JP2007212607A - Composite optical component and method of manufacturing same - Google Patents

Composite optical component and method of manufacturing same Download PDF

Info

Publication number
JP2007212607A
JP2007212607A JP2006030590A JP2006030590A JP2007212607A JP 2007212607 A JP2007212607 A JP 2007212607A JP 2006030590 A JP2006030590 A JP 2006030590A JP 2006030590 A JP2006030590 A JP 2006030590A JP 2007212607 A JP2007212607 A JP 2007212607A
Authority
JP
Japan
Prior art keywords
glass substrate
optical component
composite optical
path changing
component according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006030590A
Other languages
Japanese (ja)
Other versions
JP4670669B2 (en
Inventor
Akira Shimoma
昌 下間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Starlite Co Ltd
Original Assignee
Starlite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Starlite Co Ltd filed Critical Starlite Co Ltd
Priority to JP2006030590A priority Critical patent/JP4670669B2/en
Publication of JP2007212607A publication Critical patent/JP2007212607A/en
Application granted granted Critical
Publication of JP4670669B2 publication Critical patent/JP4670669B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite optical component obtained by forming an optical functional pattern such as a microfresnel lens on the surface of a transparent optical device substrate such as glass in which the adhesiveness of the glass substrate to a resin material for forming the optical functional pattern thereon is excellent, the optical functional resin material is not peeled off even under repeated thermal load or long term air exposure and the cost is remakably reduced and a method of manufacturing the same. <P>SOLUTION: A light path changing function layer 2 comprising polydimethyl siloxane (PDMS) is formed on the flat surface of the transparent glass substrate 1. The light path changing function layer 2 is formed by feeding the flowable PDSM on the flat surface of the glass substrate 1, pressing a stamper 4 provided with a pattern forming part 5 thereon to cure the PDSM and after that, peeling off the stamper. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複合光学部品及びその製造方法に係り、更に詳しくは樹脂成形によって形成するレンズ機能等の光路変更の機能を有する複合光学部品及びその製造方法に関する。   The present invention relates to a composite optical component and a manufacturing method thereof, and more particularly to a composite optical component having a function of changing an optical path such as a lens function formed by resin molding and a manufacturing method thereof.

従来から、光学素子基板の表面に光学機能パターンを転写した光学素子は公知である。例えば、表面が平滑な平面状をなした透明レンズ基板の表面に、透明樹脂によって輪帯状のパターン等からなるマイクロフレネルレンズパターンを形成した光学素子が知られている。このような製法は、2P法(photo-polymerization processの略称)と呼ばれている。通常は、スタンパの上面に形成されたパターン成形部としてのプロファイルに紫外線硬化型(UV)樹脂を吐出させ、その上にガラス、合成樹脂等からなる表面が平滑な透明レンズ基板を押し付けることによって、樹脂をスタンパの表面に押し広げて樹脂をレンズ基板に密着させ、それからレンズ基板を通して紫外線を照射して樹脂を硬化させ、最後にレンズ基板と共に樹脂をスタンパから離型させるのである。   Conventionally, an optical element in which an optical function pattern is transferred to the surface of an optical element substrate is known. For example, an optical element is known in which a micro Fresnel lens pattern made of a ring-shaped pattern or the like is formed of a transparent resin on the surface of a transparent lens substrate having a smooth surface. Such a manufacturing method is called a 2P method (abbreviation of photo-polymerization process). Usually, an ultraviolet curable (UV) resin is ejected to a profile as a pattern forming portion formed on the upper surface of the stamper, and a transparent lens substrate having a smooth surface made of glass, synthetic resin, or the like is pressed thereon, The resin is spread on the surface of the stamper so that the resin adheres to the lens substrate, and then the resin is cured by irradiating ultraviolet rays through the lens substrate, and finally the resin is released from the stamper together with the lens substrate.

しかし、スタンパから離型させる際に、樹脂がスタンパのフレネルレンズパターンに密着しているので、レンズ基板から樹脂が剥離することがある。更に、良好なマイクロフレネルレンズが製造されたとしても、高温又は高湿の環境下で保存又は使用されたり、ヒートサイクル等の環境化で使用された場合、マイクロフレネルレンズパターンとレンズ基板との熱膨張係数の違いによって、マイクロフレネルレンズパターンがレンズ基板から剥離し易くなるという問題を有している。   However, when the mold is released from the stamper, since the resin is in close contact with the Fresnel lens pattern of the stamper, the resin may be peeled off from the lens substrate. Furthermore, even if a good micro Fresnel lens is manufactured, if it is stored or used in a high temperature or high humidity environment, or if it is used in an environment such as a heat cycle, the heat of the micro Fresnel lens pattern and the lens substrate There is a problem that the micro Fresnel lens pattern is easily peeled off from the lens substrate due to the difference in expansion coefficient.

そこで、特許文献1には、光学素子基板の表面に光学機能パターンを転写した光学素子において、光学素子機能基板のパターン転写面に複数の凹凸形状を設け、光学機能パターンをこの凹凸形状に密着させたことを特徴とする光学素子が開示されている。ここで、レンズ基板上に凹凸を設けると、マイクロフレネルレンズの光学特性が悪影響を受ける恐れがある。つまり、基板の上に凹凸が設けられ、更にその上に屈折率の異なる材料でレンズ機能が設けられていると、レンズを通して光線の光路を変化させる際、凹凸のある部分とない部分で変化の状況が異なり、例えば集光の状態が異なるので、集光が難しい、或いはレンズ形状の設計が複雑になる等の問題がある。そこで、特許文献1には、レンズ基板とマイクロフレネルレンズパターン成形用の樹脂の屈折率を同じにすれば、屈折率のギャップが無くなるので凹凸による不都合は回避でき、また凹凸の大きさを使用する光の波長に対して十分小さな寸法にすることでも凹凸による影響を無視できるので、凹凸による不都合を回避できる旨記載されている。   Therefore, in Patent Document 1, in an optical element in which an optical functional pattern is transferred to the surface of an optical element substrate, a plurality of concave and convex shapes are provided on the pattern transfer surface of the optical element functional substrate, and the optical functional pattern is adhered to the concave and convex shapes. An optical element characterized by the above is disclosed. Here, if unevenness is provided on the lens substrate, the optical characteristics of the micro Fresnel lens may be adversely affected. In other words, when unevenness is provided on the substrate and a lens function is provided with a material having a different refractive index on the substrate, when the optical path of the light beam is changed through the lens, the change occurs between the uneven portion and the unexposed portion. The situation is different, for example, since the state of light collection is different, there is a problem that light collection is difficult or the design of the lens shape is complicated. Therefore, in Patent Document 1, if the refractive index of the lens substrate and the resin for forming the micro Fresnel lens pattern are the same, the refractive index gap is eliminated, so that inconvenience due to the unevenness can be avoided, and the size of the unevenness is used. It is described that even when the size is sufficiently small with respect to the wavelength of light, the influence due to the unevenness can be ignored, so that the disadvantage due to the unevenness can be avoided.

尚、特許文献2には、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂、ポリ4メチルペンテン−1等の透明な合成樹脂材料で構成された透光性板材において、光を出射させる出光面に、この透光性板材と異なる透光性の樹脂で構成されて、平面形状が円形状で断面形状が円弧状なった多数の突部を縦,横に所要間隔を介して配列させるように設けた導光板が開示されている。   In Patent Document 2, in a translucent plate made of a transparent synthetic resin material such as polymethyl methacrylate resin, polycarbonate resin, poly 4 methyl pentene-1, etc., the translucent plate is provided on the light exit surface for emitting light. A light guide plate that is made of a light-transmitting resin different from the conductive plate material and is arranged so that a large number of protrusions having a circular planar shape and an arc-shaped cross-sectional shape are arranged vertically and horizontally at a required interval It is disclosed.

また、従来の太陽光発電システムは、発電機能を有するシリコン半導体で作製した太陽電池パネルを太陽光に曝露して発電を行うのが通常である。この場合、太陽光はガラス等の透明基板を通して、或いは透明保護膜を通して光電素子に照射するようになっているが、該透明基板若しくは透明保護膜に光を集光する機能を付与したものは提供されていない。前述のように、微小な光学素子基板の上に凹凸を設け、該凹凸上にマイクロフレネルレンズを形成した素子は知られている(特許文献1)が、大型のガラス板上に合成樹脂を用いてフレネルレンズ機能を形成して、太陽光を集光して発電を行う装置は知られていなかった。ここで、ガラス基板の表面に樹脂との密着性を高めるために微細な凹凸を形成する場合、該凹凸による光学的な悪影響を排除するために、基板と樹脂材料との屈折率を一致させることは、材料選択が難しく、完全に一致させることは不可能であり、また凹凸の寸法を対象光の波長より十分小さくすることは、100nmオーダーの精細な成形技術を必要とすることを意味し、大幅なコストアップを招くことになり、大きな面積の光学部品として適用するには実用的でなく、何れの回避策も実用性に乏しい。
特開平4−329503号公報 特開2001−337228号公報
Moreover, the conventional solar power generation system normally generates power by exposing a solar cell panel made of a silicon semiconductor having a power generation function to sunlight. In this case, sunlight is applied to the photoelectric element through a transparent substrate such as glass or through a transparent protective film, but the one provided with a function of condensing light on the transparent substrate or the transparent protective film is provided. It has not been. As described above, an element in which unevenness is provided on a minute optical element substrate and a micro Fresnel lens is formed on the unevenness is known (Patent Document 1), but a synthetic resin is used on a large glass plate. No device has been known that forms a Fresnel lens function and collects sunlight to generate electricity. Here, when forming fine unevenness on the surface of the glass substrate in order to improve the adhesion to the resin, the refractive index of the substrate and the resin material should be matched in order to eliminate the adverse optical effect of the unevenness. Is difficult to select materials and cannot be perfectly matched, and making the unevenness dimension sufficiently smaller than the wavelength of the target light means that a fine molding technique of the order of 100 nm is required, This leads to a significant increase in cost, and is not practical for application as a large-area optical component, and any of the workarounds is not practical.
JP-A-4-329503 JP 2001-337228 A

そこで、本発明が前述の状況に鑑み、解決しようとするところは、ガラス等の透明な光学素子基板の表面にマイクロフレネルレンズ等の光学機能パターンを樹脂成形によって形成してなる複合光学部品及びその製造方法において、ガラス基板と、その上に光学機能パターンを形成するための樹脂材料との密着性に優れ、繰り返される熱負荷や長年の大気暴露に対しても光学機能樹脂材料が剥離することがなく、しかも大幅なコストダウンを図ることが可能な複合光学部品及びその製造方法を提供する点にある。   Therefore, in view of the above-described situation, the present invention intends to solve a composite optical component in which an optical functional pattern such as a micro Fresnel lens is formed by resin molding on the surface of a transparent optical element substrate such as glass and the like. In the manufacturing method, the adhesion between the glass substrate and the resin material for forming the optical functional pattern on the glass substrate is excellent, and the optical functional resin material can be peeled off even by repeated thermal loads and long-term atmospheric exposure. In addition, the present invention is to provide a composite optical component and a method for manufacturing the same that can achieve a significant cost reduction.

前述の課題解決のために、本発明は、透明なガラス基板の平坦な表面に、ポリジメチルシロキサン(PDMS)からなる光路変更機能層を形成したことを特徴とする複合光学部品を提供する(請求項1)。   In order to solve the aforementioned problems, the present invention provides a composite optical component characterized in that an optical path changing functional layer made of polydimethylsiloxane (PDMS) is formed on a flat surface of a transparent glass substrate. Item 1).

ここで、前記光路変更機能層は、複数個のレンズ状物又はプリズム状物を形成したものである(請求項2)。そして、前記レンズ状物の形態がフレネルレンズ形態であることが好ましい(請求項3)。   Here, the optical path changing functional layer is formed with a plurality of lens-like objects or prism-like objects. And it is preferable that the form of the lens-like object is a Fresnel lens form.

また、前記ガラス基板及び/又は前記光路変更機能層の接合面をプラズマ処理した上で接合してなることが好ましい(請求項4)。この場合、前記プラズマ処理が酸素プラズマ処理であることがより好ましい(請求項5)。   In addition, it is preferable that the bonding surfaces of the glass substrate and / or the optical path changing functional layer are bonded after plasma treatment. In this case, it is more preferable that the plasma treatment is an oxygen plasma treatment.

また、前記ガラス基板と前記光路変更機能層の間に、薄層の接合剤を介在させてなる(請求項6)。そして、前記接合剤が、ゾルゲル法によってシロキサン及び/又はシロキサン誘導体を形成し得る接合剤であることが好ましい(請求項7)。更に、前記接合剤が、テトラエチルオルトシロキサン(TEOS)及び/又はTEOSの誘導体であるとより好ましい(請求項8)。   Further, a thin-layer bonding agent is interposed between the glass substrate and the optical path changing functional layer (Claim 6). The bonding agent is preferably a bonding agent capable of forming a siloxane and / or a siloxane derivative by a sol-gel method. Furthermore, the bonding agent is more preferably tetraethylorthosiloxane (TEOS) and / or a derivative of TEOS (claim 8).

また、本発明は、ガラス基板の平坦面上に流動性のあるポリジメチルシロキサン(PDMS)原材料を流し、その上からレンズ状物又はプリズム状物を形成するパターン成形部を設けたスタンパを圧接してPDMSを硬化させた後、スタンパを剥離して、ガラス基板の上面に光路変更機能層を形成することを特徴とする複合光学部品の製造方法を提供する(請求項9)。   In the present invention, a fluid polydimethylsiloxane (PDMS) raw material is allowed to flow on a flat surface of a glass substrate, and a stamper provided with a pattern forming portion for forming a lens-like object or a prism-like object is pressed against the raw material. Then, after the PDMS is cured, the stamper is peeled off, and the optical path changing functional layer is formed on the upper surface of the glass substrate. (Claim 9)

また、本発明は、上面にレンズ状物又はプリズム状物を形成するパターン成形部を設けたスタンパ上に、流動性のあるポリジメチルシロキサン(PDMS)原材料を流し、その上からガラス基板の平坦面を圧接してPDMSを硬化させた後、スタンパを剥離して、ガラス基板の下面に光路変更機能層を形成することを特徴とする複合光学部品の製造方法を提供する(請求項10)。   In addition, the present invention allows a fluid polydimethylsiloxane (PDMS) raw material to flow on a stamper provided with a pattern forming portion for forming a lens-like object or prism-like object on the upper surface, and a flat surface of the glass substrate from above. After the PDMS is cured by pressure contact, the stamper is peeled off, and an optical path changing functional layer is formed on the lower surface of the glass substrate (claim 10).

また、本発明は、光路変更機能層をガラス基板の平坦な表面上に形成するに際し、内面にレンズ状物又はプリズム状物を形成するパターン成形部を設けた金型内に予め設置されたガラス基板上に、ポリジメチルシロキサン(PDMS)原材料を射出成形して前記レンズ状物又はプリズム状物を有する光路変更機能層を形成してなる複合光学部品の製造方法を提供する(請求項11)。   Further, in the present invention, when the optical path changing functional layer is formed on the flat surface of the glass substrate, the glass previously set in a mold provided with a pattern forming portion for forming a lens-like object or a prism-like object on the inner surface. Provided is a method for producing a composite optical component, wherein a polydimethylsiloxane (PDMS) raw material is injection-molded on a substrate to form an optical path changing functional layer having the lens-like or prism-like material (claim 11).

これらの製造方法において、前記レンズ状物の形態がフレネルレンズ形態であることが好ましい(請求項12)。   In these manufacturing methods, it is preferable that the form of the lens-like object is a Fresnel lens form.

また、これらの製造方法において、前記ガラス基板に前記光路変更機能層を一体化する前に、該ガラス基板の接合面をプラズマ処理した上で接合してなることが好ましい(請求項13)。ここで、前記プラズマ処理が酸素プラズマ処理であるとより好ましい(請求項14)。   In these manufacturing methods, it is preferable that the glass substrate is bonded after plasma treatment is performed on the bonding surface of the glass substrate before the optical path changing functional layer is integrated with the glass substrate. Here, it is more preferable that the plasma treatment is an oxygen plasma treatment.

また、これらの製造方法において、前記ガラス基板に前記光路変更機能層を一体化する前に、該ガラス基板の接合面に、薄層の接合剤を介在させてなることが好ましい(請求項15)。この場合、前記接合剤が、ゾルゲル法によってシロキサン及び/又はシロキサン誘導体を形成し得る接合剤であるとより好ましい(請求項16)。更に、前記接合剤が、テトラエチルオルトシロキサン(TEOS)及び/又はTEOSの誘導体であるとより好ましい(請求項17)。   In these manufacturing methods, it is preferable that a thin layer bonding agent is interposed on the bonding surface of the glass substrate before the optical path changing functional layer is integrated with the glass substrate. . In this case, it is more preferable that the bonding agent is a bonding agent capable of forming siloxane and / or a siloxane derivative by a sol-gel method. Further, the bonding agent is more preferably tetraethylorthosiloxane (TEOS) and / or a derivative of TEOS (claim 17).

また、本発明は、表面にレンズ状物又はプリズム状物の凹凸パターンを有するとともに、裏面が平面である光路変更機能シートをポリジメチルシロキサン(PDMS)で成形した後、該光路変更機能シートの裏面をガラス基板の平坦面上に接合することを特徴とする複合光学部品の製造方法を提供する(請求項18)。   In addition, the present invention provides an optical path changing function sheet having a concavo-convex pattern of a lens-like object or a prism-like object on the front surface and a back surface of the optical path changing function sheet formed of polydimethylsiloxane (PDMS), and then the back surface of the optical path changing function sheet Is provided on a flat surface of a glass substrate to provide a method for producing a composite optical component (claim 18).

この製造方法において、前記レンズ状物の形態がフレネルレンズ形態であることが好ましい(請求項19)。   In this manufacturing method, it is preferable that the form of the lens-like object is a Fresnel lens form.

また、前記ガラス基板に前記光路変更機能シートを接合する前に、該ガラス基板及び/又は光路変更機能シートの接合面をプラズマ処理した上で接合してなることが好ましい(請求項20)。ここで、前記プラズマ処理が酸素プラズマ処理であるとより好ましい(請求項21)。   Moreover, before joining the said optical path change function sheet | seat to the said glass substrate, it is preferable to join, after plasma-treating the joining surface of this glass substrate and / or an optical path change function sheet | seat (Claim 20). Here, the plasma treatment is more preferably oxygen plasma treatment (claim 21).

また、前記ガラス基板に前記光路変更機能シートを接合する前に、該ガラス基板及び/又は光路変更機能シートの接合面に、薄層の接合剤を介在させてなることも好ましい(請求項22)。この場合、前記接合剤が、ゾルゲル法によってシロキサン及び/又はシロキサン誘導体を形成し得る接合剤であることが好ましい(請求項23)。更に、前記接合剤が、テトラエチルオルトシロキサン(TEOS)及び/又はTEOSの誘導体であるとより好ましい(請求項24)。   Moreover, before joining the said optical path change functional sheet to the said glass substrate, it is also preferable to interpose a thin layer bonding agent in the joining surface of this glass substrate and / or an optical path change functional sheet (Claim 22). . In this case, the bonding agent is preferably a bonding agent capable of forming siloxane and / or a siloxane derivative by a sol-gel method (claim 23). Furthermore, the bonding agent is more preferably tetraethylorthosiloxane (TEOS) and / or a derivative of TEOS (claim 24).

以上にしてなる本発明の複合光学部品によれば、ガラス基板と、ポリジメチルシロキサン(PDMS)からなる光路変更機能層との密着性に優れ、繰り返される熱負荷や長年の大気暴露に対しても光路変更機能層が剥離することがなく、しかも平坦な表面を有するガラス基板を使用するので大幅なコストダウンを図ることが可能である。本発明で使用するPDMSは、ゴム弾性を備えているので、ガラス基板とPDMS間の熱的寸法変化の差を吸収することができ、また耐候性や耐熱性、耐寒性にも優れているので、屋外で使用する用途にも適している。   According to the composite optical component of the present invention as described above, the adhesion between the glass substrate and the optical path changing functional layer made of polydimethylsiloxane (PDMS) is excellent, and it is resistant to repeated thermal loads and long-term atmospheric exposure. Since the optical path changing functional layer is not peeled off and a glass substrate having a flat surface is used, a significant cost reduction can be achieved. Since PDMS used in the present invention has rubber elasticity, it can absorb the difference in thermal dimensional change between the glass substrate and PDMS, and also has excellent weather resistance, heat resistance, and cold resistance. Suitable for outdoor use.

また、本発明の複合光学部品の製造方法によれば、ガラス基板の表面に形成する光路変更機能層の原材料としたPDMSは、熱処理する前は流動性が高く、広い面積に薄く層形成することができるので、所望形状に成形することが容易である。   In addition, according to the method for producing a composite optical component of the present invention, PDMS used as a raw material for an optical path changing functional layer formed on the surface of a glass substrate has high fluidity before heat treatment, and a thin layer is formed in a wide area. Therefore, it can be easily formed into a desired shape.

