TW201131268A - Pixels having extra-planar fringe field amplifiers for multi-domain vertical alignment liquid crystal displays - Google Patents

Pixels having extra-planar fringe field amplifiers for multi-domain vertical alignment liquid crystal displays Download PDF

Info

Publication number
TW201131268A
TW201131268A TW99133495A TW99133495A TW201131268A TW 201131268 A TW201131268 A TW 201131268A TW 99133495 A TW99133495 A TW 99133495A TW 99133495 A TW99133495 A TW 99133495A TW 201131268 A TW201131268 A TW 201131268A
Authority
TW
Taiwan
Prior art keywords
color
point
component
color point
color component
Prior art date
Application number
TW99133495A
Other languages
Chinese (zh)
Other versions
TWI477866B (en
Inventor
Hiap L Ong
Original Assignee
Kyoritsu Optronics Co Ltd
Hiap L Ong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/721,559 external-priority patent/US8446536B2/en
Application filed by Kyoritsu Optronics Co Ltd, Hiap L Ong filed Critical Kyoritsu Optronics Co Ltd
Publication of TW201131268A publication Critical patent/TW201131268A/en
Application granted granted Critical
Publication of TWI477866B publication Critical patent/TWI477866B/en

Links

Landscapes

  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A multi-domain vertical alignment liquid crystal display that does not require physical features on the substrate (such as protrusions and ITO slits) is disclosed. Each pixel of the MVA LCD is subdivided into color components, which are further divided into color dots. Each pixel also contains extra-planar fringe field amplifiers that separate the color dots of a pixel. The voltage polarity of the color dots and extra-planar fringe field amplifiers are arranged so that fringe fields in each color dot causes multiple liquid crystal domains in each color dot. Specifically, the color dots and fringe field amplifying regions of the display are arranged so that neighboring polarized elements have opposite polarities.

Description

201131268 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種液晶顯示器,特別是指一種可以平 滑型基板製造的大畫素多區域垂直配向液晶顯示器。 【先前技術】 初次使用在如計算機與電子錶的簡單單色顯示器的液 晶顯示器(Liquid Crystal Display,LCD),係已變成最優勢 的顯示科技。液晶顯示器係經常用來取代陰極射線管 (Cathode Ray Tube,CRT)在電腦顯示與電視顯示上的應 用。液晶顯示器的各種缺點已經被克服以改善液晶顯示器 的品質。舉例來說,廣泛地取代被動矩陣顯示器的主動矩 陣顯示器’係相對於被動矩陣顯示器具有降低鬼影 (Ghosting)且改善解析度(Res〇iution)、色階(c〇1〇rBACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display, and more particularly to a large pixel multi-region vertical alignment liquid crystal display which can be fabricated on a smooth substrate. [Prior Art] A liquid crystal display (LCD) that is used for the first time in a simple monochrome display such as a computer and an electronic watch has become the most advantageous display technology. Liquid crystal displays are often used to replace the use of cathode ray tubes (CRTs) in computer displays and television displays. Various shortcomings of liquid crystal displays have been overcome to improve the quality of liquid crystal displays. For example, active matrix displays that widely replace passive matrix displays have reduced ghosting and improved resolution (Res〇iution) and color gradation (p〇1〇r) relative to passive matrix displays.

Gradation)、視角(Viewing Angle)、對比(Contrast Ratio)以 及反應時間(Response Time)的成效。 然而’傳統扭轉向列液晶顯示器(Twisted Nematic LCD) 的主要缺點係為非常窄的視角以及非常低的對比。甚至連 主動式矩陣的視角更窄於陰極射線管的視角。尤其是當觀 看者直接地在液晶顯示器前面收看一高畫質影像時,在液 晶顯示器側旁的其他觀看.者則無法看到此一高晝質影像。 多區域垂直配向液晶顯示器(Multi_d〇main Vertical Alignment Liquid Crystal Display ’ MVA LCD)係被發展來改 善液晶顯示器的視角以及對比。請參考圖l(a)_l(c),係表 201131268 不-垂直配向液晶顯示器100的畫素基本功能。為了清楚 地解說,目1的液晶顯示器係僅使用單一區域⑼响 Domain)。再者,為了清楚地解說,圖丨⑷」⑷(以及圖2) 的液晶顯示器係依據灰階操作來敘述。 液晶顯示器100具有一第一偏光片1〇5、一第一基板 110、-第-電極120、一第—配向層125、多個液晶13〇、 -第二配向層140、一第二電極145、一第二基板15〇以及 -第二偏光片155。-般而言’第一基板11〇與第二基板 鲁150係由透明玻璃所製成。第一電極12〇與第二電極145 係由如氧化銦錫(Indium Tin 〇xide,IT〇)之透明導電材質所 製成。第-配向層125與第二配向層14()係由聚醯亞氨 (Poiyimide。,PI)所製成,且與在靜止態之液晶13〇垂直地 配向。在仏作時’ 一光源(圖未示)係從貼附在第一基板⑽ 之在下面的第-偏光片1〇5射出光線。第一偏光片應係 通常在-第-方向偏振,且貼附在第二基板15〇的第二偏 光片155係、與第一偏光片1〇4垂直地偏振。因此,從㈣ ·*來的光線並不會同時穿透第一偏光片1〇5與第二光偏光 片155 ’除非光線的偏振在第-偏光片105與第二偏光片 155—之間旋轉%度。為了清楚說明,並未顯示很多的液晶。 在實際的顯不盗中,液晶係為棒狀分子(rod like m〇leCUleS) ’其直徑大約為5埃(Angstrom,A),長度大約 2〇 25纟因此’在—晝素中有超過-千1%百萬的液晶分 子’其中畫素的長、t、高分別為3〇〇微米__咖, μιη)、120微米、3微米。 在圖1中’液晶130係為垂直配向。在垂直配向中, 201131268 液晶130並不會將從光源的偏振極光轉向。因此,從光源 來的光線並不會穿過液晶顯示器100,且對所有顏色及所 有間隙晶胞(cell gap)而言,提供一個完全地光學暗態 (optical black state)及非常高的的對比(c〇ntrast ratio)。因 此’多區域垂直配向液晶顯示器相對傳統的低對比之扭轉 式向列型液晶顯示器而言,係在對比上提供一個顯著的改 善。然而’如圖1(b)所示’當在第一電極12〇與第二電極 145之間加入一個電場(electric field)時,液晶13〇即重新 定向到一傾斜位置(tilted position)。在傾斜位置的液晶係將 從第一偏光片105而來的偏振光線之偏振轉向9〇度,以致 光線可以穿過第二偏光片155。而傾斜的大小,即控制光 線穿過液晶顯示器的多寡(如畫素的亮度),係與電場強度 成正比。一般而言,單一個薄膜電晶體,係用在每一個畫 素上。然而對彩色顯示器而言,各別的薄膜電晶體係用在 每一色分量(color component ’典型地為、綠及藍)。 然而’對不同角度的觀看者而言,光線通過液晶顯示 器120並不是相同的。如圖1 (c)所示,在中央左邊的觀看 者172會看到亮晝素(bright pixel),因為液晶顯示器130寬 闊(光線轉向)的一側係面對觀看者172。位在中央的觀看者 174會看到灰畫素(gray pixei) ’因為液晶顯示器13〇寬闊的 一側係僅部分地面對觀看者17 4。而位在中央右側的觀看 者176會看到暗晝素(dark pixel),因為液晶顯示器130寬 闊的一側幾乎沒有面對觀看者176。 多區域垂直配向液晶顯示器(MVA LCDs)係被發展來 改善單區域垂直配向液晶顯示器(single_d〇main vertical 201131268 alignment LCD)的視角問題。請參考圖2,係表示一多區域 垂直配向液晶顯示器(MVA LCDs) 200的晝素。多區域垂直 配向液晶顯示器200係包括一第一偏光片205、一第一基 板210、一第一電極220、一第一配向層22 5、若干液晶235、 237、若干突起物260、一第二配向層240、一第二電極245、 一第二基板250以及一第二偏光片255。液晶235係形成 晝素的第一區域(first domain),而液晶237則形成晝素的第 二區域(second domain)。當在第一電極220與第二電極245 之間施加一電場時,突起物260會導致液晶235相對液晶 237而傾斜一不同的方向。因此,中央偏左的觀看者會看 到左邊區域(液晶235)呈現黑色(black)而右邊區域(液晶 237)至現白色(white)。在中央的觀看者則會同時看到兩個 區域而呈現灰色。中央偏右的觀看者則會看到左邊區域呈 現白色而右邊區域呈現黑色。然而,因為個別單獨的畫素 很小’因此三個觀看者都認為畫素是灰色的。如上所述, 液晶的傾斜的大小’係由在電極220與245之間的電場大 小所控制。觀看者所感知的灰階係與液晶傾斜大小相關 聯。多區域垂直配向液晶顯示器也可以擴大到使用四個區 以便在一晝素中的液晶方向被區分為四個主區域,以 提供同時在垂直與水平方向上之寬大且對稱的視角。 一因此’提供寬大且對稱之視角的多區域垂直配向液晶 ”'、頁不器’成本卻非常高’因為將突起物增加到上、下基板 的困難,以及將突起物正確地配向到上、下基板的困難。 尤其疋在下基板的一突起物必須設置在上基板的二突起物 中央’任何在上、下基板之間的配向,都將會降低生產良 201131268 率。其他在基板上使用物理特性的技術’如已用來取代或 結合突起物使用之氧化銦錫間隙(ITO slits),係在製造上非 常昂貴。再者’突起物與氧化銦錫間隙無法使傳輸光線, 也因此降低多區域垂直配向液晶顯示.器的亮度 (brightness)。因此,需要一個方法或系統可以提供給多區 域垂直配向液晶顯示器,無需製造如突起物及氧化銦錫間 隙之物理特性,以及無需在上、下基板上進行極度精準的 配向。 【發明内容】 本發明目的在於’提供一種放大本質離散電場多區域 垂直配向液晶顯示器(Amplified Intrinsic Fringe Field MVA LCD ’ AIFT MVA LCD),其係不需要突起物或氧化銦錫間 隙。因此’依據本發明所製造的放大本質離散電場多區域 垂直配向液晶顯示器係比傳統的多區域垂直配向液晶顯示 益更便宜。尤其是本發明的實施例係使用較新穎的晝素設 °十’即k供放大本質離散電場,以在放大本質離散電場多 區域垂直配向液晶顯示器中創造出多個區域。舉例來說, 依據本發明的一個實施例,晝素係被再細分成具有多個色 點(color dots,CDs)的色分量。再者’畫素包含位在與色點 不同平面的跨位面離散場放大器。當色點具有一第二極性 以放大色點的離散電場時,離散場放大器係設置有一第一 極性。 在本發明的某些實施例中,一畫素具有一第一色分量 及第位面離散场放大器(extra-planar fringe field 10 201131268 位面離=:第一色分量包括一第一色點及一第二色點。跨 點之Η月%放大器係位在第一色分量之第一色點與第二色 當一 f。然而,當跨位面離散場放大器位在一第二平面時, 量的第一色點與第二色點係位在-第-平面上。 極=而。’跨位面離散場放A器係架構來從晝素外側接收 大考了 ί亦可包括一第二色分量及一第二跨位面離散場放 平面龄—色分量包括—第—色點及-第二色點。於第二 面的第二跨位面離散場放大器係位在第二色分量的第一 的第一色點之間。再者’晝素包括耦接到第-色分量 元件及轉接到第二色分量的-第二切換元 來呈有_|特定實施例中’當第二切換元件被架構 時,第一切換元件係被架構來具有-第 一極性。 不 猎由下列的描述與圖式,將會對本發明更加了解。 【實施方式】 β々上所述’傳統的多區域垂直配向液晶顯示器 Hr貴的,係因為使用如突起物或氧化銦錫間隙之 的方:Γ,二ΐ每—畫素產生多區域。然而’依據本發明 味'夕垂直配向液晶顯示器係、使用離散電場來產 二?在基板上使用物理特性(如突起峨 錫間隙)再者,因為不需要物理特性,因此也可排除 ^下基板校準物理特性的困難。所以,依據本發明的多 區域垂直配向液晶顯示器在製造上相對於傳統的多 201131268 直配向液日日顯不益’.具有更南的良率且更加便宜。 請參考圖3(a)及圖3(b),係表示依據本發明基本概念, 無須在基板上使用物理特性’以產生一多區域垂直配向液 晶顯示器(MVA LCD)300的示意圖。而圖3(a)及圖3(b)係顯 示出在一第一基板305與一第二基板355之間,具有晝素 310、320及330。一第一偏光片3〇2係黏貼到第一基板3〇5, 且一第二偏光片357係黏貼到第二基板355。畫素31〇包 含有一第一電極311、若干液晶312、313以及一第二電極 315。畫素320包含有一第一電極32卜若干液晶322、323 以及一第二電極325。相似地,晝素330包含有一第一電 極331、若干液晶332、333以及一第二電極335。所有電 極一般地架構係使用如氧化銦錫(IT〇)之透明導電材質。再 者,一第一配向層307係覆蓋在第一基板305上的電極之 上。相似地,一第二配向層352係覆蓋在第二基板355上 的電極之上。二液晶配向層307及352係提供一垂直液晶 配向°為了下列的更加詳細敘述,電極315、325及335係 維持在一共同電壓(c〇mm〇n v〇ltage)V_c〇m。因此,為了容 易製造’電極M5、3M及335係為一單一結構(如圖3⑻ 及圖3(b)所示)。多區域垂直配向液晶顯示器3〇〇係使用交 替偏振以操作晝素310、320及330。舉例來說,若晝素310 與330之偏振為正(positive)的話,則晝素320的偏振為負 (negative)。相反地’若畫素3丨〇與33〇之偏振為負(negative) 的活,則晝素320的偏振為正(positive)。一般來說,每一 畫素的偏振係在頁框(frames)間切換,但交替偏振的圖案 (pattern)係維持在每一頁框中。在圖3(a)中,晝素31〇、32〇 12 201131268 及330係在「關閉(OFF)」狀態,意即關閉在第一與第二電 極之間的電場(electric field)。在關閉狀態下,某些殘餘電 場可能存在第一與第二基板之間。然而,一般而言,殘餘 電場太小而無法使液晶傾斜。 在圖3(b)中,晝素310、320及330係處在「開啟(ON)」 狀態。而圖3(b)係使用「+」及「-」代表電極的電壓極性 (voltage polarity)。因此,電極311及331具有正電壓極性, 而電極321具有負電壓極性。基板355與電極315、325及 φ 335係保持在共同電壓V_Com。電壓極性係相對共同電壓 V_Com來定義,其中一正極性係其電壓高於共同電壓 V_Com,一負極性係其電壓低於共同電壓V—Com。在電極 321與325之間的電場327(以電力線表示)係造成液晶322 與323傾斜。一般而言,沒有突起物或其他物理特性,液 晶的傾斜方向不會被在一垂直的液晶配向層307與352之 液晶所固定。然而,在晝素邊緣的離散電場會影響到液晶 的傾斜方向。舉例來說,在電極321與325之間的電場327, φ 係垂直圍繞畫素320中心,但傾斜到畫素左半部的左邊, 以及傾斜到畫素右半部的右邊。因此,在電極321與325 之間的離散電場係造成液晶323傾斜到右邊而形成一第一 區域,且造成液晶322傾斜到左邊而形成一第二區域。因 此,晝素320係為具有對稱寬視角的多區域畫素。 相似地,在電極311與315之間的電場(圖未示)係具有 離散電場,此離散電場係造成液晶313重新定位,且傾斜 到畫素312右側的右邊,也造成液晶312傾斜到晝素310 左測的左邊。相似地,在電極331與335之間的電場(圖未 201131268 不)係具有離散電場’此離散電場係造成液晶3 3 3重新定 位,且傾斜到晝素330右側的右邊,也造成液晶332傾斜 到晝素330左測的左邊。 鄰近晝素的交替極性係放大每一晝素離散場效(fringe field effect)。因此,藉由在每列的晝素(或每欄的晝素)之間 重覆交替極性圖案,即可無須物理特性而達到一多區域垂 直配向液晶顯示器。再者,可以使用交替極性棋盤圖案, 以在每一晝素產生四個區域。 然而,一般而言,離散場效係相對地小且微弱。所以, 當畫素變較大時,在晝素邊緣的離散電場係無法傳遞到在 一晝素中的所有液晶。因此,在大晝素中,對於遠離晝素 邊緣之液晶的傾斜方向係隨意變化,且不會產生一多區域 畫素。一般而言,當晝素變得大於40-60微米(micrometer, μηι)時,畫素的離散場效係不會影響控制液晶傾斜。故,對 大畫素液晶顯示器而言,使用一新穎的晝素區分方法來達 到多區域晝素。尤其是對彩色液晶顯示器而言,畫素係區 分成色分量。每一色分量係由如薄膜電晶體(thin-film transistor,TFT)的一個別的切換裝置所控制。一般而言, 色分量係為紅色、綠色及藍色。依據本發明,一晝素的色 分量係進一步區分成色點(color dots)。 每一晝素的極性係在影像的之每一連續頁框之間做切 換,以避免圖像品質的降低,而圖像品質的降低係因為在 每一頁框中液晶在相同方向扭曲。然而,若是所有的切換 元件係為相同極性者,則色點極性圖案切換係可能造成其 他如閃爍(flicker)之圖像品質問題。為了降低閃爍,切換元 201131268 件(如電晶體)係配置在一切換元件驅動模式中,此機制包 括正、負極性。再者’為了降低串音(cross talk),切換元件 的正、負極性係被配置在一固定圖案中,此固定圖案係提 供一更穩定的配電。不同的切換元件驅動模式係使用在本 發明的實施例中。有三個主要的切換元件驅動模式,係為 切換元件點反轉驅動板式(switching element point inversion driving scheme)、切換元件列反轉驅動模式(switching element row inversion driving scheme)以及切換元件行反轉 • 驅動模式(switching element column inversion driving scheme)。在切換元件點反轉驅動模式中,切換元件係形成 一交替極性的棋盤圖案。在切換元件列反轉驅動模式中, 在每一列的切換元件具有相同極性;然而,在一列上的一 切換元件相對於鄰近列之切換元件的極性而具有相反極 性。在切換元件行反轉驅動模式中,在每一行的切換元件 具有相同極性;然而,在一行上的一切換元件相對於鄰近 行之切換元件的極性而具有相反極性。當切換元件點反轉 • 驅動模式提供最穩定的配電時,切換元件點反轉驅動模式 的複雜性與額外的成本’相比較切換元件列反轉驅動模式 與切換元件行反轉驅動模式而言,是不划算的。因此,當 切換元件點反轉驅動模式通常保持在高性能應用時,對於 大部分低成本與低電壓應用之液晶顯示器的製造,係使用 切換元件列反轉驅動模式。 依據本發明實施例的畫素,係包括以新穎配置之不同 的主要7L·件,以達到高品質、低成本的顯示單元。舉例來 5兄,晝素可以包括色分量、色點、離散場放大區域(fringe 15 201131268 field amplifying regions ’ FFAR)、切換元件、裝置元件區域 (device component area)以及關聯點(associated dots)。尤其 是,本發明係介紹新穎的跨位面離散場放大器。 此裝置元件區域係包含佔用切換元件及/或儲存電容 的區域’而且此區域係被用來製造切換元件及/或儲存電 容。為了清楚說明’一不同的裝置元件區域係由每一切換 元件所界定。 關聯點與離散場放大區域係為電性偏振區域 (electrically polarized area),而並未是色分量的一部分。在 嫌 本發明許多的實施例中,關聯點係覆蓋裝置元件區域。對 這些實施例而言,關聯點係由將一絕緣層沉積覆蓋在切換 元件及/或儲存電容上所製成。接著,藉由沉積一電性導電 層以形成所述的關聯點。此關聯點係電性地連接到特定的 切換元件及/或其他偏振元件(例如色點)。儲存電容係電性 地連接到特定的切換元件及色點電極(color dot electrodes),以在液晶胞打開(switching-on)或是關掉 (switching off)的過程期間補償並抵銷在液晶胞上的電容值 · 變化。因此,儲存電容係用來在液晶胞打開或是關掉的過 程期間減低串音效應(cross talk effect)。一圖案化光罩 (patterning mask)係使用在當關聯點需要形成圖案化電極 (patterned electrode)之時。一般而言,係附加一黑色矩陣層 (black matrix layer)以形成對關聯點的一光屏蔽(light shield)。然而,在本發明的某些實施例中,一色彩層(color layer)係附加到關聯點上,以改善色彩表現(color performance)或是達到一所欲的色彩圖案(color pattern)或 16 201131268 色差(color shading)。在本發明某些實施例中,色彩層係製 造在切換元件的之上或之下。其他實施例可能也將色彩層 置放在顯示器的玻璃基板之上。 在本發明其他實施例中,關聯點係為與切換元間相互 獨立的一區域。再者,本發明的某些實施例具有額外的關 聯點’此等關聯點並不直接地與切換元件相關。一般而言, 關聯點係包括如氧化銦錫(ITO)或其他導電層的一主動電 極層(active electrode layer) ’且連接到一附近的色點或者是 # 以其他手段供電。對不透明的關聯點而言,一黑色矩陣層 可以被附加在導電層的底部上,以形成不透明區域(opaqUe area)。在本發明某些實施例中,黑色矩陣可以被製造在氧 化銦錫(IT0)玻璃基板側上,以簡化製程(fabrication process)。額外的關聯點係改善顯示區域有效的使用,藉以 改善開口率(aperture ratio)且在色點内形成多個液晶區域 (liquid crystal domains)。本發明的某些實施例使用關聯點 以改善色彩表現。舉例來說,關聯點的小心佈局(careful ❿ Placement)可以允許附近色點的顏色從有用的色彩圖案進 行修飾。 離散場放大區域(FFARs)係比關聯點更加多功能。特別 是,離散場放大區域係可以具有非矩形形狀,雖然一般來 說璃散場放大區域的整體形狀可以被劃分成一矩形形狀 組。再者,離散場放大區域係沿著多於一色點的一側而延 伸。而且,在本發明某些實施例中,離散場放大區域可以 被用來取代關聯點。尤其是,在這些實施例中’離散場放 大區域不僅覆蓋裝置元件區域,而且沿著多於鄰近裝置元 201131268 件區域之色點一側而延伸。 跨位面離散場放大器(EPFFAS)係為已偏極化結構,並 在與一晝素之色點的不同水平平面上。一般而言,跨位面 離散場放大器(EPFFAS)係設置在鄰近色點的邊緣,以放大 色點的離散電場。使用跨位面離散場放大器一個好處,就 是色點可以更靠近的設置在一起,以改善一顯示器的亮 度。於後將詳述跨位面離散場放大器。 一般而言,色點、裝置元件區域以及關聯點,係配置 在格狀圖案,且以一水平點間距(horizontal dot spacing)HDS 以及一垂直點間距(vertical dot spacing)VDS 而相互鄰近分開。當離散場放大區域被使用來取代關聯點 時,部分的離散場放大區域也會安置在格狀圖案中。在本 發明某些實施例中,係可能使用到多個垂直點間距及多個 水平點間距。每一色點、關聯點以及裝置元件區域,係在 一第一維度(如垂直方向)有二個與其相互鄰接元件(例如色 點、關聯點或者是裝置元件區域)’且在一第二維度(如水 平方向)有二個與其相互鄰接元件(adjacent neighbors)。再 者,二個與其相互鄰接元件可以被配向或是移動。每一色 點具有一色點高度CDH以及一色點寬度CDW。相似地, 每一關聯點具有一關聯點高度ADH以及一關聯點寬度 ADW。再者,每一裝置元件區域具有一裝置元件區域高度 DCAH以及一裝置元件區域寬度DCAW。在本發明某些實 施例中,色點、關聯點以及裝置元件區域係為相同尺寸。 然而,在本發明某些實施例中,色點、關聯點以及裝置元 件區域係可為不同尺寸或形狀。舉例來說,在本發明的許 18 201131268 夕具方匕例中’關聯點具有色點較小的高度。在許多應用中, ^加色點的问度以改善多區域垂直配向(mva)結構的穩定 度(stability),並改善光學傳輸以增加顯示亮度。 圖4(a)及圖4(b)係表示一畫素設計41〇(如後述的編號 410+及410-)不同的點極性圖案,此晝素設計41〇通常被使Gradation), Viewing Angle, Contrast Ratio, and Response Time. However, the main drawback of the conventional Twisted Nematic LCD is the very narrow viewing angle and very low contrast. Even the perspective of the active matrix is narrower than the viewing angle of the cathode ray tube. Especially when the viewer directly views a high-quality image directly in front of the liquid crystal display, other viewers on the side of the liquid crystal display cannot see the high-quality image. Multi-d〇 main vertical Alignment Liquid Crystal Display (MVA LCD) has been developed to improve the viewing angle and contrast of liquid crystal displays. Please refer to FIG. 1(a)_l(c), which is a pixel basic function of the non-vertical alignment liquid crystal display 100. For the sake of clarity, the liquid crystal display of the first aspect only uses a single area (9) to ring the Domain). Furthermore, for the sake of clarity, the liquid crystal display of Figures (4)" (4) (and Figure 2) is described in terms of gray scale operation. The liquid crystal display 100 has a first polarizer 1〇5, a first substrate 110, a first electrode 120, a first alignment layer 125, a plurality of liquid crystals 13A, a second alignment layer 140, and a second electrode 145. a second substrate 15A and a second polarizer 155. In general, the first substrate 11 and the second substrate 150 are made of transparent glass. The first electrode 12A and the second electrode 145 are made of a transparent conductive material such as indium tin oxide (IT). The first alignment layer 125 and the second alignment layer 14 () are made of polyimine (PI) and are aligned perpendicularly to the liquid crystal 13A in a stationary state. At the time of the operation, a light source (not shown) emits light from the underlying polarizer 1〇5 attached to the lower surface of the first substrate (10). The first polarizer should be polarized in the -first direction, and the second polarizer 155 attached to the second substrate 15 is polarized perpendicularly to the first polarizer 1〇4. Therefore, the light from (4)* does not penetrate the first polarizer 1〇5 and the second polarizer 155' at the same time unless the polarization of the light is rotated between the first polarizer 105 and the second polarizer 155. %degree. For the sake of clarity, many liquid crystals are not shown. In actual piracy, the liquid crystal system is a rod-like molecule (rod like m〇leCUleS) which has a diameter of about 5 angstroms (Angstrom, A) and a length of about 2 〇 25 纟 so that there is more than - in 昼 - Thousands of millions of liquid crystal molecules 'the length, t, and height of the pixels are 3 〇〇 micron __ coffee, μιη), 120 micrometers, and 3 micrometers. In Fig. 1, the liquid crystal 130 is vertically aligned. In the vertical alignment, the 201131268 liquid crystal 130 does not divert the polarized aurora from the light source. Therefore, the light from the light source does not pass through the liquid crystal display 100, and provides a completely optical black state and a very high contrast for all colors and all cell gaps. (c〇ntrast ratio). Therefore, the multi-zone vertical alignment liquid crystal display provides a significant improvement in comparison with the conventional low contrast twisted nematic liquid crystal display. However, as shown in Fig. 1(b), when an electric field is applied between the first electrode 12A and the second electrode 145, the liquid crystal 13 is redirected to a tilted position. The liquid crystal system at the inclined position turns the polarization of the polarized light from the first polarizer 105 to 9 degrees so that the light can pass through the second polarizer 155. The size of the tilt, that is, the amount of light that passes through the liquid crystal display (such as the brightness of the pixels), is proportional to the electric field strength. In general, a single thin film transistor is used on each of the pixels. For color displays, however, individual thin film electro-crystal systems are used for each color component (typically color, 'green, blue'). However, for viewers of different angles, the light passing through the liquid crystal display 120 is not the same. As shown in Fig. 1(c), the viewer 172 on the left side of the center will see bright pixels because the side of the liquid crystal display 130 that is wide (light turning) faces the viewer 172. The viewer in the center 174 will see gray pixei because the wide side of the liquid crystal display 13 is only partially facing the viewer 17 4 . The viewer 176, located on the right side of the center, sees dark pixels because the wide side of the liquid crystal display 130 barely faces the viewer 176. Multi-zone vertical alignment liquid crystal displays (MVA LCDs) have been developed to improve the viewing angle of single-span vertical vertical liquid crystal displays (single_d〇main vertical 201131268 alignment LCD). Referring to Figure 2, there is shown a multi-region vertical alignment liquid crystal display (MVA LCDs) 200. The multi-zone vertical alignment liquid crystal display 200 includes a first polarizer 205, a first substrate 210, a first electrode 220, a first alignment layer 22, a plurality of liquid crystals 235, 237, a plurality of protrusions 260, and a second The alignment layer 240, a second electrode 245, a second substrate 250, and a second polarizer 255. The liquid crystal 235 forms a first domain of halogen, and the liquid crystal 237 forms a second domain of a halogen. When an electric field is applied between the first electrode 220 and the second electrode 245, the protrusion 260 causes the liquid crystal 235 to be tilted in a different direction with respect to the liquid crystal 237. Therefore, the center-left viewer will see the left area (liquid crystal 235) appearing black (black) and the right area (liquid crystal 237) to white (white). A viewer in the center will see two areas at the same time and be grayed out. The center-right viewer will see the left area appear white and the right area appear black. However, because individual individual pixels are small, the three viewers consider the pixels to be gray. As described above, the magnitude of the tilt of the liquid crystal is controlled by the electric field between the electrodes 220 and 245. The gray level perceived by the viewer is related to the tilt of the liquid crystal. The multi-zone vertical alignment liquid crystal display can also be expanded to use four regions so that the liquid crystal directions in one pixel are divided into four main regions to provide a wide and symmetrical viewing angle in both the vertical and horizontal directions. Therefore, the 'multi-area vertical alignment liquid crystal that provides a wide and symmetrical viewing angle', the cost of the page is very high, because of the difficulty of adding protrusions to the upper and lower substrates, and the correct alignment of the protrusions, Difficulties with the lower substrate. Especially, a protrusion on the lower substrate must be placed in the center of the two protrusions of the upper substrate. Any alignment between the upper and lower substrates will reduce the production rate of 201131268. Others use physics on the substrate. The characteristic technology, such as ITO slits, which have been used to replace or combine protrusions, is very expensive to manufacture. Furthermore, the gap between the protrusion and the indium tin oxide cannot transmit light, and thus is much lower. The area is vertically aligned to the brightness of the liquid crystal display. Therefore, a method or system is required to provide a multi-zone vertical alignment liquid crystal display without the need to fabricate physical features such as protrusions and indium tin oxide gaps, and without the need for upper and lower Extremely accurate alignment on the substrate. SUMMARY OF THE INVENTION The object of the present invention is to provide an amplification of the discrete electric field. Amplified Intrinsic Fringe Field MVA LCD 'AIFT MVA LCD, which does not require protrusions or indium tin oxide gaps. Therefore, the amplified intrinsic discrete electric field multi-region vertical alignment liquid crystal display system manufactured according to the present invention Conventional multi-region vertical alignment liquid crystal display is cheaper. In particular, embodiments of the present invention use a relatively novel 设 设 十 即 即 即 k to amplify the essential discrete electric field to amplify the essential discrete electric field multi-region vertical alignment liquid crystal display A plurality of regions are created in. For example, in accordance with an embodiment of the present invention, the alizarin system is subdivided into color components having a plurality of color dots (CDs). A trans-planetary discrete field amplifier having different planes of color points. When the color point has a second polarity to amplify a discrete electric field of the color point, the discrete field amplifier is provided with a first polarity. In some embodiments of the invention, The pixel has a first color component and a scalar discrete field amplifier (extra-planar fringe field 10 201131268 bit face deviation =: first color point The first color point and the second color point are included. The first month color point of the cross-point is at the first color point of the first color component and the second color is a f. However, when the cross-plane discrete field amplifier bit In a second plane, the first color point and the second color point of the quantity are in the -first plane. The pole = and the 'cross-plane discrete field A system architecture to receive the test from the outside of the element ί may also include a second color component and a second straddle plane discrete field plane-color component including a -th color point and a second color point. The second straddle surface discrete field amplifier on the second side The system is located between the first first color point of the second color component. Further, the element includes a second switching element coupled to the first color component and transferred to the second color component. In a particular embodiment 'When the second switching element is architected, the first switching element is architectured to have a first polarity. The invention will be more fully understood from the following description and drawings. [Embodiment] The conventional multi-region vertical alignment liquid crystal display Hr on the β 々 is expensive because a square such as a protrusion or an indium tin oxide gap is used: ΐ, ΐ ΐ per-pixel produces a plurality of regions. However, according to the present invention, the vertical alignment liquid crystal display system uses discrete electric fields to produce two. Physical properties (e.g., bumps and tin gaps) are used on the substrate. Further, since physical properties are not required, it is also possible to eliminate the difficulty in calibrating the physical properties of the substrate. Therefore, the multi-region vertical alignment liquid crystal display according to the present invention is inferior in manufacturing compared to the conventional multi-integrated 201131268. It has a souther yield and is less expensive. Referring to Figures 3(a) and 3(b), there is shown a schematic diagram of a multi-region vertical alignment liquid crystal display (MVA LCD) 300 in accordance with the basic concepts of the present invention without the use of physical properties on the substrate. 3(a) and 3(b) show the cells 310, 320 and 330 between a first substrate 305 and a second substrate 355. A first polarizer 3〇2 is adhered to the first substrate 3〇5, and a second polarizer 357 is adhered to the second substrate 355. The pixel 31 includes a first electrode 311, a plurality of liquid crystals 312, 313, and a second electrode 315. The pixel 320 includes a first electrode 32, a plurality of liquid crystals 322, 323, and a second electrode 325. Similarly, the halogen 330 includes a first electrode 331, a plurality of liquid crystals 332, 333, and a second electrode 335. All electrodes are generally constructed using a transparent conductive material such as indium tin oxide (IT〇). Further, a first alignment layer 307 is overlaid on the electrodes on the first substrate 305. Similarly, a second alignment layer 352 overlies the electrodes on the second substrate 355. The two liquid crystal alignment layers 307 and 352 provide a vertical liquid crystal alignment. For the more detailed description below, the electrodes 315, 325 and 335 are maintained at a common voltage (c〇mm〇n v〇ltage) V_c〇m. Therefore, for ease of manufacture, the electrodes M5, 3M, and 335 are of a single structure (as shown in Figs. 3(8) and 3(b)). The multi-zone vertical alignment liquid crystal display 3 uses alternating polarization to operate the pixels 310, 320 and 330. For example, if the polarization of the pixels 310 and 330 is positive, the polarization of the pixel 320 is negative. Conversely, if the polarization of the pixels 3丨〇 and 33〇 is negative, the polarization of the pixel 320 is positive. In general, the polarization of each pixel is switched between frames, but alternately patterned patterns are maintained in each page frame. In Fig. 3(a), the cells 31〇, 32〇 12 201131268 and 330 are in the "OFF" state, that is, the electric field between the first and second electrodes is turned off. In the off state, some residual electric field may exist between the first and second substrates. However, in general, the residual electric field is too small to tilt the liquid crystal. In Fig. 3(b), the pixels 310, 320 and 330 are in the "ON" state. In Fig. 3(b), "+" and "-" are used to represent the voltage polarity of the electrode. Therefore, the electrodes 311 and 331 have a positive voltage polarity, and the electrode 321 has a negative voltage polarity. The substrate 355 and the electrodes 315, 325 and φ 335 are held at a common voltage V_Com. The voltage polarity is defined with respect to the common voltage V_Com, wherein a positive polarity is higher than the common voltage V_Com, and a negative polarity is lower than the common voltage V-Com. The electric field 327 (indicated by the power line) between the electrodes 321 and 325 causes the liquid crystals 322 and 323 to tilt. In general, without protrusions or other physical properties, the tilt direction of the liquid crystal is not fixed by the liquid crystals in a vertical liquid crystal alignment layer 307 and 352. However, the discrete electric field at the edge of the pixel affects the tilt direction of the liquid crystal. For example, the electric field 327, φ between the electrodes 321 and 325 is vertically centered around the pixel 320, but is tilted to the left of the left half of the pixel and to the right of the right half of the pixel. Therefore, the discrete electric field between the electrodes 321 and 325 causes the liquid crystal 323 to tilt to the right to form a first region, and causes the liquid crystal 322 to tilt to the left to form a second region. Therefore, the Alizarin 320 is a multi-region pixel having a symmetrical wide viewing angle. Similarly, the electric field (not shown) between electrodes 311 and 315 has a discrete electric field that causes liquid crystal 313 to reposition and tilt to the right of the right side of pixel 312, also causing liquid crystal 312 to tilt to the pixel. 310 Left side of the left test. Similarly, the electric field between the electrodes 331 and 335 (not shown in 201131268) has a discrete electric field. This discrete electric field causes the liquid crystal 33 3 to be repositioned and tilted to the right of the right side of the pixel 330, also causing the liquid crystal 332 to tilt. Go to the left side of the left side of the Alizarin 330. The alternating polarity of adjacent pixels magnifies each fringe field effect. Therefore, by repeating the alternating polarity pattern between the pixels of each column (or the pixels of each column), a multi-region vertical alignment liquid crystal display can be achieved without physical properties. Furthermore, alternating polar checkerboard patterns can be used to create four regions at each element. However, in general, the discrete field effect system is relatively small and weak. Therefore, when the pixels become larger, the discrete electric field at the edge of the element can not be transmitted to all the liquid crystals in a single element. Therefore, in the large scorpion, the tilt direction of the liquid crystal far from the edge of the pixel is arbitrarily changed, and a multi-region pixel is not generated. In general, when the halogen becomes larger than 40-60 micrometers (micrometer, μηι), the discrete field effect of the pixels does not affect the control of the liquid crystal tilt. Therefore, for the large pixel liquid crystal display, a novel pixel discrimination method is used to achieve multi-regional pixels. Especially for a color liquid crystal display, the pixel region is divided into color components. Each color component is controlled by a separate switching device such as a thin-film transistor (TFT). In general, the color components are red, green, and blue. According to the present invention, the color component of a halogen is further distinguished by color dots. The polarity of each element is switched between each successive frame of the image to avoid degradation of image quality, and the quality of the image is reduced because the liquid crystal is distorted in the same direction in each frame. However, if all of the switching elements are of the same polarity, the color point polarity pattern switching may cause other image quality problems such as flicker. In order to reduce flicker, the switching element 201131268 (such as a transistor) is configured in a switching element driving mode, which includes positive and negative polarity. Furthermore, in order to reduce cross talk, the positive and negative polarities of the switching elements are arranged in a fixed pattern which provides a more stable power distribution. Different switching element drive modes are used in embodiments of the present invention. There are three main switching element drive modes, which are switching element point inversion driving scheme, switching element row inversion driving scheme, and switching element row inversion driving. Switching element column inversion driving scheme. In the switching element dot inversion driving mode, the switching elements form a checkerboard pattern of alternating polarity. In the switching element column inversion driving mode, the switching elements in each column have the same polarity; however, a switching element in one column has opposite polarities with respect to the polarity of the switching elements of adjacent columns. In the switching element row inversion driving mode, the switching elements in each row have the same polarity; however, one switching element on one row has opposite polarities with respect to the polarity of the switching elements of adjacent rows. When the switching element is inverted • The driving mode provides the most stable power distribution, the complexity of the switching element dot inversion driving mode is compared with the additional cost's. The switching element column inversion driving mode and the switching element row inversion driving mode are compared. It is not cost-effective. Therefore, when the switching element dot inversion driving mode is generally maintained in high performance applications, the switching element column inversion driving mode is used for the manufacture of liquid crystal displays for most low cost and low voltage applications. The pixels according to the embodiments of the present invention include main 7L pieces in a novel configuration to achieve a high quality, low cost display unit. For example, the enthalpy can include color components, color points, fringe 15 201131268 field amplifying regions FFAR, switching elements, device component areas, and associated dots. In particular, the present invention introduces novel trans-plane discrete field amplifiers. This device component area contains the area that occupies the switching element and/or the storage capacitor' and this area is used to fabricate the switching element and/or the storage capacitor. For clarity, a different device component area is defined by each switching element. The associated points and discrete field amplification regions are electrically polarized regions and are not part of the color components. In many embodiments of the invention, the associated points cover the device component area. For these embodiments, the associated points are made by depositing an insulating layer over the switching elements and/or storage capacitors. Next, the associated points are formed by depositing an electrically conductive layer. This associated point is electrically connected to a particular switching element and/or other polarizing element (e.g., color point). The storage capacitor is electrically connected to a specific switching element and color dot electrodes to compensate and offset the liquid crystal cell during the process of switching-on or switching off of the liquid crystal cell. The capacitance value on the change. Therefore, the storage capacitor is used to reduce the cross talk effect during the process of turning on or off the cell. A patterned mask is used when the associated point needs to form a patterned electrode. In general, a black matrix layer is attached to form a light shield for the associated points. However, in some embodiments of the invention, a color layer is attached to the associated point to improve color performance or to achieve a desired color pattern or 16 201131268 Color shading. In some embodiments of the invention, the color layer is fabricated above or below the switching element. Other embodiments may also place a color layer on top of the glass substrate of the display. In other embodiments of the invention, the associated points are an area that is independent of the switching elements. Moreover, some embodiments of the present invention have additional associated points' such associated points are not directly related to the switching elements. In general, the associated points include an active electrode layer such as indium tin oxide (ITO) or other conductive layer and are connected to a nearby color point or # other means of power. For opaque associated points, a black matrix layer can be attached to the bottom of the conductive layer to form an opaque area (opaqUe area). In some embodiments of the invention, a black matrix can be fabricated on the side of the indium tin oxide (ITO) glass substrate to simplify the fabrication process. Additional correlation points improve the effective use of the display area, thereby improving the aperture ratio and forming a plurality of liquid crystal domains within the color point. Certain embodiments of the present invention use association points to improve color performance. For example, a careful ❿ Placement can allow the color of nearby color points to be modified from useful color patterns. Discrete field amplification regions (FFARs) are more versatile than associated points. In particular, the discrete field magnifying region may have a non-rectangular shape, although generally the overall shape of the magnified field magnified region may be divided into a rectangular shape group. Furthermore, the discrete field amplification region extends along one side of more than one color point. Moreover, in some embodiments of the invention, discrete field amplification regions may be used in place of associated points. In particular, in these embodiments the 'discrete field amplification region not only covers the device component region, but also extends along more than one color dot side of the adjacent device element 201131268 region. The trans-planetary discrete field amplifier (EPFFAS) is a partially polarized structure and is on a different horizontal plane from the color point of a pixel. In general, a transplanar discrete field amplifier (EPFFAS) is placed at the edge of the adjacent color point to amplify the discrete electric field of the color point. One benefit of using a trans-plane discrete field amplifier is that the color points can be placed closer together to improve the brightness of a display. The trans-plane discrete field amplifier will be detailed later. In general, the color point, the device component area, and the associated point are arranged in a lattice pattern and are separated from each other by a horizontal dot spacing HDS and a vertical dot spacing VDS. When the discrete field amplification region is used instead of the associated point, a portion of the discrete field amplification region is also placed in the lattice pattern. In some embodiments of the invention, multiple vertical dot pitches and multiple horizontal dot pitches may be used. Each color point, associated point, and device component area is in a first dimension (eg, vertical direction) having two adjacent elements (eg, color point, associated point, or device component area) and in a second dimension ( As in the horizontal direction, there are two adjacent neighbors. Furthermore, two adjacent elements can be aligned or moved. Each color point has a color point height CDH and a color point width CDW. Similarly, each associated point has an associated point height ADH and an associated point width ADW. Furthermore, each device component region has a device component region height DCAH and a device component region width DCAW. In some embodiments of the invention, the color points, associated points, and device component regions are the same size. However, in some embodiments of the invention, the color points, associated points, and device component regions may be of different sizes or shapes. For example, in the case of the present invention, the 'associated point has a height with a small color point. In many applications, the degree of coloring point is improved to improve the stability of the multi-region vertical alignment (mva) structure and to improve optical transmission to increase display brightness. 4(a) and 4(b) show different dot polarity patterns of a pixel design 41〇 (such as the numbers 410+ and 410- described later), and the pixel design 41〇 is usually made.

