TW201143150A - Method of manufacturing LED package - Google Patents

Method of manufacturing LED package Download PDF

Info

Publication number
TW201143150A
TW201143150A TW99116741A TW99116741A TW201143150A TW 201143150 A TW201143150 A TW 201143150A TW 99116741 A TW99116741 A TW 99116741A TW 99116741 A TW99116741 A TW 99116741A TW 201143150 A TW201143150 A TW 201143150A
Authority
TW
Taiwan
Prior art keywords
emitting diode
light
glass
substrate
light emitting
Prior art date
Application number
TW99116741A
Other languages
Chinese (zh)
Other versions
TWI407598B (en
Inventor
Shen-Bo Lin
Original Assignee
Advanced Optoelectronic Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Optoelectronic Tech filed Critical Advanced Optoelectronic Tech
Priority to TW99116741A priority Critical patent/TWI407598B/en
Publication of TW201143150A publication Critical patent/TW201143150A/en
Application granted granted Critical
Publication of TWI407598B publication Critical patent/TWI407598B/en

Links

Abstract

The present invention provides a method of manufacturing an LED package, in which glass is used as the packaging material and the packaging layer is directly formed on the substrate by compression molding. Thus, it can not only avoid yellowing and smashing, but also avoid split of the LED chips and the substrate because of the stress produced in the stitchmark between them. Further, it can protect the LED chips and the bond area from the liquid glass. It can also simplify the package process. The output and quality of the high power LED will be increased effectively.

