TW201201292A - Semiconductor bio-sensors and methods of manufacturing the same - Google Patents

Semiconductor bio-sensors and methods of manufacturing the same Download PDF

Info

Publication number
TW201201292A
TW201201292A TW099121319A TW99121319A TW201201292A TW 201201292 A TW201201292 A TW 201201292A TW 099121319 A TW099121319 A TW 099121319A TW 99121319 A TW99121319 A TW 99121319A TW 201201292 A TW201201292 A TW 201201292A
Authority
TW
Taiwan
Prior art keywords
dielectric layer
layer
patterned
forming
conductive layer
Prior art date
Application number
TW099121319A
Other languages
Chinese (zh)
Other versions
TWI384566B (en
Inventor
Ming-Tung Lee
Shih-Chin Lien
Chia-Huan Chang
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW099121319A priority Critical patent/TWI384566B/en
Publication of TW201201292A publication Critical patent/TW201201292A/en
Application granted granted Critical
Publication of TWI384566B publication Critical patent/TWI384566B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/24195Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being a discrete passive component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

A method of manufacturing a semiconductor bio-sensor comprises providing a substrate, forming a first dielectric layer on the substrate, forming a patterned first conductive layer on the first dielectric layer, the patterned first conductive layer including a first portion and a pair of second portions, forming a second dielectric layer, a third dielectric layer and a fourth dielectric layer in sequence over the patterned first conductive layer, forming cavities into the fourth dielectric layer, forming vias through the cavities, exposing the second portions of the patterned first conductive layer, forming a patterned second conductive layer on the fourth dielectric layer, forming a passivation layer on the patterned second conductive layer, forming an opening to expose a portion of the fourth dielectric layer over the first portion of the patterned first conductive layer, and forming a chamber through the opening.

Description

201201292 • --------- 六、發明說明: _ * 【發明所屬之技術領域】 本發明是有關於一種半導體元件的製造方法,且特別 疋有關於一種半導體生物感測器的製造方法。 【先前技術】 隨著半導體產業的成長與半導體製程的進步,電腦、 通訊、以及、;肖費性產品之越來越多地設計成緊密而微小化 的尺寸。同樣地,生物感測器以縮小尺寸的目標來製造以 達到可攜式且微小化的需求。第1A至1C圖繪示出先前技 術之一種半導體生物感測器製造方法的剖面示意圖。參照 第1A圖,提供一基板1〇。第一介電層n可包括例如是二 氧化矽(Si。2)’第-介電I U可以接著形成於基板10 上。第一介電層11可以當作一接墊層。 曰印參照第1B圖,接著,圖案化導電層12可包括例如 是多晶矽’其可形成於第一介電層U上。圖案化導電層 12可以當作生物感測器1之感測電阻。圖案化導電層 的:部分12-1可被第一型雜質少量地植入或輕播雜,^例 來說η型雜質摻雜可以提供感測電阻所需的阻抗。此外, 圖案化導電層12之第二部分】2_2可被第一型雜質大量地 植入或重換雜以形成感測電阻的電接觸區域。 請參照第1C圖’在圖案化第二導電層12及第一介電 層一上’形成有第二介電層14。第二介電層14可包括例 如是二氧切。第二介電層Μ可當作生物感· i之感 測電阻的絕緣層。 ' 201201292201201292 • --------- VI. Description of the Invention: _ * Technical Field of the Invention The present invention relates to a method of fabricating a semiconductor device, and more particularly to the manufacture of a semiconductor biosensor method. [Prior Art] With the growth of the semiconductor industry and the advancement of semiconductor processes, computers, communications, and products have been increasingly designed to be compact and miniaturized. As such, biosensors are manufactured with a reduced size target to achieve portable and miniaturized requirements. 1A to 1C are schematic cross-sectional views showing a method of fabricating a semiconductor biosensor of the prior art. Referring to Fig. 1A, a substrate 1 is provided. The first dielectric layer n may include, for example, hafnium oxide (Si. 2). The first dielectric I U may be subsequently formed on the substrate 10. The first dielectric layer 11 can be used as a pad layer. Referring to FIG. 1B, the patterned conductive layer 12 may include, for example, a polysilicon 矽 which may be formed on the first dielectric layer U. The patterned conductive layer 12 can be used as the sensing resistor of the biosensor 1. The portion of the patterned conductive layer: portion 12-1 may be implanted or lightly miscellaneous by the first type of impurity, for example, the n-type impurity doping may provide the impedance required to sense the resistance. In addition, the second portion 2_2 of the patterned conductive layer 12 can be heavily implanted or re-doped by the first type of impurity to form an electrical contact region of the sense resistor. Referring to Figure 1C, a second dielectric layer 14 is formed on the patterned second conductive layer 12 and the first dielectric layer. The second dielectric layer 14 can include, for example, a dioxotomy. The second dielectric layer can be used as an insulating layer for the sense resistor of the biosensor. ' 201201292

I VV J7〇7r/AI VV J7〇7r/A

Pic者生物感測盗與其他半導體元件整合的需求提 高,必須使用互補金屬氧化半導體(CMOS)製程來製作生 物感測器與半導體元件。然而’不幸地,生物感測写之薄 絕緣層14以及導電層12如果沒有被適當地保護,將可能 在CMOS製程中輕易地被破壞。因此,研發出可製造半導 體生物感測器以及其他半導體元件於CM〇s製程中的製 造方法係為相關業者之一需求。The demand for integration of Pic sensor biometrics with other semiconductor components is increasing, and biosensing semiconductors (CMOS) processes must be used to fabricate biosensors and semiconductor components. However, unfortunately, the biosensing written thin insulating layer 14 and the conductive layer 12, if not properly protected, may be easily destroyed in the CMOS process. Therefore, the development of a manufacturing method for manufacturing a semiconductor biosensor and other semiconductor components in a CM〇s process is one of the needs of related companies.

【發明内容】 本發明主要係提供一種可以結合半導體生物感測器 與其他CMOS元件製造於單一晶圓上之的製造方法σ 本發明之實施例可以提供製造半導體生 製造方法。此方法可包括提供一基板,於基板上形^ = 介電層’於第一介電層上形成圖案化第一導電層,圖案化 第一導電層包括一個第一部分及一對第二部分,第二部分 係包夹第-部分,於圖案化第一導電層上形成第 層’第二介電層之㈣率大於圖案 =第二介電層上形成有第三介電層,於== 四介電層’第四介電層之_率大於第三介i層 ==利用等向性㈣於第四介電層形成數個孔穴, •1用非專向性蝕刻形成貫穿此些孔 出圖案化第一導電層之第 数以暴路 案化第二導電層並填滿孔穴,且在圖二:成, -部分上方形成數個接勢,於圖案化第 、:之第 非等_刻形成開口,此開口暴露出第四介電 201201292 i 夕 層之一部分,經由此開口於數個接墊之間藉由等向性蝕刻 形成腔室。 依,日、?、本發明之一些貫施例,亦提供一種半導體生物减 測器的製造方法。此方法可以包括提供一基板,於基板上 形成第一介電層,於第一介電層上形成圖案化第一導電 層,圖案化第一導電層包括一個第一部分及一對第二部 分,於圖案化第一導電層上依序形成第二介電層、第三介 電層、及第四介電層,於第四介電層中形成數個孔穴,形 成貫穿此些孔穴的數個通孔,使得圖案化第一導電層之第 二部分暴露出來,於第四介電層上形成圖案化第二導電 層,於圖案化第二導電層上形成有保護層,於圖案化第一 導電層之第一部分上方形成開口,此開口暴露出第四介電 層的一部分’以及經由此開口形成腔室。 本發明之數個實施例可以進一步提供一半導體生物 感測器。此半導體生物感測器包括一基板,位於基板上之 第—介電層,位於第一介電層上之圖案化第一導電層,圖 案化第一導電層包括一個第一部分及包夾第一部^之一 對第二部分,位於圖案化第一導電層上之第二介電層,第 二介電層之_率大於圖案化第—導電層之_率:位於 第二介電層上之第三介電層’位於第三介電層上之第四介 電層,第四介電層之蝕刻率大於第三介電層之蝕刻率,位 於第二部分上之一對接墊以電性連接至第二部分、位於接 墊上之圖案化第二導電層、以及介於接墊間並暴露出第三 介電層之通道區域。 一 本發明之其他特性及優點將闡明於以下說明的部 201201292 I vvjyo^/m 分’且可以從說明部分明顯得知,或者可以藉由實施本發 明而學習得知。藉由所附之申請專利範圍特別指明之要素 及其組合,將可獲知並領悟本發明之特性及優點。 前面之概述及後面的詳述皆僅是闡明本發明之典型 實施方式,並非用以限定本發明。 為讓本發明之上述内容能更明顯易懂,下文特舉較佳 實施例,並配合所附圖式,作詳細說明如下,此些說明並 非用以限制本發明至特定之實施手段。 【實施方式】 以下係依照本發明之數個實施例及所附圖式所作的 詳細說明。盡可能地,以相同的編號在所有圖式中表示相 同或相似的部分。必須注意到圖式大部分以簡化的形式表 達,不應將本發明限定至圖式之特定精確的尺度。 第2A到第2M圖係繪示依照本發明一實施例之半導 體生物感測器的製造方法之剖面示意圖。請參照第2A φ 圖,提供一基板20,且基板20經過第一型雜質摻雜’例 如是p型雜質。接著,數個互補金屬氧化半導體 (Complementary Metal-Oxide-Semiconductor devices , CMOS)元件21,亦即,互補且對稱之一對第一型與第二型 元件,例如是η型與p型金屬氧化半導體場效應電晶體 (metal oxide semiconductor field effect transistors , MOSFETs) ’可以形成於基板20上。在一實施例中,CMOS 元件21可以包括一對第一型及第二型之MOSFETs 21-1, 其可以操作於較高的操作電壓,例如是12伏特(v)之操作 201201292 電壓,另一對第一型及第二型之MOSFETs 21-2 ’ 。、 ,:一般的操作電壓,例如是5伏特(v)之操作電壓可:: 及退有一對第一型及第二型tM〇SFETs2i_3 、。 作於較低的操作電壓,例如是3 ,、可以操 嶋FETs 2Μ、21-2、及21_3可伏特(V)之操作電壓。各個 此外,數個週邊元件22可^是開關元件。 元件21旁邊。在一實施例中,週邊元:;二20之JM0S 以及電阻22-2。電容22-1可以包括 匕括電容22-1 ,,、以及介電層220,介電層22〇係位於第—電 @力1極222之間。電容22切以偵測施加於1上方之 屋力,因而可當作聲音感測器, /、上方之 可以具有可變電阻且可以作為熱電堆器風埶=22-2 器可以偵測溫度之改變。CM0S元‘^ 。、、…電堆感測 以在C0MS製程中形成於基板2〇之第一區1邊元件22可 請參照第2B圖,藉由沈積步驟可以形成第 23一於C膽元件21、週邊元件L及基板2〇上;1 一貫施例中’第-介電層23可以包括未摻雜之二氧化: ^^(USOOX), 900 „(Λ) ~π〇〇! 的範圍内。第一介電層可以作為接塾層。 接著’圖案化之第-導電層24 ^沈積步驟以及接 續的微影、㈣過程’在基板2〇之第二 元件22的旁邊。在-實施例中,圖案化第—導電戶= 以包括厚度從大料500 A到700 A的範圍内之多^。 在另-實施例中,圖案化第一導電層24可以包括多晶石夕 錯⑽y-SiGe)。在又-實施例中’圖案化第—導電層% 201201292 可以包括單晶矽或奈米矽。圖案化第一導電層 為生物感測器之感測電阻。 作 第n2c圖,圖案化第—導電層24可接著被植入 第-型雜質或第二型雜質。尤其,在一實施例 24 2之第一部f24-1可以少量地植入濃度:約 為2.5x10 cm_到5xl0 cm-2的範圍内之第—型雜質。圖 案化第-導電層24之輕植人部分24],可以作為提供感 測電阻所需阻抗之阻抗區域。此外,圖案化第—導電層二 中’包夾第-部分24-1之-對第二部分24_2,此第二部 分24-2可以大量地植入濃度大約為3χΐ〇]5 cm_2之第一 雜質。圖案化第一導電層24之重植入部分24_2可以 感測電阻之電接觸區域。 … 在另-實施例中’圖案化第一導電層24之第一部分 24]可少量地植入第二型雜質,植入之第二型雜質濃度大 約從2.5 X! 014 cm-2到5 χ i 〇丨4 cm_2的範圍内, 阻之崎區域,㈣化第—導電層24之第二部分二_2可 =大里地植入濃度範圍大約為3χ1〇15 cm·2之第二型雜 貝—以形成生物感測器之感測電阻之電接觸區域。雖然在 此實把例中之第-部分24]比第二部分24_2先植入,然 而’在本發㈣屬技術領域巾具有通常知識者可知此植入 的順序係可以交換的。 睛參照第2D圖’第二介電層26可以藉由沈積步驟 ^著形成於第—介電層23、圖案化第-導電層24、以及 基板2〇上方。第二介電層26可以理想地貼附於圖案化第 I電層24 °在—貫施例中,第二介電層26可以包括二 ·* 9 201201292 •,'....... 氧化碎’較薄厚度之二氧化矽具有厚度從大約為40入到 ^^的範圍内。在另一實施例中,第二介電層26可包括 鼠乳化石夕(SiON)。第二介電層26可以作為第一絕緣,此 第一絕緣貼附於感測電阻時可以提供理想的附著力。SUMMARY OF THE INVENTION The present invention is generally directed to a manufacturing method that can be fabricated on a single wafer in combination with a semiconductor biosensor and other CMOS components. An embodiment of the present invention can provide a method of fabricating a semiconductor fabrication method. The method can include providing a substrate on the substrate to form a patterned first conductive layer on the first dielectric layer, the patterned first conductive layer including a first portion and a pair of second portions. The second part is the first part of the package, and the fourth layer is formed on the patterned first conductive layer. The fourth dielectric layer has a higher rate than the pattern. The third dielectric layer is formed on the second dielectric layer. The fourth dielectric layer 'the fourth dielectric layer _ rate is greater than the third dielectric layer == using isotropic (four) to form a plurality of holes in the fourth dielectric layer, • 1 is formed by non-specific etching through these holes Patterning the first conductive layer to circumscribe the second conductive layer and filling the holes, and forming a plurality of potentials in the upper part of FIG. 2: forming, in the patterning, the first Forming an opening that exposes a portion of the fourth dielectric layer 201201292 i, through which the chamber is formed by isotropic etching between the plurality of pads. According to some embodiments of the present invention, a method of manufacturing a semiconductor biodetector is also provided. The method may include providing a substrate, forming a first dielectric layer on the substrate, forming a patterned first conductive layer on the first dielectric layer, and patterning the first conductive layer to include a first portion and a pair of second portions, Forming a second dielectric layer, a third dielectric layer, and a fourth dielectric layer on the patterned first conductive layer, forming a plurality of holes in the fourth dielectric layer to form a plurality of holes extending through the holes a via hole, the second portion of the patterned first conductive layer is exposed, a patterned second conductive layer is formed on the fourth dielectric layer, and a protective layer is formed on the patterned second conductive layer to be patterned first An opening is formed over the first portion of the conductive layer, the opening exposing a portion of the fourth dielectric layer and forming a chamber therethrough. Several embodiments of the present invention may further provide a semiconductor biosensor. The semiconductor biosensor includes a substrate, a first dielectric layer on the substrate, a patterned first conductive layer on the first dielectric layer, and the patterned first conductive layer includes a first portion and a first package a second portion of the second portion, the second dielectric layer on the patterned first conductive layer, the second dielectric layer having a ratio greater than the patterned first conductive layer: located on the second dielectric layer The third dielectric layer is located on the fourth dielectric layer on the third dielectric layer, the etching rate of the fourth dielectric layer is greater than the etching rate of the third dielectric layer, and one of the butting pads on the second portion is electrically Optionally connected to the second portion, the patterned second conductive layer on the pad, and the channel region between the pads and exposing the third dielectric layer. Other characteristics and advantages of the present invention will be apparent from the description of the section of the specification. Features and advantages of the present invention will be realized and attained by the <RTIgt; The above summary and the following detailed description are merely illustrative of exemplary embodiments of the invention and are not intended to limit the invention. The above description of the present invention is intended to be illustrative of the preferred embodiments of the invention. [Embodiment] The following is a detailed description of several embodiments and the accompanying drawings. Wherever possible, the same or similar parts are indicated in the drawings. It must be noted that the drawings are mostly in a simplified form and the invention should not be limited to the particular precise dimensions of the drawings. 2A through 2M are cross-sectional views showing a method of fabricating a semiconductor biosensor according to an embodiment of the present invention. Referring to the 2A φ diagram, a substrate 20 is provided, and the substrate 20 is doped with a first type impurity, such as a p-type impurity. Next, a plurality of Complementary Metal-Oxide-Semiconductor Devices (CMOS) elements 21, that is, complementary and symmetric ones of the first and second types of elements, such as n-type and p-type metal oxide semiconductors Metal oxide semiconductor field effect transistors (MOSFETs) may be formed on the substrate 20. In an embodiment, the CMOS device 21 may include a pair of first and second types of MOSFETs 21-1 that are operable at a higher operating voltage, such as a 12 volt (v) operation 201201292 voltage, and another For the first and second types of MOSFETs 21-2 '. , , : The general operating voltage, for example, the operating voltage of 5 volts (v) can be: and decoupled with a pair of first type and second type tM 〇 SFETs2i_3,. For lower operating voltages, such as 3, the operating voltages of FETs 2Μ, 21-2, and 21_3 volts (V) can be operated. In addition, a plurality of peripheral elements 22 can be switching elements. Next to component 21. In one embodiment, the peripheral elements:; 20 20 JM0S and resistor 22-2. The capacitor 22-1 may include a capacitor 22-1, and a dielectric layer 220, and the dielectric layer 22 is located between the first and second poles 222. Capacitor 22 is cut to detect the force applied above 1 and thus can be used as a sound sensor. /, the upper part can have a variable resistance and can be used as a thermopile. The temperature can be detected by 22-2. change. CM0S yuan ‘^. The stack sensing can be formed in the first region of the substrate 2 in the C0MS process. Please refer to FIG. 2B. The deposition step can form the 23rd C-clamp element 21 and the peripheral component L. And the substrate 2; 1 consistently, the 'first dielectric layer 23' may include undoped dioxide: ^^(USOOX), 900 „(Λ) ~π〇〇! The electrical layer can serve as an interface layer. Next, the 'patterned first-conducting layer 24^ deposition step and the subsequent lithography, (4) process 'beside the second element 22 of the substrate 2'. In the embodiment, the patterning The first conductive household = in the range including the thickness from 500 A to 700 A of the bulk material. In another embodiment, the patterned first conductive layer 24 may include polycrystalline (10) y-SiGe). In another embodiment, the 'patterned first conductive layer % 201201292 may include single crystal germanium or nano germanium. The patterned first conductive layer is the sensing resistance of the biosensor. As the n2c image, the patterned first conductive Layer 24 can then be implanted with a first type impurity or a second type impurity. In particular, the first portion f24-1 of an embodiment 24 2 can be implanted in small amounts. Concentration: a first type impurity in the range of about 2.5 x 10 cm to 5 x 10 cm -2. The light implanted portion 24 of the patterned first conductive layer 24 can serve as an impedance region for providing the impedance required for the sense resistor. In addition, in the patterned first conductive layer 2, the second portion 24_2 is sandwiched between the first portion 24-1 and the second portion 24-2, and the second portion 24-2 can be implanted in a large amount at a concentration of about 3 χΐ〇]5 cm_2. Impurity. The re-implanted portion 24_2 of the patterned first conductive layer 24 can sense the electrical contact area of the resistor. ... In another embodiment, the first portion 24 of the patterned first conductive layer 24 can be implanted in small amounts. Type II impurity, implanted in the second type impurity concentration range from 2.5 X! 014 cm-2 to 5 χ i 〇丨4 cm_2, the resistance zone, (4) the second part of the conductive layer 24 _2 can be used to implant a second type of miscellaneous shell with a concentration range of approximately 3χ1〇15 cm·2 to form the electrical contact area of the sensing resistor of the biosensor. Part 24] is implanted prior to the second portion 24_2, however, 'in the present invention (4) belongs to the technical field, the general knowledge of the implant is known. The order can be exchanged. The second dielectric layer 26 can be formed by the deposition step on the first dielectric layer 23, the patterned first conductive layer 24, and the substrate 2A. The dielectric layer 26 may desirably be attached to the patterned first electrical layer 24° in the embodiment, and the second dielectric layer 26 may include two** 9 201201292 •, '....... 'Thin thickness cerium oxide has a thickness ranging from about 40 to ^^. In another embodiment, the second dielectric layer 26 can comprise a mouse emulsified stone (SiON). The second dielectric layer 26 can serve as a first insulation that provides the desired adhesion when attached to the sense resistor.