用,具有-切換元件點反轉驅動模式的顯示器上。在實際 的知作上’-晝素將在每—影像頁框間之―第―點極性圖 案與二第二點極性圖案之間做切換。為了清楚說明,第一 色刀里的第一色點具有一正極性之點極性圖案,指的是正 Ιά U14 1 t (positive dot polarity pattern) ° ^ , 2的第-色點具有—負極性之點極性圖案,指的是負點 ®t (negative dot polarity pattern) 〇 ^ 4(a) 告畫素設計410具有一正點極性圖案(係標示為4則, ^旦素設計41G具有—負點極性圖案(係標示為410-)。再 在不同畫素设計中每一被極化元件的極性係以,,+,,表示 正極性,以,,—,,表示負極性。 —里素設計410具有三個色分量cc—uc」及cc 里包括有三色點(⑶丨Gr dGts)。為了清楚說明, =,為CD—X—γ’其令’ χ代表一色分量(如圖4⑻·4丨 到7佥至13),且γ表示一點數字(如圖4(a)-4(b)所示從 410也包括作為每一色分量的一切換元 (才示不為SE 1、SE 2及SF1 Μ IV »从达— ADH h 、 — 做為母一色分量(標示 ~ —,,、中I為色分量,j為關聯點 -裝置元件區域係表示成分別地圍繞圍繞:一切換:彳 19 201131268 SEJ、SE_2 及 SE_3,並表示為 DCA—卜 DCA—2 及 DCA 3。 畫素設計410的第一色分量ccj係具有三色點Used on a display with a - switching element dot inversion drive mode. In the actual knowledge, the 昼 昼 will switch between the first-point polarity pattern and the second-second polarity pattern between each image frame. For clarity, the first color point in the first color knives has a positive polarity pattern, which refers to the positive polarity U14 1 t (positive dot polarity pattern) ° ^ , the first color point of 2 has a negative polarity Point polarity pattern refers to negative dot polarity pattern 〇^ 4(a) The pixel design 410 has a positive dot polarity pattern (labeled as 4, and the 41D has a negative polarity) The pattern (labeled as 410-). In each of the different pixel designs, the polarity of each polarized component is,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 410 has three color components cc-uc" and cc includes three color points ((3) 丨 Gr d dts). For clarity, =, is CD-X-γ', which makes ' χ represents a color component (Figure 4 (8) · 4丨 to 7佥 to 13), and γ represents a point number (as shown in Figures 4(a)-4(b), 410 also includes a switching element as a component of each color (not shown as SE 1, SE 2 and SF1 Μ IV » from 达—ADH h , — as the parent color component (marking ~ —, , , medium I is the color component, j is the associated point - device component area system To surround respectively shown as: a switch: left foot 19 201131268 SEJ, SE_2, and SE_3, and is expressed as BU DCA-2 DCA- DCA 3. pixel design 410 and a first color component has three color dots based ccj

CD—l — l、CD—1 一2 及 CD—1一3。色點 CD丄i、CD12 及 CD_1 一3係形成一攔且被一水平點間距HDS1所分隔。換句 話說’色點CD—1_1、〇>丄2及CD丄3係垂直地配向且 水平地被水平點間距HDS1所分隔。再者,色點cd t i 及CD丄2係、由水平點偏移4 HD〇1戶斤水平地抵銷,而水 平點偏移夏HD01係等於水平點間距HDS1加上色點寬产 CDW。然而’色點⑶力及CD—匕2係電性地連接到= …’占CD-1-1及CD-1-2的底部。相似地,色點CD_1—2及 CD_1—3係電性地連接到色點CD—丨_2及cd_】_3的底部。 在畫素設計物中,切換元件SE—〗係位在色分量cc—】下 方。切換元件SE-1係耦接到色點CD—1J、CDJ——2及 CD—1—3的電極,以控制色點CD—〗一〗、cd—I—2及·3 的電壓極性與電壓量/大小。 —_ 一― 相似地,晝素設計彻的第二色分量⑺CD-1 - l, CD - 1 - 2 and CD - 1 - 3. The color points CD丄i, CD12 and CD_1-3 form a barrier and are separated by a horizontal dot spacing HDS1. In other words, the color points CD-1_1, 〇> 丄2 and CD丄3 are vertically aligned and horizontally separated by the horizontal dot pitch HDS1. Furthermore, the color points cd t i and CD 丄 2 are horizontally offset by the horizontal point offset 4 HD 〇 1 jin, while the horizontal point offset summer HD01 is equal to the horizontal point spacing HDS1 plus the color point wide production CDW. However, the 'color point (3) force and CD-匕2 are electrically connected to = ...' to the bottom of CD-1-1 and CD-1-2. Similarly, the color points CD_1-2 and CD_1-3 are electrically connected to the bottoms of the color points CD-丨_2 and cd_]_3. In the pixel design, the switching element SE_ is tied below the color component cc-]. The switching element SE-1 is coupled to the electrodes of the color points CD-1J, CDJ-2, and CD-1 to control the voltage polarities of the color points CD-〗1, cd-I-2, and The amount of voltage / size. —_一— Similarly, the second color component of the element design (7)

^2-1' CD-2-2 ^ cd_2_3 〇 . CD_V 及CD—2—3係設置成—襴,且被水平關距h所分隔 因此’色點 CD 2 1、CD 9 m。、 , .,. --及CD_2_3係垫直地配向j 點間距刪所垂直地分隔。然而,色點CD丄 2—2係電性地連接到色點CD—2—夏及⑶―2一2的肩 二目=色,點CD_2_2及CD」—3係電性地連接到色點 ^2 ^ ―2」的底部。城元件W係位在色分量 口 切換元件SE~2係輕接到色點CD 2卜CD 2 2 ^ CD_2_3 ,(J ^ ^ c〇^i ^c〇-2-3 20 201131268 的電壓極性與電壓量/大小。第二色分量cc—2係與第一色 分量CC—1垂直地配向,且以一水平點間距HDS2而與第 一色分S CC—1相互分隔,因此色分量cc一2及CCJ係由 -水平色分量偏S 4 η C C 0 i所抵消,而水平色分量偏移量 HCC01係等於兩倍的水平點間距HDS1加上三倍的色點寬 度CDW再加上水平點間距HDS2。 相似地,晝素設計410的第三色分量cc_3係具有三 色點 CD—3—1、CD_3_2 及 CD_3—3。色點 CD_3_1、CD_3_2 _ 及CD—3—3係設置成一攔,且被一水平點間距HDSl所分 隔。因此色點CD—3一l、CD-3一2及CD—3 3係垂直地配向, 且以水平點間距HD S1所垂直地分隔。然而,色點CD_3_ j 及CD_3_2係電性地連接到色點CD一及CD一3—2的底 部。相似地,色點CD_3_2及CD_3一3係電性地連接到色點 CD一3—2及CD—3—3的底部。切換元件SE-3係位在色分量 cc」下方。切換元件SE_3係耦接到色點cd__3_1、CD_3_2 及CD-3-3的電極’以控制色點CD—3—1、CD_3_2及CD 3 3 • 2壓極性與電壓量/大小。第三色分量cc:3-係與第:色 刀里CC一2垂直地配向,且以一水平點間距HDS2而與第 —色分夏CC—2相互分隔,因此色分量cc—3及cc_2係由 一水平色分量偏移量HCC01所抵消。 為了清楚說明,晝素設計410的色點係以圖闡釋色點 具有相同的色點寬度CDW。再者,在畫素設計41〇中所有 色點具有相同的色點高度CDH。 晝素設計410亦可包括關聯點ad_1_1、AD_1_2、 AD—2—1、AD—2—2、AD_3_1 及 AD_3_2。在晝素設計 410 201131268 中’關聯點係為具有一關聯點寬度AD W(在圖4(a)中未示) 及一關聯點高度ADH(在圖4(a)中未示)的矩形。 如圖4(a)所示’關聯點係被設置在畫素設計41〇的色 點之間。特別是’關聯點AD_1_1係被設置在色點CD_1_1 及CD—1一2之間,且關聯點ad—1_2係被設置在色點 CD-1-2及CD-1—3之間。相似地,關聯點AD__2_1係被設 置在色點CD_2_1及CD_2_2之間,且關聯點AD_2—2係被 δ又置在色點CD一2_2及CD—2_3之間’而關聯點AD_3_1 係被設置在色點CD—3一丨及CD」—2之間,且關聯點 AD_3_2係被設置在色點CD_3_2及CD_3_3之間。關聯點 係水平地以一水平關聯點間距HADS(圖4(a)中未示)相間 隔,並垂直地以一垂直關聯點間距VADS(圖4(a)中未示) 相間隔。 晝素設計410係被配置,以便關聯點可從一鄰近畫素 接收極性。特別是,一第一導體係耦接到一關聯點,以從 在目前晝素上方之畫素接收極性,一第二導體係耦接到切 換元件,以提供極性給在目前畫素下方之一畫素的一關聯 點。舉例來說,耗接到關聯點AD_1 _1之電極的導體411, 奋向上延伸連接目前晝素上方之晝素的導體421 ,以接收 極性(請參考圖4(c))。耦接到切換元件SE一1的導體421係 向下延伸連接目前畫素下方之畫素的導體41[。導體412 及422對關聯點AD_1_2而言係用於相同目的。相似地, 導體414及424對關聯點AD_2—1而言係用於相同目的。 導體4.15及425對關聯點AD_2—2而言係用於相同目的。 導體417及427對關聯點AD—3—1而言係用於相同目的。 22 201131268 導體418及428對關聯點ad_3_2而言係用於相同目的。 ,,色點、關聯點及切換元件的極性,係以正號,,+,,及負號” 一’’表不。因此在圖4(a)t,顯示晝素設計41〇+的正點〜 性、切換元件(如切換元件SE J及SE_3)、色點(例如色點 CD丄1、CD12、CD_L3、CD—3」、3—2 及 3 3 及關聯點AD力、AD又2,係具有正極性。然而,切換) 兀件SE_2、色點CD—2J ' CD—2_2、CD又3、關聯點 ——1、AD—1一2、AD—3J、AD_3_2 係具有負極性。^2-1' CD-2-2 ^ cd_2_3 〇 . CD_V and CD—2—3 are set to —襕, and are separated by horizontal clearance h. Therefore, the color point CD 2 1 , CD 9 m. , , . , . -- and CD_2_3 are directly spaced apart by the j-point spacing. However, the color point CD丄2-2 is electrically connected to the color point CD-2—summer and (3)―2 to 2 shoulders=color, and the dots CD_2_2 and CD”-3 are electrically connected to the color point. The bottom of ^2 ^ ―2”. The city component W is in the color component port switching element SE~2 and is lightly connected to the color point CD 2 CD CD 2 2 ^ CD_2_3 , (J ^ ^ c〇^i ^c〇-2-3 20 201131268 voltage polarity and The amount of voltage/size. The second color component cc-2 is vertically aligned with the first color component CC-1, and is separated from the first color component S CC-1 by a horizontal dot pitch HDS2, so the color component cc is 2 and CCJ are offset by the horizontal color component offset S 4 η CC 0 i , and the horizontal color component offset HCC01 is equal to twice the horizontal dot pitch HDS1 plus three times the color dot width CDW plus the horizontal point The pitch is HDS 2. Similarly, the third color component cc_3 of the pixel design 410 has three color points CD_3-1, CD_3_2 and CD_3-3. The color points CD_3_1, CD_3_2 _ and CD-3-3 are set as one stop. And separated by a horizontal dot pitch HDS1. Therefore, the color dots CD-3, CD-3-2, and CD-3 are vertically aligned, and vertically separated by a horizontal dot pitch HD S1. However, the color point CD_3_j and CD_3_2 are electrically connected to the bottom of the color point CD 1 and CD 3-1. Similarly, the color points CD_3_2 and CD_3-3 are electrically connected to the color point CD 2-3 and CD. The bottom of 3-3. The switching element SE-3 is below the color component cc". The switching element SE_3 is coupled to the electrodes of the color points cd__3_1, CD_3_2 and CD-3-3 to control the color point CD_3-1. , CD_3_2 and CD 3 3 • 2 voltage polarity and voltage amount/size. The third color component cc: 3-series and the first: color knife CC-2 are vertically aligned, and with a horizontal dot spacing HDS2 and the first color The summer CC-2 is separated from each other, so the color components cc-3 and cc_2 are offset by a horizontal color component offset HCC01. For clarity, the color point of the halogen design 410 is to illustrate that the color points have the same color. The dot width CDW. Furthermore, all the color points in the pixel design 41〇 have the same color point height CDH. The pixel design 410 may also include the associated points ad_1_1, AD_1_2, AD_2-1, AD-2-2. AD_3_1 and AD_3_2. In the pixel design 410 201131268, the 'associated point system has an associated point width AD W (not shown in Figure 4 (a)) and an associated point height ADH (not shown in Figure 4 (a) The rectangle is as shown in Fig. 4(a). The association point is set between the color points of the pixel design 41〇. In particular, the 'association point AD_1_1 is set in Point CD_1_1 and CD-1 to 2, and the associated point ad-1_2 is set between the color points CD-1-2 and CD-1-3. Similarly, the associated point AD__2_1 is set at the color point CD_2_1 And CD_2_2, and the associated point AD_2-2 is set by δ between the color points CD-2_2 and CD-2_3' and the associated point AD_3_1 is set at the color point CD-3 and CD"-2 Between, and the associated point AD_3_2 is set between the color points CD_3_2 and CD_3_3. The associated points are horizontally spaced by a horizontal associated point spacing HADS (not shown in Figure 4(a)) and vertically spaced by a vertical associated point spacing VADS (not shown in Figure 4(a)). The pixel design 410 is configured such that the associated points can receive polarity from a neighboring pixel. In particular, a first guiding system is coupled to an associated point to receive polarity from a pixel above the current element, and a second guiding system is coupled to the switching element to provide polarity to one of the current pixels. An associated point of the pixel. For example, the conductor 411, which is connected to the electrode of the associated point AD_1_1, extends upwardly to connect the conductor 421 of the element above the current element to receive the polarity (please refer to FIG. 4(c)). The conductor 421 coupled to the switching element SE-1 extends downwardly to the conductor 41 of the pixel below the current pixel. Conductors 412 and 422 are used for the same purpose for the associated point AD_1_2. Similarly, conductors 414 and 424 are used for the same purpose for associated point AD_2-1. Conductors 4.15 and 425 are used for the same purpose for the associated point AD_2-2. Conductors 417 and 427 are used for the same purpose for the associated point AD-3-1. 22 201131268 Conductors 418 and 428 are used for the same purpose for the associated point ad_3_2. ,, the color point, the associated point, and the polarity of the switching element are represented by a positive sign, a +, and a minus sign. Therefore, in Figure 4(a)t, the punctuality of the element design 41〇+ is displayed. ~ Sex, switching components (such as switching components SE J and SE_3), color points (such as color point CD丄1, CD12, CD_L3, CD-3), 3-2 and 3 3 and associated points AD force, AD and 2, The system has a positive polarity. However, the switching element SE_2, the color point CD-2J 'CD-2_2, the CD 3, the associated point-1, the AD-1-2, the AD-3J, and the AD_3_2 have a negative polarity.

圖4(b)係表示具有負點極性圖案的畫素設計41〇。對 負點極性圖案而言,切換元件SE—1及SE—3、色點CD丨卜 CD_1—2、CD丄3、CD_3J、CD丄2、CD—3—3 及關聯點 AD-2_1 AD—2—2,係具有負極性。然而,切換元件π 2、 色點 CD—2一 1、CD—2—2、CD2—3 及關聯點 AD1_〔、 AD-1-2、AD-1—3係具有正極性。 如上所述,若鄰近元件具有相反極性者,在每一色點 的離散場會被放大。晝素設計係利用離散場放大區域 來強化並穩定在液晶結構中之多區域的形成。一般而言, =偏極元件的極性係被指定,以使—第—極性的色點具有 第二極性的鄰近已偏極元件。舉例來說,對晝素設計41〇(如 圖4(a)所不)而言,色點CD—〗」具有正極性。然而,鄰近 已偏極元件(關聯點ADj—2與色點CD一2J)係具有負極 性。因此色點CD一1一3的離散場被放大。再者,如下所述, 極性反轉機制係也在顯示層級(diSplay level)中實現,因為 色點CD_3_3具有正極性,以使其他鄰靠色點cD_3_3之畫 素的色點具有負極性(請參考圖4(d))。 23 201131268 使用圖4⑷與圖4(b)之畫素設計的畫素,可被使用在 利用切換元件點反轉驅動卿之顯示器。目4⑷係表示顯 不斋450的一部分,顯示器42〇係使用畫素設計楊的畫 fP(〇’ 〇)、pg,〇)、P(()’ 】)及 ρ〇,υ,而晝素設計 41〇 七卞八有切換元件點反轉驅動機制。顯示器450可具有數 千列’且每—列上具核千畫素。顺行仙如圖^⑷所 不的方式從如目4⑷所示的部份連續。為了清楚說明,# 制切換元件的間極線(gate line、細Iine)與源極線(贿二 Ime、data Hne)係在圖4(e)中被省略。為了更好以圖闊釋每 一畫素’每一畫素的區域係被遮蔽,此遮蔽在圖4⑷中係 僅為_目的,並沒有功能上的意義。在顯示器45〇中, 晝素係被配置以使在-列的所有晝素具有相同的點極性圖 正或負)’且每一連續的列亦在正、負點極性圖案之間 交#因此’畫素p(0,0)及ρ〇, ^具有正點極性圖案, 畫素P(0 ’ 1)與PO ’ 0)具有負點極性圖案。然而,在下一 個頁框中’畫素係將切換點極性㈣。因此—般而言,一 晝素P(x’y)在當x+y為偶數時具有一第一點極性圖°案,在 當χ+y為奇數時具有-第二點極性圖案。在每—晝素列上 的畫素係垂直地配向且水平地相互分隔,以便晝素 的色點與-鄰近晝素最左方的色點以—水平點間距hds3 相互分隔。在-晝素行上的畫素係水平地配向,且被以一 垂直點間距VDS3所分隔。 如上所述,第一晝素之關聯點係從一第二晝素的換元 件接收極性。舉例來說’晝素p(〇,〇)之關聯點ad—2的 電極,係經由晝素p(0 ’ 0)的導體412與晝素p(〇,U的導 24 201131268 體411而耦接刮晝素p(0,i)的切換元件SE—丨。相似地, 晝素P(〇,〇)之關聯點AD—3一1的電極’係經由晝素p(〇, 0) 的導體417與晝素P(0’丨)的導體427而耦接到畫素以〇, 1) 的切換元件SE—3。再者,如上所述,鄰近具有二第一電 極之已偏極元件的極性係具有一第二極性。舉例來說,書 素P(0 ’ 0)的色點CD—3一3具有正極性,且畫素PG,〇)的 色點CD__1_1具有負極性。 在本發明特定的實施例中,每一色點具有14〇微米 • (miCr〇meterS)的寬度及420微米的高度。每一關聯點具有^ 微米的一關聯點寬度、37〇微米的一關聯點高度。水平點 間距HDS1係為19微求,垂直點間距VDS3係為%微米, 水平關聯點間距HADS1係為15微米。 ® 5⑻及g 5(b)係表示一晝素設計51〇之不同點極性 圖案,其晝素設計5H)係通常使用在具有一切換元件點反 2驅動機制的顯示H巾。在實際的操作中,—畫素係會在 每一影像頁框間的-第一點極性圖案與一第二點極性圖案 •之間作切換。為清楚說明,第一色分量之第一色點具有一 正極性的點極性㈣,係當作是正的點極性圖荦。相1地, 第:色分量之第-色點具有一負極性的點極性案圖:反:當 作疋負的點極性圖案。尤其是在圖5(a)中,晝素具有 一正的點極性圖案(標示為510 + ),在圖5(b)中’晝素51〇 的點極性圖案(標示為51〇 —)。再者,在不—同晝素 母-已偏極化元件的極性’係以「+」表示正極性, 或以一」表示負極性。 晝素設計510具有三個色分量cc—〗、cc 2及cc 3。 25 201131268 二!楚說明’三色點係表示為 ^ γ Λ '丁、為色刀里(在圖5(a)_5(b)_從1到3) 5H)亦^號(在圖5⑻,中從1到3)。晝素設計 SE 2’、、S=:母—ί分量中的一切換元件(標示為SE」、 場放大哭及於母—色分量中的二已偏極化跨位面離散 %放大益(係標示為卿从丄J,其中1為色分量,;為跨 場放大器編號)。切換MSE」、SE 2、SE ^係 ΓΕ 一裝置元件區域係顯示在每-切換元件 ^ ' ~ 、SE-3的周圍,並分別地標示為DCA 1、 DCA—2、DCA_3。 — 晝素設計510的第一色分量cc CD:1:^CD_L2,cD_1_3〇 c; 1 3 ^形成-列並以_水平關距HDS1相間隔。換句話說,Fig. 4(b) shows a pixel design 41〇 having a negative dot polarity pattern. For the negative polarity pattern, switching elements SE-1 and SE-3, color point CD丨CD_1-2, CD丄3, CD_3J, CD丄2, CD-3-3 and associated point AD-2_1 AD— 2-2, has a negative polarity. However, the switching element π 2, the color point CD-2-1, the CD-2-2, the CD2-3, and the associated points AD1_[, AD-1-2, AD-1-3 have positive polarity. As noted above, if adjacent elements have opposite polarities, the discrete fields at each color point will be amplified. The halogen design uses a discrete field amplification region to enhance and stabilize the formation of multiple regions in the liquid crystal structure. In general, the polarity of the =polarger element is specified such that the color point of the -first polarity has a second polarity adjacent to the polarized element. For example, for a halogen design 41 (as shown in Fig. 4(a)), the color point CD-〗 has a positive polarity. However, the adjacent polarized elements (correlation point ADj-2 and color point CD-2J) have negative polarity. Therefore, the discrete field of the color point CD-1 to 3 is amplified. Furthermore, as described below, the polarity inversion mechanism is also implemented in the display level (diSplay level) because the color point CD_3_3 has a positive polarity so that the color points of other pixels adjacent to the color point cD_3_3 have a negative polarity (please Refer to Figure 4(d)). 23 201131268 The pixels of the pixel design using Fig. 4 (4) and Fig. 4 (b) can be used to drive the display of the panel using the switching element dot inversion. Item 4 (4) indicates a part of the display, and the display 42 uses the pixel design of the paintings fP (〇' 〇), pg, 〇), P (()' 】) and ρ〇, υ, and 昼Design 41〇七卞8 has switching element point inversion driving mechanism. Display 450 can have thousands of columns' and each column has a nuclear megapixel. The cis line is continuous from the portion shown in Fig. 4(4) as shown in Fig. 4(4). For the sake of clarity, the gate line, the fine Iine, and the source line (Ime, data Hne) of the # switching element are omitted in Fig. 4(e). In order to better explain each pixel's area of each pixel is shaded, this shadow is only for the purpose of Figure 4 (4), and has no functional significance. In the display 45A, the halogen is configured such that all the pixels in the - column have the same dot polarity pattern positive or negative) and each successive column is also crossed between the positive and negative dot patterns. 'Pixels p(0,0) and ρ〇, ^ have a punctual polarity pattern, and pixels P(0' 1) and PO '0) have a negative dot polarity pattern. However, in the next page frame, the pixel will switch the polarity of the point (4). Thus, in general, a morpheme P(x'y) has a first point polarity pattern when x+y is even, and a second point polarity pattern when χ+y is odd. The pixels on each of the alizarin columns are vertically aligned and horizontally separated from each other such that the color point of the alizarin is separated from the leftmost color point of the adjacent alizarin by a horizontal dot spacing hds3. The pixels on the enamel line are horizontally aligned and separated by a vertical dot pitch VDS3. As described above, the associated point of the first element receives the polarity from the second element of the second element. For example, the electrode of the associated point ad-2 of the alizarin p(〇,〇) is coupled via the conductor 412 of the alizarin p(0'0) and the alizarin p (〇, U's guide 24 201131268 body 411 The switching element SE-丨 of the scraper p(0, i) is similarly. Similarly, the electrode of the association point AD-3 of the alizarin P (〇, 〇) is via the pixel p(〇, 0) The conductor 417 and the conductor 427 of the halogen P (0' 丨) are coupled to the switching element SE-3 of the pixel 1, 1). Further, as described above, the polarity of the polarized element having the two first electrodes has a second polarity. For example, the color point CD-3-3 of the book P(0'0) has a positive polarity, and the color point CD__1_1 of the pixel PG, 〇) has a negative polarity. In a particular embodiment of the invention, each color point has a width of 14 μm • (miCr〇meterS) and a height of 420 μm. Each associated point has an associated point width of ^ microns and an associated point height of 37 μm. The horizontal point spacing HDS1 is 19 micro-finish, the vertical point spacing VDS3 is % micron, and the horizontal correlation point spacing HADS1 is 15 microns. ® 5 (8) and g 5 (b) represent a different point polarity pattern of a single element design, and its halogen design 5H) is usually used in a display H-zone with a switching element point-to-two drive mechanism. In actual operation, the pixel system switches between the first point polarity pattern and the second point polarity pattern between each image frame. For clarity, the first color point of the first color component has a positive polarity (4) and is considered to be a positive dot polarity map. Phase 1 , the first color point of the color component has a negative polarity dot pattern: inverse: as a negative point polarity pattern. In particular, in Fig. 5(a), the halogen has a positive dot polarity pattern (labeled 510 + ), and in Fig. 5 (b), the dot polarity pattern (labeled 51 〇 -). Further, the polarity of the non-homogenous mother-polarized element is represented by "+" as a positive polarity or by a "negative". The halogen design 510 has three color components cc-〗, cc 2, and cc 3. 25 201131268 II! Chu explained that the 'three-color point system is expressed as ^ γ Λ ' Ding, for the color knife (in Figure 5 (a) _5 (b) _ from 1 to 3) 5H) also ^ number (in Figure 5 (8), From 1 to 3). A switching element (marked as SE) in the SE 2', S=: mother- ί component, a field-amplified crying, and a two-polarized trans-planetary dispersion in the mother-color component. It is marked as 丄 from 丄J, where 1 is the color component, and is the cross-field amplifier number.) Switch MSE”, SE 2, SE ^ system ΓΕ A device component area is displayed in each-switching element ^ ' ~, SE- Around 3, and labeled DCA 1, DCA-2, DCA_3, respectively - The first color component cc CD of the halogen design 510: 1: ^ CD_L2, cD_1_3 〇 c; 1 3 ^ form - column and _ level The distance is spaced from the HDS1. In other words,

點CD_1」、CD丄2、CD—1—3係垂直地配向且水平地以 水平點間距HDS1相間隔。再者,色點CD =平點偏移量H D 〇 1而水平地偏移,其中水平點偏 私f D01係等於水平點間距助81加上色點寬度CDW。 然而色點⑶-1-1與CD」-2係電性地連接在色點CD丄1 與CD—1—2的底部。相似地,色點CD—I〗與CD—I)係電 性地連接在色點CD丄2與CD_L3的底部。在畫素設計 51〇令’切換元件SE—!係位在色分量cc 1下方。切換元 件se」係耗接到色點CD丄卜CD—l2、cd—l3的電極, 二控制色點CD」J、CD丄2、CD_1_3的電壓極性及電壓 量/大小。 相似地,晝素設計51〇的第二色分量cc—2係具有三 26 201131268 色點 CD一2—1、CD—2一2、CD_2_3。色點 CD一2_1、CD_2_2、 CD一2一3係形成一列並以一水平點間距hdsi相間隔。因 此’色.點CD一2J、CD—2一2、CD_2_3係垂直地配向且水平 地以水平點間距HDS1相間隔。然而,色點CD 一 丨與 CD—2—2係電性地連接在色點CD-2—丨與cd一2—2的底部。 相似地,色點CD—2—2與CD一2一3係電性地連接在色點 CD—2一2與CD_2_3的底部。切換元件SE_2係位在色分量 CC—2下方。切換元件SE—2係耦接到色點cd」」、 φ CD-2-2、CD-2-3 的電極’以控制色點 CD_2_1、CD 2 2、 CD_2_3的電壓極性及電壓f/大小。第二色分量π)-係 垂直地與第一色分量CC-1配向,且與第-色分量CC」 以一水平點間距HDS2相間隔,因此,色分量cc—2與CC〕 係以-水平色分量偏移量HCC〇1水平地偏移,其中水平色 分量偏移量HCCOl係等於兩倍的水平點間距Η·加上三 倍的色點寬度CD W再加上水平點間距HDS2。 相似地’晝素5又af 510的第二色分量cc—3係且有三 •色點 CD-3—'、⑺―3—2、CD—3—3。色點 CD_3—「、CD=3—二 CD」—3係形成-列並以—水平點間距刪丨相間隔。因 此’色點CD一3 J、CD—3一2、cd_3_3係垂直地配向且水平 地以水平點間距刪1相間隔。然而,色點CD 3】盘 CD—3_2係電性地連接在色點CD」」與CD—3—2的底部。、 相似地’色,點CD一3—2肖CD_3一3係、冑性地連接在色點 CD_3_2與CD—3_3的底部。切換元件SE—3係位在色分量 CC一3下方。切換元件SE__3係耦接到色點cD」卜 CD_3_2、CD丄3的電極,以控制色點CD」卜cd ”、 27 201131268 CD_3_3的電壓極性及電壓量/大小。第三色分量cc_3係 垂直地與第二色分量CC_2配向,且與第二色分量CC 2 以一水平點間距HDS2相間隔,因此,色分量CC_3與CC_2 係以一水平色分量偏移量HCC01水平地偏移。 為清楚說明,晝素設計510的色點係以相同的色點寬 度CDW進行圖解說明。再者,在晝素設計51〇中的所有 色點具有相同的色點高度CDH。然而,本發明的某些實施 例中’可具有不同色點寬度及不同的色點高度。 晝素設計510亦包括跨位面離散場放大器 EPFFA_1_1、EPFFA一 1—2、EPFFA_2—1、EPFFA—2一2、 EPFFA_3_1及EPFFA_3—2。在畫素設計510中,跨位面 離散場放大器係為具有一跨位面離散場放大器寬度 EPFFAW(在圖5(a)中未示)及一跨位面離散場放大器高度 EPFFAH(在圖5(a)中未示)的矩形。 如圖5(a)所示,跨位面離散場放大器係設置在晝素設 計510的色點之間。尤其是,跨位面離散場放大器 EPFFA_1_1係設置在色點CD_1_1與CD_1_2之間,跨位 面離散場放大器EPFFA_1_2係設置在色點CD_1_2與 CD_1_3之間。相似地,跨位面離散場放大器EPFFA_2_1 係設置在色點CD_2_1與CD_2_2之間,跨位面離散場放大 器EPFFA—2_2係設置在色點CD_2_2與CD_2__3之間;跨 位面離散場放大器EPFFA_3_1係設置在色點CD_3_1與 CD_3_2之間,跨位面離散場放大器EPFFA_3_2係設置在 色點CD_3_2與CD_3_3之間。雖然在圖5(a)及5(b)係顯示 出色點係接觸跨位面離散場放大器,但在圖5(c)中所圖解 28 201131268 說明的跨位面離散場放大器實際上卻是為在不同平面,其 中圖5(c)係表示從5-5’切線之晝素設計510的橫截面。 圖 5(c)係表示色點 CD_1_1、CD_1_2、CD_1_3、 CD_2_1、CD_2_2、CD—2—3、CD_3_1、CD_3—2、CD_3_3 及跨位面離散場放大器 EPFFA—1 — 1、EPFFA_1_2、 EPFFA_2_1、EPFFA_2_2、EPFFA_3_1、EPFFA_3_2 的橫 截面。色點係位在一第一平面,.而跨位面離散場放大器係 位在一第二平面。特別地,晝素設計510的跨位面離散場 φ 放大器係在色點下方。更特別的是,跨位面離散場放大器 的頂部係與色點的底部以一放大器深度間距ADS相間 隔。在本發明的其他實施例中,跨位面離散場放大器可在 色點上方。在這些實施例中,放大器深度間距ADS係從色 點的頂部量測到跨位面離散場放大器的底部。 因此,跨位面離散場放大器EPFFA_1_1可被描述成水 平地鄰近色點CD_1_1且水平地鄰近色點CD_1_2,但在相 對色點CD_1_1與CD_1_2的不同平面上。跨位面離散場放 φ 大器EPFFA_1_1亦可被描述成水平地鄰近色點CD_1_1且 水平地鄰近色點CD_1_2,但在相對色點CD_1_1與CD_1_2 之下的平面上。相似地,跨位面離散場放大器EPFFA_1_2、 EPFFA_2_1、EPFFA_2_2、EPFFA_3_1、EPFFA_3_2 係分 別地且水平地位在色點CD_1_2與CD_1_3之間、色點 CD_2_1 與 CD_2—2 之間、色點 CD—2—2 與 CD_2_3 之間、 色點CD_3_1與CD_3_2之間、色點CD_3_2與CD_3_3之 間,且位在色點的的不同平面上。 藉由使用跨位面離散場放大器,相對於在色點的平面 29 201131268 中使用已偏極化元件而言’色點可被設置得更靠近。降低 色點間距以增加顯示器的亮度與對比。 舉例來說,在畫素設計51 〇中,水平點間距hds 1 (亦 即在一色分量内之色點之間的間距)係等於跨位面離散場 放大器的寬度(EPFFA—W)。本發明的其他實施例甚至可具 有色點部分地重疊到跨位面離散場放大器,以更進一步降 低點間距。跨位面離散場放大器可由使用任何導體所形 成。然而,為使成本及流程步驟最小化,一般而言,跨位 面離散場放大器係使用-金屬層所形成,其制於切換元 件的形成。 晝素設計51〇係已被設計’以便跨位面離散場放大; 可^鄰近晝素接魏性。尤其是,―第—導體係搞㈤ =位面離散場放大器,以從在目前晝素上方的畫 咖切換元件,以㈣性心 旦素下方之旦素的跨位面離散場 搞接到關聯點EPFFA 1 1之雷心道Μ 举例采說 -又1:極的導體511李 已連接到目前晝素上方之一書辛 係〇上延4The dots CD_1", CD 丄2, and CD 1-3 are vertically aligned and horizontally spaced by the horizontal dot pitch HDS1. Furthermore, the color point CD = the flat point offset H D 〇 1 is horizontally offset, wherein the horizontal point offset f D01 is equal to the horizontal dot pitch assist 81 plus the color point width CDW. However, the color point (3)-1-1 and the CD"-2 are electrically connected to the bottom of the color points CD丄1 and CD-1. Similarly, the color point CD-I and CD-I) are electrically connected to the bottom of the color points CD丄2 and CD_L3. In the pixel design, the "switching element SE-!" is positioned below the color component cc1. The switching element se" is connected to the electrodes of the color point CD, CD-1, cd-1, and the voltage polarity and voltage/size of the control color point CD"J, CD2, CD_1_3. Similarly, the second color component cc-2 of the 昼 design 51 具有 has three 26 201131268 color points CD 2-1, CD-2 1-2, CD_2_3. The color points CD-2_1, CD_2_2, CD-22-3 form a column and are spaced by a horizontal dot spacing hdsi. Therefore, the dots CD-2J, CD-2-2, and CD_2_3 are vertically aligned and horizontally spaced by the horizontal dot pitch HDS1. However, the color point CD 丨 and CD 2-1 are electrically connected at the bottom of the color points CD-2 - 丨 and cd 1-2. Similarly, the color point CD-2-2 and the CD-22-3 are electrically connected to the bottom of the color points CD-2-2 and CD_2_3. The switching element SE_2 is located below the color component CC-2. The switching element SE-2 is coupled to the color point cd"", the electrodes of φ CD-2-2, CD-2-3" to control the voltage polarity and voltage f/size of the color points CD_2_1, CD2 2, CD_2_3. The second color component π)- is vertically aligned with the first color component CC-1, and is spaced apart from the first color component CC" by a horizontal dot pitch HDS2, and therefore, the color components cc-2 and CC] are - The horizontal color component shift amount HCC〇1 is horizontally shifted, wherein the horizontal color component offset amount HCCO1 is equal to twice the horizontal dot pitch Η plus three times the color dot width CD W plus the horizontal dot pitch HDS2. Similarly, the second color component cc-3 of the prime 5 and af 510 has three color points CD-3 - ', (7) - 3 - 2, and CD - 3 - 3. The color point CD_3 - ", CD = 3 - two CD" - 3 series formed - column and separated by - horizontal spacing. Therefore, the color dots CD-3J, CD-3-2, and cd_3_3 are vertically aligned and horizontally separated by a horizontal dot pitch. However, the color point CD 3] disk CD-3_2 is electrically connected to the bottom of the color point CD"" and the CD-3-2. Similarly, the 'color, point CD 2-3 xiao CD_3-3 series, is connected at the bottom of the color points CD_3_2 and CD-3_3. The switching element SE-3 is located below the color component CC-3. The switching element SE__3 is coupled to the electrodes of the color point cD"b_CD_3_2, CD丄3 to control the voltage polarity and voltage amount/size of the color point CD"bcd", 27201131268CD_3_3. The third color component cc_3 is vertically The second color component CC_2 is aligned with the second color component CC 2 by a horizontal dot pitch HDS2, and therefore, the color components CC_3 and CC_2 are horizontally offset by a horizontal color component offset HCC01. The color points of the alizarin design 510 are illustrated with the same color point width CDW. Furthermore, all color points in the alizarin design 51 have the same color point height CDH. However, some implementations of the invention In the example, 'there may have different color point widths and different color point heights. The pixel design 510 also includes a trans-plane discrete field amplifier EPFFA_1_1, EPFFA-1-2, EPFFA_2-1, EPFFA-2-2, EPFFA_3_1 and EPFFA_3- 2. In pixel design 510, the trans-plane discrete field amplifier is characterized by a straddle plane discrete field amplifier width EPFFAW (not shown in Figure 5(a)) and a straddle plane discrete field amplifier height EPFFAH (at a rectangle not shown in Fig. 5(a). As shown in Fig. 5(a), the trans-plane discrete field amplifier is placed between the color points of the pixel design 510. In particular, the trans-plane discrete field amplifier EPFFA_1_1 is placed between the color points CD_1_1 and CD_1_2, the straddle plane The discrete field amplifier EPFFA_1_2 is set between the color points CD_1_2 and CD_1_3. Similarly, the trans-plane discrete field amplifier EPFFA_2_1 is set between the color points CD_2_1 and CD_2_2, and the transposed surface discrete field amplifier EPFFA-2_2 is set at the color point. Between CD_2_2 and CD_2__3; the trans-plane discrete field amplifier EPFFA_3_1 is set between the color points CD_3_1 and CD_3_2, and the trans-plane discrete field amplifier EPFFA_3_2 is set between the color points CD_3_2 and CD_3_3. Although in Figure 5(a) and 5(b) shows an excellent point contact with a trans-plane discrete field amplifier, but the cross-plane discrete field amplifier illustrated in Figure 28(c) 28 201131268 is actually in a different plane, where Figure 5 ( c) shows the cross section of the halogen design 510 from the 5-5' tangent. Fig. 5(c) shows the color points CD_1_1, CD_1_2, CD_1_3, CD_2_1, CD_2_2, CD2-3, CD_3_1, CD_3-2. CD_3_3 and trans-plane discrete field amplifier EPFF A-1 — 1, the cross section of EPFFA_1_2, EPFFA_2_1, EPFFA_2_2, EPFFA_3_1, and EPFFA_3_2. The color point is in a first plane, and the trans-plane discrete field amplifier is tied in a second plane. In particular, the trans-plane discrete field φ amplifier of the halogen design 510 is below the color point. More specifically, the top of the trans-plane discrete field amplifier is separated from the bottom of the color point by an amplifier depth spacing ADS. In other embodiments of the invention, the trans-plane discrete field amplifier may be above the color point. In these embodiments, the amplifier depth spacing ADS is measured from the top of the color point to the bottom of the transposed surface discrete field amplifier. Therefore, the trans-plane discrete field amplifier EPFFA_1_1 can be described as being horizontally adjacent to the color point CD_1_1 and horizontally adjacent to the color point CD_1_2, but on a different plane of the relative color points CD_1_1 and CD_1_2. The trans-plane discrete field φ estrector EPFFA_1_1 can also be described as being horizontally adjacent to the color point CD_1_1 and horizontally adjacent to the color point CD_1_2, but on a plane below the relative color points CD_1_1 and CD_1_2. Similarly, the trans-plane discrete field amplifiers EPFFA_1_2, EPFFA_2_1, EPFFA_2_2, EPFFA_3_1, and EPFFA_3_2 are respectively horizontally positioned between the color points CD_1_2 and CD_1_3, between the color points CD_2_1 and CD_2-2, and the color point CD-2-2. Between CD_2_3, between color points CD_3_1 and CD_3_2, between color points CD_3_2 and CD_3_3, and on different planes of the color point. By using a trans-plane discrete field amplifier, the color points can be set closer relative to the use of polarized elements in the plane 29 201131268 of the color point. Reduce the color point spacing to increase the brightness and contrast of the display. For example, in pixel design 51, the horizontal dot spacing hds 1 (i.e., the spacing between color points within a color component) is equal to the width of the transposed surface discrete field amplifier (EPFFA-W). Other embodiments of the present invention may even have color points partially overlapping the trans-plane discrete field amplifier to further reduce the dot pitch. A trans-plane discrete field amplifier can be formed using any conductor. However, to minimize cost and process steps, in general, a trans-plane discrete field amplifier is formed using a metal layer that is formed by the switching elements. The alizarin design 51 has been designed to enlarge the discrete field across the plane; In particular, the “first-conductor system” (five) = plane-faced discrete-field amplifiers are connected to the discrete-fields of the cross-planes of the symplectic elements below the (four) spirulina Point EPFFA 1 1 Lei Xin Road Μ Example pick - and 1: pole conductor 511 Li has been connected to the current one of the books above the book Xin Xin 〇 4

A ^ ^ —瓦日7等體521以接收極性(ΊA ^ ^ — Vaughan 7 is 521 to receive polarity (Ί

參考圖5(d))。耦接到切換元件SE 2<从± t 凡仔的導體521,係向_ I伸以連接到在目前畫素下方之畫 面離散場放大器贿 :F=:導· 514與似對跨位面離散場放大; 又1係滿足相同的目的。導體 離散場放大器EPFFA 2 \對跨位1 ――係滿足相冋的目的。導體515 j 子7位面離散場放大器EPFFA—2—2係滿足相同的 的。導體517愈527對於仏 ~ '/ ” 于5位面離散場放大器EPFFA_3_1 ^ 30 201131268 滿足相同的目的。導體518與528對跨位面離散場放大器 EPFFA_3_2係滿足相同的目的。 色點、跨位面離散場放大器與切換元件的極性,係使 用符號「+」及「一」表示。因此在表示晝素設計510 + 之正的點極性圖案圖5(a)中,切換元件SE_1與SE_3、色 點 CD_1J、CD 丄2、CD—1—3、CD—3—1、CD—3_2、CD—3—3、 跨位面離散場放大器EPFFA_2_1、EPFFA_2_2係具有正極 性。然而,切換元件 SE_2、色點 CD_2_1、CD_2_2、CD_2_3、 φ 跨位面離散場放大器 EPFFA_1_1、EPFFA—1—2、 EPFFA_3_1、EPFFA_3_2 具有負極性。 圖5(b)係表示具有負的點極性圖案之晝素設計510。 對負的點極性圖案而言,切換元件SE_1與SE_3、色點 CD_1_1、CD丄2、CD_1_3、CD_3_1、CD_3_2、CD_3_3 及跨位面離散場放大器EPFFA_2 j、EPFFA_2_2係具有負 極性。然而,切換元件SE_2、色點CD_2_1、CD_2_2、CD_2_3 及跨位面離散場放大器EPFFA—1—1、EPFFA_1_2、 φ EPFFA_3_1、EPFFA_3_2 係具有正極性。 如上所述,若是鄰近元件具有相反極性的話,在每一 色點的離散電場係被放大。晝素設計510係使用跨位面離 散場放大器以強化並穩定在液晶結構中之多區域的形成。 一般而言,已偏極化元件的極性係已被指定,以便一第一 極性的一色點具有第二極性的鄰近已偏極化元件。舉例來 說,對畫素設計5 10(圖5(a))之正的點極性圖案而言,色點 CD_1_3具有正極性。然而鄰近已偏極化元件(跨位面離散 場放大器EPFFA_1_2與色點CD_2—1)係具有負極性。因 201131268 此,色點CD一 1_3的離散電場係被放大。再者,如上所述, 極性轉換機制係已在顯示器階段完成,以便因為色點 CD一3—3具有正極性,所以設置在色點CD—3—3鄰近之其他 晝素的色點具有負極性(請參考圖5(d))。 使用圖5(a)與5⑻之晝素設計510的畫素,係可被用 在使用切換元件點反轉驅動機制的顯示器上。圖5(d)係表 不顯示器550的一部分,而顯示器55〇係使用具有一切換 元件點反轉驅動機制之畫素設計5l0的畫素P(〇,〇)、?〇, 0)、P(0’ 1)、P(1 ’ 1)。顯示器550可具有數以千計列每 列有數以千計晝素。行與列係從如在圖5⑷中所顯示的部 分連續。為清楚說明,控制切換元件的閘極線與源極線在 圖5(d)中省略。為更佳圖解說明每一晝素,係遮蔽每一畫 素的區域;此遮蔽在圖5(d)中僅為圖解說明目的,並無功 能上的意義。在顯示器550巾,畫素係已被設置,以便在 同一列的畫素切換點極性圖案(正或負),及在同一行的畫 素亦在正的與負的點極性圖案之間切換。因此,畫素^厂 〇)與P〇, 1)具有正的點極性圖案,晝素p(〇,〇與p(卜〇) 具有負的點極性圖案。然而,在下一頁框的畫素係切換點 極性圖案。因此-般而言,當x+y為偶數時,一畫素阶, y)具有一第—點極性圖案;當,為奇數時,具—有一第二 點極性圖案。在每-晝素列的畫素係垂直地配向,且水平 地相間隔,以便-畫素的最右方色點與一鄰近晝素的最左 方色點以-水平.關距刪3相_。在—晝素行上的畫 素係水平地配向,且以—n直闕距彻3相間隔。 如上所述,第-畫素的跨位面離散場放大器係從一第 32 201131268 二晝素的切換元件接收極性。舉例來說,晝素P(0,0)之跨 位面離散場放大器EPFAA_1_2之電極,係經由畫素P(0, 〇)之導體512與晝素P(0, 1)之導體511而耦接到晝素P(0, 1)之切換元件SE_1。相似地,畫素P(0,0)之跨位面離散 場放大器EPFAA_3_1之電極,係經由晝素P(0,0)之導體 517與畫素P(0,1)之導體527而耦接到畫素P(0,1)之切 換元件SE_3。再者,如上所述,鄰近具有一第一極性之一 色點的已偏極化元件的極性,係具有一第二極性。舉例來 φ 說,晝素P(〇,0)的色點CD_3—3具有正極性,而晝素P(1, 0)的色點CD_1_1具有負極性。 在本發明的一特定實施例中,每一色點具有140微米 (micrometer)寬度,420微米高度。每一跨位面離散場放大 器具有4微米的跨位面離散場放大器寬度及375微米的跨 位面離散場放大器高度。水平點間距HDS1係為4微米。 垂直點間距VDS1係為4微米。垂直點間距VDS2係為4 微米。垂直點間距VDS3係為30微米。水平點間距HDS1 φ 係為4微米。放大器深度間距ADS係為0.4微米。 圖6(a)及6(b)係表示一晝素設計610之正的與負的點 極性圖案,其中晝素設計610可使用切換元件列反轉驅動 機制。晝素設計610的布局係類似於晝素設計510(圖5(a) 與5(b))。因此為簡單說明,僅描述其差異處。尤其是,所 有的色分量、跨位面離散場放大器、切換元件、導體及裝 置元件區域,在晝素設計610中其手法係同於晝素設計510 的配置。為清楚說明,畫素設計510的元件編號係在晝素 設計610中重覆。晝素設計610係增加三個額外的跨位面 33 201131268 離散場放大β及六個導體,已提供極性給跨位面離散場放 大器。再者,在晝素設計610中某些元件係調整成晝素設 計510(如下所述)。 特別地,晝素設計610係包括跨位面離散場放大器 EPFFA一1_3水平地位在色點cd—1—3與CD 2_1之間,跨 位面離散場放大器EPFFA_2—3水平地位在色點CD」」與 CD 一 3_1之間,及跨位面離散場放大器EpFFA_3_3水平地 鄰近色點CD一3—3的右側。跨位面離散場放大器 EPFFA丄3、EPFFA—2_3、EPFFA_3_3 係為在同一平面, 而跨位面離散場放大器EPFFA_1_1、EPFFA_1_2、 EPFFA_2 J、EPFFA 2—2、EPFFA—3 J、EPFFA_3 J2 亦同。 就如同晝素設計510 ’畫素設計610係已被設計,以 便跨位面離散場放大器可從一鄰近畫素接受極性。尤其 是,一第一導體係耦接到一跨位面離散場放大器以從目前 晝素上方的晝素接收極性,一第二導體係耦接到切換元件 以提供極性給目前晝素下方之一晝素的跨位面離散場放大 器。除包括在晝素設計510中之電極之外,晝素設計61〇 還包括電極613、616、619、623、626及629。尤其是, 耦接到關聯點EPFFA_1_3的導體613,係向下延伸連接到 目刖畫素上方之晝素的導體623以接收極性(請參考圖 6(d))。耦接到切換元件SEj的導體623係向下延伸連接 到目則晝素下方之晝素的導體613。導體616與526(是否 應為626)對跨位面離散場放大器EpFFA_2—3係滿足相同目 的。相似地,導體619與029對跨位面離散場放大器 EPFFA—3一3係滿足相同目的。 34 201131268 色點、跨位面離散場放大器與切換元件的極性,係使 用符號「+」及「一」表示。因此在表示晝素設計61〇 + 之正的點極性圖案圖6(a)中’所有切換元件(亦即切換元件 SE—1、SE—2、SE—3)及色點(亦即色點 CD—1_卜 CDj__2、 CD—1_3、CD_2」、CD_2_2、CD—2_3、CD_3J、CD—3 一2、 CD一3一3)係具有正極性。所有跨位面離散場放大器(亦即跨 位面離散場放大器 EPFFA_1_1、EPFFA_1_2、EPFFA 1 3、 EPFFA—21、EPFFA_2_2、EPFFA_2_3、EPFFA」—1、 φ EPFFA-3—2、EPFFA—3_3)係具有負極性。 圖6(b)係表示具有負的點極性圖案之畫素設計61〇。 對負的點極性圖案而言,所有切換元件(亦即切換元件 SE一1、SE一 2、SE—3)及色點(亦即色點 CD_1J、CDJ—2、 CD—1—3、CD_2 J、CD_2_2、CD_2_3、CD_3_J、CD—3—2、 CD 一 3_3)係具有負極性。所有跨位面離散場放大器(亦即跨 位面離散場放大器 EPFFA_1_1、EPFFA_1_2、EPFFA 1 3、 — EPFFA_2_1、EPFFA_2_2、EPFFA—2—3、EPFFA_3—1、 _ EPFFA—3—2、EPFFA_3_3)係具有正極性。 如上所述’若是鄰近元件具有相反極性的話,在每一 色點的離散電場係被放大。畫素設計610係使用跨位面離 散場放大器以強化並穩定在液晶結構中之多區域的形成。 一般而言,已偏極化元件的極性係已被指定,以便一第一 極性的一色點具有第二極性的鄰近已偏極化元件。舉例來 說,對畫素設計610(圖6(a))之正的點極性圖案而言,色點 CD_2—3具有正極性。然而鄰近已偏極化元件(跨位面離散 場放大器EPFFA_2_1與EPFFA—1—3)係具有負極性。因此, 35 201131268 色點CD丄3的離散電場雜放大。再者,如上所述,極 性轉換機制係已在顯示器階段完成,以便因為色點CD_3_3 :有負極性’所以設置在色點CD—L1鄰近之其他畫素的 色點具有負極性(請參考圖6(c))。 使用圖6⑻與6(b)之畫素設計610的畫素,係可被用 在使用切換元件列反轉驅動機制的顯示器上,其係比使用 切換元件點反轉驅動機制更便宜。圖6(c)係表示顯示器650Refer to Figure 5(d)). Coupling to the switching element SE 2 < from the conductor 521 of ± t 凡, to the _ I stretch to connect to the picture below the current pixel discrete field amplifier bribe: F =: guide · 514 and the like-to-parallel dispersion Field enlargement; another 1 system satisfies the same purpose. The conductor discrete field amplifier EPFFA 2 \ for the straddle 1 - is suitable for the purpose of the phase. The conductor 515 j 7-bit surface discrete field amplifier EPFFA-2-2 satisfies the same. The conductor 517 is 527 for 仏~ '/ ”. The 5-bit surface discrete field amplifier EPFFA_3_1 ^ 30 201131268 satisfies the same purpose. The conductors 518 and 528 have the same purpose for the trans-plane discrete field amplifier EPFFA_3_2. Color point, straddle plane The polarity of the discrete field amplifier and switching elements is indicated by the symbols "+" and "one". Therefore, in the point pattern 5(a) indicating the positive polarity design of the elementary design 510 +, the switching elements SE_1 and SE_3, the color point CD_1J, the CD 丄2, the CD 1-3, the CD 3-1, and the CD-3_2 CD-3-3, trans-plane discrete field amplifiers EPFFA_2_1, EPFFA_2_2 have positive polarity. However, the switching element SE_2, the color point CD_2_1, the CD_2_2, the CD_2_3, and the φ cross-plane discrete field amplifier EPFFA_1_1, EPFFA-1, 2, EPFFA_3_1, and EPFFA_3_2 have negative polarity. Figure 5(b) shows a halogen design 510 having a negative dot polarity pattern. For the negative dot polarity pattern, the switching elements SE_1 and SE_3, the color points CD_1_1, CD丄2, CD_1_3, CD_3_1, CD_3_2, CD_3_3, and the straddle-plane discrete field amplifiers EPFFA_2 j, EPFFA_2_2 have a negative polarity. However, the switching element SE_2, the color points CD_2_1, CD_2_2, CD_2_3 and the straddle-plane discrete field amplifiers EPFFA-1, 1, EPFFA_1_2, φEPFFA_3_1, and EPFFA_3_2 have positive polarity. As described above, if the adjacent elements have opposite polarities, the discrete electric field at each color point is amplified. The Alizarin Design 510 system uses a transplanar discrete field amplifier to enhance and stabilize the formation of multiple regions in the liquid crystal structure. In general, the polarity of the polarized element has been specified such that a color point of a first polarity has a second polarized adjacent polarized element. For example, for the positive dot polarity pattern of the pixel design 5 10 (Fig. 5(a)), the color point CD_1_3 has a positive polarity. However, adjacent polarized elements (cross-plane discrete field amplifier EPFFA_1_2 and color point CD_2-1) have negative polarity. As a result of 201131268, the discrete electric field of the color point CD-1_3 is amplified. Furthermore, as described above, the polarity switching mechanism has been completed in the display stage, so that since the color point CD-3-3 has a positive polarity, the color point of the other pixels disposed adjacent to the color point CD-3-3 has a negative electrode. Sex (please refer to Figure 5(d)). The pixels of the pixel design 510 using Figs. 5(a) and 5(8) can be used on a display using a switching element dot inversion driving mechanism. Fig. 5(d) shows a part of the display 550, and the display 55 uses a pixel P (〇, 〇) of a pixel design 5l0 having a switching element dot inversion driving mechanism. 〇, 0), P(0' 1), P(1 ’ 1). Display 550 can have thousands of columns with thousands of pixels per column. The rows and columns are continuous from the portions as shown in Fig. 5 (4). For clarity of explanation, the gate line and the source line of the control switching element are omitted in Fig. 5(d). For better illustration of each element, the area that masks each pixel is masked; this masking is for illustrative purposes only in Figure 5(d) and has no functional significance. On the display 550, the pixels are set so that the pixel switching polarity pattern (positive or negative) in the same column, and the pixels in the same row are also switched between the positive and negative dot polarity patterns. Therefore, the pixels ^) and P〇, 1) have a positive dot polarity pattern, and the alizarin p (〇, 〇 and p (di) have a negative dot polarity pattern. However, the pixels in the next page frame The switching point polarity pattern is used. Therefore, in general, when x+y is an even number, a pixel order, y) has a first dot polarity pattern; when it is an odd number, it has a second dot polarity pattern. The pixels in each 昼 列 column are vertically aligned and horizontally spaced so that the rightmost color point of the pixel and the leftmost color point of a neighboring pixel are separated by a horizontal level. _. The pixels on the 昼 行 line are horizontally aligned, and are separated by a straight interval of -n. As described above, the cross-plane discrete field amplifier of the first pixel receives the polarity from a switching element of the 32 201131268 dioxel. For example, the electrode of the trans-plane discrete field amplifier EPFAA_1_2 of the pixel P(0,0) is coupled via the conductor 512 of the pixel P(0, 〇) and the conductor 511 of the pixel P(0, 1). The switching element SE_1 of the pixel P (0, 1) is received. Similarly, the electrode of the cross-plane discrete field amplifier EPFAA_3_1 of pixel P(0,0) is coupled via conductor 517 of pixel P(0,0) to conductor 527 of pixel P(0,1). Switching element SE_3 to pixel P(0,1). Further, as described above, the polarity of the polarized element adjacent to a color point having a first polarity has a second polarity. For example, φ says that the color point CD_3-3 of the halogen P(〇, 0) has a positive polarity, and the color point CD_1_1 of the halogen P(1, 0) has a negative polarity. In a particular embodiment of the invention, each color point has a width of 140 microns and a height of 420 microns. Each straddle-plane discrete field amplifier has a 4 micron cross-plane discrete field amplifier width and a 375 micron cross-plane discrete field amplifier height. The horizontal point spacing HDS1 is 4 microns. The vertical dot pitch VDS1 is 4 microns. The vertical dot pitch VDS2 is 4 microns. The vertical dot pitch VDS3 is 30 microns. The horizontal point spacing HDS1 φ is 4 microns. The amplifier depth pitch ADS is 0.4 microns. Figures 6(a) and 6(b) show the positive and negative dot polarity patterns of a single pixel design 610, wherein the pixel design 610 can use a switching element column inversion driving mechanism. The layout of the Alizarin Design 610 is similar to the Alizarin Design 510 (Figures 5(a) and 5(b)). Therefore, for the sake of simplicity, only the differences will be described. In particular, all color components, trans-plane discrete field amplifiers, switching elements, conductors, and device component regions are in the same manner as the pixel design 510 configuration in the pixel design 610. For clarity, the component number of the pixel design 510 is repeated in the pixel design 610. The Alizarin Design 610 Series adds three additional straddle planes. 33 201131268 Discrete field amplification of beta and six conductors has provided polarity to the trans-plane discrete field amplifier. Again, some of the components in the halogen design 610 are adjusted to a halogen design 510 (described below). In particular, the elementary design 610 includes a trans-plane discrete field amplifier EPFFA-1_3 horizontal position between the color point cd-1 -3 and CD 2_1, and the trans-plane discrete field amplifier EPFFA_2-3 horizontally at the color point CD" Between CD and 3_1, and the trans-plane discrete field amplifier EpFFA_3_3 is horizontally adjacent to the right side of the color point CD 1-3. The trans-plane discrete field amplifiers EPFFA丄3, EPFFA—2_3, and EPFFA_3_3 are in the same plane, and the cross-plane discrete field amplifiers EPFFA_1_1, EPFFA_1_2, EPFFA_2 J, EPFFA 2—2, EPFFA—3 J, and EPFFA_3 J2 are also the same. Just as the 510-pixel design 610 system has been designed so that the trans-plane discrete field amplifier can accept polarity from a neighboring pixel. In particular, a first conduction system is coupled to a straddle-plane discrete field amplifier to receive polarity from a halogen element above the current element, and a second conduction system is coupled to the switching element to provide polarity to one of the current elements. A cross-plane discrete field amplifier of halogen. In addition to the electrodes included in the halogen design 510, the halogen design 61〇 also includes electrodes 613, 616, 619, 623, 626, and 629. In particular, the conductor 613 coupled to the associated point EPFFA_1_3 extends downwardly to the conductor 623 of the pixel above the target pixel to receive polarity (please refer to Figure 6(d)). A conductor 623 coupled to the switching element SEj is a conductor 613 extending downwardly to the element of the element below the element. Conductors 616 and 526 (whether or not 626) have the same purpose for the trans-plane discrete field amplifier EpFFA_2-3. Similarly, conductors 619 and 029 have the same purpose for the trans-plane discrete field amplifier EPFFA-3-3. 34 201131268 The polarity of the color point and trans-plane discrete field amplifiers and switching elements is indicated by the symbols "+" and "one". Therefore, in the dot polarity pattern representing the pixel design 61〇+, in Fig. 6(a), "all switching elements (i.e., switching elements SE-1, SE-2, SE-3) and color points (i.e., color points) CD-1_b CDj__2, CD-1_3, CD_2", CD_2_2, CD-2_3, CD_3J, CD-3-2, CD-3-3) have positive polarity. All trans-plane discrete field amplifiers (ie, trans-plane discrete field amplifiers EPFFA_1_1, EPFFA_1_2, EPFFA 1 3, EPFFA-21, EPFFA_2_2, EPFFA_2_3, EPFFA"-1, φ EPFFA-3-2, EPFFA-3_3) have Negative polarity. Fig. 6(b) shows a pixel design 61〇 having a negative dot polarity pattern. For negative dot polarity patterns, all switching elements (ie, switching elements SE-1, SE-2, SE-3) and color points (ie, color points CD_1J, CDJ-2, CD-1, 3, CD_2) J, CD_2_2, CD_2_3, CD_3_J, CD-3-2, CD-3_3) have negative polarity. All trans-plane discrete field amplifiers (ie, trans-plane discrete field amplifiers EPFFA_1_1, EPFFA_1_2, EPFFA 1 3, -EPFFA_2_1, EPFFA_2_2, EPFFA2-3, EPFFA_3-1, _EPFFA-3-2, EPFFA_3_3) have Positive polarity. As described above, the discrete electric field at each color point is amplified if the adjacent elements have opposite polarities. The pixel design 610 uses a transplanar discrete field amplifier to enhance and stabilize the formation of multiple regions in the liquid crystal structure. In general, the polarity of the polarized element has been specified such that a color point of a first polarity has a second polarized adjacent polarized element. For example, for the positive dot polarity pattern of the pixel design 610 (Fig. 6(a)), the color point CD_2-3 has a positive polarity. However, adjacent polarized elements (cross-plane discrete field amplifiers EPFFA_2_1 and EPFFA-1 - 3) have negative polarity. Therefore, 35 201131268 color point CD 丄 3 discrete electric field noise amplification. Furthermore, as described above, the polarity switching mechanism has been completed in the display stage so that the color point of the other pixels adjacent to the color point CD_L1 has a negative polarity because the color point CD_3_3 has a negative polarity (refer to the figure). 6(c)). The pixels of the pixel design 610 of Figs. 6(8) and 6(b) can be used on a display using a switching element column inversion driving mechanism, which is cheaper than using a switching element dot inversion driving mechanism. Figure 6 (c) shows the display 650

2 一部分’而顯示器650係使用具有__元件列反轉驅 動機制之晝素設計610的畫素p(〇, 〇)、p(卜…、p〇,丨)、2 part' and the display 650 uses pixels p(〇, 〇), p(b..., p〇, 丨) of the elementary design 610 having the __ element column inversion driving mechanism,

=,1)。顯示器650可具有數以千計列,每列有數以千計 2素。行與列係從如在圖6(c)中所顯示的部分連續。為清 楚况明,控制切換元件的閘極線與源極線在圖6(c)中省 略。為更佳圖解說明每一畫素,係遮蔽每一晝素的區域; :遮蔽在圖6(c)中僅為圖解說明目的,並無功能上的意 J。在顯示器650巾’畫素係已被設置,以便在同一列的 旦素切換點極性圖案(正或負),及在同-行的畫素亦在正 的與負的點極性圖案之間切換。因此,畫素p(〇,與p〇, 〇)具有正的點極性圖案,晝素p(〇,⑽ρ(ι,⑴具有負的 點極性圖案。,然而,在下_頁框的晝素係_點極性圖案。 因此-般而言’當y為偶數時,—畫0(x,y)具有 一 點極性圖案;當y為奇數時’具有一第二點極性圖案。在 每-畫素列的晝素係垂直地配向且被設置,以便_第一苎 素的跨位面離散場放大n係水平地鄰近在第—t素右側Z 第一畫素的色點CD丄3。舉例來說,畫素p(〇,〇 位面離散場放大器EPFFA」_3係水平地鄰近畫素ρ(ι,〇) 36 201131268 的色點CD一 1 一3。在每一畫素行的晝素係水平地配向且以一 垂直點間距HDS3相間隔。=, 1). Display 650 can have thousands of columns, each column having thousands of cells. The rows and columns are continuous from the portion as shown in Figure 6(c). For the sake of clarity, the gate line and source line of the control switching element are omitted in Figure 6(c). For better illustration of each pixel, the area that masks each element is covered; : The shadow is shown in Figure 6(c) for illustrative purposes only and has no functional meaning. On the display 650, the 'picture element' has been set so that the polarity pattern (positive or negative) at the same column is switched, and the pixels in the same line are also switched between the positive and negative point polarity patterns. . Therefore, the pixels p (〇, and p〇, 〇) have a positive dot polarity pattern, and the alizarin p (〇, (10) ρ (ι, (1) has a negative dot polarity pattern. However, the _ 系 system in the next _ page frame _ dot polarity pattern. Therefore, generally speaking, when y is even, - 0 (x, y) has a little polarity pattern; when y is odd, 'has a second point polarity pattern. In each - pixel column The halogen elements are vertically aligned and arranged such that the cross-plane discrete field amplification of the first element is horizontally adjacent to the color point CD丄3 of the first pixel of the Z-th element on the right side of the first-th element. For example, , pixel p (〇, 〇 plane discrete field amplifier EPFFA) _3 is horizontally adjacent to the pixel ρ (ι, 〇) 36 201131268 color point CD 1-3. In each pixel line of the genus level horizontally Aligned and spaced by a vertical dot spacing HDS3.

如上所述,第一晝素的跨位面離散場放大器係從一第 二畫素的切換元件接收極性。舉例來說,晝素p(〇 , 〇)之跨 位面離散場放大器EPFAA—1_2之電極,係經由晝素P(0, 〇)之導體612與晝素p(〇,丨)之導體611而耦接到晝素p(〇, 1)之切換元件SE—1。相似地,晝素p(〇,〇)之跨位面離散 場放大器EPFAA—3一 1之電極,係經由晝素p(〇,〇)之導體 6Π與晝素P(〇,1}之導體627而耦接到晝素p(〇,丨)之切 換兀件SE_3。再者’如上所述,鄰近具有一第一極性之一 土點的已偏減it件的極性,係具有—第二極性。舉例來 »兒旦素PU ’ 0)的色點CD」—3具有正極性,而晝素, 〇=跨位面離散場放大器EPFAA—3」具有負極性,其係由 旦素p(0,1)的切換元件SE—3所提供。 在,明的―特定實施财,每—色點1 寬度,420微米离戽 λ· 丄 米的跨位面離散場面離散場放大器具有4微 放大器高度。水平及375微米的跨位面離散場 顧2係為16微米。μ:1係為4微米。水平點間距 點間距VDS2係為4微米距VDS1係為4微米。垂直 放大器深度間距物俜、=直點間距VDS3係為3〇微米。 US係為0.4微米。 圖7(a)及圖7(b)係# - ^ 及710—)之不同點極性圖;:::設:二710(標示為71〇 + 具有-切換元件點反轉^ :、旦素设計710係可使用在 作中,-晝素係4 顯示器中。在實際的操 衫像頁框間的-第1極性圖案 37 201131268 與一第二點極性圖案之間作切換。尤其是在圖7(a)中,書 素710具有一正的點極性圖案(標示為71〇 + ),在圖7(b) 中,晝素710具有一正的點極性圖案(標示為71〇_)。再者, 在不同晝素設計中每一已偏極化元件的極性,係以「+」 表示正極性’或以「一」表示負極性。As described above, the cross-plane discrete field amplifier of the first pixel receives polarity from a switching element of a second pixel. For example, the electrode of the trans-plane discrete field amplifier EPFAA-1_2 of the halogen p (〇, 〇) is via the conductor 612 of the halogen P (0, 〇) and the conductor 611 of the halogen p (〇, 丨). And coupled to the switching element SE-1 of the pixel p (〇, 1). Similarly, the electrode of the trans-plane discrete field amplifier EPFAA-3-1 of the alizarin p (〇, 〇) is via the conductor 6Π of the halogen p(〇,〇) and the conductor of the halogen P (〇, 1} 627 is coupled to the switching element SE_3 of the pixel p (〇, 丨). Further, as described above, the polarity of the reduced it is adjacent to a soil point having a first polarity, and has a second Polarity. For example, the color point CD"-3 of the chitin PU '0) has a positive polarity, while the halogen, 〇=cross-plane discrete field amplifier EPFAA-3 has a negative polarity, which is composed of denier p ( The switching element SE-3 of 0,1) is provided. In the case of Ming-specific implementation, each-color point 1 width, 420 micron 戽 λ· 的 m across the surface discrete scene field amplifier has a 4 micro amplifier height. The horizontal and 375 micron span-plane discrete field is 2 microns. μ: 1 is 4 microns. Horizontal dot pitch The dot pitch VDS2 is 4 micrometers and the VDS1 system is 4 micrometers. Vertical amplifier depth spacing material =, = straight point spacing VDS3 is 3 〇 micron. The US line is 0.4 microns. Figure 7 (a) and Figure 7 (b) are the different dot polarities of # - ^ and 710 -);::: Set: two 710 (labeled 71〇 + with - switching element point inversion ^ :, denier The design 710 can be used in the 昼-system 4 display. Switch between the actual shirt image frame - the first polarity pattern 37 201131268 and a second dot polarity pattern. Especially in In Fig. 7(a), the pixel 710 has a positive dot polarity pattern (labeled 71〇+), and in Fig. 7(b), the pixel 710 has a positive dot polarity pattern (labeled 71〇_). Furthermore, the polarity of each polarized component in a different pixel design is "+" for positive polarity or "one" for negative polarity.

晝素設計710具有三色分量CC—1、CC_2、CC 3。每 一色分置包括八個色點。在每一色分量中的大量色點係使 晝素設計710非常地適於用在大螢幕顯示器。晝素設計71〇 亦包括對每一色分量的一切換元件(標示為SEj、se_2、 SE—3)及對每一色分量的一跨位面離散場放大器(標^為 EPFFAJ、EPFFA_2 ' EPFFA—3)。切換元件犯-丨、se—2、 SE-3係設置成一列。裝置元件區域DCA_J、DCA_2、DCA 3 係界定在切換元件SE」、SE_2、SE_3周圍。裝置元件區 ,DCAJ、DCA—2、dca」具有一裝置元件區域高度 DCAH及一裝亶元件區域寬度DCaw。 士 f素710之第-色分量CCJ的八個色點係設置在具The halogen design 710 has three color components CC-1, CC_2, CC3. Each color separation includes eight color points. The large number of color points in each color component makes the pixel design 710 very suitable for use in large screen displays. The pixel design 71〇 also includes a switching element for each color component (labeled SEj, se_2, SE-3) and a straddle-plane discrete field amplifier for each color component (standard EPFFAJ, EPFFA_2 'EPFFA-3 ). The switching elements are set to - 丨, se - 2, and SE-3 are set in a column. The device component areas DCA_J, DCA_2, DCA 3 are defined around the switching elements SE", SE_2, SE_3. The device component area, DCAJ, DCA-2, dca" has a device component region height DCAH and a mounting component region width DCaw. The eight color points of the first color component CCJ of the SF 710 are set

二列的矩陣中。此二行係垂直地配向以便八個 HDS1、相門Γ四個/色點列。色點列係以-第-水平點間距 一二!曰行中每一垂直地鄰近的色點係以-第 垂直點間距VDS〗i日門眩 4-' ^ a 色點CD ! h 尤其是’在第—色點行中, 色點CD 1 3卜士 ^ — ―1 一2係在 方。為笛_ ’且色點CD—1—3係在色點CDJ—4上 的第二色:=行f方且以第-水平點間距刪相間隔 點CD ,色點⑶-1-5係在色點CD 1 6上方,色 點CD_l—6係在色 _ —工乃巴 ’ --上方’色點CD_1_7係在色點 38 201131268 CD—1—8上方(如上所述的色點CD—x—γ,豆 晝素内的色分量CC—X,而γ係為在色分量=在-色點m點輯外邊緣電性連接 & =In the matrix of the two columns. The two lines are vertically aligned for eight HDS1, phased four/color point columns. The color point series is one-two with the -first-horizontal dot spacing! Each vertical adjacent color point in the line is - the vertical point spacing VDS〗 i-door glare 4-' ^ a color point CD ! h especially 'In the first-color point line, the color point CD 1 3 Bush ^ — ― 1 2 is in the square. For the flute _ 'and the color point CD 1-3 is the second color on the color point CDJ-4: = line f square and the first horizontal dot spacing phase separation point CD, color point (3) - 1-5 Above the color point CD 1 6 , the color point CD_l-6 is in the color _—worker's - above the color point CD_1_7 is above the color point 38 201131268 CD—1-8 (the color point CD as described above) X—γ, the color component CC—X in the soybean meal, and the γ system is the electrical connection at the outer edge of the color component=at-color point m point &

^ CD ^ fa1 „ fBl 0 # ,(] ^ ^ J \C^:U 角落係連接到色,點CD丄6的頂部右 ^右 的底部右角㈣連接到色 ’,色點CD」—6 rn〗1 ―1-7的頂部右角落;多赴 ^ L7的底部右角落係連接到色點 ^ 洛,色點CD丄8的底部左角落係點η: _ 部右角落.多Eh m 1 q巳點CD—1一4的底 • 各’ U占CD—1—4❺頂部左角落係連接到色點 -__3的底部左角落;色點cD i 3 ^ ‘’、 物⑶丄2的底部左角落;及色點二 洛係連接到色點CD 1 1的底一/的頂*左角 本,色點M h V底角為了降低製造成 在本發明的某些實施例中二然而’ 點,並連接到色點。再* 2:不同流程步驟去形成色 色分量的色點,某二貫施例可在不同位置搞接 DCA 1在^占CD一1_4與CD丄8下方的農置元件區域 CD Η / 垂直點間距VM2與色點™ i 4及 doTm 。切換元件SEJ係位在裝置元件區域 =1内。切換元件SEJ係輕接到色分量cc i之色點 CD^極f即色點CD丄卜⑶丄2、CDj 3、⑶1 /、 之色畔的Γ厂丄6、CD—L7、CD-L8) ’以控制色分量cc」 色電Μ極性與電壓量从小。在本發 中色點係可與裝置元件區域重疊。 相似地,畫素7Η)之第二色分量cc—2亦具有八個色 39 201131268 ,丄其係設置在具有四色點之二列的矩陣 直:也酉广便八個色點亦形成四個色點列。尤行:垂 一色點行b色點CD—2J係在色點c 广、疋’在第 CD—2_2係在色點cd 2 3上方 .~ ~丄方,而色點 m ί a , ——上方’且色點CD 2 3伤/ λ Μ:色方:第,A: 二2色7上方,色點吻係在色巧 ,色點矩陣外邊緣電性連接 ^方。色點 A⑽的間距之外。特別:色〇點二又〗與 部右角落係連接到色點的二角二=:2-6的底 落,·色點CD 接到色點CD—2-8的頂部右角 ^ - . , νΓοη?Λ"#^^ CD-2-4 ^ 合巴點CD_2—4的頂部左备贫杉.由从 吵的底部左角落;色點CD角二連接 :色⑽又2的底部左角落;及色: 洛係連接到色點CD—2—I的底部左角落。一。工角 位在,CD—2」與CD—2」下方的裝置元件區域 CD2 ^ 垂直點間距彻2與色點CD2 4及 8相間隔。切換元件兕一2係位在裝置元-件區域 A—2内。切換元件SE—2係耦接 的電極(亦即色點CD—2J、CD 2 2、⑶刀里严;2之色點 CD_A_5、CD_2—6、CD 2 7、CD 2 8、,、— ~ ' 之色點的垂— ~ —) ’以控制色分量CC_2 第的電堡極性與電壓量/大小。第二色分量Μ 2係與 色为置CCJ垂直地配向,且以—第二水平點間距 201131268 HDS2與第一色分量cc—〗相間隔,因此色分量cC_2與 CC」係以一水平色分量偏移量HCC01而補償,其中水平 色分量偏移量係等於水平點間距HDS1加上水平點間距 HDS2加上兩倍的色點寬度CDW。在本發明的一實施例 中,水平點間距HDS2係大於水平點間距HDS1。在此實施 例中較大的距離係留出_訊號線,如—源極線給切換元 件’以運行操作色分量CC 1及CC 2。^ CD ^ fa1 „ fBl 0 # ,(] ^ ^ J \C^:U The corner is connected to the color, the top of the CD丄6 is right ^ the bottom right corner (four) is connected to the color ', color point CD”—6 rn 〗1 ―1-7 at the top right corner; go to the bottom of the L7, the right corner is connected to the color point ^ Luo, the bottom point of the color point CD 丄8 is the left point η: _ right corner. Multiple Eh m 1 q巳 CD CD - 1 - 4 bottom • Each 'U occupies CD 1-4 ❺ top left corner is connected to the bottom left corner of the color point - __3; color point cD i 3 ^ '', the bottom of the object (3) 丄 2 left The corners; and the color point two Luo system are connected to the bottom of the color point CD 1 1 / top * left corner of the color point, the color point M h V bottom angle is reduced in order to reduce the manufacturing in some embodiments of the present invention And connected to the color point. Then * 2: different process steps to form the color point of the color component, a second embodiment can be connected to DCA in different positions 1 in the CD 1_4 and CD丄8 below the agricultural components Area CD Η / vertical point spacing VM2 and color point TM i 4 and doTm. The switching element SEJ is in the device component area = 1. The switching element SEJ is lightly connected to the color point cc i color point CD ^ pole f color Point CD 丄 ( (3) 丄 2, CDj 3, 1 / Γ color River plant Shang 6, CD-L7, CD-L8) 'to control the color components cc "Μ polarity voltage electrical small amount of a color. In the present invention, the color point can overlap with the device component area. Similarly, the second color component cc-2 of the pixel 7) also has eight colors 39 201131268, which is set in a matrix with two columns of four color points straight: also the eight color points are also formed into four Color point columns. Especially: a single color point b color point CD-2J line in the color point c wide, 疋 'in the CD -2_2 line above the color point cd 2 3. ~ ~ 丄, and color point m ί a, —— Above 'and color point CD 2 3 injury / λ Μ: color square: first, A: two color 2 above, the color point kiss is in the color, the outer edge of the color point matrix is electrically connected. The color point is outside the spacing of A(10). In particular: the color point 2 and the right corner are connected to the second corner of the color point = 2: the bottom of the 2-6, the color point CD is connected to the top right corner of the color point CD-2-8 ^ - . Γ Γ η Λ quot quot quot quot CD 点 点 点 点 点 CD CD CD CD CD CD _2 CD CD _2 CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD And color: Luo is connected to the bottom left corner of the color point CD—2-I. One. The working angle is in the device component area under CD-2" and CD-2". CD2^ The vertical dot pitch is 2 and the color points CD2 4 and 8 are spaced apart. The switching element 兕 2 is located in the device element-part area A-2. The switching element SE-2 is coupled to the electrode (ie, the color point CD-2J, CD 2 2, (3) knife is strict; 2 color point CD_A_5, CD_2-6, CD 2 7, CD 2 8, , , - ~ 'Drop of the color point — ~ —) 'To control the color component CC_2 the first electric bar polarity and voltage amount / size. The second color component Μ 2 is vertically aligned with the color CCJ, and is spaced apart from the first color component cc_ by the second horizontal dot pitch 201131268 HDS2, so the color components cC_2 and CC" are separated by a horizontal color component. The offset HCC01 is compensated, wherein the horizontal color component offset is equal to the horizontal dot pitch HDS1 plus the horizontal dot pitch HDS2 plus twice the color dot width CDW. In an embodiment of the invention, the horizontal dot pitch HDS2 is greater than the horizontal dot pitch HDS1. The larger distance in this embodiment leaves the _ signal line, e.g., the source line to the switching element ' to run the operational color components CC 1 and CC 2 .

特別是關於色點,色點CD_2J係與色點CD ι 5垂直 ,配向’且以水平點間距刪2水平地相間隔。相似地, 门點CD又2、CD—2—3、CD又4係分別地與色點CCL1—6、 平地相IT—8 ^地配向,且財平财接HDS2—水 量京710之第 邳似地 仆具有八個 ^其係設置在具有四色點之二列的矩料.。此二行係 直地配向以便八個色點亦形成四在 一色點行中,色點CD_3」係在色點 CD—3—2係在色點cd 3 3卜士 而色』 CD3 4上方。在蜜一:方,且色點⑶―3—3係在色·! rn' 第一色點行右方的第二色點行中… 係在色點CD—3—6上方 ;: CD—3—7上方,色點CD—3 J一6係在色^ 係沿色點矩陣外邊緣電性連 方n ⑺ w二mr 色點CD-3-" ^連接到色點CD一3一6的頂部右::D-3-5底部右> 部右角落係連接到色點CD 3 7 色點CD—3—6的4 CD」」的底部右角落係連接到色:二=角落;色1 』巴點CD—3—8的頂部右角 41 201131268 到色.〜底 CD」—3的底部左角落·;色2 ;Ρ左角落係連接到色點 到色點CD」_4底部左一 ==角落係連接 落係連接到色點CD—3J^部及/:」-2的頂部左角 DCA_3,係以一垂直點 ;下方的震置讀區域 CD—3一8相間隔。切換元S ^點CD-3-4及 〇ΓΔ , ^ ,认-換兀件SE_3係位在裝置元件區域In particular, with regard to the color point, the color point CD_2J is perpendicular to the color point CD ι 5 , and is aligned with the horizontal dot pitch and horizontally spaced. Similarly, the door points CD 2, CD-2-3, CD and 4 are respectively aligned with the color point CCL1-6, the flat phase IT-8^, and the financial level of HDS2-the water quantity Beijing 710 The servant has eight pieces of material that are arranged in two columns with four color points. The two lines are aligned so that the eight color points are also formed in a single color dot row, and the color point CD_3" is at the color point CD-3-2 above the color point cd 3 3 and the color CD3 4 . In honey one: square, and the color point (3) ―3—3 is in the color ·! rn' The second color point line on the right side of the first color point line... is above the color point CD—3-6;: CD— Above 3-7, the color point CD-3 J-6 is in the color ^ line along the outer edge of the color point matrix. Electrical connection n (7) w two mr color point CD-3-" ^ connected to the color point CD one 3 one The top right of 6:: D-3-5 bottom right > The right corner is connected to the color point CD 3 7 color point CD - 3 - 6 4 CD"" The bottom right corner is connected to the color: two = corner Color 1 』巴点CD—3-8 top right corner 41 201131268 to color. ~ bottom CD”—3 bottom left corner · color 2; Ρ left corner is connected to color point to color point CD” _4 bottom left A == corner system connection is connected to the color point CD - 3J ^ and /: "-2 top left corner DCA_3, with a vertical point; the lower seismic reading area CD - 3 - 8 interval. Switching element S ^ point CD-3-4 and 〇ΓΔ , ^ , recognition-changing element SE_3 are in the device component area

—°刀換70件SE」絲接到色分量CC 3之色點 的電極(亦即色點CD」J、CD丄2、CD」_3、⑶3色/—°Cutter for 70 SE” filaments connected to the color point of color component CC 3 (ie, color point CD “J, CD丄2, CD”_3, (3) 3 colors/

CD/-5 CD—3—6、CD—3—7、CD」—8),以控制色分量 cc 3 之色點的電隸性與電塵量/大小。第三色分量cc」係與 第一色分量CC—2垂直地配向’且以一第二水平點間距 HDS2與第二色分量cc—2相間隔,因此色分量%3與 CC_2係以水平色分量偏移量臟⑴而補償1別是關 色點’色點CD_3_1係與色點CD一2_5垂直地配向,且以水 平點間距HDS2水平地相間隔。相似地,色點cd 3 2、 CD_3—3、CD一3—4 係分別地與色點 cd_2__6、CD_2 7、 CD_2_8垂直地配向’且以水平點間距hDS2水平地相間隔。 晝素設計710亦包括跨位面離散場放大器epffa_1、 EPFFA_2、EPFFA_3。圖7(c)係表示晝素設計710之跨位面 離散場放大器EPFFA_1更詳細的視圖。為清楚說明,跨位 面離散場放大器EPFFA_1係概念上地分割成一第一垂直放 大部VAP_】、一第一水平放大部HAP_1、一第二水平放大 部HAP_2、一第三水平放大部HAP_3、一第四水平放大部 42 201131268 HAP一4、_第五水 HAP_6。水平放大部大部HAP—5、一第六水平放大部 延伸至左邊。垂直地 係鄰近垂直放大部vapj且 直放大部VAP 1 '^平放大部HAP_1係大概位在從垂 VAP-HJ)。水平放1部算起之四分之一高度(亦即 到垂直放大部VAp j ^ HAP-2係垂直地在中央上且延伸 地大概位在從垂直玫1左方。垂直放大部HAP_3係垂直 延伸到左方。水平玫大=VAP-1底部算起的四分之一高度 垂直地配向且鄰近,大部HAP〜4係與水平放大部HAP—1 水平放大部HAP 5 ^^伸到垂直放大部UP—1的右方。 鄰近,但延伸_^、^平放大部HAP_2垂直地配向且 HAP6係|水平放^大部脚―1的右方。水平放大部 -竹水千放大部HAp一3垂直地配向且鄰近,但延伸 到垂直=大部VAPJ的右方。如上所述,水平放大部與垂 直放大部的使用係提供跨位面離散場放大器ΕρρρΑ」之設 置更清楚的描述。水平放大部HAP_1、HAP_2、HAP_3、 HAP_4 ' HAP_5、HAP_6係分別地具有水平放大部寬度CD/-5 CD—3—6, CD—3—7, CD”—8), to control the electrical and color dust/size of the color point of the color component cc 3 . The third color component cc" is vertically aligned with the first color component CC-2 and is spaced apart from the second color component cc-2 by a second horizontal dot pitch HDS2, so the color components %3 and CC_2 are horizontally colored. The component offset is dirty (1) and the compensation 1 is the color point. The color point CD_3_1 is vertically aligned with the color point CD-2_5 and horizontally spaced by the horizontal dot spacing HDS2. Similarly, the color points cd 3 2, CD_3-3, and CD 3-4 are vertically aligned with the color points cd_2__6, CD_2 7, and CD_2_8, respectively, and horizontally spaced by the horizontal dot pitch hDS2. The pixel design 710 also includes a trans-plane discrete field amplifiers epffa_1, EPFFA_2, and EPFFA_3. Figure 7(c) is a more detailed view of the transposed surface discrete field amplifier EPFFA_1 of the halogen design 710. For clarity, the trans-plane discrete field amplifier EPFFA_1 is conceptually divided into a first vertical amplifying portion VAP_], a first horizontal amplifying portion HAP_1, a second horizontal amplifying portion HAP_2, a third horizontal amplifying portion HAP_3, and a first horizontal amplifying portion HAP_1. The fourth horizontal amplifying portion 42 201131268 HAP-4, _ fifth water HAP_6. The horizontal enlargement portion HAP-5 and the sixth horizontal enlargement portion extend to the left. Vertically adjacent to the vertical amplifying portion vapj and the direct amplifying portion VAP 1 '^ flat amplifying portion HAP_1 is located approximately at the sag VAP-HJ). The height of one quarter of the height is 1 (ie, to the vertical magnification part VAp j ^ HAP-2 is vertically on the center and extends approximately to the left of the vertical rose 1. The vertical enlargement part HAP_3 is vertical Extend to the left. Horizontal rose = one quarter of the height of VAP-1 is vertically aligned and adjacent, most of the HAP~4 series and the horizontal enlargement HAP-1 horizontal enlargement HAP 5 ^^ extends to the vertical The right side of the enlargement unit UP-1 is adjacent. However, the extension _^, ^ flat enlargement portion HAP_2 is vertically aligned and the HAP6 system is horizontally placed on the right side of the large foot portion-1. Horizontal enlargement portion-bamboo water amplification portion HAp A 3 is vertically aligned and adjacent, but extends to the right of the vertical = majority VAPJ. As described above, the use of the horizontal and vertical amplification sections provides a clearer description of the setting of the transposed surface discrete field amplifier ΕρρρΑ. The horizontal amplification sections HAP_1, HAP_2, HAP_3, HAP_4 'HAP_5, HAP_6 have horizontal enlargement widths, respectively

HAP-W-1'HAP_W 2ΉΑΡ W 3ΉΑΡ W 4 ΉΑΡ W 5' —- — __ — — __ HAP—W-6以及水平放大部高度HAP_H_1、HAP_H—2、 HAP一Η—3 ' HAP H—4、HAP_H_5、HAP—H—6。在圖 7(a)-7(d) 的特定實施例中,所有水平放大部高度係相同,且所有水 平放大部寬度係相同。垂直放大部VAP_1係具有垂直放大 部寬度VAP_W_1及垂直放大部高度VAP_H_1。跨位面離 散場放大器EPFFA_2與EPFFA_3係與跨位面離散場放大 器EPFFAJ具有相同的形狀。 如圖7(a)所示,跨位面離散場放大器EPFFA_1、 43 201131268 EPFFA—2 EPFFA」係分別地設置在色分量cc」、一2、 CC_3内。然而’跨位面離散場放大器係位在與包含色點之 平面的不同平面上。跨位面離散場放大器epffa—丨係已被 設置,則更跨位面離散場放大$ EPFFAJ的水平放大部 HAPJ位在色,點CD—u與CD_L2之間。由於色點 CD一匕1與CD_1—2的内部連接,因此跨位面離散場放大器 EPFFA—1的水平放大部HAp—!並未延伸到色點⑶丄】與 CD一 1_2的右側端。相似地,跨位面離散場放大器EpFFAj 的水平放大部HAP—2位在色點cd_1_2與CD_ 1_3之間; 跨位面離散場放大器EPFFAJ的水平Γ放大部HAP—3位在 色點CD丄3與CD丄4之間;跨位面離散場放大器 EPFFA一1的水平放大部位在色點1_5與 CD-1〜6之間;跨位面離散場放大器epffaj的水平放大 部HAP—5位在色點CDJ—6與CDJ—7之間;跨位面離散 場放大器EPFFA—1的水平放大部HAp_Mit在色點cDj_7 與CD〜ι_8之間。跨位面離散場放大器EpFFAj的垂直放 大部VAP—1係配置在色點CD—丨一丨與CD一丨一5之間、色點 CD—1〜2與CD_1_6之間、色點CD_1_3與CD—1—7之間、 色點CD—1一4與CD—1_8之間。跨位面離散場放大器 EPFFAJ係沿下列位置延伸:色點CD_1_1的右側與底部; 色點Ct)j—2與CD_1_3的頂部、右側及底部;色點cd 1 4 的頂部及右側;色點CD_1_5的左側及底部;色點cd 1 6 與CD J—7的頂部、左側及底部;以及色點CD_1_8的頂部 及左側。 跨位面離散場放大器EPFFA—2與EPFFA__3係分別地 201131268 配置在色分量CC_2與CC_3内,其係以與如上所述之跨位 面離散場放大器EPFFA_1之相同方式相對應地設置在色分 量CC_2與CC_3内。 晝素設計710係已被設計,以便跨位面離散場放大器 可從鄰近晝素接收極性。尤其是,一第一導體係耦接到一 跨位面離散場放大器以從在目前晝素上方的晝素接收極 性,一第二導體係耦接到切換元件以提供極性給在目前晝 素下方之晝素的一跨位面離散場放大器。舉例來說,耦接 到跨位面離散場放大器EPFFA_1之導體712,係向上延伸 連接到在目前晝素上方之晝素的導體713以接收極性(請參 考圖7(d))。耦接到切換元件SE_1的導體713,係向下延 伸連接到在目前畫素下方之晝素的導體712。導體714與 715對跨位面離散場放大器EPFFA_2而言,係與導體712 與713對跨位面離散場放大器EPFFA_1而言係滿足相同目 的。再者,導體714與715對跨位面離散場放大器EPFFA_3 而言,係與導體716與717對跨位面離散場放大器EPFFA_1 而言係滿足相同目的。 色點、跨位面離散場放大器及切換元件的極性,係使 用「+」與「一」符號表示。因此,在表示晝素設計710 +之正的點極性圖案的圖7(a)中,切換元件SE_1與SE_3 ; 色點 CD_1 —1、CD丄2、CD丄3、CD_1_4、CD丄5、 CD—1_6、CD—1_7、CD丄8、CD_3 卜 CD_3_2、CD_3_3、 CD_3—4、CD_3_5、CD—3_6、CD义7、CD_3—8 ;及跨位 面離散場放大器EPFFA_2係具有正極性。然而,切換元件 SE 2 ;色點 CD 2 卜 CD 2 2、CD 2 3、CD 2 4、CD 2 5、 45 201131268 _ _ 、CD一2—7、CD_2_8 ;及跨位面離散場放大器 EPFFA—1與EPFFA_3具有負極性。 圖7(b)係表示具有負的點極性圖案之畫素設計71〇。 對負的點極性圖案而言,切換元件SE i盥 . CD—1—7、CD」—8、CD一3一卜 CD_3_2、CD_3」、CD—3—4、 CDr3一5、CD-3-6、CD-3—7、CD—3—8 ’·及跨位面離散場放 大器EPFFA_2係具有負極性。然而,切換元件SE 2 ;色 點 CD—2_I、CD—2—2、CD_2—3、CD_2_4、CD一2」、CD—2—6、 CD_2—7、CD_2—8 ;及跨位面離散場放大器E:pFFA—1與 EPFFA_3具有正極性。 —、 如上所述,若是鄰近元件具有相反極性的話,在每一 色,的離散電場會被放大。畫素設計71〇係利用跨位面離 散場放大器以進一步強化多區域液晶結構的形成。一般而 言,已偏極化元件的極性係已被指定,以便一第一極性的 一色點具有第二極性的鄰近已偏極化元件。更特別地,對 晝素设计710而言,每一色點係藉由一相反極性之一跨位 面離散場放大器的某部分而圍繞在二或三側。再者,色點 亦係鄰近相反極性的一色點。舉例來說,對晝素設計 之正的點極性圖案而言(圖7(a)),色點CDj—6具有正極 性’且鄰近在色點CDj—6之了頁部、左側與底部的跨位面 離散場放大器EPFFA_1(具有負極性)之某部分。再者,具 有負極性的色點CD_2_2係在色點CD一的右側。因此, 色點CDJ_6的離散電場係被放大。 使用圖7⑷與7(b)之畫素設計710的畫素,係可被用 46 201131268 於使用切換元件點反轉驅動機制的顯示 不使用具有—切換元件點反㈣ ·⑷係表 器720某部份。顯示器72〇可具有數以千的顯示 數以千計晝素。列與行係在目7⑷中母 說明’係省略在圖7⑷中控制切 上:= 線。為更佳圖解說明每-晝素,係線與源極 遮蔽在圖7(射僅為圖解說明目的 jHAP-W-1'HAP_W 2ΉΑΡ W 3ΉΑΡ W 4 ΉΑΡ W 5' —- — __ — — __ HAP—W-6 and horizontal amplification unit height HAP_H_1, HAP_H—2, HAP Η—3 ' HAP H—4, HAP_H_5, HAP-H-6. In the particular embodiment of Figures 7(a)-7(d), all horizontal magnifications are of the same height and all horizontal magnifications are the same width. The vertical amplifying portion VAP_1 has a vertical amplifying portion width VAP_W_1 and a vertical amplifying portion height VAP_H_1. The trans-plane dispersive field amplifiers EPFFA_2 and EPFFA_3 have the same shape as the trans-plane discrete field amplifier EPFFAJ. As shown in Fig. 7(a), the straddle-plane discrete field amplifiers EPFFA_1, 43 201131268 EPFFA-2 EPFFA" are respectively disposed in the color components cc", 1-2, CC_3. However, the trans-plane discrete field amplifier is tied to a different plane than the plane containing the color points. The trans-plane discrete field amplifier epffa- 丨 system has been set, and the more horizontal-span discrete field amplification $EPFFAJ horizontal amplification HAPJ bit is in color, between CD-u and CD_L2. Due to the internal connection of the color point CD 匕1 and CD_1-2, the horizontal amplification portion HAp-! of the FR-of-plane discrete field amplifier EPFFA-1 does not extend to the right end of the color point (3) 与 and CD-1_2. Similarly, the horizontal amplification portion HAP-2 of the trans-plane discrete field amplifier EpFFAj is between the color points cd_1_2 and CD_1_3; the horizontal Γ amplification portion HAP-3 of the trans-plane discrete field amplifier EPFFAJ is at the color point CD丄3 Between the CD丄4 and the transposed plane discrete field amplifier EPFFA-1, the horizontal amplification part is between the color point 1_5 and CD-1~6; the horizontal amplifying part HAP-5 of the straddle-face discrete field amplifier epffaj is in the color Between CDJ-6 and CDJ-7; the horizontal amplification portion HAp_Mit of the transposed surface discrete field amplifier EPFFA-1 is between the color points cDj_7 and CD~ι_8. The vertical amplifying part VAP-1 of the trans-plane discrete field amplifier EpFFAj is arranged between the color point CD-丨一丨 and CD丨丨5, between the color points CD-1~2 and CD_1_6, the color point CD_1_3 and CD Between 1-7, the color point CD-1-14 and CD-1_8. The trans-plane discrete field amplifier EPFFAJ extends along the right and bottom of the color point CD_1_1; the top, right and bottom of the color point Ct)j-2 and CD_1_3; the top and right side of the color point cd 1 4; color point CD_1_5 Left and bottom; color point cd 1 6 and CD J-7 top, left and bottom; and top and left of color point CD_1_8. The trans-plane discrete field amplifiers EPFFA-2 and EPFFA__3 are respectively arranged in the color components CC_2 and CC_3 in 201131268, which are set in the color component CC_2 in the same manner as the transposed surface discrete field amplifier EPFFA_1 as described above. With CC_3 inside. The Alizarin Design 710 Series has been designed so that the trans-plane discrete field amplifier can receive polarity from neighboring pixels. In particular, a first conduction system is coupled to a straddle-plane discrete field amplifier to receive polarity from a halogen element above the current element, and a second conduction system is coupled to the switching element to provide polarity to the current element. A straddle-plane discrete field amplifier. For example, the conductor 712 coupled to the trans-plane discrete field amplifier EPFFA_1 is connected upwardly to the conductor 713 of the pixel above the current element to receive polarity (see Figure 7(d)). A conductor 713 coupled to the switching element SE_1 extends downwardly to the conductor 712 of the elementary element below the current pixel. The conductors 714 and 715 for the straddle-plane discrete field amplifier EPFFA_2 are identical to the conductors 712 and 713 for the straddle-plane discrete field amplifier EPFFA_1. Furthermore, the conductors 714 and 715 are for the same purpose for the straddle-plane discrete field amplifier EPFFA_3 and the conductors 716 and 717 for the straddle-plane discrete field amplifier EPFFA_1. The polarity of the color point, the transposed plane discrete field amplifier, and the switching element are indicated by the "+" and "one" symbols. Therefore, in Fig. 7(a) showing the positive dot pattern of the pixel design 710+, the switching elements SE_1 and SE_3; color points CD_1-1, CD丄2, CD丄3, CD_1_4, CD丄5, CD —1_6, CD—1_7, CD丄8, CD_3, CD_3_2, CD_3_3, CD_3—4, CD_3_5, CD—3_6, CD=7, CD_3—8; and the trans-planetary discrete field amplifier EPFFA_2 has positive polarity. However, the switching element SE 2; color point CD 2 CD 2 2, CD 2 3, CD 2 4, CD 2 5, 45 201131268 _ _, CD 2-7, CD_2_8; and trans-plane discrete field amplifier EPFFA - 1 and EPFFA_3 have a negative polarity. Fig. 7(b) shows a pixel design 71〇 having a negative dot polarity pattern. For the negative dot polarity pattern, the switching element SE i盥. CD—1—7, CD”—8, CD-3, CD_3_2, CD_3”, CD—3-4, CDr3-5, CD-3- 6. CD-3—7, CD—3—8′· and trans-plane discrete field amplifier EPFFA_2 have negative polarity. However, the switching element SE 2; color point CD-2_I, CD-2-2, CD_2-3, CD_2_4, CD-2", CD-2-6, CD_2-7, CD_2-8; and the trans-plane discrete field Amplifier E: pFFA-1 and EPFFA_3 have positive polarity. — As noted above, if adjacent components have opposite polarities, the discrete electric field at each color will be amplified. The pixel design 71 uses a trans-plane dispersive field amplifier to further enhance the formation of multi-region liquid crystal structures. In general, the polarity of the polarized element has been specified such that a color point of a first polarity has a second polarized adjacent polarized element. More specifically, for the halogen design 710, each color point is surrounded on two or three sides by a portion of the opposite polarity across one of the discrete field amplifiers. Furthermore, the color point is also a color point adjacent to the opposite polarity. For example, for a positive point polarity pattern of a halogen design (Fig. 7(a)), the color point CDj-6 has a positive polarity and is adjacent to the page, left and bottom of the color point CDj-6. A portion of the trans-plane discrete field amplifier EPFFA_1 (having a negative polarity). Further, the color point CD_2_2 having a negative polarity is on the right side of the color point CD1. Therefore, the discrete electric field of the color point CDJ_6 is amplified. Using the pixels of the pixel design 710 of Figures 7(4) and 7(b), the display can be used 46 201131268. The display using the switching element dot inversion driving mechanism does not use the - switching element point inverse (4) · (4) the table 720 Part. The display 72 can have thousands of displays of thousands of pixels. The column and row are in the head of item 7 (4). The description is omitted. The control is cut in Fig. 7 (4): = line. For a better illustration of each - element, the line and source are shaded in Figure 7 (shot only for illustrative purposes j

義。再者’由於空間限制,在圖7(射== 「Χ—Υ」以取代「CD X Υρ — — 」 在顯示器,巾,畫素係已# 2換點極性圖案(正或負),及在一行的晝= 負的點極性圖案之間切換。因此,畫素ρ(10,叫 厂 =具有正的點極性圖案,而晝素ρ(ι〇, ιυ與Ρ⑴,10)且Righteousness. Furthermore, due to space constraints, in Figure 7 (shoot == "Χ-Υ" instead of "CD X Υρ--" on the display, the towel, the picture element has changed the polarity pattern (positive or negative), and Switch between the 昼= negative dot polarity patterns of a row. Therefore, the pixel ρ (10, called factory = has a positive dot polarity pattern, while the pixels ρ (ι〇, ιυ and Ρ(1), 10) and

Li 性圖案。然而,在下—㉔,其畫素係切換點 極性圖木。因此,-般而言,當x+y為偶數時,晝素p(x, y)具有一第一點極性圖案,# x+y為奇數時,則具有一第 二點極性圖案。在每—畫素列上的畫素係垂直地配向且水 平地間隔H晝素的最右方色點以水平關距刪2 與一鄰近畫素的最左方色點相間隔。每一晝素行上的晝素 係水平地配向且以一垂直點間距VDS3相間隔。 ^如上所述,一第—畫素的跨位面離散場放大器係從一 第二畫素的切換元件接受極性。舉例來說,畫素p(1〇,】〇) 的跨位面離散場放大器epffa_i電極係經由晝素P(10,10) 的導體712與晝素p(i〇,u)的導體713而耦接到畫素 201131268 P(10,11)的切換元件SE—丨。相似地,畫素p(1〇,10)的跨 位面離散場放大器£PFFA—2電極係經由晝素p(1〇,1〇)的 導體714與畫素p(i〇, u)的導體715而耦接到畫素p(1〇, 11)的切換元件SE一2。再者,晝素p(10,10)的跨位面離散 場放大窃EPFFA一3電極係經由畫素ρ(ι〇 , 1〇)的導體716 與畫素P(〗0,11)的導體而耦接到畫素p(1〇,.丨丨)的切換元 件 SE 3。 'Li sex pattern. However, in the next -24, its pixel is the switching point polarity map. Therefore, in general, when x + y is an even number, the pixel p(x, y) has a first dot polarity pattern, and when # x+y is an odd number, it has a second dot polarity pattern. The pixels on each of the pixel columns are vertically aligned and horizontally spaced from the rightmost color point of the H element by a horizontal distance of 2 and a leftmost color point of a neighboring pixel. The elements on each element line are horizontally aligned and spaced by a vertical dot spacing VDS3. ^ As described above, a first-pixel cross-plane discrete field amplifier accepts polarity from a switching element of a second pixel. For example, the cross-plane discrete field amplifier epffa_i electrode of the pixel p(1〇, 〇) is via the conductor 712 of the halogen P(10,10) and the conductor 713 of the pixel p(i〇,u). The switching element SE_丨 coupled to the pixel 201131268 P (10, 11). Similarly, the cross-plane discrete field amplifier £PFFA-2 electrode of pixel p(1〇,10) is via conductor 714 of pixel p(1〇,1〇) and pixel p(i〇, u) The conductor 715 is coupled to the switching element SE-2 of the pixel p(1〇, 11). Furthermore, the cross-plane discrete field amplification of the alizarin p(10,10) is a conductor of the conductor 716 and the pixel P (〖0, 11) via the pixel ρ(ι〇, 1〇). And coupled to the switching element SE 3 of the pixel p (1〇, .丨丨). '

在本發明的一特定實施例中’色點具有140微米的寛 度及42〇微米的高度。每一跨位面離散場放大器具有11: 微米的垂直放大部寬度及38〇微米的垂直放大部高度。水 平點間距HDS1為4微米。水平點間距HDS2為16微米。 垂直點間距VD S1為4微米。垂直點間距V D S 2為4微米。 垂直點間距VDS3為30微米。放大器深度間距ADS為0.4 微米。In a particular embodiment of the invention, the color point has a twist of 140 microns and a height of 42 microns. Each straddle plane discrete field amplifier has a vertical amplification width of 11: microns and a vertical amplification height of 38 〇 microns. The horizontal point spacing HDS1 is 4 microns. The horizontal point spacing HDS2 is 16 microns. The vertical dot pitch VD S1 is 4 micrometers. The vertical dot pitch V D S 2 is 4 micrometers. The vertical dot pitch VDS3 is 30 microns. The amplifier depth pitch ADS is 0.4 microns.

圖8⑷與8(b)係表示一畫素設計81〇白勺不同點極性圖 案,其令畫素設計810係通常使用在具有一切換元件點反 轉,動機制的顯示器中。在實際操作中,一畫素係將在每 第一點極性圖案與一第二點極性圖案之間 刀換。為>月楚說明’第—色分量之第—色點具有 案,係當作是正的點極性圖案。相反地,第^ 刀1之弟-色點具有負極性的點極性圖案,係 點極性圖案。特別是在圖8⑷中’畫田=、正 的點極性圖案(係標示為81 t 〇:有-正 具有-負的點極性圖荦(桿示為81〇圖?中畫素設計810 忐—^ 系(知不為810一)。再者,在不同查音 中母-已編極化元件的極性係以「+」表示正極性,以广; 48 201131268 表示負極性。 晝素設計810具有三個色分量CC_1、CC 2、CC 3。 每-色分量包括三個色點。為清楚說明,色點 ^ χ_γ,其中X為-色分量(在圖8(a),中從、為 且Y為一色點編號(在圖8(a)_8(b)中從】到3)。書 810亦包括每-色分量的一切換元件(表示為se」~; se〕°、Figures 8(4) and 8(b) show a different point polarity pattern for a pixel design 81, which allows the pixel design 810 to be commonly used in displays having a switching element point reversal, motion mechanism. In actual operation, a pixel will be changed between each first polarity pattern and a second point polarity pattern. The color point of the first color component is described as a positive dot polarity pattern for > On the contrary, the color point of the first knife-color point has a dot polarity pattern of a negative polarity, and a dot polarity pattern. In particular, in Figure 8 (4), 'picture field=, positive point polarity pattern (marked as 81 t 〇: yes - positive - negative point polarity map 杆 (bar is shown as 81 〇 picture? medium picture design 810 忐 - ^ (I don't know 810). Furthermore, the polarity of the mother-polarized component in different sounds is "+" for positive polarity, and broad; 48 201131268 for negative polarity. Three color components CC_1, CC 2, CC 3. Each color component includes three color points. For clarity, the color point ^ χ γ, where X is a color component (in Figure 8(a), Y is a color point number (from [Fig. 8(a)_8(b)] to 3). Book 810 also includes a switching element for each color component (denoted as se"~; se]°,

SE了3)、每一色分量的二已偏極化跨位面離散場放大器 不,EP^FA丄J,其中τ為色分量,且^為跨位面離散場放 大器編號)及每-色分量的二關聯點(標示成hn,其 中Μ為色刀里,且n為關聯點編號)。切換元件se j、 =_2、SE_3係没置成―列。—裝置元件區域係顯示成圍繞 母-切換元件SE—i、SE—2、SE」,且分別地 DCAJ、DCA—2、DCA 3。 取 畫素設計810的第一色分量CCj具有三個色點 CD_1J、CD一1—2、CD丄3。色點 CD—1_1'CD_1_2、CD 1 3 形成-列’ JUX水平關距HDS1 „隔。換㈣說-,色 .'占CD_1_1、CD—1—2、CD一1—3係垂直地配向且以水平點間 距HDS1水平地相間隔。再者,色點CD—^與" 係以一水平點偏移量hdoi而水平地抵消;'偏移;、其中水平 點偏移1 HD01係等於水平點間距HDS1加上色點寬产 CDW。然而,色點⑶力與CDi2係電性地連接在: 點CD丄1與CD_1_2的底部。相似地,色點CDj—2與 CD—1—3係電性地連接在色點cd—〗—2與π〗—3的底部。 在晝素设计810中,切換元件SEj係位在色分量cc i下 方。切換元件SEJ係耦接到色點CD_1J、CD_1 2、CD—1 3 49 201131268 的電極以控制色點CD_1一1、CD_1_2、CD_1_3的電壓極性 與電壓量/大小。 相似地,畫素設計810的第二色分量cc_2具有三個 色點 CD_2 J、CD一2一2、CD—2—3。色點 CD 2 卜 CD 2 2、 , ――— — - CD—2—3形成一列’並以水平點間距hds1相間隔。因此, 色點CD_2一 1、CD—2一2、CD一2一3係垂直地配向且以水平點 間距HDS1水平地相間隔。然而,色點CD—2—丨與CD—2_2 係電f生地連接在色點CD_2_ 1與C:D_2—2的底部。相似地, 色點CD一2_2與CD一2—3係電性地連接在色點CD—2—2與 CD一2_3的底部。切換元件SE—2係位在色分量cc—2下方。 切換元件SE一2係耦接到色點CD—2—丨、CD—2—2、CD—2 3 的電極以控制色點CD_2」、CD—2—2、CD_2—3的電壓極性 與電壓量/大小。第二色分量cc_2係與第—色分量cc—i 垂直地配向,且以一水平點間距HDS2盥第一旁分量^ =間隔’因此色分量CC_2與cc_i係以 '—水平色分量偏移 里HCC01水平地抵消/偏移,其中水平色分量偏移量 HCC01.係等於兩倍的水平點間距HDsi加上 度CDW加上水平點間距_。 …尤 相似地,畫素設計81G的第三色分量ccSE 3), two polarized trans-plane discrete field amplifiers of each color component, EP^FA丄J, where τ is the color component, and ^ is the trans-plane discrete field amplifier number) and each color component The two associated points (marked as hn, where Μ is in the color knife, and n is the associated point number). The switching elements se j, =_2, SE_3 are not set to "columns". - The device component area is shown to surround the mother-switching elements SE-i, SE-2, SE", and DCAJ, DCA-2, DCA 3, respectively. The first color component CCj of the pixel design 810 has three color points CD_1J, CD 1-2, and CD 丄3. Color point CD-1_1'CD_1_2, CD 1 3 form-column' JUX horizontal distance HDS1 „Separate. Change (4) said -, color. 'Accounting CD_1_1, CD-1-2, CD-1-3 vertical alignment and The horizontal point spacing HDS1 is horizontally spaced. Further, the color points CD_^ and " are horizontally offset by a horizontal point offset hdoi; 'offset; wherein the horizontal point offset 1 HD01 is equal to the horizontal The dot pitch HDS1 plus the color point is wide for CDW. However, the color point (3) force is electrically connected to the CDi2 system at: the bottom of the CD 丄1 and CD_1_2. Similarly, the color point CDj-2 and the CD 1-3 system Electrically connected at the bottom of the color points cd - 2 - 2 and π - 3. In the pixel design 810, the switching element SEj is below the color component cc i. The switching element SEJ is coupled to the color point CD_1J, The electrodes of CD_1 2, CD-1 3 49 201131268 control the voltage polarity and voltage amount/size of the color points CD_1_1, CD_1_2, CD_1_3. Similarly, the second color component cc_2 of the pixel design 810 has three color points CD_2 J, CD 1-2, CD 2-3. Color point CD 2 卜 CD 2 2, —————— - CD 2-3 form a column ' and is spaced by the horizontal point spacing hds1. The color points CD_2-1, CD-2-2, CD-22-3 are vertically aligned and horizontally spaced by the horizontal dot spacing HDS1. However, the color point CD-22 and CD-2_2 are electrically generated. Connected to the bottom of the color points CD_2_ 1 and C:D_2-2. Similarly, the color point CD-2_2 and the CD-2-3 are electrically connected at the bottom of the color point CD-2-2 and CD-2_3. The element SE-2 is located below the color component cc-2. The switching element SE-2 is coupled to the electrodes of the color points CD-2—丨, CD-2-2, CD-2 3 to control the color point CD_2”, CD—2—2, voltage and magnitude/size of CD_2—3. The second color component cc_2 is vertically aligned with the first color component cc-i, and is separated by a horizontal dot pitch HDS2 盥 first side component ^ = ' therefore the color components CC_2 and cc_i are in the '-horizontal color component offset HCC01 is horizontally offset/offset, wherein the horizontal color component offset HCC01. is equal to twice the horizontal dot pitch HDsi plus the degree CDW plus the horizontal dot pitch _. ...in particular, the third color component cc of the pixel design 81G

色點 CD 3 卜 CD 3 2、ΓΠ 1 q 立 ~ U —-LEL3—3。色點 CD—3_1、CD—3一2、 3一3形成一列,並以水平點間距刪!相間隔。因此, 色點 CD一3_1、CD 3 2、CD 3 1 总斗··*·!- ~ -3-3係垂直地配向且以水平點 曰’距HDS1水平地相間隔。然而,色點CD」J盥 係電性地連接在色點CD 3丨盘 一-- CD 3 2 ^ CD 3 sVl ' 〇 ' —-” —3-3知電性地連接在色點CD_3_2與 50 201131268 C:D_3_3的底部。切換元件SE_3係位在色分量CC_3下方。 切換元件SE_3係耦接到色點CD_3_1、CD_3_2、CD_3_3 的電極以控制色點CD_3_1、CD_3_2、CD_3_3的電壓極性 與電壓量/大小。第三色分量CC_3係與第二色分量CC_2 垂直地配向,且以一水平點間距HDS2與第二色分量CC_2 相間隔,因此色分量CC_3與CC_2係以一水平色分量偏移 量HCC01水平地抵消/偏移。 為清楚說明,畫素設計810的色點係圖示為具有相同 | 色點寬度CDW的色點。再者,在晝素設計810中的所有 色點係具有相同色點高度CDH。然而,本發明某些實施例 係可使色點具有不同色點寬度及不同色點高度。 晝素設計 810亦包括跨位面離散場放大器 EPFFA丄1、EPFFA丄2、EPFFA_2_1、EPFFA_2_2、 EPFFA—3J、EPFFA—3—2。在畫素設計810中,跨位面離 散場放大器係為具有一跨位面離散場放大器寬度 EPFFAW(在圖8(a)中未示)及一跨位面離散場放大器高度 φ EPFFAH(在圖8(a)中未示)的矩形。 如圖8(a)所示,跨位面離散場放大器係設置在晝素設 計810的色點之間。尤其是,跨位面離散場放大器 EPFFA_1_1係設置在色點CD_1_1與CD_1_2之間,跨位 面離散場放大器EPFFA_〗_2係設置在色點CD_1_2與 CD_1_3之間。相似地,跨位面離散場放大器EPFFA_2_1 係設置在色點CD_2_1與CD_2_2之間,跨位面離散場放大 器EPFFAJJ係設置在色點CD_2_2與CD_2_3之間;跨 位面離散場放大器EPFFA_3 1係設置在色點CD 3 1與 51 201131268 CD_3_2之間,跨位面離散場放大器EPFFA_3_2係設置在 色點CD_3_2與CD_3_3之間。雖然在圖8(a)及8(b)係顯示 出色點係接觸跨位面離散場放大器,但在圖8(c)中所圖解 說明之晝素設計810的跨位面離散場放大器實際上卻是為 在不同平面。 特別地,晝素設計810的跨位面離散場放大器係在色 點下方。更特別的是,跨位面離散場放大器的頂部係與色 點的底部以一放大器深度間距ADS相間隔。在本發明的其 他實施例中,跨位面離散場放大器可在色點上方。在這些 實施例中,放大器深度間距ADS係從色點的頂部量測到跨 位面離散場放大器的底部。 因此,跨位面離散場放大器EPFFA_1_1可被描述成水 平地鄰近色點CDj_l且水平地鄰近色點CD_1_2,但在相 對色點CD_1_1與CD_1_2的不同平面上。跨位面離散場放 大器EPFFA_1_1亦可被描述成水平地位在色點CD_1_1與 CD_1_2之間,但在相對色點CD_1_1與CD_1_2之下的平 面上。相似地,跨位面離散場放大器EPFFA_1_2、 EPFFA_2_1、EPFFA_2_2、EPFFA_3_1、EPFFA_3_2 係分 別地且水平地位在色點CD_1_2與CD_1_3之間、色點 CD_2_1 與 CD_2_2 之間、色點 CD_2_2 與 CD_2_3 之間、 色點CD_3_1與CD_3_2之間、色點CD_3_2與CD_3_3之 間,且位在色點的的不同平面上。 藉由使用跨位面離散場放大器,相對於在色點的平面 中使用已偏極化元件而言,色點可被設置得更靠近。降低 色點間距以增加顯示器的亮度與對比。 52 201131268 舉例來έ兒,在晝素設計810中,水平點間距HDS1(亦 即在色为虽内之色點之間的間距)係等於跨位面離散場 放大器的寬度(EPFFA_W)。本發明的其他實施例甚至可具 有色點部分地重疊到跨位面離散場放大器,以更進一步^ 低點間距。跨位面離散場放大器可由使用任何導體所形 成。然而,為使成本及流程步驟最小化,一般而言,跨位 面離散場放大器係使用一金屬層所形成,其係用:切換元 件的形成。Color point CD 3 Bu CD 3 2, ΓΠ 1 q 立 ~ U —-LEL3—3. The color points CD—3_1, CD—3, 2, and 3–3 form a column and are deleted at horizontal dot pitches! Interval. Therefore, the color points CD_3_1, CD32, CD31 total bucket··*·!- ~ -3-3 are vertically aligned and horizontally spaced from the HDS1 by the horizontal point 曰'. However, the color point CD"J盥 is electrically connected to the color point CD3丨--CD 3 2 ^ CD 3 sVl ' 〇' —-” — 3-3 is electrically connected to the color point CD_3_2 and 50 201131268 C: The bottom of D_3_3. The switching element SE_3 is below the color component CC_3. The switching element SE_3 is coupled to the electrodes of the color points CD_3_1, CD_3_2, CD_3_3 to control the voltage polarity and voltage of the color points CD_3_1, CD_3_2, CD_3_3. The third color component CC_3 is vertically aligned with the second color component CC_2, and is spaced apart by a horizontal dot pitch HDS2 and the second color component CC_2, so the color components CC_3 and CC_2 are offset by a horizontal color component. HCC01 is horizontally offset/offset. For clarity, the color point of the pixel design 810 is illustrated as a color point having the same | color point width CDW. Furthermore, all color points in the pixel design 810 have the same color. The color point height CDH. However, some embodiments of the present invention enable color points to have different color point widths and different color point heights. The pixel design 810 also includes a trans-plane discrete field amplifier EPFFA丄1, EPFFA丄2, EPFFA_2_1 , EPFFA_2_2, EPFFA-3J, EPFFA—3—2. In the 810 design, the trans-plane discrete field amplifier has a transposed plane discrete field amplifier width EPFFAW (not shown in Figure 8(a)) and a straddle plane discrete field amplifier height φ EPFFAH (in Figure 8 ( The rectangle of a) is not shown. As shown in Fig. 8(a), the trans-plane discrete field amplifier is placed between the color points of the pixel design 810. In particular, the trans-plane discrete field amplifier EPFFA_1_1 is set in Between the color points CD_1_1 and CD_1_2, the trans-plane discrete field amplifier EPFFA_〗_2 is set between the color points CD_1_2 and CD_1_3. Similarly, the trans-plane discrete field amplifier EPFFA_2_1 is set between the color points CD_2_1 and CD_2_2, spanning The plane-discrete field amplifier EPFFAJJ is set between the color points CD_2_2 and CD_2_3; the trans-surface discrete field amplifier EPFFA_3 1 is set between the color points CD 3 1 and 51 201131268 CD_3_2, and the trans-plane discrete field amplifier EPFFA_3_2 is set in Between the color points CD_3_2 and CD_3_3. Although the excellent point contact cross-plane discrete field amplifier is shown in Figures 8(a) and 8(b), the pixel design 810 illustrated in Figure 8(c) The trans-planetary discrete field amplifier is actually for In particular, the trans-plane discrete field amplifier of the halogen design 810 is below the color point. More specifically, the top of the trans-plane discrete field amplifier is spaced from the bottom of the color point by an amplifier depth spacing ADS. . In other embodiments of the invention, the trans-plane discrete field amplifier may be above the color point. In these embodiments, the amplifier depth spacing ADS is measured from the top of the color point to the bottom of the trans-plane discrete field amplifier. Therefore, the trans-plane discrete field amplifier EPFFA_1_1 can be described as being horizontally adjacent to the color point CDj_1 and horizontally adjacent to the color point CD_1_2, but on a different plane of the relative color points CD_1_1 and CD_1_2. The trans-plane discrete field amplifier EPFFA_1_1 can also be described as being horizontally located between the color points CD_1_1 and CD_1_2, but on the plane below the relative color points CD_1_1 and CD_1_2. Similarly, the trans-plane discrete field amplifiers EPFFA_1_2, EPFFA_2_1, EPFFA_2_2, EPFFA_3_1, and EPFFA_3_2 are respectively horizontally positioned between the color points CD_1_2 and CD_1_3, between the color points CD_2_1 and CD_2_2, between the color points CD_2_2 and CD_2_3, and Between CD_3_1 and CD_3_2, between color points CD_3_2 and CD_3_3, and on different planes of the color point. By using a trans-plane discrete field amplifier, the color points can be set closer relative to the use of polarized elements in the plane of the color point. Reduce the color point spacing to increase the brightness and contrast of the display. 52 201131268 For example, in the elementary design 810, the horizontal dot spacing HDS1 (i.e., the spacing between color points within the color) is equal to the width of the transposed surface discrete field amplifier (EPFFA_W). Other embodiments of the present invention may even have color points that partially overlap the trans-plane discrete field amplifier to further reduce the dot pitch. A trans-plane discrete field amplifier can be formed using any conductor. However, to minimize cost and process steps, in general, a trans-plane discrete field amplifier is formed using a metal layer that is used to: switch element formation.

畫素設計810亦可包括關聯點 AD_2_1、AD—2-2、AD_3—1 及 AD—3—2。在晝素設計 81〇 中,關聯點係為具有一關聯點寬度ADW(在圖8(幻中未示) 及一關聯點高度ADH(在圖8(a)中未示)的矩形。The pixel design 810 can also include associated points AD_2_1, AD-2-2, AD_3-1, and AD-3-2. In the pixel design 81〇, the associated point is a rectangle having an associated point width ADW (not shown in Fig. 8 (phantom not shown) and an associated point height ADH (not shown in Fig. 8(a)).

如圖8(a)所示,關聯點係被設置在每一色分量的左侧 與右側。特別是,關聯點AD一丨―丨係沿色點CDj—i左侧 被設置,且關聯點ADj—2係沿色點cD—丨」右侧被設置。 特別是,關聯點AD—1_1係以一水平關聯點間距HA^l與 色點CD一1 一1的左側水平地相間隔,且關聯點ADj_2係 水平地與色點CD一1一3右側相間隔。相似地,關聯點又ο-:」 係沿色點CD又i的左側被設置並以—水平關聯點點間距 HADS1與色點cdj—2水平地相間隔;且關聯點μ」」 係沿色點CD又3❾右側被設置並以水平關聯點間距 ^DS1與色點CD_2」水平地相間隔。再者,關聯點 —3—1係沿色點CD—3_1的左側被設置並以水平關聯點間 距HADS】與色點CD—水平地相間隔;且關聯點-3 2 係沿色點CD丄3 ^侧被設置並以水平關聯點間距ha腿 53 201131268 與色點CD一3一3水平地相間隔。 晝素設計⑽係被配置,以便跨位面離散場放大器斑 關‘點可從-鄰近晝素接收極性。特別是,一第一 ^ 耦接到-跨位面離散場放大器或一關聯點,以從在目前書 素上方之晝素接收極性,一第二導體係麵接到切換, 吨錄性給在目前晝素下方之―畫素的—跨位面離散場 放大益或-關聯點。在本發明的某些實施例中,導體係緩 由如色點的内部介面導體而轉接到一切換元件。舉例來 說,麵接到關聯,點ADJJ之電極的導體811,係向上 連接目前畫素上方之晝素的導體82卜以接收極性(請 圖8⑷)。·經由色,點CD」」㈣接到切換元件SEJ的導體 821係向下延伸連接目前晝素下方之畫素的導體⑴。導體 812及834對關聯點AD-U而言係用於相同目的。耗接到 跨位面離散場放大器EPFFA—!點極的導體812係向上延伸 連接在目前畫素上方之-畫素的導體822,以接收極性。 導體813及833對跨位面離散場放大iEpFFA ^而古係 用於相同目的。相似地,導體814及824對跨位面離^場 放大益EPFFA—2—1而言係用於相同目的。 相似地,如導體811與831用於關聯點adjj,導體 815與係以相同目的用於關聯點AD—2—丨。如導體扣 與832用於跨位面離散場放大器epffaj—丨,導體gw與 836係以相同目的用於跨位面離散場放大器E:pFFA—2—丄。、 如導體813與833用於跨位面離散場放大器EpFFA丄2, 導體817與837係以相同目的用於跨位面離散場放^器 EPFFA一2—2。如導體814與834用於關聯點AD丄2,導體 54 201131268 818與838係以相同目的用於關聯點AD_2j。 相似地,如導體811與83〗用於關聯點ADJ 1,導體 819與839係以相同目的用於關聯點AD一3」。如導體812 與832用於跨位面離散場放大器砂汗八一〗—一1,導體8加與 840係以相同目的用於跨位面離散場放大器EpFFA 3卜、 如導體813與833肖於跨位面離散場放大器EpFFA^2, ¥體821與841係以相同目的用於跨位面離散場放大器 EPFFA_3_2。如導體814與834用於關聯點AD—〗一2,導體 • 822與842係以相同目的用於關聯點AD_4_2。一 色點、跨位面離散場放大器與切換元件的極性,係 用符號「+」及「―」表示。因此在表示畫素設計81〇 + 之正的點極性圖案圖8(a)中’切換元件SE-1與SE—3、色 CD_J_1、CD 1_2、CD1_3、CD 3_1、CD—3 2、CD 3 3、 =聯點AD—2」與AD一2_2、跨位面離散場放大器 FPA__2—1、EPFFA_2_2係具有正極性。然而,切換元件 、色點 CD—2J、CD_2_2、CD—2一3、關聯點 AD—1 — 1、 ^ 、AD—、AD」_2、跨位面離散場放大器 FA丄 1、EPFFA丄2、EPFFA—3一 1、EPFFA 3 2 具有 負極性。 — —一 圖8(b)係表示具有負的點極性圖案之晝素設計81〇。 對負的點極性圖案而言,切換元件SE—1與SE_3、色點 〜U、CD—1—2、CD丄3、CD—3—卜 CD—3—2、CD—3_3、 點ad—2一1與AD—2_2及跨位面離散場放大器 犯八―2-1、EPFFA_2_2係具有負極性。然而,切換元件 、色點 CD一2J、CD_2_2、CD义3、關聯點 AD 1_1、 55 201131268 AD_1—2 ' AD_3一 1 ' AD_3_2及跨位面離散場放大器 EPFFA—11、EPFFAJ 2、EPFFA—3_1、EPFFA_3一2 係具 有正極性。As shown in Fig. 8(a), the associated points are set to the left and right of each color component. In particular, the associated point AD is set along the left side of the color point CDj-i, and the associated point ADj-2 is set along the right side of the color point cD-丨. In particular, the associated point AD-1_1 is horizontally spaced from the left side of the color point CD 1-1 by a horizontal associated point spacing HA^1, and the associated point ADj_2 is horizontally related to the color point CD 1-3. interval. Similarly, the associated point ο-:" is set along the left side of the color point CD and i and is horizontally spaced by the horizontal associated dot spacing HADS1 and the color point cdj-2; and the associated point μ"" is colored The dot CD is set to the right of 3 ❾ and is horizontally spaced by the horizontal correlation dot spacing ^DS1 and the color point CD_2". Furthermore, the associated point -3 - 1 is set along the left side of the color point CD - 3_1 and horizontally spaced by the horizontal associated point spacing HADS] and the color point CD - and the associated point - 3 2 is along the color point CD丄The 3^ side is set and horizontally spaced by the horizontal point spacing ha leg 53 201131268 and the color point CD 3-1. The halogen design (10) is configured so that the cross-plane discrete field amplifier spot ‘point can receive polarity from the neighboring pixel. In particular, a first ^ is coupled to a -cross-plane discrete field amplifier or an associated point to receive polarity from a pixel above the current pixel, a second guiding system is connected to the switching, and the tonnage is given At present, the pixel-cross-plane discrete field under the element is magnified or associated. In some embodiments of the invention, the conductive system is transferred to a switching element by an internal interface conductor such as a color point. For example, the surface is connected to the conductor 811 of the electrode of the ADJJ, which is connected to the conductor 82 of the element above the current pixel to receive the polarity (see Figure 8(4)). The conductor 821 connected to the switching element SEJ via the color, the dot CD"" (4) is a conductor (1) extending downward to connect the pixel below the current element. Conductors 812 and 834 are used for the same purpose for the associated point AD-U. The conductor 812, which is connected to the trans-plane discrete field amplifier EPFFA-!point pole, extends upwardly to the conductor 822 of the pixel above the current pixel to receive the polarity. Conductors 813 and 833 amplify iEpFFA^ for the straddle plane discrete field while the ancient system is used for the same purpose. Similarly, conductors 814 and 824 are used for the same purpose for the straddle plane to be amplified by EPFFA-2. Similarly, if conductors 811 and 831 are used to associate point adjj, conductor 815 is used for the same purpose for association point AD-2. For example, conductor clasps and 832 are used for the trans-plane discrete field amplifier epffaj-丨, and conductors gw and 836 are used for the same purpose for the trans-plane discrete field amplifier E:pFFA—2—丄. For example, conductors 813 and 833 are used for the straddle-plane discrete field amplifier EpFFA 丄 2, and conductors 817 and 837 are used for the same purpose for the straddle-plane discrete field discharge device EPFFA 2-1. If conductors 814 and 834 are used to associate point AD丄2, conductors 54 201131268 818 and 838 are used for the same purpose for association point AD_2j. Similarly, if conductors 811 and 83 are used for association point ADJ 1, conductors 819 and 839 are used for the same purpose for association point AD-3". For example, conductors 812 and 832 are used for the cross-plane discrete field amplifier sand sweat VIII--1, conductor 8 plus 840 series for the same purpose for the trans-plane discrete field amplifier EpFFA 3 Bu, such as conductors 813 and 833 The trans-plane discrete field amplifier EpFFA^2, ¥ body 821 and 841 are used for the same purpose for the trans-plane discrete field amplifier EPFFA_3_2. If conductors 814 and 834 are used to associate points AD - 2 - 2, conductors 822 and 842 are used for the same purpose for association point AD_4_2. The polarity of a color point, span plane discrete field amplifier and switching element is indicated by the symbols "+" and "―". Therefore, in the dot polarity pattern representing the pixel design 81〇+, FIG. 8(a) 'switching elements SE-1 and SE-3, color CD_J_1, CD 1_2, CD1_3, CD 3_1, CD-3 2, CD 3 3, = joint AD-2" and AD-2_2, span plane discrete field amplifier FPA__2-1, EPFFA_2_2 have positive polarity. However, the switching elements, color points CD-2J, CD_2_2, CD-2-3, associated points AD-1-1, ^, AD-, AD"_2, straddle-plane discrete field amplifiers FA丄1, EPFFA丄2 EPFFA-3-1, EPFFA 3 2 has a negative polarity. – Figure 8(b) shows a halogen design 81〇 with a negative dot polarity pattern. For negative dot polarity patterns, switching elements SE-1 and SE_3, color point ~U, CD-1-2, CD丄3, CD-3, CD-3-2, CD-3_3, point ad- 2-11 and AD-2_2 and trans-plane discrete field amplifiers have eight-2-1 and EPFFA_2_2 systems have negative polarity. However, switching elements, color point CD-2J, CD_2_2, CD meaning 3, associated point AD 1_1, 55 201131268 AD_1-2 ' AD_3 - 1 ' AD_3_2 and trans-plane discrete field amplifier EPFFA-11, EPFFAJ 2, EPFFA-3_1 The EPFFA_3-2 has positive polarity.

如上所述,若是鄰近元件具有相反極性的話,在每一 色點的離散電場係被放大。晝素設計81〇係使用關聯點與 跨位面離散場放大H以強化並穩定在液晶結構巾之多區域 的形成。一般而言,已偏極化元件的極性係已被指定,以 便-第-極性的—色點具有第二極性的鄰近已偏極化元 件二舉例來說’對畫素設計810(圖8(a))之正的點極性圖案 而5,色,點CD—1—3具有正極性。然而鄰近已偏極化元件(跨 位面離散場放大器EPFFA_L2與關聯點AD又i)係具有負 極险。因此’色‘點CD」—3的離散電場係被放大。 使用圖8(a)與8(b)之畫素設計81〇的晝素,係可被戶 在使用切換元件點反轉驅動機制的顯示器上。圖8⑷係 了顯不益850的-部分,而顯示器85〇係使用具有一切去 疋件點反轉驅動機制之晝素設計⑽的晝素P(G,〇)、P(/As described above, if the adjacent elements have opposite polarities, the discrete electric field at each color point is amplified. The alizarin design uses a correlation point and a trans-plane discrete field to amplify H to strengthen and stabilize the formation of multiple regions of the liquid crystal structure. In general, the polarity of the polarized element has been specified so that the -first-polar-color point has a second polarity adjacent to the polarized element. For example, 'the pixel design 810' (Fig. 8 (Fig. 8 a)) The positive dot polarity pattern and 5, color, dot CD-1 - 3 have positive polarity. However, the proximity of the polarized component (the trans-plane discrete field amplifier EPFFA_L2 and the associated point AD and i) is negatively dangerous. Therefore, the discrete electric field of the 'color 'point CD'-3 is amplified. The pixel design using the pixel design of Fig. 8(a) and Fig. 8(b) can be used on a display using a switching element dot inversion driving mechanism. Fig. 8(4) shows the part of the 850, and the display 85 uses the morpheme P (G, 〇), P (/) with the morpheme design (10) of all the device inversion mechanism.

= :!>(〇’ 1)、P(1,】)。顯示器85〇可具有數以千計列,名 八、皇^以千#畫素。行與列係從如在圖8⑷中所顯示的音 二i為、清楚說明,控制切換元件的閘極線與源剛 :⑷中’略。為更佳圖解說明每-畫素,係遮蔽每-_ :的區域;此遮蔽在圖啸僅為圖解說; 在顯示器85°中,畫素係已被設置,以便^ 二:,晝素切換點極性圖案(正或負),及在同一行的書 素亦在正的與負的點極性圖荦 ~ 1)应mα茱之間切換。因此,畫素P(0, 、 )八有正的點極性圖案,畫素P(〇,0)與P(1, 56 201131268 ,有負的點極性圖案。,然而,在下—頁框的畫素係切換點 極性圖案。因此一般而言,當x+y為偶數時,一畫素、X, y)具有-第-點極性圖案;f x+y為奇數時,具—有;_二 點極性圖案。在每一晝素列的畫素係垂直地配向,且水: 地相間隔’以便-晝素的最右方色點與—鄰近晝素的最左 方色點以一水平點間距HDS3相間隔。在一晝素行上的書 素係水平地配向,且以一垂直點間距▽1)33相間隔。—= :!>(〇’ 1), P(1,]). The display 85 can have thousands of columns, the name eight, the emperor ^ thousand thousand pixels. The row and column are clearly indicated from the tone as shown in Fig. 8 (4), and the gate line of the control switching element is slightly omitted from the source: (4). For better illustration of each pixel, the area of each -_: is masked; this shadow is only illustrated in the diagram; in the display 85°, the pixel system has been set so that ^2:, pixel switching The dot polarity pattern (positive or negative), and the pixels in the same row are also switched between the positive and negative point polar maps 1 1) should be mα茱. Therefore, the pixel P(0, , ) eight has a positive dot polarity pattern, and the pixels P(〇, 0) and P (1, 56 201131268 have a negative dot polarity pattern. However, in the next-page frame The system switches the dot polarity pattern. Therefore, in general, when x+y is even, one pixel, X, y) has a -first-point polarity pattern; when f x+y is an odd number, it has a - _; Point polarity pattern. The pixels in each element are vertically aligned, and the water: phase spacing is 'so that the rightmost color point of the element is separated from the leftmost color point of the neighboring element by a horizontal point spacing HDS3 . The book elements on a single line are horizontally aligned and spaced by a vertical dot spacing of )1)33. -

/…如t所述,第一晝素的跨位面離散場放大器與關聯點 係從一第二畫素的切換元件接收極性。舉例來說,晝素 P(0,〇)之跨位面離散場放大器EPFAA一i 2之電極,ς經 由晝素Ρ(0 ’ 0)之導體813與晝素ρ((),υ之導體833而輕 接到晝素ρ(0, 1)之切換元件SEJ。相似地,畫素ρ(〇 〇) 之跨位面離散場放大器EPFAA_3」之電極,係經由畫t P(0 ’ 〇)之導體820與晝素p(G ’丨)之導體84〇而搞接到畫 素|P(〇,1)之切換元件SE—3。再者,如上所述,鄰近具有 第極性之一色點的已偏極化元件的極性’係具有一第 二極性〇 在本發明的一特定實施例中,每一色點具有14〇微米 寬度,420微米尚度。每一跨位面離散場放大器具有4微 米的跨位面離散場放大器寬度及375微米的跨位面離散場 放大器尚度。水平點間距HDS1係為4微米。垂直點間距 VDS1係為4微米。垂直點間距VDS3係為3〇微米。水平 點間距HDSI係為4微米。水平點間距HDS2為25微米。 水平關聯點間距HADS1為4微米。水平關聯點間距HADS2 為9微米。關聯點寬度微4微米。關聯點高度為375微米。 .57 201131268 放大器深度間距ADS係為0.4微米。 在本發明的另一實施例中,畫素設計810的關聯點係 以跨位面離散場放大器所取代,而跨位面離散場放大器係 位在包含色點之平面的下方平面。 即便如此,依據本發明的放大本質離散電場多區域垂 直配向液晶顯示器(AIFF MVALCD),係提供低成本的寬視 角,在本發明的某些實施例中,係使用光學補償方法(optical compensation methods)以進一步增加視角。舉例來說,本發 明的某些實施例係在上基板(top substrate)或下基板(bottom substrate) ’或是同時在上、下基板,使用具有垂直方向光 學軸之負雙折射光學補償膜(negative birefringence optical film)。其他實施例係使用具有負雙折射之單光軸光學補償 膜或雙光軸光學補償膜。在某些實施例中,具有平行光學 軸向的正補償膜’係可以附加到具有垂直光學軸向之負雙 折射膜。再者,也可以使用包括所有結合的多個膜。其他 貫施例可使用圓偏極板(circu丨ar polarizer),以改善光學透 射(light transmission)及視角。其他實施例可使用具有光學 補償膜的圓偏極板,以進一步改善光學透射及視角。再者, 本發明的某些實施例係使用黑色矩陣(black matrix,BM)覆 蓋離散場放大區域(F F A R s)’以使離散場放大區域變得不透 光。黑色矩陣的使用係改善顯示器的對比(contrast ratio), 且可提供更好的色彩表現。在其他實施例中,某些或所有 的黑色矩陣’可被移除(或是省略),以使離散場放大區域 變成透明,其係改善顯示器中的透光率(light transmittance)。已改善的透光率可以降低顯示器的電力需 58 201131268 求(power requirement) 〇 在本發明的不同實施例中,係已描述出無須在結構上 使用物理特性,以產生多區域垂直配向液晶顯示器之新穎 的結構與方法。如上所述在本發明的結構與方法之不同實 施例,係僅說明本發明的原理,且並非為了將本發明的範 圍限制到所描述的特定實施例。舉例來說,從此揭露來觀 之,熟悉此技藝者可以界定其他晝素定義、點極性圖案、 畫素設計、色分量、離散場放大區域、垂直放大部、水平 φ 放大部、極性、離散場、電極、基板及膜等等,並依據本 發明的原理使用這些交替的特性以產生一方法或系統。因 此,本發明僅由隨後所述的申請專利範圍所限定。 雖然本發明以相關的較佳實施例進行解釋,但是這並 不構成對本發明的限制。應說明的是,本領域的技術人員 根據本發明的思想能夠構造出很多其他類似實施例,這些 均在本發明的保護範圍之中。 根據下述具體實施方式並結合下面的附圖,本發明的目的、 # 優點和新穎性將會更加清楚。· 59 201131268 【圖式簡單說明】 圖l(a)-l(c)係表示習知單區域垂直配向液晶顯示器之畫素的 三個示意圖。 圖2 係表示習知多區域垂直配向液晶顯示器之晝素 的一示意圖。 圖3(a)-3(b)係表示依據本發明一實施例的一多區域垂直配 向液晶顯示器的示意圖。 圖4⑻-4(c)係表示依據本發明一實施例的一晝素設計之示意/... As described in t, the cross-plane discrete field amplifier of the first pixel and the associated point receive polarity from a second pixel switching element. For example, the electrode of the trans-plane discrete field amplifier EPFAA-i 2 of the halogen P (0, 〇), via the conductor 813 of the 昼素Ρ (0 '0) and the element of the pixel ρ((), υ 833 is lightly connected to the switching element SEJ of the pixel ρ(0, 1). Similarly, the electrode of the cross-plane discrete field amplifier EPFAA_3" of the pixel ρ(〇〇) is drawn by t P(0 ' 〇) The conductor 820 and the conductor 84 of the halogen p (G '丨) are connected to the switching element SE-3 of the pixel |P(〇,1). Further, as described above, the color point adjacent to the first polarity The polarity of the polarized element has a second polarity. In a particular embodiment of the invention, each color point has a width of 14 Å and a width of 420 microns. Each straddle surface discrete field amplifier has 4 Micron cross-plane discrete field amplifier width and 375 micron cross-plane discrete field amplifier. The horizontal point spacing HDS1 is 4 microns. The vertical point spacing VDS1 is 4 microns. The vertical point spacing VDS3 is 3 microns. The horizontal point spacing HDSI is 4 microns. The horizontal point spacing HDS2 is 25 microns. The horizontal correlation point spacing HADS1 is 4 microns. Horizontal correlation point spacing The HADS2 is 9 microns. The associated point width is 4 microns. The associated point height is 375 microns. .57 201131268 The amplifier depth spacing ADS is 0.4 microns. In another embodiment of the invention, the pixel design 810 is associated with Substituted discrete field amplifiers are substituted, and the trans-plane discrete field amplifiers are tied to the lower plane of the plane containing the color points. Even so, according to the present invention, the amplified essential discrete electric field multi-region vertical alignment liquid crystal display (AIFF MVALCD), Providing a low cost, wide viewing angle, in some embodiments of the invention, optical compensation methods are used to further increase the viewing angle. For example, certain embodiments of the present invention are on the upper substrate (top A substrate or a bottom substrate 'or a negative birefringence optical film having a vertical optical axis at the same time on the upper and lower substrates. Other embodiments use a single sheet having negative birefringence Optical axis optical compensation film or dual optical axis optical compensation film. In some embodiments, positive compensation film with parallel optical axes It can be attached to a negative birefringent film having a vertical optical axis. Further, a plurality of films including all combinations can be used. Other embodiments can use a circularly polarized plate (circu丨ar polarizer) to improve optical transmission. (Light transmission) and viewing angle. Other embodiments may use a circularly polarizing plate with an optical compensation film to further improve optical transmission and viewing angle. Moreover, some embodiments of the present invention cover a discrete field amplification region (F F A R s) using a black matrix (BM) to render the discrete field amplification region opaque. The use of a black matrix improves the contrast ratio of the display and provides better color performance. In other embodiments, some or all of the black matrix 'can be removed (or omitted) to make the discrete field amplification area transparent, which improves the light transmittance in the display. Improved light transmittance can reduce the power requirements of the display. 58 201131268 power requirements. In various embodiments of the present invention, it has been described that physical characteristics are not required to be used in the structure to produce a multi-region vertical alignment liquid crystal display. Novel structure and method. The various embodiments of the present invention are not limited to the specific embodiments described. For example, from this disclosure, those skilled in the art can define other pixel definitions, dot polarity patterns, pixel design, color components, discrete field amplification regions, vertical amplification portions, horizontal φ amplification portions, polarities, and discrete fields. , electrodes, substrates and membranes, etc., and use these alternating characteristics in accordance with the principles of the present invention to produce a method or system. Accordingly, the invention is limited only by the scope of the appended claims. Although the present invention has been explained in connection with the preferred embodiments, it is not intended to limit the invention. It should be noted that many other similar embodiments can be constructed in accordance with the teachings of the present invention, which are all within the scope of the present invention. The objects, advantages and novel features of the present invention will become more apparent from the description of the appended claims. · 59 201131268 [Simple description of the drawings] Figures l(a)-l(c) are three schematic diagrams showing the pixels of a conventional single-region vertical alignment liquid crystal display. Fig. 2 is a schematic view showing a pixel of a conventional multi-region vertical alignment liquid crystal display. 3(a)-3(b) are views showing a multi-region vertical alignment liquid crystal display according to an embodiment of the present invention. 4(8)-4(c) are diagrams showing the design of a halogen element according to an embodiment of the present invention.

圖。 圖5(a)-5(d)係表示依據本發明一實施例之一晝素設計示意 圖。 圖6⑻-6⑻係表示依據本發明一實施例之一畫素設計示意 圖。.. 圖7(a)-7(d)係表示依據本發明一實施例之一畫素設計示意 圖。 圖8(a)-8(c)係表示依據本發明一實施例之一畫素設計示意Figure. Figures 5(a)-5(d) are schematic views showing the design of a halogen element according to an embodiment of the present invention. 6(8)-6(8) are diagrams showing a design of a pixel according to an embodiment of the present invention. 7(a)-7(d) are diagrams showing a pixel design in accordance with an embodiment of the present invention. 8(a)-8(c) are diagrams showing the design of a pixel in accordance with an embodiment of the present invention.

圖0 【主要元件符號說明】 100 垂直配向液晶顯示器 105 第一偏光片 110 第一基板 120 第一電極 125 第一配向層 130 液晶 60 201131268Figure 0 [Description of main component symbols] 100 Vertical alignment liquid crystal display 105 First polarizer 110 First substrate 120 First electrode 125 First alignment layer 130 Liquid crystal 60 201131268

140 第二配向層 145 第二電極 150 第二基板 155 第二偏光片 172 觀看者 174 觀看者 176 觀看者 200 多區域垂直配向液晶顯示器 205 第一偏光片 210 第一基板 220 第一電極 225 第一配向層 235 液晶 237 液晶 240 第二配向層 245 第二電極 255 第二偏光片 260 突起物 272 觀看者 274 觀看者 276 觀看者 300 多區域垂直配向液晶顯示器 302 第一偏光片 305 第一基板 307 第一配向層 61 201131268 310 晝素 311 第一電極 312 液晶 313 液晶 315 第二電極 320 畫素 321 第一電極 322 液晶 323 液晶 325 第二電極 327 電場 330 晝素 331 第一電極 332 液晶 333 液晶 335 第二f極 352 第二配向層 355 第二棊板 357 第二偏光片 410 晝素設計 410+ 晝素設計 410 — 晝素設計 411 導體 412 導體 414 導體 201131268 導體 導體 導體 導體 導體 導體 導體 導體 導體 顯示器 晝素設計 晝素設計 晝素設計 導體 導體 導體 導體 導體 導體 導體 導體 導體 導體 導體 導體 63 201131268 611 導體 612 導體 613 導體 616 導體 617 導體 619 導體 623 導體 626 導體 627 導體 629 導體 710 畫素設計 710+ 晝素設計 710- 晝素設計 712 導體 713 導體 714 導體 715 導體 716 導體 717 導體· 720 顯示器 810 畫素設計 810+ 晝素設計 810- 晝素設計 811 導體 812 導體 64 201131268 導體 導體 導體 導體 導體 導體 導體 導體 導體 導體 導體 導體 導體 導體 導體 導體 導體 導體 導體 導體 導體 導體 導體 顯示器 1_1 關聯點 65 201131268 AD_ _1. _2 關聯點 AD_ _2_ —1 關聯點 AD _2_ _2 關聯點 AD _3_ _1 關聯點 AD_ _3— _2 關聯點 AD_ _4 _2 關聯點 ADH 關聯點高度 ADW 關聯點寬度 ADS 放大器深度間距 CC 1 第一色分量 CC_ 2 第二色分量 CC_ _3 第三色分量 CD _1_ 1 色點 CD 1 _2 色點 CD 1_ _3 色點 CD_ 1 _4 色點 CD_ _1_ _5 色點 CD 6 色點 CD 1_ 1 色點 CD 1 % 色點 CD _2_ 1 色點 CD _2_ _2 色點 CD_ _2_ _3 色點 CD_ _2_ 4 色點 CD 2 5 色點 201131268140 second alignment layer 145 second electrode 150 second substrate 155 second polarizer 172 viewer 174 viewer 176 viewer 200 multi-region vertical alignment liquid crystal display 205 first polarizer 210 first substrate 220 first electrode 225 first Alignment layer 235 Liquid crystal 237 Liquid crystal 240 Second alignment layer 245 Second electrode 255 Second polarizer 260 Projection 272 Viewer 274 Viewer 276 Viewer 300 Multi-zone vertical alignment liquid crystal display 302 First polarizer 305 First substrate 307 Alignment layer 61 201131268 310 昼311 311 first electrode 312 liquid crystal 313 liquid crystal 315 second electrode 320 pixel 321 first electrode 322 liquid crystal 323 liquid crystal 325 second electrode 327 electric field 330 halogen 331 first electrode 332 liquid crystal 333 liquid crystal 335 Two f poles 352 Second alignment layer 355 Second slab 357 Second polarizer 410 Alizarin design 410+ Alizarin design 410 - Alizarin design 411 Conductor 412 Conductor 414 Conductor 201131268 Conductor Conductor Conductor Conductor Conductor Conductor Conductor Conductor Display 昼Design of elemental design Conductor conductor conductor conductor conductor conductor conductor conductor conductor conductor conductor 63 201131268 611 conductor 612 conductor 613 conductor 616 conductor 617 conductor 619 conductor 623 conductor 626 conductor 627 conductor 629 conductor 710 pixel design 710 + halogen design 710 - halogen design 712 conductor 713 Conductor 714 Conductor 715 Conductor 716 Conductor 717 Conductor · 720 Display 810 Pixel Design 810+ Alizarin Design 810 - Alizarin Design 811 Conductor 812 Conductor 64 201131268 Conductor Conductor Conductor Conductor Conductor Conductor Conductor Conductor Conductor Conductor Conductor Conductor Conductor Conductor Conductor Conductor Conductor Conductor Conductor Conductor Conductor Display 1_1 Associated Point 65 201131268 AD_ _1. _2 Associated Point AD_ _2_ —1 Associated Point AD _2_ _2 Associated Point AD _3_ _1 Associated Point AD_ _3 — _2 Associated Point AD_ _4 _2 Associated Point ADH Associated Point Height ADW Associated point width ADS Amplifier depth spacing CC 1 First color component CC_ 2 Second color component CC_ _3 Third color component CD _1_ 1 Color point CD 1 _2 Color point CD 1_ _3 Color point CD_ 1 _4 Color point C D_ _1_ _5 color point CD 6 color point CD 1_ 1 color point CD 1 % color point CD _2_ 1 color point CD _2_ _2 color point CD_ _2_ _3 color point CD_ _2_ 4 color point CD 2 5 color point 201131268

CD—2一6 色點 CD_2_7 色點 CD_2_8 色點 CD_3—1 色點 CD_3_2 色點 CD_3_3 色點 CD_3_4 色點 CD_3_5 色點 CD_3—6 色點 CD—3_7 色點 CD_3_8 色點 CDH 色點高度 CDW 色點寬度 DCA_1 裝置元件區域 DCA—2 裝置元件區域 DCA—3 裝置元件區域 DCAH 裝置元件區域高度 DCAW 裝置元件區域寬度 EPFFAl 跨位面離散場放大器 EPFFA—1_ _1 跨位面離散場放大器 EPFFA_1_ 2 跨位面離散場放大器 EPFFA—1一 _3 跨位面離散場放大器 EPFFA_2 跨位面離散場放大器 EPFFA—2_ _1 跨位面離散場放大器 EPFFA 2 2 跨位面離散場放大器 67 201131268 EPFFA_2_3 跨位面離散場放大器 EPFFA_3 跨位面離散場放大器 EPFFA_3_1 跨位面離散場放大器 EPFFA_3_2 跨位面離散場放大器 EPFFA_3_3 跨位面離散場放大器 EPFFAH 跨位面離散場放大器高度 EPFFAW 跨位面離散場放大器寬度 HADS 水平關聯點間距 HADS1 水平關聯點間距 HADS2 水平關聯點間距 HAP—1 第一水平放大部 HAP_2 第二水平放大部 HAP3 第三水平放大部 HAP—4 第四水平放大部 HAP_5 第五水平放大部 HAP6 第六水平放大部 HAP—H_1 水平放大部高度' HAP_H_2 永平放大部高度 HAP_H_3 水平放大部高度 HAP_H_4 水平放大部高度 HAP_H_5 水平放大部高度 HAP—H_6 水平放大部局度 HAP_W_1 水平放大部寬度 HAP_W_2 水平放大部寬度 HAP W 3 水平放大部寬度CD—2—6 color point CD_2_7 color point CD_2_8 color point CD_3—1 color point CD_3_2 color point CD_3_3 color point CD_3_4 color point CD_3_5 color point CD_3—6 color point CD—3_7 color point CD_3_8 color point CDH color point height CDW color point Width DCA_1 Device component area DCA-2 Device component area DCA-3 Device component area DCAH Device component area height DCAW Device component area width EPFFAl Transposed plane discrete field amplifier EPFFA—1_ _1 Cross-plane discrete field amplifier EPFFA_1_ 2 Cross-plane dispersion Field Amplifier EPFFA—1_3 Transposed Surface Discrete Field Amplifier EPFFA_2 Transposed Surface Discrete Field Amplifier EPFFA—2_ _1 Transposed Surface Discrete Field Amplifier EPFFA 2 2 Transposed Surface Discrete Field Amplifier 67 201131268 EPFFA_2_3 Transposed Surface Discrete Field Amplifier EPFFA_3 Cross-plane discrete field amplifier EPFFA_3_1 Transposed surface discrete field amplifier EPFFA_3_2 Transposed surface discrete field amplifier EPFFA_3_3 Transposed surface discrete field amplifier EPFFAH Transposed surface discrete field amplifier height EPFFAW Transposed surface discrete field amplifier width HADS Horizontal correlation point spacing HADS1 level Associated point HADS2 horizontal correlation point spacing HAP-1 first horizontal amplification part HAP_2 second horizontal amplification part HAP3 third horizontal amplification part HAP-4 fourth horizontal amplification part HAP_5 fifth horizontal amplification part HAP6 sixth horizontal amplification part HAP-H_1 horizontal magnification Part height ' HAP_H_2 Yongping enlargement height HAP_H_3 Horizontal enlargement height HAP_H_4 Horizontal enlargement height HAP_H_5 Horizontal enlargement height HAP_H_6 Horizontal enlargement degree HAP_W_1 Horizontal enlargement width HAP_W_2 Horizontal enlargement width HAP W 3 Horizontal enlargement width

68 20113126868 201131268

HAP_W_4 水平放大部寬度 HAP_W_5 水平放大部寬度 HAP_W_6 水平放大部寬度 HCCOl 水平色分量偏移量 HDS 水平點間距 HDOl 水平點偏移量 HDS1 水平點間距 HDS2 水平點間距 HDS3 水平點間距 SEJ 切換元件 SE_2 切換元件 SE_3 切換元件 VADS 垂直關聯點間距 VAP_1 垂直放大部 VAP—Η—1 垂直放大部高度 VAP_W_1 垂直放大部寬度 VDS 垂直點間距 VDS1 垂直點間距 VDS2 垂直點間距 VDS3 垂直點間距 69HAP_W_4 Horizontal magnification width HAP_W_5 Horizontal amplification width HAP_W_6 Horizontal amplification width HCCOl Horizontal color component offset HDS Horizontal point spacing HDO1 Horizontal point offset HDS1 Horizontal point spacing HDS2 Horizontal point spacing HDS3 Horizontal point spacing SEJ Switching element SE_2 Switching element SE_3 switching element VADS vertical correlation point spacing VAP_1 vertical amplification part VAP—Η—1 vertical amplification part height VAP_W_1 vertical magnification part width VDS vertical point spacing VDS1 vertical point spacing VDS2 vertical point spacing VDS3 vertical point spacing 69

Claims (1)

201131268 七、申請專利範圍: 1、一種顯示器的畫素,係包括: 一第一色分量’具有一第一色點及一第二色 點,該第二色點係在一第一維度中與該第一色點配 向;以及 第一跨位面離散場放大器,係位在該第一色 分量的該第一色點與該第二色點之間,該第一色分 量的該第一色點係位在一第一平面,該第一跨位面 離散場放大器係位在一第二平面; 其中,該第一跨位面離散場放大器係架構來從 5玄畫素外側接收極性。 、依據中請專利範圍第丨項所述的畫素,更進—部包括 第一色分夏及一第二跨位面離散場放大器,該第二 色刀里具有一第一色點及一第二色點,該第二色分量 的該第二色點係與該第二色分量的該第一色點在一 第一維度配向,該第二跨位面離散場放大器係位在該 第二色分量的該第一色點與該第二色點之間,其中該 第,跨位面離散場放大器係位在一第二平面;以及其 中。玄第一跨位面離散場放大器係架構來從該畫素外 、則康申料利範圍第2項所述的畫素,更進^部包括 ,切換it件及—第二切換元件,該第—切換元件 係耦接到該第—多分吾 __ 邑刀里的泫第一色點與該第二色 "弟—切換①件軸接到該第三色分量的該第一 色點與該第二色點’其中該第—切換树係架構來具 201131268 有極f一極性,且該第二切換元件係架構來具有一第 4、依據申請專利範圍第3項所述的畫素,更進一步包括 一第三色分量、一第三跨位面離散場放大器及二^三 切換元件,該第三色分量具有一第一色點及一第二^ 點:該第三色分量的該第二色點係與該第三色分量的 該第Γ色點在一第一維度配向,該第三跨位面離散場 放大器係位在該第三色分量的該第一色點與該第二 • ㈣之間’其中該第三跨位面離散場放大ϋ係位在一 第二平面,該第三切換元件係耦接到該第三色分量的 該第-色點與該第二色點,其中該第三切換元件係架 構來具有'一第一極性。 5、 =中請專利範圍第2項所述的畫素,更進一步包括 :第二跨位面離散場放大器、一第一切換元件及一第 二切換元件,該第三跨位面離散場放大器係位在該第 一色分量與該第二色分量之間,其中該第三跨位面離 • .散場放,11係位在-第二平面,該第-切換元件係輕 接到4第一色分置的該第一色點與該第二色點,該第 f,換元件_接到該第i色分量的該第 一色點與 j第-色點’其巾該第—切換元件係架構來具有一第 極性,且該第二切換元件係架構來具有該第一極 性。 6、 依據巾請專利範圍第5項所述的晝素,更進—步包括 第二色分I、一第四跨位面離散場放大器、一第五 ^位面離散場放大器及—第三切換元件,該第三色分 71 201131268 量具有-第-色點及一第二色點,該第三色分量的該 第二色點係在一第一維度與該第三色分量的該第」 色點配向,該第四跨位面離散場放大器係位 色分量的該第一色點與該第二色點之間,其中該第: 跨位面離散場放大器係位在該第二平面,該第五跨位 面離散場放大器係位在該第二色分量的該第二^點 與該第三色分量的該第一色點之間’其中該第五跨位 面離散場放大器係位在該第二平面,該第三切換元件 係耦接到該第三色分量的該第一色點與該第二色 點,其中該第三切換元件係架構來具有該第一極性。 、依據申請專利範圍第1項所述的畫素,更進一步包括 一第一關聯點及一第二關聯點,其中該第一色分量的 該第一色點係位在該第一關聯點與該第一色分量的 邊,二色點之間,該第一色分量的該第二色點係位在 5玄第二關聯點與該第一色分量的該第一色點之間。 、依據申請專利範圍第7項所述的畫素,更進一步包括 一第二色分量、一第二跨位面離散場放大器、一第三 關聯點、一第四關聯點' 一第一切換元件及一第二切 換元件,該第二色分量具有一第一色點及一第二色 點,邊第二色分量的該第二色點係在該第一維度與該 第一色分量的該第一色點配向,該第二跨位面離散場 放大器係位在該第二色分量的該第一色點與該第二 色點之間,其中該第二跨位面離散場放大器係位在該 第一平面,該第二色分量的該第一色點係位在該第三 關聯點與該第二色分量的該第二色點之間,該第二色 72 201131268 的該第二色點係位在該第四關聯點與該第二色 =里的该第一色點之間,該第—切換元件係耦接到該 第一色分量的該第一色點與該第二色點,該第二切^ 凡件係耦接到該第二色分量的該第一色點與該、 色點。 一 9、依據中請專利範圍第8項所述的晝素,其中該第—切 換凡件係架構來具有一第一極性,該第二切換元 架構來具有一第二極性。 ’、 _ 1〇、依據申請專利範圍第8項所述的晝素,其中該第一 刀換元件係架構來具有一第一極性,該第二切換元 係架構來具有該第一極性。 、 11、 依據申請專利範圍第8項所述的晝素,更進一步包 括第二色分量、一第三跨位面離散場放大器、一第 五關聯點、一第六關連點及一第三切換元件,該第三 ^刀夏係具有一第一色點及一第二色點,該第三色分 罝=該第二色點係在該第一維度與譎第三色分量的 • 戎色點配向,該第三跨位面離散場放大器係位在 忒第二色分量的該第一色點與該第二色點之間,其中 X弟—^位面離散場放大器係位在該第二平面,該第 =色分量的該第一色點係位在該第五關聯點與該第 二色分量的該第二色點之間,該第三色分量的該第二 色點係位在該第六關聯點與該第三色分量的該第一 色,之間,該第三切換元件係耦接到該第三色分量的 邊第一色點與該第二色點。 12、 依據申請專利範圍第丨項所述的畫素,其中該第一 73 201131268 色分量更包括一第三色點,係與該第一色分量的該第 一色點在該第一維度配向,其中該第一色分量的該第 二色點係位在該第一色分量的該第一色點與該第三 色點之間。 13、 依據申請專利範圍第a項所述的晝素,更進一步包 括一第二跨位面離散場放大器,係位在該第一色分量 的5玄第一色點與該第一色分量的該第三色點之間,其 中該第二跨位面離散場放大器係位在該第二平面。 14、 依據申請專利範圍第2項所述的畫素,其中該第〆 籲 色分量更包括一第三色點與一第四色點,該第一色分 1的該第三色點係在一第二維度與該第一色分量的 。玄第一色點配向,該第一色分量的該第四色點係在該 第一維度與該第一色分量的該第三色點配向,並在該 第一維度與該第一色分量的該第二色點配向。 15、 依據申請專利範圍第丨項所述的畫素,其中該第一 跨位面離散場放大器更包括於該第一色分量的一第 一垂直放大部、於該第一色分量的一第一水平放大部 及於該第一色分量的一第二水平放大部,於該第一色 分量的該第一垂直放大部係在該第一色分量的該第 一色點與該第一色分量的該第二色點間之間以及在 該第一色分量的該第三色點與該第一色分量的該第 四色點之間延伸,於該第一色分量的該第一水平放大 部係在該第一色分量的該第一色點與該第一色分量 的該第三色點之間延伸,於該第一色分量的該第 平放大部係在該第一色分量的該第二色點與該第一 74 201131268 色分量的該第四色點之間延伸。 16、依據申請專利範圍g b ,量更包括-第五色點、-第I::::;: 色點係在該第二維度與該第一色分S 己向’該第一色分量的該第六色點係在該201131268 VII. Patent application scope: 1. A pixel of a display, comprising: a first color component having a first color point and a second color point, wherein the second color point is in a first dimension The first color point alignment; and the first straddle surface discrete field amplifier is between the first color point of the first color component and the second color point, the first color of the first color component The point is located in a first plane, the first straddle plane discrete field amplifier is tied to a second plane; wherein the first straddle plane discrete field amplifier architecture is configured to receive polarity from the outside of the 5 myopia. According to the pixel described in the third paragraph of the patent application, the further component includes a first color sub-summer and a second trans-plane discrete field amplifier, and the second color knife has a first color point and a a second color point, the second color point of the second color component is aligned with the first color point of the second color component in a first dimension, and the second transposed surface discrete field amplifier is in the first a first color point of the dichroic component and the second color point, wherein the first, cross-plane discrete field amplifier is tied to a second plane; and wherein. The first cross-plane discrete field amplifier architecture of the Xuan first span plane, from the pixel, the pixel described in the second item of the Kangshen material range, further includes, switching the element and the second switching element, The first switching element is coupled to the first color point and the second color of the first multi-divided __ 邑 knife, and the first color point of the third color component is coupled to the first color point And the second color point 'where the first switching tree architecture has a polarity of 201131268, and the second switching element architecture has a fourth pixel according to item 3 of the patent application scope. The method further includes a third color component, a third traverse plane discrete field amplifier, and a second switching component, the third color component having a first color point and a second color point: the third color component The second color point is aligned with the third color point of the third color component in a first dimension, the third cross-plane discrete field amplifier being tied to the first color point of the third color component and the Second • (d) between the 'the third straddle plane discrete field magnified ϋ system in a second plane, the third cut The system is coupled to the second element of the third color component - color point of the second color dot, wherein the third switching element to have a system architecture 'of a first polarity. 5. The pixel according to item 2 of the patent scope further includes: a second transposed surface discrete field amplifier, a first switching element and a second switching element, the third transposed surface discrete field amplifier Causing between the first color component and the second color component, wherein the third straddle plane is separated from the scatter field, the 11th position is in the second plane, and the first switching element is lightly connected to the fourth The first color point and the second color point separated by one color, the fth, the replacement element_ is connected to the first color point and the jth color point of the i-th color component The component system is configured to have a first polarity, and the second switching component is configured to have the first polarity. 6. According to the material described in item 5 of the patent scope, the second step includes a second color division I, a fourth transposition surface discrete field amplifier, a fifth ^ surface discrete field amplifier, and a third a switching element, the third color component 71 201131268 has a -th color point and a second color point, the second color point of the third color component is a first dimension and the third color component a color point alignment between the first color point of the color component of the fourth straddle surface discrete field amplifier and the second color point, wherein the first: straddle surface discrete field amplifier is in the second plane The fifth transposed surface discrete field amplifier is located between the second point of the second color component and the first color point of the third color component, wherein the fifth transposed surface discrete field amplifier system Positioned in the second plane, the third switching element is coupled to the first color point and the second color point of the third color component, wherein the third switching element is configured to have the first polarity. According to the pixel of claim 1, further comprising a first associated point and a second associated point, wherein the first color point of the first color component is at the first associated point The edge of the first color component, between the two color points, the second color point of the first color component is between the 5th second associated point and the first color point of the first color component. According to the pixel of claim 7, further comprising a second color component, a second traverse plane discrete field amplifier, a third associated point, and a fourth associated point 'a first switching element And a second switching component, the second color component has a first color point and a second color point, and the second color point of the second color component is in the first dimension and the first color component a first color point point alignment, the second straddle surface discrete field amplifier is located between the first color point and the second color point of the second color component, wherein the second straddle surface discrete field amplifier system In the first plane, the first color point of the second color component is between the third associated point and the second color point of the second color component, the second color of the second color 72 201131268 a color point is between the fourth associated point and the first color point in the second color=, the first switching element is coupled to the first color point and the second color of the first color component a color point, the second slice is coupled to the first color point of the second color component and the color point. 9. The pixel according to item 8 of the patent application, wherein the first switching unit architecture has a first polarity, and the second switching element architecture has a second polarity. The 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 11. The morpheme according to item 8 of the patent application scope further includes a second color component, a third traverse plane discrete field amplifier, a fifth associated point, a sixth related point, and a third switching. The third coloring point has a first color point and a second color point, and the third color point is the second color point in the first dimension and the third color component. Point alignment, the third transposed surface discrete field amplifier is located between the first color point and the second color point of the second color component, wherein the X-dipole surface field amplifier is in the first a second plane, the first color point of the third color component is between the fifth associated point and the second color point of the second color component, and the second color point of the third color component is The third switching element is coupled to the side first color point and the second color point of the third color component between the sixth associated point and the first color of the third color component. 12. The pixel according to the scope of the patent application scope, wherein the first 73 201131268 color component further comprises a third color point, and the first color point of the first color component is aligned in the first dimension The second color point of the first color component is between the first color point and the third color point of the first color component. 13. The halogen according to item a of the patent application scope, further comprising a second straddle surface discrete field amplifier, the first color point of the first color component and the first color component Between the third color points, wherein the second straddle surface discrete field amplifier is in the second plane. 14. The pixel according to claim 2, wherein the third color component further includes a third color point and a fourth color point, and the third color point of the first color component 1 is a second dimension with the first color component. a first color point of the first color component, the fourth color point of the first color component is aligned with the third color point of the first color component, and the first color component and the first color component are aligned The second color point is aligned. 15. The pixel according to claim 2, wherein the first straddle surface discrete field amplifier is further included in a first vertical amplification portion of the first color component, and a first color component a horizontal amplifying portion and a second horizontal amplifying portion of the first color component, wherein the first vertical amplifying portion of the first color component is at the first color point of the first color component and the first color Extending between the second color point of the component and between the third color point of the first color component and the fourth color point of the first color component, at the first level of the first color component The amplifying portion extends between the first color point of the first color component and the third color point of the first color component, and the first color amplifying portion of the first color component is at the first color component The second color point extends between the fourth color point of the first 74 201131268 color component. 16. According to the patent application scope gb, the quantity further includes a - fifth color point, - the first:::::;: the color point is in the second dimension and the first color point S has been 'the first color component The sixth color point is in the 第-維第—色分量的該第五色點配向,並在該 ϋ度與該第一色分量的該第四色點配向,其中該 第—跨位面離散場放大器更包括於該第—色分量的 :第三水平放大部及於該第—色分量的—第四水平 2部’該第三_水平放大部係在該第—色分量的該第 點與②第二色點之間延伸,該第四水平放大部係 亥第色刀里的3玄第六色點與該底四色點之間延 伸,其中於該第-色分量的該垂直放大部係在該第一 色分量的該第五色點與該第六色點之間延伸。 17、依據申請專利範圍第16項所述的晝素,其中該第一 ^分量更包括一第七色點及一第八色點,該第一色分 該第七色點係在該第二維度與該第一色分量的 «亥第五色點配向,該第一色分量的該第八色點係在該 第—維度與該第一色分量的該第六色點配向,並在該 第—維度與該第一色分量的該第六色點配向,其中該 第一跨位面離散場放大器更包括於該第一色分量的 一第五水平放大部及於該第一色分量的一第六水平 放大部,該第五水平放大部係在該第一色分量的該第 五色點與該第七色點之間延伸,該第六水平放大部係 在該第一色分量的該第六色點與該第八色點之間延 75 201131268 伸,其中於該第一色分量的該垂直放大部係在該第一 色分量的該第七色點與該第八色點之間延伸。 18、 依據申請專利範圍第〗4項所述的晝素,更進一步包 括一第二色分量及一第二跨位面離散場放大器,該第 二色分量具有一第一色點、一第二色點、—第三色點 及一第四色點,該第二色分量的該第二色點係在該第 一維度與該第二色分量的該第一色點配向,該第二色 分量的該第三色點係在該第二維度與該第二色分量 的該第一色點配向’該第二色分量的該第四色點係在 該第一維度與該第二色分量的該第三色點配向,並在 s亥第二維度與該第二色分量的該第二色點配向,該第 二跨位面離散場放大器係包括一垂直放大部、一第一 水平放大部及一第二水平放大部,該第二跨位面離散 場放大器的.該垂直方大部係在該第二色分量的該第 一色點與該第二色點之間以及在該第二色分量的該 第二色點與該第四色點之間延伸,該第二跨位面離散 %放大器的該第一水平放大部係在該第二色分量的 該第一色點與該第三色點之間延伸,該第二跨位面離 散場放大器的該第二水平放大部係在該第二色分量 的S玄第二色點與該第四色點之間延伸。 19、 依據申請專利範圍第18項所述的畫素,更進一步包 括了第—切換元件及一第二切換元件,該第一切換元 件,搞接到該第一色分量,該第二切換元件係耦接到 二色分量,其中當該第二切換元件被架構來具有 第一極性時,該第一切換元件係架構來具有一第一 76 201131268 極性。 20、依據申請專利範圍第π項所述的之晝素,更進一步 包括一第三色分量及一第三跨位面離散場放大器,該 第二色分量具有一第一色點、一第二色點、一第四色 點及一第五色點,該第三色分量的該第二色點係在該 第一維度與該第三色分量的該第一色點配向,該第三 色分1的該第三色點係在該第二維度與該第三色分 量的3玄第一色點配向,該第三色分量的該第四色點係 • 在該第一維度與該第三色分量的該第三色點配向,並 在該第二維度與該第三色分量的該第二色點配向,該 第一h位面離散場放大器係包括一垂直放大部、一第 戈水平放大部及一第二水平放大部,該第三跨位面離 散場放大器的該垂直放大部係在該第三色分量的該 ,〃色點與§亥第二色點之間以及在該第三色分量的 4亥第—色點與5玄第四色點之間延伸,該第三跨位面離 散場放大器的該第一水平放大部係在該第三色分量 • ^第一色點與該第三色點之間延伸,該第三跨位面 ,散場放大H的該第二水平放大部係在該第三色分 量的該第二色點與該第四色點之間延伸。 2】、依據申請專利範圍第2〇項所述的晝素,更進一步包 第一切換元件、一第二切換元件及一第三切換元 牛,該第一切換元件係耦接到該第一色分量,該第二 =元件係耦接到該第二色分量,該第三切換元件 :且”分量,其中當該第二切換元件被架構 ’、一第二極性時’該第一切換元件與該第三切換 77 201131268 元件係架構成具有一第一極性。The fifth color point of the first-dimensional color component is aligned, and the twist is aligned with the fourth color point of the first color component, wherein the first-span surface discrete field amplifier is further included in the first a third horizontal amplifying portion and a fourth horizontal portion 2 of the first color component are between the first point and the second second color point of the first color component Extending, the fourth horizontal amplifying portion extends between the three sixth color point in the color knife and the bottom four color point, wherein the vertical coloring portion of the first color component is in the first color component The fifth color point extends between the sixth color point. 17. The pixel according to claim 16, wherein the first component further comprises a seventh color point and an eighth color point, wherein the first color point is the second color point in the second color The dimension is aligned with the fifth color point of the first color component, the eighth color point of the first color component is aligned with the sixth color point of the first color component, and The first dimension is aligned with the sixth color point of the first color component, wherein the first transposed surface discrete field amplifier is further included in a fifth horizontal amplifying portion of the first color component and the first color component a sixth horizontal amplifying portion extending between the fifth color point of the first color component and the seventh color point, wherein the sixth horizontal amplifying portion is in the first color component The sixth color point and the eighth color point extend 75 201131268, wherein the vertical magnification of the first color component is between the seventh color point and the eighth color point of the first color component Extended between. 18. The halogen according to claim 4, further comprising a second color component and a second straddle surface discrete field amplifier, the second color component having a first color point and a second color a color point, a third color point, and a fourth color point, wherein the second color point of the second color component is aligned with the first color point of the second color component, the second color The third color point of the component is in the second dimension and the first color point of the second color component is aligned with the fourth color point of the second color component in the first dimension and the second color component The third color point is aligned, and is aligned with the second color point of the second color component in a second dimension of the second color plane, the second span surface discrete field amplifier includes a vertical amplification portion, and a first horizontal amplification And a second horizontal amplifying portion, the vertical portion of the second straddle-plane discrete field amplifier is between the first color point and the second color point of the second color component and in the Extending between the second color point of the dichroic component and the fourth color point, the first of the second transposed plane discrete % amplifier a flat amplification portion extending between the first color point of the second color component and the third color point, the second horizontal amplification portion of the second straddle surface discrete field amplifier being at the second color component The S second color point extends between the fourth color point. 19. The pixel according to claim 18, further comprising a first switching element and a second switching element, the first switching element being coupled to the first color component, the second switching element The second switching component is coupled to the dichroic component, wherein the first switching component is configured to have a first 76 201131268 polarity when the second switching component is configured to have a first polarity. 20. The pixel according to the πth item of the patent application scope, further comprising a third color component and a third traverse surface discrete field amplifier, the second color component having a first color point and a second color a color point, a fourth color point, and a fifth color point, wherein the second color point of the third color component is aligned with the first color point of the third color component, the third color The third color point of the first color is aligned with the first color point of the third color component in the second dimension, and the fourth color point of the third color component is in the first dimension and the first The third color point of the three color component is aligned, and the second color is aligned with the second color point of the third color component, the first h-plane discrete field amplifier system includes a vertical amplification portion, a digo a horizontal amplifying portion and a second horizontal amplifying portion, the vertical amplifying portion of the third straddle surface discrete field amplifier being between the chromatic point and the second color point of the third color component and at the Extending between a 4th color point of the third color component and a 5th color point, the third straddle surface discrete field amplifier a horizontal amplification portion extending between the first color component and the first color point, the third horizontal surface, the second horizontal amplification portion of the field amplification H is in the third color The second color point of the component extends between the fourth color point. 2, according to the voicing according to the second aspect of the patent application, further comprising a first switching component, a second switching component and a third switching element, the first switching component being coupled to the first a color component, the second component is coupled to the second color component, the third switching component: and a component, wherein when the second switching component is structured, and a second polarity, the first switching component And the third switch 77 201131268 component bracket has a first polarity.
TW099133495A 2010-03-10 2010-10-01 Pixels having extra-planar fringe field amplifiers for multi-domain vertical alignment liquid crystal displays TWI477866B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/721,559 US8446536B2 (en) 2005-09-15 2010-03-10 Pixels having extra-planar fringe field amplifiers for multi-domain vertical alignment liquid crystal displays

Publications (2)

Publication Number Publication Date
TW201131268A true TW201131268A (en) 2011-09-16
TWI477866B TWI477866B (en) 2015-03-21

Family

ID=44661470

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099133495A TWI477866B (en) 2010-03-10 2010-10-01 Pixels having extra-planar fringe field amplifiers for multi-domain vertical alignment liquid crystal displays

Country Status (2)

Country Link
CN (1) CN102200655B (en)
TW (1) TWI477866B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7430032B2 (en) * 2004-10-29 2008-09-30 Lg Display Co., Ltd. Multi-domain liquid crystal display device and fabrication method with central and peripheral control electrodes formed on same layer and plurality of field distortion slits formed in pixel electrode
US7995887B2 (en) * 2005-08-03 2011-08-09 Sharp Kabushiki Kaisha Liquid crystal display device and electronic device using the same
TWI340268B (en) * 2006-03-31 2011-04-11 Wintek Corp Multi-domain lcd
CN100480794C (en) * 2006-07-10 2009-04-22 胜华科技股份有限公司 Multiple-domain liquid crystal display
TWI362540B (en) * 2006-12-01 2012-04-21 Hiap L Ong A method to form alignment layers on a substrate of an lcd
TWI406038B (en) * 2008-01-23 2013-08-21 Kyoritsu Optronics Co Ltd Pixels having polarity extension regions for multi-domain vertical alignment liquid crystal displays

Also Published As

Publication number Publication date
TWI477866B (en) 2015-03-21
CN102200655B (en) 2014-07-09
CN102200655A (en) 2011-09-28

Similar Documents

Publication Publication Date Title
US8107026B2 (en) Multi-domain vertical alignment liquid crystal displays having pixels using associated dot polarity
JP2010169814A (en) Liquid crystal display device
CN104656330A (en) Liquid Crystal Display Device And Method Of Fabricating The Same
JPH07181439A (en) Active matrix liquid crystal display device
JP2011186458A (en) Liquid crystal display device
US9472581B2 (en) Display device
US9995972B2 (en) Display device
KR20060098979A (en) Liquid crystal display
US9691788B2 (en) Display device
US10229935B2 (en) Curved display device having plurality of subpixel electrodes formed in plurality of columns
TW201131268A (en) Pixels having extra-planar fringe field amplifiers for multi-domain vertical alignment liquid crystal displays
TW201329591A (en) Pixels having extra-planar fringe field amplifiers and sliced common electrodes for multi-domain vertical alignment liquid crystal displays
CN101294078B (en) Liquid crystal composition and liquid crystal display including the same
TWI542924B (en) Liquid crystal displays
KR20110038827A (en) Liquid crystal display device
TW201329586A (en) Pixels having extra-planar fringe field amplifiers for multi-domain vertical alignment liquid crystal displays
TWI447480B (en) Multi-domain vertical alignment liquid crystal displays using pixels having fringe field amplifying regions
US8786806B2 (en) Pixels having extra-planar fringe field amplifiers for multi-domain vertical alignment liquid crystal displays
CN102193232B (en) Liquid crystal display with colour spot of embedding polar region
US8675162B2 (en) Liquid crystal display panel
TW201329570A (en) Liquid crystal displays having pixels with embedded fringe field amplifiers
TW201329571A (en) Liquid crystal displays having pixels with embedded fringe field amplifiers

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees