元的裸露表面設有增加散熱表面積的散 099127098 表單編號Α0101 第36頁/共47頁 0992047611-0 201208155 熱結構、和/或塗覆有散熱材料,所述散熱材料具有增加 表面熱輻射能力和/或熱傳導能力。 15 .如申請專利範圍第2項所述的發光晶片封裝結構,其特徵 在於,所述絕緣層為一層或多層複合絕緣薄膜;所述絕緣 層與所述子基板之間設有一層或多層過渡金屬薄膜和/或 合金薄膜。 ❹ 0992047611-0 099127098 表單編號A0101 第37頁/共47頁201208155 VII. Patent application scope: 1. A light-emitting chip package structure, comprising: at least one substrate single/0, at least one solid crystal region disposed on the substrate unit, mounted on the solid-state region At least one illuminating wafer 'and at least two substrate electrodes that are electrically isolated from each other are disposed on the substrate unit; the substrate unit includes at least two sub-substrates insulated from each other; The substrate unit is electrically connected to the substrate electrode. The illuminating chip package structure of the invention, wherein the sub-substrate is a conductive sub-substrate, and an insulating layer or an insulating tape is disposed between the adjacent conductive sub-substrates, or a gap is left between the adjacent conductive sub-substrate, or an insulating potting material is filled in the gap; or the sub-substrate is a non-conductive sub-substrate, and the non-conductive sub-substrate is disposed on the non-conductive sub-substrate The conductive metal film is electrically connected to the conductive metal film corresponding to the substrate electrode; or the sub-substrate includes a conductive sub-substrate and a non-conductive sub-substrate, and the illuminating chip is disposed on the non-conductive sub-substrate Electrically connected to a conductive metal film corresponding to the substrate electrode. 3. The illuminating chip package structure according to claim 1, wherein the substrate unit is a single-layer substrate unit comprising at least two sub-substrates insulated from each other and spliced to each other in a horizontal direction; or The substrate unit 70 is a multi-layer substrate unit including at least two sub-substrates insulated from each other and superimposed on each other in a vertical direction; or the substrate unit is a multi-layer composite substrate unit including at least one of the sub-substrates and at least a single-layer substrate unit, the sub-substrate and the single 099127098 Form No. A0101, page 34/47 pages 0992047611 201208155, the substrate units are insulated from each other and superposed on each other in the vertical direction; the single-layer substrate unit includes at least two The sub-substrates are insulated from each other and spliced to each other in the horizontal direction. 4. The light emitting chip package structure according to claim 3, wherein the solid crystal regions are all disposed on the same sub-substrate constituting the single-layer substrate unit, or are respectively disposed in a constitution On the different sub-substrates of the single-layer substrate unit. 5. The light emitting chip package structure according to claim 3, wherein the solid crystal regions are all disposed on the same sub-substrate constituting the multi-layer substrate unit, or are respectively disposed to constitute the On the different sub-substrates of the multi-layer substrate unit; or, the solid crystal regions are all disposed on the same sub-substrate constituting the multi-layer composite substrate unit, or are respectively disposed in different places constituting the multi-layer composite substrate unit On the substrate. 6. The illuminating chip package structure according to claim 5, wherein the die bonding region is disposed on the non-top layer sub-substrate, and is located on an upper layer of the sub-substrate on which the die bonding region is disposed. The sub-substrate is provided with an opening corresponding to the die-bonding region, and an inner sidewall of the opening constitutes a potting light-emitting space and a reflective sidewall of the light-emitting chip placed in the die-forming region. The illuminating chip package structure of claim 4, 5 or 6, wherein the die bonding region is disposed on an upper surface of the sub-substrate; or is disposed on a surface of the sub-substrate Within the pit, the inner sidewall of the recess constitutes a potting light exiting space and a reflective sidewall of the light emitting wafer disposed within the die attach region. 8. The light emitting chip package structure according to claim 7, wherein the solid crystal region is provided with a raised coaming; the inner circumference of the cofferdam is 099127098, form number A0101, page 35/total 47 pages 0992047611-0 201208155 The sidewalls constitute a potting light exiting space and a reflective sidewall of the light-emitting wafer placed in the die-bonding region. 9. The illuminating chip package structure according to claim 7, wherein the surface of the die bonding region and the inner sidewall of the potting light-emitting space are coated with a single or multiple layers of metal reflective film and/or Or a non-metallic reflective film. The illuminating chip package structure of claim 7, wherein the inner side wall of the potting light-emitting space comprises a smooth surface perpendicular to a surface of the die-bonding region, and/or The surface of the crystal region is a smooth bevel having an angle greater than 90 degrees, and/or a smooth arc surface extending from the surface of the crystal-crystalline region toward the surface of the substrate unit. The illuminating chip package structure of claim 7, wherein the inner sidewall of the potting light-emitting space comprises at least one step, and the surface of the stepped surface of the step is disposed with the solid crystal The sub-substrate surface of the region or the sub-substrate above the sub-substrate having the solid crystal region. The illuminating chip package structure according to claim 1, wherein the illuminating wafer is placed in a center of the die bonding region and electrically connected to a corresponding substrate electrode, respectively; or the illuminating There are a plurality of wafers, and a plurality of the light-emitting wafers are electrically connected to the corresponding substrate electrodes in series or in parallel or in series. The illuminating chip package structure according to claim 1, wherein a vicinity of the die bonding region is provided with a bonding wire region electrically connected to the corresponding substrate electrode, wherein the luminescent wafers are respectively electrically conductive. Connected to the corresponding wire bond zone, or a plurality of the light-emitting wafers are electrically connected to the corresponding wire bond zone in series or parallel or in series and parallel. The illuminating chip package structure according to claim 1, wherein the exposed surface of the substrate unit is provided with a dispersion of increased heat dissipation surface area. 099127098 Form No. 1010101 Page 36/47 pages 0992047611-0 201208155 The thermal structure, and/or is coated with a heat dissipating material that has an increased surface heat radiation capability and/or thermal conductivity. The illuminating chip package structure of claim 2, wherein the insulating layer is one or more layers of a composite insulating film; one or more layers of transition between the insulating layer and the sub-substrate Metal film and/or alloy film. ❹ 0992047611-0 099127098 Form No. A0101 Page 37 of 47
TW99127098A 2010-08-13 2010-08-13 Packaging structure of light emitting chip TW201208155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99127098A TW201208155A (en) 2010-08-13 2010-08-13 Packaging structure of light emitting chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99127098A TW201208155A (en) 2010-08-13 2010-08-13 Packaging structure of light emitting chip

Publications (1)

Publication Number Publication Date
TW201208155A true TW201208155A (en) 2012-02-16

Family

ID=46762401

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99127098A TW201208155A (en) 2010-08-13 2010-08-13 Packaging structure of light emitting chip

Country Status (1)

Country Link
TW (1) TW201208155A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI459599B (en) * 2012-05-18 2014-11-01 Advanced Optoelectronic Tech A method for manufacturing light-emitting diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI459599B (en) * 2012-05-18 2014-11-01 Advanced Optoelectronic Tech A method for manufacturing light-emitting diode

Similar Documents

Publication Publication Date Title
TW578280B (en) Light emitting diode and package scheme and method thereof
US7335522B2 (en) Package structure for light emitting diode and method thereof
US20140113393A1 (en) Package substrate for optical element and method of manufacturing the same
CN101958390A (en) Light-emitting chip packaging structure
CN104024723A (en) Flexible light emitting semiconductor device having three-dimensional structure
JP2011193015A (en) Anodized metal substrate module
CN106206483A (en) Power module
CN101728466A (en) High-power LED ceramic packaging structure and manufacturing method thereof
JP2004241509A (en) Led optical source, led illumination device and led display device
JP2010130008A (en) Side view type led package structure, and manufacturing method and application thereof
JP2014187081A (en) Light-emitting device
CN102437267B (en) Light-emitting chip packaging structure of metal substrate
KR20110048338A (en) Package substrate for optical element and Manufacturing method thereof
CN102447044B (en) Insulating base light-emitting chip packaging structure
CN202018960U (en) Luminous chip packaging structure of insulating bottom plate
CN102064267A (en) Light emitting diode (LED) support unit for display screen, LED support and method for manufacturing LED support unit
TW201037803A (en) Multi-layer packaging substrate, method for making the packaging substrate, and package structure of light-emitting semiconductor
KR20120100303A (en) Printed circuit board, light emitting module having the same, lighting unit having the light emitting unit and method of manufacturing the light emitting mudule
TW201208155A (en) Packaging structure of light emitting chip
CN201243024Y (en) Non-throwing encapsulation structure of LED
TW201044653A (en) Power LED thermal dissipation substrate and method for manufacturing power LED products and products thereof
KR100834925B1 (en) Manufacturing method of semiconductor package
TW201234668A (en) LED package and method for manufacturing the same
CN203760514U (en) LED illuminating lamp
TWM405056U (en) Surface-mounted-power-type LED holder structure