TW201207428A - Polarization azimuth adjustment device and laser processing apparatus - Google Patents

Polarization azimuth adjustment device and laser processing apparatus Download PDF

Info

Publication number
TW201207428A
TW201207428A TW100117726A TW100117726A TW201207428A TW 201207428 A TW201207428 A TW 201207428A TW 100117726 A TW100117726 A TW 100117726A TW 100117726 A TW100117726 A TW 100117726A TW 201207428 A TW201207428 A TW 201207428A
Authority
TW
Taiwan
Prior art keywords
laser light
optical
optical axis
wave
component
Prior art date
Application number
TW100117726A
Other languages
Chinese (zh)
Other versions
TWI457601B (en
Inventor
Yasuhiro Takigawa
Masashi Naruse
Yoshitaka Iwashita
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of TW201207428A publication Critical patent/TW201207428A/en
Application granted granted Critical
Publication of TWI457601B publication Critical patent/TWI457601B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10061Polarization control

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Quality & Reliability (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

This invention provides a polarization azimuth adjustment device capable of easily performing a stable laser processing of a work. The polarization azimuth adjustment device is an optical unit which is provided with a polarizing member 14 and reflection mirrors 15, 15. The polarizing member 14 allows a P wave polarizing component P1 of incident laser light 2 to pass through and reflects an S wave polarizing component S1 of laser light 2. The reflection mirrors, 15, 15reflect the S wave polarizing component S1 of the laser light 2 which is reflected by the polarizing member 14 and guide the reflected S wave polarizing component S1 of laser light to a down stream side of an optical path. The optical unit absorbs the P wave polarizing component P1 and transmits the S wave polarizing component S1 to the downstream side of the optical path. The polarizing member 14 and the reflection mirrors 15, 15 in the optical unit are so arranged that the optical axis of the laser light incident to the optical unit is co-axial with the optical axis of the laser light transmitted from the optical unit. Thus the direction of the optical axis of the incident light and the direction of the optical axis of light are maintained when the optical unit is rotated with respect to the optical axis of incident light.

Description

201207428 六、發明說明: 【發明所屬之技術領域】 本發明係有關調整用於雷射加工之雷射光的偏光方 位角的偏光方位角調整裝置及雷射加工裝置。 【先前技術】 作為使對印刷(print)基板等被加工物進行開孔加工 之雷射加工裝置的生產性提升之方法,係有將以雷射振盈 器生成的一條雷射光分割成複數條,而同時對複數個孔進 行開孔加工的方法。該方法中,當所分割之雷射光各自的 能量(energy)不均等時,會導致加工孔徑等的加工品質產 生偏差。 % 因此,專利文獻1所記載的方法中,係在分光用偏光 件的光路徑上游’設置具有以光軸為中心之旋轉調整機構 的偏光方位角調整用偏光件。藉由調整所穿透之ρ波的偏 光方位角,來均等地分割能量。於分割能量之際,使均等 地具有偏光方向Ρ波成分與偏光方向S波成分的雷射光入 射於分光用偏光件’藉此可將穿透分光用偏光件的光均等 地分割成Ρ波成分、與在分光用偏光件反射的s波成分。 (專利文獻) (專利文獻1)國際公開第2003/082510號 【發明内容】 〔發明所欲解決之課題〕 然而,上述習知技術中係使穿透偏光方位角調整用偏 光件的Ρ波成分朝光路徑下游傳播。因此,當入射於偏光 323111 4 201207428 件之雷射光的功率(power)高時,因偏光件之基板材料的熱 透鏡效應(thermal lens effect)會導致雷射光的光束 (beam)直徑改變,相較於未發生熱透鏡(lens)效應的情 況,穿透遮罩(mask)之雷射光的能量強度會產生偏差。 因此,會有被加工物的加工品質劣化或不穩定的問題。又, 在調整偏光方位角時於旋轉調整偏光件的情況下,會有從 光的折射至光軸中心產生些微的偏移,而使被加工物的加 工品質劣化之情況的問題。 本發明係有鑑於上述問題而開發完成者,其目的在於 獲得可容易對被加工物進行穩定的雷射加工之偏光方位角 S 周整裝置及雷射加工裝置。 〔用以解決課題之手段〕 两解決上述課題並達成个贫听的特徵為:具備 光學單元(unit),該光學單s具有:使人射而來之雷射光 的P波偏光成分穿透並反射前述雷射光之3波偏光成分的 反射在前述偏光件反射之前述雷射光的8波 並將其導引至光職的下游侧之至少兩個反射光 子牛,並且吸收前述p波偏光成分且 的下游侧射出;前述光學單元係以下= U =件與前述反射光學元件:使朝向前述光學單元 光的Sit射光軸與來自前述光學單元之前述雷射 射,且在使前述光學單元 :::旋轉時可維持前述入射光軸及前述射出=: 323111 5 201207428 〔發明之效果〕 根據本發明’由於9 - 4.、疋從雷射光的入射光軸與射出光軸 5 &出在偏光件反射的s波偏光成分,所以 可達成對被加,進行穩定 加 【實施方式】 、 據圖式針對本發明實施形態之偏光方位角調 整裝置及雷射加工裝置註‘^ 衣直。f細進仃說明。此外,本發明並未 受此實施形態所限制。 實施形態 第1圖為表示本發明實施形態之雷射加工裝置的概略 構成圖。雷射加裝置1QQ為利用偏光分光器(pQlarizing beam splitter)7將一條雷射光2分光成兩條雷射光8A、 8B’並藉由分別獨立掃描兩條雷射光8a、8B來同時對兩個 被加工物13A、13B進行開孔加工的裝置。本實施形態之雷 射加工裝置100係在偏光分光器7的光路徑上游配置有包 含偏光件與反射鏡(反射光學元件)而構成的偏光方位角調 整裝置30(供調整偏光方位角之装置)。其後,將在偏光方 位角調整裝置30的偏光件反射的S波偏光成分(後述之s 波偏光成分S1)導引至光路徑下游,藉此將雷射光2導引 至偏光分光器7。 雷射加工裝置1〇〇具有:雷射振盪器1 ;偏光方位角 調整裝置(光學單元)30 ;遮罩(光束遮罩(beam mask))4 ; 光束可變部5 ;反射鏡6 ;偏光分光器(分光部)7 ;檢流計 掃描器(galvanometer scanner) 10Ax、l〇Ay、lOBx、10By ; 6 323111 201207428 【0透鏡11人、116;及乂丫工作臺(1^1316)12人、126。 雷射振盪器1是將直線偏光之雷射光2當作脈衝 (pulse)波射出的裝置。由雷射振盪器1射出的雷射光2 係經由反射鏡6而導引至偏光方位角調整裝置30。反射鏡 6為反射雷射光2或雷射光8A、8B並將其導引至光路徑下 游的鏡片。反射鏡6可配置於雷射加工裝置1〇〇内之光路 徑上的各種位置處。 偏光方位角調整裝置30為調整偏光方位角的裝置。 偏光方位角(偏光方向)2a的雷射光2係入射至偏光方位角 調整裝置30,而偏光方位角2b的雷射光2則由偏光方位 角調整裝置30射出。偏光方位角調整裝置30係沿與入射 之雷射光2同軸的方向使雷射光2射出。 本實施形態中,偏光方位角調整裝置30係使雷射光2 在偏光件14反射的S波偏光成分S1射出並吸收在偏光件 14穿透的p波偏光成分pi。再者,事先以一個光學單元構 成偏光方位角調整裝置30内的偏光件及反射鏡等,並將該 光學單元以能以雷射光2的光軸(入射光軸及射出光軸)為 中心旋轉的方式安裝在雷射加工裝置100内。由偏光方位 角調整裝置30射出的雷射光2則經由反射鏡6而導引至光 束可變部5。 光束可變部5為可將雷射光2改變成所要之光束直徑 的裝置。使光束系在可變部5改變而得的雷射光2係導弓丨 至遮罩4。遮罩4是為了將加工孔加工成所要的大小、形 狀而從入射的雷射光2切取所需之部分的雷射光2 。形狀 7 323111 201207428 經遮罩4調整後的雷射光2係經由反射鏡6導引至偏光分 光器7。 偏光分光器(分光用偏光分光器)7為將一條束狀雷射 光2分光成兩條雷射光8A、8B之分光器等的偏光件。偏光 分光器7具有使雷射光2的p波成分穿透並反射$波成分 的性質。 穿透偏光分光器7的一條雷射光8A為作為偏光方位 角9A的雷射光8A而被導弓丨至χγ工作臺12A上的被加工物 13A的雷射光。又’在偏光分光器7反射的另—條雷射光 8B則是作為偏光方位角9B的雷射光8B而被導引至工 作臺12Β上的被加工物13Β的雷射光。由偏光分光器7分 光的雷射光8Α#經由反射鏡6而導引至檢流計掃描器 由偏光分光器7分光之雷射光8Β則經由 反射鏡6而導%至檢流計掃描器ι〇Βχ、聊。 照射了描器1〇AX係使雷射光8Α對被加工物13Α的 厂 〜方向移動’檢流計掃 8Α對被加工物13Α的 】Τ雷^先 10RV 口 Y方向移動。又,檢流計 X方^移動,糸使雷射光8B對被加工物13Β的照射位置沿 物13Β的日^流計掃描器1QBy則使雷射錢對被加工 初ld!5的照射位置沿 與檢流計掃描器1〇A方向移動。以檢流計掃描器_201207428 VI. Description of the Invention: [Technical Field] The present invention relates to a polarization azimuth adjusting device and a laser processing device for adjusting a polarization azimuth angle of laser light for laser processing. [Prior Art] As a method for improving the productivity of a laser processing apparatus for performing a hole processing on a workpiece such as a printed substrate, a laser beam generated by a laser oscillator is divided into a plurality of strips. At the same time, a plurality of holes are subjected to the opening process. In this method, when the energy of the divided laser light is not uniform, the processing quality such as the processing aperture is deviated. In the method described in Patent Document 1, a polarizing azimuth adjusting polarizer having a rotation adjusting mechanism centered on the optical axis is provided upstream of the optical path of the light separating polarizer. The energy is equally divided by adjusting the polarization azimuth of the ρ wave that is penetrated. When the energy is divided, the laser light having the polarization direction chopping component and the S-wave component in the polarization direction is incident on the beam splitting polarizer', and the light penetrating the spectroscopic polarizer can be equally divided into chopping components. And the s-wave component reflected by the beam splitter. (Patent Document 1) International Publication No. 2003/082510 [Draft of the Invention] However, in the above-described conventional technique, the chopping component of the polarizing member for penetrating polarization azimuth adjustment is obtained. Spread downstream of the light path. Therefore, when the power of the laser light incident on the polarized light 323111 4 201207428 is high, the thermal lens effect of the substrate material of the polarizer causes the beam diameter of the laser light to change. In the case where the thermal lens effect does not occur, the energy intensity of the laser light penetrating through the mask may vary. Therefore, there is a problem that the processing quality of the workpiece is deteriorated or unstable. Further, when the polarizing element is rotated and adjusted when the polarization azimuth is adjusted, there is a problem that the processing quality of the workpiece is deteriorated due to a slight shift from the refraction of the light to the center of the optical axis. The present invention has been developed in view of the above problems, and an object of the invention is to obtain a polarization azimuth S-sequence device and a laser processing device which can easily perform stable laser processing on a workpiece. [Means for Solving the Problem] The two problems of solving the above problems and achieving a poor hearing are: providing an optical unit (s) having a P-wave polarizing component that allows laser light from a person to penetrate and Reflecting the three-wave polarized component of the laser light, reflecting the eight waves of the laser light reflected by the polarizer and guiding it to at least two reflected photons on the downstream side of the optical position, and absorbing the p-wave polarized component and The downstream side is emitted; the optical unit is the following = U = member and the reflective optical element: the Sit optical axis toward the optical unit and the aforementioned laser from the optical unit, and the optical unit is: The above-mentioned incident optical axis and the above-mentioned emission can be maintained during rotation = 323111 5 201207428 [Effects of the Invention] According to the present invention, "the light axis from the incident light axis of the laser light and the exit optical axis 5 & Since the reflected s-wave polarized component is added, it can be added and stabilized. [Embodiment] According to the drawings, the polarized azimuth adjusting device and the laser processing device according to the embodiment of the present invention are attached. Clothing straight. f fine into the description. Further, the present invention is not limited by the embodiment. (Embodiment) FIG. 1 is a schematic configuration view showing a laser processing apparatus according to an embodiment of the present invention. The laser adding device 1QQ uses a pQlarizing beam splitter 7 to split a laser light 2 into two laser lights 8A, 8B' and simultaneously scans the two laser lights 8a, 8B independently for two The workpieces 13A and 13B are subjected to drilling processing. In the laser processing apparatus 100 of the present embodiment, a polarization azimuth angle adjusting device 30 including a polarizer and a mirror (reflecting optical element) is disposed upstream of the optical path of the polarization beam splitter 7 (a device for adjusting the polarization azimuth) . Then, the S-wave polarization component (s-wave polarization component S1, which will be described later) reflected by the polarizer of the polarization angle adjustment device 30 is guided downstream of the optical path, thereby guiding the laser light 2 to the polarization beam splitter 7. The laser processing apparatus 1A has: a laser oscillator 1; a polarization azimuth adjusting device (optical unit) 30; a mask (beam mask) 4; a beam variable portion 5; a mirror 6; Beam splitter (split section) 7; galvanometer scanner 10Ax, l〇Ay, lOBx, 10By; 6 323111 201207428 [0 lens 11 person, 116; and 乂丫 workbench (1^1316) 12 people 126. The laser oscillator 1 is a device that emits linearly polarized laser light 2 as a pulse wave. The laser light 2 emitted from the laser oscillator 1 is guided to the polarization azimuth adjusting device 30 via the mirror 6. The mirror 6 is a lens that reflects the laser light 2 or the laser light 8A, 8B and guides it to the downstream of the light path. The mirror 6 can be disposed at various positions on the optical path within the laser processing apparatus 1A. The polarization azimuth adjusting device 30 is a device that adjusts the polarization azimuth. The laser light 2 of the polarization azimuth (polarization direction) 2a is incident on the polarization azimuth adjusting device 30, and the laser beam 2 having the polarization azimuth angle 2b is emitted by the polarization azimuth adjusting device 30. The polarization azimuth adjusting device 30 emits the laser light 2 in a direction coaxial with the incident laser light 2. In the present embodiment, the polarization azimuth adjusting device 30 emits the S-wave polarized component S1 of the laser light reflected by the polarizer 14 and absorbs the p-wave polarized component pi that is transmitted through the polarizer 14. Further, the polarizer, the mirror, and the like in the polarization azimuth adjusting device 30 are configured in advance by one optical unit, and the optical unit is rotated around the optical axis (incident optical axis and outgoing optical axis) of the laser light 2 The manner of installation is within the laser processing apparatus 100. The laser light 2 emitted from the polarization azimuth adjusting device 30 is guided to the beam variable portion 5 via the mirror 6. The beam variable portion 5 is a device that can change the laser light 2 to a desired beam diameter. The laser light 2 obtained by changing the beam to the variable portion 5 is guided to the mask 4. The mask 4 is a portion of the laser light 2 cut out from the incident laser light 2 in order to process the machined hole into a desired size and shape. Shape 7 323111 201207428 The laser light 2 adjusted by the mask 4 is guided to the polarization beam splitter 7 via the mirror 6. The polarizing beam splitter (polarizing beam splitter) 7 is a polarizer that splits one beam of laser light into two beams of laser light 8A, 8B. The polarization beam splitter 7 has a property of penetrating the p-wave component of the laser light 2 and reflecting the $wave component. One of the laser light 8A penetrating the polarization beam splitter 7 is laser light that is guided to the workpiece 13A on the χγ table 12A as the laser light 8A of the polarization azimuth angle 9A. Further, the other laser light 8B reflected by the polarization beam splitter 7 is laser light which is guided to the workpiece 13A on the table 12 as the laser light 8B of the polarization azimuth angle 9B. The laser light 8 Α split by the polarizing beam splitter 7 is guided to the galvanometer scanner via the mirror 6 and the laser beam 8 is split by the polarizing beam splitter 7 through the mirror 6 to the galvanometer scanner ι Hey, chat. Illumination of the scanner 1〇AX system causes the laser light 8Α to move to the workpiece 13Α to the direction ’ galvanometer sweep 8 Α to the workpiece 13 Τ Τ 雷 ^ first 10RV mouth Y direction movement. Further, the galvanometer X is moved, so that the irradiation position of the laser light 8B to the workpiece 13 is along the object 13 Β of the flow meter scanner 1QBy, and the laser money is applied to the irradiation position of the processed first ld! Move with the galvanometer scanner 1A. Detector scanner _

至ίθ透鏡m。又^沿兩轴Γ向掃描的雷射光8A被導弓I 器崎沿兩輪方^以檢飢物描器10βχ與檢流計掃描 11BO 14方向㈣的雷射光_被導引至ίθ透鏡 323111 8 201207428 f Θ透鏡11A、11B是分別使雷射光8A、8B聚光於被 置放於XY工作臺12A、12B上之被加工物13A、13B的透鏡。 XY工作臺12A、12B係載置加工工件(work)等的被加工物 13A、13B ’並且沿X方向與Y方向的兩軸方向移動。 其次,對偏光方位角調整裝置30進行說明。第2圖 為表示實施形態之偏光方位角調整裝置的概略構成圖。又, 第3圖為用以說明偏光件與偏光方位角之關係的圖。第3 圖係表示偏光件14的剖面圖。偏光方位角調整裝置3〇具 有偏光件14、複數片反射鏡(第2圖係圖示反射鏡15為兩 片的情況)及擋板(damper)16,此等構件係收納於框體35 内。 偏光件14具有使所入射之雷射光2的偏光方位角2C 的成分(P波偏光成分)穿透,並反射偏光方位角2b的成分 (s波偏光成分)的性質。因此,入射於偏光件14之雷射光 2的偏光方位角若與偏光方位角2b相等,可使雷射光2全 部反射,而入射於偏光件14之雷射光的偏光方位角若與偏 光方位角2c相等’則可使雷射光2全部穿透。 具有偏光方位角2a之直線偏光的雷射光2係由雷射 振盪器1入射至偏光件14。偏光件14係反射雷射光2的s 波偏光成分S1並將其導引至光路徑下游侧。又,偏光件 14係使雷射光2的P波偏光成分P1穿透並將其導引至擋 板16。偏光方位角調整裝置3G係使在偏光件14反田 波偏光成分S1朝雷射加m⑽的光路徑下游傳播。 反射鏡15為反射在偏光件Η反射之雷射光2的 323111 9 201207428 偏光成分si並將其導引至偏光方位角調整裝置3〇的射出 側的鏡片。反射鏡15係以使入射於偏光方位角調整裝置 30而來的雷射光2的光軸與由偏光方位角調整裝置抑射 出的雷射光2的光軸成為同軸之方式配置。擋板16係阻擋 穿透偏光件14的雷射光2的P波偏光成分P1。又,作為 光學單元,框體35亦可對雷射加工裝置1〇〇旋轉自如地安 裝,俾能以雷射光2的光軸(朝雷射加工裝置10〇的入射軸 及射出軸)為中心旋轉。 其次,就雷射加工裝置100的動作處理順序進行說明。 由雷射振盪器1導引而來之偏光方位角2a之雷射光2的S 波偏光成分S1係在偏光件14反射,且使偏光方位角變成 與偏光方位角2a不同的偏光方位角2b並將其導引至遮罩 4。又,雷射光2的P波偏光成分P1在穿透偏光件14後由 擋板16吸收。 遮罩4係藉由僅使雷射光2的所要部分穿透,來將雷 射光2調整成適於雷射加工的光束模式(beammode)形狀。 形狀經遮罩4調整後的雷射光2會在一片至複數片之反射 鏡6反射並被導引至偏光分光器7 ° 偏光分光器7係使雷射光2的P波偏光成分穿透偏光 分光器7而作為雷射光8A射出,並使雷射光2的S波偏光 成分在偏光分光器7反射而作為雷射光8B射出。為了防止 使雨個被加工物13A、13B的加工孔品質產生偏差’必須使 雷射光8A的能量與雷射光8B的能量相等。 因此,本實施形態中,係將偏光方位角調整裝置3〇 323111 10 201207428 沿光軸方向進行旋轉調整,以使由偏光方位角調整裝置抑 射出之雷射光2的偏光方位角2b相對於偏光分光器7成為 45°的偏光方位角。換言之,以偏光方位角調整裝置3〇調 整雷射光2的偏向角度2b’以使朝偏光分光器7入射之$ 射光2的S波偏光成分與P波偏光成分的大小相等。藉此, 可使雷射光8A的能量與雷射光的能量相等。 又’本實施形態中,並非將穿透偏光件14的p波偏 光成分P1導引至光路徑下游,而是將在偏光件14反射的 S波偏光成分S1導引至光路徑下游。因此,可在不受到偏 光件14的基板材料所致之穿透熱的熱透鏡效應的影響下 提供穩定的加工品質。熱透鏡效應為高功率雷射光穿透偏 光件14的基板材料(例如ZnSe基板)内部時,因基板材料 的溫度局部地上升而產生偏光件14的折射率分布,藉此, 使偏光件14發揮透鏡之作用的現象。 第4圖係用以說明將穿透偏光件的p波成分導引至光 路徑下游時的熱透鏡現象的圖。第4圖中的(a)係表示未發 生熱透鏡現象時的雷射光束(laser beam)強度分布。又, 第4圖中的(b)則表示發生熱透鏡現象時的雷射光束強度 分布。 未發生熱透鏡現象時’由雷射振盪器1射出的雷射光 具有雷射光束強度分布A1。又,發生熱透鏡現象時,由雷 射振盪器1射出的雷射光則具有雷射光束強度分布B1。雷 射光束強度分布B1為具有與雷射光束強度分布A1相同強 度分布的雷射光。 11 323111 201207428 其後,在來自雷射振盪器1的雷射光中,雷射光的p 波偏光成分P1係穿透偏光件17。此處之偏光件i7係配置 於例如與偏光方位角調整裝置3〇同樣的位置。此時,若未 發生熱透鏡現象,雷射光束強度分布A1的雷射光係藉由穿 透偏光件17而成為雷射光束強度分布A2的雷射光。又, 若發生熱透舰H射総㈣分布B1 穿透偏光件以成為與雷射光束強度分布…相異之雷射 光束強度分布B2的雷射光。 =第4财的⑻所示’在偏光件17中發生熱透鏡現 象的情況’相較於如第4圖中的(a)所示在偏光件Η中未 發生熱透鏡現象的情況,遮罩4中的雷射光的光束直徑會 發生變化。熱透鏡現象的程度係依存於入射於偏光件Η 之雷射光的.功率,故在發生熱透鏡現象的情況與未發生的 情況,穿透遮罩4之雷射光的光束能量會發生變化。因此, 在發生熱透鏡現象的情況與未發生的情況,到達被加工物 之雷射光的能量會產生偏差。具體而言,在未發生熱透鏡 現象的情況’雷料束強度分布A3_射光被導引至光路 徑下游。此外,在發生熱透鏡現象的情況,與雷射光束強 度分布㈣異之雷射光束強度分布B3的雷射光則被導引 至光路徑下游。結果,在發生熱透鏡現象的情沉與未發生 的情況,被加工物之加工孔的品質會產生偏差。 另-方面,本實施形態中,由於係將在偏光件以反 射的S波偏光成分S1導引至光路徑下游,故不會受到偏光 件14(基板材料)的熱透鏡現象的影響,可將加工品質穩定 323111 12 201207428 的加工孔形成於被加工物13A、13B中。 偏光方位角調整裝置30中,係使入射之雷射光2當 中在偏光件14穿透的P波偏光成分pi被擋板16吸收,故 P波偏光成分P1會造成能量損失。只要使偏光方位角調整 裝置30經旋轉調整後的偏光方位角2b與入射於偏光 角調整裝置30之雷射光2的偏光方位角2a相同,以位 偏光分光器7射出的雷射光8A與雷射光8B的能量相等 則雷射光2會於偏光件14全部反射而未被擋板吸收,故。 在無能量損失的情況下將雷射光2導引至光路徑下游。文可 此,只要配置比偏光方位角調整裝置3〇更靠光路徑上游因 一片至複數片之反射鏡6’以使偏光方位角2a與偏光方的 角2b大致相等,即可抑制能量損失。因此,可事先令位 方位角調整裝置30旋轉’以在朝偏光分光器7入射之光 光2的S波偏光成分與p波偏光成分成為相同大小的偽射 方位角2b射出雷射光2,並配置比偏光方位角調整 光 更靠光路徑上游的反射鏡6,以使偏光方位角2a接近30 方位角2b。 呢光 又’本實施形態中,在偏光方位角調整裝置3〇 以使入射於偏光方位角調整裝置3()的雷射光2與由、 位角調錄置30射出的雷射光2成為同軸的方式配置=方 件14及反射鏡15。換言之,係以在使偏光方位角先 置30(光學單元)以人射光轴為中心而旋轉的情況下^ 光軸及射出綠的光軸Μ維持在㈣㈣狀態之射 置偏光件14及反射鏡151此,即便將偏光方位角^己To ίθ lens m. And the laser light 8A scanned along the two axes is guided by the two arrows. The laser light is scanned by the sigma scanner 10βχ and the galvanometer. 11BO 14 direction (4) is guided to the ίθ lens 323111 8 201207428 f The Θ lenses 11A and 11B are lenses for concentrating the laser light 8A and 8B on the workpieces 13A and 13B placed on the XY tables 12A and 12B, respectively. The XY tables 12A and 12B are placed on workpieces 13A and 13B' such as workpieces and are moved in the X-axis direction and the Y-axis direction. Next, the polarization azimuth adjusting device 30 will be described. Fig. 2 is a schematic block diagram showing a polarization azimuth angle adjusting device according to an embodiment. Moreover, Fig. 3 is a view for explaining the relationship between the polarizer and the azimuth angle of polarization. Fig. 3 is a cross-sectional view showing the polarizer 14. The polarizing azimuth adjusting device 3 has a polarizer 14 and a plurality of mirrors (the second figure shows that the mirror 15 is two pieces) and a damper 16 , and these members are housed in the housing 35 . . The polarizer 14 has a property of penetrating a component (P-wave polarizing component) of the polarization azimuth angle 2C of the incident laser light 2 and reflecting a component (s-wave polarizing component) of the polarization azimuth angle 2b. Therefore, if the polarization azimuth of the laser light 2 incident on the polarizer 14 is equal to the polarization azimuth angle 2b, the laser light 2 can be totally reflected, and the polarization azimuth of the laser light incident on the polarizer 14 is equal to the polarization azimuth angle 2c. Equal 'allows all laser light 2 to penetrate. The laser light 2 having linear polarization of the polarization azimuth 2a is incident on the polarizer 14 by the laser oscillator 1. The polarizer 14 reflects the s-wave polarizing component S1 of the laser light 2 and guides it to the downstream side of the optical path. Further, the polarizer 14 penetrates the P-wave polarized component P1 of the laser light 2 and guides it to the shutter 16. The polarization azimuth adjusting device 3G causes the polarizing member 14 to propagate toward the laser light path of the laser beam m (10). The mirror 15 is a lens that reflects the 323111 9 201207428 polarized component si of the laser light 2 reflected by the polarizer and guides it to the emission side of the polarization azimuth adjusting device 3A. The mirror 15 is disposed such that the optical axis of the laser light 2 incident on the polarization azimuth adjusting device 30 and the optical axis of the laser light 2 emitted by the polarization azimuth adjusting device are coaxial. The baffle 16 blocks the P-wave polarizing component P1 of the laser light 2 penetrating the polarizer 14. Further, as the optical unit, the housing 35 can be rotatably attached to the laser processing apparatus 1 and can be centered on the optical axis of the laser light 2 (the incident axis and the emission axis of the laser processing apparatus 10A). Rotate. Next, the operation processing procedure of the laser processing apparatus 100 will be described. The S-wave polarization component S1 of the laser light 2 of the polarization azimuth 2a guided by the laser oscillator 1 is reflected by the polarizer 14, and the polarization azimuth angle is changed to a polarization azimuth angle 2b different from the polarization azimuth angle 2a. Guide it to the mask 4. Further, the P-wave polarization component P1 of the laser light 2 is absorbed by the shutter 16 after passing through the polarizer 14. The mask 4 adjusts the laser light 2 to a beam mode shape suitable for laser processing by penetrating only a desired portion of the laser light 2. The laser light 2 whose shape is adjusted by the mask 4 is reflected by one to a plurality of mirrors 6 and guided to the polarizing beam splitter 7°. The polarizing beam splitter 7 causes the P-wave polarized component of the laser light 2 to penetrate the polarizing beam splitting. The device 7 emits the laser light 8A, and reflects the S-wave polarization component of the laser light 2 on the polarization beam splitter 7 to be emitted as the laser light 8B. In order to prevent variations in the quality of the processed holes of the rained workpieces 13A and 13B, it is necessary to make the energy of the laser light 8A equal to the energy of the laser light 8B. Therefore, in the present embodiment, the polarization azimuth adjusting device 3 〇 323111 10 201207428 is rotationally adjusted in the optical axis direction so that the polarization azimuth angle 2b of the laser light 2 emitted by the polarization azimuth adjusting device is split with respect to the polarized light. The device 7 becomes a polarization azimuth angle of 45°. In other words, the deflection angle 2b' of the laser beam 2 is adjusted by the polarization azimuth adjusting means 3 so that the S-wave polarization component of the incident light 2 incident on the polarization beam splitter 7 is equal to the magnitude of the P-wave polarization component. Thereby, the energy of the laser light 8A can be made equal to the energy of the laser light. Further, in the present embodiment, the p-wave polarized component P1 penetrating the polarizer 14 is not guided downstream of the optical path, but the S-wave polarized component S1 reflected by the polarizer 14 is guided to the downstream of the optical path. Therefore, stable processing quality can be provided without being affected by the thermal lens effect of heat penetration by the substrate material of the polarizing member 14. When the thermal lens effect is such that the high-power laser light penetrates the inside of the substrate material (for example, the ZnSe substrate) of the polarizer 14, the refractive index distribution of the polarizer 14 is generated due to the local temperature rise of the substrate material, thereby causing the polarizer 14 to function. The phenomenon of the action of the lens. Fig. 4 is a view for explaining a phenomenon of a thermal lens when a p-wave component penetrating the polarizer is guided to the downstream of the optical path. (a) in Fig. 4 shows a laser beam intensity distribution when no thermal lens phenomenon occurs. Further, (b) in Fig. 4 shows the intensity distribution of the laser beam when the thermal lens phenomenon occurs. When the thermal lens phenomenon does not occur, the laser light emitted by the laser oscillator 1 has a laser beam intensity distribution A1. Further, when the thermal lens phenomenon occurs, the laser light emitted from the laser oscillator 1 has a laser beam intensity distribution B1. The laser beam intensity distribution B1 is laser light having the same intensity distribution as the laser beam intensity distribution A1. 11 323111 201207428 Thereafter, in the laser light from the laser oscillator 1, the p-wave polarization component P1 of the laser light penetrates the polarizer 17. Here, the polarizer i7 is disposed at, for example, the same position as the polarization azimuth adjusting device 3''. At this time, if the thermal lens phenomenon does not occur, the laser light of the laser beam intensity distribution A1 becomes the laser light of the laser beam intensity distribution A2 by penetrating the polarizer 17. Further, if a heat-transmission ship H (総) distribution B1 passes through the polarizer, it becomes a laser light of a laser beam intensity distribution B2 which is different from the laser beam intensity distribution. = (the case where the thermal lens phenomenon occurs in the polarizer 17) as shown in (8) of the fourth fiscal case, the case where the thermal lens phenomenon does not occur in the polarizer Η as shown in (a) of FIG. 4, the mask The beam diameter of the laser light in 4 changes. The degree of the thermal lens phenomenon depends on the power of the laser light incident on the polarizer ,. Therefore, in the case where the thermal lens phenomenon occurs and the case where it does not occur, the beam energy of the laser light penetrating the mask 4 changes. Therefore, in the case where the thermal lens phenomenon occurs and the case where it does not occur, the energy of the laser light reaching the workpiece may vary. Specifically, in the case where the thermal lens phenomenon does not occur, the laser beam intensity distribution A3_light is guided to the downstream of the optical path. Further, in the case where the thermal lens phenomenon occurs, the laser light of the laser beam intensity distribution B3 which is different from the laser beam intensity distribution (4) is guided to the downstream of the optical path. As a result, in the case where the thermal lens phenomenon occurs and does not occur, the quality of the processed hole of the workpiece may vary. On the other hand, in the present embodiment, since the polarizer is guided to the downstream of the optical path by the reflected S-wave polarized component S1, it is not affected by the thermal lens phenomenon of the polarizer 14 (substrate material). Processed holes with stable processing quality 323111 12 201207428 are formed in the workpieces 13A and 13B. In the polarization azimuth adjusting device 30, the P-wave polarized component pi which is incident on the polarizing light 14 during the incident laser light is absorbed by the shutter 16, so that the P-wave polarizing component P1 causes energy loss. As long as the polarization azimuth angle 2b of the polarization azimuth adjusting device 30 is the same as the polarization azimuth angle 2a of the laser beam 2 incident on the polarization angle adjusting device 30, the laser beam 8A and the laser beam emitted by the polarization beam splitter 7 are emitted. When the energy of 8B is equal, the laser light 2 is totally reflected by the polarizer 14 and is not absorbed by the baffle. The laser light 2 is directed downstream of the light path without energy loss. As described above, it is possible to suppress the energy loss by arranging the mirror 6' from the upstream of the optical path to the mirror 6' from the upstream of the optical path so that the polarization azimuth angle 2a is substantially equal to the angle 2b of the polarizing side. Therefore, the position azimuth adjusting device 30 can be rotated in advance to emit the laser light 2 at a pseudo-image azimuth angle 2b of the same magnitude as the S-wave polarized light component of the light light 2 incident on the polarization beam splitter 7 and The mirror 6 upstream of the light path is disposed more than the polarization azimuth adjustment light so that the polarization azimuth 2a approaches 30 azimuth 2b. In the present embodiment, the polarization azimuth adjusting device 3 is configured such that the laser light 2 incident on the polarization azimuth adjusting device 3 (the laser light 2 emitted from the position angle recording device 30) is coaxial with the laser beam 2 emitted from the position angle recording device 30. Mode configuration = square member 14 and mirror 15. In other words, in the case where the polarization azimuth angle is set 30 (the optical unit) is rotated about the human optical axis, the optical axis and the optical axis that emits green are maintained in the (four) (four) state of the placing polarizer 14 and the mirror. 151, even if the polarization azimuth

13 3231H 201207428 裝置30進行旋轉調整時,光軸亦不會發生偏移,故加工品 質不會劣化。 如此,由於係使入射於偏光方位角調整裝置3〇的雷 射光2當中在偏光件14反射的s波偏光成分S1朝光路徑 下游傳播,故可在不會受到偏光件14之熱透鏡現象的影響 1*進行穩疋的雷射加工。又,由於係使一個偏光件14與至 少兩個光學元件(反射鏡15)以朝向偏光方位角調整裝置 30的入射光軸與射出光軸成為同轴的方式構成光學單元, 故即便於光軸中心旋轉調整光學單元以調整偏光方位角, 光軸亦不會發生偏移。因此,可進行穩定的雷射加工。 此外’本實施形態中係對適用於雷射加工裝置1〇〇的 情況進行說明,惟亦可將偏光方位角調整裝置3〇適用於具 有其他構成的雷射加工裝置,其中該雷射加工裝置1〇〇係 在偏光方位角調整裝置30將雷射光2分光成兩條,並於兩 個XY工作臺12A、12B上同時進行兩個被加工物ι3Α、13B 的加工。 已針對例如將雷射光2分光成兩條,並於兩個χγ工 作臺12Α、12Β上同時進行兩個被加工物13Α、13Β的加工 的情況進行說明,惟本實施形態並不限於此構成。 例如’亦可將偏光方位角調整敦置3〇適用於將雷射 光2分光成三條以上,並於三個以上的χγ工作臺上同時對 三個以上的被加工物進行雷射加工的雷射加工裝置。 又’亦可將偏光方位角調整裝置30適用於在一個χγ 工作臺上載置複數個被加卫物,並將雷㈣2分光成複數 323111 14 201207428 條同時對各被加工物進行雷射加工的雷射加工裝置。 又’亦可將偏光方位㈣整裝置3G適用於在一個驅 t系統#裝魏個XY1作臺,並將雷射光2分錢複數 條,同時對魅於各XYm的被加工物進行雷射加工 的雷射加工裝置。 ='亦可將偏光方位角調整裝置3〇適用於在一個χγ 、=載置一個被加工物,並將雷射光2分光成複數 么、’以贿條雷射光束同時對被加工物的複數個部位進行 雷射加工的雷射加工裝置。 又, 本實施形態中係對偏光方位角調整裝置3〇的各 :素(偏光件14、反射鏡15、擋板16)收納於框體35 g廿月况進订制’惟偏光方位角調整裝置別的各構成要 純體35心卩便料㈣光方㈣調整裝 m構成要素收納於框體35内的情況,亦可藉由連 以r以而以一個光學單元構成。此外,將光學單元 二::光2的光轴為中心旋轉的方式安裝在雷射加工 置有兩“:鏡二:=:::= 調整裝置3Μ之反射先= = 偏光方位角調整裝置30的雷射先2盘:偏 = = :=射*2成為同__: 圖所…置配置, 匕偏光刀先器7更靠前段(光】 323111 201207428 徑上游側),亦可配置於任何位置。 又,本實施形態中係針對連帶光學單元旋轉偏光件14 與反射鏡15的情況進行說明,惟亦町獨立旋轉偏光件14 與反射鏡15。此時亦以使朝向旋轉偏光件14及反射鏡15 之偏光方位角調整裝置30的入射光軸與射出光軸的光軸 成為同軸的方式來旋轉偏光件14與反射鏡15。 又’本實施形態中係從偏光方位角調整裝置30射出 在偏光件14反射的S波偏光成分,惟亦可在未有偏光件之 穿透熱透鏡所產生的影響的情況下,使穿透偏光件14的p 波偏光成分射出。第5圖為表示使穿透偏光件的P波偏光 成分射出之偏光方位角調整裝置的概略構成圖。此外,對 第5圖的各構成要素中達到與第2圖所示之偏光方位角調 整裝置30相同功能的構成要素附加相同號碼’並省略重複 說明。 偏光方位角調整裝置31具有偏光件14、複數片反射 鏡(第5圖係圖示兩片反射鏡15)及擋板16,此等構件係收 納於極體35内。 偏光件14係反射雷射光2的s波偏光成分S2並將其 導引至擋板16 °此外,偏光件14係使雷射光2的P波偏 光成分P2穿透並將其導引至光路徑下游側。反射鏡15係 將穿透偏光件14後之雷射光2的P波偏光成分P2予以反 射並將其導引至偏光方位角調整裝置31的射出侧。反射鏡 15係以使入射於偏光方位角調整裝置31而來之雷射光2 的光軸與由偏光方位角調整裝置31射出之雷射光2的光軸 16 323111 201207428 成為同軸的方式配置。擒板16係阻擒在偏光件14反射之 雷射光2的S波偏光成分S2。藉此構成,偏光方位角調整 裝置31係與偏光方位角調整裝置3〇同樣地以雷射光8A 的能量與雷射光8B的能量相等的方式使雷射光2射出。藉 此,當使P波偏光成分P2從偏光方位角調整裝置μ射出 時,即便於光軸中心旋轉調整光學單元以調整偏光方位角, 光軸亦不會發生偏移。 如此,根據實施形態,由於係藉偏光方位角調整裝置 3〇將雷射光2的S波偏光成分S1導引至光路徑下游/故 可於不 <到偏光件14之熱透鏡現象所造成的影響下進行 雷射加工。又,由於是以—個光學單元構錢光方位角調 整裝置30’並沿雷射光的光軸方向將其安裝成可旋轉自 故可在不改變雷射光2的光軸方向的情況下調整偏光 方位角。因此,可容易對被加工物13Α、13β進行穩定 射加工。 〔產業上之可利用性〕 如上所述’本發明之偏光方位角調整裝置及雷射加工 裝置係適於調_於雷射加工之f射光的偏光方位角。 【圖式簡單說明】 第1圖係表示本發明實施形態之雷射加工裳置的概略 第2圖係表*實_態之偏光輕肖調錄置的 圖。 第3圖係用以說明偏光件與偏光方位角之關係的圖。 323111 17 201207428 第4圖中的(a)及(b)係用以說明雷射光穿透偏光件時 的熱透鏡現象的圖。 第5圖係表示使P波偏光成分射出之偏光方位角調整 裝置的概略構成圖。 【主要元件符號說明】 1 雷射振盪器 2、8A、8B雷射光 2a、2b、2c、9A、9B 偏光方位角 4 遮罩(光束遮罩) 5 光束可變部 6 反射鏡 7 偏光分光器(分光部) 10Ax、10Ay、lOBx、10By 檢流計掃描器 11A、11B 透鏡 12A、12B XY 工作臺 13Α、13Β 被加工物 14、17 偏光件 15 反射鏡 16 播板 30、31 偏光方位角調整裝置(光學單元) 35 框體 100 雷射加工裝置13 3231H 201207428 When the device 30 performs rotation adjustment, the optical axis does not shift, so the processed quality does not deteriorate. In this manner, since the s-wave polarized component S1 reflected by the polarizer 14 among the laser light 2 incident on the polarization azimuth adjusting device 3 is propagated downstream of the optical path, the thermal lens phenomenon of the polarizer 14 can be prevented. Affects 1* for stable laser processing. Further, since one polarizer 14 and at least two optical elements (mirror 15) are configured to be optically aligned with the incident optical axis of the polarization azimuth adjusting device 30 and the optical axis of the output, even the optical axis is formed. The center rotates the adjustment optical unit to adjust the polarization azimuth, and the optical axis does not shift. Therefore, stable laser processing can be performed. Further, in the present embodiment, a case where the laser processing apparatus 1 is applied to the laser processing apparatus 1A will be described, but the polarization azimuth adjusting apparatus 3 can be applied to a laser processing apparatus having another configuration, wherein the laser processing apparatus In the polarization azimuth adjustment device 30, the laser light 2 is split into two, and the two workpieces ι3 Α and 13B are simultaneously processed on the two XY tables 12A and 12B. For example, the case where the laser light 2 is split into two and the processing of the two workpieces 13A and 13B is performed simultaneously on the two χγ stages 12Α, 12Β is described, but the embodiment is not limited to this configuration. For example, 'the polarization azimuth can be adjusted to 3 〇. It is suitable for lasers that split the laser light into three or more and perform laser processing on three or more workpieces simultaneously on three or more χγ tables. Processing device. Moreover, the polarizing azimuth adjusting device 30 can also be applied to a plurality of reinforced objects placed on a χγ table, and the Ray (4) 2 is split into a plurality of 323111 14 201207428 and a laser for laser processing of each workpiece at the same time. Injection processing device. In addition, the polarized position (four) device 3G can also be applied to a WD1 system in a drive t system, and the laser light is 2 cents, and laser processing is performed on the workpieces enchanted by each XYm. Laser processing equipment. = 'You can also apply the polarized azimuth adjustment device 3〇 to a workpiece in a χγ,=, and split the laser light into multiples, 'the laser beam is simultaneously applied to the workpiece Laser processing equipment for laser processing at various locations. Further, in the present embodiment, each of the polarizing azimuth adjusting devices 3 (the polarizer 14, the mirror 15, and the baffle 16) is housed in the casing 35 g. Each of the other components of the apparatus is a pure body 35. The fourth party is made of a light unit. (4) The light side (4) The adjustment element is housed in the casing 35, and may be constituted by an optical unit by connecting r. In addition, the optical unit of the optical unit 2::2 is rotated about the center of the laser to be mounted in the laser processing with two ": mirror 2: =:::= adjustment device 3 反射 reflection first = = polarized azimuth adjustment device 30 The first two lasers: partial = = : = shot * 2 becomes the same as __: Figure ... set configuration, 匕 polarized knife first 7 is more on the front (light) 323111 201207428 upstream side), can also be configured In the present embodiment, the case where the polarizing element 14 and the mirror 15 are rotated by the associated optical unit will be described, and the polarizing member 14 and the reflecting mirror 15 are independently rotated, and the rotating polarizer 14 is also turned toward the rotating polarizing member 14 at this time. The polarization axis 14 and the mirror 15 are rotated so that the incident optical axis of the polarization azimuth adjusting device 30 of the mirror 15 is coaxial with the optical axis of the outgoing optical axis. In the present embodiment, the polarization azimuth adjusting device 30 is used. The S-wave polarized component reflected by the polarizer 14 is emitted, but the p-wave polarized component penetrating the polarizer 14 can be emitted without the influence of the polarizing member penetrating the thermal lens. Fig. 5 is a view a polarizing side for emitting a P-wave polarized component that penetrates the polarizer In the components of the fifth embodiment, the components having the same functions as those of the polarization azimuth adjusting device 30 shown in Fig. 2 are denoted by the same reference numerals, and the overlapping description will be omitted. The angle adjusting device 31 includes a polarizer 14 and a plurality of mirrors (the two mirrors 15 are shown in Fig. 5) and a baffle 16, and these members are housed in the pole body 35. The polarizer 14 reflects the laser light 2 The s-wave polarizing component S2 is guided to the baffle 16 °. Further, the polarizing member 14 penetrates the P-wave polarizing component P2 of the laser light 2 and guides it to the downstream side of the optical path. The mirror 15 is The P-wave polarization component P2 of the laser light 2 that has passed through the polarizer 14 is reflected and guided to the emission side of the polarization azimuth adjusting device 31. The mirror 15 is incident on the polarization azimuth adjusting device 31. The optical axis of the laser light 2 is disposed coaxially with the optical axis 16 323111 201207428 of the laser light 2 emitted from the polarization azimuth adjusting device 31. The slab 16 is configured to block the S wave of the laser light 2 reflected by the polarizing member 14. Polarized component S2. By this configuration, the polarizing side The angle adjusting device 31 emits the laser light 2 so that the energy of the laser light 8A is equal to the energy of the laser light 8B, similarly to the polarization azimuth adjusting device 3, whereby the P-wave polarizing component P2 is made from the polarization azimuth. When the adjustment device μ is emitted, even if the adjustment optical unit is rotated at the center of the optical axis to adjust the polarization azimuth, the optical axis does not shift. Thus, according to the embodiment, the laser light is attenuated by the polarization azimuth adjustment device 3 The S-wave polarizing component S1 is guided to the downstream of the optical path, so that laser processing can be performed under the influence of the thermal lens phenomenon to the polarizing member 14. Further, since the optical unit is constructed by an optical unit The angle adjusting device 30' is mounted rotatably along the optical axis direction of the laser light to adjust the polarization azimuth without changing the optical axis direction of the laser light 2. Therefore, the workpieces 13A and 13β can be easily subjected to stable shot processing. [Industrial Applicability] As described above, the polarized azimuth adjusting device and the laser processing device of the present invention are suitable for adjusting the polarization azimuth of the f-light of the laser processing. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the outline of a laser processing apparatus according to an embodiment of the present invention. Fig. 2 is a view showing a polarized light recording of a real state. Fig. 3 is a view for explaining the relationship between the polarizer and the azimuth of polarization. 323111 17 201207428 (a) and (b) in Fig. 4 are diagrams for explaining the phenomenon of thermal lens when laser light passes through the polarizer. Fig. 5 is a schematic block diagram showing a polarization azimuth adjusting device for emitting a P-wave polarized component. [Description of main component symbols] 1 Laser oscillator 2, 8A, 8B Laser light 2a, 2b, 2c, 9A, 9B Polarization azimuth 4 Mask (beam mask) 5 Beam variable part 6 Mirror 7 Polarizing beam splitter (Specifying section) 10Ax, 10Ay, lOBx, 10By galvanometer scanners 11A, 11B Lens 12A, 12B XY table 13Α, 13Β workpiece 14, 17 polarizer 15 mirror 16 deck 30, 31 polarization azimuth adjustment Device (optical unit) 35 frame 100 laser processing device

Al、Α2、A3、Bl、Β2、Β3 雷射光束強度分布 SI、S2 S波偏光成分 PI、Ρ2 Ρ波偏光成分 18 323111Al, Α2, A3, Bl, Β2, Β3 Laser beam intensity distribution SI, S2 S wave polarization component PI, Ρ2 Chopping polarization component 18 323111

Claims (1)

201207428 七、申請專利範圍: 1. 一種偏光方位角調整裝置,其特徵為: 具備光學單元,該光學單元具有: 使入射而來之雷射光的P波偏光成分穿透並反射 前述雷射光之S波偏光成分的偏光件、以及 反射在前述偏光件反射之前述雷射光的S波偏光 成分並將該s波偏光成分引導至光路徑的下游侧之至 少兩個反射光學元件, 前述光學單元吸收前述P波偏光成分且使前述s 波偏光成分朝光路徑的下游侧射出; 前述光學單元係以下述方式配置前述偏光件與前 述反射光學元件:使朝向前述光學單元之前述雷射光的 入射光軸與來自前述光學單元之前述雷射光的射出光 軸同軸’且在使前述光學單元以前述入射光軸為中心旋 轉時可維持前述入射光軸及前述射出光軸的光轴方Θ 2· —種雷射加工裝置,係使雷射光射出而對被加工物進行 雷射加工者,其特徵為: 在從射出前述雷射光的光源至前述被加工物的光 路徑上’具備:調整前述雷射光的偏光方位角,並且吸 收前述P波偏光成分且使前述3波偏光成分朝光路禝的 下游側射出的光學單元; 刖述光學早元具有:使入射而來之雷射光的P波偏 光成分穿透並反射前述雷射光的s波偏光成分的偏光 件、及 1 323111 201207428 反射在前述偏光件反射之前述雷射光的$ “ 成分並將其導引至光路徑的下游側之至少兩個偏光 學元件; 反射光 並且以下述方式配置前述偏光件與前述反射光與 元件:使朝向前述光學單元的前述雷射光的入射、/學 來自前述光學單元的前述雷射光的射出光軸同=軸與 使前述光學單元以前述入射光軸為中心旋轉時可且在 前述入射光軸及前述射出光軸的光軸方向。 持 3. 如申睛專利範圍第2項所述之雷射加工裝置,其中 在從前述光學單元至前述被加工物的光路經上,進 一步具有將前述雷射光分光成兩條雷射光的分光部, 前述光學單元係以由前述光學單元射出之雷射光 的偏向角度相對於前述分光部成為45。的偏光方位角 的方式’以前述入射光軸為中心旋轉。 4. 一種偏光方位角調整裝置,其特徵為: 具備光學單元,該光學單元具有: 使入射而來之雷射光的p波偏光成分穿透並反射 前述雷射光的S波偏光成分的偏光件、以及 將穿透前述偏光件後的前述雷射光之P波偏光成 分予以反射並將其導引至光路徑的下游侧之至少兩個 反射光學元件, 該光學單元吸收前述s波偏光成分且使前述p波偏 光成分朝光路徑的下游侧射出; 前述光學單元係以下述方式配置前述偏光件與前 2 323111 201207428 述反射光學元件:使朝向前述光學單元之前述雷射光的 入射光軸與來自前述光學單元之前述雷射光的射出光 轴同轴’且在使前述光學單元以前述入射光轴為中心旋 轉時可維持前述入射光軸及前述射出光軸的光軸方向。 3 323111201207428 VII. Patent application scope: 1. A polarizing azimuth adjusting device, which is characterized in that: an optical unit is provided, the optical unit having: a P-wave polarizing component that injects the incident laser light and reflects the laser light. a polarizer of a wave-polarizing component, and an S-wave polarizing component that reflects the laser light reflected by the polarizer, and guides the s-wave polarizing component to at least two reflective optical elements on a downstream side of the optical path, wherein the optical unit absorbs the aforementioned a P-wave polarizing component that emits the s-wave polarizing component toward a downstream side of the optical path; wherein the optical unit arranges the polarizer and the reflective optical element such that an incident optical axis of the laser light toward the optical unit is The optical axis of the laser light from the optical unit is coaxial with the optical axis of the laser light, and the optical axis of the incident optical axis and the optical axis of the output is maintained when the optical unit is rotated about the incident optical axis. The laser processing device is a laser processing device that emits laser light and performs laser processing on the workpiece. The light source that emits the laser light to the object path of the workpiece includes: an optical lens that adjusts a polarization azimuth of the laser light, and absorbs the P-wave polarized component and emits the three-wave polarized component toward a downstream side of the optical path The optical element has a polarizing element that penetrates the P-wave polarized light component of the incident laser light and reflects the s-wave polarized light component of the laser light, and 1 323111 201207428 reflects the thunder reflected by the polarizer Illuminating the "component" and directing it to at least two polarizing elements on the downstream side of the light path; reflecting the light and arranging the aforementioned polarizing member and the aforementioned reflected light and element in such a manner as to cause the aforementioned laser light toward the aforementioned optical unit The incident optical axis and the optical axis of the laser light from the optical unit are the same as the = axis and the optical unit is rotated about the incident optical axis, and may be in the optical axis direction of the incident optical axis and the outgoing optical axis. 3. The laser processing apparatus of claim 2, wherein the optical unit is processed from the optical unit to the foregoing Further, the optical path further includes a spectroscopic portion that splits the laser light into two types of laser light, wherein the optical unit has a polarization angle of 45 degrees with respect to the spectroscopic portion of the laser beam emitted from the optical unit. The mode 'rotates around the incident optical axis. 4. A polarizing azimuth adjusting device, comprising: an optical unit having: penetrating and reflecting the p-wave polarized light component of the incident laser light a polarizer of the S-wave polarization component of the laser light, and a P-wave polarization component that reflects the laser light that has penetrated the polarizer and guides it to at least two reflective optical elements on the downstream side of the optical path. The optical unit absorbs the s-wave polarization component and emits the p-wave polarization component toward the downstream side of the optical path. The optical unit is configured to dispose the polarizer and the front 2 323111 201207428 reflective optical element in such a manner as to face the optical unit. The incident optical axis of the aforementioned laser light is the same as the outgoing optical axis of the aforementioned laser light from the optical unit 'In making the optical unit and the incident optical axis to the incident optical axis to be maintained and the emission optical axis direction of the optical axis of the center of rotation. 3 323111
TW100117726A 2010-06-01 2011-05-20 Polarization azimuth adjustment device and laser processing apparatus TWI457601B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010126156A JP5349406B2 (en) 2010-06-01 2010-06-01 Polarization azimuth adjusting device and laser processing device