Description

201143150 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種封裝製程’特別是發光二極體封裝製程 [先前技術] [0002] 現在,高功率的發光二極體(Light Emitting Diode, LED)因其能夠更好地提高能源效率和提供更好的照明效 果開始被廣泛應用到很多領域。習知的高功率發光二極 體系以增加電流的方式來提,其.發光效率,而隨著電流 〇 的提高’局部熱量會過度升高’從而影響高功率發光二 極體的性能與壽命,這就使高功率發光二極體的封裝不 同於一般發光二極體的封裝,增加了難度。 圆-般發*二鋪封裝結構,其封裝膠體大都使用環氧樹 脂或石夕氧统。圖1為習知技術的元件封裝結構的剖面示意 圖。此半導體元件10的封裝結構是採料難程使透明 封膠材料11 (環氧樹脂或石夕氧炫)覆蓋於晶粒12、金屬 Ο 導線13和薄膜基板14上,從而達到防濕氣與纖的效果 。但環氧樹脂在高溫下容易產生黃化以及碎裂,會降低 發光元件的壽命且不適合使用在高功率發光二極體封裝 上。為了改善上述的問題,有習知技術利用矽樹脂作為 封裝層的材料以改善黃化以及碎裂問題,但矽樹脂用於 封裝時,特別是高功率產品封裝時,往往因為矽樹脂熱 膨脹係數與承祕板的差異,造錢裝層與承載基板接 合處產生應力’使得封裝層與基板容易剝落。因此,有 習知技術將破卿質運用在發光二極體封裝上,特別是 099116741 表單编號A0101 第3頁/共23頁 0992029754-0 201143150 高功率發光二極體封裝。 [0004] 然而,利用玻璃材質作為發光二極體封裝材料時,由於 玻璃的熔點高,當液化的玻璃直接注入封裝基板時,會 造成發光二極體晶片以及打線遭受破壞,因此習知的製 程無法直接將玻璃形成於封裝板上,而需要先模鑄並冷 卻後方能黏合於封裝基板上。但如此一來會造成封裝製 程複雜,需多道製程方能完成。 【發明内容】 [0005] 有鑒於此,本發明旨在提供適用於高功率發光二極體的 封裝製程。 [0006] 一種發光二極體的封裝製程,包括以下步驟:提供一基 板,該基板具有複數個反射杯;形成電路結構於基板上 ,該電路結構包含一正電極以及一負電極;將複數個發 光二極體晶片電性連接於電路結構;利用壓縮成型技術 ,在反射杯上形成玻璃封裝層並將發光二極體晶片封裝 在反射杯内。 [0007] 與習知技術相比,本發明實施方式提供的發光二極體封 裝製程,採用壓縮成型技術並利用玻璃作為發光二極體 封裝材料,避免了高溫下黃化和碎裂等問題,同時簡化 了封裝製程。 【實施方式】 [0008] 以下,將結合附圖及實施例對本技術方案的發光二極體 的封裝製程進行詳細說明。 [0009] 圖2為本發明第一實施例發光二極體的封裝製程的步驟流 099116741 表單編號A0101 第4頁/共23頁 0992029754-0 201143150 程圖。士太 表面22%同時參閱圖3,首先提供一基板2〇,基板2〇的上 2上有複數個反射杯21,基板2〇和反射杯21可為一 '。樽,材料為陶瓷或者矽。 [0010] ❹ [0011] [0012] ο 099116741 如圖4所~ + 不,在基板20上形成電路結構3〇,該電路結構3〇 包含一^ 機械疋電極31以及一負電極32。該電路結構30可透過 蝕刻或鐳射加工技術在基板2〇上鑽孔後,再利用 濺鍍、$ & 兒鍍、電鑄或蒸鍍的方式形成。該電路結構3〇也 可以是鼓 ’、、、電分離的結構,即熱能與電能的傳遞路徑彼此 不同。 如圖5序、 不,將複數個發先二極體晶片41電性連接於電路 >σ 〇中並設置在反射杯21内。此電性連接的步驟可以 採用霜 明、共晶或者固晶打線的方式完成。在本實施例 中疋採用覆晶方式將複數個發光二極體晶片41電性連 接於電路結構3〇中。 圖6八至6(:是形成玻璃封裝肩的壓螬成型步驟的示意圖。 如圖6Α所示,將完成上述電性連接步漩的基板2〇翻轉, 使基板20的上表面22朝向填充有液態玻璃51的模具52。 模具52上對應每一反射杯21設有一凹陷5〇,凹陷5〇内凸 設有一臺階53。液態玻璃51填充在凹陷5〇内並覆蓋臺階 53。如圖6Β所示,將基板20向下移動,使反射杯21浸入 液態玻璃51材料中,直到反射杯21的頂部被臺階53頂住 ,此時基板20已不能再向下移動’由此保障模具μ中的 液態玻璃51未與發光二極體晶片41接觸,從而避免發光 二極體晶片41以及電路結構30等其他區域接觸液態破璃 51造成破壞。當然在其他實施例中模具52内也可不用形 表單編號Α0101 第5頁/共23頁 0992029754-0 201143150 成臺階53而採用其他方法,例如控制基板20的位移距離 以保障發光二極體晶片41與液態玻璃51相間隔,或者設 置模具52内的液態玻璃51的量,使基板20與模具52相抵 靠時,液態玻璃51仍與發光二極體晶片41相間隔。請參 閱圖6C,待液態玻璃51固化形成固態的玻璃封裝層54後 ,使玻璃封裝層54與模具52分離,從而完成此封裝過程 。本實施例中,玻璃封裝層54呈圓頂形。在此壓縮成型 過程中,還可將氮氣55注入基板20與模具52之間或者在 氮氣55的環境下進行壓縮成型的過程,由此,可以避免 空氣中的水氣或氧化因子等進入發光二極體封裝結構内 ,造成發光二極體晶片41壽命減少或封裝良率不佳。同 時,氮氣5 5也可以由惰性氣體替代,例如:氦(H e )、 氖(Ne)、氬(Ar)、氪(Kr)、氙(Xe)或氡(Rn) 等。 [0013] 圖7為本發明第二實施例發光二極體封裝製程得到的發光 二極體封裝結構示意圖。相較於第一實施例,本實施例 透過改變模具52的凹陷50的深度和底面形狀,使盛裝液 態玻璃51的凹陷50的底面呈平坦狀,從而使形成的玻璃 封裝層61呈平板狀。 [0014] 圖8為本發明第三實施例發光二極體封裝製程得到的發光 二極體封裝結構示意圖。本實施例在第二實施例封裝的 過程中,在壓縮成型過程之後在玻璃封裝層61的表面形 成一層熒光層71,從而可改變發出光的光特性。所述熒 光層71包含熒光轉換材料,其中熒光轉換材料可以為石 榴石基熒光粉、矽酸鹽基熒光粉、原矽酸鹽基熒光粉、 099116741 表單編號A0101 第6頁/共23頁 0992029754-0 201143150 硫化物基熒光粉、硫代鎵酸鹽基熒光粉和氮化物基熒光 粉。 [0015] 圖9為本發明第四實施例發光二極體封裝製程得到的發光 二極體封裝結構示意圖❶本實施例在第二實施例封裝的 過程中,在壓縮成型步驟之前,在液態玻璃中加入熒光 粉72,使熒光粉72懸浮於液態玻璃中,加入此步驟後再 進行後續步驟。當液態玻璃固化形成固態的玻璃封裝層 62後由於内部熒光粉72的加入使玻璃封裝層62具有煢光 轉換的特性。同樣的,本實施例中的熒光粉72可以為石 榴石基熒光粉、矽酸鹽基熒光粉、原矽酸鹽基熒光粉、 硫化物基熒光粉、硫代鎵酸鹽基熒光粉和氮化物基癸光 粉。 [0016] 圖10為本發明第五實施例發光二極體封裝製程得到的發 光二極體封裝結構示意圖。本實施例在封裝過裎中’提 供基板20時即在基板20的反射杯21的表面形成〆層金廣 或者非金屬的反射層81,從而增加反射效率。 [ΟΟΠ]在本發明上述各個實施例中’封裝層玻璃材料吁為二氧 化矽(Si〇2)或矽酸鈉(NaO · nSi〇 ),其中’其 中矽酸鈉的熔點較二氧化矽低,因此較不易破壞封裝結 構内的各元件。 [0018] 本發明的技術内容及技術特點已揭露如上,然而本領威 技術人員仍可能基於本發明的教示及揭示而作出種種不 背離本發明精神的替換及修飾。因此,本發明的保護範 圍應不限於實施例所揭示的内容,而應包括各種不背離 099116741 表單編號A0101 第7頁/共23頁 0992029梦 〇 201143150 本發明的替換及修飾,並為所附的權利要求所涵蓋。 【圖式簡單說明】 [0019] 圖1為習知技術之元件結構的剖面示意圖。 [0020] 圖2至圖6C為本發明第一實施例發光二極體的封裝製程的 步驟示意圖。 [0021] 圖7為本發明第二實施例發光二極體封裝製程得到的發光 二極體封裝結構示意圖。 [0022 ] 圖8為本發明第三實施例發光二極體封裝製程得到的發光 二極體封裝結構示意圖。 [0023] 圖9為本發明第四實施例發光二極體封裝製程得到的發光 二極體封裝結構示意圖。 [0024] 圖1 0為本發明第五實施例發光二極體封裝製程得到的發 光二極體封裝結構示意圖。 【主要元件符號說明】 [0025] 半導體元件:10 [0026] 透明封膠材料: [0027] 晶粒:12 [0028] 金屬導線:13 [0029] 薄膜基板:14 [0030] 基板:20 [0031] 反射杯:21 099116741 表單編號A0101 第8頁/共23頁 0992029754-0 201143150 [0032] [0033] [0034] [0035] [0036] [0037] [0038]201143150 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a packaging process 'particularly a light emitting diode packaging process [Prior Art] [0002] Now, a high power light emitting diode (Light Emitting) Diode, LED) has been widely used in many fields because of its ability to improve energy efficiency and provide better lighting. The conventional high-power light-emitting diode system is proposed to increase the current, and the luminous efficiency, while the current enthalpy increases, the local heat is excessively increased, thereby affecting the performance and life of the high-power light-emitting diode. This makes the package of the high-power light-emitting diode different from the package of the general light-emitting diode, which increases the difficulty. Round-like hair* two-package structure, most of which use epoxy resin or stone oxide. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic cross-sectional view showing a component package structure of a prior art. The package structure of the semiconductor device 10 is such that the transparent sealing material 11 (epoxy resin or sulphur oxide) covers the crystal grain 12, the metal ruthenium wire 13 and the film substrate 14 to prevent moisture and The effect of fiber. However, epoxy resin is prone to yellowing and chipping at high temperatures, which reduces the life of the light-emitting element and is not suitable for use in a high-power light-emitting diode package. In order to improve the above problems, conventional techniques utilize enamel resin as a material of the encapsulating layer to improve the yellowing and chipping problems, but when the enamel resin is used for packaging, especially in high-power product packaging, the coefficient of thermal expansion of the yttrium resin is often The difference of the secret board, the stress generated at the joint between the money-making layer and the carrier substrate is such that the encapsulation layer and the substrate are easily peeled off. Therefore, there are well-known technologies that apply to the LED package, especially 099116741 Form No. A0101 Page 3 of 23 0992029754-0 201143150 High power LED package. [0004] However, when a glass material is used as the light-emitting diode package material, since the melting point of the glass is high, when the liquefied glass is directly injected into the package substrate, the light-emitting diode wafer and the wire are damaged, so the conventional process is performed. It is not possible to directly form the glass on the package board, but it needs to be molded and cooled before being bonded to the package substrate. However, this will result in a complicated packaging process, which requires multiple processes to complete. SUMMARY OF THE INVENTION [0005] In view of the above, the present invention is directed to providing a packaging process suitable for a high power light emitting diode. [0006] A package process for a light-emitting diode, comprising the steps of: providing a substrate having a plurality of reflective cups; forming a circuit structure on the substrate, the circuit structure comprising a positive electrode and a negative electrode; The light emitting diode chip is electrically connected to the circuit structure; by using a compression molding technique, a glass encapsulation layer is formed on the reflective cup and the light emitting diode chip is encapsulated in the reflective cup. Compared with the prior art, the LED manufacturing process provided by the embodiment of the present invention adopts a compression molding technology and utilizes glass as a light-emitting diode packaging material, thereby avoiding problems such as yellowing and chipping at high temperatures. At the same time, the packaging process is simplified. [Embodiment] Hereinafter, a packaging process of a light-emitting diode of the present technical solution will be described in detail with reference to the accompanying drawings and embodiments. 2 is a flow chart of a packaging process of a light-emitting diode according to a first embodiment of the present invention. 099116741 Form No. A0101 Page 4 of 23 0992029754-0 201143150. At the same time, referring to Fig. 3, a substrate 2 is first provided. The upper 2 of the substrate 2 has a plurality of reflective cups 21, and the substrate 2 and the reflective cup 21 can be a '. Oh, the material is ceramic or tantalum. [0012] [0012] [0012] ο 099116741 As shown in FIG. 4, a circuit structure 3A is formed on the substrate 20, and the circuit structure 3A includes a mechanical electrode 31 and a negative electrode 32. The circuit structure 30 can be formed by drilling or laser processing on the substrate 2, and then using sputtering, $& plating, electroforming or evaporation. The circuit structure 3〇 may also be a drum', an electrically separated structure, i.e., a transfer path of thermal energy and electric energy are different from each other. As shown in FIG. 5, the plurality of precursor diodes 41 are electrically connected to the circuit > σ 并 and disposed in the reflective cup 21. The electrical connection step can be accomplished by frosting, eutectic or solid crystal bonding. In the present embodiment, a plurality of light-emitting diode wafers 41 are electrically connected to the circuit structure 3 by flip chip. 6 to 6 (: is a schematic view of a press forming step of forming a glass package shoulder. As shown in FIG. 6A, the substrate 2 of the above-described electrical connection step is turned over, so that the upper surface 22 of the substrate 20 faces the filling. The mold 52 of the liquid glass 51. The mold 52 is provided with a recess 5 对应 corresponding to each of the reflective cups 21, and a recess 53 is convexly disposed in the recess 5 。. The liquid glass 51 is filled in the recess 5 并 and covers the step 53. It is shown that the substrate 20 is moved downward, so that the reflective cup 21 is immersed in the material of the liquid glass 51 until the top of the reflective cup 21 is held by the step 53 at which time the substrate 20 can no longer move downwards, thereby ensuring the mold μ The liquid glass 51 is not in contact with the light-emitting diode wafer 41, so that the light-emitting diode wafer 41 and other regions such as the circuit structure 30 are prevented from being damaged by contact with the liquid glass 51. Of course, in other embodiments, the mold 52 may not be in the form of a shape. No. 101 0101, page 5 / total 23 pages 0992029754-0 201143150 The steps 53 are formed by other methods, such as controlling the displacement distance of the substrate 20 to ensure that the light-emitting diode wafer 41 is spaced from the liquid glass 51, or the mold 52 is disposed. When the amount of the liquid glass 51 is such that the substrate 20 abuts against the mold 52, the liquid glass 51 is still spaced apart from the light-emitting diode wafer 41. Referring to FIG. 6C, after the liquid glass 51 is cured to form a solid glass encapsulation layer 54, The glass encapsulation layer 54 is separated from the mold 52 to complete the encapsulation process. In the embodiment, the glass encapsulation layer 54 has a dome shape. In the compression molding process, the nitrogen gas 55 may be injected into the substrate 20 and the mold 52. The process of compression molding is performed in the environment of nitrogen gas 55, thereby preventing moisture or oxidation factors in the air from entering the light emitting diode package structure, resulting in reduced lifetime or package yield of the LED chip 41. At the same time, nitrogen 5 5 can also be replaced by an inert gas such as helium (H e ), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe) or krypton (Rn). 7 is a schematic diagram of a light emitting diode package structure obtained by a light emitting diode package process according to a second embodiment of the present invention. Compared with the first embodiment, the present embodiment changes the depth and bottom surface shape of the recess 50 of the mold 52. To make liquid glass The bottom surface of the recess 50 of the 51 is flat, so that the formed glass encapsulation layer 61 has a flat shape. [0014] FIG. 8 is a schematic diagram of a light emitting diode package structure obtained by the LED manufacturing process according to the third embodiment of the present invention. In the second embodiment of the present invention, a fluorescent layer 71 is formed on the surface of the glass encapsulation layer 61 after the compression molding process, so that the light characteristics of the emitted light can be changed. The fluorescent layer 71 contains a fluorescent conversion material. The fluorescent conversion material may be garnet-based phosphor, citrate-based phosphor, orthosilicate-based phosphor, 099116741 Form No. A0101 Page 6 of 23 0992029754-0 201143150 Sulfide-based phosphor, thio Gallate-based phosphors and nitride-based phosphors. 9 is a schematic diagram of a light emitting diode package structure obtained by a light emitting diode packaging process according to a fourth embodiment of the present invention. In the process of packaging the second embodiment, before the compression molding step, in the liquid glass The phosphor 72 is added to suspend the phosphor 72 in the liquid glass, and the subsequent steps are carried out after the addition of this step. When the liquid glass is cured to form a solid glass encapsulation layer 62, the glass encapsulation layer 62 has a photo-switching property due to the addition of the internal phosphor 72. Similarly, the phosphor 72 in this embodiment may be a garnet-based phosphor, a citrate-based phosphor, a protonate-based phosphor, a sulfide-based phosphor, a thiogallate-based phosphor, and a nitrogen. Compound based phosphor powder. 10 is a schematic diagram of a light emitting diode package structure obtained by a light emitting diode packaging process according to a fifth embodiment of the present invention. In the present embodiment, when the substrate 20 is provided in the package, a reflective layer 81 of a gold-plated or non-metallic layer is formed on the surface of the reflective cup 21 of the substrate 20, thereby increasing the reflection efficiency. [ΟΟΠ] In the above various embodiments of the present invention, the 'encapsulated layer glass material is called cerium oxide (Si〇2) or sodium citrate (NaO.nSi〇), wherein 'the melting point of sodium citrate is lower than that of cerium oxide. Therefore, it is less likely to damage the components in the package structure. The technical content and technical features of the present invention have been disclosed as above, and it is to be understood by those skilled in the art that the present invention may be substituted and modified without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention should not be limited to the contents disclosed in the embodiments, but should include all kinds of substitutions and modifications of the present invention without departing from 099116741, Form No. A0101, Page 7 of 23, 0992029, Nightmare 201143150, and Covered by the claims. BRIEF DESCRIPTION OF THE DRAWINGS [0019] FIG. 1 is a schematic cross-sectional view showing the structure of an element of a prior art. 2 to FIG. 6C are schematic diagrams showing the steps of a packaging process of a light-emitting diode according to a first embodiment of the present invention. 7 is a schematic diagram of a light emitting diode package structure obtained by a light emitting diode package process according to a second embodiment of the present invention. 8 is a schematic diagram of a light emitting diode package structure obtained by a light emitting diode package process according to a third embodiment of the present invention. 9 is a schematic diagram of a light emitting diode package structure obtained by a light emitting diode package process according to a fourth embodiment of the present invention. 10 is a schematic diagram of a light-emitting diode package structure obtained by a light-emitting diode package process according to a fifth embodiment of the present invention. [Main component symbol description] [0025] Semiconductor component: 10 [0026] Transparent encapsulant material: [0027] Grain: 12 [0028] Metal wire: 13 [0029] Film substrate: 14 [0030] Substrate: 20 [0031 Reflective Cup: 21 099116741 Form No. A0101 Page 8 / Total 23 Page 0992029754-0 201143150 [0033] [0034] [0036] [0038] [0038]

[0039] [0040] [0041] [0042] [0043] [0044] Ο [0045] 上表面:22 電路結構:30 正電極:31 負電極:32 發光二極體晶片:41 凹陷:50 液態玻璃:51 模具:52 臺階:53 玻璃封裝層:54、61、62 氮氣:55 熒光層:71 熒光粉:72 反射層:81 099116741 表單編號Α0101 第9頁/共23頁 0992029754-0[0040] [0044] [0044] [0044] [0045] Upper surface: 22 Circuit structure: 30 Positive electrode: 31 Negative electrode: 32 Light-emitting diode wafer: 41 Depression: 50 Liquid glass :51 Mold: 52 Steps: 53 Glass Encapsulation Layer: 54, 61, 62 Nitrogen: 55 Fluorescent Layer: 71 Phosphor: 72 Reflective Layer: 81 099116741 Form No. 1010101 Page 9 of 23 0992029754-0

Claims (1)

201143150 七、申請專利範圍: 一種發光二極體封裝製程,包括以下步驟 &供一基板,該基板具有複數個反射杯. 正電極以及一 形成電路結構於基板上’該電路結構包含 負電極; 將複數個發光二極體晶片電性連結於電路結構;以及 利用壓縮成型技術,在反射杯上形占 $成玻璃封裝層並將發光 二極體晶片封裝在反射杯内。 2. 如申請專利範圍第!項所述之發光二極體封裝製程,其中 在所述反射杯的表面形成反射層。 ~ 3. 如申請專利範圍第1項所述之發光二極體封裝製程,其中 所述電路結構是機械、崎或_加卫技術在基板上 鑽孔後’再利用濺鍍、電鍍、電鏟赤 电铸或洛鍍的方式形成於基 板上。 4 .如申請專利範圍第1項所述之發光二極體封裝製程,其中 在壓縮成型過程中,提供一盛袭液態玻璃的模具,並使所 述反射杯浸入液態玻璃’液態政璃冷卻後形成所述玻璃封 裝層。 5 .如申請專利範圍第4項所述之發光二極體封裝製程,其中 在壓縮成型過程中,所述液態玻璃與發光二極體晶片相間 6 .如申請專利範圍第5項所述之發光二極體封裝製程,其中 所述模具設有複數個凹陷,凹陷内設有用於抵靠反射杯的 臺階,所述液態玻璃盛裝在凹陷内益覆蓋所述臺階。 7 .如申請專利範圍第4項所述之發光二極體封裝製程,其中 099116741 表單編號A0101 第10頁/共23頁 0992029754-0 201143150 壓縮成型的過程在氮氣或惰性氣體的環境下實施或者將氮 氣或惰性氣體注入基板與模具之間。 8 .如申請專利範圍第1項所述之發光二極體封裝製程,其中 在所述玻璃封裝層表面形成熒光層。 9 .如申請專利範圍第1項所述之發光二極體封裝製程,其中 在所述玻璃封裝層中包含熒光轉換材料。 10 .如申請專利範圍第1項所述之發光二極體封裝製程,其中 所述玻璃封裝層的材料為二氧化矽或矽酸鈉。 Ο ❹ 099116741 表單編號 A0101 第 11 頁/共 23 頁 0992029754-0201143150 VII. Patent application scope: A light-emitting diode packaging process, comprising the following steps: & a substrate having a plurality of reflective cups. The positive electrode and a circuit structure are formed on the substrate. The circuit structure comprises a negative electrode; The plurality of light-emitting diode chips are electrically connected to the circuit structure; and the glass-encapsulated layer is formed on the reflective cup by the compression molding technique and the light-emitting diode chip is encapsulated in the reflective cup. 2. If you apply for a patent scope! The light emitting diode packaging process of claim 8, wherein a reflective layer is formed on a surface of the reflective cup. 3. The light-emitting diode packaging process of claim 1, wherein the circuit structure is mechanical, sacrificial or _ Guard technology after drilling on the substrate 'reuse sputtering, electroplating, electric shovel A pattern of electroforming or Luo plating is formed on the substrate. 4. The light-emitting diode packaging process of claim 1, wherein in the compression molding process, a mold for absorbing liquid glass is provided, and the reflective cup is immersed in liquid glass. The glass encapsulation layer is formed. 5. The light emitting diode packaging process of claim 4, wherein the liquid glass and the light emitting diode wafer are interposed during the compression molding process. 6. The light emitting according to claim 5 The diode package process, wherein the mold is provided with a plurality of recesses, and a step for abutting against the reflective cup is disposed in the recess, and the liquid glass is contained in the recess to cover the step. 7. The LED package process as described in claim 4, wherein 099116741 Form No. A0101 Page 10 / Total 23 Page 0992029754-0 201143150 The process of compression molding is carried out under the atmosphere of nitrogen or inert gas or Nitrogen or an inert gas is injected between the substrate and the mold. 8. The light emitting diode packaging process of claim 1, wherein a fluorescent layer is formed on a surface of the glass encapsulation layer. 9. The light emitting diode packaging process of claim 1, wherein the glass encapsulating layer comprises a fluorescent conversion material. 10. The light emitting diode packaging process of claim 1, wherein the glass encapsulating layer is made of cerium oxide or sodium citrate. Ο ❹ 099116741 Form No. A0101 Page 11 of 23 0992029754-0
TW99116741A 2010-05-26 2010-05-26 Method of manufacturing led package TWI407598B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99116741A TWI407598B (en) 2010-05-26 2010-05-26 Method of manufacturing led package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99116741A TWI407598B (en) 2010-05-26 2010-05-26 Method of manufacturing led package

Publications (2)

Publication Number Publication Date
TW201143150A true TW201143150A (en) 2011-12-01
TWI407598B TWI407598B (en) 2013-09-01

Family

ID=46765230

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99116741A TWI407598B (en) 2010-05-26 2010-05-26 Method of manufacturing led package

Country Status (1)

Country Link
TW (1) TWI407598B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103531696A (en) * 2012-07-06 2014-01-22 隆达电子股份有限公司 Packaging adhesive forming jig and operation method thereof
TWI478396B (en) * 2012-04-26 2015-03-21 Advanced Optoelectronic Tech Light emitting diode and method for manufacturing the same
TWI802708B (en) * 2018-06-08 2023-05-21 日商日機裝股份有限公司 semiconductor light emitting device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3978456B2 (en) * 2005-11-02 2007-09-19 株式会社トリオン LED mounting board
WO2007140651A1 (en) * 2006-06-08 2007-12-13 Hong-Yuan Technology Co., Ltd Light emitting system, light emitting apparatus and forming method thereof
US7709853B2 (en) * 2007-02-12 2010-05-04 Cree, Inc. Packaged semiconductor light emitting devices having multiple optical elements
US7791096B2 (en) * 2007-06-08 2010-09-07 Koninklijke Philips Electronics N.V. Mount for a semiconductor light emitting device
TW200913300A (en) * 2007-09-05 2009-03-16 Bright Max Group Ltd Method for manufacturing flip-chip light emitting diode package
JP2009117536A (en) * 2007-11-05 2009-05-28 Towa Corp Resin-sealed light emitter, and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI478396B (en) * 2012-04-26 2015-03-21 Advanced Optoelectronic Tech Light emitting diode and method for manufacturing the same
CN103531696A (en) * 2012-07-06 2014-01-22 隆达电子股份有限公司 Packaging adhesive forming jig and operation method thereof
CN103531696B (en) * 2012-07-06 2016-03-02 隆达电子股份有限公司 Packaging adhesive forming jig and operation method thereof
TWI802708B (en) * 2018-06-08 2023-05-21 日商日機裝股份有限公司 semiconductor light emitting device
US11677052B2 (en) 2018-06-08 2023-06-13 Nikkiso Co., Ltd. Semiconductor light-emitting device

Also Published As

Publication number Publication date
TWI407598B (en) 2013-09-01

Similar Documents

Publication Publication Date Title
CN102290524B (en) LED (Light Emitting Diode) device and LED (Light Emitting Diode) module device thereof
US8878205B2 (en) Light emitting diode wafer-level package with self-aligning features
US20080169480A1 (en) Optoelectronic device package and packaging method thereof
TWI484666B (en) Light emitting device
EP2704219B1 (en) Method for producing light-emitting device, and light-emitting device
US9755114B2 (en) Method for producing a plurality of optoelectronic components and optoelectronic component
CN102549783A (en) Reflective substrate for LEDs
JP2006054209A (en) Light emitting device
US8598612B2 (en) Light emitting diode thermally enhanced cavity package and method of manufacture
KR101310107B1 (en) Encapsulant For UVLED Device, UVLED Device Using The Same And Manufacturing Method thereof
TW200525785A (en) Radiation-emitting and/or radiation-receiving semiconductor component and method for producing such component
EP3491678B1 (en) Light emitting device package with reflective side coating
TW201143150A (en) Method of manufacturing LED package
JP5126127B2 (en) Method for manufacturing light emitting device
US20120094405A1 (en) Method for manufacturing led package
US11189769B2 (en) Light emitting device package with reflective side coating
TWI528596B (en) Led package and method of manufacturing the same
JP2004172636A (en) Light emitting diode and its manufacturing method
TW201208132A (en) Method for manufacturing LED
CN102254833A (en) Light-emitting diode encapsulating procedure
KR20150042954A (en) Side-view light emitting device and method of making the same
TWI400823B (en) Led package and method for manufacturing the same
CN103022275B (en) Packaging method of light-emitting diodes
CN108493320A (en) Nano combined buffering coating MCOB encapsulation aluminium nitride substrate and preparation method thereof
KR100663912B1 (en) Buffer layer and light emitting diode using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees