TW201134375A - Micro liquid cooling system - Google Patents

Micro liquid cooling system Download PDF

Info

Publication number
TW201134375A
TW201134375A TW99109465A TW99109465A TW201134375A TW 201134375 A TW201134375 A TW 201134375A TW 99109465 A TW99109465 A TW 99109465A TW 99109465 A TW99109465 A TW 99109465A TW 201134375 A TW201134375 A TW 201134375A
Authority
TW
Taiwan
Prior art keywords
valve body
fluid
outlet
inlet
liquid cooling
Prior art date
Application number
TW99109465A
Other languages
Chinese (zh)
Other versions
TWI389634B (en
Inventor
Hao-Jan Mou
Ta-Wei Hsueh
Ying-Lun Chang
Rong-Ho Yu
Shih-Chang Chen
Original Assignee
Microjet Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microjet Technology Co Ltd filed Critical Microjet Technology Co Ltd
Priority to TW99109465A priority Critical patent/TWI389634B/en
Publication of TW201134375A publication Critical patent/TW201134375A/en
Application granted granted Critical
Publication of TWI389634B publication Critical patent/TWI389634B/en

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A micro liquid cooling system for cooling plural electronic devices is disclosed and includes a liquid cooling device; a liquid storing unit for storing a fluid; a plurality of heat-absorbing units being in contact with the electronic devices for absorbing the heat generated from the electronic devices; a first fluid transportation device and a second fluid transportation device, each of which has a valve base, a valve cover, a valve film and a driver; and a transportation tube coupling the liquid storing unit, the heat-absorbing units, the first fluid transportation device, the second fluid transportation device and the liquid cooling device to form a fluid loop.

Description

201134375 發明說明: 【發明所屬之技術領域】 [0001] [0002] [0003] [0004] [0005] 099109465 本案係關於一種冷卻系統,尤指一種微型液體冷卻系統 〇 【先前彳支術】 隨著電腦產業的迅速發展,CPU追求高速度化、高功能化 及小型化所衍生的散熱問題越來越嚴重,這在筆記型電 腦等内部空間狹小的電子裝置中更為突出。如果無法將 筆記型電腦内CPU等電子元件所產生的熱量即時有效的散 發出去,將會影響電子元件的工作性能,同時還會減少 電子元件的使用壽命,因此業者通常採用一冷卻裝置來 對電子元件散熱。 在眾多的冷卻技術中,液體冷卻是一種極為有效的冷卻 方式。傳統的液體冷卻系統主要由吸熱體、散熱體、機 械泵、及傳輸管構成一回路,該回路中填充冷卻液,冷 卻液在該吸熱體處吸收電子元件所產生的熱量,經傳輸 管傳至散熱體後放出熱量。在該機械泵的驅動作用下, 該冷卻液在回路中不斷循環,進而源源不斷地帶走該電 子元件所產生的熱量。 由於習知液體冷卻系統的機械泵需占用較大的空間,隨 著電子產品朝小型化發展的趨勢之下,習知液體冷卻系 統很難應用於筆記型電腦等内部空間狹小的電子裝置中 對電子元件進行冷卻散熱。 因此,如何發展一種可改善上述習知技術缺失之微型液 體冷卻系統,實為目前迫切需要解決之問題。 表單編號A0101 第4頁/共47頁 0992016824-0 201134375 【發明内容】 [0006] 本案之主要目的在於提供一種微型液體冷卻系統,俾解 決習知液體冷卻系統中機械泵需占用較大的空間,使得 習知液體冷卻系統很難應用於筆記型電腦等内部空間狹 小的電子裝置中對電子元件進行冷卻散熱等缺點。 [0007] 為達上述目的,本案之一較廣義實施態樣為提供一種微 型液體冷卻系統,用以對複數個電子元件進行散熱,至 少包含:液體冷卻裝置;儲液單元,儲存流體;複數個 吸熱單元,其係與複數個電子元件接觸,用以吸收複數 〇 個電子元件所產生之熱能;第一流體輸送裝置及第二流 體輸送裝置,分別具有閥體座、閥體蓋體、閥體薄膜以 及致動裝置組構而成,其中該閥體薄膜設置於該閥體座 及該閥體蓋體之間,而該閥體座及該閥體蓋體之間設有 至少一入口暫存腔、至少一出口暫存腔,以及該閥體蓋 體與一致動裝置構成一壓力腔室,且該至少一入口暫存 腔藉由該壓力腔室與至少一出口暫存腔連通,又該閥體 薄膜對應該至少一入口暫存腔具有一入口閥門結構,及 〇 該閥體薄膜對應該至少一出口暫存腔具有一出口閥門結 構,以及該閥體座對應於該入口閥門結構連通有入口通 道,該閥體座對應於該出口閥門結構也連通有出口通道 ;以及傳輸管路,用以將儲液單元、複數個吸熱單元、 第一流體輸送裝置、第二流體輸送裝置以及液體冷卻裝 置串接形成一流體迴路。 [0008] 本案之構想,其中該第一流體輸送裝置之閥體座及一第 二流體輸送裝置之閥體座分別具有複數個入口通道及複 099109465 表單編號A0101 第5頁/共47頁 0992016824-0 201134375 數個出口通道。 [0009] 本案之構想,其中該第一流體輸送裝置之閥體座具有複 數個入口通道及複數個出口通道,該第二流體輸送裝置 之閥體座係具有複數個入口通道及一出口通道。 [0010] 本案之構想,其中該第一流體輸送裝置之閥體座具有一 入口通道及複數個出口通道,該第二流體輸送裝置之該 閥體座係具有複數個入口通道及一出口通道。 [0011] 本案之構想,其中該第一流體輸送裝置之閥體座具有一 入口通道及複數個出口通道,該第二流體輸送裝置之閥 體座具有複數個入口通道及複數個出口通道。 【實施方式】 [0012] 體現本案特徵與優點的一些典型實施例將在後段的說明 中詳細敘述。應理解的是本案能夠在不同的態樣上具有 各種的變化,其皆不脫離本案的範圍,且其中的說明及 圖示在本質上係當作說明之用,而非用以限制本案。 [0013] 本案之微型液體冷卻系統可適用於一電子裝置,例如: 筆記型電腦之主機殼體内部,主要對主機殼體之電子元 件進行散熱,請參閱第一圖,其係為本案第一較佳實施 例之微型液體冷卻系統的結構示意圖,如圖所示,本實 施例之微型液體冷卻系統1可包含儲液單元11、第一流體 輸送裝置12、第二流體輸送裝置13、複數個吸熱單元14 、液體冷卻裝置15以及傳輸管路16,其中儲液單元11係 儲存一流體,且該液體冷卻裝置15係包含熱交換器151以 及風扇152。 099109465 表單編號A0101 第6頁/共47頁 0992016824-0 201134375 [0014] 至於,本案之第一流體輸送裝置12可為一進多出的形式 ,即具有單一入口通道以及複數個出口通道,或是可為 多進多出的形式,即具有複數個入口通道以及複數個出 口通道。本案之第二流體輸送裝置13則可為多進一出的 形式,即具有複數個入口通道以及單一出口通道,或是 可為多進多出的形式,即具有複數個入口通道以及複數 個出口通道。當然本案之第一流體輸送裝置12及第二流 體輸送裝置13所包含之入口通道及出口通道的設置方向 及數量可以依需要彈性調整。 〇 [0015] 於本實施例中,第一流體輸送裝置12係為一進二出的形 式,第二流體輸送裝置13可為2進1出的形式。 [0016] 請再參閱第一圖,本實施可包含第一吸熱單元141以及第 二吸熱單元142,其中第一吸熱單元141係與一電子元件 (未圖示,例如:中央處理晶片)接觸,以熱傳導的方式 吸收該電子元件所產生之熱能,第二吸熱單元142則與另 一電子元件(未圖示,例如:顯示晶片)接觸,同樣以熱 Q 傳導的方式吸收另一該電子元件所產生之熱能,其中, 第一吸熱單元141以及第二吸熱單元142可為金屬材質。 [0017] 傳輸管路16被應用在儲液單元11與第一流體輸送裝置12 之間的連接、第一流體輸送裝置12與第一吸熱单元141之 間的連接、第一流體輸送裝置12與第二吸熱單元142之間 的連接、第一吸熱單元141與第二流體輸送裝置13之間的 連接、第二吸熱單元142與第二流體輸送裝置13之間的連 接、第二流體輸送裝置13與熱交換器151之間的連接、以 及熱交換器151與儲液單元11之間的連接,使得儲液單元 099109465 表單編號 A0101 第 7 頁/共 47 頁 0992016824-0 201134375 Π、第一流體輸送裝置12、第二流體輸送裝置13、第一 吸熱單元141、第二吸熱單元142以及熱交換器151串接 形成一封閉的流體迴路,使流體可在封閉的流體迴路中 循環流動。 [0018] [0019] [0020] 099109465 而第一流體輸送裝置1 2係將流體由儲液單元11分兩路同 時引導至第一吸熱單元141以及第二吸熱單元142,以對 流的方式將第一吸熱單元141及第二吸熱單元142上之熱 能帶走,第二流體輸送裝置13則將流經第一吸熱單元141 及第二吸熱單元142之流體匯隼至熱交換器151中,藉由 設置第二流體輸送裝置13可確保流體於流體迴路中可順 暢流動,而熱交換器151可為金屬材質,可利用金屬吸收 流體中的熱量,使流體的溫度降低,至於因吸收流體之 熱量而升溫的熱交換器151則可透過風扇152達到加速冷 卻之效果。 凊參閱第二圖A,其係為第一圖,示之第一流體輸送裝置 之分解結構示意圖,如圖所示,本實施例之第一流體輸 送裝置12係由閥體座121、..閥體蓋體1 2 2、閥體薄膜12 3 、致動裝置124及蓋體125所組成,其中致動裝置124係 由一致動薄膜1241以及一致動器1242組裝而成,用以驅 動第一流體輸送裝置12之作動。本實施例之第一流體輸 送裝置12主要藉由依序將閥體座121、閥體薄膜123、閥 體蓋體122、致動裝置124及蓋體125相對應堆疊設置, 以完成組裝(如第三圖A所示)。 其中’閥體座121及閥體蓋體122係為第一流體輸送裝置 12中導引流體進出之主要結構,請再參閱第二圖B並配合 0992016824-0 表單編號A0101 第8頁/共47頁 201134375 第一圖A,其中第二圖β係為第二圖a所示之閥體座的背面 結構示意圖,如第二圖A所示,閥體座121係具有入口通 道12113及出口通道12123、12121),但並不以此為限。 流體係經由入口流道121 la分別傳送至閥體座121之開口 1213a、1213b,並且,於閥體薄膜丨23及閥體座121之 間形成圖中所示之出口暫存腔1215a、1215b,其係由閥 體座121與出口流道1212a、1212b相對應之位置產生部 分凹陷而形成’並分別與出口流道1212a、i212b相連通 ’該出口暫存腔121 5a、1215b係用以暫時儲存流體,並 Ο [0021] G [0022] 使流體由出口暫存腔12i5a、uiib經由開口 1214a、 :. . .......... .... 1214b而輸送至出口通道1 212a、1212b流出。 以及,在閥體座121上更具有複數個凹槽結構,用以供一 密封環126(如第三圖B、C、D、E所示)設置於其上,於 本實施例中’閥體座121係具有環繞開口 1213a、1213b 週邊之凹槽1216a、1216b、,及環繞於出口暫存腔1215a 、1215b週邊之凹槽1217a、121允。Μ终,於閥體座 121之開口 1213a及1213b的邊緣係環繞設置一微凸結構 1218a、1218b ’其係包含一水平接觸面12181a、 12181b。 請參閱第二圖C並配合第二圖A,其中第二圖C係為第二圖 A所示之閥體蓋體之背面結構示意圖,如圖所示,閥體蓋 座122係具有一上表面1220及一下表面1221,以及在閥 體蓋座122上亦具有貫穿上表面1220至下表面1221之入 口閥門通道1222a、1222b及出口閥門通道1223a、 1223b ’且該入口閥門通道1222a、1222b係分別設置於 099109465 表單編號A0101 第9頁/共47頁 0992016824-0 201134375 [0023] [0024] [0025] 099109465 與閥體座121之開口 1213a、1213b相對應之位置,而出 口閥門通道1 223a、1223b則分別設置於與閥體座21之出 口暫存腔1215a、1215b内之開口 1214a、214b相對應之 位置,並且,於本實施例中,閥體薄膜123及閥體蓋體 122之間形成入口暫存腔1224a、1224b,且不以此為限 ’其係由閥體蓋體122之下表面1221於與入口閥門通道 1222a、1222b相對應之位置產生部份凹陷而形成,且其 係連通於入口閥門通道1222a、1222b。 請再參閱第二圖C,如圖所示,閥體蓋體122之上表面 1 220係部份凹陷’以形成一塵力腔室1225,其係與致動 裝置124之致動器1242相對應設置,壓力腔室1225係經 由入口閥門通道1222a、1222b分別連通於入口暫存腔1224a、1 224b,並同時與出口閥門通道1223a、1223b 相連通。 另外’閥體蓋體122上同樣具^有複數個凹槽結構,以本實 施例為例,在閥體蓋座122¾上表面1220係具有環繞壓力 腔室1225而設置之凹槽1216,其係供一密封環128(如第 二圖B-E所示)設置於其中,而在下表面1221上則具有環 繞6又置於入口暫存腔1224a、.1224b之凹槽1227a、 1227b,以及環繞設置於出口閥門通道1 223a、122牝之 凹槽1 228a、1228b,同樣地,上述凹槽結構係用以供一 密封環127(如第三圖B-E所示)設置於其中。 請參閱第二圖D並配合第二圖A,其中第二圖])係為第二圖 A所示之閥體薄膜之結構示意圖,如圖所示,閥體薄膜 123主要係以傳統加工、或黃光蝕刻、或雷射加工、或電 表單編號A0101 第10頁/共47頁 0992016824-0 201134375 鑄加工、或放電加工等方式製出,且為一厚度實質上相 同之薄片結構,其上係具有複數個鏤空閥開關,包含第 閥門結構以及第二閥門結構,於本實施例中,第一閥 門結構係為入口閥門結構1231a、1231b,而第二閥門結 構係為出口閥門結構1232a、1232b,其中,入口閥門結 構12318、12311)係分別具有入口閥片123133、123131) 以及複數個環繞入口閥片12313a、12313b週邊而設置之 鏤空孔洞12312a、12312b,另外,在孔洞12312a、 123121}之間更分別具有與入口閥片123133、123131)相 〇 連接之延伸部1 231M、1231 lb ’同樣地,位於同一閥體 薄膜123上與入口閥門結構1231a、1231b具有相同結構 的出口閥門結構1232a、1232b也分別具有出口閥片 12323a、12323b、延伸部 12321a、12321b以及孔洞 12322a、12322b,因此,當入口閥門結構123la、 1231b之入口閥片12313a ' 12313b及出口閥門結構 1232a、1232b之出口閥片12323a、12323b受推力不作 封蓋時(參第三圖B及D所示),此時入口閥片12313a、 Ο 12313b及出口閥片1 2323a、12323b凸起呈開啟狀態, 開口 1213a、1213b及出口閥門通道1223a、1223b所流 經流體即可分別藉由孔洞12 312 a、12 31 2 b及孔洞 12322a、12322b連通到達入口閥門通道1222a、1222b 及出口暫存腔1215a、1215b。 [0〇26]因此’請同時參閱第三圖B、C、D、E,其中第三圖B係為 第三圖A所示之第一流體輸送裝置之壓力腔室膨脹狀態之 A-A剖面結構示意圖’第三圖C係為第三圖A所示之第一流 099109465 表單編號A0101 第11頁/共47頁 0992016824-0 201134375 體輸送裝置之壓力腔室膨脹狀態之β_Β剖面結構示意圖, 第三圖D係為第三圖Α所示之第一流體輸送裝置之壓力腔 室壓縮狀態之C-C剖面結構示意圖,第三圖e係為第三圖a 所示之第一流體輸送裝置之壓力腔室壓縮狀態之β_Β剖面 結構示意圖,如圖所示,當蓋體125、致動裝置124、閥 體蓋體122、閥體薄膜123、密封環126、127、128以及 閥體座121彼此對應組裝設置後,閥體座121上之開口 1213a、1213b係分別與閥體薄膜123上之入口閥門結構 1231a、1231b以及閥體蓋體122上之入口閥門通道 12 2 2 a、1 2 2 2 b相對應,且科體座j 2)上之開口 ! 2 i 4 ^、 f 1214b則與閥體薄膜123上之出口閥片結構〗232a、 1232b以及閥體蓋體122上之出口閥門通道1223a、201134375 Description of the Invention: [Technical Field] [0001] [0003] [0005] [0005] [0005] This document relates to a cooling system, especially a micro liquid cooling system 彳 [previous sputum branch] With the rapid development of the computer industry, the heat dissipation problem caused by the pursuit of high speed, high functionality and miniaturization of the CPU is becoming more and more serious, which is more prominent in electronic devices with narrow internal space such as notebook computers. If the heat generated by the electronic components such as the CPU in the notebook cannot be immediately and effectively dissipated, the performance of the electronic component will be affected, and the service life of the electronic component will be reduced. Therefore, the manufacturer usually uses a cooling device to the electronic device. Component heat dissipation. Among the many cooling technologies, liquid cooling is an extremely effective cooling method. The conventional liquid cooling system mainly comprises a heat absorbing body, a heat sink, a mechanical pump, and a transmission pipe, and the circuit is filled with a cooling liquid, and the coolant absorbs the heat generated by the electronic component at the heat absorbing body, and is transmitted to the heat transfer tube through the transmission pipe. Heat is released after the heat sink. Under the driving action of the mechanical pump, the coolant circulates continuously in the circuit, and the source continuously draws away the heat generated by the electronic component. Since the mechanical pump of the conventional liquid cooling system takes up a large space, with the trend of miniaturization of electronic products, the conventional liquid cooling system is difficult to be applied to electronic devices with narrow internal space such as notebook computers. The electronic components are cooled and cooled. Therefore, how to develop a micro-liquid cooling system that can improve the above-mentioned conventional technology is an urgent problem to be solved. Form No. A0101 Page 4 / Total 47 Pages 0992016824-0 201134375 [Summary Contents] [0006] The main purpose of the present invention is to provide a micro liquid cooling system, which solves the problem that a mechanical pump needs to occupy a large space in a conventional liquid cooling system. The conventional liquid cooling system is difficult to apply to the shortcomings of cooling and dissipating electronic components in an electronic device having a small internal space such as a notebook computer. [0007] In order to achieve the above object, a broader aspect of the present invention provides a micro liquid cooling system for dissipating heat from a plurality of electronic components, including at least: a liquid cooling device; a liquid storage unit, a storage fluid; The heat absorbing unit is in contact with a plurality of electronic components for absorbing heat energy generated by the plurality of electronic components; the first fluid conveying device and the second fluid conveying device respectively have a valve body seat, a valve body cover body and a valve The body film and the actuating device are configured, wherein the valve body film is disposed between the valve body seat and the valve body cover body, and at least one inlet is temporarily disposed between the valve body seat and the valve body cover body a chamber, at least one outlet temporary chamber, and the valve body cover and the actuating device form a pressure chamber, and the at least one inlet temporary chamber is connected to the at least one outlet temporary chamber by the pressure chamber, The valve body film has an inlet valve structure corresponding to at least one inlet temporary storage chamber, and the valve body film has an outlet valve structure corresponding to at least one outlet temporary storage chamber, and the valve body seat corresponds to the The inlet valve structure is connected with an inlet passage, the valve body seat is also connected with the outlet passage corresponding to the outlet valve structure; and a transmission line for the liquid storage unit, the plurality of heat absorption units, the first fluid delivery device, the second fluid The delivery device and the liquid cooling device are connected in series to form a fluid circuit. [0008] The concept of the present invention, wherein the valve body seat of the first fluid conveying device and the valve body seat of a second fluid conveying device respectively have a plurality of inlet channels and complex 099109465 Form No. A0101 Page 5 / Total 47 Pages 0992016824- 0 201134375 Several exit channels. [0009] The concept of the present invention, wherein the valve body seat of the first fluid delivery device has a plurality of inlet channels and a plurality of outlet channels, and the valve body seat of the second fluid delivery device has a plurality of inlet channels and an outlet channel. [0010] The concept of the present invention, wherein the valve body seat of the first fluid delivery device has an inlet passage and a plurality of outlet passages, and the valve body seat of the second fluid delivery device has a plurality of inlet passages and an outlet passage. [0011] The concept of the present invention, wherein the valve body seat of the first fluid delivery device has an inlet passage and a plurality of outlet passages, and the valve body seat of the second fluid delivery device has a plurality of inlet passages and a plurality of outlet passages. [Embodiment] Some exemplary embodiments embodying the features and advantages of the present invention will be described in detail in the following description. It is to be understood that the present invention is capable of various modifications in various aspects, and the description and illustration are in the nature of [0013] The micro liquid cooling system of the present invention can be applied to an electronic device, for example: inside the main body casing of the notebook computer, mainly for dissipating heat from the electronic components of the main body casing, please refer to the first figure, which is the case A schematic diagram of the structure of the micro liquid cooling system of the first preferred embodiment. As shown, the micro liquid cooling system 1 of the present embodiment may include a liquid storage unit 11, a first fluid delivery device 12, and a second fluid delivery device 13, A plurality of heat absorbing units 14, a liquid cooling device 15, and a transfer line 16, wherein the liquid storage unit 11 stores a fluid, and the liquid cooling device 15 includes a heat exchanger 151 and a fan 152. 099109465 Form No. A0101 Page 6 of 47 Page 99992016824-0 201134375 [0014] As for the first fluid delivery device 12 of the present invention, the first fluid delivery device 12 can be in the form of one inlet and multiple outlets, that is, having a single inlet channel and a plurality of outlet channels, or It can be in the form of multiple inputs and multiples, that is, having a plurality of inlet channels and a plurality of outlet channels. The second fluid delivery device 13 of the present invention may be in the form of multiple in and out, that is, having a plurality of inlet channels and a single outlet channel, or may be in the form of multiple inlets and multiples, that is, having a plurality of inlet channels and a plurality of outlet channels . Of course, the direction and the number of the inlet and outlet channels included in the first fluid transport device 12 and the second fluid transport device 13 of the present invention can be flexibly adjusted as needed. [0015] In the present embodiment, the first fluid delivery device 12 is in the form of one in and two out, and the second fluid delivery device 13 may be in the form of two in 1 out. [0016] Referring to the first figure, the implementation may include a first heat absorption unit 141 and a second heat absorption unit 142, wherein the first heat absorption unit 141 is in contact with an electronic component (not shown, for example, a central processing chip). The heat generated by the electronic component is absorbed by heat conduction, and the second heat absorption unit 142 is in contact with another electronic component (not shown, for example, a display wafer), and the other electronic component is also absorbed by heat Q conduction. The generated heat energy, wherein the first heat absorption unit 141 and the second heat absorption unit 142 are made of metal. [0017] The transfer line 16 is applied between the liquid storage unit 11 and the first fluid transport device 12, the connection between the first fluid transport device 12 and the first heat absorption unit 141, the first fluid transport device 12 and The connection between the second heat absorption unit 142, the connection between the first heat absorption unit 141 and the second fluid delivery device 13, the connection between the second heat absorption unit 142 and the second fluid delivery device 13, and the second fluid delivery device 13 The connection with the heat exchanger 151, and the connection between the heat exchanger 151 and the liquid storage unit 11, so that the liquid storage unit 099109465 Form No. A0101 Page 7 of 47 0992016824-0 201134375 Π, the first fluid delivery The device 12, the second fluid delivery device 13, the first heat absorption unit 141, the second heat absorption unit 142, and the heat exchanger 151 are connected in series to form a closed fluid circuit that allows fluid to circulate in the closed fluid circuit. [0020] [0020] [0020] 099109465 and the first fluid transport device 12 is to direct the fluid from the liquid storage unit 11 to the first heat absorbing unit 141 and the second heat absorbing unit 142 at the same time, in a convection manner The heat energy on the heat absorbing unit 141 and the second heat absorbing unit 142 is carried away, and the second fluid transporting device 13 sinks the fluid flowing through the first heat absorbing unit 141 and the second heat absorbing unit 142 into the heat exchanger 151. The second fluid delivery device 13 is arranged to ensure smooth flow of fluid in the fluid circuit, and the heat exchanger 151 can be made of metal. The metal can absorb heat from the fluid to lower the temperature of the fluid, and the heat of the fluid is absorbed. The heat exchanger 151 that is heated can achieve the effect of accelerated cooling through the fan 152. Referring to FIG. 2A, which is a first diagram, showing a schematic exploded view of the first fluid transport device, as shown in the figure, the first fluid transport device 12 of the present embodiment is composed of a valve body seat 121, .. The valve body cover body 12 2 , the valve body film 12 3 , the actuating device 124 and the cover body 125 are formed, wherein the actuating device 124 is assembled by the actuating film 1241 and the actuator 1242 to drive the first Actuation of the fluid delivery device 12. The first fluid transporting device 12 of the present embodiment is mainly configured by stacking the valve body seat 121, the valve body film 123, the valve body cover body 122, the actuating device 124 and the cover body 125 in order to complete the assembly (eg, Figure 3 shows A). The valve body seat 121 and the valve body cover 122 are the main structures for guiding fluid in and out of the first fluid transport device 12, please refer to the second figure B and cooperate with 0992016824-0 Form No. A0101 Page 8 of 47 Page 201134375 First Figure A, wherein the second figure β is a schematic view of the back structure of the valve body seat shown in the second figure a. As shown in the second figure A, the valve body seat 121 has an inlet passage 12113 and an outlet passage 12123. , 12121), but not limited to this. The flow system is respectively conveyed to the openings 1213a, 1213b of the valve body seat 121 via the inlet flow path 121 la, and the outlet temporary storage chambers 1215a, 1215b shown in the drawing are formed between the valve body diaphragm 23 and the valve body seat 121, The portion of the valve body seat 121 corresponding to the outlet flow passages 1212a, 1212b is partially recessed to form 'and is respectively connected to the outlet flow passages 1212a, i212b'. The outlet temporary storage chambers 121 5a, 1215b are temporarily stored. Fluid, Ο [0022] G [0022] The fluid is delivered from the outlet storage chamber 12i5a, uiib to the outlet passage 1 212a via the opening 1214a, ...........1212b , 1212b flows out. And a plurality of groove structures on the valve body seat 121 for providing a sealing ring 126 (as shown in the third drawing B, C, D, E), in the embodiment, the valve The body seat 121 has grooves 1216a, 1216b surrounding the periphery of the openings 1213a, 1213b, and grooves 1217a, 121 surrounding the periphery of the outlet temporary chambers 1215a, 1215b. At the end of the opening, the edges of the openings 1213a and 1213b of the valve body seat 121 are surrounded by a micro-convex structure 1218a, 1218b' which includes a horizontal contact surface 12181a, 12181b. Please refer to the second figure C and cooperate with the second figure A, wherein the second figure C is a schematic view of the back structure of the valve body cover shown in the second figure A. As shown, the valve body cover 122 has an upper structure. The surface 1220 and the lower surface 1221, and the valve body cover 122 also have inlet valve passages 1222a, 1222b and outlet valve passages 1223a, 1223b' extending through the upper surface 1220 to the lower surface 1221, and the inlet valve passages 1222a, 1222b are respectively Set at 099109465 Form No. A0101 Page 9 / Total 47 Pages 0992016824-0 201134375 [0024] [0025] 099109465 Position corresponding to the opening 1213a, 1213b of the valve body seat 121, and the outlet valve passages 1 223a, 1223b Then, they are respectively disposed at positions corresponding to the openings 1214a and 214b in the outlet temporary chambers 1215a and 1215b of the valve body seat 21, and in the present embodiment, an inlet is formed between the valve body film 123 and the valve body cover 122. The temporary storage chambers 1224a, 1224b are not limited thereto, and are formed by partial depression of the lower surface 1221 of the valve body cover 122 at a position corresponding to the inlet valve passages 1222a, 1222b, and are connected to each other. Inlet valve channel 1 222a, 1222b. Referring again to FIG. 2C, as shown, the upper surface 1220 of the valve body cover 122 is partially recessed to form a dust chamber 1225 that is coupled to the actuator 1242 of the actuator 124. Correspondingly, the pressure chambers 1225 communicate with the inlet temporary chambers 1224a, 1 224b via inlet valve passages 1222a, 1222b, respectively, and are in communication with the outlet valve passages 1223a, 1223b. In addition, the valve body cover 122 also has a plurality of groove structures. In the embodiment, the upper surface 1220 of the valve body cover 1212 has a groove 1216 disposed around the pressure chamber 1225. A sealing ring 128 (shown as shown in FIG. BE) is disposed therein, and on the lower surface 1221, there are grooves 1227a, 1227b which are placed around the inlet and storage chambers 1224a, 1224b, and are disposed around the outlet. The grooves 1 228a, 1228b of the valve passages 1 223a, 122 are similarly provided for a sealing ring 127 (as shown in the third diagram BE). Please refer to the second figure D and cooperate with the second figure A, wherein the second figure]) is a schematic structural view of the valve body film shown in the second figure A. As shown, the valve body film 123 is mainly processed by a conventional process. Or yellow light etching, or laser processing, or electric form number A0101, page 10 / total 47 pages 0992016824-0 201134375 by casting, or electric discharge machining, and is a sheet structure having substantially the same thickness, on which The system has a plurality of hollow valve switches, including a valve structure and a second valve structure. In this embodiment, the first valve structure is an inlet valve structure 1231a, 1231b, and the second valve structure is an outlet valve structure 1232a, 1232b. Wherein, the inlet valve structures 12318, 12311) respectively have inlet valve plates 123133, 123131) and a plurality of hollow holes 12312a, 12312b disposed around the periphery of the inlet valve sheets 12313a, 12313b, and further between the holes 12312a, 123121} Further, the extensions 1 231M, 1231 lb ', which are respectively connected to the inlet valve pieces 123133, 123131), are located on the same valve body film 123 and the inlet valve structures 1231a, 1231b. The outlet valve structures 1232a, 1232b having the same structure also have outlet valve plates 12323a, 12323b, extensions 12321a, 12321b, and holes 12322a, 12322b, respectively, thus, the inlet valve plates 12313a' 12313b and the outlet valves of the inlet valve structures 123la, 1231b. When the outlet valve pieces 12323a, 12323b of the structures 1232a, 1232b are not covered by the thrust (refer to the third drawing B and D), the inlet valve pieces 12313a, Ο 12313b and the outlet valve pieces 1 2323a, 12323b are opened. In the state, the openings 1213a, 1213b and the outlet valve passages 1223a, 1223b flow through the fluid to communicate with the inlet valve passages 1222a, 1222b and the outlet temporary chamber 1215a through the holes 12 312 a, 12 31 2 b and the holes 12322a, 12322b, respectively. 1215b. [0〇26] Therefore, please refer to the third figure B, C, D, E, wherein the third figure B is the AA cross-sectional structure of the pressure chamber expansion state of the first fluid transport device shown in the third figure A. Schematic diagram 'The third figure C is the first flow shown in the third figure A. 099109465 Form No. A0101 Page 11 / Total 47 Page 0992016824-0 201134375 Schematic diagram of the β_Β cross-sectional structure of the pressure chamber expansion state of the body conveying device, the third figure D is a CC cross-sectional structure diagram of the pressure chamber compression state of the first fluid transport device shown in FIG. 3, and FIG. 3 is a pressure chamber compression of the first fluid transport device shown in FIG. The structure of the β_Β structure of the state, as shown in the figure, when the cover 125, the actuating device 124, the valve body cover 122, the valve body film 123, the sealing rings 126, 127, 128 and the valve body seat 121 are assembled and arranged corresponding to each other The openings 1213a, 1213b of the valve body seat 121 correspond to the inlet valve structures 1231a, 1231b on the valve body film 123 and the inlet valve passages 12 2 2 a, 1 2 2 2 b on the valve body cover 122, respectively. And the opening of the body block j 2)! 2 i 4 ^, f 1214b and the outlet valve plate structure 232a, 1232b on the valve body film 123 and the outlet valve passage 1223a on the valve body cover 122,

1223b相對應,並且,由於微凸結構1218a、121肋設置 於閥體座121之開口 1213a、1213b邊緣,使得閥體薄膜 123之入口閥門結構1231&、i231b微凸起於閥體座121 之上,並藉由微凸結構1218a、121邡頂觸閥體薄膜123 而產生一預力作用,使得入ά閥門結構1231a、1231b在 未作動時則與閥體座121之表面形成一間隙,同樣地,出 (J 口閥門結構1232a、1232b亦藉由將微凸結構1229a、 1229b設置於閥體蓋體122上的方式,使出口閥門結構 123 2a、1 232b與閥體蓋體122之表面形成一間隙。 [0027] 當以一電壓驅動致動器1242時,致動裝置124產生彎曲變 形如第二圖B及第三圖C所示,致動裝置124係朝箭號b 所才曰之方向向下彎曲變形,使得壓力腔室1 225之體積增 加’因而產生一吸力’使閥體薄膜123之入口閥門結構 099109465 表翠編號A0101 第12頁/共47頁 0992016824-0 201134375 1231a、l231b '出口閥門結構12323均承受一向下之拉 力,並使已具有一預力之入口閥門結構1231&之入口閥片 12313a迅速開啟,使流體體可大量地自閥體座121上之 入口通道1211a被吸取進來,並流經閥體座121上之開口 1213a、閥體薄膜123上之入口閥門結構1231a、1231b Ο [0028] ❹ [0029] 、閥體蓋體122上之入口暫存腔1224a、1224b、以及入 口閥片通道1222a、1222b而流入壓力腔室1225之内,此 時,由於閥體薄膜123之入口閥門結構1231a、1231b、 出口閥門結構1 232a承受該向下拉力,故位於入口閥門結 構1231a、1231b另一端之出口閥門結則 下拉力使得位於閥體薄膜123上之出口閥片12323a密封 住出口閥門通道1223a,而使得出口閥門結構i232a關閉 (如第三圖C所示)《 再加上微凸結構1229a與出口閥門結構1232a接觸之表面 為一水平接觸面12 2 91 a型態,1旦入口閥門結構丨2 31 a 開啟而使流體流入閥體座121内部時,閥體薄膜12 3之出 口閥門結構1232a仍能與徵凸結構丨229a形成一段封閉面 的接觸,能產生更大更佳之預蓋緊防止逆流的效果,再 此實施例中,該出口閥門結構1232b與出口閥門結構 1232a是相同結構與作動方式,於此就不贅述。 反之,當致動裝置124因電場方向改變而如第三圖d及第 三圖E所示之箭號a向上彎曲變形時,則會壓縮壓力腔室 1225之體積,使得壓力腔室1225對内部之流體產生一推 力’並使閥體薄膜123之入口閥門結構1231a、出口閥門 結構1232a、1232b承受一向上推力, 099109465 表單編號A0101 第13頁/共47頁 0992016824-0 201134375 [0030] [0031] [0032] [0033] 此時’設置於微凸結構1 229a、1 229b上之出口閥門結構 1232a、1 232b的出口閥片12323a、12323b其可迅速開 啟’並使流體瞬間大量宣洩,由壓力腔室1225經由閥體 蓋體122上之出口閥門通道1 223a、1223b、閥體薄膜 123上之出口閥門結構!232a、1232b、閥體座121上之 出口 暫存腔121 5a、1215b、開口1214a、1214b及出口 通道1212a、1212b而流出第一流體輸送裝置12之外,因 而完成流體之傳輸過程。 同樣地’此時由於入口閥門結構1231a係承受該向上之推 力’因而使得入口閥片12313a密封住開口 1213a,因而 關閉入口閥門結構12 31 a,使得流體不逆流。 再加上微凸結構1218a與入〇閥門結構1231a接觸之表面 為一水平接觸面12181a型態之設計,一旦出口閥門結構 1232a、1232b開啟而使流體釋出時’閥體薄膜123之入 口閥門結構123la仍能與微凸結構1218&形成一段封閉面 的接觸,能產生更大更佳之預蓋緊防止逆流的效果,因 此’藉由入口閥門結構丨23^芩出口閥門結構1 232a、 1232b配合設置於閥體座丨21及閥體蓋體122上之微凸結 構1218a及1229a、1 229b之設計,可使流體於傳送過程 中不會產生回流的情形,達到高效率之傳輸,再此實施 例中’該入口閥門結構12311)與入口閥門結構1231&是相 同結構與作動方式,於此就不贅述。 請參閱第四圖A及第四圖B,其中第四圖a係為第一圖所示 之第二流體輸送裝置之分解結構示意圖,第四圖B係為第 099109465 四圖A所示之閥體座的背面結構示意圖 表軍編號A0101 第14頁/共47頁 如圖所示,本實 0992016824-0 201134375 施例之第二流體輸送裝置13同樣係由閥體座131、閥體蓋 體122、閥體薄膜123、致動裝置124及蓋體125所組成。 [0034] Ο [0035] 第二流體輸送裝置13與第一流體輸送裝置12相異處在於 第二流體輸送裝置13之閥體座131具有兩個入口通道 1211a、1211b’以及單一出口通道1212a,藉由入口通 道121 la、121 lb接收流經第一吸熱單元141及第二吸熱 單元142之流體,經過第二流體輸送裝置13的作動使流體 由單一出口通道1212a輸出至熱交換器151中,除此之外 ,本實施例之閥體座131與第一淥體輸送裝置12之閥體座 121其餘的結構係相同 至於,第二流體輸送裝置13之閥體座131、閥體蓋體122 、閥體薄膜123、致動裝置124及蓋體125之結構、組裝 及作動方式係與第一流體輸送裝置12相同,於此不再贅 述。 [0036] Ο 請參閱第五圖A ’其係為第:^圖所示之第一吸熱單元及第 二吸熱單元之立體結構示意圖,如圖所示,本案之吸熱 單元14係為一中空的殼體結構,可以由具有導熱性的金 屬材質所製成’且具有一入口流道1441以及一出口流道 1442,入口流道1441係接收由第一流體輸出裝置12所輸 出之流體’出口流道1442則將已吸收電子元件之熱能的 流體輸出。 [0037] 請參閱第五圖B,其係為第五圖A之G-G剖面結構示意圖, 如圖所示,本案之吸熱單元14内部除了包含入口流道 1441以及一出口流道1442外更包含一分流區1443及一出 099109465 表單編號A0101 第15頁/共47頁 0992016824-0 201134375 口匯流區1 4 4 4,其中,出口匯流區1 4 4 4位於分流區14 41 及出口流道1442之間,而分流區1443為一平坦的表面, 其係位於入口流道1441及出口匯流區1444之間,且其表 面上凸設有複數組隔板。 [0038] 於本實施例中分流區1441中可包含四組隔板,分別為第 一組隔板1445、第二組隔板1446、第三組隔板1447以及 第四組隔板1448,當然吸熱單元14内部之分流區1443中 可包含的隔板組數並不以此為限,其中每一組隔板係由 複數個並列設置的隔板所構成,且每一隔板可為一長條 狀的矩型結構,但不已此為限,且複數組隔板中的兩相 鄰組別的隔板間係交錯設置,即第一組隔板1445與第二 組隔板1446所包含的隔板間係交錯設置、第二組隔板 1446與第三組隔板1447所包含的隔板間係交錯設置、第 三組隔板1447與第四組隔板1448所包含的隔板間係交錯 設置,以將分流區1443分隔成如第五圖B中虛線所示之複 數條非直線流動之分流流道14 4 9,可使流體流速增加並 產生奮流,可快速將吸熱單元14中傳導的熱量透過對流 方式由流體帶走。 [0039] 請參閱第五圖C並配合第五圖B,其中第五圖C係為第五圖 A之H-H剖面結構示意圖,如圖所示,本案吸熱單元14之 出口匯流區1444係用以匯集流經分流流道1449之流體, 再使流體經出口流道1442傳送至第二流體輸送裝置13中 (如第五圖B所示)。另外,如第五圖C所示,吸熱單元 14内之出口匯流區1444的流道橫載面高度h2係較分流區 1 4 4 3的流道橫截面高度h 1大,使氣泡浮在出口匯流區 099109465 表單編號A0101 第16頁/共47頁 0992016824-0 201134375 i444的上層區,可避免氣泡集中於出口流道i442的出 區,而使流阻增加的問題發生。 [0040] 〇 [0041] 請參閱第六圖’其係為本案第二較佳實施例之微型液體 冷卻系統的結構示意圖’如圖所示’本實施例之微型液 體冷卻系統2可包含儲液單元11、第-流體輸送裝置21、 第二流體輸送裝置22、複數個吸熱單元、液體冷卻裝置15以及傳輸g路16 ’其中該液體冷卻裝置15同樣由熱交換器m以及風扇151所構成,本實施例同樣包含第一吸 熱單元141以及第二吸熱單元142。 於本貫施例中 [0042] 〇 [0043] [0044] 099109465 '丨柯送裝置21可為二進二出的形 式,第二流體輸送裝置22可同樣為二進二出的形式。 至於,本實關之微魏體冷卻线㈣儲液單 元11、第 _八體輸送褒置2卜第二流體輪送裝置22、第-吸熱單 兀141、第"吸熱單元142 1體冷卻裝置15以及傳輸管 路16之間的連接⑽及運作原理及職-第-較佳實 施例所述,於此不再贅述。 ^ .:; 請參閱第七圖A及第地,其中第七圖A係為第六圖所 不之第-流體輸送裝置之分解結構示意圖,第七圖B係為 所丁之閥體座的背面結構示意圖,如圖所示’本 實施例之第—流體輪送裝置21係由閥體座⑴、闕體蓋體 122、閥體薄膜123、致動裝置124及蓋體125所組成。 本實施例之第-流體輸送裝置㈣第一較佳實施例之第 一流體輸送裝置12相異處切本實施例之第-流體輸送 裝置21之閥體座211具有兩個入口通道i2iia i2ub, 表單編號A0101 ^ 17 1/^ 47 ^ 0992016824-0 201134375 以及兩個出口通道1212a、l2l2b,藉由入口通道^。 、12Ub接收儲液料11内部之流體,經過第-流體輸送 裝置21的作動使流體由出口通道m2a、121^分別輸出 至第-吸熱單元141及第二吸熱單元142,除此之外本 實施例之閥體座211與第—較佳實施例之第-流體輸送裝 置12之閥體座121其餘的結構係相同。 [0045] [0046] [0047] 至於,本實施例之第-流體輸送裝置21之_座211、閥 體盍體122、閥體薄膜123、致動裝置124及蓋體125之結 構、組裝及作動方式係與第—較佳實施例之第—流體輸° 送裝置12相同’於此不再贅述。 凊參閱第八圖A及第八圖B ’其中第八圖綠為第六圖所示 之第二流體輸送裝置之分解結構示意圖,第八附係為第 八圖A所示之閥體座的背面結構示意圖,如圖所示,本實 施例之第二流體輸送裝置22同樣係由閥體座221、閥體蓋 體122、閥體薄膜123、致動裝置124及蓋體125所組成。 本實施例之第二流體輸送裝鲞22與第一較佳實施例之第 一流體輸送裝置12相異處在於第二流體輸送裝置22之閥 體座221具有兩個入口通道i21la、i211b,以及兩個出 口通道 1212a、1212b,藉由入口通道 12Ua、12111)接 收流經第一吸熱單元141及第二吸熱單元142之流體,經 過第二流體輸送裝置22的作動使流體分別由出口通道 1212a、1212b輸出至熱交換器151中,除此之外,本實 施例之閥體座221與第一較佳實施例之第一流體輸送裝置 12之閥體座121其餘的結構係相同。 099109465 表單編號A0101 第18頁/共47頁 0992016824-0 201134375 [0048] [0049] ❹ [0050] [0051]Corresponding to 1223b, and since the micro-convex structures 1218a, 121 ribs are disposed at the edges of the openings 1213a, 1213b of the valve body seat 121, the inlet valve structures 1231 &, i231b of the valve body film 123 are slightly protruded above the valve body seat 121. And a pre-force action is generated by the micro-convex structures 1218a, 121 licking the valve body film 123, so that the inlet valve structures 1231a, 1231b form a gap with the surface of the valve body seat 121 when not in operation, similarly The outlet valve structure 123 2a, 1 232b and the surface of the valve body cover 122 are also formed by the manner in which the micro-convex structures 1229a and 1229b are disposed on the valve body cover 122. [0027] When the actuator 1242 is driven by a voltage, the actuating device 124 generates a bending deformation as shown in FIG. 2B and FIG. 3C, and the actuating device 124 is directed toward the arrow b. Bending downward deformation, so that the volume of the pressure chamber 1 225 is increased 'thus generating a suction' to make the inlet valve structure of the valve body film 123 099109465 Table Cui No. A0101 Page 12 / Total 47 Page 0992016824-0 201134375 1231a, l231b 'Exit Valve structure 12323 A downward pulling force causes the inlet valve piece 12313a of the inlet valve structure 1231& which has a pre-force to be rapidly opened, so that the fluid body can be sucked in a large amount from the inlet passage 1211a on the valve body seat 121 and flow through the valve. The opening 1213a of the body seat 121, the inlet valve structure 1231a, 1231b on the valve body film 123, the inlet temporary storage chambers 1224a, 1224b, and the inlet valve passage 1222a on the valve body cover 122. And 1222b flow into the pressure chamber 1225. At this time, since the inlet valve structures 1231a, 1231b and the outlet valve structure 1 232a of the valve body film 123 are subjected to the downward pulling force, the outlets at the other ends of the inlet valve structures 1231a, 1231b are located. The valve knot pull-down force causes the outlet valve piece 12323a on the valve body film 123 to seal the outlet valve passage 1223a, so that the outlet valve structure i232a is closed (as shown in FIG. 3C) "plus the micro-convex structure 1229a and the outlet The surface of the valve structure 1232a is in contact with a horizontal contact surface 12 2 91 a. When the inlet valve structure 丨 2 31 a is opened to allow fluid to flow into the interior of the valve body seat 121, the valve body film 12 3 is discharged. The port valve structure 1232a can still form a closed face contact with the convex structure structure 229a, which can produce a larger and better pre-covering against backflow. In this embodiment, the outlet valve structure 1232b and the outlet valve structure 1232a are The same structure and operation method will not be described here. On the contrary, when the actuating device 124 is bent upwardly as the arrow a of the third figure d and the third figure E is deformed due to the change of the electric field direction, the volume of the pressure chamber 1225 is compressed, so that the pressure chamber 1225 is internally The fluid generates a thrust and causes the inlet valve structure 1231a and the outlet valve structure 1232a, 1232b of the valve body film 123 to withstand an upward thrust, 099109465 Form No. A0101 Page 13 of 47 pages 0992016824-0 201134375 [0030] [0033] At this time, the outlet valve pieces 12323a, 12323b of the outlet valve structures 1232a, 1 232b disposed on the micro-convex structures 1 229a, 1 229b can be quickly opened and the fluid is instantaneously vented by the pressure chamber. The chamber 1225 is routed through the outlet valve passages 1 223a, 1223b on the valve body cover 122, and the outlet valve structure on the valve body membrane 123! 232a, 1232b, the outlet temporary chambers 121 5a, 1215b, the openings 1214a, 1214b, and the outlet passages 1212a, 1212b on the valve body seat 121 flow out of the first fluid delivery device 12, thereby completing the fluid transfer process. Similarly, at this time, because the inlet valve structure 1231a is subjected to the upward thrust force, the inlet valve piece 12313a seals the opening 1213a, thereby closing the inlet valve structure 12 31 a so that the fluid does not flow backward. In addition, the surface of the micro-convex structure 1218a in contact with the inlet valve structure 1231a is a horizontal contact surface 12181a design. Once the outlet valve structure 1232a, 1232b is opened to release the fluid, the inlet valve structure of the valve body film 123 The 123la can still form a closed surface contact with the micro-convex structure 1218&, which can produce a larger and better pre-covering against backflow, so that the inlet valve structure 1 232a, 1232b is matched by the inlet valve structure 丨23^芩The design of the micro-convex structures 1218a and 1229a, 1 229b on the valve body seat 21 and the valve body cover 122 enables the fluid to be reflowed during the transfer process, thereby achieving high-efficiency transmission. The 'inlet valve structure 12311' is the same structure and operation as the inlet valve structure 1231& and will not be described here. Please refer to FIG. 4A and FIG. 4B. FIG. 4 is a schematic exploded view of the second fluid conveying device shown in the first figure, and FIG. 4B is the valve shown in FIG. The structure of the back side of the body seat is shown in Figure No. A0101. Page 14 of 47. As shown in the figure, the second fluid conveying device 13 of the embodiment is also composed of a valve body seat 131 and a valve body cover 122. The valve body film 123, the actuating device 124 and the cover body 125 are composed of. [0035] The second fluid delivery device 13 differs from the first fluid delivery device 12 in that the valve body seat 131 of the second fluid delivery device 13 has two inlet channels 1211a, 1211b' and a single outlet channel 1212a, The fluid flowing through the first heat absorbing unit 141 and the second heat absorbing unit 142 is received by the inlet passages 121 la, 121 lb, and the fluid is output from the single outlet passage 1212a to the heat exchanger 151 through the operation of the second fluid transport device 13 . In addition, the valve body seat 131 of the present embodiment is identical to the rest of the valve body seat 121 of the first body transport device 12, and the valve body seat 131 and the valve body cover 122 of the second fluid transport device 13 are the same. The structure, assembly and actuation of the valve body film 123, the actuating device 124 and the cover 125 are the same as those of the first fluid transport device 12, and will not be described again. [0036] Ο Refer to FIG. 5A', which is a schematic view of the first heat absorbing unit and the second heat absorbing unit shown in the first figure. As shown in the figure, the heat absorbing unit 14 of the present case is hollow. The housing structure may be made of a metal material having thermal conductivity and has an inlet flow path 1441 and an outlet flow path 1442. The inlet flow path 1441 receives the fluid 'outlet flow' output by the first fluid output device 12. Lane 1442 outputs a fluid that has absorbed the thermal energy of the electronic components. [0037] Please refer to FIG. 5B, which is a schematic cross-sectional view of the GG of FIG. A. As shown in the figure, the interior of the heat absorption unit 14 of the present invention includes an inlet flow channel 1441 and an outlet flow channel 1442. Dividing area 1443 and one out 099109465 Form No. A0101 Page 15 / Total 47 Page 0992016824-0 201134375 Port Confluence Area 1 4 4 4, wherein the outlet confluence area 1 4 4 4 is located between the diversion area 14 41 and the exit flow path 1442 The split region 1443 is a flat surface between the inlet flow channel 1441 and the outlet confluence region 1444, and a plurality of array spacers are convex on the surface. [0038] In the present embodiment, the shunt area 1441 may include four sets of partitions, which are a first set of partitions 1445, a second set of partitions 1446, a third set of partitions 1447, and a fourth set of partitions 1448, of course. The number of the baffle groups that can be included in the shunting area 1443 inside the heat absorbing unit 14 is not limited thereto. Each of the baffles is composed of a plurality of baffles arranged side by side, and each of the baffles can be one long. a strip-shaped rectangular structure, but not limited thereto, and two adjacent groups of partitions in the multi-array partition are interlaced, that is, the first set of partitions 1445 and the second set of partitions 1446 are included The partitions are staggered, the second set of partitions 1446 and the third set of partitions 1447 are interlaced, and the third set of partitions 1447 and the fourth set of partitions 1448 are inter-separated. Interlaced to divide the split region 1443 into a plurality of non-linear flow split flow channels 14 4 as indicated by the dashed lines in FIG. B, the fluid flow rate can be increased and the flow can be generated, and the heat absorption unit 14 can be quickly disposed. The conducted heat is carried away by the fluid through convection. [0039] Please refer to FIG. 5C and FIG. 5B. FIG. 5 is a schematic structural view of the HH cross-section of the fifth figure A. As shown in the figure, the outlet confluence area 1444 of the heat absorption unit 14 of the present invention is used. The fluid flowing through the split flow passage 1449 is collected and passed through the outlet flow passage 1442 to the second fluid delivery device 13 (as shown in Figure 5B). In addition, as shown in FIG. 5C, the flow cross-sectional height h2 of the outlet confluence area 1444 in the heat absorption unit 14 is larger than the flow path cross-sectional height h1 of the diversion area 1 4 4 3, so that the bubbles float at the outlet. Confluence Area 099109465 Form No. A0101 Page 16 / Total 47 Page 0992016824-0 201134375 The upper area of i444 can avoid the problem that bubbles are concentrated in the exit area of the exit flow path i442, and the flow resistance is increased. [0040] Please refer to the sixth drawing, which is a schematic structural view of the micro liquid cooling system of the second preferred embodiment of the present invention. As shown in the figure, the micro liquid cooling system 2 of the present embodiment may include a liquid storage solution. The unit 11, the first fluid transporting device 21, the second fluid transporting device 22, the plurality of heat absorbing units, the liquid cooling device 15, and the transport g path 16', wherein the liquid cooling device 15 is also composed of a heat exchanger m and a fan 151, This embodiment also includes a first heat absorption unit 141 and a second heat absorption unit 142. In the present embodiment, the second fluid delivery device 22 can be in the form of two-in and two-out, and the second fluid delivery device 22 can be in the form of two-in and two-out. As for the actual micro-Wei body cooling line (4) liquid storage unit 11, the eighth body transport device 2, the second fluid transfer device 22, the first heat-absorbing unit 141, the first " heat absorption unit 142 1 body cooling The connection (10) between the device 15 and the transmission line 16 and the operation principle and the job-first embodiment are not described herein. ^ .:; Please refer to the seventh figure A and the ground, wherein the seventh figure A is the exploded structure diagram of the first-fluid conveying device which is not in the sixth figure, and the seventh figure B is the valve body seat of the The rear structure is as shown in the figure. The first fluid transfer device 21 of the present embodiment is composed of a valve body seat (1), a body cover 122, a valve body film 123, an actuating device 124 and a cover 125. The first fluid transporting device 12 of the first embodiment of the present embodiment is different from the first fluid transporting device 12 of the first preferred embodiment. The valve body seat 211 of the first fluid transporting device 21 of the present embodiment has two inlet passages i2iia i2ub. Form number A0101 ^ 17 1/^ 47 ^ 0992016824-0 201134375 and two exit channels 1212a, l2l2b, through the inlet channel ^. 12Ub receives the fluid inside the liquid storage material 11, and the fluid is output from the outlet passages m2a, 121^ to the first heat absorbing unit 141 and the second heat absorbing unit 142 through the operation of the first fluid transporting device 21, and the present embodiment The valve body seat 211 is the same as the rest of the valve body seat 121 of the first fluid transport device 12 of the preferred embodiment. [0047] The structure, assembly, and assembly of the first fluid transporting device 21, the valve body body 122, the valve body film 123, the actuating device 124, and the cover body 125 of the present embodiment The actuation mode is the same as that of the first fluid delivery device 12 of the preferred embodiment, and will not be described herein.第八 Refer to FIG. 8A and FIG. 8B. FIG. 8 is a schematic view showing the exploded structure of the second fluid conveying device shown in the sixth figure, and the eighth attached system is the valve body seat shown in FIG. The rear structure is as shown in the figure. The second fluid transporting device 22 of the present embodiment is also composed of a valve body seat 221, a valve body cover 122, a valve body film 123, an actuating device 124 and a cover body 125. The second fluid delivery device 22 of the present embodiment is different from the first fluid delivery device 12 of the first preferred embodiment in that the valve body seat 221 of the second fluid delivery device 22 has two inlet channels i21la, i211b, and The two outlet channels 1212a, 1212b receive fluid flowing through the first heat absorbing unit 141 and the second heat absorbing unit 142 through the inlet channels 12Ua, 12111), and the fluids are respectively moved by the second fluid delivery device 22 by the outlet channel 1212a, The valve body seat 221 of the present embodiment is identical to the rest of the valve body seat 121 of the first fluid transfer device 12 of the first preferred embodiment. 099109465 Form No. A0101 Page 18 of 47 0992016824-0 201134375 [0049] [0050] [0051]

至於本貫鈿例之第二流體 机體輸送裝置22之閥體座221、閥 體盍體122、閥體薄膜 ^ 23、致動裝置124及蓋體125之結 構、組裝及作動方式係 ^ ^ t 9 , 、與卓一較佳實施例之第一流體輸 送裝置12相同’於此不再寶述。 請參閱第九圖,其係^ 、’…本案第三較佳實施例之微型液體 令部系統的、、'吉構示意圖, 艚 圖所不,本實施例之微型液 體冷部系統3可包含儲 ^ 早7^11、第一流體輸送裝置31、 第一流體輸送装置32、 # , β ^ 複數個吸熱單元14、液體冷卻裝 置15以及傳輸管路16 6 丹中該液體冷卻裝置15同樣由熱 父換器151以及風扇1S1所構成。 於本實施例中,第— ,认 稷輸送裝置31可為二進3出的形式 第-流體輸送裝置32可為如出的形式。 本實施例除了包含第— 142外,更包含一第三韻單及第二吸熱單^ ,, 熱早70143,其係與一電子元件 ^ )接觸,以熱傳導的方式錢該電子元件所產 f之熱能,並同樣藉由傳輪管路_第-流體輸送裝置 31以及第二流體輸送裝㈣連接,叫微型液體冷卻系 統3的其它構件串接形成該封閉的流體迴路。 [0052] 至於,本實關之微型㈣冷卻线3的料單元u、第 一流體輸送裝置31、第一流體輸送震置32、第一吸熱單 疋141、第二吸熱單兀142、液體冷卻裝置15以及傳輸管 路16之間的連接關係及運作原理及方式係如第一較佳實 施例所述,於此不再贅述。 [0053] 凊參閱第十圖,其係為本案另一流體輸送I置之分解結 099109465 表單蝙號A0101 第19頁/共47頁 0992016824-0 201134375 構示意圖,如圖所示,本實施例之流體輸送裝置4可為四 進四出的形式,即包含四個入口通道1211a、1211b、 1211c、1211d,以及四個出 口通道 121 2a、1212b、 1212c、1212d,可作用本案微型液體冷卻系統之第一流 體輸送裝置或是第二流體輸送裝置。 [0054] 流體輸送裝置4係由閥體座41、閥體蓋體122、閥體薄膜 123、致動裝置124及蓋體125所組成,上述構件的結構 、組裝及作動方式係與第一較佳實施例之第一流體輸送 裝置12相同,於此不再贅述。 [0055] 綜上所述,本案之微型液體冷卻系統藉由與儲液單元連 接之第一流體輸送裝置來傳送流體至吸熱單元中,使流 體吸收吸熱單元之熱量,並藉由第一流體輸送裝置匯集 流經吸熱單元之流體,以傳送至液體冷卻裝置中,以降 低該流體之溫度並傳送至該儲液單元中,且本案之第一 流體輸送裝置可為一進多出或是多進多出的形式,第二 流體輸送裝置則可為多進一出或是多進多出的形式,使 得本案之微型液體冷卻系統可適用於筆記型電腦等内部 空間狹小的電子裝置中。 [0056] 本案得由熟知此技術之人士任施匠思而為諸般修飾,然 皆不脫如附申請專利範圍所欲保護者。 【圖式簡單說明】 [0057] 第一圖:其係為本案第一較佳實施例之微型液體冷卻系 統的結構示意圖。 [0058] 第二圖A :其係為第一圖所示之第一流體輸送裝置之分解 099109465 表單編號A0101 第20頁/共47頁 0992016824-0 201134375 [0059] [0060] [0061] 結構示意圖。 第二圖B :其係為第二圖A所示之閥體座的背面結構示意 圖。 第二圖C :其係為第二圖A所示之閥體蓋體之背面結構示 意圖。 第二圖D :其係為第二圖A所示之閥體薄膜之結構示意圖 [0062] 第三圖A :其係為第二圖A之組裝完成之結構示意圖。 [0063] 第三圖B :其係為第三圖A所示之第一流體輸送裝置之壓 力腔室膨脹狀態之A-A剖面結構示意圖。 [0064] 第三圖C :其係為第三圖A所示之第一流體輸送裝置之壓 力腔室膨脹狀態之B-B剖面結構示意圖。 [0065] 第三圖D :其係為第三圖A所示之第一流體輸送裝置之壓 力腔室壓縮狀態之C-C剖面結構示意圖。 [0066] 第三圖E :其係為第三圖A所示之第一流體輸送裝置之壓 力腔室壓縮狀態之B-B剖面結構示意圖。 [0067] 第四圖A :其係為第一圖所示之第二流體輸送裝置之分解 結構示意圖。 [0068] 第四圖B :其係為第四圖A所示之閥體座的背面結構示意 圖。 [0069] 第五圖A :其係為第一圖所示之第一吸熱單元及第二吸熱 單元之立體結構示意圖。 0992016824-0 099109465 表單編號A0101 第21頁/共47頁 201134375 [0070] 第五圖B :其係為第五圖A之G-G剖面結構示意圖。 [0071] 第五圖C :其係為第五圖A之H-H剖面結構示意圖。 [0072] 第六圖:其係為本案第二較佳實施例之微型液體冷卻系 統的結構不意圖。 [0073] 第七圖A :其係為第六圖所示之第一流體輸送裝置之分解 結構示意圖。 [0074] 第七圖B :其係為第七圖A所示之閥體座的背面結構示意 圖。 [0075] 第八圖A :其係為第六圖所示之第二流體輸送裝置之分解 結構示意圖。 [0076] 第八圖B :其係為第八圖A所示之閥體座的背面結構示意 圖。 [0077] 第九圖:其係為本案第三較佳實施例之微型液體冷卻系 統的結構示意圖。 [0078] 第十圖:其係為本案另一流體輸送裝置之分解結構示意 圖。 【主要元件符號說明】 [0079] 微型液體冷卻系統:1 ' 2、3 [0080] 儲液單元:11 [0081] 第一流體輸送裝置:12、21、31 [0082] 閥體座:121、131、211、221、41 [0083] 入口通道:1211a、1211b、1211c、1211d 0992016824-0 099109465 表單編號A0101 第22頁/共47頁 201134375 [0084]出 π [0085] 開口 : 1213a、1213b、1214a、1214b [0086] 出口 暫存腔:1215a、1215b [0087] 凹槽:1216a、1216b、1217a、1217b、1 226、1 227a、 1227b、1228a、1228b [0088] 微凸結構:1218a、1218b、1229a、1229b [0089] 水平接觸面:12181a、12181b、12291a、12291b 0 [0090] 閥體蓋體:122 [0091] ® · 1 990 [0092] :類 下表面:1221 .. [0093] 入口閥門通道:1 222a、1222b [0094] 出口閥門通道:1 223a、1223b [0095] 入口暫存腔:1224a、1224 b Ο [0096] 壓力腔室:1225 [0097] 閥體薄膜:123 [0098] 入口閥門結構:1231a、1231b [0099] 入口閥片:12313a、12313b [0100] 孔洞:12312a、12312b、12322a、12322b [0101] 延伸部:1 231 la、12311b、12321a、12321b [0102] 出口閥門結構:1232a、1232b 099109465 表單編號A0101 第23頁/共47頁 0992016824-0 201134375 [0103] 出 口閥片:1 2323a、1 2323b [0104] 致動裝置:124 [0105] 致動薄膜:1241 [0106] 致動器:1242 [0107] 蓋體:125 [0108] 密封環 126、127、128 [0109] 第二流體輸送裝置:13、22 [0110] 吸熱單元:14 [0111] 第一吸熱單元:141 [0112] 第二吸熱單元:142 [0113] 第二吸熱單元:143 [0114] 入 口流道:1441 [0115] 出 口流道:1442 [0116] 分流區:1443 [0117] 出口匯流區:1444 [0118] 第一組隔板:1445 [0119] 第二組隔板:1446 [0120] 第三組隔板:1447 [0121] 第四組隔板:1448 099109465 表單編號A0101 第24頁/共47頁 0992016824-0 201134375 [0122] [0123] [0124] [0125] [0126] [0127] Ο 分流流道:1 4 4 9 液體冷卻裝置:15 熱交換器:151 風扇:15 2 傳輸管路:16 流體輸送裝置:4 ο 099109465 表單編號Α0101 第25頁/共47頁 0992016824-0The structure, assembly and actuation mode of the valve body seat 221, the valve body body 122, the valve body film 23, the actuating device 124 and the cover body 125 of the second fluid body transport device 22 of the present example are ^^ T9, the same as the first fluid delivery device 12 of the preferred embodiment, 'will not be described here. Please refer to the ninth figure, which is a schematic diagram of the micro liquid dispensing system of the third preferred embodiment of the present invention. The micro liquid cold portion system 3 of the present embodiment may include The first fluid transporting device 31, the first fluid transporting device 32, the #, β^ plurality of heat absorbing units 14, the liquid cooling device 15, and the transport line 16 6 The hot parent converter 151 and the fan 1S1 are formed. In the present embodiment, the first, the delivery device 31 can be in the form of two in 3 out. The first fluid delivery device 32 can be in the form of a discharge. In addition to the first 142, the embodiment further includes a third rhyme sheet and a second endothermic sheet, and the heat is 70143, which is in contact with an electronic component ^), and is heat-transferred to produce the electronic component. The thermal energy is also connected by the transfer line_first fluid delivery device 31 and the second fluid delivery device (4), and other components of the micro liquid cooling system 3 are connected in series to form the closed fluid circuit. [0052] As for the micro unit (four) cooling line 3 material unit u, the first fluid transport device 31, the first fluid transport shock 32, the first heat absorbing unit 141, the second heat absorbing unit 142, liquid cooling The connection relationship between the device 15 and the transmission line 16 and the operation principle and manner are as described in the first preferred embodiment, and details are not described herein. 005 第十 第十 第十 第十 第十 第十 第十 第十 第十 第十 第十 第十 第十 第十 第十 第十 第十 另一 另一 另一 另一 另一 另一 另一 另一 另一 另一 另一 另一 另一 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 0 99 The fluid delivery device 4 can be in the form of four inlets and four outlets, that is, including four inlet passages 1211a, 1211b, 1211c, and 1211d, and four outlet passages 1212a, 1212b, 1212c, and 1212d, which can function as the micro liquid cooling system of the present invention. A fluid delivery device or a second fluid delivery device. [0054] The fluid transport device 4 is composed of a valve body seat 41, a valve body cover 122, a valve body film 123, an actuating device 124 and a cover body 125. The structure, assembly and actuation of the above components are compared with the first one. The first fluid delivery device 12 of the preferred embodiment is identical and will not be described again. [0055] In summary, the micro liquid cooling system of the present invention transfers the fluid to the heat absorbing unit by the first fluid conveying device connected to the liquid storage unit, so that the fluid absorbs the heat of the heat absorbing unit and is transported by the first fluid. The device collects the fluid flowing through the heat absorption unit to be transferred to the liquid cooling device to reduce the temperature of the fluid and transfer to the liquid storage unit, and the first fluid delivery device of the present invention can be more than one or more In the extra form, the second fluid delivery device can be in the form of multiple in one or multiple in and out, so that the micro liquid cooling system of the present invention can be applied to an electronic device with a small internal space such as a notebook computer. [0056] The present invention has been modified by a person skilled in the art, and is not intended to be protected as claimed. BRIEF DESCRIPTION OF THE DRAWINGS [0057] Fig. 1 is a schematic view showing the structure of a micro liquid cooling system according to a first preferred embodiment of the present invention. [0058] FIG. 2A is a breakdown of the first fluid transport device shown in the first figure. 099109465 Form No. A0101 Page 20/47 pages 0992016824-0 201134375 [0059] [0061] . Second Figure B: This is a schematic view of the back structure of the valve body seat shown in Figure 2A. Second Figure C: This is a schematic view of the back structure of the valve body cover shown in Figure 2A. Fig. D is a schematic view showing the structure of the valve body film shown in Fig. A. [0062] Fig. 3 is a schematic structural view showing the assembly of the second drawing A. [0063] FIG. 3B is a schematic cross-sectional view showing the A-A cross-sectional view of the pressure chamber expansion state of the first fluid transport device shown in FIG. [0064] FIG. 3C is a schematic view showing the B-B cross-sectional structure of the pressure chamber expansion state of the first fluid transport device shown in FIG. [0065] FIG. D is a schematic view showing the C-C cross-sectional structure of the pressure chamber compression state of the first fluid transport device shown in FIG. [0066] FIG. 3E is a schematic view showing the B-B cross-sectional structure of the pressure chamber compression state of the first fluid transport device shown in FIG. [0067] FIG. 4A is a schematic exploded view of the second fluid transport device shown in the first figure. [0068] FIG. 4B is a schematic view showing the structure of the back surface of the valve body seat shown in FIG. [0069] FIG. 5A is a schematic perspective view showing the first heat absorbing unit and the second heat absorbing unit shown in the first figure. 0992016824-0 099109465 Form No. A0101 Page 21 of 47 201134375 [0070] FIG. 5B is a schematic structural view of a G-G cross-section of FIG. [0071] FIG. 5C is a schematic view showing the structure of the H-H cross section of the fifth drawing A. [0072] Fig. 6 is a schematic view showing the structure of the micro liquid cooling system of the second preferred embodiment of the present invention. [0073] Fig. 7A is a schematic exploded view of the first fluid transport device shown in the sixth figure. [0074] Fig. 7B is a schematic view showing the structure of the back surface of the valve body seat shown in Fig. 7A. [0075] FIG. 8A is a schematic exploded view of the second fluid transport device shown in FIG. [0076] FIG. 8B is a schematic view showing the structure of the back surface of the valve body seat shown in FIG. [0077] Figure 9 is a schematic view showing the structure of the micro liquid cooling system of the third preferred embodiment of the present invention. [0078] FIG. 10 is a schematic exploded view of another fluid transport device of the present invention. [Main component symbol description] [0079] Micro liquid cooling system: 1 '2, 3 [0080] Liquid storage unit: 11 [0081] First fluid delivery device: 12, 21, 31 [0082] Valve body seat: 121, 131, 211, 221, 41 [0083] Inlet channel: 1211a, 1211b, 1211c, 1211d 0992016824-0 099109465 Form number A0101 Page 22 of 47 201134375 [0084] Out π [0085] Opening: 1213a, 1213b, 1214a , 1214b [0086] outlet temporary storage cavity: 1215a, 1215b [0087] Grooves: 1216a, 1216b, 1217a, 1217b, 1 226, 1 227a, 1227b, 1228a, 1228b [0088] Microconvex structures: 1218a, 1218b, 1229a , 1229b [0089] Horizontal contact surface: 12181a, 12181b, 12291a, 12291b 0 [0090] Body cover: 122 [0091] ® · 1 990 [0092] : Lower surface: 1221 .. [0093] Inlet valve passage : 1 222a, 1222b [0094] Outlet valve passage: 1 223a, 1223b [0095] Inlet temporary chamber: 1224a, 1224 b Ο [0096] Pressure chamber: 1225 [0097] Body film: 123 [0098] Inlet valve Structure: 1231a, 1231b [0099] Inlet valve plate: 12313a, 12313b [0100] Hole: 12312a, 12 312b, 12322a, 12322b [0101] Extensions: 1 231 la, 12311b, 12321a, 12321b [0102] Outlet valve structure: 1232a, 1232b 099109465 Form number A0101 Page 23 / Total 47 page 0992016824-0 201134375 [0103] Outlet valve Sheet: 1 2323a, 1 2323b [0104] Actuating device: 124 [0105] Actuating film: 1241 [0106] Actuator: 1242 [0107] Cover: 125 [0108] Sealing ring 126, 127, 128 [0109] Second fluid delivery device: 13, 22 [0110] Heat absorption unit: 14 [0111] First heat absorption unit: 141 [0112] Second heat absorption unit: 142 [0113] Second heat absorption unit: 143 [0114] Inlet flow path : 1441 [0115] Outlet runner: 1442 [0116] Split zone: 1443 [0117] Outlet confluence zone: 1444 [0118] First set of partitions: 1445 [0119] Second set of partitions: 1446 [0120] Third Group partition: 1447 [0121] The fourth group of partitions: 1448 099109465 Form number A0101 Page 24 / Total 47 pages 0992016824-0 201134375 [0123] [0124] [0125] [0126] [0127] Ο Split Flow path: 1 4 4 9 Liquid cooling device: 15 Heat exchanger: 151 Fan: 15 2 Transfer line: 16 Fluid transfer unit: 4 ο 099109 465 Form No. Α0101 Page 25 of 47 0992016824-0

Claims (1)

201134375 七、申請專利範圍: 1 . 一種微型液體冷卻系統,用以對複數個電子元件進行散熱 ,至少包含:一液體冷卻裝置;一儲液單元,儲存一流 體;複數個吸熱單元,其係與該複數個電子元件接觸, 用以吸收該複數個電子元件所產生之熱能;一第一流體 輸送裝置及一第二流體輸送裝置,分別具有一閥體座、一 閥體蓋體、一閥體薄膜以及一致動裝置組構而成,其中該 閥體薄膜設置於該閥體座及該閥體蓋體之間,而該閥體座 及該閥體蓋體之間設有至少一入口暫存腔、至少一出口暫 存腔,以及該閥體蓋體與一致動裝置構成一壓力腔室,且 該至少一入口暫存腔藉由該壓力腔室與至少一出口暫存腔 連通,又該閥體薄膜對應該至少一入口暫存腔具有一入口 閥門結構,及該閥體薄膜對應該至少一出口暫存腔具有一 出口闊門結構,以及該閥體座對應於該入口閥門結構連通 有入口通道,該閥體座對應於該出口閥門結構也連通有出 口通道;以及一傳輸管路,用以將該儲液單元、複數個吸 熱單元、該第一流體輸送裝置、該第二流體輸送裝置以及 該液體冷卻裝置串接形成一流體迴路。 2 .如申請專利範圍第1項所述之微型液體冷卻系統,其中該 流體係由該第一流體輸送裝置傳送至該複數個吸熱單元, 以吸收該複數個吸熱單元上之熱能,該第二流體輸送裝置 係將流經該複數個吸熱單元之該流體匯集至該液體冷卻裝 置,俾降低該流體之溫度並傳送至該儲液單元中。 3 .如申請專利範圍第2項所述之微型液體冷卻系統,其中該 液體冷卻裝置包含一熱交換器及一風扇,該熱交換器係接 099109465 表單編號A0101 第26頁/共47頁 0992016824-0 201134375 收該第二流體輸送裝置所傳送之該流體,以吸收該流體中 之熱量,該風扇產生氣流加速冷卻該熱交換器。 4 .如申請專利範圍第1項所述之微型液體冷卻系統,其中該 第一流體輸送裝置之閥體座及一第二流體輸送裝置之閥體 座分別具有複數個入口通道及複數個出口通道。 5 .如申請專利範圍第1項所述之微型液體冷卻系統,其中該 第一流體輸送裝置之閥體座具有複數個入口通道及複數個 出口通道,該第二流體輸送裝置之閥體座係具有複數個入 口通道及一出口通道。 〇 6 .如申請專利範圍第1項所述之微型液體冷卻系統,其中該 第一流體輸送裝置之閥體座具有一入口通道及複數個出口 通道,該第二流體輸送裝置之該閥體座係具有複數個入口 通道及一出口通道。 7 .如申請專利範圍第1項所述之微型液體冷卻系統,其中該 第一流體輸送裝置之閥體座具有一入口通道及複數個出口 通道,該第二流體輸送裝置之閥體座具有複數個入口通道 及複數個出口通道。 Ο 8 .如申請專利範圍第1項所述之微型液體冷卻系統,其中該 第一流體輸送裝置及第二流體輸送裝置分別更包含複數個 微凸結構,其係分別具有一水平接觸面且分別設置於該閥 體座及該閥體蓋體上,用以施一預力於該閥體薄膜上,以 及該複數個微凸結構之該水平接觸面與該閥體薄膜相抵頂 〇 9 .如申請專利範圍第1項所述之微型液體冷卻系統,其中該 吸熱單元係為一中空的殼體結構,且由具有導熱性的金屬 材質所製成。 099109465 表單編號 A0101 第 27 頁/共 47 頁 0992016824-0 201134375 10 .如申請專利範圍第1項所述之微型液體冷卻系統,其中該 吸熱單元係具有一入口流道、一出口流道、一分流區及一 出口匯流區,該分流區係位於該入口流道及該出口匯流區 之間,該分流區表面上係凸設有複數組隔板,其中每一組 隔板係由複數個並列設置的隔板所構成,且該複數組隔板 中的兩相鄰組別的隔板間係交錯設置,以將該分流區分隔 成複數條非直線流動之分流流道。 11 .如申請專利範圍第10項所述之微型液體冷卻系統,其中該 出口匯流區係位於該分流區及該出口流道之間,用以匯集 流經該分流流道之該流體,使流體經該出口流道傳送至該 第二流體輸送裝置中。 12 .如申請專利範圍第10項所述之微型液體冷卻系統,其中該 出口匯流區的流道橫截面高度係較該分流區的流道橫載面 高度大,使氣泡浮在該出口匯流區的上層區,以減少流阻 099109465 表單編號A0101 第28頁/共47頁 0992016824-0201134375 VII. Patent application scope: 1. A micro liquid cooling system for dissipating heat from a plurality of electronic components, comprising at least: a liquid cooling device; a liquid storage unit for storing a fluid; and a plurality of heat absorbing units; The plurality of electronic components are in contact with each other to absorb thermal energy generated by the plurality of electronic components; a first fluid delivery device and a second fluid delivery device respectively have a valve body seat, a valve body cover body and a valve body The film and the actuating device are configured, wherein the valve body film is disposed between the valve body seat and the valve body cover body, and at least one inlet is temporarily stored between the valve body seat and the valve body cover body. a cavity, at least one outlet temporary cavity, and the valve body cover and the actuating device form a pressure chamber, and the at least one inlet temporary cavity is connected to the at least one outlet temporary cavity by the pressure chamber, and The valve body film has an inlet valve structure corresponding to at least one inlet temporary storage cavity, and the valve body film has an outlet wide door structure corresponding to at least one outlet temporary storage cavity, and the valve body seat corresponds to the The inlet valve structure is connected with an inlet passage, the valve body seat is also connected with the outlet passage corresponding to the outlet valve structure; and a transmission line for the liquid storage unit, the plurality of heat absorption units, the first fluid delivery device, The second fluid delivery device and the liquid cooling device are connected in series to form a fluid circuit. 2. The micro-liquid cooling system of claim 1, wherein the flow system is transferred from the first fluid delivery device to the plurality of heat absorption units to absorb thermal energy on the plurality of heat absorption units, the second The fluid delivery device collects the fluid flowing through the plurality of heat absorption units to the liquid cooling device, and lowers the temperature of the fluid and delivers the fluid to the liquid storage unit. 3. The micro-liquid cooling system of claim 2, wherein the liquid cooling device comprises a heat exchanger and a fan, the heat exchanger is connected to 099109465, Form No. A0101, page 26/47 pages, 0992016824- 0 201134375 The fluid delivered by the second fluid delivery device is absorbed to absorb heat from the fluid, and the fan generates a gas stream to accelerate cooling of the heat exchanger. 4. The micro-liquid cooling system of claim 1, wherein the valve body of the first fluid delivery device and the valve body of the second fluid delivery device respectively have a plurality of inlet channels and a plurality of outlet channels . 5. The micro-liquid cooling system of claim 1, wherein the valve body of the first fluid delivery device has a plurality of inlet channels and a plurality of outlet channels, and the valve body of the second fluid delivery device There are a plurality of inlet channels and an outlet channel. The micro liquid cooling system of claim 1, wherein the valve body of the first fluid delivery device has an inlet passage and a plurality of outlet passages, and the valve body of the second fluid delivery device The system has a plurality of inlet channels and an outlet channel. 7. The micro-liquid cooling system of claim 1, wherein the valve body of the first fluid delivery device has an inlet passage and a plurality of outlet passages, and the valve body seat of the second fluid delivery device has a plurality of One inlet channel and a plurality of outlet channels. The micro liquid cooling system of claim 1, wherein the first fluid conveying device and the second fluid conveying device each further comprise a plurality of micro convex structures respectively having a horizontal contact surface and respectively Provided on the valve body seat and the valve body cover body for applying a pre-force on the valve body film, and the horizontal contact surface of the plurality of micro-convex structures is opposite to the valve body film. The micro liquid cooling system according to claim 1, wherein the heat absorbing unit is a hollow casing structure and is made of a metal material having thermal conductivity. The micro-liquid cooling system of claim 1, wherein the heat absorbing unit has an inlet flow path, an outlet flow path, and a split flow, as shown in claim 1 of the invention. a zone and an outlet confluence zone, the diversion zone is located between the inlet flow channel and the outlet confluence zone, and the surface of the diversion zone is convexly provided with a plurality of array partitions, wherein each group of partitions is arranged by a plurality of parallel The partition plate is configured, and two adjacent groups of the partitions of the plurality of partition plates are alternately arranged to divide the flow dividing region into a plurality of non-linear flow dividing flow passages. 11. The micro-liquid cooling system of claim 10, wherein the outlet confluence zone is located between the diversion zone and the outlet flow channel for collecting the fluid flowing through the diversion channel to cause a fluid The outlet flow path is delivered to the second fluid delivery device. 12. The micro-liquid cooling system according to claim 10, wherein a cross-sectional height of the flow channel of the outlet confluence zone is greater than a height of a cross-sectional surface of the flow channel of the diversion zone, so that bubbles float in the outlet confluence zone. Upper zone to reduce flow resistance 099109465 Form No. A0101 Page 28 / Total 47 Page 0992016824-0
TW99109465A 2010-03-29 2010-03-29 Micro liquid cooling system TWI389634B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99109465A TWI389634B (en) 2010-03-29 2010-03-29 Micro liquid cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99109465A TWI389634B (en) 2010-03-29 2010-03-29 Micro liquid cooling system

Publications (2)

Publication Number Publication Date
TW201134375A true TW201134375A (en) 2011-10-01
TWI389634B TWI389634B (en) 2013-03-11

Family

ID=46751475

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99109465A TWI389634B (en) 2010-03-29 2010-03-29 Micro liquid cooling system

Country Status (1)

Country Link
TW (1) TWI389634B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10330100B2 (en) 2016-10-05 2019-06-25 Cooler Master Co., Ltd. Pump, pump assembly and liquid cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10330100B2 (en) 2016-10-05 2019-06-25 Cooler Master Co., Ltd. Pump, pump assembly and liquid cooling system

Also Published As

Publication number Publication date
TWI389634B (en) 2013-03-11

Similar Documents

Publication Publication Date Title
CN110164835B (en) Manifold type micro-channel micro-radiator with complex structure
CN101473432B (en) Heat sink and cooler
US9291404B2 (en) Cooler and cooling device
JP6540665B2 (en) Double-sided cooler
CN105637632B (en) Cooler and the semiconductor module for using the cooler
CN102207763B (en) Miniature liquid cooling system
CN104465562A (en) Chain type staggered micro-channel structure
CN113437031B (en) Embedded microchannel heat abstractor based on liquid metal
TWM246988U (en) Water-cooling apparatus for electronic devices
JP5083288B2 (en) Semiconductor cooling structure
CN110335854B (en) Forced convection micro-channel heat dissipation structure, manufacturing method and electronic device
JP6708113B2 (en) Stacked cooler
TW201134375A (en) Micro liquid cooling system
EP2819279B1 (en) Cooling apparatus
CN115768045B (en) Radiator and electronic equipment
TWM586040U (en) Water-cooling pump structure with check valve and water cooling module thereof
TWI412716B (en) Heat-absorbable fluid transmission device
CN103542748A (en) Needle-rib-concave composited array structure of heat sink and arrangement method for needle-rib-concave composited array
JP2008235572A (en) Electronic component cooling device
CN111366018B (en) Semiconductor refrigeration heat dissipation assembly and semiconductor refrigeration equipment
Brunschwiler et al. Dual-side heat removal by micro-channel cold plate and silicon-interposer with embedded fluid channels
KR20180109668A (en) heat exchanger for cooling electric element
KR102566368B1 (en) Semiconductor device thermal management module and manufacturing method thereof
TWI430742B (en) Heat-dissipating module for liquid
CN219644467U (en) Radiating assembly and electronic equipment

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees