TW201200342A - Nano-imprint method - Google Patents

Nano-imprint method Download PDF

Info

Publication number
TW201200342A
TW201200342A TW99120723A TW99120723A TW201200342A TW 201200342 A TW201200342 A TW 201200342A TW 99120723 A TW99120723 A TW 99120723A TW 99120723 A TW99120723 A TW 99120723A TW 201200342 A TW201200342 A TW 201200342A
Authority
TW
Taiwan
Prior art keywords
substrate
template
resist
nano
layer
Prior art date
Application number
TW99120723A
Other languages
Chinese (zh)
Other versions
TWI386304B (en
Inventor
Zheng-Dong Zhu
Qun-Qing Li
li-hui Zhang
Mo Chen
Yuan-Hao Jin
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99120723A priority Critical patent/TWI386304B/en
Publication of TW201200342A publication Critical patent/TW201200342A/en
Application granted granted Critical
Publication of TWI386304B publication Critical patent/TWI386304B/en

Links

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

The present invention provides a nano-imprint method, the nano-imprint method includes following steps: step a, providing a substrate and a template, which one surface of the substrate has a organic first resist layer and one surface of the template have nano-graphics; step b, bonding the substrate and the template by imprint resist HSQ, the imprint resist HSQ is clamped between the first resist of the substrate and the said surface of the template, which forming the second resist layer; step c, pressing the substrate and the template to copy the nano-graphics of the template to the second resist layer, which forming the nano-graphics on the second resist layer; step d, transferring the nano-graphics of the second resist layer to the substrate, which forming the nano-graphics on the substrate. The nano-imprint method of present invention is easy, low cost, and the nano-graphics is good in fidelity and high in definition.

Description

201200342 六、發明說明: 【發明所屬之技術領域】 [0001]本發明涉及一種奈米奈米壓印方法,尤其涉及一種能夠 在室溫下進行的奈米壓印方法β 【先前技術】 [0002]在先前技術中,製作各種半導體設備時,常需要製作具 有數十奈米到數百奈米的微細結構的奈米圖形。具有上 述微細結構的奈米圖形的製作方法主要有光或電子束的 光刻方法:首先,經過掩模或者掃描聚焦的輕射線或者 電子束,ϋ射光致抗餘劑組合物或光罩,上述輪射線或 電子束將會改變被曝光區域的抗铺的化學結構;然後 ,再通過祕时法除去被曝光W或者被曝光區域外 的抗蝕劑’從而獲得特定的圖案。 闕為了適應積體電路技術的迅猛發展,在先前的光學光刻 技術上努力突破解析度極限的同時,下一代光刻技術^ 近幾年内獲得大量的研究。例如,深紫外光刻技術採用 波長13~14rm的光源和精度極高的反射式光學系統有效 降低了折射系統中強烈的光吸收,但工藝繁雜、造價昂 貴的光刻系統,限制了該技術的應用。 剛上世紀九十年代以來,一種新的奈米圖形的製作工藝得 到 了發展 L 請參見 Ch〇U S Y,Krauss p R,Renst ㈣ P. Imprint of sub 25 nm vias and trenches 辻 P〇lynierS. Appl. Phys. Lett,,1995,67(21): 3114-3116)。上述製作奈米圖形的新技術,在本領域 中被稱作奈米I印或者奈米®印平板印刷術。奈米壓印 099120723 表單編號A0101 第4頁/共24 1 0992036561-0 201200342 是指採用繪有奈米圖形的模板將基片上的抗蝕劑(res_ Jst)薄膜壓印奈米圖形,再對基片上的奈米圖形進行處 理,如刻姓、剝離等,最終製成具有奈米結構的圖形和 半導體器件。以奈米壓印技術形成奈米圖案的方法,藉 由採用具有奈米圖形的硬性模板壓印抗蝕劑層形成奈米 圖案,而不需要依賴任何輻射曝光形成。所以,奈米壓 印技術可以消除在常規的光刻方法中所必須的比如對光 的波長的限制,以及在抗蝕劑和基底内粒子的反向散射 ,和光干擾等限制條件,以實現更高的解析度。因此, Ο [0005] 〇 [0006] 相對於光刻技術,奈米壓印技術具有製作成本低、簡單 " . .... : ............... . 易行、效率高的優點,具有廣泛的應用前景。 由於奈米壓印技術藉由機械方式使聚合物抗蝕劑變形, 而不是通過改變平板印刷術的抗蝕劑的化學性能實現。 因此,奈米壓印技術對聚合物抗蝕劑具有較高的要求, 即該聚合物抗蝕劑應為熱塑型或光固化型,且具有良好 的成膜性,模量高,保持形變能力,且固化後容易脫模 ,使得模板與抗蝕劑分離後,該抗蝕劑仍然可以保留在 基底。先前技術中,奈米壓印的抗蝕劑主要有,矽橡膠 系列,環氧樹脂系列,丙烯酸酯系列,聚苯乙烯系列等 〇 1998年6月30日公告的美國專利5, 772 9〇5,公開了一 種聚曱基丙歸酸甲冑(PMMA)作為奈米壓印抗餘劑的技 術方案,將聚甲基丙烯酸甲酯在矽片上旋轉澆鑄成膜, 再採用熱壓的方法在基底上形成奈米圖形。所公開的奈 米壓印方法要求加熱奈米壓印抗餘劑(約2 〇 〇。〇)使之產 099120723 表單編號A0101 第5頁/共24頁 0992036561-0 201200342 生塑性形變’然後再將奈米壓印抗蝕劑冷卻(低於PMMA 的玻璃化轉變溫度Tg,約l〇5°C)固化成型後,除去模板 攸而开/成奈米級圖形。但是,由於聚甲基丙稀酸曱醋的 玻璃化轉變溫度較高,使得該方法中的加熱溫度過高, 使得該奈米壓印抗蝕劑的力學穩定性降低,與模板的黏 附性強’難以脫模,得到的圖形不平整,使獲得的奈米 圖形的解析度較低。先前技術中,為了提高奈米圖形的 解析度’在壓印之前,常常需要對模板進行預處理,但 是模板的預處理過程繁雜,因此提高了奈米壓印的工藝 複雜度,以及成本,該方法不利於實際應用。 【發明内容】 [0007] [0008] [0009] 有赛於此’有必要提供一種獲得的圖形的保真度好,解 析度較高,且在室溫下即能進行壓印的奈米壓印方法。 —種奈米壓印方法,其包括以下步驟:步驟a,提供一基 底和一表面具有奈米圖形的模板,所述基底的一表面形 成有有機第一抗蝕層,·步驟b,藉由壓印抗蝕劑HSQ貼合 所述基底和模板,貼合時所述壓印抗蝕劑HSQ直接接觸所 述模板的具有奈米圖形的表面,並將壓印抗蝕劑HSQ夾持 於該基底的第一抗钱層與所述模板的所述表面之間,以 形成第二抗蝕層;步驟c ’在室溫下、通過在該基底和模 板施加壓力,將模板表面的奈米圖形複製到所述第二抗 餘層,在所述第二抗姓層形成奈米圖形;以及步驟d,將 所述第二抗蝕層上的奈米圖形轉移至基底,在所述基底 表面形成奈米圖形。 —種奈米壓印方法’其包括以下步驟:步驟a,提供一基 099120723 表單蝙號A0101 第6頁/共24頁 0992036561-0 201200342 底,在所述基底的一表面依次形成一有機第一抗钱層、 一過渡層及一由壓印抗蝕劑HSQ構成的第二抗蝕層;步驟 b ’提供一表面具有奈米圖形的模板,並將該模板表面的 奈米圖形,在室溫下複製到所述第二抗蝕層;步驟c,將 所述第二抗蝕層上的奈米圖形轉移至基底,在所述基底 表面形成奈米圖形。 [0010] ο [0011] ο 一種奈米壓印方法,其包括以下步驟:步驟a,提供一基 底和一表面具有奈米圖形的模板’所述基底的—表面形 成有有機第一抗姓層,步驟b:,提供一表面具有奈米圖形 的模板,在該模板具有奈米囷形的表面形成壓印抗蝕劑 HSQ,以形成一第二抗蝕層;步驟c,將墓底覆蓋於模板 ,使所述基底的過渡層與所述模板的覆蓋有壓印抗蝕劑 HSQ的表面接觸,常溫下壓所述模板及基底,並脫模;以 及步驟d,將所述第二抗蝕層上的奈米圖形轉移至基底, 在所述基底表面形成奈米圖形。 與先前技術相比較,本發明奈米壓印方法具有以下優點 :其一,該所述第二抗蝕層由壓印抗蝕劑HSQ構成,其可 以在室溫下進行壓印,該壓印抗蝕劑HSQ在後續製造工藝 中固化產生交聯’提高了模量。其二,由於該壓印抗蝕 劑HSQ在至溫下黏附性小較易脫膜,可確保圖形的完整性 及解析度。其二,基底與第二抗蝕層之間形成有有機第 一抗蝕層,將所述第二抗蝕層上的奈米圖形轉移至基底 過程中,對有機第一抗蝕層刻蝕過程對由壓印抗蝕劑 構成的第二抗蝕層只會發生固化交聯,對第一抗蝕層起 到有效的光罩作用,減少了第一抗蝕層的奈米圖形產生 099120723 表單編號A0101 第7頁/共24頁 099203656卜0 201200342 缺陷’確保了第—抗歸的奈米圖形的解析度和保真性 。其四,本發明提供的奈米壓印方法,其可在室溫下進 行壓印,且模板無須預先處理,使得該方法工藝簡單, 成本低。 【實施方式】 [0012] [0013] [0014] [0015] [0016] [0017] [0018] 099120723 以下將結合附圖詳細說明本發明實施例的奈米光學天線 的製造方法。 請參閱圖1及圖2,採用本發明提供的奈米壓印方法的第 一實施例,其包括以下步驟: 步驟S11,提供一基底10,在所述基底1〇的一表面(未標 示)依次形成一第一抗蚀層110、一過渡層1 2〇及一第二抗 钱層1 3 0。 首先,在所述基底10的所述表面形成該第一抗蝕層11{)。 挺供一基底10,清洗該基底10 ;在基底10的一表面沉積 有機抗蝕劑,後烘乾以形成所述第一抗蝕層110。所述有 機抗姓劑可以採用絲網印刷法或旋塗法等沉積於所述基 底1 0上,形成所述第一抗触層1 1 0。本實施例中,所述有 機抗蝕劑為正性抗蝕劑ZEP520。 所述基底10的材料可為硬性材料,如矽、氧化矽、氮化 石夕或氮化鎵’所述基底1〇的材料還可為柔性材料,如pSp 、PMMA或PET 本實施例中,所述基底1 〇的材料為矽,採用標準工藝清 洗基底10後,於基底1〇的一表面旋塗ZEP52〇,旋塗轉速 為5〇〇轉/分鐘〜600 0轉/分鐘,時間為〇. 5分鐘~1. 5分鐘 第8頁/共24頁 0992036561-0 A單編珑A0101 201200342 ,然後在140 C〜18(TC烘烤3〜5分鐘。從而在所述基底l〇 的所述表面形成該第一抗蝕層11〇。該第一抗蝕層11〇的 厚度為100奈米〜5〇〇奈米。本實施例中,所述標準工藝為 超淨間標準清洗工藝。 剛其次,在第-抗餘層11Q的遠離所述基㈣的表面形成一 過渡層120 ’以覆蓋所述第—抗钱層η。。 闺所述過渡層120的材料為氧化發。可通過錢射法或沉積法 ,在所述第一抗蝕層110上形成所述過渡層12Q ^ 〇 [〇〇21]本實施例中,所述肩—抗蝕層110上沉積玻璃態氧化矽, 形成一厚度為1:0奈米〜1〇〇奈米的氧化梦薄.膜。 [0022] 最後,形成一第二抗蝕層130覆蓋所述過渡層12〇。 [0023] 採用無機類壓印抗蝕劑(hydrogen silsesquioxane, HSQ) ’通過液滴塗佈、旋塗法等方法沉積於所述過渡層 120,以形成第二抗蝕層130。本實施例中,將所述壓印 抗蚀劑HSQ採用旋塗的方式:塗佈、於所述過渡層12〇,旋塗 ◎ 轉速為25〇〇轉/分鐘〜7000##分鏵,旋塗時間為0. 5分鐘 〜2分鐘’該壓印抗蝕劑HSq的旋塗在高壓下進行。該第二 抗蝕層130的厚度為1〇〇奈米~500奈米,優選的為1〇〇奈 米~300奈米。該第二抗蝕層丨3〇的厚度的控制也相當的重 要:經實驗得知該壓印抗蝕劑HSQ固化後’其類似氧化石夕 材料’若其厚度過厚,則在後績工藝中刻蝕與去除較難 ;若其厚度過薄,則在後續工藝中難以滿足足夠的刻麵 選擇比。 該壓印抗蝕劑HSQ具有可在室溫下壓印、結構穩定性較佳 099120723 表單編號A0101 第9頁/共24頁 〇99: [0024] 201200342 [0025] [0026][0027] [0028] [0029] [0030] 099120723 、以及壓印解析度可達 U〇nm以下之高解析度等特性。 步驟S12,提供一表面夏 , ,、有不米圖形的模板20,並將該模 板20表面的奈米圖形福 製到所述第二抗蝕層13〇。 首先’提供一表面夏右·太,、有不' 米圖形的模板20 〇 該模板20的材料可為硬 生材料,如鎳、矽或者氧化矽。 該模板20的材料也可发 為柔性材料’如pet、pmma、ps、 PDMS等。該模板2〇可以± ,i、 通過電子束曝光製備,模板20的 表面形成有奈米圖形,兮 °Λ不、米圖形由模板2 0的表面的複 數第一凸部24和複數第一 凹槽26構成。本實施例中,該 模板20的材料為氧化矽。其次,將模㈣形成有奈米圖形的表面與所述基底心 的第二抗姓層130貼合’常溫下壓所述模板2g與基底職 ,脫模。 在常溫下,可通過模板20向基底1G施加壓力,使得所述 模板20上的奈米圖轉⑽m二抗題13〇。具體地,使 模板20形财奈米圖形的表面與所述基底1G上的第二抗 蝕層130貼合’並在真空度為ixio-W七10-w ,施加壓力為2碎/平方英尺〜1〇〇碎/平方英尺(psi)的 壓印條件下’㈣2~30分鐘,最後將模板2Q與基底1〇分 離從而該柄板20表面的奈米圖形複製到所述第二抗蝕 層130。所述第二抗㈣13〇形成的奈米圖形包括複數第 二凹槽16和第二凸部14。且該第二凹槽16與所述第-凸 部24對應,所述第二凸Αιη;ΐΑ凸414與所述第一凹槽26對應。 步驟s!3,將所述奈米圖形轉移至基·,在所述基底1〇 表單編號A0101 第10頁/共24頁 099203 201200342 [0031] [0032] [0033] Ο ο [0034] 表面形成奈米圖形。 首先,刻蝕去除所述第二抗蝕層130的奈米圖形的第二凹 槽1 6底部殘留的壓印抗蝕劑HSQ和第二凹槽16底部的所述 過渡層120,露出第一抗蝕層110。 刻蝕去除所述第二凹槽16底部殘留的壓印抗蝕劑HSQ和第 二凹槽16底部的過渡層120可藉由電漿刻蝕的方法。 本實施例中,採用碳氟(CF,)反應性電漿刻蝕去除第二凹 4 槽16底部殘留的壓印抗蝕劑HSQ和第二凹槽16底部的所述 過渡層120,露出第一抗蝕層11〇 〇具體地,將上述形成 有奈米圖形的基底10放置於反應性.電槳刻蝕系統中,該 反應性電漿刻蝕系統的一感應功率源差生CF,電漿,CF 4 4 電漿以較低的離子能量從產生區域擴散並漂移至所述基 底10的第二抗蝕層130,此時該第二抗蝕層的第二凹槽16 底部殘留的壓印抗姓劑HSQ和第二凹槽16底部的所述過渡 層1 20幾乎同步被所述電聚刻蝕。Cf^電漿系統的功率 是10瓦〜15〇瓦,CF41漿的適入速;:举爲2~100標況毫升每 分(standard-state cubic centimeter per inute seem) ’形成的氣壓為1〜帕,採用cf電漿 刻蝕時間為2秒〜4分鐘。通過上述方法,第二凹槽16底部 殘留的该壓印抗蝕劑HSQ和第二凹槽16底部的所述過渡層 J蚀掉,露出第一抗钱層,且所述第二抗钱層 13〇的第二凸部14也同時被刻蝕變薄,進而能夠保持所述 第一抗蝕層13〇和過渡層120的奈米圖形的完整態。 其-人,去除第二凹槽16底部的第一抗蝕層11(),露出基底 099120723 表單編號A0101 第11頁/共24頁 0992036561-0 10 ° 201200342 [0035] [0036] [0037] 可以採用氧電聚去除第二凹槽16底部的第一抗姓層110, 從而露出基底IG。氧電聚系統的功率是1G瓦〜150瓦,氧 電水的通人速率為2〜l〇〇sccm ’形成的氣壓為。5帕〜15 帕,採用氧電_料間為5秒〜1分鐘1過上述方法, 第-凹槽16底#的第—抗钱層nG被去除,露出基底^。 採用氧书漿刻餘第-抗钮層11〇過程令,與第二凹槽⑽子 心第抗蚀層11〇被氧化而刻姓掉,由壓印抗姓劑HSQ 構成的所述第層130在氧電漿的作用下發生交聯, 與所述過渡層12G-併對所述第―抗飯層}】〇的與第二凹 槽16對應部份料龍域起到良好的光罩作用,進而刻 蝕過程中有效保持第一抗蝕層11〇的解析度。 最後亥!餘第一凹槽16底部的基底1 〇,並用有機溶劑去 除殘留的有機材料,從而獲得一具有奈米圖形的基底1〇〇201200342 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a nanoimprinting method, and more particularly to a nanoimprinting method capable of performing at room temperature [beta] [Prior Art] [0002] In the prior art, when manufacturing various semiconductor devices, it is often necessary to fabricate a nano pattern having a fine structure of several tens of nanometers to several hundreds of nanometers. The method for fabricating the nano pattern having the above fine structure mainly includes a photolithography method of light or electron beam: first, by irradiating a focused light beam or an electron beam through a mask or by scanning, a photo-resistance composition or a photomask is irradiated, The wheel ray or electron beam will change the chemical structure of the exposed area of the exposed area; then, the exposed film or the resist outside the exposed area will be removed by a secret method to obtain a specific pattern. In order to adapt to the rapid development of integrated circuit technology, while the previous optical lithography technology strives to break through the resolution limit, the next generation lithography technology has gained a lot of research in recent years. For example, deep ultraviolet lithography uses a light source with a wavelength of 13 to 14 rm and a highly accurate reflective optical system to effectively reduce the strong light absorption in the refractive system, but the lithography system, which is complicated and expensive, limits the technology. application. Since the 1990s, a new nano-pattern has been developed. See Ch〇USY, Krauss p R, Renst (IV) P. Imprint of sub 25 nm vias and trenches 辻P〇lynierS. Appl. Phys. Lett,, 1995, 67(21): 3114-3116). The above new technology for making nanographs is known in the art as nano-I-print or nano-printed lithography. Nanoimprint 099120723 Form No. A0101 Page 4 / Total 24 1 0992036561-0 201200342 Refers to the resist (res_ Jst) film on the substrate is imprinted with nanopatterns using a template with a nano graphic, and then The on-chip nanograph is processed, such as engraving, stripping, etc., to finally produce a pattern and a semiconductor device having a nanostructure. A method of forming a nano pattern by a nanoimprint technique by forming a nano pattern using a hard template imprint resist layer having a nano pattern without relying on any radiation exposure formation. Therefore, nanoimprint technology can eliminate the limitations of wavelengths such as light in the conventional photolithography method, as well as backscattering of particles in the resist and substrate, and light interference and other constraints to achieve more High resolution. Therefore, Ο [0005] 〇 [0006] Compared to lithography, nano embossing technology has low manufacturing cost and is simple " . . . : ............... The advantages of easy operation and high efficiency have broad application prospects. Because nanoimprint technology mechanically deforms the polymer resist, rather than by changing the chemical properties of the lithographic resist. Therefore, nanoimprint technology has high requirements for polymer resists, that is, the polymer resist should be thermoplastic or photocurable, and has good film forming properties, high modulus, and deformation. The ability, and easy to demold after curing, allows the resist to remain on the substrate after the template is separated from the resist. In the prior art, nano embossed resists are mainly ruthenium rubber series, epoxy resin series, acrylate series, polystyrene series, etc. U.S. Patent 5,772 9〇5, published on June 30, 1998. A technical solution of polyacrylic acid methyl hydrazine (PMMA) as a nanoimprinting anti-surplus agent is disclosed, wherein polymethyl methacrylate is spin-cast on a ruthenium film, and then hot pressed on the substrate. A nano graphic is formed on it. The disclosed nanoimprint method requires heating of the nanoimprinting anti-surplus agent (about 2 〇〇.〇) to produce 099120723 Form No. A0101 Page 5 / Total 24 Page 0992036561-0 201200342 Bioplastic deformation 'and then After the nanoimprint resist is cooled (below the glass transition temperature Tg of PMMA, about 10 ° C), after curing, the template is removed and the nano-scale pattern is opened. However, due to the high glass transition temperature of polymethyl methacrylate vinegar, the heating temperature in the method is too high, so that the mechanical stability of the nanoimprint resist is lowered, and the adhesion to the template is strong. 'It is difficult to demould, and the resulting pattern is not flat, so the resolution of the obtained nano-pattern is low. In the prior art, in order to improve the resolution of the nano-patterns, it is often necessary to pre-treat the template before imprinting, but the pre-processing of the template is complicated, thereby improving the process complexity and cost of the nanoimprinting. The method is not conducive to practical applications. SUMMARY OF THE INVENTION [0007] [0009] [0009] There is a need to provide a kind of obtained graphics with good fidelity, high resolution, and can be imprinted at room temperature. Printing method. a nanoimprinting method comprising the steps of: step a, providing a substrate and a template having a nanopattern on a surface, a surface of the substrate being formed with an organic first resist layer, step b, by The imprint resist HSQ is applied to the substrate and the template, and the imprint resist HSQ directly contacts the surface of the template having a nano pattern, and the imprint resist HSQ is sandwiched between the substrate and the template. Between the first anti-money layer of the substrate and the surface of the template to form a second resist layer; step c 'at the room temperature, by applying pressure on the substrate and the template, the nano-pattern of the template surface Copying to the second anti-surge layer, forming a nano pattern on the second anti-surname layer; and step d, transferring the nano-pattern on the second resist layer to the substrate to form on the surface of the substrate Nano graphics. - a nanoimprint method "which comprises the following steps: step a, providing a base 099120723 form bat number A0101 page 6 / total 24 page 0992036561-0 201200342 bottom, forming an organic first on one surface of the substrate a resist layer, a transition layer and a second resist layer composed of an imprint resist HSQ; step b' provides a template having a surface with a nano pattern, and the nanograph of the surface of the template is at room temperature Copying to the second resist layer; step c, transferring the nano pattern on the second resist layer to the substrate, forming a nano pattern on the surface of the substrate. [0011] A nanoimprinting method, comprising the steps of: step a, providing a substrate and a template having a surface with a nano pattern; the surface of the substrate is formed with an organic first anti-surname layer Step b: providing a template having a nano-pattern on the surface, forming an imprint resist HSQ on the surface of the template having a nano-shape to form a second resist layer; and step c, covering the tomb a template, contacting a transition layer of the substrate with a surface of the template covered with an imprint resist HSQ, pressing the template and the substrate at a normal temperature, and demolding; and step d, the second resist The nanopattern on the layer is transferred to the substrate, and a nanopattern is formed on the surface of the substrate. Compared with the prior art, the nanoimprinting method of the present invention has the following advantages: First, the second resist layer is composed of an imprint resist HSQ, which can be imprinted at room temperature, the imprint Resist HSQ cures in subsequent manufacturing processes to produce cross-linking 'increased modulus. Second, since the imprinted resist HSQ has a small adhesion at a temperature to be easily released, the integrity and resolution of the pattern can be ensured. Second, an organic first resist layer is formed between the substrate and the second resist layer, and the nano first pattern on the second resist layer is transferred to the substrate during the etching process of the organic first resist layer. The second resist layer composed of the imprint resist only undergoes curing cross-linking, and functions as an effective mask for the first resist layer, reducing the nano-pattern of the first resist layer to generate 099120723 form number A0101 Page 7 of 24 099203656 Bu 0 201200342 Defects ensure the resolution and fidelity of the first-resistance nanograph. Fourthly, the nanoimprinting method provided by the invention can be imprinted at room temperature, and the template does not need to be pre-treated, so that the method is simple in process and low in cost. [0012] [0012] [0018] [0018] [0018] The following describes a method of manufacturing a nano optical antenna according to an embodiment of the present invention in conjunction with the accompanying drawings. Referring to FIG. 1 and FIG. 2, a first embodiment of the nanoimprinting method provided by the present invention includes the following steps: Step S11, providing a substrate 10 on a surface of the substrate 1 (not labeled) A first resist layer 110, a transition layer 12 2 , and a second anti-money layer 1 30 are sequentially formed. First, the first resist layer 11{) is formed on the surface of the substrate 10. A substrate 10 is provided for cleaning the substrate 10; an organic resist is deposited on a surface of the substrate 10, and then dried to form the first resist layer 110. The organic anti-surname agent may be deposited on the substrate 10 by screen printing or spin coating to form the first anti-contact layer 110. In this embodiment, the organic resist is a positive resist ZEP520. The material of the substrate 10 may be a hard material such as tantalum, niobium oxide, tantalum or gallium nitride. The material of the substrate may also be a flexible material such as pSp, PMMA or PET. The material of the substrate 1 is ruthenium. After the substrate 10 is cleaned by a standard process, ZEP52 is spin-coated on a surface of the substrate 1 , and the spin coating speed is 5 rpm/600 rpm, and the time is 〇. 5 minutes ~ 1. 5 minutes page 8 / total 24 pages 0992036561-0 A single edit 珑 A0101 201200342, then baked at 140 C~18 (TC 3 to 5 minutes. Thus on the surface of the substrate l〇 The first resist layer 11 is formed. The thickness of the first resist layer 11 is 100 nm to 5 nm. In the embodiment, the standard process is a clean room standard cleaning process. Forming a transition layer 120' on the surface of the first anti-residue layer 11Q away from the base (4) to cover the first anti-money layer η. The material of the transition layer 120 is oxidized hair. Or forming a transition layer 12Q ^ 〇 [〇〇21] in the first resist layer 110, in the embodiment, the shoulder - A glassy yttrium oxide is deposited on the etched layer 110 to form an oxidized thin film of a thickness of 1:0 nm to 1 Å. [0022] Finally, a second resist layer 130 is formed to cover the transition layer. [0023] [0023] The transition layer 120 is deposited by a droplet coating, a spin coating method or the like by using a hydrogen silsesquioxane (HSQ) to form a second resist layer 130. In an embodiment, the imprint resist HSQ is applied by spin coating: coating, 12° on the transition layer, spin coating ◎ rotation speed: 25 rpm/min to 7000##分铧, spin coating The time is from 0.5 minutes to 2 minutes. The spin coating of the imprint resist HSq is performed under high pressure. The thickness of the second resist layer 130 is from 1 nanometer to 500 nanometers, preferably 1 inch. 〇 nanometer ~ 300 nm. The control of the thickness of the second resist layer 也 3 也 is also quite important: it is experimentally known that the embossed resist HSQ is cured after its thickness is similar to that of oxidized stone material. If it is too thick, it is difficult to etch and remove in the post-production process; if the thickness is too thin, it is difficult to satisfy a sufficient facet selection ratio in the subsequent process. The imprint resist HSQ has embossable at room temperature and has good structural stability. 099120723 Form No. A0101 Page 9 / Total 24 Page 〇 99: [0024] 201200342 [0025] [0026] [0028] [0030] [9930] 099120723, and the high resolution of the imprint resolution up to U 〇 nm or less, etc. Step S12, providing a surface of the summer, , and the template 20 with a non-meter graphic, and the surface of the template 20 The nano-pattern is made to the second resist layer 13〇. First, a template is provided that provides a surface to the right, too, and has a pattern of 20 meters. The material of the template 20 may be a hard material such as nickel, tantalum or tantalum oxide. The material of the template 20 can also be made into a flexible material such as pet, pmma, ps, PDMS or the like. The template 2〇 can be prepared by ±, i, by electron beam exposure, the surface of the template 20 is formed with a nano-pattern, and the m-pattern is composed of a plurality of first convex portions 24 and a plurality of first concave surfaces of the surface of the template 20. The groove 26 is formed. In this embodiment, the material of the template 20 is ruthenium oxide. Next, the surface on which the mold (4) is formed with the nano-pattern is attached to the second anti-surname layer 130 of the basal core. The template 2g and the substrate are pressed at room temperature to release the mold. At normal temperature, pressure can be applied to the substrate 1G through the template 20 such that the nanograph on the template 20 is rotated to (10) m. Specifically, the surface of the template 20-shaped chip pattern is attached to the second resist layer 130 on the substrate 1G and the vacuum is ixio-W seven 10-w, and the applied pressure is 2/square feet. ~1 minced/square foot (psi) under imprinting conditions '(4) 2~30 minutes, finally separating the template 2Q from the substrate 1〇 to copy the nanopattern on the surface of the handle 20 to the second resist 130. The nano pattern formed by the second anti-four (13) 13 包括 includes a plurality of second grooves 16 and second protrusions 14. And the second groove 16 corresponds to the first protrusion 24, and the second protrusion 414 corresponds to the first groove 26. Step s!3, transferring the nano pattern to the base, on the substrate 1 〇 form number A0101 page 10 / total 24 page 099203 201200342 [0031] [0033] [0033] surface formation Nano graphics. First, the imprint resist HSQ remaining at the bottom of the second recess 16 of the nano pattern of the second resist layer 130 and the transition layer 120 at the bottom of the second recess 16 are etched away to expose the first The resist layer 110. Etching removes the imprint resist HSQ remaining at the bottom of the second recess 16 and the transition layer 120 at the bottom of the second recess 16 by plasma etching. In this embodiment, the embossed resist HSQ remaining at the bottom of the second recess 4 groove 16 and the transition layer 120 at the bottom of the second recess 16 are removed by fluorocarbon (CF,) reactive plasma etching to expose the first Specifically, the substrate 10 on which the nanopattern is formed is placed in a reactive, electric pad etching system, and an inductive power source of the reactive plasma etching system is poor in CF and plasma. , the CF 4 4 plasma diffuses from the generation region with a lower ion energy and drifts to the second resist layer 130 of the substrate 10, at which time the embossing remaining at the bottom of the second recess 16 of the second resist layer The anti-surname agent HSQ and the transition layer 1 20 at the bottom of the second recess 16 are almost simultaneously etched by the electro-convex. The power of the Cf^ plasma system is 10 watts to 15 watts, and the speed of the CF41 slurry is suitable; the pressure is 2 to 100 milliliters per inch (standard-state cubic centimeter per inute seem) Pa, using cf plasma etching time is 2 seconds ~ 4 minutes. By the above method, the imprint resist HSQ remaining at the bottom of the second recess 16 and the transition layer J at the bottom of the second recess 16 are etched away to expose the first anti-money layer, and the second anti-money layer The 13 turns of the second protrusions 14 are also simultaneously etched and thinned, thereby maintaining the integrity of the nanopattern of the first resist layer 13 and the transition layer 120. It is a person who removes the first resist layer 11 at the bottom of the second recess 16 to expose the substrate 099120723. Form No. A0101 Page 11 / Total 24 Page 0992036561-0 10 ° 201200342 [0035] [0037] The first anti-surname layer 110 at the bottom of the second recess 16 is removed by oxygen polymerization to expose the substrate IG. The power of the oxygen polymerization system is 1 G watts to 150 watts, and the gas flow rate of the oxygen electric water is 2 to 1 〇〇 sccm '. 5 Pa ~ 15 Pa, using oxygen / _ material for 5 seconds ~ 1 minute 1 through the above method, the first - anti-money layer nG of the first groove 16 bottom # is removed, exposing the substrate ^. The first layer of the embossed anti-surname agent HSQ is formed by etching the remaining first-anti-button layer 11 氧 process with the second groove (10). 130 is cross-linked under the action of the oxygen plasma, and the transition layer 12G- and the portion of the first anti-rice layer 与 与 and the corresponding portion of the second groove 16 serve a good mask The effect is to effectively maintain the resolution of the first resist layer 11〇 during the etching process. Finally, the substrate 1 at the bottom of the first recess 16 is removed, and the residual organic material is removed by an organic solvent to obtain a substrate having a nano pattern.

將上述基底1〇放置在一感應耦合電襞系統中此時第二 凹槽16底部的基底10沒有第一抗蝕層11〇的保護;以四氣 化矽和氣氣為刻蝕氣體對基底1〇進行刻蝕,第二凹槽16 底部的部份基底將被去除;用丙酮洗去殘留的有機殘留 物11亥第一抗姓層110為有機物,從而被洗掉,覆蓋於第 一抗蝕層110上的過渡層120和第二抗蝕層13〇也一併被 除去,從而獲得具有奈米圖形的基底1〇〇。本實施例中’ 電漿系統的功率是1〇〇瓦,氣氣的通入速率為2〇sccm 〜60sccm ’四氣化矽的通入速率為2〇sccm〜6〇sccm,形 成氣壓為4帕〜15帕’刻蝕第二凹槽16底部的基底1〇β 099120723 表單编號Α0101 第12頁/共24頁 0992036561-0 201200342 圆請參閱圖3及圖4,採用本發明的奈米壓印抗傳劑的奈米 壓印的方法的第二實施例,其包括以下步驟: ν驟S21 &供一基底30,在該基底30的表面依次形成第 —抗蝕層310以及一過渡層32〇。 本實施例中,基底3〇的材料與第一實施中的基底1〇的材 料完全相同,第一抗蝕層31〇及過渡層32〇的製作方法、 結構、材料以及位置關係分別與第一實施例中的第一抗 蝕層110及過渡層120的製作方法、結構、材料以及位置 關係完全相同^ . . . 步驟S22,提供一表面具有奈米圓形的模板6〇,在該模板 60具有奈米圖形的表面形成一第二抗蝕層33〇。 本實施例中,所述具有奈米圖形的模板6〇與第一實施例 中的模板20完全相同,該模板6〇的奈米圖形由複數第一 凹槽66以及第一凸部64構成。所述採用的第二抗蝕層33〇 门第實施例中採用的第二抗被層13 0完全相同。具體地 ,可取一定量的壓印抗蝕劑HSQ,採用液滴塗佈方法,緩 慢滴在所述模板60具有奈米圖形的表面,於密閉的環境 下靜置1〜2個小時。 步驟S23,將基底30覆蓋於模板6〇,使所述基底3〇的過 渡層320與所述模板60的覆蓋有壓印抗蝕劑HSq的表面接 觸’常溫下壓所述模板60及基底3〇,並脫模。 具體地,將基底30覆蓋於模板6〇,使所述基底3〇的過渡 層320與所述模板60覆蓋有由壓印抗蝕劑hsq構成的第二 抗蝕層330的表面接觸,並將所述覆蓋有基底3〇的模板6〇 [0039] [0040] ο ο [0041] [0042] [0043] [0044] 099120723 表單編號A0101 第13頁/共24頁 0992036561-0 201200342 [0045] [0046] [0047] [0048] [0049] [0050] 099120723 放置於壓印機中;設置該壓印機的真空度為真空度為Ιχ 10 —imbar〜lxl0-5mbar ’施加壓力為2碎/平方英尺〜1〇〇 磅/平方英尺(psi)的壓印條件下,保持2〜30分鐘,使 壓印抗蝕劑HSQ充滿模板60的奈米圖形中的第一凹槽66並 黏附到基底30的過渡層320表面’將模板60與基底30分 離,從而在基體30的過渡層320上形成一由第二抗蝕層 330構成的奈米圖形。該由第二抗蝕層330構成的奈米圖 形包括複數第二凹槽36以及第二凸部34。 步驟S 2 4,通過刻触的方法,:將_所述奈米圖形轉移至基底 30 ’在所述基底30表面形成奈_米圖形。 首先’刻钱去除第二抗姓層3.3.0構成的奈米圖形第二凹槽 3 6底部殘留的壓印抗蚀劑H,SQ和第二凹槽3;6_底部的過渡層 320 ’露出第一抗蝕層310。 其次’去除第二凹槽36底部的第一抗蝕層31〇,露出基底 30 ° 最後,刻蝕第二凹槽36底部的綦底30,並用有機溶劑去 除殘留的有機材料,從而獲得一具有奈米圖形的基底3〇〇 〇 本實施例中,上述將所述奈米圖形轉移至基底3〇,在所 述基底30表面刻蝕出奈米圖形的方法與第一實施例中的 方/会相同。 與先前技術相比較,本發明奈米壓印方法具有以下優點 .其一,該所述第二抗蝕層由壓印抗蝕劑HSQ構成,其可 於室溫下進行壓印,該壓印抗蝕劑HSQ在後續製造工藝中 表單編號A0101 第14 1/共24頁 0992036561-0 201200342 Ο [0051] Ο [0052] 固化產生交聯,提高了模量,且形變較小。其二,由於 該壓印抗餘劑HSQ在室溫下黏附性小較易脫膜,保證了圖 形的完整性及辨率。其三,基底與第二抗蝕層之間形成 有有機第一抗蝕層,將所述第二抗蝕層上的奈米圖形轉 移至基底過程中,對有機第一抗蝕層刻蝕過程對由壓印 抗蝕劑HSQ構成的第二抗蝕層只會發生固化交聯,對第一 抗蝕層起到有效的光罩作用,減少了第一抗蝕層的奈米 圖形產生缺陷,保證了第一抗蝕層的奈米圖形的解析度 和保真性。其四,本發明提供的奈米歷印方法,其可在 室溫下進行壓印’具模板無須‘先處理,使得該方法工 藝簡單,成本低。 綜上所述’本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, .. .... 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本發明奈米壓印方法的第一實施例的流程圖。 [0053] 圖2為本發明奈米壓印方法的第一實施例的工藝流程示意 圖。 [0054] 圖3為本發明奈米壓印方法的第二實施例的流程圖。 [0〇55] 圖4為本發明奈米壓印方法的第二實施例的工藝流程示意 圖。 【主要元件符號說明】 099120723 表單編號Α0101 第15頁/共24頁 0992036561-0 201200342 [0056]基底:10, 30 [0057] 第一抗蝕層:110, 310 [0058] 過渡層:1 20, 320 [0059] 第二抗蝕層:130,330 [0060] 模板:20, 60 [0061] 第一凸部:24, 64 [0062] 第一凹槽:26, 66 [0063] 第二凸部:14, 34 [0064] 第二凹槽:16, 36 [0065] 具有奈米圖形的基底:1 00, 300 0992036561-0 099120723 表單編號A0101 第16頁/共24頁The substrate 1 is placed in an inductively coupled electric system, and the substrate 10 at the bottom of the second recess 16 is not protected by the first resist layer 11; the vaporized gas and the gas are used as an etching gas to the substrate 1 Etching is performed, part of the substrate at the bottom of the second recess 16 is removed; the residual organic residue is washed away with acetone. The first anti-surname layer 110 is organic, thereby being washed away, covering the first resist. The transition layer 120 and the second resist layer 13 on the layer 110 are also removed together, thereby obtaining a substrate 1 having a nano pattern. In this embodiment, the power of the plasma system is 1 watt, and the gas gas inlet rate is 2 〇sccm~60sccm. The inlet rate of the four gasification enthalpy is 2〇sccm~6〇sccm, and the gas pressure is 4 Pa ~ 15 Pa 'etching the bottom of the second groove 16 on the bottom of the substrate 1 〇 β 099120723 Form No. 101 0101 Page 12 / Total 24 Page 0992036561-0 201200342 Round Please refer to Figure 3 and Figure 4, using the nano pressure of the present invention A second embodiment of the method for imprinting nanoimprinting comprises the steps of: v. S21 & for a substrate 30, sequentially forming a first resist layer 310 and a transition layer on the surface of the substrate 30 32〇. In this embodiment, the material of the substrate 3〇 is completely the same as the material of the substrate 1〇 in the first embodiment, and the manufacturing method, structure, material and positional relationship of the first resist layer 31 and the transition layer 32〇 are respectively the first The manufacturing method, structure, material and positional relationship of the first resist layer 110 and the transition layer 120 in the embodiment are completely the same. Step S22, providing a template having a surface having a nanometer shape, in which the template 60 is provided. The surface having the nano pattern forms a second resist layer 33. In this embodiment, the template 6〇 having a nano pattern is identical to the template 20 in the first embodiment, and the nano pattern of the template 6〇 is composed of a plurality of first grooves 66 and a first convex portion 64. The second resist layer 33 used in the first embodiment is identical in the second embodiment. Specifically, a certain amount of the imprint resist HSQ can be taken, and the droplet coating method is used to slowly drop the surface of the template 60 having a nano pattern, and it is allowed to stand in a closed environment for 1 to 2 hours. In step S23, the substrate 30 is covered on the template 6〇, and the transition layer 320 of the substrate 3 is brought into contact with the surface of the template 60 covered with the imprint resist HSq. The template 60 and the substrate 3 are pressed at normal temperature. Oh, and demoulding. Specifically, the substrate 30 is covered on the template 6〇 such that the transition layer 320 of the substrate 3 is in contact with the template 60 covered with the surface of the second resist layer 330 composed of the imprint resist hsq, and The template covered with the substrate 3〇[0040] [0044] [0044] 099120723 Form No. A0101 Page 13 / Total 24 Page 0992036561-0 201200342 [0045] [0048] [0049] [0050] 099120723 placed in the embossing machine; set the vacuum of the embossing machine to a vacuum of Ιχ 10 - imbar ~ lxl0-5mbar 'applied pressure is 2 broken / square The imprinted resist HSQ is filled with the first recess 66 in the nano pattern of the template 60 and adhered to the substrate 30 under embossing conditions of ft to 1 〇〇 pounds per square foot (psi) for 2 to 30 minutes. The surface of the transition layer 320 'separates the template 60 from the substrate 30 to form a nano-pattern formed by the second resist layer 330 on the transition layer 320 of the substrate 30. The nano-pattern formed by the second resist layer 330 includes a plurality of second grooves 36 and second protrusions 34. In step S24, by means of the method of incision, the nanopattern is transferred to the substrate 30' to form a nanometer pattern on the surface of the substrate 30. First, the engraved resist H, SQ and the second recess 3 remaining at the bottom of the second recess 36 of the nano-pattern formed by the second anti-surname layer 3.3.0 are removed. 6_ The transition layer 320' at the bottom The first resist layer 310 is exposed. Next, the first resist layer 31 at the bottom of the second recess 36 is removed to expose the substrate 30°. Finally, the bottom 30 of the bottom of the second recess 36 is etched, and the residual organic material is removed with an organic solvent to obtain a Substrate 3 of the nano pattern In the embodiment, the method of transferring the nano pattern to the substrate 3, and etching the nano pattern on the surface of the substrate 30 is the same as that in the first embodiment. Will be the same. Compared with the prior art, the nanoimprinting method of the present invention has the following advantages. First, the second resist layer is composed of an imprint resist HSQ, which can be imprinted at room temperature, the imprint Resist HSQ in the subsequent manufacturing process Form No. A0101 No. 14 1 / Total 24 pages 0992036561-0 201200342 Ο [0052] Curing produces cross-linking, increases modulus, and has a small deformation. Second, since the imprinting residual agent HSQ has a small adhesion at room temperature, it is easy to release the film, thereby ensuring the integrity and resolution of the pattern. Third, an organic first resist layer is formed between the substrate and the second resist layer, and the nano pattern on the second resist layer is transferred to the substrate during the etching process of the organic first resist layer. The second resist layer composed of the imprint resist HSQ only undergoes curing cross-linking, and functions as an effective mask for the first resist layer, thereby reducing defects in the nano-pattern of the first resist layer. The resolution and fidelity of the nano-pattern of the first resist layer are ensured. Fourthly, the nano calendar printing method provided by the invention can be embossed at room temperature without having to be processed first, which makes the method simple and low in cost. In summary, the present invention has indeed met the requirements of the invention patent and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art of the present invention in accordance with the spirit of the present invention shall be covered by the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing a first embodiment of a nanoimprint method of the present invention. 2 is a schematic view showing the process flow of the first embodiment of the nanoimprint method of the present invention. 3 is a flow chart of a second embodiment of the nanoimprint method of the present invention. 4 is a schematic view showing the process flow of a second embodiment of the nanoimprint method of the present invention. [Main component symbol description] 099120723 Form number Α 0101 Page 15 / Total 24 page 0992036561-0 201200342 [0056] Base: 10, 30 [0057] First resist: 110, 310 [0058] Transition layer: 1 20, 320 [0059] Second resist layer: 130, 330 [0060] Template: 20, 60 [0061] First convex portion: 24, 64 [0062] First groove: 26, 66 [0063] Second convex portion : 14, 34 [0064] Second groove: 16, 36 [0065] Substrate with nanograph: 1 00, 300 0992036561-0 099120723 Form number A0101 Page 16 of 24

Claims (1)

201200342 七、申請專利範圍: 1 . 一種奈米壓印方法,其包括以下步驟: 步驟a ’提供-基底和—表面具有奈米圖形的模板,所述 基底的一表面形成有有機第一抗蝕層; 步驟b,藉由壓印抗蝕劑HSq貼合所述基底和模板,貼合 時所述壓印抗蝕劑HSQ直接接觸所述模板的具有奈米圖形 的表面,並將壓印抗蝕劑HSQ夾持於該基底的第一抗蝕層 與所述模板的所述表面之間,以形成第二抗蝕層; 步驟C,在室溫下、通過在該基底和模板施加壓力,將模 〇 板表面的奈米圖形複製到所述第二抗备層,在所述第二抗 蝕層形成奈米圖形;以及 步驟d,將所述第二抗蝕層上的奈米爾形轉移至基底,在 所述基底表面形成奈米圖形。 2 .如申請專利範圍第1項所述的奈米壓印方法,其中,所述 模板的奈米圖形包括複數凸部及複數凹部。 3 .如申請專利範圍第2項所述的奈米壓印方法,其中,所述 丨::! - - ......... ! A ' 步驟a進一步包括在所述第一抗蝕層的遠離所述基底的表 〇 面進一步沉積氧化矽,以形成一過渡層的步驟。 4 ·如申請專利範圍第3項所述的奈米壓印方法,其中,所述 步驟b中首先將所述壓印抗蚀劑HSQ塗佈於基底上,以形 成所述第二抗蝕層,其次將所述模板的具有奈米圖形的表 面貼合至基底的第二抗蚀層。 5 .如申請專利範圍第4項所述的奈米壓印方法’其中,所述 步驟c的具體操作步驟包括: 將基底以及模板放置於一壓印機中’設置壓印機的真空度 099120723 表單編號A0101 第口頁/共24頁 0992036561-0 201200342 為 1x10 ^bar-lxlO一5mbar; 施加壓力為2磅/平方英尺~100磅/平方英尺的壓印條件下 ,保持2〜30分鐘,把模板的凸部壓到基底上的第二抗蚀 層中,使第二抗蝕層的壓印抗蝕劑HSQ充滿模板的奈米圖 形中的凹槽;以及 將模板與基底分離,從而將該模板表面的奈米圖形複製到 所述壓印抗蝕層。 6.如申請專利範圍第4項所述的奈米壓印方法,其中,將上 述壓印抗蝕劑HSQ採用旋塗的方式塗佈於所述過渡層,旋 塗轉速為2500轉/分鐘〜7000轉/分鐘,旋塗時間為〇 5分 鐘~2分鐘,該壓印抗蝕劑HSQ的旋塗在高壓不進行。 7 .如申請專利範圍第3項所述的奈米壓印方法,其中,所述 步驟b中首先所述壓印抗蝕劑HSQ塗佈於模板具有奈 米圖形的表面,以形成所述第二抗蝕層,其次將基底覆蓋 於模板。 8 .如申請專利範圍第7項所述的奈米壓印方法,其中,所述 步驟c的具體操作步驟包括:將所述壓印抗餘劑ηsq滴在 所述模板形成有奈米圖形的表面’於密閉的環境下靜置 1〜2個小時。 9 .如申請專利範圍第8項所述的奈米壓印方法,其中,將上 述壓印抗蚀劑HSQ採用液滴塗佈方法,緩慢滴在所述模板 具有奈米圖形的表面。 10 .如申請專利耗圍第5或8項所述的奈米應印方法,其中,所 述步驟d的具體操作步驟為: 一併刻餘殘留在所述第二抗钱層的凹槽底部的壓印抗姑劑 HSQ及所述過渡層,露出凹槽底部的第一抗蚀層; 099120723 表單編號A0101 第18頁/共24頁 0992036561-0 201200342 刻餘凹槽底部的第一抗蝕層,露出基底;以及 刻餘凹槽底部的基底,並用有機溶劑去除殘留的有機材料 ’從而獲得一具有奈米圖形的基底。 11 . 12 . ❹ 13 . G 如申請專利範圍第10項所述的奈米壓印方法,其中,所述 步驟d中採用氧電漿去除第二凹槽底部的第一抗蝕層,從 而露出基底同時固化第二抗蝕層,氧電漿系統的功率是10 瓦〜150瓦,氧電漿的通入速率為2〜i00sccin,形成的氣 壓為0. 5帕〜15帕,採用氧電漿刻蝕時間為5秒〜1分鐘。 一種奈米壓印方法,其包括以下步驟: 步驟a ’提供一基底,在所述基底的一表面依次形成一有 ::: :: ':: " .. :. 機第一抗蝕層、一過渡層及一由壓印抗蝕劑HSQ構成的第 一抗餘層; 步驟b ’提供一個表面具有奈米圖形的模板,並將該模板 表面的奈米圖形’在室溫下複製到所述第二抗蝕層; 步驟c,將所述第二抗蝕層上的奈米圖形轉移至基底,在 所述基底表面形成奈米圖形。 一種奈米壓印方法,其包括以下步驟: 步驟a,提供一基底和一表面具有奈米圖形的模板,所述 基底的一表面形成有有機第一抗蝕層; 步驟b,提供一表面具有奈米圖形的模板,在該模板具有 奈米圖形的表面形成壓印抗姓劑HSQ,以形成一第二抗独 層; 步驟c,將基底覆蓋於模板,使所述基底的過渡層與所述 模板的覆蓋有壓印抗蝕劑HSQ的表面接觸,常溫下壓所述 模板及基底,並脫模;以及 099120723 步驟d,將所述第二抗蝕層上的奈米圖形轉移至基底 表單編號A0101 第19頁/共24頁 在 0992036561-0 201200342 所述基底表面形成奈米圖形。 099120723 表單編號A0101 第20頁/共24頁 0992036561-0201200342 VII. Patent application scope: 1. A nanoimprinting method comprising the following steps: Step a 'providing a substrate and a surface having a template of a nano pattern, one surface of the substrate being formed with an organic first resist Step; step b, bonding the substrate and the template by imprinting the resist HSq, the imprint resist HSQ directly contacting the surface of the template having a nano pattern, and imprinting An etchant HSQ is sandwiched between the first resist layer of the substrate and the surface of the template to form a second resist layer; Step C, by applying pressure to the substrate and the template at room temperature, Copying a nano pattern of the surface of the dummy plate to the second anti-fuse layer, forming a nano pattern on the second resist layer; and step d, transferring the neva shape on the second resist layer To the substrate, a nano pattern is formed on the surface of the substrate. 2. The nanoimprint method of claim 1, wherein the template of the template comprises a plurality of convex portions and a plurality of concave portions. 3. The nanoimprint method according to claim 2, wherein the 丨::! - ' . . . A ' Step a further includes the step of further depositing yttrium oxide on the surface of the first resist layer away from the substrate to form a transition layer. 4. The nanoimprint method of claim 3, wherein the imprinting resist HSQ is first applied to a substrate in the step b to form the second resist layer. Next, the surface of the template having the nano-pattern is attached to the second resist of the substrate. 5. The nanoimprinting method according to claim 4, wherein the specific operation step of the step c comprises: placing the substrate and the template in an imprinting machine 'setting the vacuum degree of the imprinting machine 099120723 Form No. A0101 First page / Total 24 pages 0992036561-0 201200342 For 1x10 ^bar-lxlO - 5 mbar; Apply pressure of 2 psi / 100 ft / ft 2 of imprinting conditions, keep 2 to 30 minutes, put The convex portion of the template is pressed into the second resist layer on the substrate such that the imprint resist HSQ of the second resist layer fills the recess in the nano pattern of the template; and the template is separated from the substrate, thereby A nanograph of the surface of the template is copied to the imprinted resist. 6. The nanoimprint method according to claim 4, wherein the imprint resist HSQ is applied to the transition layer by spin coating, and the spin coating speed is 2500 rpm. At 7000 rpm, the spin coating time is 〇5 minutes to 2 minutes, and the spin coating of the embossed resist HSQ is not performed at a high pressure. 7. The nanoimprint method according to claim 3, wherein in the step b, the imprint resist HSQ is first applied to a surface of the template having a nano pattern to form the first Two resist layers, and secondly the substrate is covered by the template. 8. The nanoimprint method according to claim 7, wherein the specific operation step of the step c comprises: dropping the imprinted anti-surplus agent ηsq on the template to form a nano pattern. The surface is allowed to stand in a closed environment for 1 to 2 hours. 9. The nanoimprint method according to claim 8, wherein the imprint resist HSQ is dropped on the surface of the template having a nano pattern by a droplet coating method. 10. The method of claim 7, wherein the specific operation step of the step d is: leaving a residue remaining at the bottom of the groove of the second anti-money layer Imprinting anti-cracking agent HSQ and the transition layer, exposing the first resist layer at the bottom of the groove; 099120723 Form No. A0101 Page 18 of 24 0992036561-0 201200342 The first resist layer at the bottom of the groove , exposing the substrate; and engraving the substrate at the bottom of the groove, and removing the residual organic material with an organic solvent to obtain a substrate having a nano pattern. 11. The method of claim 10, wherein in the step d, the first resist layer at the bottom of the second recess is removed by using oxygen plasma to expose The base is simultaneously cured with a second resist layer, the power of the oxygen plasma system is 10 watts to 150 watts, the oxygen plasma is introduced at a rate of 2 to i00 sccin, and the gas pressure is 0.5 Pa to 15 Pa, using oxygen plasma. The etching time is 5 seconds to 1 minute. A nanoimprinting method comprising the steps of: step a' providing a substrate, and sequentially forming a surface on a surface of the substrate: ::: :::: " .. :. a transition layer and a first anti-residue layer composed of an imprint resist HSQ; step b' provides a template having a surface pattern on the surface, and copies the nano-pattern of the template surface to room temperature The second resist layer; Step c, transferring the nano pattern on the second resist layer to the substrate, forming a nano pattern on the surface of the substrate. A nanoimprinting method comprising the steps of: step a, providing a substrate and a template having a nanopattern on a surface, a surface of the substrate being formed with an organic first resist; and step b providing a surface having a template of a nano-pattern, wherein the template has a surface of a nano-pattern to form an imprinted anti-surname agent HSQ to form a second anti-individual layer; and step c, covering the substrate with the substrate to make the transition layer of the substrate Covering the surface of the template with the surface contact of the imprint resist HSQ, pressing the template and the substrate at a normal temperature, and demolding; and 099120723 step d, transferring the nano pattern on the second resist layer to the base form No. A0101 Page 19 of 24 at 0992036561-0 201200342 The surface of the substrate forms a nanograph. 099120723 Form No. A0101 Page 20 of 24 0992036561-0
TW99120723A 2010-06-25 2010-06-25 Nano-imprint method TWI386304B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99120723A TWI386304B (en) 2010-06-25 2010-06-25 Nano-imprint method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99120723A TWI386304B (en) 2010-06-25 2010-06-25 Nano-imprint method

Publications (2)

Publication Number Publication Date
TW201200342A true TW201200342A (en) 2012-01-01
TWI386304B TWI386304B (en) 2013-02-21

Family

ID=46755386

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99120723A TWI386304B (en) 2010-06-25 2010-06-25 Nano-imprint method

Country Status (1)

Country Link
TW (1) TWI386304B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3907519B2 (en) * 2002-05-14 2007-04-18 三菱電機株式会社 Resist pattern forming method and resist pattern forming apparatus
JP5000112B2 (en) * 2005-09-09 2012-08-15 東京応化工業株式会社 Pattern formation method by nanoimprint lithography
JP2008053666A (en) * 2006-08-28 2008-03-06 Meisho Kiko Kk Pattern formation method and pattern formation object
US7955516B2 (en) * 2006-11-02 2011-06-07 Applied Materials, Inc. Etching of nano-imprint templates using an etch reactor

Also Published As

Publication number Publication date
TWI386304B (en) 2013-02-21

Similar Documents

Publication Publication Date Title
CN101923282B (en) Nano-imprint resist and nano-imprint method adopting same
McClelland et al. Nanoscale patterning of magnetic islands by imprint lithography using a flexible mold
TWI279830B (en) Compliant template for UV imprinting
Lan et al. UV-nanoimprint lithography: structure, materials and fabrication of flexible molds
TW578200B (en) Patterned structure reproduction using nonsticking mold
JP2004304097A (en) Pattern forming method, and manufacturing method for semiconductor device
CN101823690B (en) Manufacturing method of SU-8 nano fluid system
TW200523666A (en) Imprint lithography templates having alignment marks
CN111606300A (en) Method for manufacturing high aspect ratio nano grating
US10189203B2 (en) Method for forming micropattern of polyimide using imprinting
JP3819397B2 (en) Imprint method
JP2010158805A (en) Method of manufacturing mold for photo imprinting
JP2008126450A (en) Mold, manufacturing method therefor and magnetic recording medium
TW201140650A (en) Pattern formation method
US20130340929A1 (en) Method of manufacturing stamp for plasmonic nanolithography apparatus and plasmonic nanolithography apparatus
CN102279517A (en) Nano-imprinting method
TW201100263A (en) Nano-imprint stemplate and mthod for manufacturing the same
KR101086083B1 (en) A method for manufacturing of the transparent roll mold for uv roll nanoimprint lithography
JP2012236371A (en) Release method in imprint
JP4889316B2 (en) A manufacturing method of a three-dimensional structure, a three-dimensional structure, an optical element, a stencil mask, a manufacturing method of a finely processed product, and a manufacturing method of a fine pattern molded product.
KR20080082116A (en) Method for fabricating wire grid polarizer
JP4802799B2 (en) Imprint method, resist pattern, and manufacturing method thereof
TWI389931B (en) Nano-imprint resist and nanoimprinting lithography method using the same
TW201200342A (en) Nano-imprint method
KR100876386B1 (en) Resist pattern forming method without residual layer using soft molding and method of forming patterned metal layer using the method