TW201204888A - Sheath-core compound fiber, false twist textured yarn composed thereof, method for manufacturing the same, and woven knit fabric including the fiber - Google Patents
Sheath-core compound fiber, false twist textured yarn composed thereof, method for manufacturing the same, and woven knit fabric including the fiber Download PDFInfo
- Publication number
- TW201204888A TW201204888A TW100119971A TW100119971A TW201204888A TW 201204888 A TW201204888 A TW 201204888A TW 100119971 A TW100119971 A TW 100119971A TW 100119971 A TW100119971 A TW 100119971A TW 201204888 A TW201204888 A TW 201204888A
- Authority
- TW
- Taiwan
- Prior art keywords
- core
- fiber
- resin
- sheath
- yarn
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/06—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/28—Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
- D01D5/30—Conjugate filaments; Spinnerette packs therefor
- D01D5/34—Core-skin structure; Spinnerette packs therefor
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/04—Pigments
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
- D01F1/106—Radiation shielding agents, e.g. absorbing, reflecting agents
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/14—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/02—Yarns or threads characterised by the material or by the materials from which they are made
- D02G3/04—Blended or other yarns or threads containing components made from different materials
- D02G3/045—Blended or other yarns or threads containing components made from different materials all components being made from artificial or synthetic material
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/283—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/40—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
- D03D15/49—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads textured; curled; crimped
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B1/00—Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B1/14—Other fabrics or articles characterised primarily by the use of particular thread materials
- D04B1/16—Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/22—Physical properties protective against sunlight or UV radiation
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Multicomponent Fibers (AREA)
- Knitting Of Fabric (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Woven Fabrics (AREA)
Abstract
Description
201204888 ^6/^pif 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種阻斷來自太陽的輻射熱的怒勒 複合纖維及含有該纖維的織編物(woven knit fabric)。 本案基於2010年6月8日於日本提出申請的日本專 利特願2010-131416號而主張優先權,其内容引用於此。 【先前技術】 先前,作為以遮光性為目的之窗簾或衣服中所使用 的纖維,已知有藉由使氧化鈦或滑石、硫酸鋇等白色顏料、 或者碳黑、紹粉末等無機微粒子分散於纖維中的方法而獲 得的纖維(專利文獻1、專利文獻2)。另外,作為雪上的 白色偽裝用途的布帛,已知有包含以聚乙婦醇系纖維為勒 紗、合成纖維複絲(multifilament)為芯紗的包芯紗(c〇re yarn)的紫外線反射性白色布帛(專利文獻3)。 另一方面,芯鞘複合纖維的技術已廣為人知。例如已 知有如下述般使用芯鞘複合纖維的技術,而製造具有耐 擦熔融性的纖維。該纖維是鞘部為具有大於等於'2〇〇 炫點的熱塑性聚合物,而芯部為含有結晶成核劑的聚丙婦 的芯鞘複合纖維(專利文獻4)。 然而,專利文獻1、專利文獻2的方法為了充分 來自太陽的輻射熱,而必須於纖維中令右士 uμ μΤ3百大量無機微粒 子。其結果,存在不僅製紗步驟的穩定性變差 及製品的質地明顯受損的問題。 纖維 另外,專利文獻3的聚乙稀醇系纖維雖具有阻斷輕射 4 201204888 mpif 熱的效果’但存在紗的強度較低的問題。 [先前技術文獻] [專利文獻] [專利文獻1]曰本專利特開平1181〇48號公報 [專利文獻2]曰本專利特開平9_137345號公報 [專利文獻3]日本專利特開平9-228188號公報 [專利文獻4]曰本專利第3452291號公報 【發明内容】 本發明的目的在於提供一種無損纖維的質地(把_^ 而有效地遮蔽或吸收太陽的輻射熱(即紅外光)的纖維、 及使用該纖維的織編物。另外,本發明的其他目的在於使 該纖維的紡紗步驟的穩定性及假撚步驟的通過性變得良 好0 本發明的主旨在於一種芯鞘複合纖維,其包含芯部盥 鞘=,且芯鞘複合纖維含有二氧化鈦丨wt%〜3 wt% (重^ 百分比)’芯部以折射率為A的樹脂作為主成分,鞘部以 折射率為B的樹脂作為主成分,a及B滿足以下式(丨)。 |A-B|^0.01... (1) 進而,本發明的主旨在於-種芯勒複合纖維,其包含 芯部與鞘㈣合纖維含有二氧化鈦i wt%〜3 =1部以導熱率(W/m.K)為c的樹脂作為主成分, 邛乂導熱率(W/m.K)為D的樹脂作為主成分,〔及d 滿足以下式(2)。 1C〜DI20.01... (2) 201204888. JO /H^tpif 進而’本發明的主旨在於一種滿足下述式(5)的芯 鞘複合纖維。 10SCMVRS40... (5) 其中’CMVR為較芯部及鞘部的主成分的樹脂中具有 較高炼點的樹脂的熔點高出25。〇的溫度下之具有較低熔 點的樹脂的MVR (cm3/l〇 min)。 另外’本發明的主旨在於一種假撚加工紗(false twist textured yarn)的製造方法’其是於滿足以下(6)〜(8) 的條件下’對滿足上述式(5)的芯鞘複合纖維進行假撚加 工。 (TL-20) (TL + 30) ...... (6) KS31000....................................⑺ 〇-1 cN/dtex^TE^0.2cN/dtex... (8) 其中’ TL表示芯部及鞠部的主成分的樹脂中具有較 低溶點的樹脂的熔點、ττ表示假撚溫度、K表示假撚係 數、TE表示假撚張力。再者,假撚係數是由實施假撚加工 的纖維的纖度與假撚數的關係所表示的係數,且由下述式 所表示。 假撚係數=假撚數(t/m) X (纖維的纖度(dtex)+1 〇 X 9)1 /2 [發明之效果] 本發明的芯鞘複合纖維可無損纖維的質地而阻斷來 自太陽的輻射熱。即,可有效地遮蔽或吸收紅外光。並且, 使用該纖維的織編物在做成窗簾或衣服時,可有效地遮蔽 或吸收來自太陽的輻射熱即紅外光。 6 201204888 外光^發勒複合纖維可有效地遮蔽或吸收紫 衣服日# m且’使用該纖維的織編物在做成窗簾或 衣服時,可有效地频或吸收料光及可見光。201204888^6/^pif VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a ray composite fiber which blocks radiant heat from the sun and a woven knit fabric containing the same. The present application claims priority based on Japanese Patent Application No. 2010-131416, filed on Jan. [Prior Art] Conventionally, as a fiber used for a curtain or a garment for the purpose of light-shielding, it is known that a white pigment such as titanium oxide, talc or barium sulfate or inorganic fine particles such as carbon black or a powder is dispersed. Fiber obtained by the method in the fiber (Patent Document 1 and Patent Document 2). Further, as a fabric for white camouflage use in snow, ultraviolet light reflection including a core yarn having a polyfilament yarn as a yarn and a multifilament as a core yarn is known. White cloth (Patent Document 3). On the other hand, the technology of core-sheath composite fibers is well known. For example, it is known to use a technique of using a core-sheath composite fiber as follows to produce a fiber having abrasion resistance. This fiber is a core-sheath composite fiber in which the sheath portion is a thermoplastic polymer having a peak of '2 〇〇 or more and the core portion is a polypropylene nucleating agent containing a crystal nucleating agent (Patent Document 4). However, in the methods of Patent Document 1 and Patent Document 2, in order to sufficiently radiate heat from the sun, it is necessary to make a large amount of inorganic fine particles in the fiber. As a result, there is a problem that not only the stability of the yarn making step is deteriorated but also the texture of the product is significantly impaired. In addition, the polyethylene fiber of the patent document 3 has the effect of blocking the light radiation of the 201204888 mpif, but there is a problem that the strength of the yarn is low. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Patent Laid-Open No. Hei 9-228188 (Patent Document 3) Japanese Patent Laid-Open No. Hei 9-228188 [Patent Document 4] Japanese Patent No. 3452291 [Invention] The object of the present invention is to provide a fiber which does not impair the texture of the fiber (effectively shields or absorbs the radiant heat of the sun (i.e., infrared light), and A woven fabric of the fiber is used. Further, another object of the present invention is to improve the stability of the spinning step of the fiber and the passability of the false twisting step. The main object of the present invention is to provide a core-sheath composite fiber comprising a core. The sheath of the sheath is =, and the core-sheath composite fiber contains TiO 2 wt% 〜3 wt% (weight percent). The core has a resin having a refractive index A as a main component, and the sheath portion has a resin having a refractive index B as a main component. , a and B satisfy the following formula (丨). |AB|^0.01 (1) Further, the main object of the present invention is a core-type composite fiber comprising a core and a sheath (tetra) fiber containing titanium oxide i wt% ~3 =1 part with thermal conductivity (W/mK) is a resin of c as a main component, and a resin having a thermal conductivity (W/mK) of D is a main component, and [and d satisfy the following formula (2). 1C to DI20.01... (2 201204888. JO /H^tpif Further, the main idea of the present invention is to provide a core-sheath composite fiber satisfying the following formula (5). 10SCMVRS40 (5) wherein 'CMVR is a main component of the core portion and the sheath portion The resin having a higher refining point in the resin has a melting point higher than 25. The MVR of the resin having a lower melting point at a temperature of 〇 (cm3/l〇min). Further, the present invention is directed to a false twisted textured yarn (false The manufacturing method of the twist textured yarn is 'fake the core-sheath composite fiber satisfying the above formula (5) under the conditions of the following (6) to (8). (TL-20) (TL + 30) ) (6) KS31000..............................(7) 〇- 1 cN/dtex^TE^0.2cN/dtex (8) where TL represents the melting point of the resin having a lower melting point in the resin of the main component of the core and the crotch portion, ττ represents the false twist temperature, and K represents The false twist factor and TE indicate the false twist tension. Moreover, the false twist factor is the fiber processed by the false twist. The coefficient expressed by the relationship between the fineness and the number of false turns, and is expressed by the following formula: False twist coefficient = false twist (t/m) X (fiber fineness (dtex) + 1 〇 X 9) 1 / 2 [Effect of the Invention] The core-sheath composite fiber of the present invention can block the radiant heat from the sun without impairing the texture of the fiber. That is, infrared light can be effectively shielded or absorbed. Further, when the woven fabric using the fiber is used as a curtain or a garment, it can effectively shield or absorb radiant heat from the sun, i.e., infrared light. 6 201204888 The external light ^Faller composite fiber can effectively shield or absorb the purple clothes. # m and use the woven fabric of the fiber to effectively absorb or absorb the light and visible light when making curtains or clothes.
日,發明的芯勒複合纖維具有耐摩擦㈣性。並 使用錢維的織編物在做成運動衣料時,即便受到由 滑動或跌倒等引起的摩擦熱,織編物亦難以溶融。 0另外’本發明的芯觀合纖維可於料、步射穩定地 獲付,該纖維的假撚步驟的通過性亦良好。 【實施方式】 < ° 以下,對本發明的實施形態進行詳細說明。 〈芯部以折射率為A的樹脂作為主成分,賴部以折射 率為B的樹脂作為主成分,A&B滿足以下式(ι) >In the day, the invented core composite fiber has friction resistance (four) properties. And when using Qian Wei's woven fabric to make sportswear, even if it is subjected to frictional heat caused by sliding or falling, the weaving is difficult to melt. 0 Further, the core-viewing fiber of the present invention can be stably obtained in a material and a step, and the pass-through property of the fiber is also good. [Embodiment] Embodiments of the present invention will be described in detail below. <The core has a resin having a refractive index A as a main component, and a resin having a refractive index B as a main component, and A&B satisfies the following formula (1) >
本發明的忠顆複合纖維,必需使芯部包含由折射率為 A的樹脂所形成的樹脂組成物作為主成分,鞘部包含由折 射率為B的樹脂所形成的樹脂組成物作為主成分,且使A 及B滿足以下式⑴。|A_B|是指A||B的差的絕對值(以 下,亦稱作折射率差)。 |Α-Β|^〇.〇1... (1) 藉由使芯鞘複合纖維滿足(1)式,可不含過剩的氧 化鈦,故能夠無損纖維的質地而阻斷來自太陽的輻射熱。 即,可有效地遮蔽或吸收紅外光《作為其原因之一,可認 為是光於芯鞘界面反射的緣故。 例如,形成芯部及/或鞘部的樹脂為聚乙烯樹脂、尼龍 6樹脂、聚g旨樹脂、聚丙烯樹脂等。 201204888. jo /H^pif 於纖維便覽原料篇纖維學會 日發行)的第218〜219頁的表2·26 968年11月30 維的纖維軸為直角方向的折射率^如中對與各種樹脂纖 聚乙烯纖維1.512〜1.52〇、^ 己載。 纖維1.515、聚對苯二甲酸乙二氣纖^、尼龍6 〈芯部以導熱率(W/m〇為Γ 2 1,781In the loyal composite fiber of the present invention, it is necessary that the core portion contains a resin composition composed of a resin having a refractive index A as a main component, and the sheath portion contains a resin composition formed of a resin having a refractive index B as a main component. And A and B satisfy the following formula (1). |A_B| refers to the absolute value of the difference of A||B (hereinafter, also referred to as refractive index difference). |Α-Β|^〇.〇1 (1) By satisfying the formula (1), the core-sheath composite fiber can be free of excess titanium oxide, so that the radiant heat from the sun can be blocked without impairing the texture of the fiber. That is, infrared light can be effectively shielded or absorbed. "As one of the reasons, it can be considered that light is reflected at the interface of the core sheath. For example, the resin forming the core portion and/or the sheath portion is a polyethylene resin, a nylon 6 resin, a polyg resin, a polypropylene resin, or the like. 201204888. Jo /H^pif Table 2, 26, pp. 218~219, on the 218th to 219th of the Fibers of the Fiber Materials, November 30, 968. The fiber axis of the dimension is the refractive index in the right angle direction. Fiber polyethylene fiber 1.512~1.52〇, ^ has been loaded. Fiber 1.515, polyethylene terephthalate fiber, nylon 6 <thermal conductivity (W / m 〇 2 1,781
勒部以導熱率(W/m.K)為樹二"旨:為主成分, 滿足以下式(2) > %作為主成分,CD 為D的樹月曰作為主成分,且使c及 例如,形成芯部及/或勒部的樹脂為聚乙婦樹脂、聚丙 烯樹脂、聚酯樹脂、聚氯乙烯樹脂等。 於纖維便覽原料篇纖維學會編(1968年u月30 曰發行)的第107頁的表1·28 t,對各種高分子物質的 5〇°C下的導熱率[lO'cal.deg'cm-'secT1]作如下記載。 密度0.918 g.cixT3的聚乙烯7.〇〜97、同排聚丙烯 (isot-propylene) 5.2、聚對苯二甲酸乙二酯52〜68、聚 氯乙烯4.0 若將以上導熱率的值的單位轉換為(W/m.K),則變 成以下值。 密度0.918 g*cm·3的聚乙烯〇·29〜0.41、同排聚丙烯 8 201204888 J5/料pif 0.22、聚,苯二曱酸乙二酯o 22〜〇 28、聚氯乙烯ο 17 <芯勒複合纖維含有二氧化鈦 1 wt% 〜3 wt%> 一於本發明的芯鞘複合纖維中,必需使芯鞘複合纖維含 有一氧化鈦1 wt%〜3 wt%。當二氧化鈦為3 wt%以下時, 起到阻斷太_輻射熱的效果,由二氧化鈦的添加引起的 增黏亦並不那麼大,故不會產生製紗性不良 。反之,當二 氧化鈦為1 wt%以上時,具有阻斷目的之太陽的輻射熱的 效果。於卿巾調配二氧化鈦的情況下,有時會於製紗後 的步驟中磨損紗道導紗器(yarn path guide)。因此,二氧 化鈦較佳為調配於芯部中。 ^另外,當芯部及鞘部的樹脂中含有二氧化鈦時,最能 獲得阻斷太陽的輻射熱的效果,故而較佳。所使用的二氧 化鈦/、要為製造合成纖維等時所使用的二氧化鈦,則並無 限定。 然而’就分散性而言,較佳為使用銳鈦礦型二氧化鈦。 進而’較佳為芯鞘複合纖維含有二氧化鈦1 4wt%〜2 wt%。 另外,關於二氧化鈦的一次粒子的平均粒徑,若考慮 纺紗步驟中的穩定性,則較佳為〇]卿…μιη的範圍内, 更佳為〇·1 μιη〜0.3 μιη的範圍内。可容易獲得的氧化欽例 如為Kronos公司製造的二氧化鈦ADd等。 < R值為24以下> 3本2發明的芯鞘複合纖維較佳為當形成通氣度為24〇 cmW/s〜350 cmW/s、單位面積重量為22〇咖2〜3〇〇 201204888. g/m2的織編物時,R值為24以下。R值是藉由遮叙 所測定的溫度上升值(ΐ )。藉由使R值為2 4以·ς ‘生試驗 適地使用於使用織編物的環境下。r值更佳為、 了舒 而較佳可為22以下。 以下、進 再者,220 g/m2〜3〇〇 g/m2的單位面積重量 衣料用織編物的標準單位面積重量,通氣户數值為 cm3/cm2/s〜350 cm3/cm2/s的數值為上述單位面二^θ24() 織編物的標料氣度。 若觀察比較例1、比較例2及比較例5,則於 聚酯纖維中,隨著纖維中的二氧化鈦的含有率實的 2wt%降低,R值減小。 t%)自 然而,根據芯部的主成分為聚乙烯樹脂、鞘 分為聚酯樹脂,且變更了芯與鞘的體積比的實例' 5,隨著纖維中的二氧化鈦的含有率(wt〇/〇)自2糾0 I】 R值上升。 °降低, 差1或導熱 其原因,ag、為是芯部與賴部的樹脂的折射率 率差產生影響。 <紅外線穿透率為32%以下> 本發7的芯鞘複合纖維較佳為當形成單位面積重量 為220 g/m〜300 g/m2的織編物時,紅外線穿透 以下。藉由使紅外線穿透率為32%以下,可有效地遮蔽或 吸收太陽的輻射熱,即紅外光。紅外線穿透率更佳為3〇 以下、進而較佳可為27%以下。 再者,與上述R值時同樣地,根據實例1〜實例5, 201204888 J»/44pif 隨著纖維中的二氧化鈦的含㈣(wt%)自2⑽降低, 穿透率上升。較佳為同時滿足上収值的範圍與紅 外線穿透率的範圍。 <芯部的樹脂組成物的主成分> 本發明的芯鞘複合纖純佳為芯部_脂組成物主 要由聚烯_賴形成。形就、部的聚烯烴伽為聚乙婦 樹脂、聚丙稀樹脂等。 當將導熱率較高的聚乙烯樹脂調配於芯部中,將導熱 率較聚乙烯樹脂低的聚酯樹脂等調配於鞘部中時,導熱^ 差為正數’且導熱率差變大。因此,認為相較於纖維的徑 方向’熱變得容易於纖維的長度方向傳輸,熱變得難以於 織編物的厚度方向傳輸。所使用的聚乙烯樹脂為公知的纖 維等級的分子量、密度者,並無特別限定。可容易獲得的 聚乙烯樹脂例如為日本聚乙烯(Japan Polyethylene)公司 製造的 Kernel KF283、KF380 等。 當將導熱率較低的聚丙稀樹脂調配於芯部中,將導熱 率較聚丙烯樹脂高的尼龍6樹脂等調配於鞘部中時,導熱 率差為負數,且傳導率差變大。因此,認為熱變得難以於 纖維的徑方向傳輸,熱變得容易於纖維的長度方向傳輸。 所使用的聚丙烯只要為公知的纖維等級的分子量、密度 者,則並無特別限定。可容易獲得的聚丙烯樹脂例如為 Japan Polypropylene 公司製造的 Novatec SA01、SA03 等。 另外,為了對織編物賦予伸縮性、蓬鬆性等,本發明 的芯鞘複合纖維視需要可實施假撚加工。對於該假撚加工 11 201204888.f JO /^plt 的步驟而言,芯部的樹脂组成物的主成分較佳為具有 130°C〜180°C的範圍内的熔點的聚烯烴樹脂。 當該聚烯烴樹脂的熔點為130。(3以上時,可減少假撚 步驟中的白粉的產生。當熔點為l8〇〇c以下時,可提高本 發明的織編物的耐摩擦熔融性。 <鞘部的樹脂組成物的主成分> 本發明的芯鞘複合纖維較佳為鞘部的樹脂組成物主 要由聚醋樹脂所形成。形成鞘部的聚酯樹脂為公知的纖維 等級的聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯等,較 佳為聚對苯二甲酸乙二酯、共聚聚對苯二曱酸乙二酯。 進而,更佳為聚對苯二甲酸乙二酯為滿足下述式(3) 及式⑷的聚對笨二曱酸乙二酷。當滿足下述式⑶及 式(4)時’可以陽離子染料進行染色,且可實現常麈染色。 〇.8^s^5... (3) 2^a^l5... (4) 心ί中’s及a分別為聚對苯二曱酸乙二s旨樹腐中的石 f間^甲酸單摘共聚率(⑽丨%)及碳數2^的脂月 族二,的共聚率(mol%)。 日 性鐵=4 〇.8刚%以上時,可使陽離子染料特有的鮮! 合物:另外’當S為5 —%以下時,―當^ 升。jlI 〇度,而使聚合時的聚合物的熔融黏度不 =、、果’纖維強度未降低。 金屬巧間笨二甲酸的金屬鹽為5_確基間苯二f酸的! ^鯉鹽、鈉鹽、鉀鹽、伽鹽、鎚鹽)等。男外巧 12 201204888 38744pif 需要可併用該些化合物的鎂鹽、鈣鹽等鹼土鹽。其中,最 佳為使用5-磺基間苯二曱酸的鈉鹽。 ’、 當a為2 mol%以上時,可使常壓染色下的染色性變得 良好。當a為15 m〇l%以下時,可將聚酯樹脂的玻璃轉移 • 溫度或熔點設為適當範圍。其結果,可獲得具有必需的力 ' 學特性、牢固性、耐熱性等的纖維製品。碳數2〜8的脂肪 族二羧酸為琥珀酸、戊二酸(g][utaric acid)、已二酸(ad_c acid)、辛二酸(subericacid)、癸二酸(灿_邮⑷等, 其中較佳為己二酸。使用己二酸時,可於纖維的非晶結構 t產生適當的混亂,而提高染色性。 <芯部與鞘部的體積比為1/2〜1/1〇> 心本發明的芯鞘複合纖維中的芯部與鞘部的體積比必 ,為1/2〜1/1〇。當芯部鞘部體積比超出1/2時,會導致鞘 部破裂而露出芯部’而降低製紗穩定性。當芯部勒部體積 比未達1/10 a寺,會使纖維的遮熱性惡化。就製紗穩定性及 遮熱性之方面而言,該芯部與勒部的體積比較佳為1/4〜 1/8的範圍内。 < 滿足 10SCMVRS40... (5)〉 CMVR為較芯部及鞘部的主成分的樹脂中具有較高 、溶點的樹脂的溶點高出25ΐ的溫度下之具有較低溶點 樹脂的MVR。 CMVR較佳為1〇SCMVRg40。當CMVR為1〇以上 2 ’可使對_複合纖維進行㈣時祕定性變得良好。 虽CMVR $ 40以下時’在芯部的主成分的樹脂的炫點低 201204888 J5/^pif :鞘。P的主成分的樹脂的魅的情況下可減少假樵加工 中所產生的白粉。 再者,白粉是進行假撚加工時附著於旋轉器 spinn:)、導紗器等上的物質。當產生白粉時,會降低本 ^明的雜複合纖_特徵,即崎太陽喃射熱的效果 ’耐摩擦炫融性的性能,亦降低織編物的品位。 另外,白粉的產生會降低假撚加工的通過性及製造織 物或編織物時的步驟通過性。 當CMVR為40以下時可減少白粉的原 因尚不明確, 但可推測如下。 於心鞘結構的樹脂組成物即將自紡紗嘴喷出前至剛 ,出後的區域’錄態的鞘部賴脂喊物覆蓋熔融狀 芯部⑽驗成物H偶_會有芯部的主成分的 樹脂的低分子#成分進人卿中的情況。於假撚加工中, 纖維發生變形’露出進人稍部巾的微量的低分子量成分, 而形成白粉。當CMVR為40以下時,可使芯部的主成分 的樹脂的低分子量成分難以進人卿的_組成物中。 <與纖維轴為直角方向的截面形狀為三角、四角、中 空或丫型> 本發明的芯勒複合纖維的與纖維軸為直角方向的截 面形狀較佳為二角、四角、中空或γ型。當該截面形狀為 二角、四角、中空或Y型等多角形時,可提高太陽光的反 射率,而提高阻斷太陽的輻射熱的效果。另外,當該截面 形狀為中空截面時,由於存在導熱率較低的空氣層,故可 201204888 j〇 /npif 提高阻斷太陽的輻射熱的效果。 <單纖維纖度小於等於3 dtex> 本發明的芯鞘複合纖維的單纖維纖度較佳為3 dtex以 下’更佳為2 dtex以下,進而較佳為1 dtex以下。當單纖 維纖度如此般變小時,可增大纖維的表面積,使太陽光的 反射部分變多,故可提高阻斷太陽的輻射熱的效果。 <芯鞘複合纖維的製造方法> 本發明的芯鞘複合纖維可藉由公知的芯鞘複合纖維 的製紗方法而製造。再者,用於㈣複合纖維的紡紗的纺 嘴(spinneret)的紡紗孔較通常紡紗中的紡嘴的紡紗孔, 孔徑更大’較佳為0.3 μιη〜9.5 。 —另外,紡㈣的延㈣法可騎時捲取未延伸紗後進 伸的方法或不捲取未延伸紗而進行延伸的方法的任一 <包含芯鞘複合纖維的假撚加工紗> 本發明的芯鞘複合纖維較佳為假撚加工紗。 加工紗時,與纖維軸為直角方向的截面形狀 二太陽_反射㈣高,而提高輯场_^= <包含芯鞘複合纖維的假撚、加工紗的製造 製造包含本發明的芯鞘複合纖維的假 法〉 撚條件較佳為滿足以下(6)〜(8)式。“、、σχ紗的假 (TL-20) (TL + 3〇) KS31000........ (6) (7) 15 201204888 i»/44pif 〇. 1 cN/dtex^ TE ^ 0.2 cN/dtex...(8) 其中’ TL表不怎部及稍部的主成分的樹脂中具有較 低熔點的樹脂的熔點、ττ表示假撚溫度、κ表示假撚係 數、ΤΕ表示假撚張力。再者,假撚係數是由實施假撚加工 的纖維的纖度與假撚數的關係所表示的係數,且由下述式 所表示。 假撚係數=假撚數(t/m) Χ (纖維的纖度(dtex)—丨〇 χ 9) I/2 例如’於鞘部的主成分為聚對苯二甲酸乙二酯樹脂、 芯部的主成分為聚丙烯樹脂的情況下,假撚溫度較佳 147〇C 〜197〇C。 另外^饭槪係數為31000以下時,可抑制捲縮斑 (crimp unevenness )或斷頭(end breakage ),故而較佳。 進而,當假撚張力為〇.丨cN/dtex以上時,可抑制捲縮 斑或斷頭,故喻佳。另外,當假撚張力為a2eN/dtex以 下時’可抑制假撚加工紗的起毛或斷頭,故而較佳。 、早位面積重量為4〇 g/m2〜400 g/m2的織編物> /曰本發明的这鞘複合纖維可用作織編物的構成紗 =本發明的織編物時,織組織、編組織、或織成方法 祛Π、織機、編機等並無特別限定。本發明的織編物較 佳為早位面積重量為15G g/m2〜働咖2。當單位面= ,為150 g/m2以上時,容易發揮阻斷輻射熱的 :位面積重量設為铜⑽《下時,厚度未增加而難j 〈以芯勒複合纖維作為表紗及/或裏紗㈣成雙面織 201204888 J8744pif 物(reversible knitted fabric)的織編物〉 本發明.的織編物的組織並無特 a 本發明的芯觀合纖維所構成。並且二想為僅由 本發明的芯勒複合纖維,而有效發揮度調配 長的組織,可麟雙面織物 =纖維的特 複合纖維作絲紗或縣㈣^織物以本發明的芯勒 於該雙面織物中,織物的一面為 合纖維的構成面,另一面為其他纖熱物複 他纖維的魏或特長。 集成面’而附加其 斷來的芯鞘複合纖_構成面具有不僅阻 ;活=由雙面織物製成的衣服等可根據季節、環= 再者’上述另-面中所使用的其他纖維例如 ^、絹等天然纖維、嫘縈等再生纖維、乙咖2 二塑性纖維。另外,構成各纖維的單纖: ;纖維軸直角方向的截面形狀並無特別限定。The thermal conductivity (W/mK) is based on the thermal conductivity (W/mK), which is the main component, and satisfies the following formula (2) > % as the main component, and CD is the main component of D, and c and The resin forming the core and/or the portion is a polyethylene resin, a polypropylene resin, a polyester resin, a polyvinyl chloride resin or the like. Table 1.28 t on page 107 of the Fiber Facility Raw Materials Fiber Society (issued on May 30, 1968), thermal conductivity at 5 °C for various polymer materials [lO'cal.deg'cm - 'secT1] is described as follows. Polyethylene with a density of 0.918 g.cixT3 7. 〇~97, isot-propylene 5.2, polyethylene terephthalate 52 to 68, polyvinyl chloride 4.0 If the unit of the above thermal conductivity value When converted to (W/mK), it becomes the following value. Polyethylene 〇·29~0.41 with a density of 0.918 g*cm·3, polypropylene in the same row 8 201204888 J5/material pif 0.22, poly(ethylene dibenzoate) 22~〇28, polyvinyl chloride ο 17 < The core composite fiber contains titanium oxide (1 wt% to 3 wt%). In the core-sheath composite fiber of the present invention, it is necessary to make the core-sheath composite fiber contain 1 wt% to 3 wt% of titanium oxide. When the titanium oxide is 3 wt% or less, the effect of blocking the radiant heat is too large, and the viscosity increase by the addition of the titanium oxide is not so large, so that the yarn-making property is not bad. On the other hand, when the titania is 1 wt% or more, it has an effect of blocking the radiant heat of the intended sun. In the case where the towel is formulated with titanium dioxide, the yarn path guide is sometimes worn in the step after the yarn making. Therefore, titanium dioxide is preferably formulated in the core. Further, when the resin of the core portion and the sheath portion contains titanium oxide, the effect of blocking the radiant heat of the sun is most preferably obtained, which is preferable. The titanium dioxide to be used is not limited as long as it is used for producing synthetic fibers or the like. However, in terms of dispersibility, it is preferred to use anatase type titanium dioxide. Further, it is preferred that the core-sheath composite fiber contains 12% by weight to 2% by weight of titanium dioxide. Further, the average particle diameter of the primary particles of titanium dioxide is preferably in the range of 〇·1 μηη to 0.3 μηη in consideration of the stability in the spinning step. Examples of the oxidizing agent which can be easily obtained are, for example, titanium oxide ADd manufactured by Kronos Corporation. < R value is 24 or less> 3 The core-sheath composite fiber of the present invention is preferably formed to have a gas permeability of 24 〇cmW/s to 350 cmW/s, and a basis weight of 22 〇 2 〇〇 2 〇〇 201204888 When the woven fabric of g/m2 has an R value of 24 or less. The R value is the temperature rise value (ΐ) measured by the mask. By using an R value of 2 4 to "ς", the test is suitably used in an environment where weaving is used. The r value is more preferably, and the comfort is preferably 22 or less. In the following, the standard unit weight of the weaving fabric for the fabric per unit weight of 220 g/m2 to 3〇〇g/m2, the value of the ventilator is cm3/cm2/s to 350 cm3/cm2/s. The standard gasness of the above-mentioned unit surface two ^ θ 24 () woven fabric. When Comparative Example 1, Comparative Example 2, and Comparative Example 5 were observed, the R value decreased as the content of titanium dioxide in the fiber decreased by 2 wt% in the polyester fiber. t%) Naturally, according to the case where the main component of the core is a polyethylene resin, the sheath is divided into a polyester resin, and the volume ratio of the core to the sheath is changed, '5, along with the content of titanium dioxide in the fiber (wt〇) /〇) Since 2 correction 0 I] R value rises. ° Decrease, difference 1 or heat conduction. The reason is that ag is the influence of the difference in refractive index between the core and the resin. <Infrared transmittance is 32% or less> The core-sheath composite fiber of the present invention 7 preferably has an infrared ray penetration below when a woven fabric having a basis weight of 220 g/m to 300 g/m 2 is formed. By making the infrared ray transmittance 32% or less, the radiant heat of the sun, that is, infrared light can be effectively shielded or absorbed. The infrared transmittance is more preferably 3 Å or less, and still more preferably 27% or less. Further, in the same manner as in the case of the above R value, according to Examples 1 to 5, 201204888 J»/44pif as the content (4) (wt%) of the titanium oxide in the fiber was decreased from 2 (10), the transmittance increased. It is preferable to satisfy both the range of the upper value and the range of the infrared transmittance. <Principal component of the resin composition of the core> The core-sheath composite fiber of the present invention is preferably a core-lipid composition mainly composed of a polyolefin. The polyolefin of the shape and the part is a polyethylene resin, a polypropylene resin, or the like. When a polyethylene resin having a high thermal conductivity is blended in the core portion, and a polyester resin having a lower thermal conductivity than the polyethylene resin is blended in the sheath portion, the difference in thermal conductivity is a positive number and the difference in thermal conductivity is large. Therefore, it is considered that heat is more likely to be transmitted in the longitudinal direction of the fiber than in the radial direction of the fiber, and heat becomes difficult to be transported in the thickness direction of the woven fabric. The polyethylene resin to be used is not particularly limited as long as it has a known molecular weight and density. The polyethylene resin which can be easily obtained is, for example, Kernel KF283, KF380 or the like manufactured by Japan Polyethylene Co., Ltd. When a polypropylene resin having a low thermal conductivity is blended in a core portion, and a nylon 6 resin having a higher thermal conductivity than a polypropylene resin is blended in the sheath portion, the difference in thermal conductivity is a negative number, and the difference in conductivity is large. Therefore, it is considered that heat is hard to be transported in the radial direction of the fiber, and heat is easily transmitted in the longitudinal direction of the fiber. The polypropylene to be used is not particularly limited as long as it has a known fiber grade molecular weight and density. The polypropylene resin which can be easily obtained is, for example, Novatec SA01, SA03 manufactured by Japan Polypropylene Co., Ltd., and the like. Further, in order to impart stretchability, bulkiness, and the like to the woven fabric, the core-sheath composite fiber of the present invention can be subjected to false twist processing as needed. In the step of the false twist processing 11 201204888.f JO /^plt, the main component of the resin composition of the core is preferably a polyolefin resin having a melting point in the range of 130 ° C to 180 ° C. When the polyolefin resin has a melting point of 130. (3 or more, the generation of white powder in the false twisting step can be reduced. When the melting point is l8〇〇c or less, the frictional melt resistance of the woven fabric of the present invention can be improved. <The main component of the resin composition of the sheath portion > The core-sheath composite fiber of the present invention preferably has a resin composition of a sheath portion mainly composed of a polyester resin. The polyester resin forming the sheath portion is a known fiber grade polyethylene terephthalate or a polypair. The butyl phthalate or the like is preferably polyethylene terephthalate or copolymerized polyethylene terephthalate. Further, it is more preferable that the polyethylene terephthalate satisfies the following formula ( 3) and the poly(p-bismuthic acid) of the formula (4). When the following formulas (3) and (4) are satisfied, the dye can be dyed with a cationic dye, and the common dye can be obtained. 〇.8^s^5. .. (3) 2^a^l5... (4) The heart's 's and a' are respectively polyethylene terephthalate. %) and the copolymerization ratio (mol%) of the aliphatic group 2 of carbon number 2^. When the iron is 4 〇.8 or more, the cationic dye is unique to the compound: 5 -% or less , “When ^l rises. jlI twist, so that the melt viscosity of the polymer during polymerization is not =, the fruit 'fiber strength is not reduced. The metal salt of the metal bismuth dicarboxylic acid is 5_ surely benzoic acid ! ^ 鲤 salt, sodium salt, potassium salt, gamma salt, hammer salt) and so on. Male outsider 12 201204888 38744pif It is necessary to use an alkaline earth salt such as a magnesium salt or a calcium salt of these compounds. Among them, it is preferred to use a sodium salt of 5-sulfoisophthalic acid. When a is 2 mol% or more, the dyeability under normal pressure dyeing can be improved. When a is 15 m〇l% or less, the glass transition of the polyester resin • temperature or melting point can be set to an appropriate range. As a result, a fiber product having the necessary force characteristics, firmness, heat resistance and the like can be obtained. The aliphatic dicarboxylic acid having 2 to 8 carbon atoms is succinic acid, glutaric acid, adipic acid (ad_icic acid), azelaic acid (suberic acid), azelaic acid (can), etc. Among them, adipic acid is preferred. When adipic acid is used, appropriate confusion can be generated in the amorphous structure t of the fiber to improve the dyeability. <The volume ratio of the core to the sheath is 1/2 to 1/ 1〇> The volume ratio of the core portion to the sheath portion in the core-sheath composite fiber of the present invention is 1/2 to 1/1 〇. When the volume ratio of the core sheath portion exceeds 1/2, the sheath is caused. The portion is broken to expose the core portion to reduce the yarn-making stability. When the volume ratio of the core portion is less than 1/10 a, the heat shielding property of the fiber is deteriorated. In terms of yarn stability and heat shielding, The volume of the core and the portion is preferably in the range of 1/4 to 1/8. < Satisfy 10SCMVRS40... (5)> CMVR is higher in the resin than the main component of the core and the sheath. The melting point of the resin of the melting point is higher than the MVR of the resin with a lower melting point at a temperature of 25 。. The CMVR is preferably 1 〇 SCMVRg40. When the CMVR is 1 〇 or more 2 ', the _ composite fiber can be made (4) Qualitative It is good. Although the CMVR is less than 40, the redness of the resin in the core of the core is low. 201204888 J5/^pif: sheath. The resin of the main component of P can reduce the occurrence of false twisting. Further, the white powder is a substance which adheres to the spinner:), the yarn guide, etc. during the false twist processing. When white powder is produced, it will reduce the characteristics of the hybrid composite fiber, which is the effect of the heat of the sun, and the performance of the fabric, which also reduces the taste of the weave. In addition, the generation of white powder reduces the passability of the false twist processing and the step passability in the manufacture of the fabric or the knitted fabric. The reason why the white powder can be reduced when the CMVR is 40 or less is not clear, but it can be presumed as follows. The resin composition of the sheath structure is about to be ejected from the spinning nozzle to the area immediately after the exit, and the area of the screen is covered with a velvet scum that covers the molten core (10). The low molecular weight # component of the main component resin is incorporated into the case. In the false twisting process, the fibers are deformed to expose a small amount of low molecular weight components which are introduced into the human face to form a white powder. When the CMVR is 40 or less, the low molecular weight component of the resin of the main component of the core portion can be made difficult to enter into the composition. <The cross-sectional shape in a direction perpendicular to the fiber axis is a triangle, a square, a hollow or a 丫 type> The cross-sectional shape of the core-composite fiber of the present invention in a direction perpendicular to the fiber axis is preferably a dihedral, a tetragonal, a hollow or a γ type. When the cross-sectional shape is a polygon such as a dihedral, a quadrangular, a hollow or a Y-shape, the reflectance of sunlight can be increased, and the effect of blocking the radiant heat of the sun can be improved. Further, when the cross-sectional shape is a hollow cross section, since there is an air layer having a low thermal conductivity, the effect of blocking the radiant heat of the sun can be improved by 201204888 j〇 /npif. <Single fiber fineness is less than or equal to 3 dtex> The single fiber fineness of the core-sheath composite fiber of the present invention is preferably 3 dtex or less, more preferably 2 dtex or less, still more preferably 1 dtex or less. When the single fiber fineness is so small, the surface area of the fiber can be increased, and the reflection portion of the sunlight can be increased, so that the effect of blocking the radiant heat of the sun can be enhanced. <Method for Producing Core-sheath Composite Fiber> The core-sheath composite fiber of the present invention can be produced by a known yarn-forming method of a core-sheath composite fiber. Further, the spinning hole for the spinning of the (IV) composite fiber has a larger diameter than the spinning hole of the spinning nozzle in the usual spinning, and is preferably 0.3 μm to 9.5. - In addition, the method of the (four) method of spinning (four) can be carried out by winding the unstretched yarn after stretching or by any method of stretching without stretching the undrawn yarn. < false twist processing yarn comprising core-sheath composite fiber> The core-sheath composite fiber of the present invention is preferably a false twisted textured yarn. When the yarn is processed, the cross-sectional shape in the direction perpendicular to the fiber axis is two solar-reflective (four) high, and the field is increased. _^= < Manufacturing of false-twisted and processed yarns including the core-sheath composite fiber includes the core-sheath composite of the present invention. The pseudo method of the fiber> The 捻 condition is preferably such that the following formulas (6) to (8) are satisfied. ", σ χ 假 fake (TL-20) (TL + 3 〇) KS31000........ (6) (7) 15 201204888 i»/44pif 〇. 1 cN/dtex^ TE ^ 0.2 cN /dtex...(8) where 'the melting point of the resin having a lower melting point in the resin of the main component of the TL and the part of the TL, ττ indicates the false twist temperature, κ indicates the false twist coefficient, and ΤΕ indicates the false twist tension. Furthermore, the false twist factor is a coefficient expressed by the relationship between the fineness of the fiber subjected to the false twist processing and the number of false turns, and is expressed by the following formula: False twist coefficient = false twist number (t/m) Χ ( Fiber denier (dtex)—丨〇χ 9) I/2 For example, in the case where the main component of the sheath is polyethylene terephthalate resin and the core component of the core is polypropylene resin, the false twist temperature Preferably, it is 147 〇C to 197 〇 C. When the coefficient of the rice cooker is 31,000 or less, the crimp unevenness or the end breakage can be suppressed, so that it is preferable. Further, when the false twisting force is 〇. When 丨cN/dtex or more, it is possible to suppress curling or breakage, and it is preferable. When the false twisting force is a2eN/dtex or less, the raising or breaking of the false twisted textured yarn can be suppressed, which is preferable. A woven fabric having an early area weight of 4 〇g/m 2 to 400 g/m 2 / 曰 The sheath composite fiber of the present invention can be used as a constitutive yarn of a woven fabric = woven fabric, braided structure of the woven fabric of the present invention The weaving method, the weaving machine, the knitting machine, and the like are not particularly limited. The woven fabric of the present invention preferably has an early area weight of 15 G g/m 2 to 働 2 2. When the unit surface = 150 g/m 2 When the above is easy, the radiant heat is easily blocked: the weight of the bit area is set to copper (10). When the thickness is not increased, it is difficult to make the composite fiber as the veil and/or the inner yarn (4) into a double-sided woven 201204888 J8744pif ( The woven fabric of the reversible knitted fabric> The structure of the woven fabric of the present invention is not specifically composed of the core spectacles of the present invention, and the second is considered to be only the core conjugated fiber of the present invention, and the effective blending length is long. Tissue, Kelin double-faced fabric = special composite fiber of fiber as silk yarn or county (four) fabric: The core of the invention is used in the double-faced fabric, one side of the fabric is composed of fibers, and the other side is made of other fibers. Recovering the Wei or special length of his fiber. The core-sheath composite fiber _ constituting surface has not only resistance; live = clothes made of double-faced fabric, etc., depending on the season, ring = again, other fibers used in the above-mentioned other faces, such as natural fibers such as 绢, 绢, etc. Recycled fiber, bismuth, etc., and bisexene fiber, and a single fiber constituting each fiber: The cross-sectional shape of the fiber axis in the direction perpendicular to the fiber is not particularly limited.
得織編物的質地及綺等,則該截面形狀可自菊型;、 扁平及Υ字等截面形狀中選擇。 J 〈含有芯鞘複合纖維的撚紗> 此外,該織編物亦可使用含有本發明的芯鞘複合纖維 的撚紗。該撚紗為對本發明的芯鞘複合纖維進行撚紗而成 者、將本發明的芯鞘複合纖維彼此合撚而成者、或將本發 明的芯勒複合纖維與其他纖維合撚而成者。例如,當本發 17 201204888 J8/44pif ,的芯勒複合纖維與其他纖維合撚時, 對徵(例如光澤感、清涼感'濕潤 對纖維賦予加撫(twisting)時,可 料)。另外, 該撫紗的撚向及合撚數並無特別限/可^^彈力性。 及外觀而決定。 艮據目的之質地 再者,用於上述合撚;的其他纖維例如為 嫘縈等再生纖維、乙酸酿等半合成纖二: 轴直性纖維。另外,構成各纖維的單纖維的於纖維 方㈣截面雜並無制限定,若考慮所得織編物 之= 也及光澤等,則該截面形狀可自菊型、圓形、扁平及 γ字等截面形狀中選擇。 [實例] 以下’藉由實例’對本發明進行具體說明。再者,各 評價項目是藉由如下方法而測定。 (R值) 製成纖維的織編物,利用日本化學纖維檢査協會的遮 熱性測定方法進行測定,以測定開始15分鐘後的溫度上升 值作為R值。 遮熱性測定方法如下所述。 於黑色繪圖紙的約5 mm上保持試樣,自試樣側照射 燈光,以熱電偶(thermocouple)經時地測定裏面的繪圖 紙中央的溫度。If the texture and texture of the woven fabric are obtained, the cross-sectional shape can be selected from the daisy-shaped, flat and 截面-shaped cross-sectional shapes. J <crepe containing core-sheath composite fiber> Further, the woven fabric may also be a crepe yarn containing the core-sheath composite fiber of the present invention. The twisted yarn is obtained by twisting the core-sheath composite fiber of the present invention, combining the core-sheath composite fibers of the present invention, or combining the core-fiber composite fiber of the present invention with other fibers. . For example, when the core-composite fiber of the present invention is combined with other fibers, it is possible to give a sensation (for example, a gloss feeling, a cooling feeling, a wetting to the fiber, and a twisting). In addition, the twisting direction and the number of twists of the yarn are not particularly limited / can be elastic. And the appearance is decided.艮 艮 艮 再 再 再 再 再 再 再 再 再 再 其他 其他 其他 其他 其他 其他 其他 其他 其他 其他 其他 其他 其他 其他 其他 其他 其他 其他 其他 其他 其他 。 。 。 。 。 。 Further, the cross-sectional shape of the single fiber constituting each fiber in the fiber side (four) cross section is not limited, and the cross-sectional shape may be a cross-sectional shape such as a daisy-type, a round shape, a flat shape, or a γ-shape. Choose among. [Examples] Hereinafter, the present invention will be specifically described by way of examples. Further, each evaluation item was measured by the following method. (R value) The woven fabric of the fiber was measured by the heat absorbing measurement method of the Japan Chemical Fiber Inspection Association, and the temperature rise value after 15 minutes from the start was measured as the R value. The method of measuring the heat shielding property is as follows. The sample was held on about 5 mm of the black drawing paper, the light was irradiated from the side of the sample, and the temperature in the center of the drawing paper was measured with a thermocouple over time.
使用燈:岩崎電氣股份有限公司製眼燈(eye lamP) (光點)PRS 100 V500 W 201204888 /^4pifUse lamp: Iwasaki Electric Co., Ltd. Eye light (eye lamP) (light spot) PRS 100 V500 W 201204888 /^4pif
照射距離:50 cm 照射時間:15分鐘 試驗室溫度:20±2°C (紅外線穿透率、可見光線穿透率及紫外線穿透率) 使用分光光度計(日立公司製造的U-3400型),依序 進行以下(1)〜(6)的操作,測定各穿透率。 (1) 製成織編物的試樣。 (2) 於250 nm〜2000 nm的範圍内,每隔5 nm測定 無試樣的狀態下的穿透率(%)(以下稱作Tg)。 (3) 將試樣安裝於分光光度計上,於250 nm〜2000 nm的範圍内,每隔5 nm測定存在試樣的狀態下的穿透率 (%)(以下稱作為Ts)。 (4) 於250 nm〜2000 nm的範圍内,每隔5 nm,使 用以下式修正Ts,算出所修正的穿透率(〇/>)(以下稱作 T)。 T= (Ts/Tg) χΙΟΟ (5) 將紅外線區域、可見光線區域及紫外線區域設 為以下波長範圍。紅外線區域700 nm〜2000 nm、可見光 線區域400 nm〜700 nm、紫外線區域250 nm〜400 nm (6) 於(5)的各區域算出T的算術平均值,作為紅 外線穿透率(%)、可見光線穿透率(%)及紫外線穿透率 (%)。 (固有黏度) 將聚合物0.25 g粉碎,溶解於苯盼/四氯乙烷(50/50) 201204888f 的混合溶劑50 ml中,調溫至25°c,利用自動黏度計(SUN Electronic Industries公司製造的AVL-4型)進行測定。再 者,計算式如下所述。 [η] = [ (1 + 1.〇4ηδρ) 1/2-1]/0.26 (溶點) 使用示差掃描型熱量計(Seiko Instruments公司製造 的DSC220),以升溫速度l〇°C/min進行測定。 (熔體流動速率(MFR)) 依據118〖6758 (230。(:,2.16让§荷重)進行測定。 (熔體體積速率(MVR)) 依據ISO 1133(2.16kg荷重),於280°C下進行測定。 (假撚步驟中的白粉量) 使用石川製作所製造的IVF338假撚機,對芯鞘複合 纖維進行假撚加工,將假撚加工開始後1小時以上且未達 2小時下產生白粉的情況視為c、2小時以上且未達8小時 下產生白粉的情況視為B〜C、8小時以上且未達16小時 下未產生白粉的情況視為B、即便16小時以上亦未產生白 粉的情況視為A。再者,各實例及比較例中的假撚條件只 要無特別s己載’則假撫數為3〇〇〇 t/m (於84 dtex的延伸紗 的情況下’撚係數為27500)、假撚溫度為17(TC、假撚速 度為150 m/mm、假撚張力為〇 15 cN/dtex。 (通氣度) 於20 C、相對濕度65%的環境可變室内,依據JIS L 1096通氣性A法(弗雷澤(Frazier)型法),求出使用通 20 201204888 38744pif 進行測定時的 氣度試驗機FX3300 (TEXTEST公司製造) 通氣度(cm3/cm2/s)。 (耐摩擦熔融性) 藉由依據JIS L 1056 (B法)進行轉子型摩擦溶融試 驗(負荷為l〇kg、3秒的接壓)而實施測定。測&結果是 將未產生炼融痕跡的狀態視為A、產生熔融痕跡但^切^ 的狀態視為B、切斷狀態視為c。 <捲縮特性> 依據JIS L-1013法進行測定。 (實例1) 將聚乙烯樹脂(PE)(曰本聚乙烯公司製造,MFR 4 g/10 min)作為芯部。將於聚對笨二曱酸乙二酯(ρΕτ) (Mitsubishi Rayon公司製造,固有黏度[η]〇 676,熔點 256°C)中添加有2wt%的二氧化鈦(銳鈦礦型,一次粒子 的平均粒徑為0.3 μιη)的PET作為鞘部。 將芯鞘複合比(體積比)設為1/6,以設置有孔徑〇 4 mm、孔數24的芯鞘複合紡嘴的紡紗裝置,於紡紗溫度 290 C、紡紗速度1800 m/min的條件下進行紡紗,獲得未 延伸紗。以延伸速度600 m/min、延伸溫度85°c、熱設定 μ度150 C、最大延伸倍率的〇·68倍,使所得的未延伸紗 進行延伸’製成84 dtex/24 filament的延伸紗。將4根所得 的延伸紗進行並紗,形成約330 dtex的纖度。使用16針數 (gauge )(根/2.54 cm)的橫編機,製成羅紋組織的編織物。 將所得編織物的R值、紅外線穿透率(%)、可見光線穿透 丨r·; 21 201204888 J8/^4pif 率(/°)、紫外線穿透率(%)及通氣度示於表1中。 (實例2〜實例7及比較例3、比較例4) 於實例1中,如表丨般變更芯鞘複合比(體積比)、 芯部的主成分的樹脂,除此以外,與實例i同樣地製成芯 勒複合纖維的延伸紗及編織物。將所得的編織物的R值、 紅外線穿透率(%)、可見光線穿透率(%)、紫外線穿透 率(%)及通氣度示於表1中。 (比較例1 ) 使用於PET中添加有2 wt%的二氧化鈦的樹脂組成物 (Mitsubishi Rayon公司製造,固有黏度[η]〇 676,熔點 256°C),利用設置有孔徑0 3 mm、孔數24的紡嘴的紡紗 裝置,於紡紗溫度290。(:、紡紗速度18〇〇 m/min的條件下 進行紡紗,獲得未延伸紗。 以延伸速度600 m/min、延伸溫度85°C、熱設定溫度 150C、最大延伸倍率的0 68倍,使所得的未延伸紗進行 延伸’製成84 dtex/24 filament的延伸紗。將4根所得的延 伸紗進行並紗,形成約33〇 dtex的纖度。使用16針數(根 /2.54 cm)的橫編機,製成羅紋組織的編織物。將所 織物的R值、紅外線穿透率(%)、可見光線穿透率⑻、 备、外線穿透率(%)及通氣度示於表1中。 (比較例2、比較例5) 如表1般變更二氧化鈦的添加量,除此以外,與 例1同樣地製成延㈣及編織物1所得編織物的值、 紅外線穿透率(%)、可見光線穿透率(%)、紫外線穿透 22 201204888. jo 率(%)及通氣度示於表1中。 (實例8) 使用孔徑0.3 mm、孔數36的芯鞠複合紡嘴,製成33 dtex/36 filament的延伸紗,除此以外,與實例i同樣地獲 . 得本發明的怎勒複合纖維的延伸紗。使用該延伸紗,製成 經165根/2.54cm、緯154根/2.54cm(織物覆蓋係數(c〇ver factor)值為1832)的波紋塔夫塔綢(ripple taffeta)組織 的織物。將所得織物的R值、紅外線穿透率(%)、可見光 線穿透率(%)、紫外線穿透率(%)及通氣度示於表丨中。 再者,織物覆蓋系數值是藉由以下式所得的值。 織物覆蓋系數值(DWp) 1/2xMWp+ (DWf) 1/2xMWf 其中’ DWp為經紗總纖度(dtex)、MWp為經紗織密 度(根/2.54 cm)、DWf為緯紗總纖度(dtex)、MWf為緯 紗織密度(根/2.54 cm)。 (比較例6) 使用Mitsubishi Rayon公司製造的有光(bright) 33 dtex/36 filament常壓陽離子可染紗’製成經17〇根/254 • cm、緯161根/2.54 cm (織物覆蓋系數值為1901)的波紋 塔夫塔綢組織的織物。將所得織物的R值、紅外線穿透率 (%)、可見光線穿透率(%)、紫外線穿透率(%)及通氣 度不於表1中。 (實例9) 使用孔徑0.5 mm、孔數48的芯鞘複合紡嘴,製成167 dtex/48 filament的延伸紗,除此以外,與實例1同樣地獲 23 201204888 38744pif » 得本發明的芯鞘複合纖維的延伸紗。拉齊4根本發明的芯 鞘複合纖維,作為S撚向30 t/m的股紗(plied yarn),製 成用於經27根/2.54 cm、緯30根/2.54 cm (織物覆蓋係數 CF值為1473)的平組織的資材的防水底布(tarpauiin)。 將所得織物的R值、紅外線穿透率(%)、可見光線穿透率 (%)、紫外線穿透率(%)及通氣度示於表1中。 (比較例7) 拉齊4根Mitsubishi Rayon公司製造的半無光 (semi-dull) 167 dtex/48 filament 聚酯複絲(p〇iyester multifilament),作為S撚向30 t/m的股紗,製成用於經27 根/2.54 cm、緯32根/2.54 cm(織物覆蓋係數CF值為1525) 的平組織的資材的防水底布。將所得織物的尺值、紅外線 穿透率(%)、可見光線穿透率(%)、紫外線穿透率(%) 及通氣度示於表1中。 (實例10) 與貫例9同樣地獲得本發明的芯鞘複合纖維的延伸 紗。利用22針數(根/2.54 cm)的雙面平針織物針織機 (double jersey knitting machine) ’表紗是使用交織加工本 發明的167 dtex/48 filament的S方向假撚加工紗與z方向 假撚加工紗而成的加工紗,裏紗是以丨:丨使用與表紗相同 的經交織加工的加工紗與丙烯酸系紡織紗i /5 2 ( Mitsubishi Rayon公司製造)’製成2x2鹿點凸紋組織的編織物。將所 得編織物的R值、紅外線穿透率(%)、可見光線穿透率 (%)、紫外線穿透率(%)及通氣度示於1中。 24 201204888, w t -r-rpll (比較例8 ) 使用交織加工Mitsubishi Rayon公司製造的半無光 167 dtex/48 filament聚醋複絲的S撚向假撚加工紗與z撫 向假撚加工紗而成的加工紗,替代本發明的芯鞘複合纖維 的延伸紗,除此以外,與實例10同樣地製成編織物。將所 得編織物的R值、紅外線穿透率(%)、可見光線穿透率 (%)、紫外線穿透率(%)及通氣度示於表丨中。 (實例11〜實例24) 於實例1中’如表2般變更芯部的主成分的樹脂,除 此以外,與實例1同樣地製成芯鞘複合纖維的延伸紗及編 織物。將所得編織物的R值、紅外線穿透率(%)、可見光 線穿透率(%)、紫外線穿透率(%)、通氣度及耐摩擦溶 融性以及假撚步驟中的白粉量示於表2中。 (實例25) 於實例11中,將與纖維軸為直角方向的截面形狀設 為三角,除此以外,與實例11同樣地製成芯鞘複合纖維的 延伸紗及編織物。將所得編織物的R值、紅外線穿透率 (°/〇)、可見光線穿透率(%)、紫外線穿透率(%)、通氣 度及耐摩擦熔融性以及假撚步驟中的白粉量示於表3中 (實例26) 於實例11中,將延伸紗設為84 dtex/48 filament,除 此以外,與實例11同樣地製成芯鞘複合纖維的延伸紗及編 織物。將所得編織物的R值、紅外線穿透率(%)、可見光 線穿透率(%)、紫外線穿透率(%)、通氣度及耐摩擦熔 25 201204888 38744pif 融性以及假撚步驟中的白粉量示於表3中。 (實例27) 於實例11中,進而以延伸紗作為假樵加工紗 該假撚加工紗的編織物。將所得編織物的尺 透率㈤、可見光線穿透率(%)、紫外線穿透率=穿 通氣度及耐摩擦熔雖、纺紗穩定性以及假撚步驟 粉量示於表3中。 (實例28) 於實例26中,進而以延伸紗作為假撚加工紗,製成 該假撚加工紗的編織物。將所得編織物的尺值、紅外線穿 透率(%)、可見光線穿透率(%)、紫外線穿透率(%)、 通氣度及耐摩擦熔融性以及假撚步驟中的白粉量示於表3 中〇 (實例29〜實例34) 使用石川製作所製造的IVF338假撚機,於假撚速度 為150 m/min、假撚張力為0.15 cN/dtex的條件下,如表4 般變更仮撚溫度及假撚數(t/m),對實例12的延伸紗進行 假撚加工。將假撚步驟中的白粉量的測定結果及假撚加工 紗的捲縮率示於表4中。 (實例35〜實例4〇) 使用石川製作所製造的IVF338假撚機,於假撚速度 為150 m/min、假樵張力為0.15 cN/dtex的條件下,如表4 般變更假撚溫度及假撚數(t/m),對實例16的延伸紗進行 假撚加工。將假撚步驟中的白粉量的測定結果及假撚加工 紗的捲縮率示於表4中。 26 201204888Irradiation distance: 50 cm Irradiation time: 15 minutes Laboratory temperature: 20 ± 2 ° C (infrared transmittance, visible light transmittance, and ultraviolet transmittance) Using a spectrophotometer (U-3400 manufactured by Hitachi) The following operations (1) to (6) were sequentially performed, and the respective transmittances were measured. (1) A sample of a woven fabric. (2) The transmittance (%) (hereinafter referred to as Tg) in the absence of the sample was measured every 5 nm in the range of 250 nm to 2000 nm. (3) The sample was mounted on a spectrophotometer, and the transmittance (%) (hereinafter referred to as Ts) in the presence of the sample was measured every 5 nm in the range of 250 nm to 2000 nm. (4) The Ts is corrected by the following equation every 5 nm in the range of 250 nm to 2000 nm, and the corrected transmittance (〇/>) (hereinafter referred to as T) is calculated. T= (Ts/Tg) χΙΟΟ (5) Set the infrared region, visible light region, and ultraviolet region to the following wavelength range. The infrared region is 700 nm to 2000 nm, the visible light region is 400 nm to 700 nm, and the ultraviolet region is 250 nm to 400 nm. (6) The arithmetic mean of T is calculated for each region of (5) as the infrared transmittance (%). Visible light transmittance (%) and ultraviolet transmittance (%). (Intrinsic viscosity) 0.25 g of the polymer was pulverized, dissolved in 50 ml of a mixed solvent of benzene/tetrachloroethane (50/50) 201204888f, and the temperature was adjusted to 25 ° C, using an automatic viscometer (manufactured by SUN Electronic Industries). The AVL-4 type was measured. Furthermore, the calculation formula is as follows. [η] = [ (1 + 1. 〇 4ηδρ) 1/2-1] / 0.26 (melting point) Using a differential scanning calorimeter (DSC220 manufactured by Seiko Instruments Co., Ltd.), the temperature is raised at a temperature of 10 °C/min. Determination. (Melt flow rate (MFR)) is determined according to 118 〖6758 (230. (:, 2.16 let § load). (Melt volume rate (MVR)) according to ISO 1133 (2.16kg load) at 280 ° C The measurement was carried out. (The amount of white powder in the false twisting step) Using the IVF338 false twisting machine manufactured by Ishikawa Seisakusho Co., Ltd., the core-sheath composite fiber was subjected to false twist processing, and white powder was produced 1 hour or more after the start of the false twisting process and less than 2 hours. The case is considered to be c, 2 hours or more and less than 8 hours of white powder is considered to be B~C, 8 hours or more and less than 16 hours, no white powder is produced. B is considered as B. Even if it is more than 16 hours, no white powder is produced. The case is considered as A. Furthermore, the false-twist conditions in the examples and comparative examples are as long as there is no special s-loading, then the number of false twists is 3〇〇〇t/m (in the case of an extended yarn of 84 dtex)捻The coefficient is 27500), the false twist temperature is 17 (TC, the false twist speed is 150 m/mm, and the false twist tension is 〇15 cN/dtex. (Air permeability) in an environment variable room with 20 C and relative humidity of 65%. According to JIS L 1096 Ventilation A method (Frazier type method), the use of pass 20 201204888 38744pif Air permeability tester FX3300 (manufactured by TEXTEST Co., Ltd.) Air permeability (cm3/cm2/s). (Friction-resistant meltability) Rotor-type frictional melting test according to JIS L 1056 (Method B) (load is l〇) The measurement was carried out in kg and 3 seconds of compression. The result was that the state in which the smelting trace was not produced was regarded as A, and the melting trace was generated, but the state of the cut was regarded as B, and the cut state was regarded as c. Crimping characteristics> The measurement was carried out in accordance with JIS L-1013. (Example 1) A polyethylene resin (PE) (manufactured by Sakamoto Polyethylene Co., Ltd., MFR 4 g/10 min) was used as a core. Ethylene diacetate (ρΕτ) (manufactured by Mitsubishi Rayon, intrinsic viscosity [η] 〇 676, melting point 256 ° C) is added with 2 wt% of titanium dioxide (anatase type, average particle size of primary particles is 0.3 μm PET as the sheath. The core-sheath composite ratio (volume ratio) is set to 1/6, and a spinning device with a core-sheath composite nozzle having an aperture of 〇4 mm and a number of holes of 24 is provided at a spinning temperature of 290 C. Spinning at a spinning speed of 1800 m/min to obtain undrawn yarns with an extension speed of 600 m/min and an extension temperature of 85 °c, heat setting μ degree 150 C, maximum stretching ratio 〇·68 times, and extending the obtained unstretched yarn to make an extended yarn of 84 dtex/24 filament. The four obtained extended yarns are conjugated. A denier of about 330 dtex is formed. A woven fabric of rib structure was produced using a 16 gauge (root/2.54 cm) flat knitting machine. The R value, infrared transmittance (%), visible light penetration 丨r·; 21 201204888 J8/^4pif rate (/°), ultraviolet transmittance (%) and air permeability of the obtained knitted fabric are shown in Table 1. in. (Example 2 to Example 7, Comparative Example 3, and Comparative Example 4) In the same manner as in Example i except that the core-sheath composite ratio (volume ratio) and the resin of the main component of the core were changed as in Table 1. The yarn and the braid of the core composite fiber are formed. The R value, infrared transmittance (%), visible light transmittance (%), ultraviolet transmittance (%), and air permeability of the obtained knitted fabric are shown in Table 1. (Comparative Example 1) A resin composition in which 2 wt% of titanium dioxide was added to PET (manufactured by Mitsubishi Rayon Co., Ltd., intrinsic viscosity [η] 〇676, melting point: 256 ° C), and a pore diameter of 0 3 mm and a number of pores were used. The spinning device of the spun nozzle of 24 is at a spinning temperature of 290. (: Spinning at a spinning speed of 18 〇〇m/min to obtain undrawn yarn. Extension speed 600 m/min, extension temperature 85 ° C, heat setting temperature 150 C, maximum stretching ratio 0 68 times The resulting undrawn yarn was stretched to make an extended yarn of 84 dtex/24 filament. The four obtained stretch yarns were conjugated to form a fineness of about 33 〇 dtex. Using 16 stitches (root/2.54 cm) The flat knitting machine is made into a woven fabric of rib structure. The R value, infrared transmittance (%), visible light transmittance (8), preparation, external line penetration (%) and air permeability of the fabric are shown in the table. (Comparative Example 2, Comparative Example 5) The value of the knitted fabric obtained by the extension (4) and the knitted fabric 1 and the infrared transmittance were obtained in the same manner as in Example 1 except that the amount of the titanium dioxide added was changed as in Table 1. %), visible light transmittance (%), ultraviolet light penetration 22 201204888. The jo rate (%) and the air permeability are shown in Table 1. (Example 8) A core-twist composite nozzle with a hole diameter of 0.3 mm and a number of holes of 36 was used. In addition to the extension yarn of 33 dtex/36 filament, it is obtained in the same manner as in the example i. An extended yarn of fibers. Using the extended yarn, a ripple taffeta structure of 165/2.54 cm, latitude 154/2.54 cm (with a fabric coverage factor of 1832) was prepared. Fabric. The R value, infrared transmittance (%), visible light transmittance (%), ultraviolet transmittance (%) and air permeability of the obtained fabric are shown in the table. Is the value obtained by the following formula: Fabric Coverage Value (DWp) 1/2xMWp+ (DWf) 1/2xMWf where 'DWp is the warp total denier (dtex), MWp is the warp weave density (root/2.54 cm), DWf is The weft total denier (dtex) and MWf are the weft yarn weave density (root/2.54 cm). (Comparative Example 6) Using a light 33 dtex/36 filament atmospheric cation dyeable yarn manufactured by Mitsubishi Rayon Co., Ltd. 17 〇 254 / 254 • cm, latitude 161 / 2.54 cm (fabric cover factor value of 1901) corrugated taffeta fabric. The R value of the resulting fabric, infrared transmittance (%), visible light wear Permeability (%), UV transmittance (%), and air permeability are not shown in Table 1. (Example 9) Using a hole diameter of 0.5 mm A core-sheath composite spun yarn having a number of holes of 48 was obtained as a stretch yarn of 167 dtex/48 filament, and a stretch yarn of the core-sheath composite fiber of the present invention was obtained in the same manner as in Example 1. The core-sheath composite fiber invented by Lacy 4 is used as a 30 ton/2.54 cm latitude 30/2.54 cm for the 30 t/m plied yarn (the fabric cover factor CF value). It is tarpauiin of the material of the flat material of the 1473). The R value, infrared transmittance (%), visible light transmittance (%), ultraviolet transmittance (%), and air permeability of the obtained fabric are shown in Table 1. (Comparative Example 7) A semi-dull 167 dtex/48 filament polyester multifilament manufactured by Mitsubishi Rayon Co., Ltd. was used as a strand of 30 t/m yarn. A waterproof base fabric for a flat tissue material of 27 pieces/2.54 cm, latitude 32 pieces/2.54 cm (fabric cover factor CF value 1525). The scale value, infrared transmittance (%), visible light transmittance (%), ultraviolet transmittance (%), and air permeability of the obtained fabric are shown in Table 1. (Example 10) An extended yarn of the core-sheath composite fiber of the present invention was obtained in the same manner as in Example 9. A double jersey knitting machine with a 22-pin number (root/2.54 cm) is used to interlace the 167 dtex/48 filament S-direction false twisted yarn of the present invention and the z-direction false twist. The processed yarn made of the yarn is made of 丨: 2 using the same interlaced processed yarn as the yam and acrylic yam i /5 2 (manufactured by Mitsubishi Rayon) to make 2x2 deer embossing Tissue weave. The R value, infrared transmittance (%), visible light transmittance (%), ultraviolet transmittance (%), and air permeability of the obtained knitted fabric are shown in 1. 24 201204888, wt -r-rpll (Comparative Example 8) Using a semi-matte 167 dtex/48 filament polyfilament multifilament yarn manufactured by Mitsubishi Rayon Co., Ltd., to the false twisted textured yarn and z to the false twisted textured yarn. A knitted fabric was produced in the same manner as in Example 10 except that the processed yarn of the core-sheath composite fiber of the present invention was replaced. The R value, infrared transmittance (%), visible light transmittance (%), ultraviolet transmittance (%), and air permeability of the obtained knitted fabric are shown in the Table. (Examples 11 to 24) In the same manner as in Example 1, except that the resin of the main component of the core was changed as in Table 2, the stretched yarn of the core-sheath composite fiber and the woven fabric were produced. The R value, the infrared ray transmittance (%), the visible light transmittance (%), the ultraviolet ray transmittance (%), the air permeability and the frictional resistance of the obtained woven fabric, and the amount of white powder in the false twisting step are shown in In Table 2. (Example 25) An extended yarn of a core-sheath composite fiber and a knitted fabric were produced in the same manner as in Example 11 except that the cross-sectional shape in the direction perpendicular to the fiber axis was changed to a triangle. R value, infrared transmittance (°/〇), visible light transmittance (%), ultraviolet transmittance (%), air permeability and frictional melting resistance of the obtained knitted fabric, and amount of white powder in the false twisting step In the same manner as in Example 11, except that the stretched yarn was set to 84 dtex/48 filament, the stretched yarn and the knitted fabric of the core-sheath composite fiber were produced in the same manner as in Example 11. R value, infrared transmittance (%), visible light transmittance (%), ultraviolet transmittance (%), air permeability, and friction resistance of the obtained knitted fabric in the melting and false twisting steps The amount of white powder is shown in Table 3. (Example 27) In Example 11, the stretched yarn was further used as a false twisted textured yarn. The dimensional permeability (v), visible light transmittance (%), ultraviolet light transmittance = air permeability and friction resistance melting, spinning stability, and false twisting step powder amount of the obtained knitted fabric are shown in Table 3. (Example 28) In Example 26, a woven fabric of the false twisted textured yarn was produced by further using the stretched yarn as a false twisted textured yarn. The scale value of the obtained braid, the infrared transmittance (%), the visible light transmittance (%), the ultraviolet transmittance (%), the air permeability and the frictional melt resistance, and the amount of white powder in the false twisting step are shown in Table 3 (Example 29 to Example 34) The IVF338 false twisting machine manufactured by Ishikawa Seisakusho Co., Ltd. was changed as shown in Table 4 under the conditions of a false twist speed of 150 m/min and a false twist tension of 0.15 cN/dtex. Temperature and false twist (t/m) were subjected to false twisting of the extended yarn of Example 12. The measurement results of the amount of white powder in the false twisting step and the crimping ratio of the false twisted processed yarn are shown in Table 4. (Example 35 to Example 4〇) Using the IVF338 false twisting machine manufactured by Ishikawa Seisakusho Co., Ltd., the false twist temperature and the false value were changed as shown in Table 4 under the conditions of a false twist speed of 150 m/min and a false twist tension of 0.15 cN/dtex. The number of turns (t/m) was subjected to false twisting of the stretched yarn of Example 16. The measurement results of the amount of white powder in the false twisting step and the crimping ratio of the false twisted processed yarn are shown in Table 4. 26 201204888
Ju寸寸卜οοε 比較例 8 SD-PE Τ的單 獨紡紗 0.35 2x2鹿 點凸紋 376 IQ 32.0 22.4 fO w-ί <S ΚΓ» ί 2 S s FD-PET OO 2x2鹿點 凸纹 <N 〇〇 ΓΟ 22.8 25.3 21.0 ON 比較例 7 SD-PE Τ的單 獨紡紗 0.35 1 平織物 205 35.2 37.4 33.4 On K CS 實例 9 S 寸 FD-PET OO 〇〇 ο 24.3 29.5 24.5 比較例 6 Β-ΡΕΤ 的單獨 紡紗 0.05 :波紋塔 夫塔綢 36.1 40.4 38.7 15.8 329 實例 8 S rj- FD-PET OO 波纹塔夫 塔綢 25.8 31.9 26.4 〇\ 335 比較例 5 Β-ΡΕΤ 的單獨 紡紗 • 0.05 羅紋 1 227 27.5 38.8 wS 247 比較例 4 ω CU B-PET OO 0.05 羅紋 v〇 <N 26.1 36.1 36.1 18.0 270 比較例3 UJ s 寸 SD-PHT s 羅紋 227 26.5 36.9 5 10.5 279 比較例 2 SD-PE T的單 獨紡紗 1 0.35 \Ti οι 26.3 35.6 31.8 WJ KTi <N 比較例 1 FD-PET | 的單獨 紡紗 1 o 羅紋 245 24.7 33.9 26.7 r» cs 279 實例7 §: <N V) <N 〇〇 FD-PET OO 〇> 羅紋 228 23.2 30.6 23.1 ΙΛΙ — 264 實例6 a. CU <N ΙΛ> <Ν 00 FD-PET OO 羅玟 i 248 23.2 29.9 23.4 o 253 實例5 U cu Tj- s FD-PET 1/10 σ\ 羅紋 (N 24.0 31.3 24.3 OO 对’ 259 實例4 ω 没 s FD-PET Ξ 羅紋 245 21.3 24.9 23.7 sq 263 實例3 UJ s s FD-PET 2 卜 羅纹 243 21.7 26.0 24.8 〇 270 實例2 tu cu s s FD-PET OO OO 羅紋 242 30.2 23.7 卜 对’ 256 δ UQ 0. s s FD-PET OO 羅紋 246 23.7 i 23.3 rn — 258 这成分的樹脂 芯成分的樹脂的熔點(°c) 芯成分的樹脂的MFR (g/10 min) s 忘日 Φ § 均w 鞘成分的樹脂 芯與鞘的體積比 纖維中的二氧化鈦的含有 率(Wt0/o) 織編物的組織 織物單位面積重量(g/m2) R值(。〇 紅外線穿透率(%) 可見光線穿透率(%) 紫外線穿透率(%) 通氣度(cm3/cm2/s) IHds尨-^M*%? so 杯伞:13·? lHds场与^Ms%? 5-0*伞:13'as* H3ds^qKWMS^JA^^^:XH'aJ* 爱°好:wd*Ju inch inch οοε Comparative example 8 SD-PE 单独 individual spinning 0.35 2x2 deer point embossing 376 IQ 32.0 22.4 fO w-ί <S ΚΓ» ί 2 S s FD-PET OO 2x2 deer point embossing <N 〇〇ΓΟ 22.8 25.3 21.0 ON Comparative Example 7 Separate spinning of SD-PE 0.3 0.35 1 Flat fabric 205 35.2 37.4 33.4 On K CS Example 9 S-inch FD-PET OO 〇〇ο 24.3 29.5 24.5 Comparative Example 6 Β-ΡΕΤ Separate spinning 0.05: corrugated taffeta 36.1 40.4 38.7 15.8 329 Example 8 S rj- FD-PET OO corrugated taffeta 25.8 31.9 26.4 〇 \ 335 Comparative example 5 Β-ΡΕΤ Separate spinning • 0.05 rib 1 227 27.5 38.8 wS 247 Comparative Example 4 ω CU B-PET OO 0.05 rib v〇<N 26.1 36.1 36.1 18.0 270 Comparative Example 3 UJ s inch SD-PHT s rib 227 26.5 36.9 5 10.5 279 Comparative Example 2 SD-PE T Separate spinning 1 0.35 \Ti οι 26.3 35.6 31.8 WJ KTi <N Comparative Example 1 FD-PET | Separate spinning 1 o Rib 245 24.7 33.9 26.7 r» cs 279 Example 7 §: <NV) <N 〇 〇FD-PET OO 〇> rib 228 23.2 30.6 23.1 ΙΛΙ — 264 Example 6 a. CU <N ΙΛ><Ν 00 FD-PET OO Rosie i 248 23.2 29.9 23.4 o 253 Example 5 U cu Tj- s FD-PET 1/10 σ\ rib (N 24.0 31.3 24.3 OO pair ' 259 Example 4 ω no s FD -PET Ξ rib 245 21.3 24.9 23.7 sq 263 Example 3 UJ ss FD-PET 2 rib 243 21.7 26.0 24.8 〇270 Example 2 tu cu ss FD-PET OO OO rib 242 30.2 23.7 卜 对 ' 256 δ UQ 0. ss FD-PET OO rib 246 23.7 i 23.3 rn — 258 The melting point of the resin of the resin core component of this component (°c) The MFR of the resin of the core component (g/10 min) s Forget the date Φ § Both w The resin core of the sheath component The volume ratio of titanium dioxide to the sheath (Wt0/o) of the fabric of the woven fabric. The basis weight of the fabric (g/m2) R value (. 〇Infrared transmittance (%) Visible light transmittance (%) UV transmittance (%) Air permeability (cm3/cm2/s) IHds尨-^M*%? so Cup umbrella: 13·? lHds field and ^Ms%? 5-0* Umbrella: 13'as* H3ds^qKWMS^JA^^^:XH'aJ* Love°Good: wd*
^0?'·· LZ 201204888^0?'·· LZ 201204888
Jim 【04啭】 1實例24| CU CU 2 一 ο Ifd-pet| oo CQ |羅紋I (Ν VO CN 23.5 1 1 33.0 1 24.8 寸 rS 芝 oa |實例23| CU 2 — 00 |fd-pet| oo PQ l羅紋I L264_ 1 1 23.0 33.2 24.2 Ό ΓΟ ON tn < |實例22| CU CL. |fd-pet| v〇 oo CQ 1羅紋1 | 282 | 22.5 1 ! 31.7 ! 22.9 fH i 306 < |實例21| CL Dm ο i〇 |fd-pet| oo U 1羅紋I 5; <N 1 22.8 1 1 32.3 1 26.3 1 rn 寸· | 302 | < |實例20 CU CU u-> rj 2 |fd-pet| 00 U ί羅纹| CN oo CN 丨 21.3 1 26.0 1 22.4 ON <N 1 276 | < 1實例19| 〇4 CU !〇 兹 |fd-pet| oo u 1羅紋1 ON (N 1 22.8 1 1 30.2 1 24.4 寸 270 CQ |實例18| ⑴ (X g 寸 |fd-pet| vo 00 u 1羅纹I <s 19.6 1 21.5 ON (N < 實例17 CU SO 卜 s |fd-pet| oo ffi 1羅纹1 o oo CN 20.0 | 25.6 | 22.2 对 rn 315.9 CO 實例16 CU & VO VI g |fd-pet 00 CQ 1羅纹1 | 282 | 1 22.9 1 I 30.7 1 25.2 1 ON rn ! 335.7 | CQ 1實例15 CU CU § 00 |fd-pet| 00 CQ |羅紋| | 287 | 21.5 1 27.0 ;28.0 On i 266.2 OQ 1實例14| CU CU 寸 s |fd-pet| VO oo < 1羅纹I oo ON (S 23.2 ! 32.6 ί 31.9 10.6 i 305.4 CQ 實例Π CU CU m V〇 |fd-pet| oo < 1羅紋I r- v〇 <N 21.8 1 29.6 | 26.9 1 二 I 299.0 | < 實例12 Oh CL. s σΝ p; |fd-pet| oo < 羅紋I oo (N 1 22.8 1 31.7 | 23.0 1 n | 291.9 | OQ 實例11 CU CU QJ |fd-pet| oo < 1羅纹1 1 22.5 32.2 24.6 ro ,284.8 OQ 芯成分的樹脂 芯成分的樹脂的熔點(°c) 芯成分的樹脂的MFR (g/10 min) Ρύ > S 柴 s ε J ο ^ υ 鞘成分的樹脂 芯與鞘的體積比 纖維中的二氧化鈦的含有率 C wt%) 白粉量 織物的组織 織物單位面積重量(g/m2) R 值(°C) 紅外線穿透率(%) 可見光線穿透率(%) 紫外線穿透率(%) 通氣度(cm3/cm2/s) 耐摩擦熔融性 13d 忘场-^MS%JMZ^^"δ'α11·*$«鉍:dd* 泼9鉍:3d* 201204888 38744pif [表3]Jim [04啭] 1Example 24| CU CU 2 一ο Ifd-pet| oo CQ | Rib I (Ν VO CN 23.5 1 1 33.0 1 24.8 inch rS 芝 oa | Example 23| CU 2 — 00 |fd-pet| Oo PQ l rib I L264_ 1 1 23.0 33.2 24.2 Ό ΓΟ ON tn < |Example 22| CU CL. |fd-pet| v〇oo CQ 1 rib 1 | 282 | 22.5 1 ! 31.7 ! 22.9 fH i 306 < |Example 21| CL Dm ο i〇|fd-pet| oo U 1 rib I 5; <N 1 22.8 1 1 32.3 1 26.3 1 rn inch · | 302 | < | Example 20 CU CU u-> rj 2 |fd-pet| 00 U ί 纹 | CN oo CN 丨21.3 1 26.0 1 22.4 ON <N 1 276 | < 1 Example 19| 〇4 CU !〇兹|fd-pet| oo u 1 rib 1 ON (N 1 22.8 1 1 30.2 1 24.4 inch 270 CQ | Example 18| (1) (X g inch | fd-pet| vo 00 u 1 rib I <s 19.6 1 21.5 ON (N < Example 17 CU SO Bu s |fd-pet| oo ffi 1 rib 1 o oo CN 20.0 | 25.6 | 22.2 vs rn 315.9 CO Example 16 CU & VO VI g |fd-pet 00 CQ 1 rib 1 | 282 | 1 22.9 1 I 30.7 1 25.2 1 ON rn ! 335.7 | CQ 1 Example 15 CU CU § 00 |fd-pet| 00 CQ |Ribbed | | 287 | 21.5 1 27.0 ;28.0 On i 266.2 OQ 1Example 14| CU CU s |fd-pet| VO oo < 1 rib I oo ON (S 23.2 ! 32.6 ί 31.9 10.6 i 305.4 CQ example CU CU CU m V〇|fd-pet| oo < 1 rib I r- v〇<;N 21.8 1 29.6 | 26.9 1 II I 299.0 | < Example 12 Oh CL. s σΝ p; |fd-pet| oo < rib I oo (N 1 22.8 1 31.7 | 23.0 1 n | 291.9 | OQ Example 11 CU CU QJ |fd-pet| oo < 1 rib 1 1 22.5 32.2 24.6 ro ,284.8 OQ Core component resin core component melting point (°c) MFR of resin component (g/10 min) Ρύ > S 柴 s ε J ο ^ 体积 The ratio of the resin core to the sheath of the sheath component is the content of the titanium dioxide in the fiber C wt%) The amount of the fabric of the white fabric is the basis weight (g/m2) R value (° C) Infrared transmittance (%) Visible light transmittance (%) UV transmittance (%) Air permeability (cm3/cm2/s) Friction-resistant meltability 13d Forgotten field-^MS%JMZ^^"δ 'α11·*$«铋:dd* Splash 9铋:3d* 201204888 38744pif [Table 3]
實例25 實例26 實例27 實例28 芯成分的樹脂 PP PP PP PP 芯成分的樹脂的熔點(°c) 142 142 142 142 芯成分的樹脂的MFR (g/10min) 30 30 30 30 芯成分的樹脂的MVR (cm^lOmin) 34 34 34 34 鞘成分的樹脂 FD-PET FD-PET FD-PET FD-PET 芯與鞘的體積比 1/6 1/6 1/6 1/6 纖維中的二氧化鈦的含有率(wt%) 1.8 1.8 1.8 1.8 纖維的截面形狀 三角 圓形 圓形 圓形 單纖維纖度(dtex) 3.5 1.8 3.5 1.8 延伸紗或假撚紗 延伸紗 延伸紗 假撚紗 假撚紗 白粉量 A A A A 織物的組織 羅紋 羅紋 羅紋 羅紋 織物單位面積重量(g/m2) 267 300 254 276 R值(。C) 21.2 20.9 20.9 19.2 紅外線穿透率(%) 25.2 28.4 27.6 22.5 可見光線穿透率(%) 21.5 21.9 21.5 17.1 紫外線穿透率(%) 3.3 3.3 3.4 2.1 通氣度(cm3/cm2/s) 256 248 195 142 财摩擦溶融性 B B B B *PP :聚丙烯Example 25 Example 26 Example 27 Example 28 Core component resin PP PP PP PP core component resin melting point (°c) 142 142 142 142 core component resin MFR (g/10 min) 30 30 30 30 core component resin MVR (cm^lOmin) 34 34 34 34 Resin of sheath component FD-PET FD-PET FD-PET FD-PET Core to sheath volume ratio 1/6 1/6 1/6 1/6 Titanium dioxide content in fiber Rate (wt%) 1.8 1.8 1.8 1.8 Cross-sectional shape of the fiber Triangular rounded round single fiber denier (dtex) 3.5 1.8 3.5 1.8 Extension yarn or false twist yarn extension yarn extension yarn false twist yarn false twist yarn white powder AAAA fabric Tissue ribbed ribbed ribbed fabric per unit area weight (g/m2) 267 300 254 276 R value (.C) 21.2 20.9 20.9 19.2 Infrared transmittance (%) 25.2 28.4 27.6 22.5 Visible light transmittance (%) 21.5 21.9 21.5 17.1 UV transmittance (%) 3.3 3.3 3.4 2.1 Air permeability (cm3/cm2/s) 256 248 195 142 Friction meltability BBBB *PP: Polypropylene
*FD-PET :含有2wt°/〇的二氧化鈦的PET 29 201204888*FD-PET: PET 29 containing 2wt ° / 〇 titanium dioxide 2012 20128888
Ji 卜οοε 【寸<】 1實例401 〇 1 3500」 L 32100」 U 17.3 1實例39| 〇 | 2500 | | 22900 | CQ 16.4 |實例38| 1 210 J | 3000 | | 27500 | U 26.1 |實例37| | 3000 | [27500 | 1 B 至C | 21.8 |實例36| 3000 | 27500 | < 15.4 |t^J35| 〇 | 3000 | | 27500 | PQ 21.2 |實例34| 〇 | 3500 I | 32100 | U 21.8 |實例33| 〇 | 2500 I | 22900 | < 14.9 I實例321 1 210 1 | 3000 | | 27500 | U 23.8 |實例31| 3000 | 27500 | 0Q 22.1 1實例3〇| 3000 | 27500 | < 16.1 |實例29| ο | 3000 | | 27500 | C 20.4 假撚溫度(°c) 假撚數(T/m) 假撚係數 白粉量 捲縮率(%) 201204888 38744pif [產業上之可利用性] 逆盛it鞘複合纖維可無損纖維的質地而有效地 的輕射熱(即红㈣,紡紗步驟的穩定性 及假撚步驟的通過性良好。 纖維而成的織編物是阻斷糙㈣使:本、月的心鞘後合 並不特別限定使。優異的織編物, 外用品 有用 =中為運動衣料領域、帽材、帳蓬= 中近東專酷暑地域的民族服裝等的原材料而極其 【圖式簡單說明】 益 【主要元件符號說明】Ji οοοε [inch<] 1 example 401 〇1 3500" L 32100" U 17.3 1 Example 39| 〇| 2500 | | 22900 | CQ 16.4 | Example 38| 1 210 J | 3000 | | 27500 | U 26.1 | 37| | 3000 | [27500 | 1 B to C | 21.8 | Example 36 | 3000 | 27500 | < 15.4 | t^J35| 〇 | 3000 | | 27500 | PQ 21.2 | Example 34 | 〇 | 3500 I | 32100 | U 21.8 |Example 33| 〇| 2500 I | 22900 | < 14.9 I Example 321 1 210 1 | 3000 | | 27500 | U 23.8 | Example 31 | 3000 | 27500 | 0Q 22.1 1 Example 3〇 | 3000 | 27500 | 16.1 |Example 29| ο | 3000 | | 27500 | C 20.4 False 捻 Temperature (°c) False 捻 (T/m) False 捻 Coefficient White Powder Volume Reduction (%) 201204888 38744pif [Industrial Availability] The anti-heit sheath composite fiber can effectively degrade the texture of the fiber and effectively lightly heat (ie, red (four), the stability of the spinning step and the passability of the false twisting step. The weaving of the fiber is blocking the roughness (4) Make: This month, the heart of the sheath after the merger is not particularly limited. Excellent weaving, useful external supplies = in the field of sportswear, caps, tents = Middle East Local ethnic costume material or the like is extremely simple formula [FIG DESCRIPTION The main benefits reference numerals DESCRIPTION
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010131416 | 2010-06-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201204888A true TW201204888A (en) | 2012-02-01 |
TWI551742B TWI551742B (en) | 2016-10-01 |
Family
ID=45098128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100119971A TWI551742B (en) | 2010-06-08 | 2011-06-08 | Sheath-core compound fiber, false twist textured yarn composed thereof, method for manufacturing the same, and woven knit fabric including the fiber |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5667981B2 (en) |
KR (1) | KR101930560B1 (en) |
CN (1) | CN103069060B (en) |
TW (1) | TWI551742B (en) |
WO (1) | WO2011155524A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5993196B2 (en) * | 2012-05-09 | 2016-09-14 | 帝人株式会社 | Composite fiber with excellent cooling feeling |
CN103060979B (en) * | 2012-08-09 | 2015-07-08 | 绍兴文理学院 | Single-spinneret-plate binary skin-core-type composite-spinning multiple-different-yarn production process |
JP2014077214A (en) * | 2012-10-10 | 2014-05-01 | Teijin Ltd | Heat-shielding composite fiber with excellent cool sensation |
JP6122683B2 (en) * | 2013-04-17 | 2017-04-26 | グンゼ株式会社 | Article transport roller |
US10011097B2 (en) * | 2013-05-16 | 2018-07-03 | Toray Industries, Inc. | Sun-blocking multilayered sheet and hand-held parasol, tent, tarp, hood, hat, and fixed parasol comprising said sun-blocking multilayered sheet |
JP6470920B2 (en) * | 2014-06-10 | 2019-02-13 | 美津濃株式会社 | Shading wear |
CN105463686A (en) * | 2014-09-02 | 2016-04-06 | 东丽纤维研究所(中国)有限公司 | Anti-transparent and ultraviolet-resistant warp-knitting fabric and purpose of same |
TWI615519B (en) * | 2015-02-20 | 2018-02-21 | Mitsubishi Chem Corp | Knitwear and clothes |
CN106319685A (en) * | 2015-06-19 | 2017-01-11 | 香港理工大学 | Heat insulation core-shell composite fiber for reflecting near infrared rays, and production method of fiber |
TWI658183B (en) * | 2016-06-21 | 2019-05-01 | 三菱化學股份有限公司 | Flat section crimped yarn, method for manufacturing the crimped yarn, and knitted fabric containing the crimped yarn |
EP3994297A1 (en) * | 2019-07-02 | 2022-05-11 | Essilor International | Fdm 3d printing of optical lens with high clarity and mechanical strength |
CN110549705B (en) * | 2019-09-04 | 2021-06-01 | 苏州大学 | Polymer optical fiber and luminous fabric |
JP6743266B1 (en) * | 2019-12-25 | 2020-08-19 | 宇部エクシモ株式会社 | Black synthetic fiber yarn |
TWI761281B (en) * | 2021-08-18 | 2022-04-11 | 康那香企業股份有限公司 | Multi-component side-by-side cooling-feeling composite fiber and cooling-feeling sanitary products |
CN117488460A (en) * | 2023-11-02 | 2024-02-02 | 波司登羽绒服装有限公司 | Light and thin anti-penetrating self-heating liner cloth and preparation method and application thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56140127A (en) * | 1980-03-28 | 1981-11-02 | Teijin Ltd | False twisted fused yarn |
JPH08113828A (en) * | 1994-10-13 | 1996-05-07 | Nippon Ester Co Ltd | Insect repellent core-sheath type conjugated fiber |
KR100392965B1 (en) * | 1995-03-02 | 2003-10-30 | 도레이 가부시끼가이샤 | Polyester high-purity fragrance-stretched fiber and manufacturing method thereof |
JPH0913225A (en) * | 1995-06-28 | 1997-01-14 | Teijin Ltd | Sheath-core type deodorant and antimicrobial conjugate fiber |
KR100648426B1 (en) * | 2000-02-25 | 2006-11-24 | 도레이 가부시끼가이샤 | Denim-like article of clothing and method of producing the same |
ES2359551T3 (en) * | 2001-04-17 | 2011-05-24 | Teijin Fibers Limited | FALSE TORSION FIBER THREAD OF POLYESTER AND ITS PRODUCTION METHOD. |
CN100347355C (en) * | 2001-06-15 | 2007-11-07 | 可乐丽股份有限公司 | Composite fiber |
TWI372805B (en) * | 2005-09-15 | 2012-09-21 | A method for making fiber products with absorbed odor, anti-bacteria, thermal diffusive and cooling performances | |
TW200829741A (en) * | 2007-01-12 | 2008-07-16 | Far Eastern Textile Ltd | Modifying copolymer, sheath layer material modified with the same and core-sheath composite fiber |
JP2009079330A (en) * | 2007-09-27 | 2009-04-16 | Japan Vilene Co Ltd | Sustained release nonwoven fabric and method for producing the same |
-
2011
- 2011-06-08 KR KR1020137000261A patent/KR101930560B1/en active IP Right Grant
- 2011-06-08 JP JP2011527912A patent/JP5667981B2/en active Active
- 2011-06-08 TW TW100119971A patent/TWI551742B/en active
- 2011-06-08 WO PCT/JP2011/063128 patent/WO2011155524A1/en active Application Filing
- 2011-06-08 CN CN201180038802.6A patent/CN103069060B/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2011155524A1 (en) | 2011-12-15 |
TWI551742B (en) | 2016-10-01 |
JPWO2011155524A1 (en) | 2013-08-01 |
KR20130132372A (en) | 2013-12-04 |
JP5667981B2 (en) | 2015-02-12 |
CN103069060B (en) | 2015-05-20 |
CN103069060A (en) | 2013-04-24 |
KR101930560B1 (en) | 2018-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201204888A (en) | Sheath-core compound fiber, false twist textured yarn composed thereof, method for manufacturing the same, and woven knit fabric including the fiber | |
TWI329147B (en) | Flat multifilament yarn woven fabric for articles of clothing and interior, low air permeability taxtile material, vision through-preventive perspiration-absorbent textile material and vision through-preventive textile material | |
CN101570901B (en) | Chemical fiber with high optical shielding | |
EP2808428B1 (en) | Polyester composite fiber with excellent heat-shielding property and coloration | |
JP5735377B2 (en) | Core-sheath type polyester flat cross-section fiber and fabric having permeation resistance | |
CN115667600B (en) | Multi-layer section composite fiber and fabric thereof | |
JP5297331B2 (en) | Core-sheath type composite fiber | |
CN110637114A (en) | High-penetration-prevention core sheath composite fiber and fabric | |
JP6751558B2 (en) | Double-sided knitted fabric | |
JP2010077575A (en) | Fabric for preventing transmission of infrared-ray photographing, and clothing product using the same | |
JP2011241529A (en) | Sheath-core conjugate fiber | |
JP5777391B2 (en) | Interior interior materials | |
JP6538340B2 (en) | Hollow multifilament yarn, false twist hollow multifilament yarn, and woven and knitted fabric | |
JP4357626B2 (en) | UV shielding fabric | |
TWI658183B (en) | Flat section crimped yarn, method for manufacturing the crimped yarn, and knitted fabric containing the crimped yarn | |
JP5770981B2 (en) | Thermal barrier knitted fabric and clothing | |
JP2015014076A (en) | Functional fiber yarn and woven knitted fabric | |
JP6487171B2 (en) | Functional fiber yarn | |
JP6501839B2 (en) | Multifilament yarn and woven or knitted fabric thereof | |
JP2016056485A (en) | Polyamide fiber woven or knitted fabric and method for producing the same | |
CN201520844U (en) | Chemical fiber with high optical shielding performance | |
JP6501840B2 (en) | Multifilament yarn and woven or knitted fabric thereof | |
JP2015092031A (en) | Synthetic fiber | |
JP6211878B2 (en) | Thermal insulation fabric | |
JP2019127661A (en) | Multifilament yarn, woven knitted product thereof, and shoe material including woven knitted product |