此外,藉由沈積步驟可以形成第三介電層27於第二 介電層26上。在一實施例中,第三介電層27可以包括氮 化矽(Si3N4),氮化矽具有厚度從大約130 A到MO A的範 圍内之較薄厚度。在另一實施例中,第三介電層27可包 =氮化鋁(A1N)。第三介電層27可以作為第二絕緣,用以 提供電性隔離於接續形成於其上之各層與感測電阻之 間。在又-實施例中,氮氧化石夕(Si0N)之第三絕緣(未綠 不出)可選擇性地形成於第一絕緣(即第二介電層^ 第二絕緣(即第二介電層27 )之間。 一Further, a third dielectric layer 27 can be formed on the second dielectric layer 26 by a deposition step. In one embodiment, the third dielectric layer 27 may comprise hafnium nitride (Si3N4) having a thinner thickness ranging from about 130 A to about MO A. In another embodiment, the third dielectric layer 27 may comprise aluminum nitride (AlN). The third dielectric layer 27 can serve as a second insulation for providing electrical isolation between the layers formed thereon and the sense resistor. In a further embodiment, a third insulation (not chlorotic) of nitrous oxide (Si0N) may be selectively formed on the first insulation (ie, the second dielectric layer, the second insulation (ie, the second dielectric) Between layers 27).

接著,藉由沈積步驟與接續之平坦化步驟,例如是化 學機械研磨(CMP)步驟,可以將第四介電層28形=於 第三介電層27上方。在-實施例中,第四介電層μ可: 包括未摻雜氧化石夕玻璃(USG0X)之第一子層(未修干 以及硼磷矽玻璃(BPSG)之第二子層(未繪示出。第一) 子層具有厚度在大約為900A到iiooa的範圍内,第_ 層具有厚度大約為7000A。第四介電層28可以作為居 介電層(Inter-Layer Dielectric,ILD)。 曰間 請參照第2E圖,藉由塗佈步驟可以接著形成 第-光罩層29於第四介電層28上。在—實施例中:= 化第一光罩層29可以包括光阻。利用圖案化第一光 29當作遮罩,藉由例如是乾蝕刻步驟之非等向性蝕刻罩f 10 201201292 \wjy&lt;^yrf\ 以形成貫穿第一到第四介電層23、2 cmos^21w42^^ 一些第-通孔3(M可以暴露出各個m〇SfeTs 2及、 21d以及源極21s之區域。此外,其他第—通孔 ^ 暴露出電阻22-2、以及電容22_〗之第_電極22ι盘第= 電極222。 ,、乐一 凊參照第2F圖,接著可以剝除圖案化第—光 Γ用2形成圖案化第二光罩層31於第四介電層28上: =圖案化第二衫層31作為遮罩,藉由例如是渴式银 之等向性㈣,於第四介電層28中形成第一孔穴 32於感測電阻之電接觸區域24-2上方。 請參照第2G圖,貫穿第一孔穴32之第二通孔%, 可以以圖案化第二光罩層31作為遮罩 刻步驟’貫穿第二、第三、及第四介電層== 而形成二在-實施例中’非等向性蝕刻步驟可具有對 化石夕較向於對多晶歡#騎擇比。舉例來說,對二氧化 石夕之敍刻率大約從每秒5G埃(匈至每秒%埃⑽)的範 圍’而=晶石夕之钱刻率大約從5^至85^的範圍。因 此,二氧化矽與多晶矽之選擇比大約為5 88至η之間。 於是’當第二介電層26中可包括二氧化石夕的部分被完全 触刻時’包括多晶石夕之電接觸區域24_2可能在非等向性蝕 刻過程中輕微地被餘刻。第二通孔33可能因而暴露出電 接觸區域24-2。 雖然此實施例中,第一通孔3〇之形成係早於第二通 孔33之形成,然而,本發明之技術領域中具有通常知識 201201292 * * 者可知,形成第一通孔30與第二通孔33的順序係可以交 換的。 凊參照第2H圖,接著可以移除圖案化第二光罩層 3】,並且藉由例如是濺鍍步驟可以形成第二導電層於 第四介電層28上。第二導電層37填充第一通孔3〇與第 二通孔33,並在基板20之第一區域形成第一接觸%,、且 在基板20第二區域之接觸區域24_2上方形成第二接觸% 與接替36。在-實施例中,第二導電層37可以包括铭銅 合金(AlCu)。此外,第二導電層37具有一厚度大約為7〇〇〇 請參照第21圖,圖案化第三光罩層38形成於第二導 電層37上方。利用圖案化第三光罩層38作為遮罩,可以 餘刻第一導電層37以形成圖案化第二導電層37」。圖案 化第二導電層37-1可以當作互連層以電性#合於第一接 觸34以及接墊36。尤其,各M0SFETs 21之汲極21d與 源極21 s、週邊元件22、以及感測電阻之電接觸區域24_2 可以藉由互連層(即圖案化第二導電層37])而以電輕合 ^ 至外部電路。 請參照第2J圖,接著可以移除圖案化第三光罩層 38,並且藉由沈積步驟形成第五介電層39於第四介電層 28及圖案化第二導電層37]上。在—實施例中,第五介 電層39可以包括二氧化石夕,且其厚度大約為2〇〇〇入。 此外,藉由沈積步驟可以將第六介電層4〇形成於第 五介電層上。在-實施例中’第六介電層4〇可以包括氮 化石夕(SiW4),且其厚度大約為7〇〇〇 A。第五介電層39及 12 201201292 VYjyoyrn 第六介電層40可以一起作為保護層, 圖案化第二導電層叫。另外,第六介電絕緣給 之剛性,可以提供物理保護使圖案化第二導電声=4 於受到後續製程的傷害。 e ,免 接著,形成圖案化第四光罩層41於第 上。利用圖案化第四光罩層41作為遮罩 電層〇 ㈣步驟形成開口 42,開口 42貫穿第五至第2= 生 39、及40而進入第四介電層28令 電層 此暴露出第四介電層28。 開42可以因 ^參照第2K @,利關案化第四光罩層41作 ^ ’並且以等向性钱刻步驟從第一開口 42钱刻第四=電 :3。尤其’荨向性蝕刻步驟可具有對於二氧化矽高於氮 石 =虫刻選擇比。例如,二氧化石夕之钱刻率可以從大約 m a/s的範圍内,且氮化矽 ^10 A/s到1WWA/S的範圍内。因此,二氧H 與氮切之_選擇比大約在64.7 _ 114的範圍内。於 疋,在等向性_步驟之後,可以包括二氧切之第 電層39’以及介於接墊36之間且可以包括usG〇x和 BPSG的第四介電層28可以被大量祕刻,而環繞於第一 開口 42外圍且可以包括氮化石夕之第六介電層40以及包括 氣化石夕之第三介電層27(亦即第二絕緣)可以被輕微地姓 刻’因而暴露出第三介電層27的一部分27」,第三介電 層27的部分27-1位於第一部分24_1上方。腔室43可 作為生物感測器之通道區域’此部分將說明於後面參照第 13 201201292 3圖的段落中。 ’丨’ 請參照第2L圖,接著可以移除圖案化第四光罩片 4卜並且可形成圖案化第五光罩層料於第六介電層心 方。利用圖案化第五光罩層44作為遮罩並藉由乾+ 驟,可以形成貫穿第六介電層4G且進人第五介電層39二 第二開口 45及第三開口 46。尤其,第二開口 45實質上 以暴露出圖案化第二導電層37-1之數個部分37七 化第二導電層37-1之數個部分37七係位於數個第一接觸 34上方,且數個第—接觸係聯繫於m〇sfeTs Μ之源極 21s和汲極21d。暴露出的數個部分371a可以 MOSFETs元件21之數個接墊’此些接墊可操作於 5 V以及3V之操作電壓。此外,第二開口 45實上 暴路出圖案化第二導電層37]之數個部分37·^,金 37-1之數個部分37_lb係位於聯繫週邊元件之 ^ Π上方。此外,第三開口 46實質上可以暴露出圖荦 化第二導電層叫之數個部分37如圖案化第二導電^Next, a fourth dielectric layer 28 can be formed over the third dielectric layer 27 by a deposition step and a subsequent planarization step, such as a chemical mechanical polishing (CMP) step. In an embodiment, the fourth dielectric layer μ may: include a first sub-layer of undoped oxidized oxidized glass (USG0X) (not dried and a second sub-layer of borophosphoquinone glass (BPSG) (not drawn The first sublayer has a thickness in the range of about 900 A to iiooa, and the first layer has a thickness of about 7000 A. The fourth dielectric layer 28 can function as an Inter-Layer Dielectric (ILD). Referring to FIG. 2E, a first photomask layer 29 can be formed on the fourth dielectric layer 28 by a coating step. In the embodiment: the first photomask layer 29 can include a photoresist. Using the patterned first light 29 as a mask, the non-isotropic etching mask f 10 201201292 \wjy &lt;^yrf\ is formed, for example, by a dry etching step to form through the first to fourth dielectric layers 23, 2 cmos ^21w42^^ Some of the first via-holes 3 (M can expose the regions of the respective m〇SfeTs 2 and 21d and the source 21s. In addition, the other first vias expose the resistor 22-2 and the capacitor 22_ The _electrode 22 ι 盘 = electrode 222. , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The cover layer 31 is on the fourth dielectric layer 28: = the patterned second shirt layer 31 is used as a mask, and the first cavity 32 is formed in the fourth dielectric layer 28 by, for example, isotropic (4) of thirsty silver. Above the electrical contact region 24-2 of the sensing resistor. Referring to FIG. 2G, the second through hole % of the first hole 32 may be patterned to etch the second mask layer 31 as a masking step. , the third, and the fourth dielectric layer == and forming a second in the embodiment - the anisotropic etching step may have a ratio of fossils to the polycrystalline joy. For example, two The igniting rate of oxidized stone is about 5G angstroms per second (Hungarian to angstroms per second (10)) and the rate of crystal money is about 5^ to 85^. Therefore, cerium oxide and The selection ratio of the polysilicon is between about 5 88 and η. Thus, when the portion of the second dielectric layer 26 which may include the cerium dioxide is fully etched, the electrical contact region 24_2 including the polycrystalline stone may be in the non- The isotropic etching process is slightly entrapped. The second via 33 may thus expose the electrical contact region 24-2. Although in this embodiment, the first via 3 The formation is earlier than the formation of the second through hole 33. However, it is known in the technical field of the present invention that the order of forming the first through hole 30 and the second through hole 33 can be exchanged. Referring to FIG. 2H, the patterned second mask layer 3] can then be removed, and a second conductive layer can be formed on the fourth dielectric layer 28 by, for example, a sputtering step. The second conductive layer 37 is filled with the first layer. The via hole 3 is formed with the second via hole 33, and a first contact % is formed in the first region of the substrate 20, and a second contact % and the succeeding 36 are formed over the contact region 24_2 of the second region of the substrate 20. In an embodiment, the second conductive layer 37 may comprise a copper alloy (AlCu). Further, the second conductive layer 37 has a thickness of about 7 Å. Referring to Fig. 21, the patterned third mask layer 38 is formed over the second conductive layer 37. Using the patterned third mask layer 38 as a mask, the first conductive layer 37 can be left to form the patterned second conductive layer 37". The patterned second conductive layer 37-1 can be electrically connected to the first contact 34 and the pad 36 as an interconnect layer. In particular, the gate contact 21d of each of the MOSFETs 21 and the source 21s, the peripheral element 22, and the electrical contact region 24_2 of the sense resistor can be electrically coupled by the interconnect layer (ie, the patterned second conductive layer 37). ^ To an external circuit. Referring to FIG. 2J, the patterned third mask layer 38 can then be removed, and a fifth dielectric layer 39 is formed on the fourth dielectric layer 28 and the patterned second conductive layer 37] by a deposition step. In an embodiment, the fifth dielectric layer 39 may comprise a dioxide dioxide and has a thickness of about 2 intrusions. Further, the sixth dielectric layer 4 can be formed on the fifth dielectric layer by a deposition step. In the embodiment, the sixth dielectric layer 4A may include Nitrogen Oxide (SiW4) and has a thickness of about 7 Å. The fifth dielectric layer 39 and 12 201201292 VYjyoyrn The sixth dielectric layer 40 can be used together as a protective layer to pattern the second conductive layer. In addition, the sixth dielectric insulation provides rigidity to provide physical protection to the patterned second conductive sound = 4 to be damaged by subsequent processes. e, free, then a patterned fourth mask layer 41 is formed on the first. The opening 42 is formed by using the patterned fourth mask layer 41 as a masking layer (IV), and the opening 42 penetrates the fifth to the second = 39, and 40 and enters the fourth dielectric layer 28 to expose the electrical layer. Four dielectric layers 28. The opening 42 can be referred to as the 2K @, and the fourth mask layer 41 is made to ^ ' and the anisotropic step is engraved from the first opening 42 to the fourth = electricity: 3. In particular, the 'on the etch step can have a ratio of choice for cerium oxide over the nitrogen ray = insect. For example, the carbon dioxide engraving rate may range from about m a/s and from 矽 A 10 A/s to 1 WWA/S. Therefore, the selectivity ratio of dioxin H to nitrogen cut is approximately in the range of 64.7 _114. After the isotropic step, the second dielectric layer 39', which may include the dioxo prior, and the fourth dielectric layer 28, which may be between the pads 36 and may include usG〇x and BPSG, may be heavily engraved. And the sixth dielectric layer 40 surrounding the periphery of the first opening 42 and including the nitrite and the third dielectric layer 27 including the gasification stone (ie, the second insulation) may be slightly surnamed and thus exposed A portion 27" of the third dielectric layer 27 is formed, and a portion 27-1 of the third dielectric layer 27 is located above the first portion 24_1. The chamber 43 can serve as a passage area for the biosensor. This portion will be described later in the paragraph of Fig. 13 201201292 3 . Referring to Figure 2L, the patterned fourth mask sheet 4 can then be removed and a patterned fifth mask layer can be formed on the sixth dielectric layer core. By patterning the fifth mask layer 44 as a mask and by dry+, a second opening 45 and a third opening 46 may be formed through the sixth dielectric layer 4G and into the fifth dielectric layer 39. In particular, the second opening 45 substantially exposes the plurality of portions 37 of the patterned second conductive layer 37-1, and the plurality of portions 37 of the second conductive layer 37-1 are located above the plurality of first contacts 34. And several first-contact systems are associated with the source 21s and the bungee 21d of m〇sfeTs. The exposed portions 371a can have a plurality of pads of the MOSFETs component 21. These pads are operable at 5 V and 3 V operating voltages. In addition, the second opening 45 actually violently exits the plurality of portions 37·^ of the patterned second conductive layer 37], and the plurality of portions 37_lb of the gold 37-1 are located above the 周边 of the peripheral component. In addition, the third opening 46 may substantially expose a plurality of portions 37 of the second conductive layer, such as a patterned second conductive ^

St婁=分37七係位於聯繫感測電阻讀 。&quot; 數個第二接觸35之上方。暴露出之數個部分 37-lc可作為生物感測器之感測電阻之接墊。 ,參照帛2M目,接著可以移除圖案化第五光罩声 軸外部連接轉47至圖案化第二導·^ 暴路出之數個部分37-la、37-lb、及37_lc。包括#CM〇s 疋件21、^邊元件22、以及生物感測II 25之半導體元株 以藉由數條連接導線47裝配以執行專門或客製化之 201201292 I w jyoyv t\ 第3圖係繪示第2M圖中半導體元件2〇〇運作方式之 剖面不意圖。請參照第3圖,在操作時可以施加電壓% 於感測電阻25以致電流Is產生,電流〗流過圖宰 導電層-丨、接塾36、第二接觸35、以及生 感測電阻25。作為生物感測器之通道區域之腔室43可以 接收檢測時(未繪示出)對生物體取樣產生的電解液48。 感測電阻25可以接著感測電解液48中的離子49。尤其, 電解液48中之一些離子49可以接觸第二絕緣(亦即第三 • 介電層27)之上表面。接觸第二絕緣(第三介電層27^~ 上表面之離子49在通過較薄之第一絕緣(第二介電層26) 以及第二絕緣(第三介電層27)後,更會牽引在感^電阻 25中相反極性之離子50。在感測電阻25中被牽引的離子 5〇會影響並改變少量地植入雜質於其中之摻雜濃度,且可 以因而改變感測電阻25之片電阻。因此,可藉由給定固 定的施加電壓Vs以改變流過感測電阻25之感應電流is 的大小。感應電流Is的改變量可以接著被量測,因而可藉 籲 由生物感測器測得電解液48中的離子49。當異常機能的 生物體受檢測時,會導致脫離標準值之異常離子49 =濃 度,引起感測電阻25中離子50之偏離量,因而造成其中 電阻值的改變。因此,藉由生物感測器可以檢測出生物體 之機能異常的情況。此外,在半導體元件2〇0中,電容 可作為聲音感測器,且電阻22-2可作為熱電堆感測器。 综上所述,雖然本發明已以較佳實施例揭露如上,然 其並非用以限定本發明。本發明所屬技術領域中具有通常 知識者,在不脫離本發明之精神和範圍内,當可作各種之 15 201201292 ----.St娄=分37七系 is located in the contact sense resistor read. &quot; Several second contacts above 35. The exposed portions of the 37-lc can be used as pads for the sensing resistors of the biosensor. Referring to the M2M mesh, the patterned fifth reticle external connection 47 can then be removed to the patterned portions of the second spurs 37-la, 37-lb, and 37_lc. The semiconductor element including the #CM〇s element 21, the edge element 22, and the biosensing II 25 is assembled by a plurality of connecting wires 47 to perform specialization or customization 201201292 I w jyoyv t\ Fig. 3 The cross-sectional view of the operation mode of the semiconductor device 2 in the 2M drawing is not shown. Referring to Fig. 3, a voltage % can be applied to the sense resistor 25 during operation so that a current Is is generated, and the current flows through the conductive layer - 丨, the junction 36, the second contact 35, and the sense resistor 25. The chamber 43 as the passage region of the biosensor can receive the electrolyte 48 generated by sampling the organism at the time of detection (not shown). The sense resistor 25 can then sense the ions 49 in the electrolyte 48. In particular, some of the ions 49 in the electrolyte 48 may contact the upper surface of the second insulation (i.e., the third dielectric layer 27). Contacting the second insulation (the third dielectric layer 27^~ the upper surface of the ion 49 after passing through the thinner first insulation (second dielectric layer 26) and the second insulation (third dielectric layer 27) The ions 50 of opposite polarity are sensed in the sense resistor 25. The ions 5 牵引 pulled in the sense resistor 25 affect and change the doping concentration in which the implant is implanted in a small amount, and thus the sense resistor 25 can be changed. The sheet resistance. Therefore, the magnitude of the induced current is flowing through the sense resistor 25 can be changed by giving a fixed applied voltage Vs. The amount of change in the induced current Is can then be measured, and thus can be called by biological sensing. The ion 49 in the electrolyte 48 is measured. When the abnormally functioning organism is detected, the abnormal ion 49 = concentration which deviates from the standard value is caused, causing the deviation of the ion 50 in the sensing resistor 25, thereby causing the resistance value therein. Therefore, the biosensor can detect the abnormality of the function of the birthed object. Further, in the semiconductor element 2〇0, the capacitor can function as a sound sensor, and the resistor 22-2 can be used as a thermopile sensing. In summary, although The present invention has been disclosed in the above preferred embodiments, and is not intended to limit the scope of the present invention. It is to be understood that the present invention can be used in various forms without departing from the spirit and scope of the invention. ---.

Λ· V 更動與潤飾。因此’本發明之保護範圍當視後附之申請專 利範圍所界定者為準。 【圖式簡單說明】 第1Α到1C圖係繪示先前技術中半導體生物感測器 的製造方法之剖面示意圖。 第2Α到2Μ圖係緣示依照本發明一實施例之半導體 生物感測器的製造方法剖面示意圖。 第3圖係繪示第2M圖中的半導體生物感測器運作方 式之剖面示意圖。 【主要元件符號說明】 20 :基板 21 :互補金屬氧化半導體元件 21d :汲極 21s :源極 22 :週邊元件 22-1 :電容 22-2 :電阻 23 :第一介電層 24 :圖案化第一導電層 24-1 :第一部分 24-2 :第二部分 25 :感測電阻 201201292 1 w jy〇yr/-\ 26 :第二介電層 27 :第三介電層 28 :第四介電層 29:圖案化第一光罩層 30-1、30-2 :第一通孔 31 :圖案化第二光罩層 32 :第一孔穴 • 33 :第二通孔 34 :第一接觸 35 :第二接觸 36 :接墊 37 :第二導電層 37-1 :圖案化第二導電層 38 :圖案化第三光罩層 • 39 :第五介電層 40 :第六介電層 41 :圖案化第四光罩層 42 :第一開口 43 :腔室 44 :圖案化第五光罩層 45 :第二開口 46 :第三開口 17 201201292 47 :外部連接導線 48 :電解液 49、50 :離子 220 :介電層 221 :第一電極 222 :第二電極Λ· V is more moving and retouching. Therefore, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A to 1C are schematic cross-sectional views showing a manufacturing method of a semiconductor biosensor in the prior art. 2A to 2D are schematic cross-sectional views showing a method of fabricating a semiconductor biosensor according to an embodiment of the present invention. Figure 3 is a schematic cross-sectional view showing the operation of the semiconductor biosensor in Figure 2M. [Description of main component symbols] 20: Substrate 21: Complementary metal oxide semiconductor device 21d: Deuterium 21s: Source 22: Peripheral element 22-1: Capacitor 22-2: Resistor 23: First dielectric layer 24: Patterning A conductive layer 24-1: first portion 24-2: second portion 25: sense resistor 201201292 1 w jy〇yr/-\ 26: second dielectric layer 27: third dielectric layer 28: fourth dielectric Layer 29: Patterning the first mask layer 30-1, 30-2: first via 31: patterning the second mask layer 32: first aperture • 33: second via 34: first contact 35: Second contact 36: pad 37: second conductive layer 37-1: patterned second conductive layer 38: patterned third mask layer 39: fifth dielectric layer 40: sixth dielectric layer 41: pattern Fourth photomask layer 42: first opening 43: chamber 44: patterned fifth mask layer 45: second opening 46: third opening 17 201201292 47: external connecting wire 48: electrolyte 49, 50: ion 220: dielectric layer 221: first electrode 222: second electrode

Claims (1)

201201292 七、申睛專利範圍: 1. 一種半導體生物感測器的製造方法,該方法包括: 提供一基板; 形成一第一介電層於該基板上; 成-圖案化第—導電層於該第〆介電層上,該圖案 一第V電層包括-第一部分,及一對第二部份,該對第、 一部份係以三明治的形式包夾該第一部份; 人形成一第二介電層於該圖案化第一導電層上,該第二 _介電層具有—_率大於該圖案化第—導電層之一 率; 形成一第三介電層於該第二介電層上; 形成一第四介電層於該第三介電層上,該第四介電層 具有^刻率大於該第三介電層之—餘刻率; ,由等向性蝕刻形成複數個孔穴於該第四介電層; 藉由一非等向性蝕刻形成複數個貫穿該些孔穴2通 孔,暴露出該圖案化第一導電層之該些第二部分; ★形成-圖案化第二導電層於該第四介電層上,該圖案 化第一導電層填補該些孔穴,並於該圖案化第一導電層之 °亥些第一部分上方形成複數個接塾; 形成一保護層於該圖案化第二導電層上; 藉由非等向性触刻形成一開口,該開口暴露出在該 圖案化第一導電層之該第一部分上方的該第四介電層的 一部分;以及 藉由專向性敍刻經由该開口形成一腔室於該些接 墊之間。 — 201201292 作 hs 2.如申請專利範圍第1項所述之方法,其中在形成 該第一介電層之前’更包括形成複數個互補金屬氧化^導 體(CMOS) A件以及複數個週邊元件於該基板之一第一 區域。 3.如申請專利範圍第丨項所述之方法,其中形成該 圖案化第—導電層更包括: 第一型雜質其中之 少量地植入一第一型雜 至該第一部分;以及201201292 VII. The scope of the patent application: 1. A method for manufacturing a semiconductor biosensor, the method comprising: providing a substrate; forming a first dielectric layer on the substrate; forming a patterned first conductive layer On the second dielectric layer, the pattern-V electrical layer includes a first portion and a pair of second portions, the first portion of the pair sandwiching the first portion in the form of a sandwich; a second dielectric layer on the patterned first conductive layer, the second dielectric layer having a _ rate greater than a ratio of the patterned first conductive layer; forming a third dielectric layer on the second dielectric layer Forming a fourth dielectric layer on the third dielectric layer, the fourth dielectric layer having a higher engraving ratio than the third dielectric layer; and forming by isotropic etching a plurality of holes are formed in the fourth dielectric layer; forming a plurality of through holes extending through the holes 2 by an anisotropic etching to expose the second portions of the patterned first conductive layer; Forming a second conductive layer on the fourth dielectric layer, the patterned first conductive layer filling the holes And forming a plurality of interfaces over the first portion of the patterned first conductive layer; forming a protective layer on the patterned second conductive layer; forming an opening by anisotropic contact The opening exposes a portion of the fourth dielectric layer over the first portion of the patterned first conductive layer; and a cavity is formed between the pads via the opening by the specific characterization. The method of claim 1, wherein the forming of the first dielectric layer further comprises forming a plurality of complementary metal oxide (CMOS) A-pieces and a plurality of peripheral components. One of the first regions of the substrate. 3. The method of claim 2, wherein forming the patterned first conductive layer further comprises: implanting a first type impurity into the first portion to a small amount of the first type impurity; 大量地植入該第一型雜質和該第二型雜質其 至該些第二部分。 Λ 4.如申請專利範圍第1項所述之方法,其中該第二 介電層包括選自二氧化矽和氮氧化矽其中之一之材料。 5·如申請專利範圍第1項所述之方法,其中該第二 介電層包括選自氮化矽和氮化鋁其中之一之材料。The first type impurity and the second type impurity are implanted in a large amount to the second portions. 4. The method of claim 1, wherein the second dielectric layer comprises a material selected from the group consisting of cerium oxide and cerium oxynitride. 5. The method of claim 1, wherein the second dielectric layer comprises a material selected from the group consisting of tantalum nitride and aluminum nitride. 八6.如申請專利範圍第1項所述之方法,其中該第四 介電層包括未摻雜氧化矽玻璃(USG〇x)之一第一 及硼磷矽破璃(BPSG)之一第二子層。 曰、 項所述之方法,其中形成該 7.如申請專利範圍第 保護層更包括: 形成一第五介電層於該圖案化第二導電層上;以及 形成一第六介電層於該第五介電層上。 8. 如申請專利範圍第7項所述之方法,其中 介電層包括氧化矽且該第六介電層包括氮化矽。 9. 一種半導體生物感測器的製造方法,該方法包括·· 提供一基板; 20 201201292 1 yy jy〇yrt\ 形成一第一介電層於該基板上; 形成一圖案化第一導電層於該第一介電層上, 化第一導電層包括一第一部分及一對第二部分. 回〃、 於該圖案化第-導電層上方依序一’第二介電 層、一第三介電層、以及一第四介電層; 形成複數個孔穴於該第四介電層中; 形成貫穿該些孔穴之複數個通孔,暴露出該 一導電層之該些第二部分; 系化弟 形成一圖案化第二導電層於該第四介電層上; 形成一保護層於該圖案化第二導電層上; 形成—開口以暴露出在該圖案化第θ 一導電層之詨 一部分上方的該第四介電層之一部分;以及 Λ 經由該開口形成一腔室。 10. b申請專利範圍第9項所述之方法,其 二電層具有-餘刻率大於該圖案化第一導電層之上 介電請專利範圍第9項所述之方法,其中該第四 曰-ϋ刻率大於該第三介電層之-餘刻率。 丨2.如申請專利範圍第9項所述 穿該些孔穴之該些通孔更包括:31之H、中形成貝 ,成—圖案化光罩於該第四介電層上; 穴;】及f 4第四電層之—等向性钱刻,形成複數個孔 f3由:非等向性触刻形成貫穿該些孔穴之該些通孔。 .如申請專㈣圍第9項所狀方法,其中形成該 21 201201292 腔室更包括 形成一圖案化光罩於該保護層上; 該第四介電層 藉由一非等向性姓刻以飯刻該保護層 以形成該開口;以及 藉由一等向性蝕刻經由該開口形成該腔室。 14.一半導體生物感測器,其包括: 一基板; 一第一介電層’形成於該基板上;8. The method of claim 1, wherein the fourth dielectric layer comprises one of undoped yttrium oxide glass (USG〇x) and one of borophosphorus ruthenium (BPSG). Two sub-layers. The method of claim 7, wherein the forming the protective layer further comprises: forming a fifth dielectric layer on the patterned second conductive layer; and forming a sixth dielectric layer thereon On the fifth dielectric layer. 8. The method of claim 7, wherein the dielectric layer comprises ruthenium oxide and the sixth dielectric layer comprises tantalum nitride. 9. A method of fabricating a semiconductor biosensor, the method comprising: providing a substrate; 20 201201292 1 yy jy〇yrt\ forming a first dielectric layer on the substrate; forming a patterned first conductive layer The first conductive layer includes a first portion and a pair of second portions on the first dielectric layer. The first conductive layer and the third dielectric layer are sequentially arranged above the patterned first conductive layer. An electrical layer and a fourth dielectric layer; forming a plurality of holes in the fourth dielectric layer; forming a plurality of through holes penetrating the holes to expose the second portions of the conductive layer; Forming a patterned second conductive layer on the fourth dielectric layer; forming a protective layer on the patterned second conductive layer; forming an opening to expose a portion of the patterned θ-conductive layer a portion of the fourth dielectric layer above; and a chamber is formed through the opening. 10. The method of claim 9, wherein the second electrical layer has a method with a residual ratio greater than that of the patterned first conductive layer, and the method of claim 9, wherein the fourth The 曰-etching rate is greater than the residual ratio of the third dielectric layer.丨2. The through holes penetrating the holes as described in claim 9 further include: 31 H, forming a shell, forming a patterned mask on the fourth dielectric layer; And the isoelectricity of the fourth electrical layer of the f4, forming a plurality of holes f3 by: anisotropically forming the through holes penetrating the holes. The method of claim 9, wherein the forming the 21 201201292 chamber further comprises forming a patterned mask on the protective layer; the fourth dielectric layer is engraved by an anisotropic The protective layer is engraved to form the opening; and the chamber is formed through the opening by an isotropic etching. 14. A semiconductor biosensor, comprising: a substrate; a first dielectric layer 'on which is formed on the substrate; 一圖案化第-導電層’形成於該第—介電層上,且該 圖案化第-導電層包括一第一部分及以三明治形式包丄 该第一部分之一對第二部分; 一第二介電層,形成於該圖案化第一導電層上,該第 二介電層具有一蝕刻率大於該圖案化第一導電層的蝕刻 率; x 一第三介電層,形成於該第二介電層上;a patterned first conductive layer is formed on the first dielectric layer, and the patterned first conductive layer includes a first portion and a sandwich portion of the first portion to the second portion; An electric layer formed on the patterned first conductive layer, the second dielectric layer having an etch rate greater than an etch rate of the patterned first conductive layer; x a third dielectric layer formed on the second dielectric layer On the electrical layer; 一第四介電層,形成於該第三介電層上,該第四介電 層具有一蝕刻率大於該第三介電層的蝕刻率; 於邊些第二部分上方形成一對接墊,該對接墊與該些 第二部分以電性連接; 圖案化第二導電層’形成於該些接墊上;以及 一通道區域,係位於該些接墊之間並暴露出該第三介 電層。 I5.如申請專利範圍第14項所述之半導體生物感測 器,其中該圖案化第一導電層之該第一部分包括一輕摻雜 雜質且該些第二部分包括一重摻雜雜質。 22 201201292 料難㈣14韻叙半導體生物感測 益'、5亥第二介電層包括選自二氧化矽和氮氧化矽其中 之一之一材料。 〇σ 17.如申請專利範圍第14項所述之半導體生物感測 器’、中。亥第二介電層包括選自氮化石夕和氮化|呂其中之一 之一材料。a fourth dielectric layer is formed on the third dielectric layer, the fourth dielectric layer has an etch rate higher than that of the third dielectric layer; and a pair of pads are formed over the second portions. The mating pad is electrically connected to the second portions; the patterned second conductive layer is formed on the pads; and a channel region is located between the pads and exposing the third dielectric layer . The semiconductor biosensor of claim 14, wherein the first portion of the patterned first conductive layer comprises a lightly doped impurity and the second portions comprise a heavily doped impurity. 22 201201292 It is difficult to (4) 14 rhyme semiconductor biosensing The second dielectric layer of Yi', 5hai includes one of one selected from the group consisting of cerium oxide and cerium oxynitride. 〇 σ 17. The semiconductor biosensor as described in claim 14 of the patent application. The second dielectric layer includes one material selected from the group consisting of nitride nitride and nitride. 哭8·如申請專利範圍第14項所述之半導體生物感測 °°其中5亥第四介電層包括未摻雜氧化矽玻璃(USGOX) 之一第—子層及硼磷矽玻璃(BPSG)之一第二子層。 19.如申請專利範圍第14項所述之半導體生物感測 更包括在該第四介電層上之_保護層,以暴露出該通 ^區域’其中該保護層包括-第五介電層以及位於該第五 ”電層上之一第六介電層。 哭 申请專利範圍第19項所述之半導體生物感測 L匕矽:該第五介電層包括氧化矽,且該第六介電層包括 23Cry 8 · The semiconductor biosensing as described in claim 14 of the patent range ° wherein the 5th fourth dielectric layer comprises one of the undoped yttrium oxide glass (USGOX) and the borophosphon glass (BPSG) ) one of the second sub-layers. 19. The semiconductor biosensing of claim 14, further comprising a protective layer on the fourth dielectric layer to expose the pass region, wherein the protective layer comprises a fifth dielectric layer And a sixth dielectric layer on the fifth electrical layer. The semiconductor biosensing L匕矽 described in claim 19: the fifth dielectric layer includes yttrium oxide, and the sixth The electrical layer includes 23
TW099121319A 2010-06-29 2010-06-29 Semiconductor bio-sensors and methods of manufacturing the same TWI384566B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099121319A TWI384566B (en) 2010-06-29 2010-06-29 Semiconductor bio-sensors and methods of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099121319A TWI384566B (en) 2010-06-29 2010-06-29 Semiconductor bio-sensors and methods of manufacturing the same

Publications (2)

Publication Number Publication Date
TW201201292A true TW201201292A (en) 2012-01-01
TWI384566B TWI384566B (en) 2013-02-01

Family

ID=46755757

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099121319A TWI384566B (en) 2010-06-29 2010-06-29 Semiconductor bio-sensors and methods of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI384566B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201916386A (en) 2017-10-13 2019-04-16 國立臺灣大學 Microfluidic chip and manufacturing method thereof and integrated microfluidic chip system

Also Published As

Publication number Publication date
TWI384566B (en) 2013-02-01

Similar Documents

Publication Publication Date Title
US8357547B2 (en) Semiconductor bio-sensors and methods of manufacturing the same
US10184912B2 (en) Backside sensing BioFET with enhanced performance
CN103675024B (en) Directly sense BioFET and manufacture method
TWI557409B (en) Biofet with increased sensing area
US10048220B2 (en) Biosensor field effect transistor having specific well structure and method of forming the same
US20120024700A1 (en) Sensor device and manufacturing method
CN108226247A (en) Semiconductor device
US8674474B2 (en) Biosensors integrated with a microfluidic structure
CN104051512B (en) The back side sensing biological field effect transistor of performance enhancement
US10121660B2 (en) Method for fabricating semiconductor device
TW201248737A (en) Semiconductor device and method of manufacturing the same
CN104049021B (en) There is the BIOFET of the sensing area of increase
WO2019023945A1 (en) Fluidic channel structure device and manufacturing method therefor
TW201201292A (en) Semiconductor bio-sensors and methods of manufacturing the same
JP4493596B2 (en) Semiconductor device
JPH03138929A (en) Silicide gate level runner
CN108732225B (en) Ion sensitive field effect transistor and forming method thereof
US10746694B2 (en) Integrated circuits with sensors and methods for producing the same
JP5478626B2 (en) Semiconductor device
JP2002156356A (en) Chemical semiconductor sensor and its manufacturing method
KR100752907B1 (en) Semiconductor device
US20200328088A1 (en) Ion-sensitive field-effect transistor with micro-pillar well to enhance sensitivity
JP2010165942A (en) Semiconductor device, and method of manufacturing the same
JPH08162636A (en) Field-effect element and formation method of its electrode
WO2019023943A1 (en) Fluidic channel structure device and manufacturing method therefor