以下、本発明に係る複合光学部品及びその製造方法の実施形態について説明する。図1は、本発明に係る複合光学部品Pを示し、ガラス基板1の表面に、軟弾性を有する透明合成樹脂製の光路変更機能層2を形成したものである。ここで、「透明」とは、対象波長の光に対して十分に透過性を有することを意味している。また、「軟弾性の合成樹脂」とは、伸縮性及び形状復元性を有するゴムとしての特性を備えたものである。光路変更機能層2の代表例としては、フレネルレンズが挙げられる。そして、広い面積のガラス基板1の表面に、微小なフレネルレンズを縦横に並べて多数形成することもある。また、ガラス基板の代わりに耐候性、耐熱性、耐寒性に優れた透明合成樹脂基板を用いることも可能である。   Hereinafter, embodiments of a composite optical component and a method for manufacturing the same according to the present invention will be described. FIG. 1 shows a composite optical component P according to the present invention, in which an optical path changing functional layer 2 made of a transparent synthetic resin having soft elasticity is formed on the surface of a glass substrate 1. Here, “transparent” means having sufficient transparency to light of the target wavelength. In addition, the “soft elastic synthetic resin” has characteristics as a rubber having stretchability and shape restoring property. A typical example of the optical path changing functional layer 2 is a Fresnel lens. And many fine Fresnel lenses may be arranged in the vertical and horizontal directions on the surface of the glass substrate 1 having a large area. Moreover, it is also possible to use a transparent synthetic resin substrate excellent in weather resistance, heat resistance, and cold resistance instead of the glass substrate.

[合成樹脂材料の選定]
ガラス基板上にレンズ形状を形成する透明合成樹脂として、ポリジメチルシロキサン(以下「PDMS」と略称する。)を選択した。PDMSは透明性が高く、耐候性にも優れ、且つゴム弾性的であるので、ガラスとPDMS間の熱的寸法変化の差を吸収しやすい点で、また、耐寒性にも優れている点で、屋外で使用する用途に適している。また、PDMSは、最も普及しているシリコーンであり、利用範囲もコンタクトレンズや医療器具からエラストマー等と広範囲である。更に、PDMSの光学的な特性は、重量平均分子量と分子量分布に密接な関係を持っているので、屈折率等の光学的な要求スペックに応じてそれらを調製することができる。
[Selection of synthetic resin materials]
Polydimethylsiloxane (hereinafter abbreviated as “PDMS”) was selected as a transparent synthetic resin that forms a lens shape on a glass substrate. PDMS is highly transparent, has excellent weather resistance, and is rubber elastic. Therefore, it is easy to absorb the difference in thermal dimensional change between glass and PDMS, and also has excellent cold resistance. Suitable for outdoor use. PDMS is the most prevalent silicone and has a wide range of use, from contact lenses and medical instruments to elastomers. Furthermore, since the optical characteristics of PDMS are closely related to the weight average molecular weight and the molecular weight distribution, they can be prepared according to optical requirements such as refractive index.

PDMSの原料としては、1液性や2液性の液状シリコーンを用いることができる。該原料の成形加工は、低温且つ低粘度の状態で高温の金型内に射出し、該金型内で硬化反応を起こさせて固化させるようにして行う。   As the raw material of PDMS, one-component or two-component liquid silicone can be used. The forming process of the raw material is performed by injecting the raw material into a high-temperature mold in a low-temperature and low-viscosity state and causing a curing reaction in the mold to solidify.

本発明における合成樹脂材料の成形法として、射出成形法を採用することができるが、PDMSの場合熱可塑性合成樹脂の射出成形と異なり、射出する材であるPDMSの原料材は粘度が低いので、例えば精密且つ微小なレンズやプリズムを形成するために金型キャビティ面に設置した微細構造を転写することに優れている点で、本発明の構想を実現する合成樹脂として適性を有している。本発明は、流動性に優れた材料を用いるので、薄肉のフレネルレンズをガラス基板上に形成するような場合に、特に有効である。   As a molding method of the synthetic resin material in the present invention, an injection molding method can be adopted, but in the case of PDMS, unlike the thermoplastic synthetic resin injection molding, the raw material material of PDMS that is an injection material has a low viscosity. For example, it is suitable as a synthetic resin for realizing the concept of the present invention in that it is excellent in transferring a fine structure placed on a mold cavity surface in order to form a precise and minute lens or prism. Since the present invention uses a material excellent in fluidity, it is particularly effective when a thin Fresnel lens is formed on a glass substrate.

[製造方法]
第1製造方法は、図2に示すように、ガラス基板1上に流動性のあるPDMS原材料3を流し、その上から例えば精密且つ微小なレンズやプリズムの型を形成したスタンパ4を圧接してPDMSを熱硬化させた後、スタンパ4を剥離して、ガラス基板1の上面に光路変更機能層2を形成する方法である。また、第2製造方法は、図3に示すように、前記同様なスタンパ4上に流動性のあるPDMS原材料3を流し、その上からガラス基板1を圧接してPDMSを熱硬化させた後、スタンパ4を剥離して、ガラス基板1の下面に光路変更機能層2を形成する方法である。
[Production method]
In the first manufacturing method, as shown in FIG. 2, a PDMS raw material 3 having fluidity is flowed on a glass substrate 1, and a stamper 4 in which, for example, a precise and minute lens or prism mold is formed is pressed onto the glass substrate 1. In this method, after PDMS is thermally cured, the stamper 4 is peeled off to form the optical path changing functional layer 2 on the upper surface of the glass substrate 1. Further, in the second manufacturing method, as shown in FIG. 3, after flowing a PDMS raw material 3 having fluidity on the same stamper 4 as described above, the glass substrate 1 is pressed from above to thermally cure the PDMS, In this method, the stamper 4 is peeled off to form the optical path changing functional layer 2 on the lower surface of the glass substrate 1.

ここで、前記スタンパ4の表面には、光路変更機能を付与するためのパターン成形部5が形成されており、この凹凸パターンによって光路変更機能層2とスタンパ4との接合力が高まり離型性が悪くなるので、この接合力を弱めるためにこの型面に離型剤を塗布するか、或いは表面に離型性を高める複合めっきを施す等の離型処理することもできる。そして、前記スタンパ4のパターン成形部5のプロファイルが前記PDMS原材料3からなる層の表面に転写されて前記光路変更機能層2が形成されるのである。図中符号6は、前記スタンパ4のパターン成形部5の凹凸関係が逆になったプロファイルを有するフレネルレンズを示している。   Here, the surface of the stamper 4 is formed with a pattern forming portion 5 for imparting an optical path changing function, and the unevenness pattern increases the bonding force between the optical path changing function layer 2 and the stamper 4, thereby releasing the mold. Therefore, in order to weaken the bonding force, a mold release agent such as a mold release agent may be applied to the mold surface, or a composite plating for improving the mold release may be applied to the surface. Then, the profile of the pattern forming portion 5 of the stamper 4 is transferred to the surface of the layer made of the PDMS raw material 3 to form the optical path changing functional layer 2. Reference numeral 6 in the figure denotes a Fresnel lens having a profile in which the concave-convex relationship of the pattern forming portion 5 of the stamper 4 is reversed.

更に、本発明を大量生産するのに適した方法として射出成形法を採用することが可能である。また射出成形するに際して、予めガラス基板を金型内に設置し、所謂インサート成形を行うこともできるが、このような方法は本装置を経済的に作成するのに特に有効である。   Furthermore, an injection molding method can be adopted as a method suitable for mass production of the present invention. In addition, when performing injection molding, a glass substrate can be set in advance in a mold and so-called insert molding can be performed, but such a method is particularly effective for economical production of the apparatus.

また、PDMS製の光路変更機能層2に相当する光路変更機能シートを別途作成した後、ガラス基板1に接着することも可能である。前記同様に、前記ガラス基板に前記光路変更機能シートを接合する前に、該ガラス基板及び/又は光路変更機能シートの接合面をプラズマ処理し、具体的には酸素プラズマ処理した上で接合することが好ましい。また、前記ガラス基板に前記光路変更機能シートを接合する前に、該ガラス基板及び/又は光路変更機能シートの接合面に、薄層の接合剤を介在させることも好ましい。   It is also possible to separately create an optical path changing function sheet corresponding to the optical path changing function layer 2 made of PDMS and then adhere it to the glass substrate 1. Similarly to the above, before bonding the optical path changing function sheet to the glass substrate, the bonding surface of the glass substrate and / or the optical path changing function sheet is subjected to plasma treatment, specifically, oxygen plasma treatment and then bonding. Is preferred. Moreover, before joining the said optical path change function sheet | seat to the said glass substrate, it is also preferable to interpose a thin layer bonding agent in the joint surface of this glass substrate and / or an optical path change function sheet | seat.

[ガラス基板とPDMSの密着性を高める方法]
本発明の複合光学部品Pにおいては、ガラス基板1とPDMS製の光路変更機能層2とが密接に且つ接着していなくてはならない。両材料を密接に且つ接着させるのに、通常の用途向けには特に何らかの処置をしなくても十分であるが、より高度の密着性、より強固な接着性を求めるケースもあり、種々の工夫が加えられる。少なくともガラス基板1とPDMS製の光路変更機能層2との接着力は、PDMS製の光路変更機能層2とスタンパ4との接着力よりも高くなければならない。
[Method to improve adhesion between glass substrate and PDMS]
In the composite optical component P of the present invention, the glass substrate 1 and the optical path changing functional layer 2 made of PDMS must be closely and bonded. In order to bond both materials closely and without any special treatment for normal applications, it is sufficient, but there are cases where higher adhesiveness and stronger adhesiveness are required, and various measures are taken. Is added. At least the adhesive force between the glass substrate 1 and the optical path changing function layer 2 made of PDMS must be higher than the adhesive force between the optical path changing function layer 2 made of PDMS and the stamper 4.

例えば、ガラス基板1にPDMS原材料3を密着させる前に、PDMS原材料3に接するガラス基板1の表面にプラズマ処理を施すことが有効である。また、PDMS製の光路変更機能層2に相当する光路変更機能シートを別途作成した後、ガラス基板1に接着する場合は、PDMSと接するガラス基板1の表面にプラズマ処理を施すか、或いはガラス基板1の表面と接するPDMS面にプラズマ処理を施す、又はガラス基板1とPDMSの接しようとする両者の面にもプラズマ処理を施すことは、何れも有効な方法である。尚、プラズマ処理に使用するプラズマとしてはいろいろあるが、酸素プラズマが好ましい。また、プラズマ処理は、短時間の処理が好ましい。   For example, before the PDMS raw material 3 is brought into close contact with the glass substrate 1, it is effective to perform plasma treatment on the surface of the glass substrate 1 in contact with the PDMS raw material 3. In addition, when an optical path changing function sheet corresponding to the optical path changing function layer 2 made of PDMS is separately prepared and then adhered to the glass substrate 1, the surface of the glass substrate 1 in contact with the PDMS is subjected to plasma treatment or the glass substrate. It is an effective method to perform plasma treatment on the PDMS surface in contact with the surface of 1 or to perform plasma treatment on both surfaces of the glass substrate 1 and PDMS which are to be in contact with each other. Although there are various types of plasma used for the plasma treatment, oxygen plasma is preferable. The plasma treatment is preferably a short time treatment.

ガラス基板1とPDMS製の光路変更機能層2の接合面に、接合に先だって、当該複合光学部品Pを使用する際の対象光の波長に対して光線透過率を損なわないような有機接着剤を塗布して接合の強度を高めることも有り得る。また、前記ガラス基板1と前記光路変更機能層2の間に、薄層の接合剤を介在させることも好ましい。ここで、前記接合剤が、ゾルゲル法によってシロキサン及び/又はシロキサン誘導体を形成し得る接合剤であり、更にはテトラエチルオルトシロキサン(TEOS)及び/又はTEOSの誘導体であることがより好ましい。   Prior to the bonding, an organic adhesive that does not impair the light transmittance with respect to the wavelength of the target light when using the composite optical component P is applied to the bonding surface of the glass substrate 1 and the optical path changing functional layer 2 made of PDMS. It may be applied to increase the strength of bonding. Moreover, it is also preferable to interpose a thin layer bonding agent between the glass substrate 1 and the optical path changing functional layer 2. Here, the bonding agent is a bonding agent capable of forming siloxane and / or a siloxane derivative by a sol-gel method, and more preferably a tetraethylorthosiloxane (TEOS) and / or a derivative of TEOS.

具体的には、ガラス基板1とPDMS製の光路変更機能層2の接合強度を向上させる方法として、ガラス基板1に光路変更機能層2を一体成形する場合には、ガラス基板1の表面に、またガラス基板1に別途成形したPDMS製の光路変更機能シートを貼り合せる場合にはガラス基板1及び/又は光路変更機能シートの表面に、金属アルコキシドを用いた縮重合化合物、或いは金属アルコキシドに金属塩及び/又は金属有機塩を添加した混合物を用いた縮重合化合物からなる被覆層(以下、「被覆層A」と略称する。)を薄く形成した後に接合を行うことができる。或いは、ガラス基板1の表面に被覆層Aを形成した後、PDMSを射出成形して本発明の一体成形品を作成することもできる。   Specifically, as a method for improving the bonding strength between the glass substrate 1 and the optical path changing function layer 2 made of PDMS, when the optical path changing function layer 2 is integrally formed on the glass substrate 1, the surface of the glass substrate 1 is In addition, when an optical path changing function sheet made of PDMS formed separately on the glass substrate 1 is bonded, a condensation polymerization compound using a metal alkoxide or a metal salt on the metal alkoxide on the surface of the glass substrate 1 and / or the optical path changing function sheet. And after joining and forming the coating layer (it abbreviates as "coating layer A" hereafter) consisting of the condensation polymerization compound using the mixture which added the metal organic salt thinly, it can join. Or after forming the coating layer A on the surface of the glass substrate 1, PDMS can be injection-molded to produce an integrally molded product of the present invention.

同様に、ガラス基板1に光路変更機能層2を一体成形する場合には、ガラス基板1の表面に、またガラス基板1に別途成形したPDMS製の光路変更機能シートを貼り合せる場合にはガラス基板1及び/又は光路変更機能シートの表面に、金属アルコキシドを用いた縮重合化合物の中に、或いは金属アルコキシドに金属塩及び/又は金属有機塩を添加した混合物を用いた縮重合化合物の中に、金属コロイドを分散させた被覆層(以下、「被覆層B」と略称する。)を薄く形成した後に接合を行う。或いは、ガラス基板1の表面に被覆層Bを形成した後、PDMSを射出成形して本発明の一体成形品を作成することもできる。また、このような接合又は射出成形を行うに先立って、被覆層A及び被覆層Bにプラズマ処理を行っても良い。   Similarly, when the optical path changing function layer 2 is integrally formed on the glass substrate 1, when the PDMS optical path changing function sheet separately formed on the glass substrate 1 is bonded to the surface of the glass substrate 1, the glass substrate is used. 1 and / or a polycondensation compound using a mixture of a metal alkoxide and a metal salt and / or a metal organic salt in a polycondensation compound using a metal alkoxide on the surface of the optical path changing function sheet, Bonding is performed after a thin coating layer (hereinafter abbreviated as “coating layer B”) in which the metal colloid is dispersed is formed. Or after forming the coating layer B on the surface of the glass substrate 1, PDMS can be injection-molded to produce the integrally molded product of the present invention. Prior to performing such joining or injection molding, the coating layer A and the coating layer B may be subjected to plasma treatment.

被覆層A及び被覆層Bを形成する際に用いる金属塩を構成する金属としては、珪素、ジルコニウム、チタン、ホウ素、アルミニウム、ニッケル、タンタル、カルシウム、マグネシウム、亜鉛又は燐酸エステル少なくともいずれか1種から選ぶことが好ましい。被覆層A及び被覆層Bの材料が、テトラエチルシリケート、ホウ酸トリメチル、ジルコニウムn−ブトキシド、チタンイソプロポキシド、アルミニウムn−ブトキシド、塩化亜鉛、酸化チタン、エトキシトリメチルシランの内の少なくとも何れか1種であることが好ましい。その他、ガラス基板1の表面及び/又はPDMS面に対し、分子中に複数の官能基を有するシランカプリング剤を用いる処理もできる。   As a metal constituting the metal salt used when forming the coating layer A and the coating layer B, silicon, zirconium, titanium, boron, aluminum, nickel, tantalum, calcium, magnesium, zinc, or phosphoric acid ester is used. It is preferable to choose. The material of the coating layer A and the coating layer B is at least one of tetraethyl silicate, trimethyl borate, zirconium n-butoxide, titanium isopropoxide, aluminum n-butoxide, zinc chloride, titanium oxide, and ethoxytrimethylsilane. It is preferable that In addition, the process which uses the silane coupling agent which has a some functional group in a molecule | numerator with respect to the surface and / or PDMS surface of the glass substrate 1 can also be performed.

[複合光学部品の形態]
本発明は、1枚のガラス基板上に、PDMS層によって1つのレンズやプリズム、例えばフレネルレンズを形成して実施するが、1枚のガラス基板上に2つ以上の複数個のレンズやプリズム、例えばフレネルレンズを形成しても良い。更に、PDMS層に回折格子を形成したり、更にホログラムの干渉縞パターンを形成することも可能である。
[Forms of composite optical components]
The present invention is implemented by forming a single lens or prism, for example, a Fresnel lens, on a single glass substrate by a PDMS layer. However, two or more lenses or prisms on a single glass substrate, For example, a Fresnel lens may be formed. Furthermore, it is possible to form a diffraction grating in the PDMS layer, and further form an interference fringe pattern of a hologram.

本発明に係る複合光学部品を用いることによって、例えば太陽光発電を行うシリコン機能体面に太陽光を効率的に集めることができる。また、ガラス基板上にフレネルレンズを形成した集光装置は、投光器の集光レンズとして使用できる。更に、ガラス基板の上にPDMSを用いたプリズム機能を有する形状を形成することによって、本発明の複合光学部品を、液晶表示パネル等のバックライトを構成する導光板に適用して、導光板出光面の光線処理機能、即ち出光する光線の方向を望ましい方向に転向させる機能を高めることが可能になる。また、本発明に係る複合光学部品は、レンズ的機能或いはプリズム的機能を有しているので、太陽光発電における集光装置や液晶表示パネル等の導光板のみならず、このような機能が求められる用途であれば有効に利用することができる。   By using the composite optical component according to the present invention, for example, sunlight can be efficiently collected on the silicon functional body surface that performs solar power generation. Moreover, the condensing apparatus which formed the Fresnel lens on the glass substrate can be used as a condensing lens of a light projector. Further, by forming a shape having a prism function using PDMS on a glass substrate, the composite optical component of the present invention is applied to a light guide plate constituting a backlight of a liquid crystal display panel or the like, and the light output from the light guide plate It is possible to enhance the light beam processing function of the surface, that is, the function of turning the direction of the emitted light beam in a desired direction. In addition, since the composite optical component according to the present invention has a lens function or a prism function, such a function is required in addition to a light guide plate such as a condensing device or a liquid crystal display panel in solar power generation. Can be used effectively for any application.

本発明に係る複合光学部品の代表例として、ガラス基板の表面にフレネルレンズからなる光路変更機能層を形成した光学部品の部分断面図である。FIG. 2 is a partial cross-sectional view of an optical component in which an optical path changing functional layer made of a Fresnel lens is formed on the surface of a glass substrate as a representative example of the composite optical component according to the present invention. 本発明の複合光学部品の第1製造方法を示し、(a)はガラス基板の表面上にPDMS原材料を流した状態の断面図、(b)はPDMS原材料の上からスタンパを圧接する前の状態の断面図、(c)はスタンパを圧接した後の状態の断面図、(d)はPDMSの熱硬化後、スタンパを剥離した状態の断面図である。1 shows a first manufacturing method of a composite optical component of the present invention, in which (a) is a cross-sectional view of a state in which a PDMS raw material is flowed on the surface of a glass substrate, and (b) is a state before a stamper is pressed from above the PDMS raw material. (C) is a cross-sectional view of the state after the stamper is pressed, and (d) is a cross-sectional view of the state after the stamper is peeled off after thermosetting of the PDMS. 本発明の複合光学部品の第2製造方法を示し、(a)はスタンパのパターン成形部上にPDMS原材料を流した状態の断面図、(b)はPDMS原材料の上からガラス基板を圧接する前の状態の断面図、(c)はガラス基板を圧接した後の状態の断面図、(d)はPDMSの熱硬化後、スタンパを剥離した状態の断面図である。FIGS. 2A and 2B show a second method for manufacturing a composite optical component of the present invention, wherein FIG. 1A is a cross-sectional view of a state in which a PDMS raw material is flowed on a pattern forming portion of a stamper, and FIG. (C) is a cross-sectional view of the state after pressure-contacting the glass substrate, and (d) is a cross-sectional view of the state in which the stamper is peeled off after thermosetting PDMS.

符号の説明Explanation of symbols

1 ガラス基板
2 光路変更機能層
3 PDMS原材料
4 スタンパ
5 パターン成形部
P 複合光学部品
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Optical path change functional layer 3 PDMS raw material 4 Stamper 5 Pattern shaping part P Composite optical component

Claims (24)

透明なガラス基板の平坦な表面に、ポリジメチルシロキサン(PDMS)からなる光路変更機能層を形成したことを特徴とする複合光学部品。   A composite optical component comprising an optical path changing functional layer made of polydimethylsiloxane (PDMS) formed on a flat surface of a transparent glass substrate. 前記光路変更機能層は、複数個のレンズ状物又はプリズム状物を形成したものである請求項1記載の複合光学部品。   The composite optical component according to claim 1, wherein the optical path changing functional layer is formed with a plurality of lens-like objects or prism-like objects. 前記レンズ状物の形態がフレネルレンズ形態である請求項2記載の複合光学部品。   The composite optical component according to claim 2, wherein the shape of the lens-like material is a Fresnel lens shape. 前記ガラス基板及び/又は前記光路変更機能層の接合面をプラズマ処理した上で接合してなる請求項1〜3何れかに記載の複合光学部品。   The composite optical component according to any one of claims 1 to 3, wherein the bonding surface of the glass substrate and / or the optical path changing functional layer is bonded after plasma treatment. 前記プラズマ処理が酸素プラズマ処理である請求項4記載の複合光学部品。   The composite optical component according to claim 4, wherein the plasma treatment is an oxygen plasma treatment. 前記ガラス基板と前記光路変更機能層の間に、薄層の接合剤を介在させてなる請求項1〜5何れかに記載の複合光学部品。   The composite optical component according to claim 1, wherein a thin layer bonding agent is interposed between the glass substrate and the optical path changing functional layer. 前記接合剤が、ゾルゲル法によってシロキサン及び/又はシロキサン誘導体を形成し得る接合剤である請求項6記載の複合光学部品。   The composite optical component according to claim 6, wherein the bonding agent is a bonding agent capable of forming a siloxane and / or a siloxane derivative by a sol-gel method. 前記接合剤が、テトラエチルオルトシロキサン(TEOS)及び/又はTEOSの誘導体である請求項7記載の複合光学部品。   The composite optical component according to claim 7, wherein the bonding agent is tetraethylorthosiloxane (TEOS) and / or a derivative of TEOS. ガラス基板の平坦面上に流動性のあるポリジメチルシロキサン(PDMS)原材料を流し、その上からレンズ状物又はプリズム状物を形成するパターン成形部を設けたスタンパを圧接してPDMSを硬化させた後、スタンパを剥離して、ガラス基板の上面に光路変更機能層を形成することを特徴とする複合光学部品の製造方法。   PDMS was cured by flowing a fluid polydimethylsiloxane (PDMS) raw material on a flat surface of a glass substrate and pressing a stamper provided with a pattern forming portion for forming a lens-like or prism-like object from the raw material. Thereafter, the stamper is peeled off, and the optical path changing functional layer is formed on the upper surface of the glass substrate. 上面にレンズ状物又はプリズム状物を形成するパターン成形部を設けたスタンパ上に、流動性のあるポリジメチルシロキサン(PDMS)原材料を流し、その上からガラス基板の平坦面を圧接してPDMSを硬化させた後、スタンパを剥離して、ガラス基板の下面に光路変更機能層を形成することを特徴とする複合光学部品の製造方法。   A fluid polydimethylsiloxane (PDMS) raw material is allowed to flow on a stamper provided with a pattern forming portion for forming a lens-like object or a prism-like object on the upper surface, and the flat surface of the glass substrate is pressed from above to produce PDMS. A method for producing a composite optical component, comprising: after curing, peeling off the stamper and forming an optical path changing functional layer on the lower surface of the glass substrate. 光路変更機能層をガラス基板の平坦な表面上に形成するに際し、内面にレンズ状物又はプリズム状物を形成するパターン成形部を設けた金型内に予め設置されたガラス基板上に、ポリジメチルシロキサン(PDMS)原材料を射出成形して前記レンズ状物又はプリズム状物を有する光路変更機能層を形成してなる複合光学部品の製造方法。   When forming the optical path changing functional layer on the flat surface of the glass substrate, the polydimethyl compound is placed on the glass substrate preliminarily placed in a mold provided with a pattern forming portion for forming a lens-like object or a prism-like object on the inner surface. A method for producing a composite optical component, wherein a siloxane (PDMS) raw material is injection-molded to form an optical path changing functional layer having the lens-like or prism-like material. 前記レンズ状物の形態がフレネルレンズ形態である請求項9〜11何れかに記載の複合光学部品の製造方法。   The method of manufacturing a composite optical component according to any one of claims 9 to 11, wherein the lens-like object is in the form of a Fresnel lens. 前記ガラス基板に前記光路変更機能層を一体化する前に、該ガラス基板の接合面をプラズマ処理した上で接合してなる請求項9〜12何れかに記載の複合光学部品の製造方法。   The method for producing a composite optical component according to any one of claims 9 to 12, wherein the optical surface changing functional layer is integrated with the glass substrate, and the bonding surface of the glass substrate is bonded after plasma treatment. 前記プラズマ処理が酸素プラズマ処理である請求項13記載の複合光学部品の製造方法。   The method of manufacturing a composite optical component according to claim 13, wherein the plasma treatment is an oxygen plasma treatment. 前記ガラス基板に前記光路変更機能層を一体化する前に、該ガラス基板の接合面に、薄層の接合剤を介在させてなる請求項9〜12何れかに記載の複合光学部品の製造方法。   The method for producing a composite optical component according to any one of claims 9 to 12, wherein a thin layer bonding agent is interposed on a bonding surface of the glass substrate before the optical path changing functional layer is integrated with the glass substrate. . 前記接合剤が、ゾルゲル法によってシロキサン及び/又はシロキサン誘導体を形成し得る接合剤である請求項15記載の複合光学部品の製造方法。   The method for producing a composite optical component according to claim 15, wherein the bonding agent is a bonding agent capable of forming siloxane and / or a siloxane derivative by a sol-gel method. 前記接合剤が、テトラエチルオルトシロキサン(TEOS)及び/又はTEOSの誘導体である請求項16記載の複合光学部品の製造方法。   The method for producing a composite optical component according to claim 16, wherein the bonding agent is tetraethylorthosiloxane (TEOS) and / or a derivative of TEOS. 表面にレンズ状物又はプリズム状物の凹凸パターンを有するとともに、裏面が平面である光路変更機能シートをポリジメチルシロキサン(PDMS)で成形した後、該光路変更機能シートの裏面をガラス基板の平坦面上に接合することを特徴とする複合光学部品の製造方法。   An optical path changing function sheet having a concavo-convex pattern of a lens-like object or a prism-like object on the front surface and a back surface being a flat surface is molded with polydimethylsiloxane (PDMS), and then the back surface of the optical path changing function sheet is a flat surface of a glass substrate A method of manufacturing a composite optical component, characterized by being bonded on top. 前記レンズ状物の形態がフレネルレンズ形態である請求項18記載の複合光学部品の製造方法。   The method for manufacturing a composite optical component according to claim 18, wherein the lens-like object is in the form of a Fresnel lens. 前記ガラス基板に前記光路変更機能シートを接合する前に、該ガラス基板及び/又は光路変更機能シートの接合面をプラズマ処理した上で接合してなる請求項18又は19記載の複合光学部品の製造方法。   20. The composite optical component according to claim 18 or 19, wherein the optical surface changing function sheet is bonded to the glass substrate after plasma treatment is performed on the bonding surface of the glass substrate and / or the optical path changing function sheet. Method. 前記プラズマ処理が酸素プラズマ処理である請求項20記載の複合光学部品の製造方法。   The method of manufacturing a composite optical component according to claim 20, wherein the plasma treatment is an oxygen plasma treatment. 前記ガラス基板に前記光路変更機能シートを接合する前に、該ガラス基板及び/又は光路変更機能シートの接合面に、薄層の接合剤を介在させてなる請求項18又は19記載の複合光学部品の製造方法。   The composite optical component according to claim 18 or 19, wherein a thin layer bonding agent is interposed between the glass substrate and / or the optical path changing function sheet before the optical path changing function sheet is bonded to the glass substrate. Manufacturing method. 前記接合剤が、ゾルゲル法によってシロキサン及び/又はシロキサン誘導体を形成し得る接合剤である請求項22記載の複合光学部品の製造方法。   The method for producing a composite optical component according to claim 22, wherein the bonding agent is a bonding agent capable of forming a siloxane and / or a siloxane derivative by a sol-gel method. 前記接合剤が、テトラエチルオルトシロキサン(TEOS)及び/又はTEOSの誘導体である請求項23記載の複合光学部品の製造方法。
The method for producing a composite optical component according to claim 23, wherein the bonding agent is tetraethylorthosiloxane (TEOS) and / or a derivative of TEOS.
JP2006030590A 2006-02-08 2006-02-08 Composite optical component and manufacturing method thereof Expired - Fee Related JP4670669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006030590A JP4670669B2 (en) 2006-02-08 2006-02-08 Composite optical component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006030590A JP4670669B2 (en) 2006-02-08 2006-02-08 Composite optical component and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007212607A true JP2007212607A (en) 2007-08-23
JP4670669B2 JP4670669B2 (en) 2011-04-13

Family

ID=38491126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006030590A Expired - Fee Related JP4670669B2 (en) 2006-02-08 2006-02-08 Composite optical component and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4670669B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109579A (en) * 2007-10-26 2009-05-21 Nippon Steel Chem Co Ltd Heat-resistant composite lens
JP2011095492A (en) * 2009-10-29 2011-05-12 Asahi Rubber Inc Hybrid lens
KR101083235B1 (en) 2010-03-02 2011-11-14 한국과학기술원 light guiding plate and electrionic book adpopting the same
JP2012063764A (en) * 2010-08-20 2012-03-29 Citizen Holdings Co Ltd Base plate having optical structure and optical element using the same
JP2012181480A (en) * 2011-03-03 2012-09-20 Dainippon Printing Co Ltd Polydimethylsiloxane sheet and optical element using the same and method for manufacturing them
JP2012208102A (en) * 2011-03-14 2012-10-25 Omron Corp Confocal measuring device
WO2015102100A1 (en) * 2014-01-06 2015-07-09 株式会社クラレ Optical element, method for manufacturing optical element, light collecting type photovoltaic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048752A (en) * 2000-08-07 2002-02-15 Nippon Telegr & Teleph Corp <Ntt> Flow cell and polymer film forming method
JP2005245331A (en) * 2004-03-04 2005-09-15 Eiichi Tamiya Device for forming thin film, thin film device and method for producing the film device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048752A (en) * 2000-08-07 2002-02-15 Nippon Telegr & Teleph Corp <Ntt> Flow cell and polymer film forming method
JP2005245331A (en) * 2004-03-04 2005-09-15 Eiichi Tamiya Device for forming thin film, thin film device and method for producing the film device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109579A (en) * 2007-10-26 2009-05-21 Nippon Steel Chem Co Ltd Heat-resistant composite lens
JP2011095492A (en) * 2009-10-29 2011-05-12 Asahi Rubber Inc Hybrid lens
KR101083235B1 (en) 2010-03-02 2011-11-14 한국과학기술원 light guiding plate and electrionic book adpopting the same
JP2012063764A (en) * 2010-08-20 2012-03-29 Citizen Holdings Co Ltd Base plate having optical structure and optical element using the same
JP2012181480A (en) * 2011-03-03 2012-09-20 Dainippon Printing Co Ltd Polydimethylsiloxane sheet and optical element using the same and method for manufacturing them
JP2012208102A (en) * 2011-03-14 2012-10-25 Omron Corp Confocal measuring device
WO2015102100A1 (en) * 2014-01-06 2015-07-09 株式会社クラレ Optical element, method for manufacturing optical element, light collecting type photovoltaic device

Also Published As

Publication number Publication date
JP4670669B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
US9944031B2 (en) Molded optical articles and methods of making same
JP4670669B2 (en) Composite optical component and manufacturing method thereof
JP2007212771A (en) Fresnel lens, its manufacturing method, and its use
JP5617636B2 (en) Wafer lens manufacturing method
JP2007086784A5 (en)
AU2011237539A1 (en) Laminate structure with embedded cavities for use with solar cells and related method of manufacture
JP5868393B2 (en) Nanoimprint mold and method of manufacturing curved body
CN100468085C (en) Multilayer-optical film and its production method
JP2006076026A (en) Composite lens, its manufacturing method and lens module
JPWO2017195697A1 (en) Image projection structure, transparent screen, and method of manufacturing image projection structure
TW201224540A (en) Light guide body and method for fabricating same
JP2006106229A (en) Method for manufacturing transmission type optical element and transmission type optical element
JP2007271857A (en) Fresnel lens, its manufacturing method and its use
CN113035064B (en) Display device and method for manufacturing the same
JP2012230272A (en) Stamper and method for manufacturing optical sheet using the same
JP5604054B2 (en) Method for manufacturing optical lens or optical waveguide or optical fiber core
KR102029928B1 (en) Fabrication method of polymer film-based micro mirror array using organic patterning
CN117148481B (en) Preparation method of brightness enhancement optical plate
TWI429959B (en) An optical film having embedded diffusing bodies
CN209215621U (en) A kind of glass light guide plate mould group
JP2001030287A (en) Manufacture of optical component made of plastic
KR101507541B1 (en) Insulating film
TW201009437A (en) Light guide plate with high optical resolution and manufacturing method thereof
CN116293530A (en) Polarized light source, polarized light film and preparation process of polarized light film
WO2017195879A1 (en) Molded resin article molding method and molded resin article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

R150 Certificate of patent or registration of utility model

Ref document number: 4670669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees