JP2019099958A - Heat adhesive composite fiber - Google Patents

Heat adhesive composite fiber Download PDF

Info

Publication number
JP2019099958A
JP2019099958A JP2017234013A JP2017234013A JP2019099958A JP 2019099958 A JP2019099958 A JP 2019099958A JP 2017234013 A JP2017234013 A JP 2017234013A JP 2017234013 A JP2017234013 A JP 2017234013A JP 2019099958 A JP2019099958 A JP 2019099958A
Authority
JP
Japan
Prior art keywords
hollow
point
fiber
component
line segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017234013A
Other languages
Japanese (ja)
Inventor
吉田 哲弘
Tetsuhiro Yoshida
哲弘 吉田
俊馬 宮内
Toshima Miyauchi
俊馬 宮内
皓太 安達
Kota Adachi
皓太 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2017234013A priority Critical patent/JP2019099958A/en
Publication of JP2019099958A publication Critical patent/JP2019099958A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

To provide a heat adhesive composite fiber, more precisely, a heat adhesive hollow composite fiber having both bulkiness and flexibility, for use in a nonwoven fabric.SOLUTION: The heat adhesive hollow composite fiber comprises: a core part being a first component containing a polyester resin; and a sheath part being a second component containing a polyolefin resin having a melting point that is 30°C lower than the melting point of the polyester resin. The first component includes one hollow part continuous in a fiber axis direction, a hollowness thereof is 12% or more and 35% or less, a center point of the hollow part is the center point of a sheath component, a hollow shape is a triangular shape, and a composite ratio of the first component to the second component is 60 mass% or more/40 mass% or less to 40 mass% or more/60 mass% or less.SELECTED DRAWING: Figure 1

Description

本発明は、熱接着性複合繊維に関する。更に詳しくは、不織布に使用する熱接着性中空複合繊維に関するものである。   The present invention relates to a heat-adhesive composite fiber. More particularly, the present invention relates to a heat-adhesive hollow composite fiber used for non-woven fabric.

熱風や加熱ロールの熱エネルギーを利用して、熱融着による成形ができる熱接着性複合繊維は、嵩高性や柔軟性に優れた不織布を得ることが容易であることから、従来から、おむつ、ナプキン、パッド等の衛生材料、或いは生活用品やフィルター等の産業資材等に広く用いられている。特に衛生材料は、人肌に直接触れるものであるため、嵩高性や柔軟性の重要度が極めて高い。嵩高性を得るためには、高剛性の樹脂を用いる手法や繊度の太い繊維を用いる手法が代表的であるが、その場合、得られる不織布は、柔軟性が低下し、肌に対する物理的刺激が強くなる。一方で肌への刺激を抑制するために柔軟性を優先すると、得られる不織布は、嵩高性、特に体重に対するクッション性能が大幅に低下する。そのため、嵩高性と柔軟性の両立が可能な繊維及び不織布を得る方法が数多く提案されてきた。   Since it is easy to obtain a non-woven fabric excellent in bulkiness and flexibility, a heat-adhesive composite fiber that can be molded by heat fusion using hot air or heat energy of a heating roll is conventionally a diaper, It is widely used for sanitary materials such as napkins and pads, or industrial materials such as household goods and filters. Hygiene materials, in particular, touch human skin directly, so their bulkiness and flexibility are extremely important. In order to obtain bulkiness, a method using a resin with high rigidity and a method using a thick fiber with fineness are typical, but in that case, the obtained non-woven fabric has reduced flexibility and physical irritation to the skin. Become stronger. On the other hand, when priority is given to flexibility in order to suppress skin irritation, the resulting nonwoven fabric is significantly reduced in bulkiness, particularly its cushioning ability to weight. Therefore, many methods have been proposed to obtain fibers and non-woven fabrics capable of achieving both bulkiness and flexibility.

特許文献1では、高融点の熱可塑性樹脂とこれより30℃以上低い融点を有する低融点樹脂とで構成され、かつ繊維断面中空率が3〜50%である熱接着複合繊維を提案している。
特許文献2では、連続した中空部を有する高融点重合体よりなる芯成分と、該芯成分より20℃以上低い融点を有する低融点重合体よりなる鞘成分とで構成され、中空部の中心点が芯部の中心点から偏心した熱接着性中空複合繊維を提案している。
Patent Document 1 proposes a thermobonded composite fiber comprising a high melting point thermoplastic resin and a low melting point resin having a melting point lower than that by 30 ° C., and having a hollow fiber cross section of 3 to 50%. .
In patent document 2, it is comprised by the core component which consists of a high melting point polymer which has a continuous hollow part, and the sheath component which consists of low melting polymers which have a 20 degreeC or more melting point lower than this core component, Proposes a heat-adhesive hollow composite fiber eccentric from the center point of the core.

特許文献3では、融点に20℃以上の差がある2種の重合体からなり、その高融点の重合体が中空の芯部を形成し、低融点の重合体が鞘部を形成し、さらに中空部の中心点が芯部及び鞘部の中心点から偏心している熱接着性複合繊維を提案している。   In Patent Document 3, the melting point of two polymers having a difference of 20 ° C. or more in the melting point, the high melting point polymer forms a hollow core, and the low melting point polymer forms a sheath. A heat-adhesive composite fiber is proposed in which the center point of the hollow portion is offset from the center points of the core and the sheath.

特許文献4では低融点の鞘部と高融点の芯部からなり、中空部が芯部及び鞘部にまたがって形成されている熱接着性中空複合繊維を提案している。   Patent Document 4 proposes a heat-adhesive hollow composite fiber comprising a sheath of low melting point and a core of high melting point, and the hollow part is formed across the core and the sheath.

しかしながら、いずれにおいても繊維製造での延伸ニップ工程や捲縮付与工程、不織布製造での開繊工程で中空部が潰れ易くなることで、繊維断面が変形し、得られた不織布において十分な嵩高性や柔軟性が得られないという課題がある。   However, in any case, the hollow section is easily crushed in the stretching nip process and the crimp application process in fiber production, and the fiber opening process in nonwoven fabric production, so that the fiber cross section is deformed and sufficient bulkiness is obtained in the obtained nonwoven fabric And there is a problem that flexibility can not be obtained.

また、特許文献5では中空部を三角形状とすることにより中空部を潰れにくくしたポリエステル中空繊維が提案されているが、衣料用繊維であり、不織布に適用できるものではなかった。   Moreover, although the polyester hollow fiber which made the hollow part hard to be crushed by making a hollow part into triangle shape is proposed by patent document 5, it is a fiber for clothing, It was not applicable to a nonwoven fabric.

特開平1−213452号公報Unexamined-Japanese-Patent No. 1-213452 特開昭62−299514号公報Japanese Patent Application Laid-Open No. 62-299514 特開平2−191718号公報JP-A-2-191718 特開平3−69614号公報Japanese Patent Application Laid-Open No. 3-69614 特開平6−228815号公報JP-A-6-228815

そこで、本発明の目的は、上述した従来技術における課題を解決し、嵩高性と柔軟性を兼ね備えた不織布が得られる熱接着性中空複合繊維を提供することにある。   Therefore, an object of the present invention is to solve the problems in the prior art described above, and to provide a heat-adhesive hollow conjugate fiber which can provide a nonwoven fabric having both bulkiness and flexibility.

本発明者らは、嵩高性と柔軟性を兼ね備えた不織布に使用する熱接着性中空複合繊維を得るために、複合形態を偏心芯鞘中空型とし、その中空部の形状を三角形状にすることで、従来の欠点である、繊維製造での延伸ニップ工程や捲縮付与工程、および不織布製造での開繊工程での機械応力などによる繊維中空部の潰れと繊維断面の変形を抑制させた熱接着性中空複合繊維を見出し、本発明に到達した。   The present inventors set the composite form to be an eccentric core-sheath hollow type and to make the shape of the hollow part triangular in order to obtain a heat-adhesive hollow composite fiber used for a non-woven fabric having both bulkiness and flexibility. In the conventional method, the heat is used to suppress the deformation of the hollow fiber section and the deformation of the fiber cross section due to mechanical stress or the like in the stretching nip process and crimp application process in fiber production and the fiber opening process in nonwoven fabric production. An adhesive hollow composite fiber was found and reached the present invention.

すなわち、本発明は、上記課題を達成せんとするものであって、以下の構成を採用する。   That is, the present invention is intended to achieve the above object, and adopts the following configuration.

芯部がポリエステル系樹脂を含む第1成分、鞘部が前記ポリエステル系樹脂の融点より30℃以上低い融点を有するポリオレフィン系樹脂を含む第2成分で構成され、以下の(イ)〜(ホ)を満たし、芯部が繊維軸方向に対して連続した1つの中空部を有する熱接着性中空複合繊維。
(イ)中空率が12%以上35%以下。
(ロ)中空部の中心点が鞘成分の中心点である。
(ハ)中空形状が三角形状であり、線分ag/線分af、線分bi/線分bh及び線分ce/線分cdがいずれも1.00以上1.25以下。
ただし、三角形状の三つの頂点をそれぞれ点a、点b、点cとし、点cから線分abへ引いた垂線と線分abの交点が点d、中空部壁との交点が点eであり、点bから線分acへ引いた垂線と線分acの交点が点h、中空部壁との交点が点iであり、点aから線分bcへ引いた垂線と線分bcの交点が点f、中空部壁との交点が点gである。
(ニ)第1成分と第2成分の複合比率が60質量%以上/40質量%以下〜40質量%以上/60質量%以下。
(ホ)両成分の重心が一点に重ならないように芯鞘を配置する。
The core part is composed of a first component containing a polyester-based resin, and a sheath component contains a second component containing a polyolefin-based resin having a melting point lower by 30 ° C. or more than the melting point of the polyester-based resin. A heat-adhesive hollow composite fiber having a hollow portion in which the core portion is continuous with the fiber axis direction.
(A) The hollow ratio is 12% or more and 35% or less.
(B) The center point of the hollow portion is the center point of the sheath component.
(C) The hollow shape is a triangle, and each of the line segment ag / line segment af, the line segment bi / line segment bh and the line segment ce / line segment cd is 1.00 or more and 1.25 or less.
However, three triangular vertices are respectively point a, point b and point c, the intersection of a perpendicular drawn from point c to line segment ab and line segment ab is point d, and the intersection point with the hollow wall is point e There is an intersection point of a perpendicular drawn from the point b to the line segment ac and the line segment ac, and an intersection point between the perpendicular line and the hollow wall is a point i. Is the point f, and the point of intersection with the hollow wall is the point g.
(D) The composite ratio of the first component and the second component is 60% by mass or more / 40% by mass or less and 40% by mass or more / 60% by mass or less.
(E) Arrange the core sheath so that the centers of gravity of both components do not overlap at one point.

本発明の熱接着性中空複合繊維を使用した不織布は嵩高性と柔軟性に優れ、おむつ、ナプキン、パッド等の衛生材料、或いは生活用品やフィルター等の産業資材に好適に用いられる。   The non-woven fabric using the heat-adhesive hollow composite fiber of the present invention is excellent in bulkiness and flexibility, and is suitably used for sanitary materials such as diapers, napkins and pads, or industrial materials such as household goods and filters.

本発明の熱接着性中空複合繊維における、中空部を有する芯部の概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic of the core part which has a hollow part in the heat bondable hollow conjugate fiber of this invention. 実施例の熱接着性中空複合繊維の断面概略図。BRIEF DESCRIPTION OF THE DRAWINGS The cross-sectional schematic of the heat bondable hollow conjugate fiber of an Example. 各比較例の熱接着性中空複合繊維の断面概略図。Cross-sectional schematic of the heat bondable hollow conjugate fiber of each comparative example.

次に、本発明の熱接着中空複合繊維とその製造方法の実施態様について、具体的に説明する。   Next, the embodiment of the heat-bonded hollow conjugate fiber of the present invention and the method for producing the same will be specifically described.

本発明の熱接着性中空複合繊維の芯成分を構成する第1成分はポリエステル系樹脂を含む。ポリエステル系樹脂は、原料コスト、得られる繊維の熱安定性などを考慮すると、ポリエチレンテレフタレートが好ましく用いられる。ポリエチレンテレフタレートとしては、テレフタル酸を主たる酸成分とし、エチレングリコールを主たるグリコール成分として得られるポリエステルであり、ホモポリマーであってもよいが、90モル%以上がエチレンテレフタレートの繰り返し単位からなっており、10モル%以下の割合で他のエステル結合を形成可能な共重合成分を含む共重合体であってよい。共重合可能な化合物としては、酸成分として、例えば、イソフタル酸、シクロヘキサンジカルボン酸、アジピン酸、ダイマ酸およびセバシン酸などのジカルボン酸類が挙げられ、一方グリコール成分として、例えば、エチレングリコール、ジエチレングリコール、ブタンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、ポリエチレングリコールおよびポリプロピレングリコールなどを挙げることができる。   The first component constituting the core component of the heat-adhesive hollow conjugate fiber of the present invention contains a polyester resin. As the polyester resin, polyethylene terephthalate is preferably used in consideration of the raw material cost, the thermal stability of the obtained fiber, and the like. The polyethylene terephthalate is a polyester obtained with terephthalic acid as a main acid component and ethylene glycol as a main glycol component, and may be a homopolymer, but 90 mol% or more of the repeating units of ethylene terephthalate are It may be a copolymer containing a copolymer component capable of forming another ester bond in a proportion of 10 mol% or less. Examples of the copolymerizable compound include, as an acid component, dicarboxylic acids such as isophthalic acid, cyclohexanedicarboxylic acid, adipic acid, dimeric acid and sebacic acid, and as a glycol component, for example, ethylene glycol, diethylene glycol, butane and the like. Diol, neopentyl glycol, cyclohexane dimethanol, polyethylene glycol and polypropylene glycol can be mentioned.

ポリエチレンテレフタレートの固有粘度は、0.60〜0.75であることが好ましい。固有粘度は、さらに好ましくは、0.62〜0.72である。固有粘度が0.60未満では、繊維の捲縮保持率が低下し、十分な嵩高を有する繊維構造体を得られない場合がある。一方、固有粘度が0.75を超えると、溶融粘度が高くなり繊維の製造が困難となる場合がある。   The intrinsic viscosity of polyethylene terephthalate is preferably 0.60 to 0.75. The intrinsic viscosity is more preferably 0.62 to 0.72. If the intrinsic viscosity is less than 0.60, the crimp retention of the fiber may be reduced, and a fiber structure having a sufficient bulk may not be obtained. On the other hand, when the intrinsic viscosity exceeds 0.75, the melt viscosity may be high, which may make it difficult to produce fibers.

また、ポリエチエレンテレフタレートのような構成単位中に芳香族を含む芳香族ポリエステルの他に脂肪族ポリエステルも用いることができ、好ましい脂肪族ポリエステル樹脂としては、ポリ乳酸やポリブチレンサクシネートが挙げられる。   In addition to aromatic polyesters containing aromatics in the structural unit such as polyethylene terephthalate, aliphatic polyesters can also be used, and preferred aliphatic polyester resins include polylactic acid and polybutylene succinate.

防透けや艶消しなどの機能を付与するために、芯成分(第1成分)や鞘成分(第2成分)に無機粒子を添加しても構わない。無機粒子としては、シリカゾル、シリカ、アルキルコートシリカ、アルミナゾル酸化チタンおよび炭酸カルシウムなどが挙げられるが、ポリエステル中に添加した際に化学的に安定していればよく、特に化学的安定性、対凝集性およびコストの面から、二酸化チタンが好ましく用いられる。無機粒子の濃度は、目標とする機能に応じて調整して構わないが、ポリエステル繊維質量に対して0.01〜20.0質量%が好ましく、0.05〜8.0質量%であれば製糸操業性や高次加工性、繊維のコスト面からより好ましい。   Inorganic particles may be added to the core component (first component) or the sheath component (second component) in order to impart functions such as anti-smearing and matting. As the inorganic particles, silica sol, silica, alkyl coated silica, alumina sol titanium oxide and calcium carbonate etc. may be mentioned, but it is sufficient if they are chemically stable when added to polyester, especially chemical stability and aggregation From the viewpoint of properties and cost, titanium dioxide is preferably used. The concentration of the inorganic particles may be adjusted according to the target function, but it is preferably 0.01 to 20.0% by mass, and 0.05 to 8.0% by mass with respect to the polyester fiber mass. It is more preferable from the viewpoints of spinning operation, higher-order processability, and cost of fiber.

添加方法としては、芯成分や鞘成分中に無機微粒子のパウダーを直接添加する方法、或いは樹脂に無機微粒子を練り込み、マスターバッチ化して添加する方法などを挙げることができる。マスターバッチ化に用いる樹脂は、芯成分、鞘成分と同じ樹脂を用いることが最も好ましいが、本発明の要件を満たすものであれば特に限定されず、芯成分、鞘成分と異なる樹脂を用いてもよい。   Examples of the method of addition include a method in which the powder of inorganic fine particles is directly added to the core component and the sheath component, or a method in which inorganic fine particles are kneaded into a resin and made into a master batch and added. Although it is most preferable to use the same resin as the core component and the sheath component as the resin used for master batching, it is not particularly limited as long as it satisfies the requirements of the present invention, and resins different from the core component and the sheath component are used. It is also good.

本発明の熱接着性中空複合繊維の鞘部を構成する第2成分はポリオレフィン系樹脂を含む。ポリオレフィン系樹脂は、ポリエチレン(低密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン)、ポリプロピレン、ポリブテン−1、ポリヘキセン−1、ポリオクテン−1、ポリ4−メチルペンテン−1、ポリメチルペンテン、1,2−ポリブタジエン、1,4−ポリブタジエンなどが使用できる。また、これらの重合体に、エチレン、プロピレン、ブテン−1、ヘキセン−1、オクテン−1または4−メチルペンテン−1等のα−オレフィンが共重合成分として少量含有されていてもよい。   The second component constituting the sheath portion of the heat-adhesive hollow composite fiber of the present invention contains a polyolefin resin. The polyolefin resin is polyethylene (low density polyethylene, high density polyethylene, ultra high molecular weight polyethylene), polypropylene, polybutene-1, polyhexene-1, polyoctene-1, poly 4-methylpentene-1, polymethylpentene, 1, 2 Polybutadiene, 1,4-polybutadiene and the like can be used. Further, α-olefins such as ethylene, propylene, butene-1, hexene-1, octene-1 or 4-methylpentene-1 may be contained in such polymers in a small amount as a copolymerization component.

本発明で使用するポリオレフィン系樹脂としては、高密度ポリエチレンが好ましく用いられる。高密度ポリエチレンのメルトマスフローレイトは、紡糸可能な範囲であれば特に限定されることはないが、JIS K 6922−2に準じた測定法で、荷重2.16kg、温度190℃での測定値が、8〜25g/10分が好ましく、より好ましくは、10〜20g/10分である。   As the polyolefin resin used in the present invention, high density polyethylene is preferably used. The melt mass flow rate of high density polyethylene is not particularly limited as long as it can be spun, but the measured value at a temperature of 190 ° C. with a load of 2.16 kg is measured by a measuring method according to JIS K 6922-2. 8 to 25 g / 10 min is preferable, and more preferably 10 to 20 g / 10 min.

次に、本発明の熱接着性中空複合繊維は、繊維軸方向に対して連続した1つの中空部を有することが好ましい。   Next, the heat-adhesive hollow conjugate fiber of the present invention preferably has one hollow portion continuous with the fiber axial direction.

中空率は12%以上35%以下で、好ましくは15%以上30%以下である。12%未満になると不織布の柔軟性に乏しくなり、35%を超えると繊維製造工程や不織布製造工程で中空部が潰れ、繊維断面形状が変形し、十分な不織布の嵩高や柔軟性が得られない。ここで、中空率は熱接着性中空複合繊維の全面積(中空部含む)に対する中空部の面積をいう。   The hollow ratio is 12% or more and 35% or less, preferably 15% or more and 30% or less. When it is less than 12%, the softness of the non-woven fabric becomes poor, and when it exceeds 35%, the hollow portion is crushed in the fiber manufacturing process and the non-woven fabric manufacturing process, the fiber cross-sectional shape is deformed, and the bulkiness and flexibility of the non-woven fabric are not obtained sufficiently . Here, the hollow percentage refers to the area of the hollow portion relative to the total area (including the hollow portion) of the heat-adhesive hollow composite fiber.

中空部は鞘成分の中心点、すなわち、繊維断面の中心点に配置することが好ましい。すなわち、繊維断面において中空部が中心部にあるということは、中空部が実質的に偏心していないことを意味する。中空部が繊維の中心部になく偏在していると、繊維製造工程や不織布製造工程で肉薄部分よりその中空部の潰れ、繊維断面形状が変形し、十分な不織布の嵩高や柔軟性が得られない。   The hollow portion is preferably disposed at the center point of the sheath component, ie, at the center point of the fiber cross section. That is, the fact that the hollow portion is at the center in the fiber cross section means that the hollow portion is not substantially eccentric. If the hollow part is not located in the center of the fiber but is unevenly distributed, the hollow part collapses from the thin part in the fiber manufacturing process and the nonwoven fabric manufacturing process, and the fiber cross-sectional shape is deformed, and sufficient bulk and flexibility of the nonwoven fabric are obtained. Absent.

中空部の形状は略三角形状であることが好ましい。図1は本発明の熱接着中空複合繊維の中空部の形状を示した図であり、略三角形状とは図1のように曲線で構成された三角形状を言う。中空繊維の中空部の三角形状の三つの頂点をそれぞれa、b、cとし、その3点を直線で結んだ三角形の三つの辺をab、bc、caとする。点cから辺abに垂線cdを引き、垂線cdの延長上での中空部壁との交点をeとする。点aおよび点bからもそれぞれ辺bc、辺caにも垂線を引き、図示するように点f、点g、点h、点iを定める。本発明の熱接着中空複合繊維の中空部は三角形状、より好ましくは正三角形であり、線分ag/線分af、線分bi/線分bh、線分ce/線分cdのそれぞれの値は、好ましくは1.00〜1.25、より好ましくは1.00〜1.20の範囲にあることである。1.00未満では中空率が低くなり、不織布の柔軟性が得られない。1.25を超えると繊維製造工程や不織布製造工程で中空部が潰れ易くなり、繊維断面形状が変形することで、十分な不織布の嵩高や柔軟性が得られない。   The shape of the hollow portion is preferably substantially triangular. FIG. 1 is a view showing the shape of the hollow portion of the heat-bonded hollow conjugate fiber of the present invention, and the substantially triangular shape means a triangular shape constituted by curves as shown in FIG. The three apexes of the triangular shape of the hollow part of the hollow fiber are respectively a, b and c, and the three sides of the triangle connecting the three points by straight lines are ab, bc and ca. The perpendicular line cd is drawn from the point c to the side ab, and the point of intersection with the hollow portion wall on the extension of the perpendicular line cd is e. From the point a and the point b, perpendicular lines are drawn also to the side bc and the side ca, respectively, and points f, g, h and i are determined as shown. The hollow part of the heat-bonded hollow composite fiber of the present invention is triangular, more preferably an equilateral triangle, and the values of line segment ag / line segment af, line segment bi / line segment bh, line segment ce / line segment cd Is preferably in the range of 1.00 to 1.25, more preferably 1.00 to 1.20. If it is less than 1.00, the hollow rate becomes low and the softness of the non-woven fabric can not be obtained. If it exceeds 1.25, the hollow portion is easily crushed in the fiber production process or the nonwoven fabric production process, and the fiber cross-sectional shape is deformed, and sufficient bulkiness or flexibility of the nonwoven fabric can not be obtained.

本発明の芯部がポリエステル系樹脂(第1成分)、鞘部がポリオレフィン系樹脂(第2成分)である熱接着中空複合繊維の複合比率は、質量比で(第1成分)/(第2成分)=60/40〜40/60の範囲である。より好ましくは質量比で(第1成分)/(第2成分)=55/45〜45/55の範囲である。   The composite ratio of the heat-bonded hollow conjugate fiber of the present invention in which the core part is a polyester resin (first component) and the sheath part is a polyolefin resin (second component) is (mass ratio 1) / (mass ratio 2) Component) = 60/40 to 40/60. More preferably, the ratio by mass is (first component) / (second component) = 55/45 to 45/55.

芯成分が60質量%を超えると、ポリエステル系樹脂の構成が高くなることで不織布の柔軟性が悪化するとともに、熱接着性成分である鞘成分の構成が低くなるため、不織布の接着強力が低下する。逆に鞘成分が60質量%を超えると、芯成分の構成が小さくなるため、不織布の機械的強度に問題が生じてくる。   When the content of the core component exceeds 60% by mass, the composition of the polyester resin becomes high, the flexibility of the non-woven fabric is deteriorated, and the composition of the sheath component which is the heat adhesive component becomes low. Do. On the contrary, if the sheath component exceeds 60% by mass, the constitution of the core component becomes small, which causes a problem in the mechanical strength of the non-woven fabric.

本発明の熱接着中空複合繊維は、その繊維断面において、芯部と鞘部の重心が一点に重ならないように芯鞘配置することが好ましい。両部分の重心が一点に重なると、構造差捲縮が得られないため、不織布の嵩高が得られなくなる。   The heat-bonded hollow conjugate fiber of the present invention is preferably core-sheath-arranged so that the centers of gravity of the core and the sheath do not overlap at one point in the fiber cross section. When the centers of gravity of both parts overlap at one point, no structural difference crimp can be obtained, and the bulk of the non-woven fabric can not be obtained.

本発明の熱接着中空複合繊維の単繊維繊度は、1.0〜10.0dtexが好ましく、さらに好ましくは、1.5〜6.0dtexである。単繊維繊度が1.0dtex未満になると、繊度が小さいため、不織布製造工程でのカード加工性が低下し、得られた不織布の地合いが悪くなる。10.0dtexを超えると、繊度が高くなるため、繊維の剛性が高くなり、不織布の柔軟性が得られない
本発明の熱接着中空複合繊維の捲縮数は、10〜20山/25mmが好ましく、さらに好ましくは、12〜18山/25mmである。捲縮数が10山/25mm未満になると、繊維の絡合性が低下することで、不織布製造工程でのカード加工性が低下し、得られた不織布の地合いが悪くなる。20山/25mmを超えると、繊維の絡合性が強く、繊維の開繊性が悪くなることで不織布製造工程でのカード加工性が低下し、得られた不織布の地合いが悪くなる。
The single fiber fineness of the heat-bonded hollow conjugate fiber of the present invention is preferably 1.0 to 10.0 dtex, more preferably 1.5 to 6.0 dtex. When the single fiber fineness is less than 1.0 dtex, since the fineness is small, the card processability in the non-woven fabric production process is reduced, and the texture of the obtained non-woven fabric is deteriorated. When it exceeds 10.0 dtex, the rigidity of the fiber is increased because the fineness is increased, and the flexibility of the non-woven fabric is not obtained. The crimp number of the heat-bonded hollow conjugate fiber of the present invention is preferably 10 to 20 peaks / 25 mm. More preferably, it is 12-18 mountain / 25 mm. When the number of crimps is less than 10 peaks / 25 mm, the entanglement of the fibers is reduced, so that the card processability in the nonwoven fabric manufacturing process is reduced, and the texture of the obtained nonwoven fabric is deteriorated. When it exceeds 20 piles / 25 mm, the entanglement property of the fiber is strong, and the openability of the fiber is deteriorated, so that the card processability in the non-woven fabric manufacturing process is reduced, and the texture of the obtained non-woven fabric is deteriorated.

本発明の熱接着中空複合繊維の捲縮率は、10〜25%が好ましく、さらに好ましくは、14〜20%である。捲縮率が10%未満になると、繊維の絡合性が低下することで、不織布製造工程でのカード加工性が低下し、得られた不織布の地合いが悪くなる。25%を超えると、繊維の絡合性が強く、繊維の開繊性が悪くなることで不織布製造工程でのカード加工性が低下し、得られた不織布の地合いが悪くなる。   The crimp rate of the heat-bonded hollow conjugate fiber of the present invention is preferably 10 to 25%, more preferably 14 to 20%. When the crimp rate is less than 10%, the entanglement of the fibers is reduced, so that the card processability in the non-woven fabric manufacturing process is reduced, and the texture of the obtained non-woven fabric is deteriorated. If it exceeds 25%, the entanglement of the fibers is strong, and the openability of the fibers is deteriorated, so that the card processability in the non-woven fabric manufacturing process is reduced, and the texture of the obtained non-woven fabric is deteriorated.

本発明の熱接着中空複合繊維の140℃処理における乾熱収縮率は、0.3〜3%が好ましく、さらに好ましくは、0.5〜2.5%である。乾熱収縮率が0.3%未満の繊維を得るためには、乾燥温度条件を高くすることになり、その結果、ポリエチレンが溶融接着しやすくなるため安定的に繊維を得ることが難しい。乾熱収縮率が2.5%を超える繊維は、熱接着工程において不織布の寸法安定性が劣り、安定した製品を得ることが出来ない。   The dry heat shrinkage ratio at 140 ° C. treatment of the heat-bonded hollow conjugate fiber of the present invention is preferably 0.3 to 3%, more preferably 0.5 to 2.5%. In order to obtain a fiber having a dry heat shrinkage of less than 0.3%, the drying temperature condition is to be increased, and as a result, it is difficult to stably obtain a fiber because polyethylene is likely to be melt-bonded. Fibers having a dry heat shrinkage of more than 2.5% have poor dimensional stability of the non-woven fabric in the heat bonding step, and a stable product can not be obtained.

次に、本発明で用いられる熱接着中空複合繊維の製造方法について、具体的に一態様を例示して説明する。   Next, a method of producing the heat-bonded hollow conjugate fiber used in the present invention will be specifically described by exemplifying one embodiment.

本発明の熱接着中空複合繊維は、芯成分をポリエステル系樹脂、鞘成分をポリオレフィン樹脂とした2成分を偏心芯鞘中空形状となるように溶融紡出し、未延伸糸を得、熱延伸後の緊張熱処理工程を介して、スタッファボックス式捲縮機などの捲縮機を用いて捲縮付与をすることで製造する。以下これについてさらに詳述する。   The heat-bonded hollow conjugate fiber of the present invention is melt spun so that the core component is a polyester resin and the sheath component is a polyolefin resin so as to form an eccentric core-sheath hollow shape to obtain an undrawn yarn, which is heat drawn. It manufactures by applying a crimp using a crimper such as a staffer box type crimper through a tension heat treatment process. This will be described in more detail below.

まず、ポリエステル系樹脂およびポリオレフィン系樹脂を溶融し、吐出孔を好ましくは300〜600孔有する偏心芯鞘中空口金よりポリマーを吐出する。口金は三角中空形状を得るため、スリットを3個配置させた口金を使用することが好ましい。   First, a polyester resin and a polyolefin resin are melted, and a polymer is discharged from an eccentric core / sheath hollow die having discharge holes preferably 300 to 600 holes. In order to obtain a triangular hollow shape, it is preferable to use a die in which three slits are arranged.

ポリマーの冷却は、糸条の片側からのみ風を吹き出すユニフロータイプ、もしくは糸条の外周部の全方位から内周部に向けて均一に風を吹き出す環状タイプで製造する。   The polymer is produced in a uniflow type in which the wind is blown from only one side of the yarn, or in an annular type in which the wind is uniformly blown toward the inner circumference from all directions of the outer circumference of the yarn.

ユニフロータイプでの冷却では、ポリマー紡出直後に、風温10〜25℃、風量70〜130m/分、冷却長30〜60mmで糸条を冷却後、風量120〜170m/分、冷却長500〜900mmで糸条を更に冷却する。冷却風温が10℃未満であっても、それ以上の中空率の向上が得られずエネルギー原単位が悪化に繋がる。25℃を超えるとポリマーが固化し難くなり、目標とする中空率が得られない。ポリマー紡出直後の風量が70m/分未満であればポリマー固化し難くなり、目標とする中空率が得られない。130m/分を超えると糸切れが発生し紡糸操業性が悪化する。また、冷却長が30mm未満であれば冷却不足となり、目標とする中空率が得られない。60mmを超えると糸切れが発生し紡糸操業性が悪化する。次の冷却工程での風量が120m/分未満であれば、ポリマー固化し難くなり、中空率が低下する。170m/分を超えると糸切れが発生し紡糸操業性が悪化する。   In the Uniflow type cooling, immediately after polymer spinning, the air temperature is 10 to 25 ° C., the air volume is 70 to 130 m / min, the cooling length is 30 to 60 mm, and after cooling the yarn, the air volume is 120 to 170 m / min, the cooling length 500 to Further cool the yarn at 900 mm. Even if the cooling air temperature is less than 10 ° C., the hollow ratio can not be further improved, leading to deterioration of the energy consumption rate. If the temperature exceeds 25 ° C., it becomes difficult for the polymer to solidify, and a target hollow percentage can not be obtained. If the air volume immediately after polymer spinning is less than 70 m / min, it becomes difficult to solidify the polymer and a target hollow ratio can not be obtained. When it exceeds 130 m / min, thread breakage occurs and the spinning operability deteriorates. In addition, if the cooling length is less than 30 mm, the cooling is insufficient, and the target hollow ratio can not be obtained. When it exceeds 60 mm, thread breakage occurs and the spinning operability deteriorates. If the air volume in the next cooling step is less than 120 m / min, it becomes difficult to solidify the polymer, and the hollow rate decreases. When it exceeds 170 m / min, thread breakage occurs and the spinning operability deteriorates.

環状タイプでの冷却では、ポリマー紡出直後に、風温10〜25℃、風量70〜170m/分、冷却長200〜500mmで糸条を冷却する。冷却風温が10℃未満であっても、それ以上の中空率向上が得られずエネルギー原単位が悪化に繋がる。25℃を超えると中空率が低下する。ポリマー紡出直後の風量が70m/分未満であればポリマー固化し難くなり、中空率が低下する。170m/分を超えてもそれ以上の中空率向上が得られずエネルギー原単位が悪化に繋がる。冷却長が200mm未満であれば冷却不足となり、中空率が低下する。500mmを超えてもそれ以上の中空率向上が得られずエネルギー原単位が悪化に繋がる。   In the annular type cooling, immediately after polymer spinning, the yarn is cooled with an air temperature of 10 to 25 ° C., an air volume of 70 to 170 m / min, and a cooling length of 200 to 500 mm. Even if the cooling air temperature is less than 10 ° C., no further improvement in the hollowness ratio can be obtained, leading to deterioration of the energy consumption rate. When the temperature exceeds 25 ° C., the hollow rate decreases. If the air volume immediately after polymer spinning is less than 70 m / min, it becomes difficult to solidify the polymer, and the hollow ratio decreases. Even if it exceeds 170 m / min, the hollow ratio improvement can not be obtained more and it leads to deterioration of energy unit consumption. If the cooling length is less than 200 mm, the cooling will be insufficient and the hollow rate will decrease. Even if it exceeds 500 mm, the hollow ratio improvement can not be obtained more than that, and the energy consumption unit leads to deterioration.

冷却した糸条は、紡糸油剤を付与し、好ましくは引き取り速度900〜1500m/分で、缶に納めることにより未延伸糸を得る。
次いで、得られた未延伸糸トウを好ましくは温度80〜100℃の液浴を用いて、2.0〜4.0倍の延伸倍率で延伸、80〜115℃で緊張熱処理後する。緊張熱処理温度が80℃未満であれば、その後の繊維乾燥工程で捲縮が発現することで、不織布製造工程でのカード加工性が低下し、得られた不織布の地合いが悪くなる。115℃を超えると、ポリエチレンの融点に近くなることで、繊維製造工程でポリエチレンが溶融する。
The cooled yarn is applied with a spinning oil, preferably taken up at a speed of 900 to 1500 m / min, to obtain an undrawn yarn.
Next, the undrawn yarn tow thus obtained is preferably drawn at a draw ratio of 2.0 to 4.0 times using a liquid bath at a temperature of 80 to 100 ° C. and subjected to tensile heat treatment at 80 to 115 ° C. If the tension heat treatment temperature is less than 80 ° C., the crimpability appears in the subsequent fiber drying step, whereby the card processability in the non-woven fabric manufacturing step is reduced, and the texture of the obtained non-woven fabric is deteriorated. When the temperature exceeds 115 ° C., the polyethylene melts in the fiber production process because it approaches the melting point of polyethylene.

次に、スタッファボックスなどの捲縮付与装置を用いて目標の捲縮を付与し、100〜115℃の温度で乾燥後に規定の長さに切断する。   Next, a target crimp is applied using a crimp application device such as a staffer box, and cut to a specified length after drying at a temperature of 100 to 115 ° C.

このようにして得られた熱接着中空複合繊維は、開繊後、カーディングしてウエブ化し、鞘部を構成するポリオレフィン系樹脂を含む第2成分の融点以上、芯部を構成するポリエステル系樹脂を含む第1成分未満の温度で熱処理させることにより、鞘部を溶融接着させ、不織布に加工する。熱処理方法としては、熱風ドライヤー、サクションドラムドライヤー、エンボスロール等の方式が使用できるが、嵩高と柔軟性を兼ね備えた不織布を得るためには、エアーサクションタイプのドライヤーが好ましい。   The heat-bonded hollow conjugate fiber obtained in this manner is opened and then carded to form a web, and a polyester resin constituting the core part at a temperature higher than the melting point of the second component containing the polyolefin resin constituting the sheath part Heat treatment at a temperature lower than that of the first component, including the above, to melt bond the sheath portion and process it into a non-woven fabric. As a heat treatment method, a method such as a hot air drier, a suction drum drier, an emboss roll or the like can be used, but in order to obtain a non-woven fabric having bulkiness and flexibility, an air suction type drier is preferable.

本発明の熱接着性中空複合繊維は、例えばおむつ、ナプキン、失禁パット等の衛生材料(吸収性物品)、ガウン、術衣等の医療衛生材、壁用シート、障子紙、床材等の室内内装材、カバークロス、清掃用ワイパー、生ゴミ用カバー等の生活関連材、使い捨てトイレ、トイレ用カバー等のトイレタリー製品、ペットシート、ペット用おむつ、ペット用タオル等のペット用品、ワイピング材、フィルター、クッション材、油吸着材、インクタンク用吸着材等の産業資材、一般医療材、寝装材、介護用品など、嵩高性及び耐圧縮性が要求される様々な繊維製品への用途に利用することができる。   The heat-adhesive hollow composite fiber of the present invention is, for example, sanitary materials (absorbent articles) such as diapers, napkins, incontinence pads, medical hygiene materials such as gowns, surgical clothes, etc., sheet for walls, shoji paper, floor materials, etc. Interior materials, cover cloths, wipers for cleaning, life related materials such as garbage covers, disposable toilets, toiletry products such as toilet covers, pet sheets, pet diapers, pet supplies such as pet towels, wiping materials, filters , Industrial materials such as cushioning materials, oil adsorbents, adsorbents for ink tanks, general medical materials, bedding materials, nursing care products, etc. for various fiber products that require bulkiness and compression resistance be able to.

次に、本発明の熱接着性中空複合繊維について、実施例を用いて詳細に説明する。物性等の測定方法は、次のとおりである。   Next, the heat-adhesive hollow conjugate fiber of the present invention will be described in detail using examples. The measuring methods of physical properties etc. are as follows.

(単繊維繊度、捲縮数、捲縮率、繊維長)
JIS L1015(2010年)に準じて繊維物性を測定した。
(Single fiber fineness, number of crimps, crimp rate, fiber length)
Fiber physical properties were measured according to JIS L1015 (2010).

(中空率)
得られた熱接着中空複合繊維の断面を、顕微鏡を用いて400倍の倍率で撮影し、さらに断面写真を2倍に拡大コピーする。コピーした用紙において、繊維部断面を切り取り、電子天秤で質量を測定し、N=20を平均することで中空率を算出した。
(Hollow rate)
The cross section of the obtained heat-bonded hollow conjugate fiber is photographed using a microscope at a magnification of 400 times, and the cross-sectional photograph is doubled and copied. The cross section of the fiber part was cut off from the copied paper, the mass was measured by an electronic balance, and the hollow ratio was calculated by averaging N = 20.

(中空形状)
得られた熱接着中空複合繊維の断面を、顕微鏡を用いて400倍の倍率で撮影し、さらに断面写真を2倍に拡大コピーする。コピーした用紙において、線分ag、線分af、線分bi、線分bh、線分ce、線分cdをそれぞれ測定し、線分ag/線分af、線分bi/線分bh、線分ce/線分cdを算出し、N=20を平均した。線分算出値1.00〜1.25を合格として評価した。
(Hollow shape)
The cross section of the obtained heat-bonded hollow conjugate fiber is photographed using a microscope at a magnification of 400 times, and the cross-sectional photograph is doubled and copied. On the copied sheet, the line segment ag, line segment af, line segment bi, line segment bh, line segment ce, and line segment cd are measured, and line segment ag / line segment af, line segment bi / line segment bh, line The minute ce / line segment cd was calculated and N = 20 was averaged. The line segment calculated value 1.00-1.25 was evaluated as pass.

(不織布の嵩高性)
熱接着中空複合繊維を用いて、熱加工温度150℃処理、目付20g/mとするエアスルー不織布を作製し、JIS L 1913A法に準じて、0.2kPa荷重時における不織布の厚みを測定、N=10の平均値で算出した。不織布の厚みが1.5mm以上を合格として評価した。
(The bulkiness of non-woven fabric)
An air-through non-woven fabric with a heat processing temperature of 150 ° C and a basis weight of 20 g / m 2 was prepared using a heat-bonded hollow conjugate fiber, and the thickness of the non-woven fabric was measured at a load of 0.2 kPa according to JIS L 1913A method, N It calculated by the average value of = 10. The thickness of the nonwoven fabric evaluated that 1.5 mm or more was a pass.

(不織布の柔軟性)
JIS L 1913 6.7剛軟度(ハンドルオメーター法)に準じて測定、N=3の平均値で算出した。カード機の流れ方向(MD方向)に対する不織布の柔軟性が65mN未満を合格として評価した。
(Flexibility of non-woven fabric)
Measured according to JIS L 1913 6.7 bending resistance (handle index method), and calculated using an average value of N = 3. The softness of the non-woven fabric in the flow direction (MD direction) of the card machine was evaluated as a pass of less than 65 mN.

[実施例1]
熱接着複合繊維を、次の方法で製造した。固有粘度が0.650のポリエチレンテレフタレート樹脂(第1成分)とメルトマスフローレイトを18とした高密度ポリエチレン樹脂(第2成分)を質量比で(第1成分)/(第2成分)=50/50となるように溶融し、吐出孔を400孔有する偏心芯鞘中空口金を通して紡出した。ユニフロータイプでの冷却で、ポリマー紡出直後に、風温20℃、風量100m/分、冷却長40mmで糸条を冷却後、風量140m/分、冷却長600mmで糸条を更に冷却し、引き取り速度1000m/分で未延伸糸を得た。
Example 1
The heat-bonded composite fiber was manufactured by the following method. The mass ratio of a polyethylene terephthalate resin (first component) having an intrinsic viscosity of 0.650 (first component) to a high density polyethylene resin (second component) having a melt mass flow rate of 18 (first component) / (second component) = 50 / It melted so as to be 50, and was spun through an eccentric core-sheath hollow die having 400 discharge holes. In the Uniflow type cooling, immediately after polymer spinning, after cooling the yarn with an air temperature of 20 ° C, an air volume of 100 m / min, a cooling length of 40 mm, the air volume of 140 m / min, a cooling length of 600 mm further cools the yarn and takes it off An undrawn yarn was obtained at a speed of 1000 m / min.

次いで、得られた未延伸糸トウを、85℃の温度の液浴を用いて、3.0倍の延伸倍率で1段延伸を施し、100℃で緊張熱処理後、スタフィングボックス式捲縮機を用いて捲縮を付与、110℃で乾燥し、切断した。得られた熱接着性中空複合繊維は、単繊維繊度が2.5dtex、捲縮数が13山/25mm、捲縮率が19%、繊維長が38mm、中空率が20%、線分(線分ag/線分af、線分bi/線分bh、線分ce/線分cdのいずれも)が1.15とする繊維物性を得た。本繊維を使用した不織布は、嵩高性と柔軟性を兼ね備えた不織布であることを確認した。結果を表1に示す。   Next, the undrawn yarn tow thus obtained is subjected to one-step drawing at a draw ratio of 3.0 times using a liquid bath at a temperature of 85 ° C., and after tension heat treatment at 100 ° C., a staffing box crimper The mixture was crimped using the following, dried at 110 ° C. and cut. The obtained heat-adhesive hollow conjugate fiber has a single fiber fineness of 2.5 dtex, 13 crimps / 25 mm, a crimp rate of 19%, a fiber length of 38 mm, a hollow rate of 20%, line segments (lines A fiber physical property is obtained in which the ag / line segment af, the line segment bi / line segment bh, and the line segment ce / line segment cd are all 1.15). The non-woven fabric using this fiber was confirmed to be a non-woven fabric having both bulkiness and flexibility. The results are shown in Table 1.

[比較例1]
中空形状が丸構造となるように4点支持の偏心芯鞘中空口金を通して紡出した以外は、実施例1と同じ条件で熱接着複合繊維を製造した。得られた熱接着性複合繊維は、単繊維繊度が2.5dtex、捲縮数が14山/25mm、捲縮率が20%、繊維長が38mm、とする繊維物性を得たが、繊維製造工程で中空部が変形することで、繊維断面が変形することで中空部が潰れ、不織布の嵩高性と柔軟性が得られなかった。結果を表1に示す。
Comparative Example 1
A heat-bonded composite fiber was produced under the same conditions as in Example 1 except that the hollow core had a round structure and was spun through a four-point supporting eccentric core sheath hollow die. The heat-adhesive composite fiber obtained has obtained fiber physical properties with a single fiber fineness of 2.5 dtex, a crimp number of 14 peaks / 25 mm, a crimp rate of 20%, and a fiber length of 38 mm. When the hollow portion was deformed in the process, the hollow portion was crushed by the deformation of the fiber cross section, and the bulkiness and flexibility of the nonwoven fabric were not obtained. The results are shown in Table 1.

[比較例2]
同心円芯鞘中空口金を通して紡出した以外は、実施例1と同じ条件で熱接着複合繊維を製造した。得られた熱接着性複合繊維は、単繊維繊度が2.5dtex、捲縮数が14山/25mm、捲縮率が17%、繊維長が38mm、中空率が19%、線分が1.15とする繊維物性を得たが、同心円芯鞘構造のため、不織布の嵩高性が得られなかった。結果を表1に示す。
Comparative Example 2
A heat-bonded composite fiber was produced under the same conditions as in Example 1 except that it was spun through a concentric core-sheath hollow die. The heat-adhesive composite fiber obtained has a single fiber fineness of 2.5 dtex, a crimp number of 14 peaks / 25 mm, a crimp rate of 17%, a fiber length of 38 mm, a hollow rate of 19% and a line segment of 1. Although the fiber physical property set to 15 was obtained, the bulkiness of the nonwoven fabric was not obtained because of the concentric core-sheath structure. The results are shown in Table 1.

[比較例3]
偏心芯鞘口金を通して紡出した以外は、実施例1と同じ条件で熱接着複合繊維を製造した。得られた熱接着性複合繊維は、単繊維繊度が2.5dtex、捲縮数が14山/25mm、捲縮率が18%、繊維長が38mmとする繊維物性を得たが、中空構造ではないため、不織布の柔軟性が得られなかった。結果を表1に示す。
Comparative Example 3
A heat-bonded composite fiber was produced under the same conditions as Example 1, except that it was spun through an eccentric core-sheath base. The heat-adhesive composite fiber obtained had a fiber physical property with a single fiber fineness of 2.5 dtex, a crimp number of 14 peaks / 25 mm, a crimp rate of 18%, and a fiber length of 38 mm. Since it did not exist, the softness | flexibility of the nonwoven fabric was not obtained. The results are shown in Table 1.

[比較例4]
ポリマー紡出直後に、風温20℃、風量60m/分、冷却長40mmで糸条を冷却後、風量60m/分、冷却長600mmで糸条を更に冷却し、引き取り速度1000m/分で未延伸糸を得た以外は、実施例1と同じ条件で熱接着複合繊維を製造した。得られた熱接着性複合繊維は、単繊維繊度が2.5dtex、捲縮数が13山/25mm、捲縮率が19%、繊維長が38mm、中空率が5%、線分が1.30とする繊維物性を得たが、中空率が低く、線分が高いため、不織布の柔軟性が得られなかった。結果を表1に示す。
Comparative Example 4
Immediately after polymer spinning, the yarn is cooled with an air temperature of 20 ° C., an air volume of 60 m / min, and a cooling length of 40 mm, and then the air volume is 60 m / min, the yarn is further cooled with a cooling length of 600 mm and undrawn at a take-up speed of 1000 m / min. A heat-bonded composite fiber was produced under the same conditions as in Example 1 except that a yarn was obtained. The heat-adhesive composite fiber obtained has a single fiber fineness of 2.5 dtex, 13 crimps / 25 mm, a crimp rate of 19%, a fiber length of 38 mm, a hollow rate of 5%, and a line segment of 1. Although the fiber physical properties to be obtained were obtained, the flexibility of the non-woven fabric was not obtained because the hollowness ratio was low and the line segment was high. The results are shown in Table 1.

[比較例5]
固有粘度が0.650のポリエチレンテレフタレート樹脂(第1成分)とメルトマスフローレイトを18とした高密度ポリエチレン樹脂(第2成分)を質量比で(第1成分)/(第2成分)=65/35となるように溶融した以外は、実施例1と同じ条件で熱接着複合繊維を製造した。得られた熱接着性複合繊維は、単繊維繊度が2.5dtex、捲縮数が14山/25mm、捲縮率が20%、繊維長が38mm、中空率が25%、線分が1.14とする繊維物性を得たが、ポリエステル質量が高いため、不織布の柔軟性が得られなかった。結果を表1に示す。
Comparative Example 5
The mass ratio of a polyethylene terephthalate resin (first component) having an intrinsic viscosity of 0.650 (first component) to a high density polyethylene resin (second component) having a melt mass flow rate of 18 (first component) / (second component) = 65 / A heat-bonded composite fiber was produced under the same conditions as in Example 1 except that it was melted to be 35. The heat-adhesive composite fiber obtained has a single fiber fineness of 2.5 dtex, a crimp number of 14 peaks / 25 mm, a crimp rate of 20%, a fiber length of 38 mm, a hollow rate of 25%, and a line segment of 1. Although the fiber physical property to be 14 was obtained, since the polyester mass was high, the softness | flexibility of the nonwoven fabric was not obtained. The results are shown in Table 1.

[比較例6]
固有粘度が0.650のポリエチレンテレフタレート樹脂(第1成分)とメルトマスフローレイトを18とした高密度ポリエチレン樹脂(第2成分)を質量比で(第1成分)/(第2成分)=35/65となるように溶融した以外は、実施例1と同じ条件で熱接着複合繊維を製造した。得られた熱接着性複合繊維は、単繊維繊度が2.5dtex、捲縮数が16山/25mm、捲縮率が16%、繊維長が38mm、中空率が15%、線分が1.23とする繊維物性を得たが、ポリエチレンの質量が高いため、不織布の嵩高性が得られなかった。結果を表1に示す。
Comparative Example 6
The mass ratio of a polyethylene terephthalate resin (first component) having an intrinsic viscosity of 0.650 (first component) to a high density polyethylene resin (second component) having a melt mass flow rate of 18 (first component) / (second component) = 35 / A heat-bonded composite fiber was produced under the same conditions as in Example 1 except that it was melted to be 65. The heat-adhesive composite fiber obtained has a single fiber fineness of 2.5 dtex, a crimp number of 16 peaks / 25 mm, a crimp rate of 16%, a fiber length of 38 mm, a hollow rate of 15%, and a line segment of 1. Although the fiber physical property set to 23 was obtained, since the mass of polyethylene was high, the bulkiness of the nonwoven fabric was not obtained. The results are shown in Table 1.

1:中空部
1’:中空部壁
2:芯部
3:鞘部
4:繊維断面中心
a、b、c:三角形状の頂点
d:点cから線分abへ引いた垂線と線分abの交点
e:点cから線分abへ引いた垂線と中空部壁との交点
h:点bから線分acへ引いた垂線と線分acの交点
i:点bから線分acへ引いた垂線と中空部壁との交点
f:点aから線分bcへ引いた垂線と線分bcの交点
g:点aから線分bcへ引いた垂線と中空部壁との交点
1: Hollow part 1 ': Hollow part wall 2: Core part 3: Sheath part 4: Fiber cross section center a, b, c: Triangular apex d: normal line drawn from point c to line segment ab Point of intersection e: point of intersection between the perpendicular drawn from the point c to the line ab and the wall of the hollow part h: point of intersection between the perpendicular drawn from the point b to the line ac and the line ac i: perpendicular drawn from the point b to the line ac Intersection point f between the wall and the hollow portion wall: intersection point g of the perpendicular drawn from the point a to the line segment bc g: intersection point of the perpendicular drawn from the point a to the line segment bc and the hollow wall

Claims (1)

芯部がポリエステル系樹脂を含む第1成分とし、鞘部がポリエステル系樹脂の融点より30℃以上低い融点を有するポリオレフィン系樹脂を含む第2成分で構成され、以下の(イ)〜(ホ)を満たし、第1成分が繊維軸方向に対して連続した1つの中空部を有する熱接着性中空複合繊維。
(イ)中空率が12%以上35%以下。
(ロ)中空部の中心点が鞘成分の中心点である。
(ハ)中空形状が三角形状であり、線分ag/線分af、線分bi/線分bh及び線分ce/線分cdがいずれも1.00以上1.25以下。
ただし、三角形状の三つの頂点をそれぞれ点a、点b、点cとし、点cから線分abへ引いた垂線と線分abの交点が点d、中空部壁との交点が点eであり、点bから線分acへ引いた垂線と線分acの交点が点h、中空部壁との交点が点iであり、点aから線分bcへ引いた垂線と線分bcの交点が点f、中空部壁との交点が点gである。
(ニ)第1成分と第2成分の複合比率が60質量%以上/40質量%以下〜40質量%以上/60質量%以下。
(ホ)両成分の重心が一点に重ならないように芯鞘を配置する。
The core part is a first component containing a polyester resin, and the sheath part is a second component containing a polyolefin resin having a melting point lower than that of the polyester resin by 30 ° C. or more, and the following (i) to (e) The heat-adhesive hollow composite fiber, wherein the first component has one hollow portion continuous with the fiber axial direction.
(A) The hollow ratio is 12% or more and 35% or less.
(B) The center point of the hollow portion is the center point of the sheath component.
(C) The hollow shape is a triangle, and each of the line segment ag / line segment af, the line segment bi / line segment bh and the line segment ce / line segment cd is 1.00 or more and 1.25 or less.
However, three triangular vertices are respectively point a, point b and point c, the intersection of a perpendicular drawn from point c to line segment ab and line segment ab is point d, and the intersection point with the hollow wall is point e There is an intersection point of a perpendicular drawn from the point b to the line segment ac and the line segment ac, and an intersection point between the perpendicular line and the hollow wall is a point i. Is the point f, and the point of intersection with the hollow wall is the point g.
(D) The composite ratio of the first component and the second component is 60% by mass or more / 40% by mass or less and 40% by mass or more / 60% by mass or less.
(E) Arrange the core sheath so that the centers of gravity of both components do not overlap at one point.
JP2017234013A 2017-12-06 2017-12-06 Heat adhesive composite fiber Pending JP2019099958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017234013A JP2019099958A (en) 2017-12-06 2017-12-06 Heat adhesive composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017234013A JP2019099958A (en) 2017-12-06 2017-12-06 Heat adhesive composite fiber

Publications (1)

Publication Number Publication Date
JP2019099958A true JP2019099958A (en) 2019-06-24

Family

ID=66976126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017234013A Pending JP2019099958A (en) 2017-12-06 2017-12-06 Heat adhesive composite fiber

Country Status (1)

Country Link
JP (1) JP2019099958A (en)

Similar Documents

Publication Publication Date Title
JP5444681B2 (en) Polyester-based heat-fusible composite fiber
JP5298383B2 (en) Heat-adhesive conjugate fiber excellent in bulkiness and flexibility and fiber molded article using the same
EP3004438B1 (en) Heat-bondable conjugate fiber with excellent softness and nonwoven fabric using the same
KR101362617B1 (en) Nonwovens produced from multicomponent fibers
JP5535555B2 (en) Thermal adhesive composite fiber and non-woven fabric using the same
KR101350508B1 (en) Thermally bondable core-sheath type composite fiber, manufacturing method thereof and use thereof
CN109196150B (en) Hot-melt conjugate fiber, method for producing same, sheet-like fiber assembly, and method for producing nonwoven fabric
KR20130132442A (en) Wet lap composition and related processes
KR101377002B1 (en) Mixture of thermally bondable core-sheath type composite fiber, manufacturing method thereof and use thereof
JP6324789B2 (en) Irregular cross-section fiber
JP2019099958A (en) Heat adhesive composite fiber
WO2022050189A1 (en) Heat-bondable composite fiber, manufacturing method for same, and non-woven fabric using heat-bondable composite fiber
JP2018135622A (en) Heat-bonding conjugated fiber and method for producing the same
JP2018159151A (en) Heat-adhesive composite fiber
JP2870712B2 (en) Heat-fusible conjugate fiber with excellent durability and hydrophilicity
JPH0696809B2 (en) Heat-fusible composite fiber
CN112458559B (en) Thermal adhesive conjugate fiber and nonwoven fabric using same
JP2020133019A (en) Thermally adhesive conjugate fiber
JP2023086297A (en) Thermo-adhesive composite fiber and non-woven fabric made of the same
JP2000096417A (en) Filament nonwoven fabric for forming, its production and container-shaped article using the nonwoven fabric
JP2024518171A (en) Strength-enhancing nonwoven fabric
JP2022086134A (en) Thermobondable composite fiber and non-woven fabric made of the same
JPH02229294A (en) Bulky paper and production thereof
JP2019163567A (en) Water-repellent heat adhesive composite fiber
JP2019167656A (en) Thermally adhesive conjugated fiber and nonwoven fabric