TW201140532A - A method for manufacturing housing of numeric display - Google Patents

A method for manufacturing housing of numeric display Download PDF

Info

Publication number
TW201140532A
TW201140532A TW99114385A TW99114385A TW201140532A TW 201140532 A TW201140532 A TW 201140532A TW 99114385 A TW99114385 A TW 99114385A TW 99114385 A TW99114385 A TW 99114385A TW 201140532 A TW201140532 A TW 201140532A
Authority
TW
Taiwan
Prior art keywords
transparent plastic
housing
digital display
injection molding
reflective cover
Prior art date
Application number
TW99114385A
Other languages
Chinese (zh)
Other versions
TWI413955B (en
Inventor
Cheng-Han Tsai
Chao-Ming Wu
Shih-Yuan Kuo
Chih-Wei Wang
Hui-Ling Lin
Original Assignee
Silitek Electronic Guangzhou
Lite On Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silitek Electronic Guangzhou, Lite On Technology Corp filed Critical Silitek Electronic Guangzhou
Priority to TW99114385A priority Critical patent/TWI413955B/en
Publication of TW201140532A publication Critical patent/TW201140532A/en
Application granted granted Critical
Publication of TWI413955B publication Critical patent/TWI413955B/en

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

A method for manufacturing housing of numeric display includes the following steps. The first step is forming a reflective cover by an injection molding processes. The formed reflective cover has a plurality of room units, and each of the room units is defined by the reflective surfaces and is formed with upper and lower openings. The second step is forming a transparent plastic material in the room units by another injection molding processes, for example, an insert molding method. Therefore, the formed transparent plastic material is engaged with the reflective cover so as to form the housing of numeric display.

Description

201140532 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種數字顯示器之殼體的製造方 法,尤指一種簡化製程以生產數字顯示器之殼體的製造方 法。 【先前技術】 數字顯示器是針對文字'數字、符號或圖形等資訊趨 示而開發的數㈣示模組’目前已大量應用在各式各樣^ 電子產品之中,像是家電、音響、攝影機、儀器設備等之 心不k或顯7F裝置上’其以利用發光二極體或者電場發光 物質(electro-opticai substance)來顯示文字或者圖形。 目前’數字顯示器的傳統製程係先製作數字顯示器的 再利用點膠方式將環氧樹脂(―灌入反 射2構中以形成-殼體,經㈣烤後,接著將 二極體晶片之電路板接合、迴焊(⑽w)於上述殼體中。 但此傳統的製程會有以下缺點: 1、製程時間過長:目前的點膠製程必須搭配 步驟,始能將環氧谢m &上、, /、对的 上,产她二: 成型,因此在整體的製程時間 衣氧樹月曰品先進行110。。、 預烤),㈣過12(rc…n主 民、處理(又稱為 故使傳編1 時之固化處理(又稱為長烤), 數子顯示器之製程時間過長,不利於生產。 量不均的4缺=多:目前的轉1"程料發生漏膠或朦 裝膠體之:光面產==爾的步驟後,會使封 生凹陷的問題’使得數字顯示器的發光 4/23 201140532 -極f在發。光特性上產生絲、氣泡或發光不均的缺陷。 备、產^口結構發生變異:如上之第卜2點所述,當環 斗1月:進仃烘烤固化步驟時’環氧樹脂會因固化反應而產 w力’故易使反射蓋結構產生彎曲變形,導致產品結 構出現變異而降低製程良率。 【發明内容】BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a housing for a digital display, and more particularly to a method of manufacturing a housing for simplifying a process for producing a digital display. [Prior Art] The digital display is a digital (four) display module developed for information such as texts, symbols, or graphics. It has been widely used in various electronic products, such as home appliances, audio, and video cameras. The instrument, the device, etc. are not used to display text or graphics using a light-emitting diode or an electro-opticai substance. At present, the traditional process of digital display is to make a digital display and then use the epoxy resin ("filled into the reflective structure to form a shell, after (4) baking, and then the circuit board of the diode chip. Bonding and reflowing ((10)w) in the above casing. However, this conventional process has the following disadvantages: 1. The process time is too long: the current dispensing process must be matched with the steps, and the epoxy can be applied to the m& , /, on the upper, the production of her two: molding, so in the overall process time, the clothing oxygen tree moon products first carried out 110.., pre-baked), (four) over 12 (rc...n the main people, processing (also known as Therefore, the curing process (also known as long-baked) of the number 1 is too long, and the process time of the digital display is too long, which is not conducive to production. 4 of the amount of unevenness = more: the current turn 1" Armored colloid: After the step of smooth production == er, the problem of sealing the recess will make the digital display illuminate 4/23 201140532 - the pole f is emitted. The light characteristic produces silk, bubbles or uneven illumination. Defects. The structure of the preparation and production of the mouth is mutated: as described in point 2 above, when the bucket 1 Month: When the baking and curing step is carried out, the epoxy resin will generate a force due to the curing reaction, which tends to cause bending deformation of the reflective cover structure, resulting in variation of the product structure and lowering the process yield.

沾制^明之主要目的’在於提供—種數字顯示器之殼體 士广方法’其係利用射出成型以直接將透明塑料固化 ^於反射蓋結構中以形成數字顯示器之殼體,藉以取代 ,統之點膠製程,且同時不需要多餘供烤/固化時間而大幅 鈿短數字顯示器之殼體之製作時間。 於疋,本發明利用兩次的射出成型步驟直接製成數字 =器之殼體’無需傳統之轉製程,故可避免傳統之 :月曰材料因供烤高溫所產生的熱應力所導致的變形問 題’再者’由於本發明不使㈣統之轉製程,故不會產 J點膠時的漏膠或膠量不均之缺陷,據此可避免在經過高 :烘烤固化後所造成發光面凹陷而衍生出的光點、氣泡或 發光不均的問題。 *為了達成以上的目的,本發明提出—種數字顯示器之 喊體的製造方法,其包含以下步驟:提供—第—射出成型 步驟’以成型-反射蓋結構’且該反射蓋結構上具有上 :導通之多個空間單元,該些空間單元係由該反射蓋結 冓上之多個反射面所建構;以及提供—第二射出成型步 驟,以將一透明塑料成型於該些空間單元,且成型後之 5/23 201140532 該透明塑料的外壁面係與其所接觸之反射面接合,以形 成該數字顯示器之殼體。 其中’透明塑料可為熱塑性塑料或熱固性塑料,當 透明塑料為熱塑性塑料時,則其主成分可以是聚對苯二 醯對苯二胺(PPA )或是聚醯胺(pA )。當主成分為 時,則可應用在需通過22(TC以上的高溫迴焊製程中, 故可應用於SMT形式之數字顯示器之產品。當主成分為 PA時,可應用在不需通過高溫迴焊製程中,例如形 式之數字顯示器之產品。此外,當透明塑料為熱固性塑 料時,其可以為矽膠或樹脂材料。 土 再者苐一射出成型步驟所成型之透明塑料之表面 具有不同微結構(如橫溝、v溝、等效凹透鏡結 m/戈另外設置透鏡(Lens),以提高數字顯示器產品 的發光特性。 【實施方式】The main purpose of the smear is to provide a method for the digital display of the digital display, which uses injection molding to directly cure the transparent plastic into the reflective cover structure to form the housing of the digital display, thereby replacing The dispensing process, while at the same time does not require extra baking/curing time, significantly shortens the production time of the digital display housing. In the present invention, the present invention utilizes two injection molding steps to directly form the housing of the digital device. It does not require a conventional conversion process, so that the conventional one can be avoided: the deformation of the mooncake material due to the thermal stress generated by the high temperature for baking. The problem 'further', because the invention does not make the (four) system change process, it will not produce the defects of glue leakage or uneven glue amount when the glue is produced, thereby avoiding the light caused by the high: baking curing The problem of uneven spots, bubbles or uneven light emitted from the surface depression. In order to achieve the above object, the present invention provides a method of manufacturing a digital display, comprising the steps of: providing a first-injection molding step 'to form a reflective-reflective cover structure' and having the upper surface of the reflective cover structure: a plurality of spatial units that are electrically connected, the spatial units are constructed by a plurality of reflective surfaces on the reflective cover, and a second injection molding step is provided to form a transparent plastic into the spatial units and form 5/23 201140532 The outer wall of the transparent plastic is joined to the reflective surface it contacts to form the housing of the digital display. The 'transparent plastic can be a thermoplastic or a thermosetting plastic. When the transparent plastic is a thermoplastic, the main component can be poly(p-phenylene terephthalamide) or polydecylamine (pA). When the main component is used, it can be applied to products that need to pass through the high temperature reflow process of 22 (TC or higher, so it can be applied to digital display in the form of SMT. When the main component is PA, it can be applied without going through high temperature. In the welding process, for example, a product of the form of a digital display. In addition, when the transparent plastic is a thermosetting plastic, it may be a silicone or a resin material. The surface of the transparent plastic formed by the injection molding step has a different microstructure ( For example, a lateral groove, a v-groove, and an equivalent concave lens junction m/go are additionally provided with a lens (Lens) to improve the light-emitting characteristics of the digital display product.

要明提出一種數字顯示器之殼體的製造方法,^ 】用兩階段的射出成型步驟製作數字顯示 生她膠、烘烤固化方式製作數字顯示器 1 包含以下步驟: 圖所不’本發明之製造方法 射蓋m供=射出成型步驟,型- '參考第-A圖和第,,在此步驟中 6/23 201140532 係先利用第一階段的射出成型方法製作反射蓋結構工 0,該反射蓋結構10係為數字顯示器之殼體的主結構, 而後述之第二階段的射出成型則會將透明塑料成型於反 射蓋結構1〇中,以組成數字顯示器之殼體。其中,本發 曰月中所述的透明塑料中之「透明」定義為可使特定波長範 圍的光所穿透’通常為可見光範圍的波長。 此外,反射蓋結構1〇上具有上下導通之多個空間 單元1 0 1,其中第三圖為第二A圖之其中一空間單元 • 1〇1之剖面示意圖,其僅顯示該反射蓋結構1〇其中 -空間料1 Q 1 ’空間單M Q i係由該反射蓋結構 1 0中之多個反射面i 〇 2所建構。在本實施例中,第 二A圖、第二B圖所示之反射蓋結構i 〇,其係用以製 作出顯示數字”8”和旁邊之小數點(dedmal㈧丨价,Dp ),,,, 的反射蓋結構1 〇 ’在第一階段的射出成型步驟中,係 配合-模具並利用臥式射出成型機將該反射蓋結構工〇 成型完成。參考第二B圖,在本實施例中,反射蓋 • 1 〇之正面具有八個具上下開口之空間單元i 0 而 這八個空,元1〇 i係心進行後述之第二階段的射 出成型步驟’最後即可用七個節線(segment)構成數 字”8”以及用一個節線構成旁邊的小數點,,.,,。 步驟S103 :提供-第二射出成型步驟,此步驟主 係將透明塑料1 !成型於上述反射蓋結構i 〇之空間單 元1 0 1中’因此即為第二階段的射出成型。請參考第 四A圖與第四B圖,即揭示在第三圖所示之空間單元工〇 1中進行此第二射出成型步驟之相應剖面示意圖,其利用 7/23 201140532 射,成型方式而將透明塑料11成型於上述反射蓋結構 1〇之空間單元101t,而固化成型後之該透明塑料 1 1的外壁面1 1 1即可與上述反射面1 0 2接合,藉 此^射蓋結構1 〇與固化成型後之透明塑料1 1即形 ^激字顯不器之殼體,接著可再與具有發光二極體之電路 板組裝,進而形成數字顯示器。 、再-方面,上述所提出之數字顯示器之殼體的製造方 ^中更可包括有—印刷步鄉(如第—A圖中之步驟⑽ 或第- B圖中之步驟腕)。如第一 A圆所示, 體=程中,該印刷步鄉(即步鄉_)係介於步驟§如 之第一階段的射出成型與步驟s】〇 3之第 之間:其可使用-印刷機設備,將反射蓋= ·-佈有預疋色彩,例如在反射蓋結構 照色版編號進行刷墨製程,使其上表面1〇。具有= 圖案之印刷面(如第二B圖所示)。亦或如第一㈣所干, 该印刷步驟(即步驟S105)可在步驟sl〇3之 的射出成型的步驟之後實施,該印 = :程所達成:其一製程為上述之刷墨製程; 先利用圖案貼片貼附在反射蓋結構10之正面,之德2 :射選區在透明塑料i i之成型區域製作所需圖案 丑程則為先將反射蓋結構i 〇之正面進行全面印刷 再以雷射選區在透明塑料i i之成型 ::。使反射蓋結構之正㈣具有色 在本具體實施例中,係利用一模具2 〇進行該第二 8/23 201140532 射出成型步驟。模具2 〇為下模具2 〇A和上模具2〇B 之組合搭配,以實施上述之第二射出·步驟,其中下模 具2 0A與具有突出結構2 〇 i之上模具2 ◦ b係上下 央置於反射蓋結構1 〇。在本具體實施例卜下模具2 〇 • A之數量可為單一個以放置單-個反射蓋結構i ◦,、並血 反射蓋,構1 〇之印刷面(即上表面i⑽)接觸,較佳 地,下模具2 0A可以完全容置反射蓋結構工〇,至於上 模具2 ◦ B之突出結構2 Q i的尺寸恰可延伸進入到反 #射蓋結構1 0之空間單元i 〇工巾,此外,上模具2◦ B更具有洗口 2 Q 1 1形成在突出結構2 Q i上,利用 一埋入直立式成型機將透明塑料i 上模具2 Q B之 澆口 20 1 1射出而充填於空間單元1 〇 i中的殘留空 間(在第四A圖和第四b圖中,即是未被上模具2 〇 b 之突出結構2 0 1所填滿之區域,也就是由下模具2 〇 A、反射面1 〇 2和突出結構2 〇 2而界定出的空間), 最後固化成型後之S亥透明塑料1 1的外壁面1 1 1則與 鲁其所接觸之反射面1 〇 2接合’由於透明塑料1 1不需 烘烤製程即可固化成型,故本發明可用以解決傳統樹脂 進行烘烤時形成的熱應力所導致反射蓋結構i 〇易產生 ’考曲以及其他產品缺陷的問題。 此外,在進行該第二射出成型步驟時,下模具2 〇 A通常是固定不動,而上模具2〇B為可動,在本實施 例中,一個上模具2 0 B僅具一個突出結構2 〇丄和一 個澆口 2 0 1 1而將透明塑料1 1注入單一個空間單元 1 0 1 ’因此若反射盍結構1 〇有多個空間單元1〇1 9/23 201140532 則需要對應數量的上模具2 〇 B以及對應數量的突出結 構2 0 1和澆口 2 〇 1 1,於是,形成一個反射蓋結構 1 0的相應模具2 〇之搭配組合為一個下模具2 〇 a和 多個上模具2 〇 B。此外,在其他可能實施例中,形成 單一個反射蓋結構1 〇的相應模具2 〇可以為單一個下 模具2 0 A和單一個上模具2 〇 B之搭配組合,此單一 個上模具2 〇 B為具有對應於空間單元丄〇 2的數量之 突出結構2 0 1和洗口 2 〇 1 1。在其他可能實施例 中,亦可單一個下模具2 〇 A同時容置多個反射蓋結構 1 〇 (譬如:6個或8個反射蓋結構i 〇 ),而相應上模 具2 0 B則可以為單一個而具有對應於前述反射蓋結構 數量的所有空間單元個數之突出結構2 0 1和澆口 2 〇 1 1 (以6個反射蓋結構1 〇為例,其具有48個空間單 疋1 〇 1 ),即是僅利用單一個下模組2 〇 A和單一個上 =組2 0 B所構成的模具2 〇可以同時形成多個反射蓋 、’’σ構1 〇。然而,在其他可能實施例中,模具2 〇除了 可以為一個下模具2 〇 Α和一個上模具2 〇 Β或是一個 下模具2 0Α與多個上模具2 〇 Β之搭配組合,單一個 ^模具2 0 B亦可以具有多個突出結構2 〇 i但僅具有 單一個洗口 2 0 1 1,或是少於突出結構2 0 1之數量 的洗口設計’而可從單一洗口 2 ◦丄丄中同時填注透明 塑料1 1於多個空間單元1 0 1中,此亦屬本發明之範 疇。 值得說明的是,本發明並不限定模具2 0的形態與 使用心樣例如上模具2 〇 β並不限定如本實施例必須提 10/23 201140532 供突出結構2 0 1延伸進入至反射蓋結構1 〇之空間單 元1 ◦ 1中,而設計在突出結構2 0 1上之澆口 2 0 1 1的位置亦不加以限定。在其他可能實施例中,本發明 亦可以將上模具2 Ο Β設計為無突出結構2 〇 1而是僅 將洗口 2 0 1 1设什在上模具2 〇 Β上,且對應於空間 單元1 0 1之導通開口外,以便於注入透明塑料1 1。 此外,澆口 2 0 1 1亦不限定為必須如本實施例需要設 置在突出結構2 0 1之正中央,在其他可能實施例中, φ亦可將澆口 2 〇 1 1設置在偏離突出結構2 〇 1正中央 的一側(將稍後描述)。另外,透明塑料1 1也不限定其 填入空間單元1 〇 1的態樣,例如,在本實施例中〜.,突 出結構2 0 1係延伸置入於該空間單元丄〇丄中,透明 塑料1 1則可填入全部的殘留空間,在其他可能實施例 中,則疋可以僅填入部分的殘留空間;反之,若突出結 構2 ◦ 1僅放置於空間單元工◦工外,透明塑料丄工則 :以填滿全部的空間單元丄〇 i或是僅灌人部分的空間 單π 1 0 1。換言之,不論以何種方式或應用何種模具 將透明塑料1 1固化成型於空間單元1 0 1,且不論透 明塑料1 1是否填滿於空間單元丄〇 i, 保護範圍。 在一具體實施例中,當透明塑料11為-熱塑性塑料 時’其主成分可以為聚對苯二醯對苯二胺(PPA), 二:通過操作溫度為戰以上的高溫迴焊製程,例如 ,溫迴焊製程之操作溫度較佳為峨 時間為…分鐘。在本實施例中,以PPA為主成= 11/23 201140532 透明料(即相當於透明塑料丄",其可通過錫爐 (IRm〇w,26(TC,4.5分鐘)的迴焊製程而不軟化; 換=之’上述以PPA為主成分之透明料可適用於本發明 之製造方法,可製作出可以通過高溫迴焊製程的數字顯示 器之殼體,而可應用於SMT形式之數字顯示器產品。 另一具體實施例之熱塑性的透明塑料丄丄之主八 係為聚醯胺(PA)’其係以PA為主成分的透明料(即二 當於透明塑料].:L ),其特性為玻璃轉化溫度(Tg):⑽ 故上述以PA為主成分之透明料亦可適用於本發明 ^造方法’以製作出可以不需通過高溫迴焊製程的數字 顯不器之殼體,例如DIP形式之數字顯示器之產品,換 …熱塑性之透明塑料U可至少包含聚醯胺、 2對笨二醯對笨二胺(PPA),但不以此為限 製程上的考量。 何σ 另一方面,本發明所使用之透明塑料i丄更可以 2 =料,例如透明塑料"之成份至少包切膠或 。材料,而使用熱固性的透明塑料1 1在基本製程上 可t考上述針對熱塑性的透明塑料1i的製程,在此不 ^贅述。再者,不以前揭描述為限,透明塑料丄丄链々、 性塑料而在不同溫度下具有不同熱塑.心 而在本發明之具體實施例中,上述兩種不同主成分之 月』料1 1均可添加至少—種添加劑, :成分為碳_)、發光粉等等,以改變產品的心特 12/23 201140532 S103夕在步驟S101之第—階段的射出成型與步驟 帛H的射出成型的步驟中,更具有以下的變 化貫施態樣,如第五A至五£圖所示。 ,考第五A圖,為了加強透明塑料丄丄與反射蓋 .、。構1㈣固著性與結合性,在步驟SHH所提供的模具 可進仃機械加工、放電加工或其他類似製程,以使反射蓋 =10中空間單元101之至少一反射面1〇2上形 成第一卡合微結構1 〇 2 1,例如在空間單元i 〇 i中 由下模具2 QA與上模具2 〇 B之突出結構2 ◦丄所定 義之該殘留空間中的多個側邊反射面i 〇 2上設有第一 卡合微結構1 〇 2 i ;因此,在第二階段的射出成型的 步驟中,當該透明塑料i i注入上述空間單元i 〇工 中,固化成型後之該透明塑料i i的外壁面玉i丄上則 成型有對應該第一卡合微結構1 0 2 1之第二卡合微結 構1 1 1 0,於是,可利用相互嵌卡的第一卡合微結構 1 0 2 1與第二卡合微結構1 1 1 〇,加強固化後之透 明塑料1 1與反射蓋結構丄0的結合性。再者,在第五 A圖中,因其為剖面圖,因此僅顯示該殘留空間中的兩 侧邊之反射面1 〇 2具有第一卡合微結構i 〇 2 i,然 而,實際上可以為該殘留空間之周圍所有反射面丄〇 2 (若以第二B圖所示之數字8其中一邊的空間單元1 〇 1則具有六個側邊)’亦可以均具有第一卡合微結構1 〇 2 1或是僅有一邊設有第一卡合微結構1 〇 2 1。 另外’為了提高本發明之數字顯示器之殼體與發光 二極體進行組配之後的發光特性,固化成型後之該透明 13/23 201140532 塑料1 1的發光表面1 2與内表 .. 有不同的結構’上述結構的製作方法如下.i更可成型 在步驟S】〇3之第二階段的射出成型的步 之突出結構2Q1可耻設計出敎 = 結構(如第^圖所示)、橫槽:構(: 於等效凹透鏡之凸狀結構(如第=:「;或= 以上述為限,故透明塑料工工在第 驟之後,該透明塑料“的内表面113即^ = 上述圓弧狀結構、橫槽結構、v形槽結構或對應= 凹透鏡之凸狀結構而形成透鏡狀(如第四B圖 生 槽(:第五B圖、第五C圖所示)'v形槽或等效凹)透= 如第五E圖之⑷、⑻部分所示)之圖案結構工 1,藉此可製作出不同的内表面1 1 3形'態,以符合各 種不同的應用領域或需求。 口 再者,同樣參考第五Β圖、第S c圖所示,在步驟s⑹ 之第-階段的射出成型的步驟中,下模具2 ◦ A中更可 透過譬如放電加工之方式而形成微結構2 0 3,故透明 塑料1 1在射出成型的步驟之後,微結構2 〇 3會轉寫 在透明塑料1 1的發光表面1 1 2而形成光學微結構工 121,藉此可製作出具有擴散光線功能的發光表面1 ^ 2形態,以使點光源可被擴散至近似面光源。在本實 知例中’發光表面1 1 2之表面粗糙度(Ra ;中心線平 均粗糖度)可以為1.6mm至3.2mm ,而具有良好之光線 霧化效果。 14/23 201140532 另外,如前文所述,本發明的其他變化實施例中,上 模具2 QB亦可有以下態樣。請參考第五D圖並配合第六 D圖,可將澆口 2 0 1 1的位置從突出結構2 〇 1之中 央位置移到突出結構2 Q 1的—側,而使固化成型後的 透明㈣1 1具有光滑的内表面i i 3,以提高光學特 性。又如第五E圖與第六㈣所示,為絲線在成型後 之透明塑料1 i中的混光效果更佳且更均勾,在一實施 例中,除了將澆口 2 0 1 1移至突出結構2 〇工之一側 Φ外,更在突出結構2 〇 1上形成可轉寫為類菲埋爾透鏡 (Fresnel Lens )之等效凹透鏡的凸狀預定結構2 〇 2, 其具有以數個同心環方式配置之溝槽,每—圈同心環的 溝槽切面形狀則近似於凸透鏡的局部’但與菲涅爾透鏡 不同的是,該些同心環係以等間距配置,中心最内圈之 同心環的半徑為兩倍之間距,且不同同心環之溝槽且有 不同的高度(最外圈為最高,依次遞減),依據這樣設計 的凸狀的預定結構2 G 2經過射出形成後即可形成相應 鲁於凸狀的敎結構2 0 2之類菲调透鏡之.等效凹透鏡 形狀的圖案結構1 1 3 1,如第五E圖⑷所示,圖案結 構1 1 3 1具有等間距H之同心環,且最内圈之同心環 為兩倍的間距Η,而由第圖⑻所示,圖案結構11 3 1之外圈同心環具有切面近似凹透鏡局部之最深溝 =,由外向内之同心環之溝槽深度依次遞減,在該圖案 :構1 1 3 1上各同心環之溝槽的最頂端連線近乎平 行,如此即可保留原本球面凹透鏡以提供之較大發光角 度同時也提供近乎等厚度的混光距離,據此可產生均 15/23 201140532 勻度極佳的光線。在其他可能實施例中,亦可使圖案結 構1 1 3 1成型為一般菲涅爾凹透鏡(圖未示),每一同 心環之溝槽具有相同的深度,但該些同心環具有不同的 間距,而各同心圓上之溝槽的最頂端連接亦近乎平行, 同樣也可提供等效於一般平凹透鏡的發散光線特性,而 相應的預定結構2 0 2則為對應於菲涅爾凹透鏡之凸狀 結構。 ,此外’請參考第七A、七B圖,為應用本發明方法 製作出之數字顯示器的光學分布曲線圖,其係將透明塑 料1 1係以本發明之方法固化成型於反射蓋結構丄〇2 空間單元1 Q 1中而形成數字顯示器之殼體,並將發光 二極體置入上述殼體以測量如第二B圖所示之數字,,8,, 之底邊空間單元1〇1構成的節線a之光學分布特性, 其中發光表面1 i 2係為平整之光滑面,而由第七A圖 所示可知,可知數字顯示器的半峰高寬度比率約為 Wj%,其中半峰高寬度約為4〇像素距離(“μ丨),而 該節線A之像素距離約為145像素距離;另外,請參考 第七B圖,其同樣係湘本發明之方法製作成數字顯示 器,其中發光表面1 1 2之粗經度係為^麵,並對依 據^第二B圖所示之數字,,8”底邊空間單元丄◦丄構成 的卽線A進行光學量測。由第七B圖可知,經過粗糙化 =數字顯示器之半峰高寬度之比率約為86 2%,其中該 節線A之半峰高寬度約在m像素距離之間,而該節線 A之像素距離約為145像素距離。故本發明可利用發光 表面112之粗糙度設計來改變數字顯示器所發出^線 16/23 201140532 之霧化程度,藉此產生均勻的光學擴散效果,從而可以 有效避免亮點產生。 據此,利用步驟S103之第二階段的射出成型的步驟 可將透明塑料1 1成型,並將固化成型後之透明塑料1 1與反射蓋結構1 〇接合,以製作成數字顯示器之殼 體,更可在模具2 0上設計不同的光學結構/微結構(如上 述之預定結構2 0 2或微結構2 〇 3 ),使固化成型後之 透明塑料1 1上轉寫出相對應於預定結構2 〇 2或微結 φ構2 〇 3的圖案結構1 1 3 1或光學微結構1 1 2 1。 因此,在步驟S103之後,可取下模具2 〇,並利甩熱熔 接合等技術將設有發光:極體晶片之電路板組裝於所成 型之忒體上,發光二極體所發出之光線即可藉由反射蓋結 構1 0之反射面1 〇 2聚光,再通過該透明塑料1 1之 内表面1 1 3與發光表面i i 2射出。再者,藉由上述 實施例中的光學結構/光學微結構,包括内表面i 1 3上 之圖案結構1131或發光表面丄!2上之光學微結構 • 1 1 2 1,以提高整體的擴散特性。 綜上所述,本發明具有下列諸項優點: 1、 本發明係利用第二階段的射出成型將透明塑料固化 成型於S玄反射蓋結構中’因此,本發明可省去傳統之 點膠的固化時間,以本發明的具體測試數據,約略可 料4.5小時,換言之,本發明可大幅縮短數字顯示 器之殼體的製作時間。 2、 本發明利用第二階段的射出成型將透明塑料加以固 化成型,以取代傳統之樹脂點膠製程,故與傳統的 17/23 201140532 點膠製程相比,本發明之透明塑料不需經過烤箱的 烘烤固化,因此可避免傳統之樹脂材料通過烤箱之 南溫環境所產生的熱應力,更可解決因為熱應力所 導致之反射蓋結構的變形問題。 3、由於本發明不使用傳統之樹脂點膠的製程,故不會產 生漏膠或膠量不均,在經過高溫烘烤固化後所造成發 光面凹陷而衍生出的光點、氣泡或發光不均的問題。 以上所述僅為本發明之較佳可行實施例,非因此侷 限^發明之專利範圍,故舉凡運用本發明說明書及圖示 内容所為之等效技術變化,均包含於本發明之範圍内。 【圖式簡單說明】 第“ A圖係為本發明第—實施方式之數字顯示器之殼體 的製造方法之流程圖。 第-B圖係為本發明第二實施方式之數字顯示器之殼體的 製造方法之流程圖。 第二A圖係為本發明數字顯示器之反射蓋結構的背面立 體示意圖。 結構的正面立 第二B圖係為本發明數字顯示器之反射蓋 體示意圖。 顯示器之反射蓋結構上的空間單 第二圖係為本發明數字 元之剖面示意圖。 第四A圖與第四B圖係為本發明之第二階段的射出成型 少驟之示意圖。 第五A圖係為本發明之第二階段的射出成型步驟的變化 18/23 201140532 實施例之示意圖。 變第二:=第二階段的射出成型步㈣另- 第五c圖係為第五B圖中將模具移除後之示意圖。 =實DC之 =第二階段的射出成型㈣的又- =五E圖係為本發明之第二階段的射出成 變化實施例之示意圖,其"五,圖⑷為透明塑二 表面之圖案結構之俯視圖。 f六AH至第六E圖係為本發明之*同態樣之上模具之示 意圖。 、八 /' ^七A圖係顯示應用本發明所製成之殼體所組裝成的數 字顯示器的光學分布曲線圖,其中發光表面為光滑面。 f七B ®係顯示應用本發明所製成之殼體所㈣成的數 字顯示器的光學分布曲線圖,其中發光表面為粗糙面。 【主要元件符號說明】 1 反射蓋結構 0 10 1 10 2 10 2 1 10 0 111 1110 1 1 2 112 1 113 113 1 透明塑料 空間單元 反射面 第一卡合微結構 上表面 外壁面 第二卡合微結構 發光表面 光學微結構 内表面 圖案結構 19/23 201140532 2 0 模具 2 0 A 下模具 2 0 B 上模具 2 0 1 突出結構 2 0 11 澆口 2 0 2 預定結構 2 0 3 微結構 S101 、S102 、 S〗03 、 105 流程步驟 A節線 H間距 20/23It is to be noted that a method for manufacturing a housing of a digital display is provided, wherein a digital display is produced by a two-stage injection molding step, and a digital display is produced by baking and curing. The method includes the following steps: Shot cap m for = injection molding step, type - 'Refer to Fig. A and Fig., in this step 6/23 201140532 first to use the first stage of the injection molding method to make the reflective cover structure 0, the reflective cover structure The 10 series is the main structure of the housing of the digital display, and the second stage of injection molding described later forms a transparent plastic in the reflective cover structure 1 to constitute the housing of the digital display. Among them, "transparent" in the transparent plastic described in the present invention is defined as a wavelength which allows light of a specific wavelength range to penetrate 'usually in the visible light range. In addition, the reflective cover structure 1 has a plurality of spatial units 110 connected upwardly and upwardly, wherein the third figure is a schematic cross-sectional view of one of the spatial units of the second A, which shows only the reflective cover structure 1 〇 where - space material 1 Q 1 'space single MQ i is constructed by a plurality of reflecting surfaces i 〇 2 in the reflecting cover structure 10 . In this embodiment, the reflective cover structure i 所示 shown in the second A picture and the second B picture is used to create the display number "8" and the decimal point (dedmal (8) price, Dp), The reflective cover structure 1 〇 'in the first stage of the injection molding step, the mold-fitted mold is used to form the reflective cover structure by a horizontal injection molding machine. Referring to the second B diagram, in the present embodiment, the front surface of the reflective cover 1 has eight spatial units i 0 having upper and lower openings, and the eight empty elements are arranged to perform the second stage of the second stage. The forming step 'finally, the seven "segments" can be used to form the number "8" and the decimal point, ,.,, can be formed by a section line. Step S103: providing a second injection molding step of molding the transparent plastic 1 ! into the space unit 1 0 1 of the above-mentioned reflective cover structure i ’ ' is thus the second stage of injection molding. Please refer to the fourth A diagram and the fourth B diagram, that is, a corresponding cross-sectional view showing the second injection molding step in the space unit process 1 shown in the third figure, which uses the 7/23 201140532 shot, molding method. The transparent plastic 11 is molded into the space unit 101t of the reflective cover structure 1 , and the outer wall surface 11 1 of the transparent plastic 1 1 after curing and molding can be joined to the reflective surface 1 0 2 , thereby forming a cover structure. 1 〇 and the cured transparent plastic 1 1 is the shape of the housing, and then can be assembled with the circuit board with the light-emitting diode to form a digital display. Further, the manufacturing method of the housing of the digital display proposed above may further include a printing step (such as step (10) in Fig. A or step wrist in Fig. B). As shown in the first A circle, in the body = process, the printing step township (ie, step township _) is between the injection molding of the first step of the step § and the step s] 〇 3: it can be used - Printing machine equipment, the reflective cover = · - cloth with pre-dark color, for example, in the reflective cover structure, the color printing plate number is used to make the ink process, so that the upper surface is 1 〇. Printed surface with = pattern (as shown in Figure B). Or, as in the first (four), the printing step (ie, step S105) may be performed after the step of injection molding of the step s1〇3, the printing is completed by the process: one of the processes is the above-mentioned ink-brushing process; Firstly, the pattern patch is attached to the front surface of the reflective cover structure 10. The German version 2: the shooting area is formed in the molding area of the transparent plastic ii, and the front side of the reflective cover structure i is completely printed. Laser selection in the formation of transparent plastic ii::. The positive (four) color of the reflective cover structure is colored. In the present embodiment, the second 8/23 201140532 injection molding step is performed using a mold 2 。. The mold 2 is a combination of the lower mold 2 〇A and the upper mold 2〇B to implement the second injection step described above, wherein the lower mold 20A and the protrusion 2 〇i above the mold 2 ◦ b Placed in the reflective cover structure 1 〇. In this embodiment, the number of the molds 2 〇• A can be a single one to place a single reflective cover structure i ◦, and the blood reflective cover, the printed surface of the structure 1 (ie, the upper surface i (10)) is in contact with Preferably, the lower mold 20A can completely accommodate the reflective cover structure process, and the size of the protruding structure 2 Q i of the upper mold 2 ◦ B can be extended into the space unit i of the anti-cap structure 10 In addition, the upper mold 2◦B has a washing port 2 Q 1 1 formed on the protruding structure 2 Q i , and the gate 20 1 1 of the upper plastic mold 2 QB of the transparent plastic i is injected and filled by a buried vertical molding machine. The residual space in the space unit 1 〇i (in the fourth A picture and the fourth b picture, that is, the area not filled by the protruding structure 2 0 1 of the upper mold 2 〇b, that is, by the lower mold 2 〇A, the reflecting surface 1 〇 2 and the space defined by the protruding structure 2 〇 2), and the outer wall surface 1 1 1 of the final transparent plastic 1 1 after solidification molding is in contact with the reflecting surface 1 〇 2 Bonding 'Because transparent plastic 1 1 can be solidified without baking process, the present invention can be used to solve conventional resin The thermal stress formed during baking causes the reflective cover structure i to easily cause problems with the test and other product defects. Further, in performing the second injection molding step, the lower mold 2A is usually fixed, and the upper mold 2B is movable. In the present embodiment, one upper mold 20B has only one protruding structure 2丄 and a gate 2 0 1 1 and the transparent plastic 1 1 is injected into a single space unit 1 0 1 ' Therefore, if the reflection structure 1 has a plurality of space units 1 〇 1 9/23 201140532, a corresponding number of upper dies are required 2 〇B and a corresponding number of protruding structures 2 0 1 and gates 2 〇1 1, then a corresponding mold 2 形成 forming a reflective cover structure 10 is combined into a lower mold 2 〇a and a plurality of upper molds 2 〇B. In addition, in other possible embodiments, the corresponding mold 2 形成 forming a single reflective cover structure 1 〇 may be a combination of a single lower mold 20 A and a single upper mold 2 〇 B, the single upper mold 2 〇 B is a protruding structure 2 0 1 and a wash 2 〇1 1 having a number corresponding to the space unit 丄〇2. In other possible embodiments, a single lower mold 2 〇A can also accommodate a plurality of reflective cover structures 1 〇 (for example, 6 or 8 reflective cover structures i 〇), and the corresponding upper mold 2 0 B can The protruding structure 2 0 1 and the gate 2 〇1 1 having the number of all the spatial units corresponding to the number of the aforementioned reflective cover structures are single (for example, the six reflective cover structures 1 , have 48 spatial units) 1 〇 1 ), that is, a mold 2 composed of only one lower module 2 〇A and a single upper group 2 0 B can be simultaneously formed with a plurality of reflective covers, ''σ configuration 1 〇). However, in other possible embodiments, the mold 2 can be combined with a lower mold 2 〇Α and an upper mold 2 〇Β or a lower mold 20 Α and a plurality of upper mold 2 ,, a single ^ The mold 20B may also have a plurality of protruding structures 2 〇i but only have a single wash 2 0 1 1, or a number of wash designs less than the number of protruding structures 2 0 1 'from a single wash 2 ◦ It is also within the scope of the invention to simultaneously fill the transparent plastic 11 in a plurality of spatial units 101. It should be noted that the present invention does not limit the shape of the mold 20 and the use of a core sample such as the upper mold 2 〇β is not limited as in this embodiment must be raised 10/23 201140532 for the protruding structure 2 0 1 to extend into the reflective cover structure In the space unit 1 ◦ 1 of 1 , the position of the gate 2 0 1 1 designed on the protruding structure 210 is not limited. In other possible embodiments, the present invention can also design the upper mold 2 Ο 为 as the non-protrusion structure 2 〇 1 but only the wash 2 0 1 1 on the upper mold 2 ,, and corresponds to the space unit The opening of the 1 0 1 is outside the opening to facilitate the injection of the transparent plastic 11 . In addition, the gate 2 0 1 1 is not limited to be disposed in the center of the protruding structure 210 as in this embodiment. In other possible embodiments, φ may also set the gate 2 〇1 1 in the off-protrusion. Structure 2 一侧1 is the center of the center (described later). In addition, the transparent plastic 1 1 is not limited to the aspect in which the space unit 1 〇1 is filled, for example, in the present embodiment, the protruding structure 20 1 is extended in the space unit ,, and is transparent. The plastic 1 1 can fill all the residual space. In other possible embodiments, the crucible can only fill in part of the residual space; otherwise, if the protruding structure 2 ◦ 1 is placed only outside the space unit, the transparent plastic Completion: to fill all the space units 丄〇i or only the part of the space π 1 0 1. In other words, regardless of the manner or application of the mold, the transparent plastic 11 is cured to the space unit 110, and the transparent plastic 11 is filled with the space unit 丄〇 i, the protection range. In a specific embodiment, when the transparent plastic 11 is a thermoplastic, its main component may be polyparaphenylene terephthalamide (PPA), and second: a high temperature reflow process by operating temperatures above, for example, The operating temperature of the temperature reflow process is preferably 峨 time is ... minutes. In this embodiment, PPA is the main = 11/23 201140532 transparent material (ie equivalent to transparent plastic 丄 ", which can be passed through the tin furnace (IRm〇w, 26 (TC, 4.5 minutes) reflow process) Not softening; changing = 'The above PPA-based transparent material can be applied to the manufacturing method of the present invention, can produce a housing of a digital display which can be processed by a high temperature reflow process, and can be applied to a digital display of the SMT form A thermoplastic transparent plastic crucible of another embodiment is a polyamine (PA) which is a transparent material mainly composed of PA (ie, a transparent plastic).: L), The characteristic is glass transition temperature (Tg): (10) Therefore, the transparent material mainly composed of PA described above can also be applied to the method of the present invention to produce a casing of a digital display device which can be processed without a high temperature reflow process. For example, the product of the digital display in the form of DIP, for thermoplastic thermoplastic U can contain at least polyamine, 2 pairs of stupid dioxane (PPA), but not as a limiting consideration. In one aspect, the transparent plastic used in the present invention can be further 2 The material of the material, for example, the transparent plastic, contains at least a rubber or a material, and the thermosetting transparent plastic 1 1 can be used in the basic process to test the above-mentioned process for the thermoplastic transparent plastic 1i, which will not be described here. However, it is not limited to the previous description, transparent plastic enamel chain, plastic, and different thermoplastics at different temperatures. In a specific embodiment of the present invention, the above two different main components of the moon 1 1 can add at least one kind of additive, the composition is carbon_), luminescent powder, etc., to change the product of the product 12/23 201140532 S103 in the step S101 - the stage of injection molding and the step 帛H injection molding In the steps, there are the following changes, as shown in the fifth A to the fifth figure. In the fifth picture A, in order to strengthen the transparent plastic enamel and the reflective cover, the structure 1 (four) fixation and The mold provided in step SHH may be subjected to machining, electric discharge machining or the like to form a first engaging microstructure 1 on at least one reflecting surface 1〇2 of the space unit 101 in the reflective cover=10. 〇 2 1, for example in a spatial unit The first engaging microstructure 1 〇 2 is disposed on the plurality of side reflecting surfaces i 〇 2 in the residual space defined by the protruding structure 2 ◦丄 of the lower mold 2 QA and the upper mold 2 〇 B in i 〇i i; therefore, in the second stage of the injection molding step, when the transparent plastic ii is injected into the space unit i, the outer wall surface of the transparent plastic ii after solidification molding is formed to correspond to a second engaging microstructure 1 1 1 0 of the micro-structure 1 0 2 1 is used, so that the first engaging microstructure 1 0 2 1 and the second engaging microstructure 1 1 1 相互 can be utilized. The reinforcing plastic 1 1 is combined with the reflective cover structure 丄0. Furthermore, in the fifth diagram A, since it is a sectional view, only the reflection surfaces 1 〇 2 of the two sides in the residual space have the first engagement microstructure i 〇 2 i, however, All the reflective surfaces 丄〇2 around the residual space (if the number 8 shown in the second B-picture has one of the six spatial sides 1 〇1), it is also possible to have the first engaging microstructure 1 〇 2 1 or only one side has a first engagement microstructure 1 〇 2 1 . In addition, in order to improve the light-emitting characteristics of the housing of the digital display of the present invention and the light-emitting diode, the transparent surface of the transparent 13/23 201140532 plastic 1 1 after curing is different from the inner surface. The structure of the above structure is as follows. i can be formed in step S] 第二 3 in the second stage of the injection molding step protruding structure 2Q1 shameless design 敎 = structure (as shown in Figure 2), transverse groove : Structure (: the convex structure of the equivalent concave lens (such as the =: "; or = limited to the above, so after the transparent plastic workers in the first step, the inner surface 113 of the transparent plastic" ^ ^ the above arc a lenticular structure, a trough structure, a v-groove structure, or a convex structure corresponding to a concave lens to form a lenticular shape (such as the fourth B-shaped groove (: FIG. 5B, FIG. 5C) or the 'v-shaped groove or Equivalent concave) through the pattern structure 1 as shown in parts (4) and (8) of the fifth E diagram, whereby different inner surface 1 1 3 shaped 'states can be produced to meet various application fields or needs. In addition, as shown in the fifth diagram and the second diagram, the projection of the first stage of the step s(6) is performed. In the step of the type, the lower mold 2 ◦ A can be formed into a microstructure 2 0 3 by means of electric discharge machining, so that after the step of injection molding, the transparent plastic 1 1 is transferred to the transparent plastic. The light-emitting surface 121 of the 1 1 is formed to form the optical microstructurer 121, whereby the light-emitting surface 1^2 shape having the function of diffusing light can be formed, so that the point light source can be diffused to the approximate surface light source. The surface roughness (Ra; centerline average coarse sugar) of the 'light-emitting surface 112' may be 1.6 mm to 3.2 mm, and has a good light atomization effect. 14/23 201140532 In addition, as described above, the present invention In other variant embodiments, the upper mold 2 QB may also have the following aspects. Please refer to the fifth D diagram and cooperate with the sixth D diagram to position the gate 2 0 1 1 from the center of the protruding structure 2 〇1. Moved to the side of the protruding structure 2 Q 1 , and the transparent (four) 11 1 after curing has a smooth inner surface ii 3 to improve optical characteristics. As shown in the fifth E and sixth (four), the wire is formed. After the transparent plastic 1 i, the light mixing effect is better and more uniform In one embodiment, in addition to moving the gate 2 0 1 1 to the side Φ of the protruding structure 2, a rewritable lens (Fresnel Lens) is formed on the protruding structure 2 〇1. The convex predetermined structure 2 〇2 of the equivalent concave lens has a groove arranged in a plurality of concentric rings, and the groove shape of the concentric ring of each ring is similar to the local part of the convex lens but different from the Fresnel lens The concentric rings are arranged at equal intervals, and the radius of the concentric rings of the innermost inner ring is twice the distance between the grooves, and the grooves of different concentric rings have different heights (the outermost ring is the highest, and sequentially decreases) According to the convex predetermined structure 2 G 2 designed in this way, a convex lens which is corresponding to the convex 敎 structure 20 2 can be formed by the projection. The pattern structure of the equivalent concave lens shape is 1 1 3 1, As shown in FIG. 5E (4), the pattern structure 1 1 3 1 has concentric rings of equal spacing H, and the concentric rings of the innermost ring are twice the pitch Η, and as shown in the figure (8), the pattern structure 11 3 1 The outer ring concentric ring has a cut surface that approximates the deepest groove of the concave lens part, from the outward direction The depth of the groove of the concentric ring is successively decreased, and the topmost line of the groove of each concentric ring is nearly parallel in the pattern: 1 1 3 1 , so that the original spherical concave lens can be retained to provide a larger illumination angle. It also provides a near-equal thickness of the light-mixing distance, which produces excellent light at 15/23 201140532. In other possible embodiments, the pattern structure 1 1 3 1 may also be formed into a general Fresnel concave lens (not shown), and the grooves of each concentric ring have the same depth, but the concentric rings have different spacings. And the topmost connection of the grooves on the concentric circles is also nearly parallel, and the divergent light characteristics equivalent to the general plano-concave lens can also be provided, and the corresponding predetermined structure 2 0 2 is the convex corresponding to the Fresnel concave lens. Structure. In addition, please refer to Figures 7A and 7B for the optical distribution curve of the digital display produced by applying the method of the present invention, which is formed by curing the transparent plastic 11 in the reflective cover structure by the method of the present invention. 2 The space unit 1 Q 1 forms a housing of the digital display, and the light emitting diode is placed in the above casing to measure the number as shown in the second B, 8, the bottom side space unit 1〇1 The optical distribution characteristic of the constituent pitch line a, wherein the light-emitting surface 1 i 2 is a smooth smooth surface, and as shown in FIG. 7A, it can be seen that the half-height width ratio of the digital display is about Wj%, wherein the half-peak The high width is about 4 pixels distance ("μ丨), and the pixel distance of the node line A is about 145 pixels distance; in addition, please refer to the seventh picture B, which is also made into a digital display by the method of the invention. The rough longitude of the light-emitting surface 112 is a surface, and the optical line A is formed by the 8" bottom space unit 丄◦丄 according to the number shown in the second B-picture. As can be seen from the seventh graph, the ratio of the half-height width of the roughened=digital display is about 86 2%, wherein the half-height width of the pitch line A is between about m pixel distance, and the pitch line A The pixel distance is approximately 145 pixel distance. Therefore, the present invention can utilize the roughness design of the light-emitting surface 112 to change the atomization degree of the line 16/23 201140532 emitted by the digital display, thereby generating a uniform optical diffusion effect, thereby effectively preventing the occurrence of bright spots. Accordingly, the transparent plastic 11 can be formed by the step of injection molding in the second stage of step S103, and the cured transparent plastic 1 1 and the reflective cover structure 1 are joined to form a housing of the digital display. Further, different optical structures/microstructures (such as the predetermined structure 20 2 or microstructure 2 〇 3 described above) can be designed on the mold 20 to convert the cured transparent plastic 1 1 to a predetermined structure. 2 〇 2 or micro-junction φ 2 〇 3 pattern structure 1 1 3 1 or optical microstructure 1 1 2 1 . Therefore, after the step S103, the mold 2 可 can be removed, and a technology such as hot-melt bonding can be used to assemble a circuit board provided with a light-emitting body: a polar body chip is assembled on the formed body, and the light emitted by the light-emitting diode is The light can be collected by the reflective surface 1 〇 2 of the reflective cover structure 10, and then emitted through the inner surface 1 1 3 of the transparent plastic 11 and the light-emitting surface ii 2 . Furthermore, by the optical structure/optical microstructure in the above embodiment, the pattern structure 1131 or the light-emitting surface 内 on the inner surface i 1 3 is included! 2 optical microstructures • 1 1 2 1, to improve the overall diffusion characteristics. In summary, the present invention has the following advantages: 1. The present invention utilizes the second stage of injection molding to solidify and form a transparent plastic into the S-reflective cover structure. Therefore, the present invention can omit the conventional dispensing. The curing time, with the specific test data of the present invention, is approximately 4.5 hours, in other words, the present invention can greatly shorten the manufacturing time of the housing of the digital display. 2. The present invention utilizes the second stage of injection molding to cure the transparent plastic to replace the traditional resin dispensing process, so the transparent plastic of the present invention does not need to pass through the oven compared with the conventional 17/23 201140532 dispensing process. The baking cures, so that the thermal stress generated by the traditional resin material through the south temperature environment of the oven can be avoided, and the deformation of the reflective cover structure due to thermal stress can be solved. 3. Since the invention does not use the traditional resin dispensing process, there is no leakage or uneven amount of glue, and the light spots, bubbles or illuminating light generated by the concave surface of the light-emitting surface after high-temperature baking and solidification are not generated. The problem of both. The above are only the preferred embodiments of the present invention, and are not intended to limit the scope of the invention, and the equivalents of the invention are intended to be included within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS "A is a flowchart of a method of manufacturing a housing of a digital display according to a first embodiment of the present invention. FIG. 4B is a housing of a digital display according to a second embodiment of the present invention. The second embodiment is a rear perspective view of the reflective cover structure of the digital display of the present invention. The second front view of the structure is a schematic view of the reflective cover of the digital display of the present invention. The second figure in the space is a schematic cross-sectional view of the digital element of the present invention. The fourth A picture and the fourth B picture are schematic diagrams of the injection molding in the second stage of the invention. Variation of the second stage of the injection molding step 18/23 201140532 Schematic of the embodiment. Change second: = second stage injection molding step (four) another - fifth c picture is the fifth B picture after removing the mold Schematic diagram of the real-time DC = second stage injection molding (four) again - = five E diagram is a schematic diagram of the second stage of the invention of the injection-changing embodiment, the five-figure (4) is transparent plastic two Surface pattern The top view of the structure. f six AH to sixth E is a schematic diagram of the mold on the *isomorphism of the invention. The eight/'^7A system shows the assembly of the casing made by the invention. An optical distribution diagram of a digital display in which the illuminating surface is a smooth surface. f7B® shows an optical distribution curve of a digital display using the casing (4) produced by the present invention, wherein the illuminating surface is a rough surface. Main component symbol description] 1 Reflective cover structure 0 10 1 10 2 10 2 1 10 0 111 1110 1 1 2 112 1 113 113 1 Transparent plastic space unit reflecting surface First engaging microstructure Upper surface outer wall surface Second clamping micro Structure light-emitting surface optical microstructure inner surface pattern structure 19/23 201140532 2 0 mold 2 0 A lower mold 2 0 B upper mold 2 0 1 protruding structure 2 0 11 gate 2 0 2 predetermined structure 2 0 3 microstructure S101, S102 , S 〗 03, 105 Process step A section line H spacing 20/23

Claims (1)

201140532 七、申睛專利範圍: 1、一種數字顯示器之殼體的製造方法,包含以下步驟: 提供一第一射出成型步驟,以成型一反射蓋結構,, 且該反射蓋結構具有上下導通之多個空間單元, 。亥些空間單元係由該反射蓋結構上之多個反射面 所建構;以及 提供一第二射出成型步驟,以將一透明塑料成型於 "亥些空間單元,且成型後之該透明塑料的外壁面 • 係與其所接觸之反射面接合,以形成該數字顯示 器之殼體。 2 ^申μ專利範圍第丄項所述之數字顯示器之殼體的製 迨方法,其中s亥透明塑料用以通過操作溫度為 以上的高溫迴焊製程。 3、=申請專利範圍第2項所述之數字顯示器之殼體的製 2^0方(Γ。’其中該高溫迴焊製程之操作溫度為24〇°C至 4 請專利範圍第Μ所述之數字顯示器之殼體的製 St其:中該透明塑料為一熱塑性塑料,其至少 5 、如申-直心對對本二胺(ΡΡΑ)。 生 ·*·貝所过·之數子顯不器之殼體的製 包含:膠:::::塑料為,性塑料,其至少 、如申請專利範圍第2、4或5瑁所一 ^ -I# AA Ay . 一 斤迷之數子顯示器之 风體的1造方法,其中該 添加劑俏A姐也w 卟加有添加劑,該 对J係為擴散劑或螢光粉。 21/23 6 201140532 7、^請專利範圍第].項所述之數字顯示器之殻體的製 ^方法其4 &第二射出成塑步㈣使用至少一上 模具及—T模具爽置於該反射蓋結構而f施,其中 ‘士摘具具冑A出結構和一澆口’該突出結構係 延伸進入該此空間嚴分 、 兮、A 一間早兀其中之一空間單元中,透過 2口而使該透明塑料填入在該空間單元中由該下 …玄些反射面和該突出結構定義出之 •且該突出結構具有—預定結構, :透明塑料的内表面具有對應該預定結構之圖案: 稱0 第7項所述之數字顯示器之殼艘的製 定結構係為圓弧狀結構、橫槽結 2:1::?:或對應於—等效凹透鏡之凸狀結 狀浐 ^之4透明塑料的内表面具有透鏡 狀、橫槽、V形槽或該等效凹透鏡 9、 如申請專利範圍第7項所述之數字。/、、:.麟 i生古、土 ^ . ^ k又救子顯不窃之殼體的製 :: 其 模具更形成有微結構,以使成型 後之該透明塑料的發光表 光學微結構。 H對應於該微結構之 10、 如申請專利範圍第1項 製造方法,更包含提供示11之殼體的 結構上塗佈有預定色彩。 於忒反射盍 驟和該第二射出成型步心ΐ:;是— 22/23 201140532 出成型步驟之後實施。 、如申請專利範圍第1項所述之數车辟_ ,,,^ 义〈数子顯不器之殼體的 1拉方法,其中在該第一射出成型步驟中該些空 間單元中至少一反射面上設有第—^合微結構,以 及在該第二射出成型步驟中,成型後之該透明塑料 的外壁面上具有對應該第---^合微結構之第二卡合 微結構。201140532 VII. The scope of the patent application: 1. A method for manufacturing a housing of a digital display, comprising the steps of: providing a first injection molding step to form a reflective cover structure, and the reflective cover structure has a top-bottom conduction Space units, . The space units are constructed by a plurality of reflective surfaces on the reflective cover structure; and a second injection molding step is provided to form a transparent plastic into the space unit, and the transparent plastic is formed. The outer wall surface is joined to the reflective surface it contacts to form the housing of the digital display. The method of manufacturing a housing for a digital display according to the invention, wherein the transparent plastic is used for a high temperature reflow process having an operating temperature of the above. 3. The application of the housing of the digital display described in item 2 of the patent scope is 2^0 square (where the operating temperature of the high temperature reflow process is 24 〇 ° C to 4) The housing of the digital display is made of: the transparent plastic is a thermoplastic, and at least 5, such as a straight-centered pair of the present diamine (ΡΡΑ). The housing of the housing comprises: glue::::: plastic is a plastic, at least, as in the scope of patent application No. 2, 4 or 5, a ^ - I # AA Ay. A method for making a wind body, wherein the additive is also added with an additive, and the pair J is a diffusing agent or a fluorescent powder. 21/23 6 201140532 7. Please refer to the patent scope. The method for manufacturing the housing of the digital display 4 & the second injection molding step (4) uses at least one upper mold and the -T mold to be placed on the reflective cover structure, wherein the 'stripper has a 胄A out structure And a gate 'the protruding structure extends into the space, the 兮, A, one of the early spatial units, through 2 And the transparent plastic is filled in the space unit defined by the lower reflecting surface and the protruding structure and the protruding structure has a predetermined structure: the inner surface of the transparent plastic has a pattern corresponding to the predetermined structure : The structure of the shell of the digital display described in Item 7 is an arc-shaped structure, a transverse groove 2:1::?: or a convex-shaped knot corresponding to the equivalent concave lens. The inner surface of the transparent plastic has a lenticular shape, a lateral groove, a V-shaped groove or the equivalent concave lens 9, as described in the seventh item of the patent application. /, :: Lin isheng ancient, soil ^. ^ k The system of the shell that the rescuer does not steal:: The mold is further formed with a microstructure to make the optical microstructure of the transparent plastic of the molded plastic. H corresponds to the microstructure 10, as claimed in the patent scope 1 The manufacturing method further comprises the step of providing a predetermined color to the structure of the housing of the display 11. The 忒 reflection step and the second injection molding step: 是 - 22/23 201140532 is performed after the molding step. For example, the number of vehicles mentioned in the first paragraph of the patent application a pull-up method of a shell of a plurality of sub-displays, wherein at least one of the plurality of reflective units is provided with a first-compositing microstructure in the first injection molding step, and In the second injection molding step, the outer wall surface of the transparent plastic after molding has a second engagement microstructure corresponding to the first-micro structure. 23/2323/23
TW99114385A 2010-05-05 2010-05-05 A method for manufacturing housing of numeric display TWI413955B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99114385A TWI413955B (en) 2010-05-05 2010-05-05 A method for manufacturing housing of numeric display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99114385A TWI413955B (en) 2010-05-05 2010-05-05 A method for manufacturing housing of numeric display

Publications (2)

Publication Number Publication Date
TW201140532A true TW201140532A (en) 2011-11-16
TWI413955B TWI413955B (en) 2013-11-01

Family

ID=46760347

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99114385A TWI413955B (en) 2010-05-05 2010-05-05 A method for manufacturing housing of numeric display

Country Status (1)

Country Link
TW (1) TWI413955B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI502565B (en) * 2014-04-28 2015-10-01 Lite On Opto Technology Changzhou Co Ltd Led display housing and manufacture method thereof, led display

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288788A (en) * 1980-05-19 1981-09-08 General Motors Corporation Electrostatic alpha-numeric display
US5043716A (en) * 1988-07-14 1991-08-27 Adaptive Micro Systems, Inc. Electronic display with lens matrix
US5974710A (en) * 1998-08-14 1999-11-02 Baldwin; Judson E. House number display system
TWI244783B (en) * 2005-03-17 2005-12-01 Everlight Electronics Co Ltd LED reflective cover manufacturing method
JP4582012B2 (en) * 2006-01-30 2010-11-17 ソニー株式会社 Operation panel device and display
TWM370147U (en) * 2009-02-19 2009-12-01 Silitek Electronic Guangzhou Numerical display architecture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI502565B (en) * 2014-04-28 2015-10-01 Lite On Opto Technology Changzhou Co Ltd Led display housing and manufacture method thereof, led display

Also Published As

Publication number Publication date
TWI413955B (en) 2013-11-01

Similar Documents

Publication Publication Date Title
CN102233641B (en) Method for manufacturing shell of digital display
JP5632824B2 (en) Overmold lens on LED die
JP5668174B2 (en) Composite lens and method for manufacturing the same
CN101160670B (en) Wide emitting lens for led useful for backlighting
CN104204865B (en) The manufacture method of lens arra, the manufacture method of lens arra and optical element
KR101042707B1 (en) Multi-functional micro lens array substrate and method of forming the same
KR20130126516A (en) Method of making stamped multi-layer polymer lens
TW201306320A (en) Semiconductor device with lens and method for manufacturing same
CN104183590B (en) Planar light source device and method for manufacturing light guide plate thereof
KR20090055272A (en) Led package, method of fabricating the same, and backlight assembly comprising the same
JP2008263199A (en) Method of manufacturing lens for led package
JP2008129604A (en) Optical plate and its manufacturing method
JP4773580B2 (en) Light emitting device and manufacturing method thereof
TW201140532A (en) A method for manufacturing housing of numeric display
JP2007212607A (en) Composite optical component and method of manufacturing same
JP2008129586A (en) Optical plate and its manufacturing method
TWI355536B (en) Backlight module and the method for manufacturing
TW200823539A (en) Two-in-one light guide plate
CN106199899B (en) Optical zooming method and module and application thereof
CN112259660A (en) Preparation method of LED light-emitting device and LED light-emitting device
KR102001775B1 (en) Light Emitting Diode lens and Light Emitting Diode package including lens
CN200997405Y (en) Light-emitting diode assembly with moulded glass lens
CN114784172A (en) Display panel and preparation method thereof
KR101183688B1 (en) Methods for Fabricating a Housing of a Number Display
JP2014127525A (en) Mold release film with sealing resin, sealing method of optical semiconductor element using the same, and optical semiconductor device including sealed optical semiconductor element