JP2018135622A - Heat-bonding conjugated fiber and method for producing the same - Google Patents
Heat-bonding conjugated fiber and method for producing the same Download PDFInfo
- Publication number
- JP2018135622A JP2018135622A JP2017032763A JP2017032763A JP2018135622A JP 2018135622 A JP2018135622 A JP 2018135622A JP 2017032763 A JP2017032763 A JP 2017032763A JP 2017032763 A JP2017032763 A JP 2017032763A JP 2018135622 A JP2018135622 A JP 2018135622A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- heat
- sheath
- core
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Multicomponent Fibers (AREA)
Abstract
Description
本発明は、熱接着性複合繊維とその製造方法に関する。更に詳しくは、ソフトで嵩高性に優れた不織布用途に適した熱接着性複合繊維とその製造方法に関するものである。 The present invention relates to a heat-adhesive conjugate fiber and a method for producing the same. More specifically, the present invention relates to a heat-adhesive conjugate fiber suitable for non-woven fabric applications that is soft and excellent in bulkiness, and a method for producing the same.
従来、熱風や加熱ロールの熱エネルギーを利用して、熱融着による成形ができる熱接着性複合繊維は、嵩高性や柔軟性に優れた不織布を得ることが容易であることから、おむつ、ナプキン、パッド等の衛生材料、或いは生活用品やフィルター等の産業資材等に広く用いられている。特に衛生材料は、人肌に直接触れるものであるため、嵩高性や柔軟性の重要度が極めて高い。嵩高性を得るためには、高剛性の樹脂を用いる手法や繊度の太い繊維を用いる手法が代表的であるが、その場合、得られる不織布は、柔軟性が低下し、肌に対する物理的刺激が強くなる。一方で肌への刺激を抑制するために柔軟性を優先すると、得られる不織布は、嵩高性、特に体重に対するクッション性が大幅に低下する。そのため、嵩高性や柔軟性の両立が可能な繊維及び不織布を得る方法が数多く提案されてきた。 Conventionally, a heat-adhesive conjugate fiber that can be formed by heat fusion using hot air or heat energy of a heating roll is easy to obtain a nonwoven fabric excellent in bulkiness and flexibility. It is widely used for sanitary materials such as pads, or industrial materials such as daily necessities and filters. In particular, sanitary materials are those that come into direct contact with human skin, and therefore the importance of bulkiness and flexibility is extremely high. In order to obtain bulkiness, a technique using a highly rigid resin or a technique using a fiber having a large fineness is representative, but in that case, the obtained nonwoven fabric has a reduced flexibility and physical irritation to the skin. Become stronger. On the other hand, when priority is given to flexibility in order to suppress irritation to the skin, the resulting non-woven fabric is significantly reduced in bulkiness, in particular, cushioning against body weight. For this reason, many methods have been proposed for obtaining fibers and nonwoven fabrics that are compatible with bulkiness and flexibility.
引用文献1では、鞘成分がポリオレフィン、芯成分がポリエステルで構成された芯鞘複合繊維を提案している。 Cited Document 1 proposes a core-sheath composite fiber in which the sheath component is made of polyolefin and the core component is made of polyester.
しかしながら、捲縮付与した後に高温で熱風加熱処理することによって、捲縮のへたりが大きくなり、その後のカード工程においても捲縮がへたることで、十分な嵩高性が得られないという課題がある。 However, by applying hot air heat treatment at a high temperature after crimping, the settling of the crimp increases, and the subsequent carding process also has a problem that sufficient bulkiness cannot be obtained by crimping. is there.
引用文献2では、融点が200℃以上のポリエステル成分と、融点が180℃以下のポリエーテルエステルブロック共重合体成分となる複合繊維からなるクッション材を提案している。 Citation 2 proposes a cushioning material comprising a polyester component having a melting point of 200 ° C. or higher and a composite fiber serving as a polyether ester block copolymer component having a melting point of 180 ° C. or lower.
しかしながら、ポリエーテルエステルブロック共重合体であるポリエステルエーテルエラストマーは硬質なポリエステルと軟質なエーテルとの共重合体であり、軟質成分を含むため、耐熱性が低く、熱により柔らかくなり易いため、捲縮付与後の熱セットおよび不織布製造での熱加工時に捲縮がへたることで、十分な嵩高性が得られないという課題がある。 However, the polyester ether elastomer, which is a polyether ester block copolymer, is a copolymer of a hard polyester and a soft ether, and since it contains a soft component, it has low heat resistance and is easily softened by heat. There is a problem that sufficient bulkiness cannot be obtained due to the crimping at the time of heat setting after application and heat processing in the production of the nonwoven fabric.
引用文献3では、鞘成分がポリオレフィン系樹脂、芯成分がポリエステル系樹脂で構成され、繊維断面において偏心芯鞘型の構造を有する複合繊維を提案している。 Citation 3 proposes a composite fiber in which the sheath component is composed of a polyolefin resin and the core component is a polyester resin, and has an eccentric core-sheath structure in the fiber cross section.
引用文献4では、鞘成分がポリオレフィン、芯成分がポリトリメチレンテレフタレート系ポリマーで構成され、繊維断面において芯部の重心位置が繊維の重心位置からずれている複合繊維を提案している。 Cited Document 4 proposes a composite fiber in which the sheath component is made of polyolefin and the core component is made of a polytrimethylene terephthalate polymer, and the center of gravity of the core is shifted from the center of gravity of the fiber in the fiber cross section.
しかしながら、引用文献3および4では、繊維断面が偏心芯鞘型構造のため、捲縮が3次元の顕在捲縮形状となり、繊維の開繊性が劣り、カードでの加工性が低下し、得られた不織布の地合いが悪くなるという課題がある。 However, in Cited Documents 3 and 4, since the fiber cross section is an eccentric core-sheath structure, the crimp becomes a three-dimensional crisp shape, the fiber opening property is inferior, and the workability with the card is reduced. There is a problem that the texture of the produced nonwoven fabric deteriorates.
そこで本発明の目的は、上述した従来技術における課題を解決し、ソフトで嵩高性に優れた不織布用途に適した熱接着性複合繊維とその製造方法を提供することにある。 Therefore, an object of the present invention is to solve the above-described problems in the prior art and provide a heat-adhesive conjugate fiber suitable for non-woven fabric applications that is soft and bulky, and a method for producing the same.
本発明者らは、ソフトで嵩高性を兼ね備えた不織布を得るために、接着性複合繊維を延伸した後の捲縮付与工程において、捲縮付与と同時に捲縮トウを加熱湿熱処理により捲縮を固定することで、従来の欠点である、熱風乾燥工程、カード工程および不織布熱加工での捲縮のへたりを抑制させた熱接着性複合繊維ができることを見出し、本発明に到達した。 In order to obtain a soft and bulky nonwoven fabric, the inventors of the present invention provide a crimping step after drawing the adhesive conjugate fiber, and simultaneously crimping the crimped tow by heating and heat treatment. By fixing, it was found that a heat-adhesive conjugate fiber in which crimping sag in the hot air drying process, the card process and the nonwoven fabric thermal processing, which is a conventional defect, was suppressed, was achieved, and the present invention was achieved.
すなわち、本発明は、上記目的を達成せんとするものであって、本発明の熱接着複合繊維は、芯成分がポリエステル系樹脂、鞘成分がポリオレフィン樹脂で構成され、繊維の長さ方向と直交する繊維断面において、同芯円芯鞘型の構造であって、単繊維繊度が1.0〜10.0dtex、捲縮数が10〜20山/25mm、捲縮率が10〜25%、残留捲縮率が12〜17%であることを特徴とする接着性複合繊維である。 That is, the present invention aims to achieve the above object, and the heat-bonding conjugate fiber of the present invention comprises a polyester resin as a core component and a polyolefin resin as a sheath component, and is orthogonal to the length direction of the fiber. The cross-section of the fiber is a concentric core-sheath structure, the single fiber fineness is 1.0-10.0 dtex, the number of crimps is 10-20 crests / 25 mm, the crimp rate is 10-25%, and the residual The adhesive conjugate fiber is characterized in that the crimp rate is 12 to 17%.
本発明の接着性複合繊維は、芯成分をポリエステル系樹脂、鞘成分をポリオレフィン樹脂とした2成分を同芯円芯鞘型の断面形状となるように溶融紡出し、未延伸糸を得、熱延伸後の捲縮付与工程において、スタフィングボックス内の捲縮トウ温度が80〜100℃になるように加熱湿熱蒸気を付与し、捲縮固定することを特徴とする熱接着複合繊維の製造方法である。 The adhesive conjugate fiber of the present invention is obtained by melt spinning two components having a polyester resin as a core component and a polyolefin resin as a sheath component so as to have a concentric circular core-sheath cross-sectional shape, obtaining an undrawn yarn, A method for producing a heat-bonding conjugate fiber, characterized in that, in the crimping step after stretching, a heated moist heat steam is applied so that the crimped tow temperature in the stuffing box is 80 to 100 ° C. and crimped. It is.
本発明の熱接着複合繊維を使用した不織布はソフトで嵩高性に優れ、おむつ、ナプキン、パッド等の衛生材料、或いは生活用品やフィルター等の産業資材等に好適に用いられる。 The nonwoven fabric using the heat-bonding conjugate fiber of the present invention is soft and excellent in bulkiness, and is suitably used for sanitary materials such as diapers, napkins and pads, or industrial materials such as daily necessities and filters.
次に、本発明の熱接着複合繊維とその製造方法の実施態様について、具体的に説明する。 Next, the embodiment of the thermobonding conjugate fiber and the manufacturing method thereof of the present invention will be specifically described.
本発明の熱接着複合繊維は、芯成分がポリエステル系樹脂、鞘成分がポリオレフィン系樹脂を含む2成分で構成され、繊維の長さ方向と直交する繊維断面において、同心円芯鞘型の構造を有する熱接着性複合繊維である。 The heat-bonding conjugate fiber of the present invention is composed of two components in which the core component includes a polyester-based resin and the sheath component includes a polyolefin-based resin, and has a concentric core-sheath structure in a fiber cross section orthogonal to the fiber length direction. It is a heat-adhesive conjugate fiber.
本発明の熱接着性複合繊維の芯成分を構成するポリエステル系樹脂は、原料コスト、得られる繊維の熱安定性などを考慮すると、ポリエチレンテレフタレートが好ましく用いられる。ポリエチレンテレフタレートとしては、テレフタル酸を主たる酸成分とし、エチレングリコールを主たるグリコール成分として得られるポリエステルであり、ホモポリマーであってもよいが、90モル%以上がエチレンテレフタレートの繰り返し単位からなっており、10モル%以下の割合で他のエステル結合を形成可能な共重合成分を含む共重合体であってよい。共重合可能な化合物としては、酸成分として、例えば、イソフタル酸、シクロヘキサンジカルボン酸、アジピン酸、ダイマ酸およびセバシン酸などのジカルボン酸類が挙げられ、一方グリコール成分として、例えば、エチレングリコール、ジエチレングリコール、ブタンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、ポリエチレングリコールおよびポリプロピレングリコールなどを挙げることができる。 Polyethylene terephthalate is preferably used as the polyester resin constituting the core component of the thermoadhesive conjugate fiber of the present invention in consideration of raw material costs, thermal stability of the resulting fiber, and the like. Polyethylene terephthalate is a polyester obtained with terephthalic acid as the main acid component and ethylene glycol as the main glycol component, and may be a homopolymer, but 90 mol% or more is composed of ethylene terephthalate repeating units, It may be a copolymer containing a copolymerization component capable of forming another ester bond at a ratio of 10 mol% or less. Examples of the copolymerizable compound include dicarboxylic acids such as isophthalic acid, cyclohexanedicarboxylic acid, adipic acid, dimer acid, and sebacic acid, and the glycol component includes, for example, ethylene glycol, diethylene glycol, butane. Examples include diol, neopentyl glycol, cyclohexanedimethanol, polyethylene glycol, and polypropylene glycol.
ポリエチレンテレフタレートの固有粘度は、0.60〜0.75とするであることが好ましい。固有粘度は、さらに好ましくは、0.62〜0.72である。固有粘度が0.6未満では、繊維の捲縮保持率が低下し、十分な嵩高を有する繊維構造体を得られない場合がある。一方、固有粘度が0.75を超えると、溶融粘度が高くなり繊維の製造が困難となる場合がある。 The intrinsic viscosity of polyethylene terephthalate is preferably 0.60 to 0.75. The intrinsic viscosity is more preferably 0.62 to 0.72. If the intrinsic viscosity is less than 0.6, the crimp retention rate of the fiber is lowered, and a fiber structure having sufficient bulkiness may not be obtained. On the other hand, if the intrinsic viscosity exceeds 0.75, the melt viscosity becomes high and it may be difficult to produce the fiber.
また、上記ポリエチエレンテレフタレートのような構成単位中に芳香族を含む芳香族ポリエステルの他に脂肪族ポリエステルも用いることができ、好ましい脂肪族ポリエステル樹脂としては、ポリ乳酸やポリブチレンサクシネートが挙げられる。 In addition to the aromatic polyester containing an aromatic in the structural unit such as the polyethylene terephthalate, an aliphatic polyester can also be used, and preferable aliphatic polyester resins include polylactic acid and polybutylene succinate. .
防透けや艶消しなどの機能を付与するために、無機粒子を添加しても構わない。無機粒子としては、シリカゾル、シリカ、アルキルコートシリカ、アルミナゾル酸化チタンおよび炭酸カルシウムなどが挙げられるが、ポリエステル中に添加した際に化学的に安定していればよく、特に化学的安定性、対凝集性およびコストの面から、二酸化チタンが好ましく用いられる。無機粒子の濃度は、目標とする機能に応じて調整して構わないが、ポリエステル繊維質量に対して0.01〜20.0質量%が好ましく、0.05〜8.0質量%であれば製糸操業性や高次加工性、繊維のコスト面からより好ましい。 In order to impart functions such as sheerproofing and matting, inorganic particles may be added. Examples of the inorganic particles include silica sol, silica, alkyl-coated silica, alumina sol, titanium oxide, and calcium carbonate. The inorganic particles only need to be chemically stable when added to the polyester. Titanium dioxide is preferably used in terms of properties and costs. Although the density | concentration of an inorganic particle may be adjusted according to the function made into the target, 0.01-20.0 mass% is preferable with respect to the polyester fiber mass, and if it is 0.05-8.0 mass% It is more preferable from the viewpoint of yarn maneuverability, high-order processability, and fiber cost.
添加方法としては、芯成分や鞘成分中に無機微粒子のパウダーを直接添加する方法、或いは樹脂に無機微粒子を練り込み、マスターバッチ化して添加する方法などを挙げることができる。マスターバッチ化に用いる樹脂は、芯成分、鞘成分と同じ樹脂を用いることが最も好ましいが、本発明の要件を満たすものであれば特に限定されず、芯成分、鞘成分と異なる樹脂を用いてもよい。 Examples of the addition method include a method in which powder of inorganic fine particles is directly added to the core component and the sheath component, or a method in which inorganic fine particles are kneaded into a resin and added as a master batch. The resin used for masterbatch is most preferably the same resin as the core component and the sheath component, but is not particularly limited as long as it satisfies the requirements of the present invention, and a resin different from the core component and the sheath component is used. Also good.
本発明の鞘細分を構成するポリオレフィン系樹脂は、ポリエチレン、ポリプロピレン、ポリブテン−1、ポリヘキセン−1、ポリオクテン−1、ポリ4−メチルペンテン−1、ポリメチルペンテン、1,2−ポリブタジエン、1,4−ポリブタジエンなどが使用できる。また、これらの重合体に、エチレン、プロピレン、ブテン−1、ヘキセン−1、オクテン−1または4−メチルペンテン−1等のα−オレフィンが共重合成分として少量含有されていてもよい。 Polyolefin resins constituting the sheath subdivision of the present invention are polyethylene, polypropylene, polybutene-1, polyhexene-1, polyoctene-1, poly-4-methylpentene-1, polymethylpentene, 1,2-polybutadiene, 1,4. -Polybutadiene or the like can be used. These polymers may contain a small amount of α-olefin such as ethylene, propylene, butene-1, hexene-1, octene-1, or 4-methylpentene-1 as a copolymerization component.
本発明で使用するポリオレフィン系樹脂としては、高密度ポリエチレンが好ましく用いられる。高密度ポリエチレンのメルトマスフローレイトは、紡糸可能な範囲であれば特に限定されることはないが、8〜25g/10分が好ましく、より好ましくは、10〜20g/10分である。 As the polyolefin resin used in the present invention, high-density polyethylene is preferably used. The melt mass flow rate of the high-density polyethylene is not particularly limited as long as it can be spun, but is preferably 8 to 25 g / 10 minutes, and more preferably 10 to 20 g / 10 minutes.
本発明の芯部がポリエステル系樹脂(A)、鞘部がポリオレフィン系樹脂(B)である熱接着繊維の複合比率は、質量比で(A)/(B)=65/35〜35/65の範囲である。より好ましくは質量比で(A)/(B)=55/45〜45/55の範囲である。 The composite ratio of the heat-bonding fibers in which the core part of the present invention is a polyester resin (A) and the sheath part is a polyolefin resin (B) is (A) / (B) = 65/35 to 35/65 in mass ratio. Range. More preferably, the mass ratio is (A) / (B) = 55/45 to 45/55.
芯成分が65質量%を超えると、熱接着性成分である鞘成分の質量%が低下するため、不織布の接着強力が低下する。逆に鞘成分が65質量%を超えると、芯成分の質量%か低下するため、不織布の機械的強度に問題が生じてくる。 When the core component exceeds 65% by mass, the mass% of the sheath component, which is a heat-adhesive component, decreases, and the adhesive strength of the nonwoven fabric decreases. On the contrary, when the sheath component exceeds 65% by mass, the mass component of the core component is reduced, which causes a problem in the mechanical strength of the nonwoven fabric.
本発明の熱接着繊維の単繊維繊度は、1.0〜10.0dtexが好ましく、さらに好ましくは、1.5〜6.0dtexである。単繊維繊度が1.0dtex未満になると、繊度が小さいため、カードでの加工性が低下し、得られた不織布の地合いが悪くなる。10.0dtexを超えると、繊度が高くなるため、繊維の剛性が高くなり、得られた不織布の地合いが硬くなる。 1.0-10.0 dtex is preferable and, as for the single fiber fineness of the heat bonding fiber of this invention, More preferably, it is 1.5-6.0 dtex. When the single fiber fineness is less than 1.0 dtex, since the fineness is small, the processability with the card is lowered, and the texture of the obtained nonwoven fabric is deteriorated. If it exceeds 10.0 dtex, the fineness increases, so that the rigidity of the fibers increases and the resulting nonwoven fabric becomes hard.
本発明の熱接着繊維の捲縮数は、10〜20山/25mmが好ましく、さらに好ましくは、12〜18山/25mmである。捲縮数が10山/25mm未満になると、繊維の絡合性が低下することで、カードでの加工性が低下し、得られた不織布の地合いが悪くなる。20山/25mmを超えると、繊維の絡合性が強く、繊維の開繊性が悪くなることでカードでの加工性が低下し、得られた不織布の地合いが悪くなる。 The number of crimps of the heat-bonding fiber of the present invention is preferably 10-20 peaks / 25 mm, and more preferably 12-18 peaks / 25 mm. When the number of crimps is less than 10 crests / 25 mm, the entanglement of the fibers decreases, so that the processability with the card decreases and the texture of the obtained nonwoven fabric deteriorates. If it exceeds 20 crests / 25 mm, the fiber entanglement is strong, the fiber opening property is deteriorated, the workability with the card is lowered, and the texture of the obtained nonwoven fabric is deteriorated.
本発明の熱接着繊維の捲縮率は、10〜25%が好ましく、さらに好ましくは、14〜20%である。捲縮率が10%未満になると、繊維の絡合性が低下することで、カードでの加工性が低下し、得られた不織布の地合いが悪くなる。25%を超えると、繊維の絡合性が強く、繊維の開繊性が悪くなることでカードでの加工性が低下し、得られた不織布の地合いが悪くなる。 The crimp rate of the thermal bonding fiber of the present invention is preferably 10 to 25%, and more preferably 14 to 20%. When the crimp rate is less than 10%, the fiber entanglement property is lowered, so that the processability with the card is lowered, and the texture of the obtained nonwoven fabric is deteriorated. If it exceeds 25%, the fiber entanglement is strong, the fiber opening property is deteriorated, the processability with the card is lowered, and the texture of the obtained nonwoven fabric is deteriorated.
本発明の熱接着繊維の残留捲縮率は、12〜17%が好ましく、さらに好ましくは、13〜16%である。残留捲縮率が12%未満になると、カード工程、不織布加工工程での捲縮のへたりが大きくなり、十分な不織布の嵩高が得られない。残留捲縮率が17%を超える繊維については、製法上を安定的に得ることは難しい。 The residual crimp rate of the heat-bonded fiber of the present invention is preferably 12 to 17%, and more preferably 13 to 16%. If the residual crimp ratio is less than 12%, the crimping sag in the card process and the nonwoven fabric processing process becomes large, and sufficient bulkiness of the nonwoven fabric cannot be obtained. For fibers with a residual crimp rate of more than 17%, it is difficult to obtain a stable manufacturing method.
本発明の熱接着繊維の140℃処理における乾熱収縮率は、0.3〜3%が好ましく、さらに好ましくは、0.5〜2.5%である。乾熱収縮率が0.3%未満の繊維を得るためには、乾燥温度条件を高くすることになり、その結果ポリエチレンが溶融接着しやすくなるため安定的に繊維を得ることが難しい。乾熱収縮率が2.5%を超える繊維は、熱接着工程において不織布の寸法安定性が劣り、安定した製品を得ることが出来ない。 The dry heat shrinkage ratio of the heat-bonded fiber of the present invention at 140 ° C. is preferably 0.3 to 3%, more preferably 0.5 to 2.5%. In order to obtain a fiber having a dry heat shrinkage rate of less than 0.3%, the drying temperature condition is increased. As a result, polyethylene is easily melt-bonded, and thus it is difficult to stably obtain the fiber. A fiber having a dry heat shrinkage rate exceeding 2.5% is inferior in dimensional stability of the nonwoven fabric in the heat bonding step, and a stable product cannot be obtained.
次に、本発明で用いられる熱接着複合繊維の製造方法について、具体的に一態様を例示して説明する。 Next, the manufacturing method of the heat-bonding conjugate fiber used in the present invention will be described by specifically illustrating one embodiment.
本発明の熱接着複合繊維は、芯成分をポリエステル系樹脂、鞘成分をポリオレフィン樹脂とした2成分を同芯円芯鞘型の断面形状となるように溶融紡出し、未延伸糸を得、熱延伸後の捲縮付与工程において、スタフィングボックス内の捲縮トウ温度が80〜100℃になるように加熱湿熱蒸気を付与し、捲縮固定することにより製造することができる。以下これについてさらに詳述する。 The heat-bonded conjugate fiber of the present invention is obtained by melt-spinning two components having a polyester resin as a core component and a polyolefin resin as a sheath component so as to have a concentric circular core-sheath cross-sectional shape to obtain an undrawn yarn, In the crimping step after stretching, it can be produced by applying heated moist heat steam so that the crimped tow temperature in the stuffing box is 80 to 100 ° C. and crimping. This will be described in further detail below.
まず、ポリエステル系樹脂およびポリオレフィン系樹脂を溶融し、同芯円芯鞘とする口金よりポリマーを吐出する。吐出孔を好ましくは300〜600孔有する紡糸口金を通して、ポリエステル系樹脂の融点よりも10〜30℃程度高い紡糸温度で、紡出直後に好ましくは10〜25℃の温度の空気を好ましくは50〜100m/分の風量で冷却させ、紡糸油剤を付与し、好ましくは引き取り速度1000〜1500m/分で一旦、缶に納めることにより未延伸糸トウを得る。 First, a polyester resin and a polyolefin resin are melted, and a polymer is discharged from a die having a concentric core sheath. Through a spinneret having preferably 300 to 600 discharge holes, the spinning temperature is about 10 to 30 ° C. higher than the melting point of the polyester resin, and air at a temperature of 10 to 25 ° C. is preferably immediately after spinning, preferably 50 to 50 ° C. An undrawn yarn tow is obtained by cooling with an air flow of 100 m / min, applying a spinning oil agent, and preferably placing it in a can once at a take-up speed of 1000 to 1500 m / min.
次いで、得られた未延伸糸トウを好ましくは温度80〜100℃の液浴を用いて、2.0〜4.0倍の延伸倍率で延伸し、スタッファボックス式捲縮機などの捲縮機を用いて捲縮を付与すると同時に、スタッファボックス内の捲縮トウが80〜100℃になるように加熱湿熱処理を行う。80℃未満であれば捲縮固定が不十分となり、12%以上とする捲縮残留率が得られない。また、100℃を超えるとスタフィングボックス内でポリエチレンが溶融接着するため安定的に繊維を得ることが難しい。捲縮トウは、100〜115℃の熱風雰囲気化で加熱処理を行う。100℃未満であれば3%以下とする乾熱収縮率を得ることができない。115℃を超えるとポリエチレンが溶融接着するため安定的に繊維を得ることが難しい。 Subsequently, the obtained undrawn yarn tow is preferably drawn at a draw ratio of 2.0 to 4.0 times using a liquid bath at a temperature of 80 to 100 ° C., and then crimped by a stuffer box type crimper or the like. At the same time as applying crimp using a machine, heat-moisture heat treatment is performed so that the crimped tow in the stuffer box becomes 80-100 ° C. If it is less than 80 degreeC, crimp fixation will become inadequate and the crimp residual rate which is 12% or more will not be obtained. When the temperature exceeds 100 ° C., polyethylene melts and adheres in the stuffing box, making it difficult to stably obtain fibers. The crimped tow is heat-treated in a hot air atmosphere at 100 to 115 ° C. If it is less than 100 ° C., a dry heat shrinkage of 3% or less cannot be obtained. If the temperature exceeds 115 ° C., polyethylene melts and adheres, making it difficult to obtain fibers stably.
熱風雰囲気下で加熱処理した繊維は冷却し、繊維を短繊維にカットする。用途に応じて選択でき特に限定されないが、カーディング処理を行う場合には30〜76mmが好ましく、より好ましくは30〜51mmである。 The fiber heat-treated in the hot air atmosphere is cooled, and the fiber is cut into short fibers. Although it can select according to a use and it is not specifically limited, When performing a carding process, 30-76 mm is preferable, More preferably, it is 30-51 mm.
本発明の熱接着性複合繊維は、例えばおむつ、ナプキン、失禁パット等の吸収性物品、ガウン、術衣等の医療衛生材、壁用シート、障子紙、床材等の室内内装材、カバークロス、清掃用ワイパー、生ゴミ用カバー等の生活関連材、使い捨てトイレ、トイレ用カバー等のトイレタリー製品、ペットシート、ペット用おむつ、ペット用タオル等のペット用品、ワイピング材、フィルター、クッション材、油吸着材、インクタンク用吸着材等の産業資材、一般医療材、寝装材、介護用品など、嵩高性及び耐圧縮性が要求される様々な繊維製品への用途に利用することができる。 The heat-adhesive conjugate fiber of the present invention includes, for example, absorbent articles such as diapers, napkins, and incontinence pads, medical hygiene materials such as gowns and garments, indoor sheets such as wall sheets, shoji paper, flooring, and cover cloths. , Life-related materials such as cleaning wipers, garbage covers, disposable toilets, toiletries such as toilet covers, pet items such as pet sheets, pet diapers, pet towels, wiping materials, filters, cushion materials, oil It can be used for various textile products that require bulkiness and compression resistance, such as adsorbents, industrial materials such as ink tank adsorbents, general medical materials, bedding materials, and nursing care products.
次に、本発明の熱接着性複合繊維とその製造方法について、実施例を用いて詳細に説明する。物性等の測定方法は、次のとおりである。 Next, the thermoadhesive conjugate fiber of the present invention and the production method thereof will be described in detail with reference to examples. The measuring method of physical properties etc. is as follows.
(固有粘度)
試料2gを秤り、オルトクロロフェノールを25ml加え102℃で加熱しながら70分間攪拌溶解する。冷却後、15mlをオストワルド改良型粘度計に入れ、落下秒数から固有粘度を算出する。
(Intrinsic viscosity)
Weigh 2 g of sample, add 25 ml of orthochlorophenol, and dissolve with stirring for 70 minutes while heating at 102 ° C. After cooling, 15 ml is put into an Ostwald improved viscometer, and the intrinsic viscosity is calculated from the number of seconds dropped.
(単繊維繊度、捲縮数、捲縮率、残留捲縮率、乾熱収縮率)
JIS L1015(2010年)に準じて測定した。
(Single fiber fineness, crimp number, crimp rate, residual crimp rate, dry heat shrinkage rate)
The measurement was performed according to JIS L1015 (2010).
(複合比率)
得られた熱接着繊維の断面を、顕微鏡を用いて400倍の倍率で撮影し、さらに断面写真を拡大コピーする。コピーした用紙について、繊維部断面を切り取り、電子天秤でN=20で質量を測定し、これを平均することで算出した。
(Composite ratio)
The cross section of the obtained thermal bonding fiber is photographed at a magnification of 400 times using a microscope, and the cross-sectional photograph is enlarged and copied. About the copied paper, the fiber part cross section was cut out, the mass was measured with N = 20 with the electronic balance, and it computed by averaging this.
[実施例1]
熱接着複合繊維を、次の方法で製造した。固有粘度が0.650のポリエステル樹脂(A)とメルトマスフローレイトを18とした高密度ポリエチレン樹脂(B)を質量比で(A)/(B)=50/50となるように溶融し、吐出孔を400孔有する同心円芯鞘型口金を通して、紡出し、20℃の温度の空気を60m/分の風量で紡出糸を冷却させた後、引き取り速度1000m/分で未延伸糸トウを得た。
[Example 1]
A heat-bonded conjugate fiber was produced by the following method. A polyester resin (A) having an intrinsic viscosity of 0.650 and a high-density polyethylene resin (B) having a melt mass flow rate of 18 are melted so as to have a mass ratio of (A) / (B) = 50/50, and discharged. After spinning through a concentric core-sheath die having 400 holes and cooling the spun yarn with air at a temperature of 20 ° C. at a flow rate of 60 m / min, an undrawn yarn tow was obtained at a take-up speed of 1000 m / min. .
次いで、得られた未延伸糸トウを、85℃の温度の液浴を用いて、3.0倍の延伸倍率で1段延伸を施し、スタフィングボックス式捲縮機を用いて捲縮を付与すると同時に、スタッファボックス内の捲縮トウ温度が90℃になるように加熱湿熱処理を行った。その後、捲縮トウを110℃の熱風雰囲気化で加熱処理を行い、規定の繊維長になるように切断した。得られた熱接着性複合繊維は、単繊維繊度が2.5dtex、捲縮数が14山/25mm、捲縮率が18%、乾熱収縮率が1.7%、捲縮残留捲縮率が15%とする物性を得た。 Next, the obtained undrawn yarn tow was subjected to one-stage drawing at a draw ratio of 3.0 times using a liquid bath at a temperature of 85 ° C., and crimped using a stuffing box type crimper. At the same time, heat-moisture heat treatment was performed so that the crimped tow temperature in the stuffer box was 90 ° C. Thereafter, the crimped tow was heat-treated in a hot air atmosphere at 110 ° C. and cut to a prescribed fiber length. The resulting heat-adhesive conjugate fiber has a single fiber fineness of 2.5 dtex, a crimp number of 14 ridges / 25 mm, a crimp rate of 18%, a dry heat shrinkage rate of 1.7%, and a crimped residual crimp rate of A physical property of 15% was obtained.
[比較例1]
スタフィングボックス内の加熱湿熱処理を未実施にしたこと以外は、実施例1と同じ条件で熱接着複合繊維を製造した。得られた熱接着性複合繊維は、単繊維繊度が2.5dtex、捲縮数が14山/25mm、捲縮率が18%、乾熱収縮率が1.7%、残留捲縮率が10.5%とする物性を得た。
[Comparative Example 1]
A heat-bonding conjugate fiber was produced under the same conditions as in Example 1 except that the heat-moisture heat treatment in the stuffing box was not performed. The obtained heat-adhesive conjugate fiber has a single fiber fineness of 2.5 dtex, a number of crimps of 14 ridges / 25 mm, a crimp rate of 18%, a dry heat shrinkage rate of 1.7%, and a residual crimp rate of 10 A physical property of 5% was obtained.
[比較例2]
スタフィングボックス内の加熱湿熱処理を110℃にしたこと以外は、実施例1と同じ条件で熱接着複合繊維を製造した。得られた熱接着性複合繊維は、繊維間で接着した繊維であった。
[Comparative Example 2]
A heat-bonding conjugate fiber was produced under the same conditions as in Example 1 except that the heat and heat treatment in the stuffing box was 110 ° C. The obtained heat-adhesive conjugate fiber was a fiber bonded between the fibers.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017032763A JP2018135622A (en) | 2017-02-24 | 2017-02-24 | Heat-bonding conjugated fiber and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017032763A JP2018135622A (en) | 2017-02-24 | 2017-02-24 | Heat-bonding conjugated fiber and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018135622A true JP2018135622A (en) | 2018-08-30 |
Family
ID=63365226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017032763A Pending JP2018135622A (en) | 2017-02-24 | 2017-02-24 | Heat-bonding conjugated fiber and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018135622A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020203890A1 (en) * | 2019-03-29 | 2020-10-08 | ダイワボウホールディングス株式会社 | Composite fiber, method for manufacturing same, thermally bonded nonwoven fabric, surface sheet for absorbent article, and absorbent article |
-
2017
- 2017-02-24 JP JP2017032763A patent/JP2018135622A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020203890A1 (en) * | 2019-03-29 | 2020-10-08 | ダイワボウホールディングス株式会社 | Composite fiber, method for manufacturing same, thermally bonded nonwoven fabric, surface sheet for absorbent article, and absorbent article |
JPWO2020203890A1 (en) * | 2019-03-29 | 2020-10-08 | ||
CN113748234A (en) * | 2019-03-29 | 2021-12-03 | 大和纺织株式会社 | Conjugate fiber, method for producing same, heat-bonded nonwoven fabric, surface sheet for absorbent article, and absorbent article |
JP7447090B2 (en) | 2019-03-29 | 2024-03-11 | 大和紡績株式会社 | Composite fiber, method for producing the same, thermally bonded nonwoven fabric, surface sheet for absorbent articles, and absorbent articles |
CN113748234B (en) * | 2019-03-29 | 2024-07-05 | 大和纺织株式会社 | Composite fiber, method for producing same, thermally bonded nonwoven fabric, surface sheet for absorbent article, and absorbent article |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101224095B1 (en) | Thermal bonding conjugate fiber with excellent bulkiness and softness, and fiber formed article using the same | |
CN105283589B (en) | Heat binds composite fibre and preparation method thereof and uses its nonwoven fabric | |
JP5535555B2 (en) | Thermal adhesive composite fiber and non-woven fabric using the same | |
KR101350508B1 (en) | Thermally bondable core-sheath type composite fiber, manufacturing method thereof and use thereof | |
CN106661790B (en) | Hygienic material non-woven fabrics and hygienic material product | |
CN109196150B (en) | Hot-melt conjugate fiber, method for producing same, sheet-like fiber assembly, and method for producing nonwoven fabric | |
KR101377002B1 (en) | Mixture of thermally bondable core-sheath type composite fiber, manufacturing method thereof and use thereof | |
JP2018135622A (en) | Heat-bonding conjugated fiber and method for producing the same | |
JP6324789B2 (en) | Irregular cross-section fiber | |
JP2018159151A (en) | Heat-adhesive composite fiber | |
KR20230048338A (en) | Thermally adhesive composite fiber, its manufacturing method and nonwoven fabric using thermally adhesive composite fiber | |
JP2019099958A (en) | Heat adhesive composite fiber | |
KR102429602B1 (en) | heat bondable sheath-core composite fiber for hygiene, non-woven fabric containing the same, and manufacturing method thereof | |
JP2019163567A (en) | Water-repellent heat adhesive composite fiber | |
JP2020133019A (en) | Thermally adhesive conjugate fiber | |
JP2023086297A (en) | Thermo-adhesive composite fiber and non-woven fabric made of the same | |
JP2019167656A (en) | Thermally adhesive conjugated fiber and nonwoven fabric |