JP7340821B1 - Composite fiber for cold-feeling fabrics, manufacturing method thereof, cool-feeling fabrics, and textile products - Google Patents

Composite fiber for cold-feeling fabrics, manufacturing method thereof, cool-feeling fabrics, and textile products Download PDF

Info

Publication number
JP7340821B1
JP7340821B1 JP2023064236A JP2023064236A JP7340821B1 JP 7340821 B1 JP7340821 B1 JP 7340821B1 JP 2023064236 A JP2023064236 A JP 2023064236A JP 2023064236 A JP2023064236 A JP 2023064236A JP 7340821 B1 JP7340821 B1 JP 7340821B1
Authority
JP
Japan
Prior art keywords
feeling
composite fiber
cold
fabrics
cool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023064236A
Other languages
Japanese (ja)
Other versions
JP2024151101A (en
Inventor
暁東 王
Original Assignee
青島紗支紡織科技有限公司
青島新嘉程家紡有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青島紗支紡織科技有限公司, 青島新嘉程家紡有限公司 filed Critical 青島紗支紡織科技有限公司
Priority to JP2023064236A priority Critical patent/JP7340821B1/en
Application granted granted Critical
Publication of JP7340821B1 publication Critical patent/JP7340821B1/en
Publication of JP2024151101A publication Critical patent/JP2024151101A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

【課題】高い吸湿性、速乾性及び柔軟性を有し、染色可能で、冷感を与える繊維を提供する。【解決手段】芯鞘構造を備える冷感生地用複合繊維の芯は高密度ポリエチレンを含み、その鞘はナイロン6を含む。冷感生地用複合繊維の製造方法が、芯を構成する高密度ポリエチレンと、鞘を構成するナイロン6を共押出する共押出工程と、この共押出工程で得られたフィラメントを延伸する延伸工程を含む。この冷感生地用複合繊維が冷感生地に使用されている。この冷感生地が繊維製品に使用されている。【選択図】なしThe present invention provides a fiber that has high hygroscopicity, quick drying properties, flexibility, can be dyed, and gives a cool feeling. A core of a composite fiber for cold-feeling fabrics having a core-sheath structure includes high-density polyethylene, and a sheath thereof includes nylon 6. A method for producing composite fibers for cold-feeling fabrics includes a co-extrusion process in which high-density polyethylene forming the core and nylon 6 forming the sheath are co-extruded, and a drawing process in which the filament obtained in this co-extrusion process is drawn. include. This composite fiber for cool-feeling fabrics is used for cool-feeling fabrics. This cool-feeling fabric is used for textile products. [Selection diagram] None

Description

本発明は、冷感生地用複合繊維、その製造方法、冷感生地、及び繊維製品に関する。 The present invention relates to a composite fiber for cold-feeling fabrics, a method for producing the same, a cool-feeling fabric, and textile products.

芯鞘構造を有する複合繊維は知られている。引用文献1には、芯、鞘それぞれが誘電正接と融点が異なる成分からなる芯鞘型複合繊維を含む不織布が開示されている。
現在、冷感を与える芯鞘型複合繊維が市販されている。前記市販の芯鞘型複合繊維の芯はナイロン6からなり、鞘はポリエチレンからなる。ポリエチレンの特性に起因し、前記市販の芯鞘型複合繊維の吸湿性及び染色性は低い。
Composite fibers having a core-sheath structure are known. Cited Document 1 discloses a nonwoven fabric including a core-sheath type composite fiber in which the core and sheath are each made of components having different dielectric loss tangents and melting points.
Currently, core-sheath composite fibers that provide a cooling sensation are commercially available. The core of the commercially available core-sheath type composite fiber is made of nylon 6, and the sheath is made of polyethylene. Due to the properties of polyethylene, the commercially available core-sheath composite fibers have low hygroscopicity and dyeability.

特開2008-231592号公報Japanese Patent Application Publication No. 2008-231592

最近、高い吸湿性、速乾性及び柔軟性を有し、染色可能で、冷感を与える繊維が希求されている。 Recently, there has been a demand for fibers that have high hygroscopicity, quick drying properties, flexibility, can be dyed, and provide a cooling sensation.

本発明が解決しようとする課題は、高い吸湿性、速乾性及び柔軟性を有し、染色可能で、冷感を与える繊維を提供することである。 The problem to be solved by the present invention is to provide a fiber that has high hygroscopicity, quick drying properties, flexibility, can be dyed, and gives a cool feeling.

本発明者らは上記課題に鑑み検討を重ね、高密度ポリエチレンを含む芯と、ナイロン6を含む鞘を備える複合繊維が、高い吸湿性、速乾性及び柔軟性を有し、染色可能で、冷感を与えることを見出した。本発明はこれらの知見に基づき完成されるに至ったものである。 The inventors of the present invention have made repeated studies in view of the above problems, and have found that a composite fiber comprising a core containing high-density polyethylene and a sheath containing nylon 6 has high hygroscopicity, quick-drying properties, flexibility, dyeability, and cold-temperature properties. I found that it gives a feeling. The present invention has been completed based on these findings.

本発明は、芯鞘構造を備える冷感生地用複合繊維であって、当該芯は高密度ポリエチレンからなり、当該鞘はナイロン6を含むことを特徴とする冷感生地用複合繊維に関する。
好ましくは、前記冷感生地用複合繊維における前記芯の含有量は20~60質量%、前記冷感生地用複合繊維における前記鞘の含有量は40~80質量%である。
前記芯及び鞘の断面形状は、好ましくは外周に凹凸を有する異形断面である。
好ましくは、前記冷感生地用複合繊維繊度は8~400tex、かつそのフィラメント数は10~250である。
The present invention relates to a composite fiber for cold-feeling fabrics having a core-sheath structure, wherein the core is made of high-density polyethylene and the sheath contains nylon 6.
Preferably, the content of the core in the conjugate fiber for cool-feeling fabrics is 20 to 60% by mass, and the content of the sheath in the conjugate fiber for cool-feeling fabrics is 40 to 80% by mass.
The cross-sectional shape of the core and sheath is preferably an irregular cross-section having irregularities on the outer periphery.
Preferably, the fineness of the composite fiber for cold-feeling fabric is 8 to 400 tex, and the number of filaments is 10 to 250.

本発明は、前記芯を構成する高密度ポリエチレンと、前記鞘を構成するナイロン6を共押出する共押出工程と、当該共押出工程で得られたフィラメントを延伸する延伸工程を含む、冷感生地用複合繊維の製造方法に関する。
冷感生地用複合繊維の製造方法は、好ましくは前記共押出工程で得られたフィラメントを撚る撚り工程を更に含む。
The present invention provides a cool-feel fabric comprising a co-extrusion step of co-extruding high-density polyethylene constituting the core and nylon 6 constituting the sheath, and a stretching step of stretching the filament obtained in the co-extrusion step. The present invention relates to a method for producing composite fibers for use in industrial applications.
The method for producing a composite fiber for cold-feeling fabrics preferably further includes a twisting step of twisting the filaments obtained in the coextrusion step.

また本発明は、前記冷感生地用複合繊維が使用されている冷感生地に関する。 The present invention also relates to a cool-feel fabric in which the composite fiber for cool-feel fabrics is used.

さらに本発明は、前記冷感生地が使用されている繊維製品に関する。
前記繊維製品は、好ましくは、布団、布団カバー、枕、マットレス、座布団、クッション、敷物、又は衣服である。
Furthermore, the present invention relates to textile products in which the above-mentioned cool-feeling fabric is used.
The textile product is preferably a futon, a futon cover, a pillow, a mattress, a cushion, a cushion, a rug, or a garment.

本発明の芯鞘構造を備える冷感生地用複合繊維は、高い吸湿性、速乾性及び柔軟性を有し、染色可能で、冷感を与える繊維を提供する。本発明の冷感生地用複合繊維の製造方法は、前記冷感生地用複合繊維の製造方法を提供する。本発明の冷感生地は、高い吸湿性、速乾性及び柔軟性を有し、冷感を与える冷感生地を提供する。本発明の繊維製品は、高い吸湿性、速乾性及び柔軟性を有し、冷感を与える繊維製品を提供する。 The composite fiber for cold-feeling fabrics having a core-sheath structure of the present invention has high hygroscopicity, quick-drying properties, and flexibility, can be dyed, and provides a fiber that provides a cool feel. The method for producing a conjugate fiber for cold-feeling fabrics of the present invention provides a method for producing the conjugate fibers for cool-feeling fabrics. The cool-feel fabric of the present invention has high hygroscopicity, quick-drying properties, and flexibility, and provides a cool-feel fabric that provides a cool sensation. The textile product of the present invention has high hygroscopicity, quick-drying properties, and flexibility, and provides a textile product that provides a cooling sensation.

本発明の冷感生地用複合繊維の1実施形態を示す図。BRIEF DESCRIPTION OF THE DRAWINGS The figure which shows one Embodiment of the composite fiber for cold-feeling fabrics of this invention.

本発明について更に詳細に説明する。
なお、数値範囲の「~」は、断りがなければ、以上から以下を表し、両端の数値をいずれも含む。また、数値範囲を示したときは、上限値および下限値を適宜組み合わせることができ、それにより得られた数値範囲も開示したものとする。
さらに図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
The present invention will be explained in more detail.
In addition, unless otherwise specified, "~" in a numerical range represents the above to the following, and includes both ends of the range. Furthermore, when a numerical range is indicated, the upper limit and lower limit can be combined as appropriate, and the resulting numerical range is also disclosed.
Furthermore, in the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description will be omitted. Furthermore, the dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios.

<冷感生地用複合繊維>
本発明の芯鞘構造を備える冷感生地用複合繊維の芯は高密度ポリエチレンを含み、好ましくは高密度ポリエチレンからなる。本発明の冷感生地用複合繊維の鞘はナイロン6を含み、好ましくはナイロン6からなる。ナイロン6は極性基を有しているので、ナイロン6を含む鞘を備える本発明の冷感生地用複合繊維は高い吸湿性を有する。しかしながら、ナイロン6は疎水性の樹脂であるので、本発明の冷感生地用複合繊維は高い速乾性を有する。さらに高密度ポリエチレン及びナイロン6の柔軟性に起因し、本発明の冷感生地用複合繊維は高い柔軟性を有する。
<Composite fiber for cooling fabrics>
The core of the composite fiber for cold-feeling fabrics having a core-sheath structure of the present invention contains high-density polyethylene, and preferably consists of high-density polyethylene. The sheath of the composite fiber for cold-feeling fabrics of the present invention contains nylon 6, preferably nylon 6. Since nylon 6 has a polar group, the composite fiber for cold-feeling fabrics of the present invention having a sheath containing nylon 6 has high hygroscopicity. However, since nylon 6 is a hydrophobic resin, the composite fiber for cold-feeling fabrics of the present invention has high quick-drying properties. Further, due to the flexibility of high-density polyethylene and nylon 6, the composite fiber for cold-feeling fabrics of the present invention has high flexibility.

ナイロン6は染色可能な樹脂であるので、本発明の冷感生地用複合繊維は染色可能である。さらにナイロン6の融点は200℃以上なので、本発明の冷感生地用複合繊維の耐熱温度は100℃以上である。一方、前記市販の芯鞘型複合繊維が100℃以上に加熱されると、鞘を構成するポリエチレンが溶融し、その耐熱温度は100℃未満である。 Since nylon 6 is a resin that can be dyed, the composite fiber for cold-feeling fabrics of the present invention can be dyed. Furthermore, since the melting point of nylon 6 is 200°C or higher, the heat resistance temperature of the composite fiber for cold-feeling fabrics of the present invention is 100°C or higher. On the other hand, when the commercially available core-sheath composite fiber is heated to 100°C or higher, the polyethylene constituting the sheath melts, and its heat resistance temperature is less than 100°C.

本発明の冷感生地用複合繊維における前記芯の含有量は、好ましくは20~60質量%であり、前記冷感生地用複合繊維における前記鞘の含有量は、好ましくは40~80質量%である。本発明の冷感生地用複合繊維における前記芯及び鞘の含有量が前記範囲であると、本発明の冷感生地用複合繊維の成形性及び冷感を与える能力がより高くなる。 The content of the core in the composite fiber for cold-feeling fabrics of the present invention is preferably 20 to 60% by mass, and the content of the sheath in the composite fiber for cold-feeling fabrics of the present invention is preferably 40 to 80% by mass. be. When the content of the core and sheath in the conjugate fiber for cool-feel fabrics of the present invention is within the above range, the moldability and ability to provide a cool sensation of the conjugate fiber for cool-feel fabrics of the present invention will be higher.

本発明の冷感生地用複合繊維の1実施態様を図1に示す。冷感生地用複合繊維1は芯2及び鞘3を備える。
前記芯2及び鞘3の断面形状は、特定の形状に限定されない。芯2と鞘3とで断面形状が異なっていてもよい。前記断面形状としては、円形、楕円形、三角形、四角形、星形、十字形、Y字形等が挙げられる。前記芯2及び鞘3の断面形状は、好ましくは星形、十字形、Y字形などの外周に凹凸を有する異形断面である。前記芯2及び鞘3の断面形状が、外周に凹凸を有する異形断面であると、本発明の冷感生地用複合繊維の速乾性がより高くなる。
One embodiment of the composite fiber for cold-feeling fabrics of the present invention is shown in FIG. The composite fiber 1 for cold-feeling fabrics includes a core 2 and a sheath 3.
The cross-sectional shapes of the core 2 and sheath 3 are not limited to specific shapes. The core 2 and the sheath 3 may have different cross-sectional shapes. Examples of the cross-sectional shape include a circle, an ellipse, a triangle, a square, a star, a cross, and a Y-shape. The cross-sectional shape of the core 2 and sheath 3 is preferably an irregular cross-section having irregularities on the outer periphery, such as a star shape, a cross shape, or a Y-shape. When the core 2 and sheath 3 have irregular cross-sectional shapes with irregularities on the outer periphery, the quick-drying property of the composite fiber for cold-feeling fabrics of the present invention becomes higher.

本発明の冷感生地用複合繊維の繊度は、好ましくは8~400tex、かつフィラメント数は、好ましくは10~250である。本発明の冷感生地用複合繊維の繊度及びフィラメント数が前記範囲であると、本発明の冷感生地用複合繊維の吸湿性、速乾性、柔軟性、及び冷感を与える能力がより高くなる。 The fineness of the composite fiber for cold-feeling fabrics of the present invention is preferably 8 to 400 tex, and the number of filaments is preferably 10 to 250. When the fineness and number of filaments of the composite fiber for cold-feeling fabrics of the present invention are within the above ranges, the hygroscopicity, quick-drying property, flexibility, and ability to provide a cold sensation of the composite fibers for cold-feeling fabrics of the present invention will be higher. .

<冷感生地用複合繊維の製造方法>
本発明の冷感生地用複合繊維の製造方法は、前記芯を構成する高密度ポリエチレンと、前記鞘を構成するナイロン6を共押出する共押出工程を含む。前記共押出工程は、合成樹脂の紡糸工程における通常の共押出条件で実施される。乾燥された高密度ポリエチレン、ナイロン6のそれぞれのペレットは、スクリュー押出機により溶融されて押出され、それぞれの溶融物が計量ポンプを経て、予め設定された吐出量で紡糸モジュールに入れられる。次に前記紡糸モジュール中の高密度ポリエチレン、ナイロン6のそれぞれが濾過され、加圧されて均一に連続して紡糸板から共押出される。好ましくは前記紡糸モジュールの初期圧力が110Kg程度に調整され、80~100メッシュの焼結ステンレス鋼金属濾過砂が前記濾過において使用される。
<Production method of composite fiber for cold-feeling fabric>
The method for producing a composite fiber for cold-feeling fabrics of the present invention includes a co-extrusion step of co-extruding high-density polyethylene constituting the core and nylon 6 constituting the sheath. The coextrusion step is carried out under the usual coextrusion conditions in a synthetic resin spinning step. The respective dried pellets of high density polyethylene and nylon 6 are melted and extruded by a screw extruder, and the respective melts are introduced into a spinning module via a metering pump at a preset discharge rate. Next, each of the high density polyethylene and nylon 6 in the spinning module is filtered and coextruded uniformly and continuously from the spinning plate under pressure. Preferably, the initial pressure of the spinning module is adjusted to about 110 Kg, and 80-100 mesh sintered stainless steel metal filter sand is used in the filtration.

前記紡糸板から押し出された共押出物は120~140℃程度まで均一に冷却されてロールに巻き取られ、成形されてよい。前記巻き取りは8回程度繰り返されてよく、前記成形物の熱収縮率は9%程度になる。前記成形後、前記成形物はタンカー中で給油され、次いで後述する延伸工程に付される。 The coextrudate extruded from the spinning plate may be uniformly cooled to about 120 to 140° C., wound around a roll, and shaped. The winding may be repeated about 8 times, and the heat shrinkage rate of the molded product will be about 9%. After the molding, the molded product is oiled in a tanker and then subjected to the stretching process described below.

本発明の冷感生地用複合繊維の製造方法は、前記共押出工程で得られたフィラメントを延伸する延伸工程を含む。給油された前記成形物は、巻取ローラに巻き取られ、延伸される。延伸倍率は好ましくは4~5倍、延伸温度は好ましくは40~50℃である。前記延伸倍率及び延伸温度が前記範囲であると、本発明の冷感生地用複合繊維の毛羽立ち及び巻取ローラへの絡みがより防止され、吸湿性、速乾性、柔軟性、及び冷感を与える能力がより高くなる。 The method for producing a composite fiber for cold-feeling fabrics of the present invention includes a stretching step of stretching the filament obtained in the coextrusion step. The oiled molded product is taken up by a take-up roller and stretched. The stretching ratio is preferably 4 to 5 times, and the stretching temperature is preferably 40 to 50°C. When the stretching ratio and stretching temperature are within the above ranges, fluffing and entanglement of the composite fiber for cold-feeling fabrics of the present invention to the winding roller can be further prevented, and hygroscopicity, quick-drying properties, flexibility, and cooling sensation can be imparted. ability becomes higher.

本発明の冷感生地用複合繊維の製造方法は、好ましくは、前記共押出工程で得られたフィラメントを撚る撚り工程を更に含む。したがって、本発明の冷感生地用複合繊維はインターレース部4を有していてよい。本発明の冷感生地用複合繊維はインターレース部4により切断され難くなる。 The method for producing composite fibers for cold-feeling fabrics of the present invention preferably further includes a twisting step of twisting the filaments obtained in the coextrusion step. Therefore, the composite fiber for cold-feeling fabrics of the present invention may have the interlaced portion 4. The composite fiber for cold-feeling fabrics of the present invention becomes difficult to be cut by the interlace portion 4.

<冷感生地用複合繊維の応用>
本発明の冷感生地用複合繊維は、布帛、ニット等の冷感生地の材料として使用される。前記冷感生地は、布団、布団カバー、枕、マットレス、座布団、クッション、敷物、衣服等の繊維製品の材料として使用される。
<Application of composite fiber for cooling fabrics>
The composite fiber for cool-feeling fabrics of the present invention is used as a material for cool-feeling fabrics such as fabrics and knits. The cool-feeling fabric is used as a material for textile products such as futons, duvet covers, pillows, mattresses, cushions, cushions, rugs, and clothing.

以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited thereto.

実施例及び比較例において、各種物性は以下のとおりに測定された。
<Q-MAX値(冷感値)>
JIS L1927に準じてカトーテック株式会社製サーモラボII接触冷温感測定装置を用いて各ニット生地が与える冷感を測定した。すなわち、センサーと熱板を接触させて当該センサーを加熱し、ニット生地と当該センサーの温度差を10℃にして両者を接触させ、熱の移動量(Q-MAX値)を測定した。前記値が大きいほど、ニット生地は人肌により強い冷感を与える。
In Examples and Comparative Examples, various physical properties were measured as follows.
<Q-MAX value (cooling value)>
In accordance with JIS L1927, the cooling sensation provided by each knit fabric was measured using a ThermoLab II contact cooling/thermal sensation measuring device manufactured by Kato Tech Co., Ltd. That is, the sensor was brought into contact with a hot plate to heat the sensor, the temperature difference between the knit fabric and the sensor was set at 10° C., and the amount of heat transfer (Q-MAX value) was measured. The larger the value, the stronger the cooling sensation the knit fabric gives to human skin.

<速乾性>
各ニット生地の速乾性を、ISO I7617 A-1法に基づいて、20℃、65%RHの条件下で測定した。
<Quick drying>
The quick drying properties of each knit fabric were measured under the conditions of 20° C. and 65% RH based on the ISO I7617 A-1 method.

[実施例1]
乾燥された高密度ポリエチレンのペレットを押出温度230℃、245℃、249℃に設定された押出機で溶融押出した。乾燥されたナイロン6のペレットを押出温度246℃、250℃、268℃に設定された押出機で溶融共押出された。共押出された溶融物は、269℃に設定された紡糸モジュールに入れられた。次に前記紡糸モジュール中の高密度ポリエチレン、ナイロン6のそれぞれが、80~100メッシュの焼結ステンレス鋼金属濾過砂で濾過され、紡糸モジュールの初期圧力110Kgで均一に連続して紡糸板から共押出された。前記紡糸板から押出されたフィラメントは、30質量%の高密度ポリエチレンからなる芯と、70質量%のナイロン6からなる鞘を備えていた。前記フィラメントは、風速0.7m/秒、26℃の空気で冷却され、2.2m投下された。投下された前記フィラメントは、前記フィラメント及び油剤の質量に対する当該油剤の質量(給油率)が1.2質量%となるようにタンカー中で給油された。給油された前記フィラメントは、132℃まで均一に冷却されてロールに6回巻き取られ、成形された。成形物は、巻取ローラに巻き取られ、毛羽が除去され、延伸倍率4.9倍、延伸温度46℃となるように延伸された。製造された冷感生地用複合繊維の熱収縮率は9%、その繊度80tex、そのフィラメント数は48であった。前記冷感生地用複合繊維を織ってニット生地を作製し、そのQ-MAX値を測定した。結果を表1及び表2に示す。
[Example 1]
The dried high-density polyethylene pellets were melt-extruded using an extruder set at extrusion temperatures of 230°C, 245°C, and 249°C. The dried nylon 6 pellets were melt coextruded in an extruder set at extrusion temperatures of 246°C, 250°C, and 268°C. The coextruded melt was placed in a spinning module set at 269°C. Next, each of the high-density polyethylene and nylon 6 in the spinning module is filtered with 80-100 mesh sintered stainless steel metal filter sand, and uniformly and continuously coextruded from the spinning plate at an initial pressure of 110 kg in the spinning module. It was done. The filaments extruded from the spinning plate had a core consisting of 30% by weight high density polyethylene and a sheath consisting of 70% by weight nylon 6. The filament was cooled with air at 26° C. at a wind speed of 0.7 m/sec and dropped 2.2 m. The dropped filament was refueled in a tanker so that the mass of the oil (lubrication ratio) relative to the mass of the filament and the oil was 1.2% by mass. The oiled filament was uniformly cooled to 132° C., wound around a roll six times, and molded. The molded product was wound up on a take-up roller, fluff was removed, and stretched at a stretching ratio of 4.9 times and a stretching temperature of 46°C. The heat shrinkage rate of the manufactured composite fiber for cold-feeling fabric was 9%, its fineness was 80 tex, and the number of filaments was 48. A knitted fabric was prepared by weaving the composite fiber for cool-feeling fabric, and its Q-MAX value was measured. The results are shown in Tables 1 and 2.

[実施例2]
乾燥された高密度ポリエチレンのペレットを押出温度230℃、245℃、249℃に設定された押出機で溶融押出した。乾燥されたナイロン6のペレットを押出温度246℃、250℃、268℃に設定された押出機で溶融共押出された。共押出された溶融物は、269℃に設定された紡糸モジュールに入れられた。次に前記紡糸モジュール中の高密度ポリエチレン、ナイロン6のそれぞれが、80~100メッシュの焼結ステンレス鋼金属濾過砂で濾過され、紡糸モジュールの初期圧力110Kgで均一に連続して紡糸板から共押出された。前記紡糸板から押出されたフィラメントは、40質量%の高密度ポリエチレンからなる芯と、60質量%のナイロン6からなる芯を備えていた。前記フィラメントは、風速0.7m/秒、26℃の空気で冷却され、2.2m投下された。投下された前記フィラメントは、前記フィラメント及び油剤の質量に対する当該油剤の質量(給油率)が1.2質量%となるようにタンカー中で給油された。給油された前記フィラメントは、133℃まで均一に冷却されてロールに7回巻き取られ、成形された。成形物は、巻取ローラに巻き取られ、毛羽が除去され、延伸倍率4.9倍、延伸温度46℃となるように延伸された。製造された冷感生地用複合繊維の熱収縮率は9%、その繊度100tex、そのフィラメント数は48であった。前記冷感生地用複合繊維を織ってニット生地を作製し、そのQ-MAX値を測定した。結果を表1及び表2に示す。
[Example 2]
The dried high-density polyethylene pellets were melt-extruded using an extruder set at extrusion temperatures of 230°C, 245°C, and 249°C. The dried nylon 6 pellets were melt coextruded in an extruder set at extrusion temperatures of 246°C, 250°C, and 268°C. The coextruded melt was placed in a spinning module set at 269°C. Next, each of the high-density polyethylene and nylon 6 in the spinning module is filtered with 80-100 mesh sintered stainless steel metal filter sand, and uniformly and continuously coextruded from the spinning plate at an initial pressure of 110 kg in the spinning module. It was done. The filaments extruded from the spinning plate had a core made of 40% by weight high-density polyethylene and a core made of 60% by weight nylon 6. The filament was cooled with air at 26° C. at a wind speed of 0.7 m/sec and dropped 2.2 m. The dropped filament was refueled in a tanker so that the mass of the oil (lubrication ratio) relative to the mass of the filament and the oil was 1.2% by mass. The oiled filament was uniformly cooled to 133° C., wound around a roll seven times, and molded. The molded product was wound up on a take-up roller, fluff was removed, and stretched at a stretching ratio of 4.9 times and a stretching temperature of 46°C. The heat shrinkage rate of the manufactured composite fiber for cold-feeling fabric was 9%, its fineness was 100 tex, and the number of filaments was 48. A knitted fabric was prepared by weaving the composite fiber for cool-feeling fabric, and its Q-MAX value was measured. The results are shown in Tables 1 and 2.

[実施例3]
乾燥された高密度ポリエチレンのペレットを押出温度230℃、248℃、252℃に設定された押出機で溶融押出した。乾燥されたナイロン6のペレットを押出温度276℃、272℃、271℃、270℃に設定された押出機で溶融共押出された。共押出された溶融物は、269℃に設定された紡糸モジュールに入れられた。次に前記紡糸モジュール中の高密度ポリエチレン、ナイロン6のそれぞれが、80~100メッシュの焼結ステンレス鋼金属濾過砂で濾過され、紡糸モジュールの初期圧力110Kgで均一に連続して紡糸板から共押出された。前記紡糸板から押出されたフィラメントは、50質量%の高密度ポリエチレンからなる芯と、50質量%のナイロン6からなる鞘を備えていた。前記フィラメントは、風速0.75m/秒、28℃の空気で冷却され、2.3m投下された。投下された前記フィラメントは、前記フィラメント及び油剤の質量に対する当該油剤の質量(給油率)が1.2質量%となるようにタンカー中で給油された。給油された前記フィラメントは、123℃まで均一に冷却されてロールに7回巻き取られ、成形された。成形物は、巻取ローラに巻き取られ、毛羽が除去され、延伸倍率4.9倍、延伸温度42℃となるように延伸された。製造された冷感生地用複合繊維の熱収縮率は9%、その繊度100tex、そのフィラメント数は48であった。前記冷感生地用複合繊維を織ってニット生地を作製し、そのQ-MAX値を測定した。結果を表1及び表2に示す。
[Example 3]
The dried high-density polyethylene pellets were melt-extruded using an extruder set at extrusion temperatures of 230°C, 248°C, and 252°C. The dried nylon 6 pellets were melt coextruded in an extruder set at extrusion temperatures of 276°C, 272°C, 271°C, and 270°C. The coextruded melt was placed in a spinning module set at 269°C. Next, each of the high-density polyethylene and nylon 6 in the spinning module is filtered with 80-100 mesh sintered stainless steel metal filter sand, and uniformly and continuously coextruded from the spinning plate at an initial pressure of 110 kg in the spinning module. It was done. The filaments extruded from the spinning plate had a core consisting of 50% by weight high density polyethylene and a sheath consisting of 50% by weight nylon 6. The filament was cooled with air at 28° C. at a wind speed of 0.75 m/sec and dropped 2.3 m. The dropped filament was refueled in a tanker so that the mass of the oil (lubrication ratio) relative to the mass of the filament and the oil was 1.2% by mass. The oiled filament was uniformly cooled to 123° C., wound around a roll seven times, and molded. The molded product was wound up on a take-up roller, fluff was removed, and stretched at a stretching ratio of 4.9 times and a stretching temperature of 42°C. The heat shrinkage rate of the produced composite fiber for cold-feeling fabric was 9%, its fineness was 100 tex, and the number of filaments was 48. A knitted fabric was prepared by weaving the composite fiber for cool-feeling fabric, and its Q-MAX value was measured. The results are shown in Tables 1 and 2.

[比較例1]
高密度ポリエチレンに代えて低密度ポリエチレンを使用した以外、実施例1と同様の操作を実施した。得られた複合繊維を織って作製したニット生地の感触は固く、繊維製品の材料として不適切であった。
[Comparative example 1]
The same operation as in Example 1 was carried out except that low density polyethylene was used instead of high density polyethylene. The knitted fabric produced by weaving the obtained composite fiber had a hard feel and was unsuitable as a material for textile products.

Figure 0007340821000001
Figure 0007340821000001

Figure 0007340821000002
Figure 0007340821000002

芯及び鞘が所定の樹脂を含む実施例1~3の冷感生地用複合繊維を織って作製した各ニット生地の速乾性は高く、さらに当該各ニット生地は高い冷感を与えた。ナイロン6は極性基を有しているので、ナイロン6を含む鞘を備える実施例1~3の冷感生地用複合繊維を織って作製したニット生地は高い吸湿性を有する。さらに高密度ポリエチレン及びナイロン6の柔軟性に起因し、実施例1~3の冷感生地用複合繊維を織って作製したニット生地は高い柔軟性を有する。 Each of the knit fabrics produced by weaving the composite fibers for cold-feeling fabrics of Examples 1 to 3, in which the core and sheath contained a predetermined resin, had high quick-drying properties, and each of the knit fabrics gave a high cool sensation. Since nylon 6 has a polar group, the knitted fabrics prepared by weaving the composite fibers for cold-feeling fabrics of Examples 1 to 3 having a sheath containing nylon 6 have high hygroscopicity. Furthermore, due to the flexibility of high-density polyethylene and nylon 6, the knitted fabrics produced by weaving the composite fibers for cold-feeling fabrics of Examples 1 to 3 have high flexibility.

1・・・冷感生地用複合繊維、2・・・芯、3・・・鞘、4・・・インターレース部。 1... Composite fiber for cold-feeling fabric, 2... Core, 3... Sheath, 4... Interlace portion.

Claims (9)

芯鞘構造を備える冷感生地用複合繊維であって、
当該芯は高密度ポリエチレンからなり
当該鞘はナイロン6を含むことを特徴とする冷感生地用複合繊維。
A composite fiber for cold-feeling fabrics having a core-sheath structure,
The core is made of high density polyethylene;
A composite fiber for cold-feeling fabric, characterized in that the sheath contains nylon 6.
前記冷感生地用複合繊維における前記芯の含有量が20~60質量%、前記冷感生地用複合繊維における前記鞘の含有量が40~80質量%であることを特徴とする請求項1に記載された冷感生地用複合繊維。 Claim 1, wherein the content of the core in the composite fiber for cool-feeling fabric is 20 to 60% by mass, and the content of the sheath in the composite fiber for cold-feeling fabric is 40 to 80% by mass. Composite fiber for cooling fabrics described. 前記芯及び前記鞘の断面が外周に凹凸を有する異形断面であることを特徴とする請求項1に記載された冷感生地用複合繊維。 The composite fiber for cold-feeling fabrics according to claim 1, wherein the core and the sheath have irregular cross sections with irregularities on the outer periphery. 繊度が8~400tex、かつフィラメント数が10~250であることを特徴とする請求項1に記載された冷感生地用複合繊維。 The composite fiber for cold-feeling fabric according to claim 1, characterized in that the fineness is 8 to 400 tex and the number of filaments is 10 to 250. 前記芯を構成する高密度ポリエチレンと、前記鞘を構成するナイロン6を共押出する共押出工程と、
当該共押出工程で得られたフィラメントを延伸する延伸工程を含むことを特徴とする、請求項1~4のいずれか1項に記載された冷感生地用複合繊維の製造方法。
a co-extrusion step of co-extruding high-density polyethylene constituting the core and nylon 6 constituting the sheath;
The method for producing a composite fiber for cold-feeling fabrics according to any one of claims 1 to 4, which comprises a drawing step of drawing the filament obtained in the coextrusion step.
前記共押出工程で得られたフィラメントを撚る撚り工程を更に含むことを特徴とする、請求項5に記載された冷感生地用複合繊維の製造方法。 The method for producing composite fibers for cold-feeling fabrics according to claim 5, further comprising a twisting step of twisting the filaments obtained in the coextrusion step. 請求項1~4のいずれか1項に記載された冷感生地用複合繊維が使用されている冷感生地。 A cool-feel fabric using the composite fiber for cool-feel fabrics according to any one of claims 1 to 4. 請求項7に記載された冷感生地が使用されている繊維製品。 A textile product using the cool-feeling fabric according to claim 7. 布団、布団カバー、枕、マットレス、座布団、クッション、敷物、又は衣服である請求項8に記載された繊維製品。 The textile product according to claim 8, which is a futon, a futon cover, a pillow, a mattress, a cushion, a cushion, a rug, or a garment.
JP2023064236A 2023-04-11 2023-04-11 Composite fiber for cold-feeling fabrics, manufacturing method thereof, cool-feeling fabrics, and textile products Active JP7340821B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023064236A JP7340821B1 (en) 2023-04-11 2023-04-11 Composite fiber for cold-feeling fabrics, manufacturing method thereof, cool-feeling fabrics, and textile products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023064236A JP7340821B1 (en) 2023-04-11 2023-04-11 Composite fiber for cold-feeling fabrics, manufacturing method thereof, cool-feeling fabrics, and textile products

Publications (2)

Publication Number Publication Date
JP7340821B1 true JP7340821B1 (en) 2023-09-08
JP2024151101A JP2024151101A (en) 2024-10-24

Family

ID=87886948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023064236A Active JP7340821B1 (en) 2023-04-11 2023-04-11 Composite fiber for cold-feeling fabrics, manufacturing method thereof, cool-feeling fabrics, and textile products

Country Status (1)

Country Link
JP (1) JP7340821B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807490A (en) * 1994-11-08 1998-09-15 Basf Corporation Method of separating polymers from mixtures thereof
JP2010538171A (en) * 2007-09-03 2010-12-09 エスセーアー・ハイジーン・プロダクツ・アーベー Multicomponent fiber
JP2014077214A (en) * 2012-10-10 2014-05-01 Teijin Ltd Heat-shielding composite fiber with excellent cool sensation
JP2019143270A (en) * 2018-02-22 2019-08-29 宇部興産株式会社 Heat insulating material provided with thermal storage properties
CN111172619A (en) * 2020-01-20 2020-05-19 上海海春纺织科技有限公司 Fiber, preparation method, application and textile thereof
JP2023065155A (en) * 2021-10-27 2023-05-12 花王株式会社 Sanitary nonwoven fabric and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807490A (en) * 1994-11-08 1998-09-15 Basf Corporation Method of separating polymers from mixtures thereof
JP2010538171A (en) * 2007-09-03 2010-12-09 エスセーアー・ハイジーン・プロダクツ・アーベー Multicomponent fiber
JP2014077214A (en) * 2012-10-10 2014-05-01 Teijin Ltd Heat-shielding composite fiber with excellent cool sensation
JP2019143270A (en) * 2018-02-22 2019-08-29 宇部興産株式会社 Heat insulating material provided with thermal storage properties
CN111172619A (en) * 2020-01-20 2020-05-19 上海海春纺织科技有限公司 Fiber, preparation method, application and textile thereof
JP2023065155A (en) * 2021-10-27 2023-05-12 花王株式会社 Sanitary nonwoven fabric and manufacturing method therefor

Also Published As

Publication number Publication date
JP2024151101A (en) 2024-10-24

Similar Documents

Publication Publication Date Title
EP3450598B1 (en) Bulky yarn
CN101215723A (en) 8-shaped PET/PTT hollow fibre and preparing method thereof
US6835339B2 (en) Process for preparing poly(trimethylene terephthalate) tetrachannel cross-section staple fiber
US5531951A (en) Method of forming staple fibers from self-texturing filaments
US5407625A (en) Method of forming self-texturing filaments and resulting self-texturing filaments
JP7340821B1 (en) Composite fiber for cold-feeling fabrics, manufacturing method thereof, cool-feeling fabrics, and textile products
TW293852B (en)
EP1183410B1 (en) Tow and process of making
KR20200089910A (en) Filter for an electronic cigarette using tow of biodegradable polymer, and Method for producing the same
KR20190044795A (en) High Function Polyester Complex Hollow Fiber And Warmth Filler Using That
JP2000239921A (en) Production of polyester fiber
JP2018053405A (en) Flat cross section polyhexamethylene adipamide fiber and fiber product
JP3242994U (en) Composite fibers and textile products
CN100489168C (en) production method of low boiling water contraction rate polyester fiber drafting textured filament yarn
KR20160119915A (en) Polyester Complex Hollow Fiber And Warmth Filler Using That
JP2017082349A (en) Taslan-processed yarn, wadding, and method for producing taslan-processed yarn
JP2017197857A (en) Bulk structure yarn
JP2016191174A (en) Composite false-twisted yarn
JPH07300732A (en) Production of polyester combined filament yarn
JP2019167646A (en) Bulky light-weight multifilament
JP7263778B2 (en) latent crimp yarn
KR102219084B1 (en) Interlace composite yarn with high strength and elongation and method for producing the same
KR102227679B1 (en) Spinneret being able to form noncircular cross-sectional shape, yarn with noncircular cross-sectional shape manufactured using the same and method for manufacturing the same yarn
KR20170040396A (en) Polyester Complex Ball Fiber That Is Good For Strain Repeated Compression Recovery Rate
JP2013027470A (en) Washable, comfortable, and thermal feather-like wadding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230411

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230818

R150 Certificate of patent or registration of utility model

Ref document number: 7340821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150