JP2014077214A - Heat-shielding composite fiber with excellent cool sensation - Google Patents

Heat-shielding composite fiber with excellent cool sensation Download PDF

Info

Publication number
JP2014077214A
JP2014077214A JP2012225212A JP2012225212A JP2014077214A JP 2014077214 A JP2014077214 A JP 2014077214A JP 2012225212 A JP2012225212 A JP 2012225212A JP 2012225212 A JP2012225212 A JP 2012225212A JP 2014077214 A JP2014077214 A JP 2014077214A
Authority
JP
Japan
Prior art keywords
fiber
composite fiber
section
cross
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012225212A
Other languages
Japanese (ja)
Inventor
Kazuhiro Morishima
一博 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2012225212A priority Critical patent/JP2014077214A/en
Publication of JP2014077214A publication Critical patent/JP2014077214A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite fiber that exhibits excellent contact cool sensation and excellent feeling when its is made into a fabric, and also has excellent processability.SOLUTION: A core-sheath-type composite fiber includes a fiber-forming polymer as a sheath component and a polymer mainly composed of polyethylene as a core component. The fiber-forming polymer of the sheath component contains 1 to 15 wt.% of inorganic compound particles having a refractive index of 1.6 to 5 and an average grain diameter of 0.1 to 1.5 μm.

Description

本発明は冷感に優れた複合繊維に関するものである。さらに詳しくは、本発明は、夏場における着用時の快適性、および風合いに優れた、衣料用途に好適に利用可能な冷感に優れた複合繊維に関するものである。   The present invention relates to a composite fiber excellent in cooling feeling. More specifically, the present invention relates to a composite fiber that is excellent in comfort at the time of wearing in summer and feel, and excellent in cooling feeling that can be suitably used for clothing.

昨今の快適志向の増大に伴い、衣服として着用する際に、特に夏場など周囲の環境温度が比較的高い場合に、適度な冷感が感じられる繊維製品が開発されてきた。
例えば、繊維を構成するポリマーとして吸湿性を有するポリマーを用いたもの(特許文献1)や、熱可塑性エラストマーを用いたもの(特許文献2)、さらには熱伝導性に優れた無機粒子などを練りこんだものが提案されている。
しかしながら吸湿性を有するポリマーは発汗時にべとつきの原因となり不快感を生じ、またエラストマーはそれ自体の粘着性に加え、染色堅牢性の低さなど加工特性に劣るものであった。
また、布帛を形成した後に、後加工によって冷感を有する物質を付着させる技術も開示されているが(特許文献3、4)、後加工による付着は、接着剤となるバインダーによる風合いの悪化や洗濯耐久性の問題などを有するものであった。
Along with the recent increase in comfort orientation, textile products have been developed that, when worn as clothes, can feel a moderate cool feeling, especially when the ambient environmental temperature is relatively high, such as in summer.
For example, those using a hygroscopic polymer as a polymer constituting the fiber (Patent Document 1), those using a thermoplastic elastomer (Patent Document 2), and inorganic particles having excellent thermal conductivity are kneaded. Something has been proposed.
However, hygroscopic polymers cause stickiness during sweating and cause discomfort, and elastomers have inferior processing characteristics such as low dyeing fastness in addition to their own tackiness.
Moreover, although the technique which adheres the substance which has a cool feeling by post-processing after forming a fabric is also disclosed (patent documents 3 and 4), the adhesion by post-processing is the deterioration of the texture by the binder used as an adhesive agent. There was a problem of washing durability.

一方、繊維に遮熱性を付与させる方法としては、熱線を散乱させる様な無機粒子を繊維中に練り込む方法を挙げることができる。例えば特許文献5には芯部に平均粒子径0.8〜1.8μmの酸化チタンを3重量%以上含有し、鞘部に平均粒子径0.8μm以上の酸化チタンを実質的に含有しない芯鞘型複合繊維が提案され、該繊維の芯部により、効果的に熱エネルギーに関係する波長の光を遮り、清涼感を得ることができることが記載されている。しかし、遮蔽効果を実感として感じるには、直射日光下などの熱線が存在する限定された環境下であり、多量に無機粒子を混合しない限り冷感を感じることはなく、その様な繊維は実用に供することは困難である。上述の通り、従来の方法では十分な冷感と遮熱性を具備する繊維は得られておらずその改善が望まれていた。   On the other hand, examples of the method for imparting heat shielding properties to the fiber include a method of kneading inorganic particles that scatter heat rays into the fiber. For example, Patent Document 5 contains a core portion containing 3% by weight or more of titanium oxide having an average particle size of 0.8 to 1.8 μm and a sheath portion containing substantially no titanium oxide having an average particle size of 0.8 μm or more. A sheath type composite fiber has been proposed, and it is described that the core portion of the fiber can effectively block light having a wavelength related to thermal energy and obtain a refreshing feeling. However, in order to feel the shielding effect as a real feeling, it is in a limited environment where there are heat rays such as under direct sunlight, and unless you mix a large amount of inorganic particles, you will not feel a cold feeling, and such fibers are practical It is difficult to use. As described above, the conventional method has not obtained a fiber having sufficient cooling feeling and heat shielding property, and an improvement thereof has been desired.

特開2003−293223号公報JP 2003-293223 A 特開2004−270075号公報JP 2004-270075 A 特開2007−224429号公報JP 2007-224429 A 特開2006−161226号公報JP 2006-161226 A 特開2010−116660号公報JP 2010-116660 A

本発明の目的は、上記従来技術を背景になされたもので、その目的は、布帛とした際に優れた接触冷感に加え、優れた遮熱性、および風合いを呈し、加工性に優れた遮熱性複合繊維を提供することにある。   The object of the present invention is based on the background of the above-described conventional technology. The object of the present invention is to provide an excellent heat-shielding property and texture in addition to an excellent cooling feeling when made into a fabric, and an excellent processability. It is to provide a thermal composite fiber.

本発明者らは、上記の課題を解決するために鋭意検討した結果、ポリエチレンポリマーを芯成分とする芯鞘型複合繊維の鞘成分として、特定の無機化合物含有する繊維形成性ポリマーを配するとき、上記目的が達成できることを究明し、本発明に到達した。   As a result of intensive studies to solve the above problems, the present inventors have arranged a fiber-forming polymer containing a specific inorganic compound as a sheath component of a core-sheath type composite fiber having a polyethylene polymer as a core component. The present inventors have found that the above object can be achieved and have reached the present invention.

即ち、本発明によれば、繊維形成性ポリマーを鞘成分とし、主たる構成成分がポリエチレンであるポリマーを芯成分とする芯鞘型複合繊維であって、鞘成分の繊維形成性ポリマーが、屈折率が1.6〜5で、且つ平均粒径が0.1〜1.5μmの無機化合物粒子を1〜15重量%含有していることを特徴とする冷感に優れた遮熱性複合繊維が提供される。   That is, according to the present invention, a core-sheath type composite fiber having a fiber-forming polymer as a sheath component and a polymer whose main constituent component is polyethylene as a core component, wherein the fiber-forming polymer of the sheath component has a refractive index. 1.6 to 5 and 1 to 15% by weight of inorganic compound particles having an average particle diameter of 0.1 to 1.5 μm are provided. Is done.

本発明によれば、布帛とした際に優れた接触冷感に加え、優れた遮熱性、および風合いを呈し、加工性に優れた遮熱性複合繊維を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, when it is set as the fabric, in addition to the contact cold feeling which was excellent, the heat-insulating composite fiber which was excellent in heat-insulating property and texture, and excellent in workability can be provided.

(a)本発明の複合繊維の、繊維軸に直行する断面の一例を示す模式図である。(b)本発明の複合繊維の、繊維軸に直行する断面の他の例を示す模式図である。(c)本発明の複合繊維の、繊維軸に直行する断面の他の例を示す模式図である。(A) It is a schematic diagram which shows an example of the cross section orthogonal to the fiber axis of the composite fiber of this invention. (B) It is a schematic diagram which shows the other example of the cross section orthogonal to the fiber axis of the composite fiber of this invention. (C) It is a schematic diagram which shows the other example of the cross section orthogonal to the fiber axis of the composite fiber of this invention.

以下、本発明の実施形態について詳細に説明する。
本発明の複合繊維は、芯鞘型の複合繊維であり、芯成分を構成するポリマーは、ポリエチレンを主たる構成成分とする必要がある。ポリエチレンは大きく、高密度ポリエチレン、直鎖状低密度ポリエチレン、低密度ポリエチレンに分類され、なかでも製糸性が良好で熱伝導性が高い高密度ポリエチレンが好ましい。該ポリエチレンは単独であることが好ましいが5重量%未満までの割合でC3〜C12の高級アルケンが共重合体として含まれていても良い。
また本発明の繊維に用いる原料樹脂には、従来公知の酸化防止剤、耐光剤、難燃剤、顔料などを本発明の目的を損なわない範囲で含有させることができる。
Hereinafter, embodiments of the present invention will be described in detail.
The conjugate fiber of the present invention is a core-sheath type conjugate fiber, and the polymer constituting the core component needs to be mainly composed of polyethylene. Polyethylene is large and is classified into high-density polyethylene, linear low-density polyethylene, and low-density polyethylene. Among them, high-density polyethylene is preferable because it has good yarn-making properties and high thermal conductivity. The polyethylene is preferably used alone, but a C3-C12 higher alkene may be contained as a copolymer in a proportion of less than 5% by weight.
Moreover, the raw material resin used for the fiber of the present invention can contain conventionally known antioxidants, light proofing agents, flame retardants, pigments and the like as long as the object of the present invention is not impaired.

本発明の複合繊維の鞘成分を構成するポリマーは、繊維形成性ポリマーからなる。該繊維形成性ポリマーは、繊維化後の製編製織時の熱セット性や染色工程での加工特性を向上させるうえで、芯成分を構成するポリマーの融点に対し、融点が10〜150℃、好ましくは30〜140℃高い方が良い。鞘成分と芯成分の融点差が150℃を超えると複合繊維成型時に芯成分の熱劣化が起こりやすくなり、逆に融点差が10℃未満となると上記加工特性の向上効果が得られなくなる。   The polymer constituting the sheath component of the conjugate fiber of the present invention is a fiber-forming polymer. The fiber-forming polymer has a melting point of 10 to 150 ° C. with respect to the melting point of the polymer constituting the core component, in order to improve the heat setting property during knitting and weaving after fiberization and the processing characteristics in the dyeing process. The higher one is preferably 30 to 140 ° C. When the melting point difference between the sheath component and the core component exceeds 150 ° C, the core component is likely to be thermally deteriorated during molding of the composite fiber. Conversely, when the melting point difference is less than 10 ° C, the effect of improving the processing characteristics cannot be obtained.

該繊維形成性ポリマーとしては、成形性、取り扱い性、染色性の点からポリエステル系ポリマーであることが好ましく、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートなどの繊維形成性ポリエステルが好ましい。すなわち、テレフタル酸を主たる二官能性カルボン酸成分とし、エチレングリコール、トリメチレングリコール、テトラメチレングリコールなどを主たるグリコール成分とするポリアルキレンテレフタレート系ポリエステルが好ましい。さらには、かかるポリエステルとしては、マテリアルリサイクルまたはケミカルリサイクルされたポリエステルや、特開2004−270097号公報や特開2004−211268号公報に記載されているような、特定のリン化合物およびチタン化合物を含む触媒を用いて得られたポリエステル、ポリ乳酸やステレオコンプレックスポリ乳酸などの脂肪族ポリエステルでもよい。   The fiber-forming polymer is preferably a polyester polymer from the viewpoint of moldability, handleability, and dyeability, and fiber-forming polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate are preferable. That is, a polyalkylene terephthalate polyester having terephthalic acid as the main difunctional carboxylic acid component and ethylene glycol, trimethylene glycol, tetramethylene glycol or the like as the main glycol component is preferred. Furthermore, the polyester includes material-recycled or chemical-recycled polyester, and specific phosphorus compounds and titanium compounds as described in JP-A-2004-270097 and JP-A-2004-212268. Polyester obtained using a catalyst, aliphatic polyester such as polylactic acid and stereocomplex polylactic acid may be used.

また、テレフタル酸成分の一部を他の二官能性カルボン酸成分で置換えたポリエステルであってもよく、及び/又はグリコール成分の一部を他のジオール化合物で置換えたポリエステルであってもよい。
ここで、使用されるテレフタル酸以外の二官能性カルボン酸としては、例えばイソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェノキシエタンジカルボン酸、β−ヒドロキシエトキシ安息香酸、p−オキシ安息香酸、アジピン酸、セバシン酸、1,4−シクロヘキサンジカルボン酸の如き芳香族、脂肪族、脂環族の二官能性カルボン酸をあげることができる。
Moreover, the polyester which substituted a part of terephthalic acid component with the other bifunctional carboxylic acid component may be sufficient, and / or the polyester which substituted a part of glycol component with the other diol compound may be sufficient.
Here, examples of the bifunctional carboxylic acid other than terephthalic acid used include isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid, β-hydroxyethoxybenzoic acid, p-oxybenzoic acid, and adipine. Aromatic, aliphatic and alicyclic bifunctional carboxylic acids such as acid, sebacic acid and 1,4-cyclohexanedicarboxylic acid can be mentioned.

また、上記グリコール以外のジオール化合物としては例えばシクロヘキサン−1,4−メタノール、ネオペンチルグリコール、ビスフェノールA、ビスフェノールSの如き脂肪族、脂環族、芳香族のジオール化合物及びポリオキシアルキレングリコール等をあげることができる。   Examples of diol compounds other than the glycol include aliphatic, alicyclic and aromatic diol compounds such as cyclohexane-1,4-methanol, neopentyl glycol, bisphenol A and bisphenol S, and polyoxyalkylene glycol. be able to.

さらに、ポリエステルが実質的に線状である範囲でトリメリット酸、ピロメリット酸のごときポリカルボン酸、グリセリン、トリメチp−ルプロパン、ペンタエリスリトールのごときポリオールなどを使用することができる。
上記繊維形成性ポリマーは、屈折率が1.6〜5で平均粒径が0.1〜1.5μmの無機化合物粒子を含有することが必要である。
Further, polycarboxylic acids such as trimellitic acid and pyromellitic acid, polyols such as glycerin, trimethyl p-propane, and pentaerythritol can be used within the range in which the polyester is substantially linear.
The fiber-forming polymer needs to contain inorganic compound particles having a refractive index of 1.6 to 5 and an average particle size of 0.1 to 1.5 μm.

無機化合物粒子としては、例えば、Fe(屈折率n=2.7)、ルチル型TiO(2.72)、アナターゼ型TiO(2.6)、CeO(2.3)、ZnS(2.3)、PbCl(2.3)、CdO(2.2)、Sb(2.0)、WO(2.0)、SiC(2.0)、In(2.0)、PbO(2.6)、Ta(2.4)、ZnO(2.1)、ZrO(2.0)、MgO(1.6)、CeF(1.6)、AlF(1.6)、Al(1.6)が例示されるが、中でも二酸化チタン(IV)、チタン酸カリウム、チタン酸鉛、酸化鉛(II)、硫化亜鉛、酸化亜鉛、二酸化ジルコニウム(IV)が好ましく用いられ、二酸化チタン(IV)が最も好ましく用いられる。 Examples of the inorganic compound particles include Fe 2 O 3 (refractive index n = 2.7), rutile TiO 2 (2.72), anatase TiO 2 (2.6), CeO 2 (2.3), ZnS (2.3), PbCl 2 (2.3), CdO (2.2), Sb 2 O 3 (2.0), WO 3 (2.0), SiC (2.0), In 2 O 3 (2.0), PbO (2.6), Ta 2 O 3 (2.4), ZnO (2.1), ZrO 2 (2.0), MgO (1.6), CeF 3 (1 .6), AlF 3 (1.6), and Al 2 O 3 (1.6), including titanium dioxide (IV), potassium titanate, lead titanate, lead oxide (II), and zinc sulfide. Zinc oxide and zirconium dioxide (IV) are preferably used, and titanium dioxide (IV) is most preferably used.

該無機化合物粒子の屈折率が1.6未満の場合、赤外線の透過性が高く好ましくない。また、屈折率が5以上の粒子は工業的に使用可能なものはなく、屈折率としては好ましくは1.8以上、さらに好ましくは2.0以上である。
これらの無機化合物粒子は必要に応じ、表面処理されていても良い。その場合従来公知の表面処理方法を使用すること出来る。例えば、二酸化ケイ素、アルミナ、二酸化チタン、二酸化ジルコニウムで粒子表面を覆うことによって、ポリエステルへの分散性を向上させたり、粒子の色相を変えたり、ポリエステルに対する粒子表面の活性を低下させ、ポリエステルの熱安定性を向上させることができる。
When the refractive index of the inorganic compound particles is less than 1.6, infrared transmittance is not preferable. Further, there is no industrially usable particle having a refractive index of 5 or more, and the refractive index is preferably 1.8 or more, more preferably 2.0 or more.
These inorganic compound particles may be surface-treated as necessary. In that case, a conventionally known surface treatment method can be used. For example, by covering the particle surface with silicon dioxide, alumina, titanium dioxide or zirconium dioxide, the dispersibility in the polyester can be improved, the color of the particles can be changed, the activity of the particle surface against the polyester can be reduced, and the heat of the polyester can be reduced. Stability can be improved.

該無機化合物粒子は平均粒径が0.1〜1.5μmであることが必要である。特に近赤外線を主体とする熱に変換されやすい光の波長領域である0.7〜3μmの帯域の光を効果的に反射する為には、0.7μm以上であることが好ましい。酸化チタンの平均粒径が0.7μm未満であってもより小さい波長領域の光を反射することとなる為、0.7μm以上の粒子と併用することが好ましい。また、平均粒径が3μmを超えると、より高い波長領域の光を反射することとなり遮熱効果が十分に得られず、製糸時の工程安定性も低下し、単糸繊度を細くするとその傾向がより顕著となる。好ましい平均粒径は、0.3〜1.2μmである。   The inorganic compound particles must have an average particle size of 0.1 to 1.5 μm. In particular, in order to effectively reflect light in a wavelength band of 0.7 to 3 μm, which is a wavelength region of light that is easily converted into heat mainly composed of near infrared rays, the thickness is preferably 0.7 μm or more. Even if the average particle diameter of titanium oxide is less than 0.7 μm, light in a smaller wavelength region is reflected. Therefore, it is preferable to use in combination with particles of 0.7 μm or more. In addition, if the average particle diameter exceeds 3 μm, light in a higher wavelength region is reflected and a heat shielding effect is not sufficiently obtained, process stability at the time of yarn production is lowered, and the tendency to decrease the single yarn fineness Becomes more prominent. A preferable average particle diameter is 0.3 to 1.2 μm.

さらに本発明の複合繊維の鞘成分を構成する繊維形成性ポリマーは、上記無機化合物粒子を1〜15重量%含有していることが必要である。含有量が1%未満であると遮熱効果が不十分となり、15重量%を超えると、遮熱性は向上するが製糸時の工程安定性、および得られる繊維の品位が低下する。好ましい範囲は3〜10重量%である。
ここで、上記無機化合物粒子の添加方法としては、粒子化合物を粉体状のまま添加する方法、および高濃度のマスターバッチをあらかじめ作成し、紡糸時に無添加のポリエステルとチップブレンドする方法を挙げることができ、ポリマー融液への添加、あるいはマスターバッチでの添加による方法が無機化合物粒子の繊維中への分散性の点で好ましく用いられる。
Furthermore, the fiber-forming polymer constituting the sheath component of the composite fiber of the present invention must contain 1 to 15% by weight of the inorganic compound particles. When the content is less than 1%, the heat shielding effect becomes insufficient. When the content exceeds 15% by weight, the heat shielding property is improved, but the process stability during yarn production and the quality of the obtained fiber are lowered. A preferred range is 3 to 10% by weight.
Here, examples of the method for adding the inorganic compound particles include a method in which the particle compound is added in powder form, and a method in which a high-concentration masterbatch is prepared in advance and then blended with an additive-free polyester during spinning. In view of dispersibility of the inorganic compound particles in the fiber, a method by addition to the polymer melt or addition by a masterbatch is preferably used.

本発明の複合繊維の断面形状は、丸断面の他三角、四角などの多角形、突起を複数有する多葉型断面、中空形状、扁平形状など任意に選択することができるが、扁平形状で該扁平形状断面の長軸の幅Aとそれに直交する短軸の最大幅B1の比が2〜10であることが好ましい。扁平形状であることにより、衣料用布帛とした際、肌との接触面積を効果的に取ることができ、接触冷感を十分に感じることができるようになる。長軸の幅Aとそれに直交する短軸の最大幅B1の比が2未満であると、丸断面に近くなり扁平形状の効果が低くなり、10を超えると扁平の効果が飽和し、また製糸時の工程安定性が低下する。好ましい範囲は3〜8である。   The cross-sectional shape of the conjugate fiber of the present invention can be arbitrarily selected from a round cross section, a polygon such as a triangle, a square, a multi-leaf type cross section having a plurality of protrusions, a hollow shape, and a flat shape. It is preferable that the ratio of the major axis width A of the flat cross section to the minor axis maximum width B1 orthogonal thereto is 2 to 10. Due to the flat shape, the area of contact with the skin can be effectively taken when the cloth for clothing is used, and a feeling of cool contact can be sufficiently felt. If the ratio of the width A of the major axis to the maximum width B1 of the minor axis perpendicular to it is less than 2, it becomes close to a round cross section and the effect of the flat shape is reduced. Process stability at the time decreases. A preferred range is 3-8.

さらに本発明の複合繊維の該断面形状は、断面の長軸方向に丸断面単糸が直線状に連結した形状であり、くびれ部を2〜5個有する形状がより好ましい。丸断面単糸が直線的に連結した、全体として扁平の断面形状により、該丸断面単糸が単独で存在する場合と比較して単糸間の空間が少なく、冷感効果を効果的に発現することが可能となり、合せて繊維の曲げ特性が向上し、布帛とした場合に柔軟性に富むものとなる。さらに単なる扁平形状ではなくくびれ部を有することによって、無機化合物粒子の反射に過大に頼ることなく、繊維表面での乱反射や光の屈折効果をより高め、防透性もある程度付与することが可能となる。くびれ部の数は2個未満となると上記効果が得られ難く、逆にくびれ部の数が5個を超えると工程安定上好ましくない。   Further, the cross-sectional shape of the conjugate fiber of the present invention is a shape in which round cross-section single yarns are linearly connected in the major axis direction of the cross section, and a shape having 2 to 5 constricted portions is more preferable. The circular cross-section single yarns are linearly connected and the overall flat cross-sectional shape reduces the space between the single yarns compared to the case where the single round cross-section yarns exist alone, effectively expressing the cooling effect. In addition, the bending properties of the fibers are improved, and the fabric is rich in flexibility. Furthermore, by having a constricted part rather than a simple flat shape, it is possible to enhance the irregular reflection on the fiber surface and the light refraction effect, and to provide a certain degree of permeation without excessively relying on the reflection of the inorganic compound particles. Become. If the number of constricted portions is less than 2, the above effect is difficult to obtain, and conversely if the number of constricted portions exceeds 5, it is not preferable in terms of process stability.

また該丸断面単糸が直線状に連結した形状の場合は、扁平断面の長軸の幅Aとそれに直交する短軸の最大幅B1の比(扁平率)が2〜6であることが好ましい。該扁平率が2未満であると扁平断面の効果が得られ難く、織編物などの布帛とした場合に長軸が布帛表面に平行に配列し難くなり遮熱性が低下する。一方該扁平率が6を越えると製糸安定性が低下する為、さらに好ましい範囲は3〜5である。
さらに該丸断面単糸が直線状に連結した形状の場合、扁平形状断面の短軸の最大幅B1と、くびれ部に相当する短軸の最小幅B2の比(B1/B2)は1.05以上1.6以下であることが好ましい。B1/B2が1.05未満となると上述の丸断面が連結した効果が低下し、また、B1/B2が1.6を超えると、連結部の厚みが薄くなり冷感効果が低下する。好ましい範囲は1.1〜1.4である。
When the round cross-section single yarns are linearly connected, the ratio (flatness) of the long axis width A of the flat cross section to the maximum width B1 of the short axis perpendicular thereto is preferably 2-6. . When the flatness ratio is less than 2, the effect of the flat cross section is difficult to obtain, and when a fabric such as a woven or knitted fabric is used, the long axes are difficult to be arranged parallel to the fabric surface, and the heat shielding property is lowered. On the other hand, if the flatness exceeds 6, the spinning stability is lowered, so a more preferable range is 3-5.
Further, when the round cross-section single yarns are linearly connected, the ratio (B1 / B2) of the short axis maximum width B1 of the flat cross section to the short axis minimum width B2 corresponding to the constricted portion is 1.05. It is preferable that it is above 1.6. When B1 / B2 is less than 1.05, the effect of connecting the above-described round cross sections is reduced, and when B1 / B2 exceeds 1.6, the thickness of the connecting portion is reduced and the cooling effect is reduced. A preferred range is 1.1 to 1.4.

本発明の複合繊維を紡糸する方法としては、従来公知の方法を任意に採用すれば良いが溶融紡糸法がコスト面で優れており好ましい。また延伸する方法としては、公知の熱ロール延伸や温水延伸を用いることができる。なお本発明の繊維には、繊維を紡糸、延伸する工程において公知の帯電防止剤、繊維仕上剤などを適宜必要に応じて用いることができる。   As a method for spinning the conjugate fiber of the present invention, a conventionally known method may be arbitrarily adopted, but the melt spinning method is preferable in terms of cost. As the stretching method, known hot roll stretching or warm water stretching can be used. In the fiber of the present invention, a known antistatic agent, fiber finishing agent, or the like can be appropriately used as necessary in the step of spinning and stretching the fiber.

本発明の複合繊維の鞘成分と芯成分は重量比で1/9〜9/1であることが好ましい。鞘成分が芯成分に対し重量比率で1/9より小さいと、鞘成分の有する遮熱効果が発現困難となる他、鞘部の破れによる芯部露出などの問題が発生し、逆に9/1を越えると冷感を感じ難くなるので好ましくない。好ましい範囲は3/7〜7/3である。また、鞘成分は芯成分を完全に覆っていることが好ましいが、芯成分の一部が繊維表面に露出しても良い。   The sheath component and the core component of the composite fiber of the present invention are preferably 1/9 to 9/1 in weight ratio. If the sheath component is less than 1/9 by weight with respect to the core component, the heat shielding effect of the sheath component will be difficult to develop, and problems such as exposure of the core due to tearing of the sheath will occur. If it exceeds 1, it becomes difficult to feel the cold feeling, which is not preferable. A preferred range is 3/7 to 7/3. The sheath component preferably completely covers the core component, but part of the core component may be exposed on the fiber surface.

本発明の複合繊維の単糸繊度は0.1〜10dtexであることが好ましい。0.1dtex未満となると製糸安定性が低下し、また、繊維間の微細空隙が増加して繊維間の断熱性が高まり冷感効果が減少する。逆に10dtexを超えると織編物ととした場合には繊維間の空隙が大きくなって接触面積が下がり、接触冷感効果が低下すると共に風合いも硬くなる。単糸繊度は0.5〜8dtexがより好ましく用いられる。
また、強度は1.5cN/dt以上であることが好ましい。強度が1.5cN/dt未満であると耐久性に劣るものとなる。
The single yarn fineness of the conjugate fiber of the present invention is preferably 0.1 to 10 dtex. If it is less than 0.1 dtex, the spinning stability is lowered, and the fine voids between the fibers are increased, the heat insulation between the fibers is increased, and the cooling effect is reduced. On the other hand, when the woven or knitted fabric exceeds 10 dtex, the gap between the fibers becomes large, the contact area decreases, the contact cooling effect decreases, and the texture becomes hard. The single yarn fineness is more preferably 0.5 to 8 dtex.
The strength is preferably 1.5 cN / dt or more. If the strength is less than 1.5 cN / dt, the durability is poor.

本発明の複合繊維は、必要に応じて少量の添加剤、例えば滑剤、ラジカル捕捉剤、酸化防止剤、固相重合促進剤、整色剤、蛍光増白剤、抗菌剤、紫外線吸収剤、光安定剤、熱安定剤、遮光剤、難燃剤又は艶消剤等を含んでいてもよい。
本発明の繊維を布帛とする場合は、布帛全てに用いてもよく、部分的に用いても良い。その組織は特に限定されず、織物でもよいし編物でもよいし不織布でもよい。
The composite fiber of the present invention contains a small amount of additives as necessary, such as lubricants, radical scavengers, antioxidants, solid phase polymerization accelerators, color adjusters, fluorescent whitening agents, antibacterial agents, ultraviolet absorbers, light A stabilizer, a heat stabilizer, a light-shielding agent, a flame retardant, or a matting agent may be included.
When the fiber of the present invention is used as a fabric, it may be used for all fabrics or partially. The structure is not particularly limited, and may be a woven fabric, a knitted fabric, or a non-woven fabric.

次に、本発明を実施例によって本発明を更に具体的に説明する。なお、実施例中の評価、測定は次のとおり実施した。   Next, the present invention will be described more specifically with reference to examples. The evaluation and measurement in the examples were performed as follows.

(1)繊維断面形状
倍率500倍の、繊維の透過型電子顕微鏡による断面写真から、20本の複合繊維単糸につきA、B1、B2の値を測定し、その平均値から、扁平率A/B1、B1/B2の値を算出した。
(1) Fiber cross-sectional shape From the cross-sectional photograph of the fiber at a magnification of 500 times by a transmission electron microscope, the values of A, B1, and B2 are measured for 20 composite fiber single yarns. The values of B1 and B1 / B2 were calculated.

(2)平均粒径
粒子化合物を含有するポリエステル樹脂または、その成形品をXXX社製エッチング装置処理した後、日立社製SEM(S3500−N)で観察し粒子のサイズを観察した。観察した1粒の粒子について、最大となる長さ(Dmax)および最小となる長さ(Dmin)を測定し、平均値(Dave)を測定した。その後、同様の操作を繰り返し、100粒の粒子の平均値(Dave)をそれぞれ求め、この100粒あたりの平均値を平均1次粒径(D)と定義した。
(2) Average particle diameter After treating the polyester resin containing a particle compound, or its molded article with the etching apparatus made from XXX, it observed with Hitachi SEM (S3500-N) and observed the size of the particle. For each observed particle, the maximum length (Dmax) and the minimum length (Dmin) were measured, and the average value (Dave) was measured. Thereafter, the same operation was repeated to determine the average value (Dave) of 100 particles, and the average value per 100 particles was defined as the average primary particle size (D).

(3)繊維の引張強度
JIS L1070記載の方法に準拠して測定を行った。
(3) Tensile strength of fiber Measurement was performed in accordance with the method described in JIS L1070.

(4)ポリマーの融点
示差走査型熱量計(DSC)を用いて、30℃から300℃まで20℃/minの速度で測定を行い、結晶融解ピーク温度を融点とした。
(4) Melting point of polymer Using a differential scanning calorimeter (DSC), measurement was performed from 30 ° C. to 300 ° C. at a rate of 20 ° C./min, and the crystal melting peak temperature was taken as the melting point.

(5)製糸安定性
紡糸、延伸工程において、各工程開始後24時間での断糸、単糸巻き付き回数が、0〜1回のものを◎、2〜4回のものを○、5〜8回を△、9回以上を×とした。
(5) Yarn Stability In the spinning and drawing processes, the yarn breakage and the single yarn wrapping count in 24 hours after the start of each step are 0 to 1 for ◎, 2 to 4 for ◯, 5 to 8 The number of times was Δ, and the number of times 9 or more was ×.

(6)接触冷感の評価
得られた複合繊維を用いて目付100g/mの筒編みを作成し、被験者10人が生地を触った瞬間の冷感の有無について以下の基準により評価を行い、10人の点数の平均値を求め、評価した。
3点 : 明らかに体感できる冷感を感じた
2点 : 少し冷感を感じた
1点 : わずかに冷感を感じた
0点 : 全く冷感を感じなかった
また、布帛を8cm×8cmの大きさとし、予め40℃に暖めた10cm×10cmの大きさの厚み0.5mmのステンレス板に載せ、ステンレス板の中央部の温度を熱電対で測定して、最大降下温度を測定し、参考例1との温度差にて評価した。
(6) Evaluation of cold feeling of contact Using the obtained composite fiber, a tube knitting with a basis weight of 100 g / m 2 was made, and the presence or absence of cold feeling at the moment when 10 subjects touched the fabric was evaluated according to the following criteria. The average score of 10 people was obtained and evaluated.
3 points: 2 points that felt a cool feeling clearly felt 1 point that felt a little cold feeling 0 points that felt a slight cooling feeling 0: no feeling of cooling at all Also, the fabric was 8cm x 8cm in size Then, the sample was placed on a stainless steel plate having a size of 10 cm × 10 cm and heated to 40 ° C. and having a thickness of 0.5 mm, the temperature at the center of the stainless steel plate was measured with a thermocouple, and the maximum temperature drop was measured. The temperature difference was evaluated.

(7)遮熱性
ポリエステル繊維を用いて目付120g/mの筒編みを作成し、8cm×8cmの大きさに切り抜いた厚紙をその上に載せ、上方から100Wのレフランプを照射した。該布帛の裏面から1cm下部の空間温度を非接触型の温度計を用いて測定し、照射開始から10分〜15分の平均値を求め、酸化チタンを含有させずに作成した参考例1との温度差で評価した。
(7) Heat shielding property A cylindrical knitting with a basis weight of 120 g / m 2 was made using polyester fiber, and a cardboard cut out to a size of 8 cm × 8 cm was placed thereon, and a 100 W reflex lamp was irradiated from above. Reference Example 1 prepared by measuring the space temperature below 1 cm from the back of the fabric using a non-contact type thermometer, obtaining an average value of 10 to 15 minutes from the start of irradiation, and containing no titanium oxide The temperature difference was evaluated.

(8)風合い及び染色性
得られた繊維を用いて目付150g/mの筒編みを作成し、分散染料で常圧にて染色し、80℃で精錬後、130℃にて熱セットを行った。この筒編みを触った際の触感、および外観について次の基準により風合い、染色性を評価した。風合いは、柔軟で滑らかで良好なものを○、ある程度柔軟だが若干硬目のものを△、単糸同士が融着し柔軟性がなく硬いものを×とした。また、染色性は、良く染まっておりかつ斑がなく均一なものを○、単糸間で染色性に斑があり筋が見えるものを△、染着度合いが極めて低く斑も大きいものを×とした。
(8) Texture and dyeability Using the obtained fiber, a tube knitting with a basis weight of 150 g / m 2 is prepared, dyed with disperse dye at normal pressure, refined at 80 ° C, and then heat-set at 130 ° C. It was. The touch and the appearance when touching the tubular knitting were evaluated according to the following criteria, and the texture and dyeability were evaluated. The texture was soft, smooth and good, ◯, soft to some extent, slightly hard, and single yarn fused to each other, and soft and soft. In addition, the dyeing property is ◯ that is well dyed and uniform with no spots, △ that there are spots and streaks between the single yarns, and △ that the degree of dyeing is very low and the spots are large. did.

参考例1
固有粘度0.64dL/g(35℃、オルトクロロフェノール中)であるポリエチレンテレフタレートを、290℃に設定したエクストルーダーで溶融し、ギヤポンプで計量した後パック内へ導入し、実施例1と同じ繊度となる吐出孔を36ホール有する口金から285℃の温度条件で吐出し、紡糸速度1000m/分で巻き取った。巻き取った未延伸糸を予熱温度90℃、熱セット温度160℃、延伸倍率3.4倍の条件で延伸し、84dtex/36fils.の丸断面繊維を得た。得られた繊維を用いて筒編みを作成し、冷感、遮熱性評価の基準とした。
Reference example 1
Polyethylene terephthalate having an intrinsic viscosity of 0.64 dL / g (35 ° C. in orthochlorophenol) was melted with an extruder set at 290 ° C., weighed with a gear pump, introduced into the pack, and the same fineness as in Example 1 Then, it was discharged from a die having 36 discharge holes under a temperature condition of 285 ° C. and wound up at a spinning speed of 1000 m / min. The wound undrawn yarn was drawn under the conditions of a preheating temperature of 90 ° C., a heat setting temperature of 160 ° C. and a draw ratio of 3.4 times, and 84 dtex / 36 fils. Round cross-section fiber was obtained. Cylinder knitting was made using the obtained fiber, and used as a standard for evaluation of cool feeling and heat insulation.

実施例1
(二酸化チタンの20重量%エチレングリコールスラリーの調製)
エチレングリコール79.5重量%に対して、20.5重量%のルチル型二酸化チタン(屈折率2.72)を添加して、ガラスビーズを加え、サンドグラインダーで1時間攪拌処理を実施し、得られたスラリーをフィルターに通し、ガラスビーズを除去した。
さらにスラリーを10μmのポールフィルターに通じ、粗大な粒子を除去した。
得られた二酸化チタンスラリーを秤量し、120℃の乾燥機で48時間乾燥させ、エチレングリコールを除去し、除去後の残渣物を秤量した。その結果、二酸化チタンの濃度(=[残渣物の質量]/[二酸化チタンスラリー質量])は20重量%であった。
Example 1
(Preparation of 20 wt% ethylene glycol slurry of titanium dioxide)
20.5% by weight of rutile titanium dioxide (refractive index: 2.72) is added to 79.5% by weight of ethylene glycol, glass beads are added, and the mixture is stirred for 1 hour with a sand grinder. The resulting slurry was passed through a filter to remove glass beads.
Further, the slurry was passed through a 10 μm pole filter to remove coarse particles.
The obtained titanium dioxide slurry was weighed and dried with a dryer at 120 ° C. for 48 hours to remove ethylene glycol, and the residue after removal was weighed. As a result, the concentration of titanium dioxide (= [mass of residue] / [mass of titanium dioxide slurry]) was 20% by weight.

(ポリエステルチップの製造)
テレフタル酸ジメチル194.2重量部とエチレングリコール124.2重量部(DMT対比200mol%)との混合物に、酢酸マグネシウム・4水和物0.086重量部(DMT対比20mmol%)をSUS製容器に仕込んだ。常圧下で140℃から240℃に昇温しながらエステル交換反応させた後、リン酸トリメチル0.042重量部(DMT対比30mmol%)になるよう添加し、5分後、二酸化チタンの20重量%エチレングリコールスラリーを、全樹脂組成物に対して、酸化チタンが3重量%となる様添加して、エステル交換反応を終了させた。
その後、反応生成物に三酸化二アンチモン0.087重量部(DMT対比30mmol%)、撹拌装置、窒素導入口、減圧口および蒸留装置を備えた反応容器に移した。反応容器内温を285℃まで昇温し、30Pa以下の高真空で重縮合反応を行い、固有粘度0.64dL/g(35℃、オルトクロロフェノール中)であるポリエステル組成物を得た。さらに常法に従いチップ化した。
(Manufacture of polyester chips)
A mixture of 194.2 parts by weight of dimethyl terephthalate and 124.2 parts by weight of ethylene glycol (200 mol% relative to DMT) and 0.086 parts by weight of magnesium acetate tetrahydrate (20 mmol% relative to DMT) in a SUS container. Prepared. The ester exchange reaction was carried out while raising the temperature from 140 ° C. to 240 ° C. under normal pressure, and then added to 0.042 parts by weight of trimethyl phosphate (30 mmol% relative to DMT), and after 5 minutes, 20% by weight of titanium dioxide. Ethylene glycol slurry was added to the total resin composition so that titanium oxide would be 3% by weight, and the transesterification reaction was terminated.
Thereafter, the reaction product was transferred to a reaction vessel equipped with 0.087 parts by weight of diantimony trioxide (30 mmol% relative to DMT), a stirrer, a nitrogen inlet, a vacuum port and a distillation device. The internal temperature of the reaction vessel was raised to 285 ° C., and a polycondensation reaction was performed at a high vacuum of 30 Pa or less to obtain a polyester composition having an intrinsic viscosity of 0.64 dL / g (35 ° C. in orthochlorophenol). Furthermore, it was made into a chip according to a conventional method.

(複合繊維の製造)
窒素気流下160℃で6時間乾燥させた上記二酸化チタンを3重量%含有する固有粘度0.64dL/g(35℃、オルトクロロフェノール中)であるポリエチレンテレフタレートと、融点135℃の高密度ポリエチレン(JIS K−7210によるメルトフローレート;19)を、それぞれ290℃および230℃に設定したエクストルーダーで別々に溶融し、それぞれをギヤポンプで計量した後パック内へ導入し、パックに取り付けた吐出口金内でポリエチレンが芯に配される様に合流させ、図1(a)に示す断面形状となる吐出孔を36ホール有する口金から285℃の温度条件で吐出し、紡糸速度1000m/分で巻き取った。
巻き取った未延伸糸を予熱温度90℃、延伸倍率3.2倍の条件で延伸し、160℃のスリットヒーターで熱セットして84dtex/36fils.の芯鞘型複合断面繊維を得た。
得られた繊維を用いて筒編みを作成し、冷感、遮熱性を評価した。得られた繊維の物性、評価結果を表1に示す。
(Manufacture of composite fibers)
Polyethylene terephthalate having an intrinsic viscosity of 0.64 dL / g (35 ° C. in orthochlorophenol) containing 3% by weight of the above titanium dioxide dried at 160 ° C. for 6 hours under a nitrogen stream, and high-density polyethylene having a melting point of 135 ° C. The melt flow rate according to JIS K-7210; 19) was melted separately with an extruder set to 290 ° C and 230 ° C, respectively, weighed with a gear pump, introduced into the pack, and attached to the pack. The polyethylene is merged so that the polyethylene is arranged in the core, discharged from a die having 36 discharge holes having a cross-sectional shape shown in FIG. 1A at a temperature of 285 ° C., and wound at a spinning speed of 1000 m / min. It was.
The wound undrawn yarn was drawn under conditions of a preheating temperature of 90 ° C. and a draw ratio of 3.2 times, and heat-set with a slit heater at 160 ° C. to 84 dtex / 36 fils. Core-sheath type composite cross-section fiber was obtained.
Cylinder knitting was made using the obtained fibers, and the cool feeling and heat shielding properties were evaluated. Table 1 shows the physical properties and evaluation results of the obtained fibers.

実施例2、3
実施例2として図1(b)でA/B1=6としたもの、および実施例3として図1(c)でA/B1=4、B1/B2=1.4とした断面形状の繊維を、実施例1と同様にして84dtex/36fils.の扁平型複合繊維として得た。得られた繊維の物性およびこの繊維を用いて作成した筒編みの評価結果を表1に示す。
Examples 2 and 3
A fiber having a cross-sectional shape with A / B1 = 6 in FIG. 1B as Example 2 and A / B1 = 4 and B1 / B2 = 1.4 in FIG. In the same manner as in Example 1, 84 dtex / 36 files. Obtained as a flat type composite fiber. Table 1 shows the physical properties of the obtained fibers and the evaluation results of the tubular knitting made using the fibers.

比較例1、2
実施例1において、二酸化チタンを含有しないポリエステルを鞘部に用いたこと、および二酸化チタンの含量を20wt%としたものを鞘部に用いたこと以外は実施例1と同様に実施した。得られた繊維の物性、評価結果をそれぞれそれぞれ比較例1、2として表1に示す。
Comparative Examples 1 and 2
In Example 1, it implemented like Example 1 except having used the polyester which does not contain titanium dioxide for a sheath part, and using what used the content of titanium dioxide as 20 wt% for a sheath part. The physical properties and evaluation results of the obtained fibers are shown in Table 1 as Comparative Examples 1 and 2, respectively.

比較例3
実施例1において、二酸化チタンの粒径を変更したこと以外は実施例1と同様に実施した。得られた繊維の物性、評価結果を表1に示す。
Comparative Example 3
In Example 1, it implemented like Example 1 except having changed the particle size of the titanium dioxide. Table 1 shows the physical properties and evaluation results of the obtained fibers.

比較例4
実施例1において、鞘部にポリエチレンが配されるように繊維の断面形状を変更したこと以外は実施例1と同様に実施した。得られた繊維の物性、評価結果を表1に示す。
Comparative Example 4
In Example 1, it implemented like Example 1 except having changed the cross-sectional shape of the fiber so that polyethylene might be distribute | arranged to a sheath part. Table 1 shows the physical properties and evaluation results of the obtained fibers.

Figure 2014077214
Figure 2014077214

表1に示す通り、本発明の範囲内である実施例1、2、3は、製糸性、物性が良好で、布帛とした場合の冷感および遮熱性にも優れたものであり、実施例2の繊維を用いて無撚で110本/2.54cmの織密度で平織物を製織してシャツを作成し着用評価したところ、清涼感に優れるものであった。   As shown in Table 1, Examples 1, 2, and 3 which are within the scope of the present invention have good spinning properties and physical properties, and are excellent in cooling feeling and heat shielding properties when used as a fabric. When a plain fabric was woven with a twist of 110 fibers / 2.54 cm without twisting using the fibers of No. 2 and a shirt was made and evaluated for wear, it was excellent in cool feeling.

一方、二酸化チタンを含有しない芯部を用いた比較例1は遮熱性に劣り、二酸化チタンの含有率が本発明外に大きい比較例2や、本発明の範囲外に粒径の大きい二酸化チタンを用いた比較例3は工程調子が悪く生産には適さないものとなった。また、鞘部にポリエチレンを配した比較例4では冷感に優れるものの、風合いが劣り、染色も不可であった。   On the other hand, Comparative Example 1 using a core that does not contain titanium dioxide is inferior in heat shielding properties, and Comparative Example 2 in which the content of titanium dioxide is large outside the present invention, and titanium dioxide having a large particle size outside the scope of the present invention. Comparative Example 3 used was not suitable for production due to poor process condition. Further, in Comparative Example 4 in which polyethylene was arranged in the sheath part, although the cool feeling was excellent, the texture was inferior and dyeing was impossible.

本発明の複合繊維は冷感に優れかつ風合いが良好で、布帛とした場合に清涼感を有し、スポーツやアウターをはじめとする衣料、および産業資材などの多くの用途に利用可能であり、その工業的価値は極めて大である。   The composite fiber of the present invention has a cool feeling and a good texture, has a refreshing feeling when used as a fabric, and can be used for many applications such as sports and outer clothing, industrial materials, Its industrial value is extremely large.

A:扁平形状断面の長軸の幅
B1:扁平形状断面の長軸に直交する短軸の最大幅
B2:くびれ部に相当する短軸の最小幅
A: Width of long axis of flat cross section B1: Maximum width of short axis perpendicular to long axis of flat cross section B2: Minimum width of short axis corresponding to constricted portion

Claims (4)

繊維形成性ポリマーを鞘成分とし、主たる構成成分がポリエチレンであるポリマーを芯成分とする芯鞘型複合繊維であって、鞘成分の繊維形成性ポリマーが、屈折率が1.6〜5で、且つ平均粒径が0.1〜1.5μmの無機化合物粒子を1〜15重量%含有していることを特徴とする冷感に優れた遮熱性複合繊維。   A core-sheath type composite fiber having a fiber-forming polymer as a sheath component and a polymer whose main constituent component is polyethylene as a core component, and the fiber-forming polymer of the sheath component has a refractive index of 1.6 to 5, And the heat insulating composite fiber excellent in the cool feeling characterized by containing 1-15 weight% of inorganic compound particles with an average particle diameter of 0.1-1.5 micrometers. 複合繊維の繊維軸に直行する断面が扁平形状であり、該扁平形状断面の長軸の幅Aとそれに直交する短軸の最大幅B1の比A/B1が2〜10である請求項1記載の冷感に優れた遮熱性複合繊維。   2. The cross section perpendicular to the fiber axis of the composite fiber is a flat shape, and the ratio A / B1 between the long axis width A of the flat cross section and the maximum width B1 of the short axis perpendicular thereto is 2-10. Heat-shielding composite fiber with excellent cooling feeling. 複合繊維が下記(1)〜(3)の要件を同時に満たす請求項1記載の冷感に優れた遮熱性複合繊維。
(1)複合繊維の繊維軸に直行する断面の形状が扁平形状で、断面の長軸方向に丸断面単糸が直線状に連結した形状であり、くびれ部を2〜5個有すること。
(2)扁平形状断面の長軸の幅Aとそれに直交する短軸の最大幅B1の比A/B1が2〜6であること。
(3)扁平形状断面の短軸の最大幅B1と、くびれ部に相当する短軸の最小幅B2の比比B1/B2が1.05以上1.6以下であること。
The heat-insulating composite fiber excellent in cooling feeling according to claim 1, wherein the composite fiber satisfies the following requirements (1) to (3).
(1) The shape of the cross-section perpendicular to the fiber axis of the composite fiber is a flat shape, and the shape is a shape in which round cross-section single yarns are linearly connected in the major axis direction of the cross-section, and has 2 to 5 constricted portions.
(2) The ratio A / B1 between the long axis width A of the flat cross section and the short axis maximum width B1 perpendicular thereto is 2-6.
(3) The ratio B1 / B2 of the short axis maximum width B1 of the flat cross section and the short axis minimum width B2 corresponding to the constriction is 1.05 or more and 1.6 or less.
鞘成分と芯成分の比率が1/9〜9/1で、単糸繊度が0.1〜10dtexである請求項1、2又は3記載の冷感に優れた遮熱性複合繊維。   The heat shielding composite fiber having excellent cooling feeling according to claim 1, wherein the ratio of the sheath component to the core component is 1/9 to 9/1 and the single yarn fineness is 0.1 to 10 dtex.
JP2012225212A 2012-10-10 2012-10-10 Heat-shielding composite fiber with excellent cool sensation Pending JP2014077214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012225212A JP2014077214A (en) 2012-10-10 2012-10-10 Heat-shielding composite fiber with excellent cool sensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012225212A JP2014077214A (en) 2012-10-10 2012-10-10 Heat-shielding composite fiber with excellent cool sensation

Publications (1)

Publication Number Publication Date
JP2014077214A true JP2014077214A (en) 2014-05-01

Family

ID=50782744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012225212A Pending JP2014077214A (en) 2012-10-10 2012-10-10 Heat-shielding composite fiber with excellent cool sensation

Country Status (1)

Country Link
JP (1) JP2014077214A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501715A (en) * 2020-12-21 2021-03-16 吴江精美峰实业有限公司 Cool polyester fiber and preparation method thereof
JP7340821B1 (en) 2023-04-11 2023-09-08 青島紗支紡織科技有限公司 Composite fiber for cold-feeling fabrics, manufacturing method thereof, cool-feeling fabrics, and textile products

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155524A1 (en) * 2010-06-08 2011-12-15 三菱レイヨン・テキスタイル株式会社 Core-sheath composite fiber, false twist yarn comprising the core-sheath composite fiber and process for producing same, and woven/knitted fabric constituted of the fiber
JP2012112056A (en) * 2010-11-22 2012-06-14 Teijin Fibers Ltd Polyester fiber with heat shield property

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155524A1 (en) * 2010-06-08 2011-12-15 三菱レイヨン・テキスタイル株式会社 Core-sheath composite fiber, false twist yarn comprising the core-sheath composite fiber and process for producing same, and woven/knitted fabric constituted of the fiber
JP2012112056A (en) * 2010-11-22 2012-06-14 Teijin Fibers Ltd Polyester fiber with heat shield property

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501715A (en) * 2020-12-21 2021-03-16 吴江精美峰实业有限公司 Cool polyester fiber and preparation method thereof
JP7340821B1 (en) 2023-04-11 2023-09-08 青島紗支紡織科技有限公司 Composite fiber for cold-feeling fabrics, manufacturing method thereof, cool-feeling fabrics, and textile products

Similar Documents

Publication Publication Date Title
TW200948854A (en) Normal pressure cation dyeable polyester and fiber
WO2013168543A1 (en) Modified cross-section fiber with excellent cool feeling
US10874156B2 (en) Heat-storing and warmth-retaining fleece and method for manufacturing same
KR20020019535A (en) Polyester fiber and method for producing a polyester composition
JP5667418B2 (en) Thermal barrier polyester fiber
JP2014101612A (en) Method of manufacturing heat insulation polyester fiber
JP2013237956A (en) Heat-shield composite fiber giving superior cold feeling
JP5735377B2 (en) Core-sheath type polyester flat cross-section fiber and fabric having permeation resistance
JP2014077214A (en) Heat-shielding composite fiber with excellent cool sensation
JP2003138430A (en) Hot melt conjugate fiber, nonwoven fabric and wallpaper
JP2012193476A (en) Polyester microfiber
JP2897899B2 (en) Low wear far-infrared radioactive composite fiber
KR101437782B1 (en) Highly elastic polyester fabric and method for fabricating the same
JP5819735B2 (en) Mixed yarn excellent in cool feeling
JP6563718B2 (en) Textile manufacturing method
KR101866688B1 (en) Rayon-like polyester composite yarn having excellent melange effect, drapability and high elasticity and manufacturing method thereof
JP2013133571A (en) Thermally adhesive conjugated fiber having high mechanical crimping performance and method for producing the same
JP5993196B2 (en) Composite fiber with excellent cooling feeling
TW201800631A (en) Crimped yarn having flat cross-section, method of manufacturing said crimped yarn, and textile comprising said crimped yarn
JP2004332152A (en) Pigmented thermoadhesive filament fiber
JP2012207318A (en) Artificial hair polyester fiber, and method for producing the same
JP2018135622A (en) Heat-bonding conjugated fiber and method for producing the same
JP3072907B2 (en) Underwear
JPH0881831A (en) Sheath-core type conjugate fiber excellent in hygroscopicity
JP2019099958A (en) Heat adhesive composite fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228