Publications (2)

Publication Number Publication Date
TW201207428A true TW201207428A (en) 2012-02-16
TWI457601B TWI457601B (en) 2014-10-21

Family

ID=45049574

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100117726A TWI457601B (en) 2010-06-01 2011-05-20 Polarization azimuth adjustment device and laser processing apparatus

Country Status (4)

Country Link
JP (1) JP5349406B2 (en)
KR (1) KR101265843B1 (en)
CN (1) CN102267010B (en)
TW (1) TWI457601B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI778529B (en) * 2020-03-16 2022-09-21 日商住友重機械工業股份有限公司 Beam Divergence Device and Divergence Ratio Adjustment Method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5940906B2 (en) * 2012-06-19 2016-06-29 株式会社ディスコ Laser processing equipment
KR101416411B1 (en) * 2012-12-28 2014-08-08 현대자동차 주식회사 Laser welder
CN108475895B (en) * 2016-01-18 2021-07-02 三菱电机株式会社 Power balancing device for laser and laser processing device
JP6925778B2 (en) * 2016-01-28 2021-08-25 浜松ホトニクス株式会社 Laser output device and laser processing device
KR102406398B1 (en) * 2022-03-16 2022-06-09 (주)세우인코퍼레이션 Apparatus for processing an opening hole in an open mask sheet and method for processing an opening hole in an open mask sheet using the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079181A (en) * 1993-06-24 1995-01-13 Hitachi Ltd Optical device for laser beam machining
TW555612B (en) * 2001-11-15 2003-10-01 Mitsubishi Electric Corp Laser machining apparatus
JP3667705B2 (en) * 2002-03-26 2005-07-06 住友重機械工業株式会社 Laser processing apparatus and processing method
JP4093183B2 (en) * 2002-03-28 2008-06-04 三菱電機株式会社 Laser processing equipment
JP3822188B2 (en) * 2002-12-26 2006-09-13 日立ビアメカニクス株式会社 Multi-beam laser drilling machine
TWI275439B (en) * 2003-05-19 2007-03-11 Mitsubishi Electric Corp Laser processing apparatus
JP4539652B2 (en) * 2004-06-01 2010-09-08 三菱電機株式会社 Laser processing equipment
JP2006122988A (en) * 2004-10-29 2006-05-18 Mitsubishi Electric Corp Laser beam machine
DE102005047328B3 (en) * 2005-06-28 2006-12-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for boring and material removal by laser beam has equalizing unit between image rotation and focusing device with parallel and angular adjustment
JP2007021509A (en) 2005-07-12 2007-02-01 Mitsubishi Electric Corp Laser beam machine
JP2007275908A (en) 2006-04-03 2007-10-25 Nippon Sharyo Seizo Kaisha Ltd Laser machining apparatus
JP2008145605A (en) * 2006-12-07 2008-06-26 Sumitomo Heavy Ind Ltd Laser irradiation device and processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI778529B (en) * 2020-03-16 2022-09-21 日商住友重機械工業股份有限公司 Beam Divergence Device and Divergence Ratio Adjustment Method

Also Published As

Publication number Publication date
CN102267010B (en) 2014-04-23
TWI457601B (en) 2014-10-21
JP5349406B2 (en) 2013-11-20
KR101265843B1 (en) 2013-05-20
KR20110132249A (en) 2011-12-07
CN102267010A (en) 2011-12-07
JP2011251306A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
TW201207428A (en) Polarization azimuth adjustment device and laser processing apparatus
US7102118B2 (en) Beam formation unit comprising two axicon lenses, and device comprising one such beam formation unit for introducing radiation energy into a workpiece consisting of a weakly-absorbent material
JP2014525141A5 (en)
WO2013022148A1 (en) Apparatus for cutting brittle materials using a multifocusing-type pulse laser
TWI275439B (en) Laser processing apparatus
JP2011524259A (en) Reduction method of back reflection in laser processing system
KR101425492B1 (en) Laser machining apparatus and method thereof
EP2208568A1 (en) Apparatus and method for processing material by means of laser
LT6240B (en) Method and apparatus for laser cutting of transparent media
TW540194B (en) Laser machining apparatus
JP2000190087A (en) Two axis laser processing machine
TWI421543B (en) Dual pulsed lights generation apparatus and method for dual pulsed lights generation thereof
JP3107734B2 (en) Method and apparatus for optical separation
TWI738675B (en) Polariser arrangement, euv radiation generating apparatus and method for the linear polarisation of a laser beam
JP2009039732A (en) Laser machining apparatus
KR101647991B1 (en) Vertical Multi-Beam laser processing system
JP2007061843A (en) Laser beam machining apparatus
JP2008137028A (en) Laser beam machining apparatus and laser apparatus
KR100862522B1 (en) Laser beam machining system and method for cutting of substrate using the same
US11304286B2 (en) Polarizer
KR100843411B1 (en) Laser beam machining system and method for cutting of substrate using the same
JP7190808B2 (en) LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD
JP2000176669A (en) Laser beam cutting device
KR101057458B1 (en) Drilling device and drilling method
KR101057457B1 (en) Drilling device and drilling method

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent