TW201125849A - Process for the manufacture of at least one ethylene derivative compound - Google Patents

Process for the manufacture of at least one ethylene derivative compound Download PDF

Info

Publication number
TW201125849A
TW201125849A TW099141467A TW99141467A TW201125849A TW 201125849 A TW201125849 A TW 201125849A TW 099141467 A TW099141467 A TW 099141467A TW 99141467 A TW99141467 A TW 99141467A TW 201125849 A TW201125849 A TW 201125849A
Authority
TW
Taiwan
Prior art keywords
fraction
ethylene
advantageously
compound
column
Prior art date
Application number
TW099141467A
Other languages
Chinese (zh)
Inventor
Andre Petitjean
Massimo Giansante
Dominique Balthasart
Michel Lempereur
Joachim Koetter
Hans-Dieter Winkler
Peter Mews
Original Assignee
Solvay
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay filed Critical Solvay
Publication of TW201125849A publication Critical patent/TW201125849A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/389Separation; Purification; Stabilisation; Use of additives by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/013Preparation of halogenated hydrocarbons by addition of halogens
    • C07C17/02Preparation of halogenated hydrocarbons by addition of halogens to unsaturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/15Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination
    • C07C17/152Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons
    • C07C17/156Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons of unsaturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Abstract

Process for the manufacture of at least one ethylene derivative compound starting from a low value residual gas according to which (a) the low value residual gas, optionally containing fraction E1 recycled from step (d), is subjected to a series of treatment steps in a low value residual gas recovery unit in order to remove the undesirable components present therein and to obtain a mixture of products containing ethylene and other constituents; (b) the said mixture of products is subjected to a first separation step S1 which consists of separating said products containing ethylene and other constituents into a fraction containing the compounds which are lighter than ethylene and part of the ethylene called fraction F1 and into a fraction F2; (c) fraction F1 is sent to an ethylene recovery unit in which it is separated into a fraction enriched with ethylene called fraction E1 and into a fraction enriched with the compounds which are lighter than ethylene called light fraction; (d) fraction E1 is recycled to step (a) or is conveyed to the manufacture of at least one ethylene derivative compound; (e) fraction F2 is subjected to a second separation step S2 which consists of separating fraction F2 into one fraction enriched with ethylene called fraction E2 or into two fractions enriched with ethylene called fractions E2a and E2b, and into a fraction enriched with ethane and hydrocarbon containing at least 3 carbon atoms called heavy fraction; (f) fraction E2 or fractions E2a and E2b are then conveyed to the manufacture of at least one ethylene derivative compound.

Description

201125849 六、發明說明: 【發明所屬之技術領域】 本發明涉及用於製造至少一種乙烯衍生之化合物的一 種方法,特別是涉及用於製造1,2-二氯乙烷(DCE)以及 直接用乙烯開始製造的、不同於DCE的至少一種乙烯衍生 之化合物的一種方法。 0 【先前技術】 迄今爲止,通常使用純度超過99.8 %的乙烯製造乙烯 衍生之化合物,特別是DCE。這種非常高純度的乙烯係藉 由不同石油產品的裂解而獲得,爲了從裂解的其他產品中 分離出乙烯並且爲了獲得一純度非常高的產物,隨後進行 多種複雜和昂貴的分離操作。 考慮到與生產這種高純度乙烯相關的高成本,已經開 發了使用純度低於99.8%的乙烯來生產乙烯衍生之化合物 Ο 特別是DCE的不同方法。該等方法具有減少成本的優點, Μ優點係藉由簡化分離從裂解生成的產品的過程並因此藉 由去掉了對製造乙烯衍生之化合物(特別是DCE )無益的 複雜的分離而實現。 例如’專利申請WO 00/26 1 64說明了一藉由乙烷的簡 化裂解配合乙烯的氯化來製造DCE的方法。爲此,在乙烷 裂解過程中在獲得的雜質的存在下發生了一乙烯氯化的步 驟。 專利申請WO 03/048088說明了借助乙烷的脫氫作用生 201125849 產低濃度的乙烯以用於與氯的化學反應。載有乙烷的氣體 流不僅含有氫氣和甲烷,而且還含有大量未轉化的乙烷。 爲了經濟地設計該方法,在複雜的清除過程之後,必須將 未轉化的乙烷送回到乙烷脫氫作用中。這種方法僅可以使 用乙烷作爲進料。一顯著的缺點係濃度非常低的乙烯(小 於6 0 % )以及該氣體流的另外的組分例如氫氣、丙烯、丁 二烯僅允許在非常特殊的方法中使用乙烯的事實。 此外,專利申請 WO 2006/067188、WO 2006/067190、 WO 2006/067191、WO 2006/067192、WO 2006/067193 以 及WO 2007/1 47870說明了從一種烴源,特別是石腦油、瓦 斯油、天然氣液 '乙烷、丙烷'丁烷、異丁烷或它們的混 合物開始製造DCE的方法,該烴源首先經受了簡化裂解。 專利申請 W02008/000705、W02008/000702 和 W02008/000693 就它們而言說明了從乙烷流開始製造DCE的方法,該乙烷 流首先經受了催化氧化脫氫作用。然而,在上述專利申請 中說明的、目標爲生產和使用純度小於9 9.8 %的乙烯的方 法存在一些缺點,即要求裂解或催化氧化氫化作用的第一 步驟,該步驟需要重大投資,這引起了生產成本的增加並 且此外涉及了昂貴烴源的使用。 低價値殘餘氣體,如在煉油廠(在煉油廠的流化催化 裂化(FCC )單元、焦化單元,等)生產的煉油廠廢氣( 速稱爲石油化學廢氣),通常是燒掉並且作爲燃料使用, 例如在該煉油廠內,而不對其中所含的烯烴進行任何回收 ’這係因爲烯烴的含量相對較小並且與此種回收方法相關 -6- 201125849 的成本太高。 在專利申請WO 2009/1 06479中說明了目的係爲了生產 並且使用具有純度爲小於99.8%的乙烯連同使此類低價値 殘餘氣體增値的一種方法。相關的方法係用於從此類氣體 開始製造至少一種乙烯衍生之化合物的一種方法’使該至 少一種乙烯衍生之化合物經受一個分離爲含有乙烯的兩個 不同的餾分(fraction );含有部分乙烯的、富含比乙烯 0 輕的化合物的一第一餾分以及富含乙烯並且以一個低氫氣 含量爲特徵的一第二餾分。然後將那兩個乙烯餾分分別送 去用於製造至少一種乙烯衍生之化合物。 然而,在該專利申請中說明的方法存在以下缺點,即 要求分離爲具有不同組成的乙烯的兩個餾分。另一缺點係 這兩個餾分的使用條件係不同的,這可能夠擾亂後來使用 它們的過程。此外,對於這兩種品質的乙烯考慮到它們含 有該等反應性雜質,某些使用係不可接受的;例如氫氣, 〇 它在乙烯的氧氯化過程中是不可接受的。另一缺點係乙烯 餾分中比乙烯輕的含量非常高的化合物意味著有待使用的 裝置的尺寸的增加並且促使藉由汽提產生的損失增加,這 使得該過程效率較低。最終,含有比乙烯輕的該等化合物 的乙烯餾分的增値變得更加困難,因爲它取決於在使用含 有比乙烯輕的該等化合物的乙烯餾分的該等單元的出口處 的壓力和溫度。201125849 VI. Description of the Invention: [Technical Field] The present invention relates to a process for the manufacture of at least one ethylene-derived compound, in particular to the manufacture of 1,2-dichloroethane (DCE) and the direct use of ethylene A method of starting at least one ethylene derived compound that is different from DCE. 0 [Prior Art] To date, ethylene-derived compounds, particularly DCE, have been generally produced using ethylene having a purity of more than 99.8%. This very high purity ethylene is obtained by cracking of different petroleum products, in order to separate ethylene from other products of cracking and to obtain a very high purity product, followed by various complicated and expensive separation operations. In view of the high costs associated with the production of such high purity ethylene, different processes have been developed for the production of ethylene derived compounds, particularly DCE, using ethylene having a purity of less than 99.8%. These methods have the advantage of reducing costs, and the advantages are achieved by simplifying the process of separating the products formed from the cracking and thus by eliminating the complex separation that is not beneficial for the manufacture of ethylene-derived compounds, particularly DCE. For example, 'Patent Application WO 00/26 1 64 describes a process for the manufacture of DCE by simple cleavage of ethane in combination with chlorination of ethylene. To this end, a step of ethylene chlorination occurs in the presence of impurities obtained during the ethane cracking process. Patent application WO 03/048088 describes the use of dehydrogenation of ethane to produce a low concentration of ethylene for chemical reaction with chlorine. The gas stream carrying ethane contains not only hydrogen and methane, but also a large amount of unconverted ethane. In order to economically design the process, unconverted ethane must be returned to the ethane dehydrogenation process after a complex purge process. This method can only use ethane as a feed. A significant disadvantage is the fact that very low concentrations of ethylene (less than 60%) and the additional components of the gas stream, such as hydrogen, propylene, butadiene, only allow the use of ethylene in very specific processes. In addition, the patent applications WO 2006/067188, WO 2006/067190, WO 2006/067191, WO 2006/067192, WO 2006/067193 and WO 2007/1 47870 describe from a hydrocarbon source, in particular naphtha, gas oil, The natural gas liquid 'ethane, propane' butane, isobutane or mixtures thereof begins the process of making DCE, which is first subjected to simplified cracking. Patent applications W02008/000705, WO2008/000702 and W02008/000693 describe, for them, a process for the manufacture of DCE starting from an ethane stream which is first subjected to catalytic oxidative dehydrogenation. However, the process described in the above mentioned patent application for the production and use of ethylene having a purity of less than 99.8% has some disadvantages, namely the first step requiring cracking or catalytic oxidative hydrogenation, which requires a significant investment, which causes The increase in production costs and in addition involves the use of expensive hydrocarbon sources. Low-cost residual gas, such as refinery off-gas (known as petrochemical waste gas) produced in refineries (fluid catalytic cracking (FCC) units in refineries, coking units, etc.), usually burned off and used as fuel Use, for example, in the refinery without any recovery of the olefins contained therein' because the olefin content is relatively small and the cost associated with such recovery methods is too high -6-201125849. The purpose described in the patent application WO 2009/1 06479 is to produce and use ethylene having a purity of less than 99.8% together with a method of increasing the residual gas of such low-cost hydrazine. A related method is a method for producing at least one ethylene-derived compound starting from such a gas 'subjecting the at least one ethylene-derived compound to two different fractions separated into ethylene; containing a portion of ethylene, A first fraction enriched in a compound lighter than ethylene and a second fraction characterized by ethylene and characterized by a low hydrogen content. The two ethylene fractions are then separately sent for the manufacture of at least one ethylene derived compound. However, the process described in this patent application has the disadvantage of requiring separation into two fractions of ethylene having different compositions. Another disadvantage is that the conditions of use of the two fractions are different, which can disrupt the process of using them later. In addition, for these two qualities of ethylene, it is considered unacceptable that they contain such reactive impurities; some uses are unacceptable; for example, hydrogen, which is unacceptable during the oxychlorination of ethylene. Another disadvantage is that a compound having a very high lighter content than ethylene in the ethylene fraction means an increase in the size of the device to be used and an increase in the loss due to stripping, which makes the process less efficient. Finally, the increase in the ethylene fraction containing such compounds lighter than ethylene becomes more difficult because it depends on the pressure and temperature at the outlet of the units containing the ethylene fraction containing the compounds lighter than ethylene.

本發明的目標的就其而言是提供使用純度小於99.8% 的乙烯來製造至少一種乙烯衍生之化合物特別是至少DCE 201125849 的一種方法,該方法不存在上述使用純度小於9 9.8 %的乙 烯的方法的該等缺點,這進一步允許低價値殘餘氣體如煉 油廠廢氣的增値並且此外允許比乙烯輕的該等化合物的增 値、該等下游單元操作中的更高的靈活性、連同該等下游 單元中的經濟性。 【發明內容】 爲此,本發明涉及從一種低價値殘餘氣體開始製造至 少一種乙烯衍生之化合物的方法,根據該方法: a )使該低價値殘餘氣體,可隨意地含有從步驟d )中 再利用的餾分E1,在一個低價値殘餘氣體回收單 元中經受一系列處理步驟以去除其中存在的不希 望的成分並且獲得含有乙烯以及其他組分的產物 的一種混合物: b )使所述多種產物的混合物經受一第一分離步驟S 1 ,該步驟包括將所述含有乙烯和其他組分的產物 分離爲含有比乙烯輕的該等化合物和部分乙烯的 、被稱爲餾分F1的一餾分並且分離爲一餾分F2; c) 將餾分F1送入一乙烯回收單元,其中它被分離爲 富含乙烯的、被稱爲餾分E1的一餾分,並且被分 離爲富含比乙烯輕的該等化合物的 '被稱爲輕質 餾分的一餾分; d) 將飽分E1再利用至步驟a)中或者送去用於製造至 少一種乙烯衍生之化合物; -8- 201125849 e )使餾分F2經受一個第二分離步驟S2,該步驟包括 將餾分F2分離爲富含乙烯的、被稱爲餾分E2的一 餾分或者分離爲富含乙烯的、被稱爲餾分E2 a和 E2b的兩個餾分,並且分離爲富含乙烷以及含有至 少3個碳原子的烴的、被稱爲重質餾分的一餾分; f)然後將餾分E2或者餾分E2a和E2b送去用於製造至 少一種乙烯衍生之化合物。 0 爲了本發明的目的,表述“至少一種乙烯衍生之化合 物”應理解爲係指可以藉由根據本發明的方法進行製造的 一種或多於一種的乙烯衍生之化合物。 表述“乙烯衍生之化合物”,以單數或複數在本文中 使用,應理解爲係指爲了本發明的目的直接用乙烯開始製 造的任何乙烯衍生之化合物連同由其衍生的任何化合物。 表述“直接用乙烯開始製造的乙烯衍生之化合物”, 以單數或複數在本文中使用,應理解爲係指爲了本發明的 〇 目的直接由乙烯製造的任何化合物。 表述“由其衍生的化合物”,以單數或複數在本文中 使用,應理解爲係指爲了本發明的目的從一種本身從乙烯 製造的化合物製造的任何化合物連同由其衍生的任何化合 物。 作爲此類直接用乙烯開始製造的乙烯衍生之化合物的 實例’除其他之外,可以提及環氧乙烷、直鏈α-烯烴類、 直鏈一級醇類、乙烯的均聚物和共聚物、乙苯、乙酸乙烯 酯、乙醛、乙醇、丙醛、以及DCE。 201125849 作爲此種由其衍生的化合物的實例,除其他之外,可 以提及, -由環氧乙烷製造的乙二醇類以及醚類, -由乙苯製造的苯乙烯以及衍生自苯乙烯的苯乙烯聚 合物, -從DCE製造的氯乙烯(VC ), -由VC衍生的偏二氯乙烯、氟化的烴類和聚氯乙烯( PVC ),以及由氟化的烴類衍生的氟化的聚合物’ 連同 -衍生自偏二氯乙烯的聚偏二氯乙烯以及氟化烴類( 以及氟化聚合物)。 根據本發明的方法係從一種低價値殘餘氣體開始的一 種方法。 表述“一種低價値殘餘氣體” (LVRG ),在本文中 以單數使用,應理解爲係指爲了本發明的目的,含有乙烯 和/或其一種或多種前體的一種氣體或幾種氣體的混合物 ,這種氣體或幾種氣體在目標爲產生至少一種可燃液體的 單元中作爲副產物而生產的廢氣;LVRG係由按重量計多 於10%的永久氣體構成的。 表述“氣體”應理解爲係指爲了本發明的目的,其意 義爲1997版的防爆系統NFPA69標準(NFPA69 Standard on Explosion Prevention Systems, 1 997 Edition )所給出的定 義,即物質狀態的特徵爲完全的分子流動性和無限擴張。 表述“前體”應理解爲係指,爲了本發明的目的,任 -10 - 201125849 何含有兩個碳原子的、不同於乙烯的烴類化合物,特別是 乙烷、乙醇以及乙炔,更特別的是乙烷以及乙炔。 表述“可燃液體”應理解爲係指,爲了本發明的目的 ,含有碳、氫以及可能時含氧的任何烴餾分,該烴餾分在 2 1 °C時在其加料壓力下至少一部分爲液體並且能夠經歷燃 燒。 表述“燃燒”應理解爲係指爲了本發明的目的,其意 0 義爲1 997版的防爆系統NFPA69標準(NFPA69 Standard on Explosion Prevention Systems, 1 9 9 7 Edition )戶斤給出的定 義,即氧化的化學過程,該氧化在足夠快而產生熱以及通 常的光(以發光或火焰的形式)的速率下發生。 表述“永久氣體”應理解爲係指,爲了本發明的目的 ’臨界溫度小於〇°C並且不能藉由簡單壓縮來液化的任何 氣體。永久氣體的實例係氫氣、氧氣、氮氣、氦氣、氬氣 、一氧化碳、以及甲烷。It is an object of the present invention to provide a process for the production of at least one ethylene-derived compound, in particular at least DCE 201125849, using ethylene having a purity of less than 99.8%, which method does not have the above-mentioned method of using ethylene having a purity of less than 99.8%. These disadvantages, which further allow for the enhancement of low-cost residual gases such as refinery off-gas and, in addition, allow for the enhancement of such compounds that are lighter than ethylene, the greater flexibility in the operation of such downstream units, together with such Economics in downstream units. SUMMARY OF THE INVENTION To this end, the present invention relates to a process for the manufacture of at least one ethylene-derived compound starting from a low-cost hydrazine residual gas, according to which: a) the low-valent hydrazine residual gas optionally contained from step d) The fraction E1 in reuse is subjected to a series of processing steps in a low-cost helium residual gas recovery unit to remove undesired components present therein and to obtain a mixture of products containing ethylene and other components: b) The mixture of products is subjected to a first separation step S1 which comprises separating the product containing ethylene and other components into a fraction known as fraction F1 containing the compounds lighter than ethylene and part of the ethylene. And is separated into a fraction F2; c) the fraction F1 is sent to an ethylene recovery unit where it is separated into a fraction rich in ethylene, referred to as fraction E1, and is separated as being richer than ethylene. a compound referred to as a fraction of a light fraction; d) reuse of the saturated E1 to step a) or for the production of at least one ethylene-derived compound -8- 201125849 e) subjecting fraction F2 to a second separation step S2 comprising separating fraction F2 into an ethylene-rich fraction called fraction E2 or separating it into ethylene-rich, known as Two fractions of fractions E2 a and E2b, and separated into a fraction known as a heavy fraction enriched in ethane and a hydrocarbon containing at least 3 carbon atoms; f) then fraction E2 or fractions E2a and E2b are sent Used to make at least one ethylene derived compound. For the purposes of the present invention, the expression "at least one ethylene-derived compound" is understood to mean one or more than one ethylene-derived compound which can be produced by the process according to the invention. The expression "ethylene-derived compound", used herein in the singular or plural, is understood to mean any ethylene-derived compound which is directly prepared from ethylene for the purposes of the present invention, together with any compound derived therefrom. The expression "ethylene-derived compound which is produced directly from ethylene", used herein in the singular or plural, is understood to mean any compound which is directly derived from ethylene for the purpose of the present invention. The expression "a compound derived therefrom", used singly or plurally, is understood to mean any compound made from a compound itself made from ethylene for the purposes of the present invention, together with any compound derived therefrom. Examples of such ethylene-derived compounds which are directly produced from ethylene' can be mentioned, among others, ethylene oxide, linear alpha-olefins, linear primary alcohols, homopolymers and copolymers of ethylene. , ethylbenzene, vinyl acetate, acetaldehyde, ethanol, propionaldehyde, and DCE. 201125849 As examples of such compounds derived therefrom, mention may be made, inter alia, of ethylene glycols and ethers made from ethylene oxide, styrene made from ethylbenzene and from styrene. Styrene polymers, - vinyl chloride (VC) manufactured from DCE, - vinylidene chloride derived from VC, fluorinated hydrocarbons and polyvinyl chloride (PVC), and fluorine derived from fluorinated hydrocarbons The polymer's together with the polyvinylidene chloride derived from vinylidene chloride and the fluorinated hydrocarbons (and fluorinated polymers). The process according to the invention is a process starting from a low-cost helium residual gas. The expression "a low-cost helium residual gas" (LVRG), used herein in the singular, is understood to mean a gas or gases containing ethylene and/or one or more precursors thereof for the purposes of the present invention. A mixture of such gases or gases produced as a by-product in a unit targeted to produce at least one flammable liquid; LVRG consisting of more than 10% by weight of a permanent gas. The expression "gas" is understood to mean the definition given for the purpose of the invention, which is the NFPA 69 Standard on Explosion Prevention Systems (1 997 Edition) of the 1997 edition, ie the physical state is characterized as complete Molecular mobility and infinite expansion. The expression "precursor" is understood to mean, for the purposes of the present invention, any hydrocarbon compound other than ethylene containing from two carbon atoms, in particular ethane, ethanol and acetylene, for the purpose of the present invention, more particularly It is ethane and acetylene. The expression "flammable liquid" is understood to mean, for the purposes of the present invention, any hydrocarbon fraction containing carbon, hydrogen and possibly oxygen, which hydrocarbon fraction is at least partially liquid at its feed pressure at 21 ° C and Can experience burning. The expression "burning" is understood to mean the definition given by the NFPA69 Standard on Explosion Prevention Systems (NF97), which is defined by the NFPA 69 Standard on Explosion Prevention Systems (1 9 9 7 Edition) for the purposes of the present invention. A chemical process of oxidation that occurs at a rate that is fast enough to generate heat as well as normal light (in the form of light or flame). The expression "permanent gas" is understood to mean any gas which has a critical temperature of less than 〇 ° C and which cannot be liquefied by simple compression for the purposes of the present invention. Examples of permanent gases are hydrogen, oxygen, nitrogen, helium, argon, carbon monoxide, and methane.

Cl LVRG可以在處理烴源以產生可燃液體的至少一種單 元中生產。此類單元可以是烴源熱解、氫熱解、催化熱解 、電弧熱解、費托合成或煉油廠的單元。烴源可以是固態 源,像煤、褐煤以及木材;液態源,像油(石油)以及石 腦油;或氣態源’像合成氣或來自石油的殘餘氣體和/或 天然氣田。此種LVRG通常作爲燃料燃燒或放空燃燒。 表述“至少一種處理烴源的單元”應理解爲係指,爲 了本發明的目的,LVRG可以在一種處理烴源的單元中生 產或在幾種處理烴源的單元中生產。較佳的是,LVRG在 -11 - 201125849 處理烴源的一單元中生產。 LVRG有利的是處於高於大氣壓的壓力下並且較佳的 是處於包括在大氣壓和它所產生的單元的壓力之間的壓力 下。 特別佳的是用於根據本發明的方法的LVRG係在煉油 廠中生產的LVRG,通常稱爲煉油廠廢氣(也稱爲石油化 學廢氣)並且下文中指定爲ROG。 因此’根據本發明的方法較佳的是從ROG開始的一種 方法。 ROG可以是在煉油廠中存在的一或多個單元中生產。 ROG較佳的是在煉油廠中存在的以下單元中的至少一個中 產生:流體催化裂化(FCC )、焦化器(延遲焦化器、流 體焦化器 '靈活焦化器)、氣體分飽裝置(gas plant)、 重整裝置、加氫裂化器、加氫處理器、以及加氫脫硫裝置 (HDS) 。ROG更佳的是在至少一個FCC單元中生產。 ROG可以是在一個或幾個煉油廠中生產的。 最較佳的是,ROG在一個煉油廠中生產,並且特別佳 的是在一個FCC單元中。 LVRG較佳的是ROG可以顯著地包括在下文中歹lj出的 該等化合物中的一些。LVRG較佳的是ROG通常包括在下 文中列出的該等化合物: -氫氣、甲烷、乙烷、乙烯、丙烷、丙烯、含有4、5 或6個碳原子的烴類、更重的C6 +以及硫化氫; -氮氣、氬氣、氦氣、二氧化碳以及水; -12- 201125849 -氧氣、一氧化碳以及氮氧化物類; -氯化氫、氰化氫、氨、氮化物類、腈類、硫化羰、 每分子中含有一個硫原子的有機化合物像硫醇和硫 化物、含有多於一個硫原子的有機化合物像二硫化 物、硫氧化物、乙炔、丙二烯、甲基乙炔、丁二烯 、二乙醇胺、甲醇、膦類、其他含有氯的無機化合 物以及含有氮的有機化合物;以及 -砷(像胂類)、汞、釩、溴、氟、矽、鋁以及金屬 羰基化合物。 除乙烯之外,所有上述成分都可被指定爲不希望的成 分。表述“不希望的成分”應理解爲係指,爲了本發明的 目的,如果對該方法的以下步驟中至少一個有害則有待至 少部分地去除的所有組分。 該等不希望的成分値得注意地可以分類爲: -可燃氣體,像氫氣、甲院、乙烷、丙院、含有4、5 或6個碳原子的烴類、更重的C 6+ ; -惰性氣體,像氮氣、氦氣以及氬氣; -氧合的化合物,像氧氣以及氮氧化物; -腐蝕性化合物,像二氧化碳、硫化氫、水、氯化氫 、氰化氫、氨、氮化物、腈類、硫化羰、每分子含 有一個硫原子的有機化合物像硫醇和硫化物,以及 硫氧化物; -反應性化合物’像丙烯、乙炔、丙二烯、甲基乙炔 、丁二稀、二乙醇胺、甲醇、膦類、其他含有氯的 -13- 201125849 無機化合物、含有氮的有機化合物、每分子含有多 於一個硫原子的有機化合物像二硫化物、連同一氧 化碳;以及 -催化劑中毒化合物,像砷(像胂類)、汞、釩、溴 、氟、砂、銘以及金屬羯基化合物。 該等不希望的成分還可以値得注意地分類爲: 1. 對於至少步驟b)可以是有害的並且在步驟a)的過 程中有利地基本上被去除的該等不希望的成分,即 -腐蝕性化合物,像二氧化碳、硫化氫、水、氯化氫 、氰化氫、氨、氮化物、腈類、硫化羰、每分子含 有一個硫原子的有機化合物像硫醇和硫化物,以及 硫氧化物;以及 -催化劑中毒化合物,像砷(像胂類)、汞、釩、溴 、氟、矽、鋁以及金屬羰基化合物。 2. 在步驟b)和隨後的多個步驟內是可接受的、但對 於該方法接著步驟e)的該等步驟中的至少一個可以是有 害的、並且可以有可能在步驟a )的過程中至少部分去除 的該等不希望的組分,即 -可燃氣體,像氫氣、甲烷、乙烷、丙烷、含有4、5 或6個碳原子的烴類、更重的C6+ ; -惰性氣體,像氮氣、氦氣以及氬氣; -氧合的化合物,像氧氣和氮氧化物;以及 -反應性化合物’像丙烯 '乙炔、丙二烯、甲基乙炔 、丁二烯、二乙醇胺、甲醇、膦類、其他含有氯的 -14 - 201125849 無機化合物、含有氮的有機化合物、每分子含有多 於一個硫原子的有機化合物像—硫化物、連同一氧 化碳。 表述“至少部分地去除”應理解爲係指,爲了本發明 的目的,有利的是存在於LVRG (較佳的是ROG )中、進 料至步驟a)和/或在步驟a)的過程中形成的每種不希望的 成分的至少2 5 %、較佳的是至少40%、更佳的是至少50%的 0 量被去除。有利的是’存在於LVRG (較佳的是ROG )中 、進料至步驟a)和/或在步驟a)的過程中形成的這每一種 不希望的成分的最多90%的量被去除。 表述“基本上去除”應理解爲係指,爲了本發明的目 的,有利的是存在於LVRG (較佳的是ROG )中的、進料 至步驟a )和/或在步驟a )的過程中形成的每種不希望的成 分的至少9 5 %、較佳的是至少9 8 %、更佳的是至少9 9 %的量 被去除。 1) 下文中給出的LVRG (較佳的是ROG )的組成係以乾 氣體爲基礎(不包括水)進行表達。如以上所述,LVRG (較佳的是ROG )可以是含有乙烯和/或其一種或多種前體 的一種氣體或幾種氣體的混合物(組合的LVRG )。當提 到單獨的LVRG (較佳的是ROG )時,在下文中給出的組 成對應於當LVRG (較佳的是ROG )是含有乙烯和/或其一 種或多種前體的一種氣體的情況。當提到組合的LVRG ( 較佳的是ROG )時,該等組成對應於當LVRG (較佳的是 ROG)是含有乙烯和/或其一種或多種前體的幾種氣體的一 -15- 201125849 混合物的情況。 單獨的LVRG (較佳的是ROG )有利的是包括按重量 計從〇.25%到60%的乙烯。1^110(較佳的是110〇)有利的 是包括按重量計至少0.2 5 %、較佳的是至少2 %、更佳是至 少5%、最佳的是至少8%、並且特別佳的是至少1 〇%的乙嫌 。LVRG (較佳的是R〇G )有利的是包括按重量計最多60% 、較佳的是最多5 5 %、更佳的是最多5 0 %、並且最佳的是 最多4 8 %的乙烯。 組合的LVRG (較佳的是ROG )有利的是包括按重量 計從10%到60%的乙烯。LVRG (較佳的是ROG )有利的是 包括按重量計至少1 〇% '較佳的是至少1 5%、更佳的是至 少1 8%、並且最佳的是至少20%的乙烯。LVRG (較佳的是 ROG )有利的是包括按重量計最多60%、較佳的是最多 5 5 %、更佳的是最多5 0 %、並且最佳的是最多4 8 %的乙燃。 單獨的LVRG (較佳的是R〇G)有利的是包括按重里 計從3 %到6 0 %的乙嫌加上其一或多種前體。L V R G (較佳 的是ROG )有利的是包括按重量計至少3%、較佳的是至少 5%、更佳的是至少8%、並且最佳的是至少1 〇%的乙嫌加上 一或多種前體。LVRG (較佳的是ROG )有利的是包括按 重量計最多6 0 %、較佳的是最多5 5 %、更佳的是敢多5 〇 %、 並且最佳的是最多4 8 %的乙嫌加上一或多種則體。 組合的LVRG (較佳的是R〇G )有利的是包括按重量 計從10%到60 %的乙烯加上其—種或多種前體。LVRG (較 佳的是ROG )有利的是包括按重量計至少1 〇%、較佳的是 -16- 201125849 至少1 5 %、更佳的是至少2 0 %、最佳的是至少2 2 %、並且 最佳的是至少22.5 %的乙烯加上一或多種前體。LVRG ( 佳的是ROG )有利的是包括按重量計最多60%、較佳的 最多5 5 %、更佳的是最多5 0 %、並且最佳的是最多4 8 %的 燃加上一或多種前體。 單獨的LVRG (較佳的是ROG )其特徵爲有利的是 括在10 MJ/kg和90 MJ/kg之間的一更低的熱値的乾氣 0 LVRG (較佳的是ROG)其特徵爲有利的是一更低的熱 爲至少10 MJ/kg、較佳的是至少12 MJ/kg、並且更佳的 至少15MJ/kg的乾氣。LVRG (較佳的是ROG)其特徵爲 利的是一更低的熱値爲最多90 MJ/kg、較佳的是最多 MJ/kg、並且更佳的是最多80 MJ/kg的乾氣。 組合的LVRG (較佳的是ROG )其特徵爲有利的是 括在20 MJ/kg和75 MJ/kg之間的一個更低的熱値的乾氣 LVRG (較佳的是ROG)其特徵爲有利的是一個更低的 〇 値爲至少20 MJ/kg、較佳的是至少25 MJ/kg、更佳的是 少30 MJ/kg、並且最佳的是至少35 MJ/kg的乾氣。LVRG 較佳的是ROG )其特徵爲有利的是一個更低的熱値爲最 75 MJ/kg、較佳的是最多70 MJ/kg、更佳的是最多 MJ/kg、並且最佳的是最多55 MJ/kg的乾氣。 單獨的LVRG (較佳的是ROG )有利的是包括按體 計最多9 0 %、較佳的是最多8 5 % '更佳的是最多8 0 %、並 最佳的是最多75 %的惰性氣體。 組合的LVRG (較佳的是ROG )有利的是包括按體 仍 較 是 乙 包 〇 値 是 有 85 包 〇 熱 至 ( 多 60 積 且 積 -17- 201125849 計最多2 5 %、較佳的是最多2 〇 %、更佳的是最多1 8 %、並且 最佳的是最多1 5%的惰性氣體。 組合的LVRG (較佳的是ROG )有利的是包括按體積 計最多2 5 %、較佳的是最多2 〇 %、更佳的是最多1 8 %、並旦 最佳的是最多1 5 °/。的氮氣。 單獨的LVRG (較佳的是ROG )包括氧合的化合物’ 其總量値有利的是低於或高於使氣態混合物可燃所需的# 平(所以在可燃區域之外)’該總量値較佳的是按體積計 最多2 1 %、更佳的是最多1 8% '並且最佳的是最多1 5%。 組合的LVRG (較佳的是ROG )包括氧合的化合物’ 其總量値有利的是低於使氣態混合物可燃所需的水平’該 總量値較佳的是按體積計最多1 0 %、更佳的是最多7 %、敢 且最佳的是最多5%。 組合的LVRG (較佳的是ROG )包括氧氣’其量値有 利的是按體積計最多9 %、較佳的是最多7 %、並且更佳的 是最多5 %。 單獨的LVRG (較佳的是ROG )包括腐蝕性化合物’ 其總量値有利的是按體積計最多5 0 %、較佳的是最多4 0 % 、並且更佳的是最多3 5 %。 組合的LVRG (較佳的是ROG )包括腐蝕性化合物’ 其總量値有利的是按體積計最多20%、較佳的是最多1 5% 、並且更佳的是最多10%。 組合的LVRG (較佳的是ROG )包括每種腐蝕性化合 物的單獨的量値有利的是按體積計最多1 〇%、較佳的是最 18- 201125849 多8 %、並且更佳的是最多5 %。 單獨的LVRG (較佳的是ROG )包括反應性化合物, 其總量値有利的是按體積計最多4 0%、較佳的是最多3 5 % 、並且更佳的是最多3 3 %。 組合的LVRG (較佳的是ROG )包括反應性化合物, 其總量値有利的是按體積計最多20%、較佳的是最多1 8% 、並且更佳的是最多1 5 %。 q 組合的LVRG (較佳的是ROG )包括每種反應性化合 物的單獨的量値有利的是按體積計最多1 5 %、較佳的是最 多1 2 %、並且更佳的是最多1 0 %。 組合的LVRG (較佳的是ROG )包括一氧化碳,其量 値有利的是按體積計最多5 %、較佳的是最多3 %、並且更 佳的是最多2 %。 單獨的LVRG (較佳的是ROG )包括催化劑中毒化合 物,其總量値有利的是按體積計最多200 ppm、較佳的是 0 最多100 ppm、並且更佳的是最多50ppm。 組合的LVRG (較佳的是R〇G )包括催化劑中毒化合 物,其總量値有利的是按體積計最多5 ppm、較佳的是最 多2 ppm、並且更佳的是最多1 ppm。 組合的LVRG (較佳的是R〇G )包括催化劑中毒化合 物,其單獨的體積有利的是按體積計最多500 ppb、較佳 的是最多300 ppb、並且更佳的是最多200 ppb。 在從一 LVRG (較佳的是R〇G)開始用於製造至少一 種乙烯衍生之化合物的方法中’特別是在用於製造D c E以 201125849 及直接用乙烯開始製造的、不同於dce的至少一種乙嫌衍 生之化合物的方法中’根據本發明,使LVRG (較佳的是 ROG,可隨意地含有從步驟d)再利用的餾分E1)在— L V R G (較佳的是R 〇 G )回收單元中經受一系列處理步驟 (步驟a)),以去除其中存在的不希望的成分並且獲得 將經受步驟b )的含有乙烯以及其他組分的產物的一混合 物。 當LVRG (較佳的是ROG )係幾種氣體的混合物時, 可以使不同的氣體全部在步驟a )中經受相同系列的處理 步驟,在步驟a )中使它們各自經受專用的處理步驟系列 或在步驟a )中使它們各自經受專用的處理步驟系列和常 見的處理步騾系列的組合。較佳的是,在步驟a )中使它 們各自經受專用的處理步驟系列和常見的處理步驟系列的 組合。 在步驟a )中在LVRG (較佳的是ROG )回收單元中的 處理步驟系列有利的是由以下步驟組成,但無需按它們所 列舉的順序進行: al ) 可 隨 意 的- -個 壓 縮 步 驟 a 1 b i s ) 可 隨 地- -個 或 幾 個 除 塵 步 驟 , a2) 腐 蝕 性 化合物 的 去 除 » a3 ) 催 化 劑 中毒化 合 物 的 去 除 > a4 ) 可 隨 意 地冷卻 5 a5 ) 可 隨 .\*r 思 地- 一 Jgi 可 燃 氣 體 的 至 少 部 分 的 去 除, a6 ) 可 隨 ^Z1 地- 一 it 惰 性 氣 體 的 至 少 部 分 的 去 除, -20- 201125849 a7 ) 可隨意地一些氧合的化合物的至少部分的去 除;以及 a8 ) 可隨意地一些反應性化合物的至少部分的去 除。 可隨意地進行一個壓縮步驟(步驟al))。可隨意地 進行一壓縮步驟(步驟al ))。 當存在時,LVRG (較佳的是ROG )的壓縮步驟有利 0 的是將壓力增加到至少8 kg/cm2.g ’較佳的是至少1〇 kg/cm2.g,更佳的是至少12 kg/cm2.g並且最佳的是至少14 kg/cm2.g,並且有利的是最多60 kg/cm2.g,較佳的是最多 55 kg/cm2.g,更佳的是最多50 kg/cm2.g並且最佳的是最多 45 kg/cm2.g。 步驟al)較佳的是分若干階段進行’在一個多級氣體 壓縮機中或幾個壓縮機中。較佳的是在壓縮步驟al)之前 進行小滴分離。 Q 在每個壓縮階段的壓縮比係使得壓縮階段出口的溫度 有利的是最多1 5 〇 °c、較佳的是最多1 2 0 °c、並且更佳的是 100°c。離開該階段的氣體之後有利的是藉由用一冷卻介 質直接冷卻來進行冷卻。該冷卻介質有利的是選自冷卻塔 的水、冷水、大氣中的空氣以及從該過程中流出的更冷的 氣體。該冷卻介質優先選自冷卻塔的水以及大氣中的空氣 。該冷卻流體更佳的是冷卻塔的水。 該氣體有利的是在50°c下冷卻’較佳的是在48°C下並 且更佳的是在4 5。(:下,但有利的是不低於0 °C ’較佳的是不 -21 - 201125849 低於5 °c並且更佳的是不低於1 〇 °C。 在冷卻結束時’可以產生一些冷凝物。如果產生了一 些冷凝物,可以將它們分離或不分離。較佳的是將它們分 離。該等冷凝物有利的是藉由壓力釋放進行脫氣,較佳的 是在上游階段的壓力下進行壓力釋放。可以對所分離的液 體進行汽提以便回收揮發性餾分。所生成的氣體更佳的是 與上游階段的氣體一起再利用。 在該氣體中存在的或者藉由任何預處理步驟產生的固 體顆粒可以可隨意地藉由一合適的操作去除,即一或幾個 除塵步驟(一或多個除塵步驟al bis ))。在該等合適的操 作中,可以提及例如重力沉降、衝擊、使用旋流器、過濾 、電過濾和/或電除塵。使用旋流器、過濾和電過濾係較 佳的。 腐蝕性化合物的去除(步驟a2 ))可以在一組或幾組 步驟中進行,每組包括一或幾個步驟。 第一組步驟(步驟a2a))有利的是包括一個或幾個 吸收步驟。 該吸收有利的是用一可再生溶液進行的吸收’像胺( 較佳的是烷醇胺)溶液;用一種合適的溶劑進行的物理吸 收,像甲醇或二甲醚聚乙二醇;或藉由在一種鹼性溶液中 洗滌而進行的用化學反應的吸收。 該城較佳的是一種氫氧化物、一種氧化物或一種碳酸 鹽。城的實例係氫氧化鈉、氫氧化鉀、氧化鈣、氧化鎂、 碳酸鈉以及碳酸鉀° -22 - 201125849 藉由吸收(步驟a2a ))可去除的腐蝕性化合物較佳 的是包括一第一步驟,該步驟係用胺的一可再生溶液進行 的吸收,較佳的是烷醇胺,隨後是用鹼性溶液(苛性鹼/ 水的洗滌塔)的吸收,較佳的是氫氧化鈉溶液。 該可再生溶液可以進行再生或不進行再生。如果再生 發生,它有利的是在一個或幾個階段中存在,特別是用來 分離二氧化碳和硫化氫。該可再生的溶液較佳的是進行再 0 生並且更佳的是分兩個階段。 藉由吸收(步驟a2a))可去除的腐蝕性化合物更佳 的是包括一第一步驟,該步驟係用胺的一再生溶液的吸收 ,較佳的是烷醇胺,該溶液在兩個階段中再生,隨後是用 鹼性溶液(苛性鹼/水的洗滌塔)的吸收’較佳的是氫氧 化鈉溶液。 藉由此步驟a2 a )可以至少部分地去除的腐蝕性化合 物有利的是硫化氫、氯化氫、硫化羰、氰化氫 '二氧化碳 Q 、氨以及每分子中含有一個硫原子的有機化合物,像硫醇 以及硫化物。 可替代地,每分子中含有一個硫原子的有機化合物像 硫醇以及硫化物、氨、連同硫氧化物可以在步驟a2a )的 過程中至少部分地進行水解。 如果使用一種物理吸附劑像甲醇’也可以藉由此類步 驟a2 a )至少部分地去除水。 第二組步驟(步驟a2b ))有利的是包括一個或幾個 氫化步驟。 -23- 201125849 腐蝕性化合物(例如像氰化氫、氮化物、腈類、硫化 羰、每分子含有一個硫原子的有機化合物像硫醇和硫化物 ,連同硫氧化物)的氫化有利的是藉由使用一種氫化催化 劑在一個氫化反應器中進行。在步驟a2b )之後,氰化氫 、氮化物、腈類、硫化羰、每分子含有一個硫原子的有機 化合物像硫醇和硫化物,連同硫氧化物有利的是至少部分 地進行氫化。 合適的催化劑種類有利的是包括第VIII族的金屬、第 lb族的金屬以及第VIb族的金屬。較佳的是基於鈀、基於 鎳、或基於金的催化劑。更佳的是基於鈀或基於鎳的催化 劑。基於鎳的催化劑係最佳的是’其中特別佳的是硫化的 鎳催化劑。氫化作用的催化劑可以是負載或不負載的。它 們較佳的是負載的。還可以使用如對步驟a7 )所定義的那 些催化劑。 硫化羰,如果仍存在於氫化進料中’有利的是在氫化 步驟a2b )中至少部分地轉化成硫醇’較佳的是用〜基於 鈀或鎳的催化劑、更佳的是使用一硫化的鎳催化劑。 存在於氫化進料中的腈類有利的是也在氫化步驟a2b )中至少部分地轉化成胺類,較佳的是用一基於细或鎳的 催化劑,更佳的是用一種硫化的鎮催化劑。 氰化氫,如果仍存在於氫化進料中’有利的是在氫化 步驟a2b )中至少部分地被去除,較佳的是用一基於鈀或 鎳的催化劑,更佳的是使用一種硫化的鎳催化劑。 步驟a2b )有利的是在25°C和l〇〇°C之間的溫度下進行 -24 - 201125849 第三組步驟(步驟a2c ))有利的是包括一個或幾個 冷卻步驟。 該冷卻有利的是藉由用一種冷卻介質進行直接或間接 冷卻而進行。直接冷卻係用來指過程流(Process stream) 與一種冷卻介質的物理接觸。用於直接接觸冷卻的合適的 冷卻介質的實例係水、甲醇、烴或它們的混合物。合適的 0 冷卻介質的其他實例係烷醇胺、金屬碳酸鹽或重碳酸鹽、 無機酸(像硫酸或硝酸)的水溶液。合適的介質的其他實 例係烷醇胺或金屬碳酸鹽或重碳酸鹽的甲醇溶液。較佳的 是,然後該冷卻介質所處的溫度低於該流的溫度°該冷卻 較佳的是藉由用一種冷卻介質間接冷卻來進行。該冷卻介 質有利的是選自冷卻塔的水,冷水、大氣中的空氣以及從 該過程中流出的更冷的氣體。該冷卻介質優先選自冷卻塔 的水以及大氣中的空氣。該冷卻流體更佳的是冷卻塔的水 〇 。 該氣體有利的是在50 °c下冷卻’較佳的是在48 °c下並 且更佳的是在4 5 °C下,但有利的是不低於〇 °C,較佳的是不 低於5。(:並且更佳的是不低於1 0 °C。可替代地,可以使用一 冷凍乾燥步驟來進行乾燥。 可以將該等冷凝物進行或不進行分離。較佳的是將匕 們分離。 第四組步驟(步驟a2d))有利的是包括一個或幾個 吸附步驟。 -25- 201125849 該吸附有利的是在一種合適的固體上的吸附’像活性 炭、木炭、分子舖、沸石、砂膠、或氧化銘。 水的吸附有利的是至少部分地藉由在分子篩、矽藤或 氧化鋁上的吸附步驟來實現。 較佳的是,水的去除至少部分地藉由冷卻(步驟a2c ))與吸附(步驟a2d))的結合來進行。 衍生於硫化羰的硫醇、硫化羰連同硫化物有利的是藉 由在一合適材料的床層內進行吸附而至少部分地去除。合 適的吸附劑有利的是包括含碳材料,如活性炭並且特別是 比表面積在500 m2/g和2500 m2/g之間的活性炭、分子篩3 、4 A或1 3 X、沸石;介孔吸附劑,包括活性氧化鋁,如比 B E T表面積在1 5 0 m 2 / g和8 0 0 m2 / g之間的介孔活性氧化銘、 矽膠、比BET表面積在1 50 m2/g和800 m2/g之間的介孔矽膠 吸附劑、A型沸石、5 A型沸石、X型八面沸石、Y型八面沸 石以及MFI沸石。較佳的是活性炭、分子篩3或4A以及或 活性氧化鋁。 衍生於腈_的胺類以及殘餘的腈類有利的是藉由用與 去除硫醇相同種類的吸附劑進行吸附而至少部分地去除。 氮化物類也可以在步驟a2d )的過程中至少部分地進行吸 附。 氨(如果還未去除)有利的是也藉由用與去除硫醇相 同種類的吸附劑進行吸附而至少部分地去除。 二氧化碳’如果沒有在步驟a2 a )的過程中去除,也 可以有利地藉由在一合適的吸附劑上進行吸附而至少部分 -26- 201125849 地去除。合適的吸附劑包括活性銅、礦物粘土、砂膠以及 活性氧化鋁。 催化劑中毒化合物的去除(步驟a3))可以在一組或 幾組步驟中進行’每組包括一個或幾個步驟。 第一組步驟(步驟a3a))有利的是包括一個或幾個 吸附步驟。 該吸附有利的是在一合適的固體上的化學或物理吸附 0 ,像活性炭、木炭、分子篩、沸石或氧化鋁(其被活化或 未活化)。 較佳的是,催化劑中毒化合物係藉由在氧化鋁上(較 佳的是活化的)或在活性炭上的化學或物理吸附而至少部 分地去除。 有利的是將至少1種、較佳的是至少2種吸附劑用於該 吸附作用。有利的是將最多6種、較佳的是最多5種、更佳 的是最多4種吸附劑用於該吸附作用。最佳的是使用3種吸 Q 附劑。 該氣體流可以在任何適合的裝置中與該等固體吸附劑 接觸。可以提及氣動傳送式移動床以及固定床作爲合適的 裝置。固定床係較佳的。 該等吸附劑可以安排在混合床中或專用床中。它們可 以安排在單一的容器或分離的容器中。該等吸附劑較佳的 是安排在專用床中’更佳的是在3個專用床中,並且較佳 的是在分離的容器中。 每個吸附步驟可以在一或幾個平行的床中實現。每個 -27- 201125849 吸附步驟較佳的是在幾個平行床中實現’更佳的是在至少 2個分離的床中實現。 再生可以在裝置本身中或在裝置以外實現。再生較佳 的是在裝置本身中實現。 第二組步驟(步驟a3b ))有利的是包括一個或幾個 吸收步驟。 該吸收有利的是一種物理吸收’例如用一種合適的溶 劑,像二甲醚聚乙二醇或甲醇;或是一種化學吸收’例如 用對於步驟a2a )所說明的一鹼性水溶液。 步驟a3 )有利的是在25 °C和1〇〇 °C之間的溫度下進行。 除步驟a2c)之外,可隨意地進行一個冷卻步驟(步 驟a4 ))。步驟a4 )較佳的是藉由用一冷卻介質直接冷卻 而有利地進行。 因此處理步驟(步驟a ))的系列有利地包括至少一 個壓縮步驟(步驟al))以及一個冷卻步驟(步驟a4)) 〇 該冷卻介質有利的是選自冷卻塔的水’冷水,烴,像 乙烯、乙烷、丙烯、丙烷或其中兩種或多種的混合物’ C〇2’氫氟烷製冷劑,大氣中的空氣’以及從該過程中流 出的更冷的氣體。該冷卻介質較佳的是選自冷卻塔的水’ 烴,像乙烯、乙烷、丙烯、丙烷或其中兩種或多種的混合 物,或從該過程中流出的更冷的氣體或大氣中的空氣。該 冷卻流體更佳的是冷卻塔的水’或烴,像乙稀、乙院、丙 烯、丙烷或其中兩種或多種的混合物’或從該過程中流出 -28- 201125849 的更冷的氣體。 該氣體有利的是在0 °c下進行冷卻’較佳的是在-1 〇 °c 下並且更佳的是在_ 2 0 下’但有利的是不低於-15 0 °c ’較 佳的是不低於-1201並且更佳的是不低於-100°c。 可以將該等冷凝物進行或不進行分離。較佳的是將它 們分離。 可隨意地進行一些可燃氣體的至少一部分的去除(步 0 驟 a5 ))。 至少部分的氫和/或甲烷可以至少部分地去除(步驟 a5 a ))。該去除是可隨意地在根據本發明的方法的步驟a )的過程中進行。用於去除至少一部分氫和/或甲烷的這 個步驟還可以在根據本發明的方法的步驟b)的過程中( 例如在對得自步驟a )的產物的混合物分離的過程中)進 行或對餾分E2、E2a或E2b進行。較佳的是,當進行時,至 少一部分氫和/或甲烷的去除係在根據本發明的方法的步 Q 驟a)(步驟a5 a))的過程中進行的。 對於氫氣和/或甲烷適合的分離步驟有利地是薄膜滲 透以及變壓吸附(PSA)。較佳的是PSA。 至少一部分乙烷、丙烷、和/或含有4、5或6個碳原子 的烴類或更重的C6+可以有利地在幾個步驟中至少部分地 去除(步驟a5b ))。 該去除係可隨意地在根據本發明的方法的步驟a )的 過程中進行。用於去除至少一部分乙烷、丙烷、和/或含 有4、5或6個碳原子的烴類或更重的C6 +的這種步驟還可以 -29- 201125849 在根據本發明的方法的步驟b)的過程中進行’例如在對 得自步驟a )的產物的混合物進行分離的過程中。 對乙烷、丙烷、和/或含有4' 5或6個碳原子的烴類或 更重的C6 +的合適的分離步驟有利的是冷凝。有利的是將 步驟a5b)與壓縮步驟ai)和/或冷卻步驟a2c)和/或a4) 進行結合。 可隨意地進行一些惰性氣體的至少一部分的去除(步 驟 a6))。 該去除係可隨意地在根據本發明的方法的步驟a)的 過程中進行。用於去除至少一部分惰性氣體的這個步驟還 可以在根據本發明的方法的步驟b )的過程中(例如在對 得自步驟a )的產物的混合物分離的過程中)進行或對餾 分E2、E2a或E2b進行。較佳的是,當進行時,至少—部分 惰性氣體的去除係在根據本發明的方法的步驟a )(步驟 a 6 ))的過程中進行。 對於惰性氣體適合的分離步驟有利地是薄膜滲透以及 變壓吸附(P S A )。較佳的是P S A。 可隨意地進行一些氧合化合物的至少一部分的去除( 步驟a 7 ))。 至少一部分氧氣可以藉由一化學步驟或一物理步驟而 至少部分地去除(步驟a7a))。 一合適的化學步驟有利的是藉由使用銅的一個還原床 或一種硫化的鎳催化劑來進行,較佳的是藉由使用一種硫 化的鎳催化劑(步驟a7al ))。 -30- 201125849 另一合適的化學步驟有利的是可以進行或不進行催化 (較佳的是進行催化)的一個氫化步驟(步驟a7a2))。 上述氫化步驟可以藉由任何已知的氫化催化劑進行, 例如像基於鈀、鉑、铑、釕、銥、金、銀、或該等元素的 混合物的催化劑,該催化劑沉積於一載體上’例如氧化鋁 、矽石、矽石/氧化鋁、碳、碳酸鈣或硫酸鋇’然而還有 基於鎳的催化劑以及那些基於鈷-鉬絡合物的催化劑。較 0 佳的是,該氫化步驟是藉由一基於鈀或鉑沉積於氧化鋁或 碳上的催化劑、在一基於鎳的催化劑上或在一基於鈷·鉬 絡合物的催化劑上進行。在一特別佳的方式中’它藉由一 基於鎳的催化劑進行。 該氫化步驟有利的是使用在LVRG (較佳的是ROG ) 中可用的一部分氫。 一合適的物理方法有利的是藉由吸附(步驟a 7 a 3 )) 來進行,例如藉由P S A (變壓吸附):藉由吸收(步驟 〇 a7a4 ));或藉由膜過程(步驟a7a5 ))。 步驟a7a2 )係更特別佳的。 步驟Wa)有利的是在25°C和100°C之間的溫度下進行 〇 至少一部分氮氧化物(步驟a7b ))可以藉由一化學 步驟或一物理步驟而至少部分地去除。. 一合適的化學步驟有利的是藉由用氨或脲(較佳的是 用脲)脫除氮氧化物(denox)來進行(步驟a7bl))。 另一合適的化學步驟有利的是可以進行或不進行催化 -31 - 201125849 (較佳的是進行催化)的一氫化步驟(步驟a7b2))。合 適的催化劑有利的是基於鈀或鎳的催化劑、更佳的是硫化 的鎳催化劑。 該氫化步驟可以藉由與對於氧的氫化所定義的那些相 同的催化劑(有相同的較佳的是方式)來進行。有利的是 ’在所有的氫化步驟中使用的氫化催化劑係相同的。該氫 化步驟有利的是使用在LVRG (較佳的是R〇g)中可用的 一部分氫。 氫化作用比脫除氮氧化物更佳的是。 —合適的物理方法有利的是藉由吸附(步驟a7b3 )) 來進行,例如藉由p s A (變壓吸附):藉由吸收(a 7 b 4 ) );或藉由膜過程(a7b5 ))。合適的吸附劑包括活性銅 、礦物粘土、矽膠以及活性氧化鋁。 步驟a 7 b 2 )和a 7 b 3 )係更特別佳的。 步驟a7b )有利的是在25°C和l〇〇°C之間的溫度下進行 〇 可隨意地進行一些反應性化合物的至少一部分的去除 (步驟a8 ))。 反應性化合物的去除(步驟a8 ))可以在一組或幾組 步驟中進行,每組包括一個或幾個步驟。 第一組步驟(步驟a8a ))有利的是包括一個或幾個 氫化步驟。 乙炔的部分氫化有利的是藉由使用一種M化催化劑在 一個乙炔轉化器中進行。在步驟以a )之後’乙炔有利的 -32- 201125849 是至少部分地被氫化。合適的催化劑種類有利的是包括第 VIII族的金屬、第lb族的金屬以及第VIb族的金屬。較佳的 是基於鈀、基於鎳或基於金的催化劑。更佳的是基於鈀或 基於鎳的催化劑。基於鎳的催化劑係最佳的是,其中特別 佳的是硫化的鎳催化劑。氫化作用的催化劑可以是負載或 不負載的。它們較佳的是負載的。換言之’可以使用如對 於步驟a2b )所定義的那些催化劑。 0 存在於氫化進料中的含氮的有機化合物有利的是在氫 化步驟a8a )中至少部分地被去除,較佳的是用一基於鈀 或鎳的催化劑,更佳的是使用一種硫化的鎳催化劑。 含有多於一個硫原子的有機化合物像二硫化物可以在 步驟a8a)的過程中部分地進行氫化。 存在於氫化進料中的更高的炔屬化合物,包括甲基乙 炔、丙二烯和丁二烯,有利的是在步驟a8a)的過程中至 少部分地被氫化,較佳的是用一基於鈀或鎳的催化劑、更 〇 佳的是使用一硫化的鎳催化劑。 步驟a8a)有利的是在25°c與l〇〇°C之間的溫度下進行 〇 第二組步驟(步驟a8b ))有利的是包括一個或幾個 吸附步驟。 該吸附有利的是在化學上特定的吸附劑上進行以至少 部分地去除其他不希望的組分。 含多於一個硫原子的有機化合物像二硫化物有利的是 藉由在一種合適材料的床層內進行吸附而至少部分地去除 -33- 201125849 。合適的吸附劑有利的是包括含碳材料,如活性炭並且特 別是比表面積在5〇〇 m2/g和25〇0 m2/g之間的活性炭、分子 篩3、4A或1 3X、沸石;介孔吸附劑,包括活性氧化鋁, 如比B E T表面積在1 5 0 m2 / g和8 0 0 m2 / g之間的介孔活性氧化 鋁、矽膠 '比BET表面積在1 50 m2/g和8〇〇 m2/g之間的介孔 矽膠吸附劑、A型沸石、5 A型沸石' X型八面沸石、γ型八 面沸石以及MFI沸石。較佳的是活性炭、分子篩3或4 a以 及或活性氧化鋁。 膦類、甲醇以及含氯的無機化合物也可以在步驟a8b )的過程中至少部分地進行吸附。 有利的是將至少1種、較佳的是至少2種吸附劑用於該 吸附步驟a 8 b )。有利的是將最多6種、較佳的是最多5種 、更佳的是最多4種吸附劑用於該吸附步驟a8b )。最佳的 是使用3種吸附劑。若能實現的話,步驟aSb )與步驟a3 ) 結合與否均可。 該氣體流可以在任何適合的裝置中與該等固體吸附劑 接觸。可以提及氣動傳送式移動床以及固定床作爲合適的 裝置。固定床係較佳的。 該等吸附劑可以安排在混合床中或專用床中。它們可 以安排在單一的容器或分離的容器中。該等吸附劑較佳的 是安排在專用床中,更佳的是在3個專用床中,並且較佳 的是在分離的容器中。 每個吸附步驟可以在一個或幾個平行的床中實現。每 個吸附步驟較佳的是在幾個平行床中實現,更佳的是在至 -34- 201125849 少2個分離的床中實現。 再生可以在裝置本身中或在裝置以外實現。 的是在裝置本身中實現。 步驟a 8 b )有利的是在2 5 °C和1 0 0 °C之間的溫 〇 第三組步驟(步驟a 8 c ))有利的是包括一 吸收步驟。 0 該吸收有利的是用一種合適的溶劑進行,例 甲醚聚乙二醇,以便至少部分地去除(除其他之 子含有多於一個硫原子的有機化合物,像二硫化< 二乙醇胺和甲醇可以有利地在步驟a8 c )的 少部分地去除。 之前所提到的不同步驟無需以它們所列舉的 。它們可以按任何其他順序實現。 所有的或其中一些氫化步驟a2b ) 、a7a2 ) 〇 以及a8 a)可以有利地進行結合。所有的或其中 步驟a3a) 、a7a3) 、a7b3)以及a8b)可以有利 合。所有的或其中一些吸收步驟a2a) 、a3b)、 a 7 b 4 )和a 8 c )可以有利地進行結合。 發生處理步驟a2 )和a3 )所根據的一個較佳 1·步驟 a3a), 2. 步驟 a3b), 3. 步驟 a2b), 再生較佳 度下進行 個或幾個 如’用二 外)每分 勿。 過程中至 順序進行 、a7b2 ) 一些吸附 地進行結 a 7 a 4 ) 的順序爲 -35- 201125849 4 .步驟 a 2 a ), 5.步驟a2c),以及 6 ·步驟 a 2 d )。 當可隨意的壓縮步驟al )發生時,步驟a3a ) 、a3b ) 、a2b )和a2c )較佳的是在最後一個壓縮階段插入。當可 隨意的一個或多個除塵步驟al bis )發生時,它較佳的是在 步驟a 2 d )之後。 當可隨意的冷卻步驟a4 )發生時,它較佳的是最後一 步° 當步驟a5 a )發生時,它有利的是插入到冷卻步驟a2 c )中。 當步驟a5b )發生時,它有利的是在位於冷卻步驟a2c )和/或步驟a4 )的幾個步驟中進行。 當步驟a6 )發生時,它有利的是插入到冷卻步驟a2c )中。 當步驟a5 a )和步驟a6 )發生時,它們有利的是進行 結合。 當步驟a7a2 )發生時,它有利的是與步驟a2b )結合 〇 當步驟a7b2 )發生時,它有利的是與步驟a2b )結合 〇 當步驟a7b3 )發生時,它有利的是與步驟a3a )結合 〇 當步驟a8a ) 、a8b )和a8c )發生時,它們有利的是 -36- 201125849 分別與步驟a2b) 、a3a)和a3b)結合。 Μ 4該等處理步驟所根據的一個更佳的順序爲: 步驟al)的一個或多個第一階段,其中以下步驟 &最後的或唯一的壓縮階段之前插入, 2. 步驟ah)與步驟a8b)以及步驟”“)相結合, 3. 步驟a3b)與步驟a8c)相結合, 4·步驟a2b )與步驟a7a2 )、步驟a8a )以及步驟 〇 a7b2)相結合, 5 ·步驟 a 2 a ), 6. 步驟al)最後的壓縮階段, 7. 步驟a2c)與步驟a5b)的一部分相結合, 8 ·步驟 a 2 d ), 9·—個或多個步驟albis),以及 1〇·步驟a4)與步驟aSb)的一部分相結合。 發生該等處理步驟所根據的一個最佳的順序爲: Ο 1.步驟a〇的一個或多個第一階段,其中以下步驟 在最後的或唯一的壓縮階段之前插入, 2.步驟a3a)與步驟a8b)以及步驟a7b3)相結合, 3 .步驟a3 b )與步驟a 8 c )相結合, 4. 步驟a2b)與步驟a7a2)、步驟a8a)以及步驟 a7b2)相結合, 5 ·步驟 a 2 a ), 6 .步驟a 1 )最後的壓縮階段, 7.步驟a2c)與步驟a5a)、步驟a6)、以及步驟a5b -37- 201125849 )的一部分相結合, 8 ·步驟 a 2 d ), 9_ 一個或多個步驟albis),以及 10.步驟a4 )與步驟a5b )的一部分相結合。 有利的是,在根據本發明的方法中,得自步驟a )的 包含乙烯和其他組分的產物的混合物包含氫氣、甲烷、乙 烷、乙烯、丙烷、含有4、5或6個碳原子的烴類以及更重 的C6+、惰性氣體、氧合的化合物、反應性化合物以及大 大減少量的腐蝕性化合物和催化劑中毒化合物。 可隨意地,惰性氣體的濃度與它們的引入濃度相比至 少部分地被減少。 可隨意地,一些反應性化合物的含量與它們的引入含 量相比至少部分地被減少。較佳的是’相比它們的引入含 量它至少部分地被減少。 可隨意地,可燃氣體(除乙烯之外)的濃度與它們的 引入濃度相比至少部分地被減少。可隨意地,正常沸點比 乙烯的正常沸點高的一些可燃氣體的濃度與它們的引入濃 度相比至少部分地被減少。有利的是’正常沸點比乙烯的 正常沸點低的一些可燃氣體的濃度與它們的引入濃度相比 至少部分地被減少。更較佳的是,正常沸點比乙烯的正常 沸點低的一些可燃氣體的濃度以及正常沸點比乙烯的正常 沸點高的一些可燃氣體的濃度與它們的引入濃度相比至少 部分地被減少。 下文中給出的對於得自步驟a )的含有乙烯和其他組 -38- 201125849 分的產物的混合物的組成係以乾氣體爲基礎(不包括水) 進行表達的。 得自步驟a )的含有乙烯和其他組分的產物的混合物 有利的是包括按體積計至少1 0%、較佳的是至少1 5%、更 佳的是至少20%的乙烯。它有利地是包括按體積計最多 60% ’較佳的是最多55%、更佳的是最多50%的乙烯。 得自步驟a )的含有乙烯和其他組分的產物的混合物 0 有利的是其特徵爲至少30 MJ/kg、較佳的是至少33 MT/kg 、更佳的是至少35 MJ/kg、並且最佳的是至少37 MJ/kg的 更低的熱値的乾氣。得自步驟a )的含有乙烯和其他組分 的產物的混合物有利的是其特徵爲最多75 MJ/kg、較佳的 是最多70 MJ/kg、更佳的是最多65 MJ/kg、並且最佳的是 最多60 MJ/kg的一個更低的熱値的乾氣。 包括於得自步驟a )的含有乙烯和其他組分的產物的 混合物中的水的分壓有利的是低於5 5 mm、較佳的是低於 Q 25 mm、更佳的是低於15 mm並且最佳的是低於1〇 mm的汞 柱。 得自步驟a )的含有乙烯和其他組分的產物的混合物 包括以下成分中的每一種的量有利的是送入步驟a)和/或 在步驟a )的過程中形成的LVRG (較佳的是ROG)中相同 成分的量的最多5%、較佳的是最多2%並且更佳的是最多 1 %,該等成分即:二氧化碳、硫化氫、硫化羰、每分子含 一個硫原子的有機化合物像硫醇以及硫化物、硫氧化物、 氨、氮化物、腈類、氯化氫、氰化氫、汞、砷(像胂類) -39- 201125849 、釩、溴、氟、矽、鋁、以及金屬羰基化合物。 在以上定義的步驟a )之後,使含有乙烯和其他組分 的產物的混合物經受步驟b )’步驟b )係一第一分離步驟 S1 ’該第一分離步驟包括將所述含乙烯和其他組分的產物 分離爲一個含比乙烯輕的該等化合物和部分乙烯的、被稱 爲餾分F1的餾分,並且分離爲一餾分F2。 在其分離之前,可以使含有乙烯和其他組分的產物的 混合物經受一個熱調節步驟。 術語“熱調節步驟”,應理解爲連續的熱交換從而將 混合物的溫度調節至分離的要求和/或使能量的使用最佳 化,較佳的是將混合物的溫度調節至分離的要求並且爲使 能量的使用最佳化。 當熱調節步驟在於一個冷卻時,該冷卻有利地是將多 種產物的混合物在一連串的交換器中的逐漸冷卻,首先用 未處理的水、然後用冰冷的水、並且然後用逐漸被冷卻的 流體冷卻’加上對所產生的該等流束的顯熱進行回收的交 叉的交換器,可隨意地用潛熱(當可獲得時)。有利的 是,在該冷卻步驟過程中產生的該等冷凝物係從氣體流中 物理分離出的並且送往隨後處理中的一個適當的位置。步 驟S 1中包括的熱調節較佳的是一種冷卻,並且分離出的冷 凝物較佳的是送往步驟82中的一個適當的位置。 第一分離步驟S 1有利的是在於將含有乙烯和其他組分 的產物的混合物分級分離爲上述的兩個不同的飽分。 術語“分級分離”應理解爲,爲了本發明的目的’潛 -40 - 201125849 在的多步驟方法中的任何一部分,該多步驟方法可以認爲 具有單一功能。該分級分離步驟可以在一個或幾個相互連 接的裝置中進行。 分級分離的實例係蒸餾、提取蒸餾、液-液提取、滲 远蒸發、氣體滲透、吸附、變壓吸附(pSA)、變溫吸附 (TSA )、吸收、色譜法、反滲透、以及分子過濾。較佳 的是蒸餾。 〇 因此步驟s 1較佳的是在於將含有乙烯和其他組分的產 物的混合物在一個蒸餾柱(被稱爲柱c 1 )內分餾爲兩個不 同的餾分’即從柱C 1的精餾段有利地離開的餾分F 1以及從 柱C 1的提餾段有利地離開的餾分F2 通過蒸餾柱,根據本發明它意味著:包括任何數目的 相互連接的塔的一個柱。通過塔,它意味著一個單一的包 套,其中實現了液體和氣體的逆流接觸。 有利的是,柱C 1不包括多於兩個相互接觸的塔。較佳 Q 的是,柱ci由一個單塔組成。 柱C 1可以選自板式蒸餾柱、不規則塡充的蒸餾柱、規 整塡充的蒸餾柱、以及組合前述內部構件中的兩種或多種 的柱。 柱C 1有利的是配有相關聯的配件,例如像至少一個加 熱源以及一個冷卻源。該加熱源較佳的是一個再沸器。該 冷卻源可以是直接或間接冷卻。間接冷卻的實例係一個部 分冷凝器。直接冷卻的實例係由一個部分冷凝器產生的液 體的絕熱閃蒸。較佳的是藉由由一個部分冷凝器產生的液 -41 - 201125849 體的絕熱閃蒸產生的直接冷卻。在該部分冷凝器中經受部 分冷凝的氣體可以源自柱C1或者源自在可能的熱調節步驟 之後送入柱C 1的產物的混合物’較佳的是源自於柱c 1。源 自該柱的流可以取自提餾段或者取自精餾段,較佳的是取 自柱C 1的提餾段。它可以在該提餾段的任何位置處獲取, 較佳的是在該提餾段上部三分之一,更佳的是就在進料產 物的混合物的位置下的一個位置。 所述產物的混合物可以作爲一個單獨的餾分或者作爲 幾個細分餾分引入該柱C1中。它較佳的是作爲幾個細分餾 分引入。 上述步驟s 1有利的是在至少5,較佳的是至少1 〇並且 特別佳的是至少1 2巴絕對値的壓力下進行。步驟S 1有利的 是在最多40,較佳的是最多3 8並且特別佳的是最多3 6巴絕 對値的壓力下進行。 進行步驟S 1的溫度在柱C 1的提餾段的底部有利地爲至 少-40°C、較佳的是至少-35°C、並且特別佳的是至少- 30°C 。在柱c 1的提餾段的底部,它有利地爲最多8 0 °C、較佳的 是最多60°C、並且特別佳的是最多40°C。 進行步驟s 1的溫度在柱C 1的精餾段的頂部有利地爲至 少-1 1 0 °C、較佳的是至少-1 〇 5 °C、並且特別佳的是至少-1 0CTC。在柱c 1的精餾段的頂部,它有利地爲最多〇、較佳 的是最多-15t、並且特別佳的是最多-25°C。 在以上定義的步驟b )之後,將餾分F 1送入一乙烯回 收單元中,其中它被分離爲富含乙烯的、被稱爲餾分£1的 -42 * 201125849 一飽分,並且被分離爲富含比乙嫌輕的該等化合物的、被 稱爲輕質餾分的一餾分(步驟c))。 在該乙烯回收單元中的分離有利的是在於將飽分F1分 級分離爲上述的兩個不同的飽分。提及了術語“分級分離 ”的定義連同上述關於步驟b)的分級分離的實例。 根據步驟C)的一第一實施方式’有利的是使飽分F1 經受一吸收步驟隨後一解吸步驟’其中較佳的是使所述飽 Q 分F1與含有一溶劑的一洗滌劑相接觸,從而分離爲餾分E1 並且分離爲輕質餾分。 表述“含有一溶劑的洗滌劑”或更簡單地“洗滌劑” 應理解爲係指其中溶劑以液態存在的一種組合物。 因此,根據本發明可以使用的洗滌劑有利地是包含處 於液態的溶劑。在所述洗滌劑記憶體在其他化合物完全沒 有排除在本發明的範圍之外。然而,較佳的是該洗滌劑包 含按體積計至少50%的溶劑,更特別的是按體積計至少 Q 65%、並且最特別佳的是按體積計至少70%。 可以使用的第一組溶劑有利的是特徵在於等於或小 於-1 1 0°C、較佳的是等於或小於-1 05 °C、更佳的是等於或 小於-lOOt的一熔融溫度。 可以使用的第二組溶劑係以高於第一組溶劑的熔融溫 度的一熔融溫度爲特徵的溶劑。在這樣最後一種情況下, 然而,有利地施加了對餾分F 1的一適當的熱調節的步驟。 較佳的是,該熱調節係如在步驟b)中定義的一個熱調節 步驟。 -43- 201125849 作爲根據第一組的溶劑,人們可以列舉如飽和烴類、 不飽和烴類、以及礦物油類。 該等飽和的或不飽和的烴可以作爲純烴或者作爲多種 烴的混合物來使用。飽和的或不飽和的烴類的實例係丙烷 /丁院(LPG)混合物、苯、由根據本發明的方法生產的重 質餾分、環戊烷和衍生物、環戊烯和衍生物,特別是甲基 環戊烯和乙基環戊烯、環己烷和衍生物,特別是甲基環己 烷和乙基環己烷、環己烯和衍生物、以及C8-C9異鏈烷烴 類。較佳的是甲基環己烷、乙基環己烷、以及c8-c9異鏈 烷烴類。特別佳的是甲基環己烷和乙基環己烷。 作爲根據第二組的溶劑,人們可以列舉如氯化的溶劑 (像DCE)、醇類、二醇類、多元醇類、醚類、一種(或 多種)二醇和一種(或多種)醚的混合物。 第一組溶劑優於第二組溶劑。 用於吸收步驟的洗滌劑可以由新鮮洗滌劑或在以下說 明的解吸步驟過程中(在一個可隨意的處理之後)回收的 洗滌劑的所有或者一部分組成,可隨意地加入新鮮的洗條 劑。 洗滌劑與餾分F 1對應的通過量之間的比例並不關鍵’ 並且可以在很大範圍內變化。在實際中’它僅受再生該洗 滌劑的成本限制。一般說來,對於每噸餾分F 1 ’洗滌劑的 通過量爲至少〇 · 1噸,較佳的是至少0 ·2噸並且特別佳的是 至少0.2 5噸。總的來說,對於每噸餾分F 1 ’洗滌劑的通過 量爲最多1 〇〇噸、較佳的是最多5 〇噸、並且特別佳的是最 -44- 201125849 多2 5噸。 該吸收步驟有利地是借助一個吸收器進行’例如像’ 一升膜或降膜吸收器,或者選自下列各項的一吸收柱:板 式柱、不規則塡充柱、規整塡充柱、結合有一種或多種前 述內部構件的柱、以及噴灑柱。該吸收步驟較佳的是借助 一吸收柱進行,且特別佳的是借助一板式吸收柱。 該吸收柱可以配有或不配有相關聯的熱交換器。當使 0 用第一組溶劑時,該吸收柱有利地的是不配有相關聯的熱 交換器。當使用第二組溶劑時,該吸收柱有利地的是配有 相關聯的熱交換器。 當使用第一組溶劑時,上述吸收步驟有利的是在至少 1 5巴絕對値、較佳的是至少20巴絕對値、並且特別佳的是 至少25巴絕對値的壓力下進行。該吸收步驟有利地在最多 40巴絕對値、較佳的是最多3 5巴絕對値、並且特別佳的是 最多3 0巴絕對値的壓力下進行。 0 當使用第一組溶劑時,進行該吸收步驟的溫度在該吸 收器或吸收柱頂部有利地是至少-1 1 〇°C、較佳的是至少-l〇5t、並且特別佳的是至少- l〇〇°C。在該吸收器或吸收柱 的頂部,它有利地是最多-50°C、較佳的是最多-60°C、並 且特別佳的是最多-6 5 °C。此外,進行該吸收步驟的溫度有 利的是高於該溶劑的熔融溫度2°C、較佳的是5°C。 當使用第一組溶劑時,在該吸收器或吸收柱底部的溫 度係至少-1 1 〇 °C、較佳的是至少-1 〇 5 °c、並且特別佳的是 茔少-100°C。它有利的是最多- 50°C、較佳的是最多- 60°C、 -45- 201125849 並且特別佳的是最多-6 5 °c。 當使用第二組溶劑時,上述吸收步驟有利的疋在至少 1 5巴絕對値、較佳的是至少20巴絕對値 '並且特別佳的是 至少2 5巴絕對値的壓力下進行。該吸收步驟有利地在最多 40巴絕對値、較佳的是最多3 5巴絕對値、並且特別佳的是 最多30巴絕對値的壓力下進行。 當使用第二組溶劑時’進行該吸收步驟的溫度在該吸 收器或吸收柱頂部有利地是至少_10°C、較佳的是至少〇°C 、並且特別佳的是至少1 0它。在該吸收器或吸收柱的頂部 ,它有利地是最多6 0 °c、較佳的是最多5 0 °c、並且特別佳 的是最多40°c。 當使用第二組溶劑時,在該吸收器或吸收柱底部的溫 度是至少0 °c、較佳的是至少1 0 °c、並且特別佳的是至少 2CTC。它有利的是最多70°C、較佳的是最多6〇°C、並且特 別佳的是最多5 0 °c ° 有利的是使從吸收步驟生成的流經受解吸步驟,該流 是純化掉比乙烯輕的化合物並且富含洗滌劑的餾分F 1。 較佳的是,在該解吸步驟之後回收的洗滌劑在上述可 隨意的處理之後被全部或部分地送回到該吸收步驟,其中 可隨意地添加新鮮的洗滌劑。 該解吸步驟有利的是借助一個解吸器進行,例如像, 一升膜或降膜解吸器’ 一再沸器或者一選自下列各項的解 吸柱:板式柱、不規則塡充柱、規整塡充柱、結合有一種 或多種前述內部構件的柱和噴灑柱。該解吸步驟較佳的是 -46- 201125849 借助一解吸柱進行,並且特別佳的是借助一板式解吸柱進 行。 該解吸柱有利地是配有相關聯的配件’例如像在柱的 內部或外部的至少一個冷凝器或一個冷卻器以及至少一個 再沸器。 有利的是對解吸壓力進行選擇’這樣使得再生溶劑中 的乙烯的含量係按重量計小於或等於4%、較佳的是小於或 0 等於3.2 %。 當使用第一組溶劑時,上述解吸步驟有利的是在至少 1巴絕對値、較佳的是至少2巴絕對値 '並且特別佳的是至 少3巴絕對値的壓力下進行。該解吸步驟有利地是在最多 2 5巴絕對値,較佳的是最多2 0巴絕對値並且特別佳的是最 多1 8巴絕對値的壓力下進行。 當使用第一組溶劑時,進行該解吸步驟的溫度在該解 吸器或解吸柱頂部有利地是至少-1 〇 °c、較佳的是至少〇 °C Q 、並且特別佳的是至少1 o°c。它在該解吸器或解吸柱頂部 有利地爲最多6CTC、較佳的是最多50°c、並且特別佳的是 最多45°C。 當使用第一組溶劑時,在該解吸器或解吸柱底部的溫 度係至少2〇t、較佳的是至少25。(:、並且特別佳的是至少 30T:。它有利的是最多20CTC、較佳的是最多160°C、並且 特別佳的是最多1 5 0 °C。 當使用第二組溶劑時,上述解吸步驟有利的是在至少 1巴絕對値、較佳的是至少2巴絕對値、並且特別佳的是至 -47- 201125849 少3巴絕對値的壓力下進行。該解吸步驟有利地是在最多 20巴絕對値,較佳的是最多1 5巴絕對値並且特別佳的是最 多10巴絕對値的壓力下進行。 當使用第二組溶劑時,進行該解吸步驟的溫度在該解 吸器或解吸柱頂部有利地是至少-1 〇°c、較佳的是至少〇°c 、並且特別佳的是至少1 〇 °c。它在該解吸器或解吸柱頂部 有利地爲最多60°c,較佳的是最多50°c並且特別佳的是最 多 4 5 〇C。 當使用第二組溶劑時,在該解吸器或解吸柱底部的溫 度係至少60°C、較佳的是至少80°C、並且特別佳的是至少 100°C。它有利的係最多200°C、較佳的是最多160°C、並且 特別佳的是最多150°C。 有利的是在一個熱調節步驟之後在吸收時至少部分地 再使用該再生的溶劑,該熱調節步驟較佳的是包括在一個 交叉熱交換器中用離開該吸收柱的溶劑進行的冷卻。 一個最特別的較佳的是方案係屬於以下情況,即吸收 步驟在一吸收柱中進行並且解吸步驟在一個解吸柱中進行 〇 在具體的情況下,當根據本發明的方法針對DCE的製 造時,使用一由D C E組成的洗滌劑可以是有意義的。在這 種情況下,用於該吸收步驟的洗滌劑可以由離開氯化單元 的粗製DCE、離開氧氯化單元的粗製DCE、或者這兩者的 、沒有被純化的一混合物組成。它還可以由先前已經被純 化的所述D C E、或者在解吸步驟過程中(在一可隨意的處 -48- 201125849 理之後)回收的洗滌劑的所有或一部分組成,可隨意地其 中加入新鮮洗滌劑。該解吸作用還可以藉由直接噴射蒸汽 來進行以收集DCE。 當DCE係洗滌劑時該情況的一實質的優點在於以下事 實,即該DCE的存在毫不麻煩,因爲它主要係在氧氯化或 氯化過程中形成的化合物。 根據步驟c )的一第二實施方式,有利的是使餾分F 1 Q 經受一吸附步驟隨後一解吸步驟從而分離爲餾分E 1並且分 離爲輕質餾分。 該吸附步驟有利地包括使餾分F 1穿過一個裝有一種吸 附劑的吸附床。該吸附床可以是一個流化床或者一固定床 。可以使用本領域內已知的任何吸附劑。此類吸附劑的實 例係基於銀的化合物或者基於銅的化合物的那些。那些銀 或者銅的化合物通常被負載在具有足夠大的表面積的一個 載體上。載體的例子係活性炭、木炭、活性氧化鋁、以及 〇 沸石。該等吸附劑通常是處於球粒或珠粒的形式的實心體 〇 該吸附步驟有利地在至少1 5、較佳的是至少2 0、並且 特別佳的是至少2 5巴絕對値的壓力下進行。該吸附步驟有 利地在最多40巴絕對値、較佳的是最多3 5巴絕對値、並且 特別佳的是最多30巴絕對値的壓力下進行。 進行該吸附步驟的溫度有利的是至少-10°c、較佳的是 至少〇 °C、更佳的是至少1 〇 °C、並且最佳的是至少2 0 °C。它 有利的是最多7 0 °C、較佳的是最多6 0 °C、更佳的是最多 -49- 201125849 50°C、並且最佳的是最多40°〇。 解吸步驟藉由使生成一種再生的吸附劑的吸 壓力降低、藉由使其溫度增加、或者藉由使其壓 且使其溫度增加’可以容易地進行。 該解吸步驟有利地在至少1、較佳的是至少2 別佳的是至少3巴絕對値的壓力下進行°該解吸 地是在最多2 0巴絕對値、較佳的是最多1 5巴絕對 特別佳的是最多10巴絕對値的壓力下進行。 進行該解吸步驟的溫度有利的是至少-10 °C、 至少1 0。(:、更佳的是至少2 0 °C、並且最佳的是至 它有利的是最多200°C、較佳的是最多l6〇°C '更 多100 °C、並且最佳的是最多60 °C。 當使用一個流化床時,該吸附劑有利的是從 至該解吸床連續循環。 當使用一個固定床時,有利的是通過裝有較 行的幾個床、更佳的是至少一個處於吸附階段的 至少一個處於解吸階段的床的回路來工作。 步驟c)的第一實施方式優於第二實施方式。 輕質餾分富含比乙烯輕的化合物。那些化合 氫氣、氧氣、氮氣、氦氣、氬氣、一氧化碳以及£ 有利的是,該輕質餾分含有至少7 5 %、較佳 8 0%、並且更佳的是至少85%的甲烷,該甲烷係 步驟c)的餾分F1中的。 有利的是,該輕質餾分含有至少9 0 %、較佳 附器床的 力降低並 、並且特 步驟有利 値、並且 較佳的是 少 60。。。 佳的是最 該吸附床 佳的是並 床、以及 物一般是 戸烷。 的是至少 含在經受 的是至少 -50- 201125849 95%、並且更佳的是至少97%的氮氣、氧氣、氫氣、一氧 化碳、氬氣、以及氦氣,它們係含在經受步驟c )的餾分 F 1中的。 有利的是’該輕質餾分含有按體積計小於2 %、較佳的 是小於1 · 5 % '並且更佳的是小於1 %的乙烯。 在已經回收之後,該輕質餾分可以作爲燃料燃燒或進 行化學增値,較佳的是進行化學增値。 0 可以使該輕質餾分經受一個化學反應像一個部分氧化 或者蒸汽轉化從而在被化學增値之前有利地將其烴成分轉 換爲氫氣。當該輕質餾分特別富含氫氣時,它可以用於任 何加氫反應像例如在過氧化氫的製造中藉由自氧化作用用 於工作溶液的加氫反應或者用於過氧化氫的直接合成。 可替代地,該輕質餾分可以在合成氣體中在藉由蒸汽 轉化或者部分氧化隨後藉由水煤氣變換的烴成分轉換之後 增値,從而在一費-托單元中產生衍生物如甲醇。 Q 可替代地,可以生產合成的天然氣。 該輕質餾分的能量還可以藉由渦輪膨脹再恢復。 有利地,餾分E1含有至少50%、較佳的是至少60%、 並且更佳的是至少6 6 %的乙炔,該乙炔包含在經受了步驟c )的餾分F 1中。 在以上定義的步驟c)之後,將餾分E1再利用至步驟a )中或者送去用於製造至少一種乙烯衍生之化合物(步驟 d ) ) ° 在以下情況下,當餾分E 1被再利用至步驟a )中時, -51 - 201125849 餾分E 1可以被再利用至步驟a )中的任何地方。餾分E丨可 以被再利用在步驟a )的入口處和/或在步驟a 1 )至 a8 ) 中的一個或多於一個的步驟中。 有利的是將飽分E 1再利用至步驟a )、步驟a 1 )和/或 步驟a4 )的入口處。較佳的是’將餾分E 1再利用至步驟a 1 )和/或步驟a4)的入口處。 藉由或不藉由餾分E1壓力的適配,可以使其再利用。 當要求其壓力適配時,有利的是使餾分E 1經受一個壓 縮,該壓縮有可能與一個上游或下游的冷卻相結合,該冷 卻或者在一乙烯回收單元其本身中或者在已經離開這個單 元之後、在被循環至步驟a)和/或步驟al)至 a8)中的 一·個或多於一個的步驟入口之前。可以藉由任何已知的方 法,如機械壓縮機、氣體排出器、液體排出器進行壓縮。 壓縮較佳的是地藉由一台機械壓縮機進行。 當在沒有對其壓力適配時將餾分E 1再利用時,有利的 是將餾分E1再利用至步驟a)的入口中和/或步驟al)至 a8)中的一個或多於一個中,在那裡壓力係適當的,換言 之,在那裡壓力係小於餾分E 1的壓力。 可以將餾分E 1 —次性地或分幾個部分進行再利用。有 利的是,將餾分E1循環進入一個部分中。 更較佳的是’將餾分E1再利用至步驟ai)或至步驟a4 )中。 當餾分E 1被再利用至步驟a 1 )中時,它有利地被再利 用無需對其壓力的適配。然後當僅使用一台壓縮機時較佳 -52- 201125849 的是將餾分E 1再利用至多級氣體壓縮機中的一級中,或者 當使用幾個壓縮機時至一排壓縮機中的一壓縮機中,該等 壓縮機係在小於餾分E 1的壓力的最高壓力下。 當餾分E1被再利用至步驟a4)中時,在其壓力已被適 配後(較佳的是藉由使其經受一個壓縮)有利的是將餾分 E 1進行再利用。 最較佳的是,如上述的不對餾分E1的壓力適配而將其 0 再利用至步驟a 1 )中。 可替代地,將餾分A送去製造至少一種乙烯衍生之化 合物。餾分E1可以被按原樣送入這種製造中,或者在被送 入這種製造之前可以與餾分E2或者在步驟e)中獲得的餾 分E2a和E2b相混合。當餾分E1被送去用於製造至少一種乙 烯衍生之化合物時,較佳的是將其送入乙烯成爲1,2 -二氯 乙烷的加氯處理中。 該餾分E 1的能量可以藉由渦輪膨脹再恢復。 〇 可以將餾分E1的一個部分再利用至步驟a)中,而將 另一部分送去用於製造至少一種乙烯衍生之化合物。 較佳的是,將餾分E 1再利用至步驟a )中。較佳的是 ’因此將含有從步驟d)中再利用的餾分E1的LVRG經受步 驟a )中定義的一系列的處理步驟。 根據步驟e ),使餾分F 2經受一第二分離步驟S 2,該 步驟包括將餾分F2分離爲富含乙烯的、被稱爲餾分E2的一 餾分或者分離爲富含乙烯的、被稱爲餾分E2a和E2b的兩個 餾分’並且分離爲富含乙烷以及含有至少3個碳原子的烴 -53- 201125849 的、被稱爲重質餾分的一餾分。 在其分離之前,可以將餾分F2經受一熱調節步驟。 術語“熱調節步驟”,應理解爲連續的熱交換從而將 餾分F2的溫度調節至分離的要求和/或使能量的使用最佳 化’較佳的是爲將餾分F2的溫度調節至分離的要求並且爲 使能量的使用最佳化。可隨意地,在S 2中在蒸氣進料位置 的壓力下將餾分F2進行絕熱閃蒸,並且將在絕熱閃蒸過程 中生產的濃縮物從氣體流中物理分離出來並且送往s 2中適 當的位置處。 有利的是第二分離步驟S2在於將餾分F2分級分離爲上 述不同的餾分。 術語“分級分離”應理解爲,爲了本發明的目的,潛 在的多步驟方法中的任何一部分,該多步驟方法可以認爲 具有一單一功能。該分級分離步驟可以在一個或幾個相互 連接的裝置中進行。 分級分離的實例係蒸餾、提取蒸餾、液-液提取、滲 透蒸發、氣體滲透、吸附、變壓吸附(P S A )、變溫吸附 (TSA )、吸收、色譜法、反滲透、以及分子過濾。較佳 的是蒸飽。 因此較佳的是步驟S 2在於有利地將至少一個蒸餾柱( 較佳的是一個或兩個蒸餾柱)內的餾分F2分級分離爲上述 不同的館分。 藉由蒸餾柱,根據本發明它意味著:包括任何數目的 相互連接的塔的一個柱。藉由塔,它意味著一個單一的包 -54- 201125849 套,其中實現了液體和氣體的逆流接觸。 較佳的是,每個蒸餾柱均不包括多於兩個相互連接的 塔。更較佳的是’每個蒸餾柱均存在一個單獨的塔。 每個蒸餾柱均可以選自板式蒸餾柱、不規則塡充的蒸 餾柱、規整塡充的蒸餾柱以及組合前述內部構件中的兩種 或多種的蒸餾柱。 根據步驟e)的第一實施方式’有利地是將餾分F2經 0 受一第二分離步驟S2,該第二分離步驟在於將餾分F2分離 爲餾分E2並且分離爲重質餾分。 根據步驟e)的第一實施方式的第一變體,第二分離 步驟S 2較佳的是在於將在一蒸餾柱(被稱爲柱C 2 )內的餾 分F2分離爲兩個不同的餾分,即有利地從柱C2的精餾段離 開的餾分E2以及有利地從柱C2的提餾段離開的重質餾分。 柱C2有利的是配有相關聯的配件,例如像至少一個熱 源以及一個冷卻源。該加熱源較佳的是一個再沸器。該冷 〇 卻源可以是直接或間接冷卻。間接冷卻的實例係一個部分 冷凝器。直接冷卻的實例係由一個部分冷凝器產生的液體 的絕熱閃蒸。較佳的是藉由由一個部分冷凝器產生的液體 的絕熱閃蒸產生的直接冷卻。能量要求的最佳化可以藉由 本領域內任何已知的技術進行,如與適合的流體的交叉熱 交換、與蒸氣再壓縮的柱的熱整合、與冷卻以及絕熱閃蒸 相結合的再壓縮循環。 餾分F2可以作爲一個單獨的餾分或者作爲幾個細分餾 分引入該柱C2中。較佳的是將其作爲一個單獨的餾分引入 -55- 201125849 根據步驟e)的第一實施方式’步驟S2有利地在至少5 、較佳的是至少10、並且特別佳的是至少12巴絕對値的壓 力下進行。步驟S2有利的是在最多4〇 ’較佳的是最多38並 且特別佳的是最多3 6巴絕對値的壓力下進行。 根據步驟e)的第一實施方式’進行步驟S2的溫度在 柱C2提餾段的底部有利地爲至少-50 °C、較佳的是至少_ 4CTC、並且特別佳的是至少_3〇°C。在柱C2的提飽段的底部 ,它有利地爲最多8 〇 °C、較佳的是最多7 5 °c。 根據步驟e)的第一實施方式’進行步驟S2的溫度在 柱C 2精餾段的頂部有利地爲至少-8 0 °C、較佳的是至少_ 7 0°C、並且特別佳的是至少_65°C。在柱C2的精餾段的頂部 ,它有利地爲最多5 °C、較佳的是最多〇 °C、並且特別佳的 是最多-3°C。 根據步驟e)的第一實施方式的第二變體,第二分離 步驟S2有利的是在於餾分F2的分離爲兩個不同的分離(被 稱爲步驟S2’的一第一分離步驟和被稱爲步驟S2”的一個第 二分離步驟)從而獲得餾分E2以及重質餾分。 根據步驟e )的第一實施方式的該第二變體,將餾分 F2經受以下步驟 -一第一分離步驟S2,,它在於將餾分F2分離爲富含乙 稀的、被稱爲餾分E2’的一第一餾分,並且分離爲富 含乙院和含至少3個碳原子的烴的、含有部分乙烯 的、被稱爲餾分F2,的一餾分;並且 -56- 201125849 -一個第二分離步驟s 2”,它在於將餾分F2,分離爲富 含乙烯的、被稱爲餾分E2”的一個第二餾分,並且 分離爲重質餹分。 然後有利的是將餾分E2,和餾分E2”混合。在獲得之後 、在已經用於能量回收的裝備中循環之後和/或在已經被 整合入在步驟b)至e)使用的一冷卻循環中之後,可以 將它們立即混合。較佳的是,在已經用於能量回收的裝備 0 中循環之後和/或在已經被整合入在步驟b)至 e)使用的 一冷卻循環中之後,將它們混合。更較佳的是,在已經用 於能量回收的裝備中循環之後並且在已經被整合入在步驟 b)至e)使用的一冷卻循環中之後,將它們混合。 步驟S2’較佳的是在於將餾分F2在一第一蒸餾柱(被 稱爲柱C2 ’)中分級分離爲兩個不同的餾分’即有利地從 柱C2’的精餾段離開的餾分E2’、並且分離爲有利地從柱 C2’的提餾段離開的餾分F2’。 Q 步驟S2”較佳的是在於將餾分F2’在一第二蒸餾柱(被 稱爲柱C2”)中分級分離爲兩個不同的餾分’即有利地從 柱C 2,,的精餾段離開的餾分E 2 ”、並且分離爲有利地從柱 C 2”的精餾段離開的重質餾分。 柱C 2,有利的是配有相關聯的配件,例如像至少一個 熱源以及一個冷卻源。該加熱源較佳的是一個再沸器。該 冷卻源可以是直接或間接冷卻。間接冷卻的實例係一部分 冷凝器。直接冷卻的實例係由一部分冷凝器產生的液體的 絕熱閃蒸。較佳的是藉由由一個部分冷凝器產生的液體的 -57- 201125849 絕熱閃蒸產生的直接冷卻。 能量要求的最佳化可以藉由本領域內任何已知技術進 行,諸如與適合的流體的交叉熱交換;將在步驟b ) 、c ) 以及 e)中使用的冷卻循環熱整合成爲一體(較佳的是在 步驟b ) 、c)以及e )使用的冷卻循環中);柱C2’與蒸氣 再壓縮或者與冷卻和絕熱閃蒸相結合再壓縮循環的熱整合 :藉由對柱C2’和C2”柱的壓力的一種適合的選擇對它們熱 整合,其方式爲該等柱中的一的冷卻器係另一個的再沸器 ,較佳的是將柱C 2 ”在比柱C 2 ’更高的壓力下操作,這樣使 得柱C 2 ”的冷凝器可以是柱C 2 ’的再沸器。更較佳的是,能 量要求的最佳化可以藉由將在步驟b ) 、c )以及 e )中使 用的冷卻循環熱整合成爲一體(較佳的是在步驟b) 、c) 以及e )使用的冷卻循環中)進行。 餾分F2可以作爲一個單獨的餾分或者作爲幾個細分餾 分在步驟S2’的過程中引入該柱C2中。較佳的是將其作爲 一個單獨的餾分引入。 根據步驟e)的第一實施方式的一第二變體,步驟S2’ 有利地在至少5、較佳的是至少1 〇、並且特別佳的是至少 1 2巴絕對値的壓力下進行。步驟S 2 ’有利的是在最多4 0、 較佳的是最多3 8、並且特別佳的是最多3 6巴絕對値的壓力 下進行。 根據步驟e)的第一實施方式的第二變體,進行步驟 S2’的溫度在柱C2’提餾段的底部有利地爲至少_5〇t:、較佳 的是至少-4 5 °C、並且特別佳的是至少_ 4 3。(:。在柱C 2,的提 -58- 201125849 餾段的底部,它有利地爲最多3〇°C、較佳的是最多20°C、 並且特別佳的是最多l〇°C。 根據步驟e )的第一實施方式的第二變體,進行步驟 S2’的溫度在柱C2’精餾段的頂部有利地爲至少-70°C、較佳 的是至少-6 5 °C、並且特別佳的是至少-6 3 °C。在柱C 2 ’的精 餾段的頂部,它有利地爲最多〇、較佳的是最多-1 5 °C、並 且特別佳的是最多-25°C。 0 在藉由將其引入到柱C2”之前’可以將餾分F2’經受一 熱調節步驟(如對於步驟S1定義的)、以及一壓力調節步 驟(藉由將柱C2’提餾段底部產生的液體泵送至柱C2”中) 〇 柱C2”有利的是配有相關聯的配件’例如像具有與在 此以上對柱C2 ’所定義的相同特徵的至少一個加熱源以及 一冷卻源。 餾分F2’可以作爲一個單獨的餾分或者作爲幾個細分 〇 餾分在步驟S2”的過程中引入柱C2”中。較佳的是將其作爲 一個單獨的餾分引入。 根據步驟e)的第一實施方式的第二變體’步驟s2 ”有 利地在至少5、較佳的是至少1 〇、並且特別佳的是至少1 2 巴絕對値的壓力下進行。步驟S2”有利的是在最多40、較 佳的是最多38、並且特別佳的是最多36巴絕對値的壓力下 進行。 根據步驟e)的第一實施方式的第二變體的第一子變 體,在獲得餾分E2,和E2,,後將它們立即進行混合。在此子 -59- 201125849 變體中,有利地是步驟S2”在等於或不同於進行S2’的壓力 的一壓力下進行。較佳的是,步驟S2”在不同於進行S2,的 壓力的一壓力下進行。有利的是步驟s 2 ”在略小於進行步 驟S2’的壓力的一壓力下進行。 根據步驟e)的第一實施方式的第二變體的第二子變 體,在用於能量回收的裝備中循環之後和/或在被整合入 在步驟b )至 e )使用的冷卻循環中之後’將餾分E2,和 E2”混合。在此子變體中,有利的是步驟S2”在等於或不同 於進行S2’的壓力的一個壓力下進行。較佳的是’將步驟 S2”在不同於進行S2’的壓力的一個壓力下進行。有利的是 步驟S2”在高於進行步驟S2’的壓力的一個壓力下進行。將 步驟S2”在一個壓力下進行,該壓力較佳的是比進行步驟 S2’的壓力高至少2巴、更佳的是至少4巴、最佳的是至少5 巴。將步驟S2”在一個壓力下進行,該壓力較佳的是比進 行步驟S2’的壓力高最多33巴、更佳的是最多30巴、最佳 的是最多2 0巴。 根據步驟e)的第一實施方式的第二變體,進行步驟 S2”的溫度在柱C2”提餾段的底部有利地爲至少-50°C、較 佳的是至少-4〇°C、並且特別佳的是至少-30°C。在柱C2”的 提餾段的底部,它有利地爲最多8〇°C、較佳的是最多75°C 、並且特別佳的是最多7 2 °C。 根據步驟e)的第一實施方式的第二變體,進行步驟 S2”的溫度在柱C2”精餾段的頂部有利地爲至少-70°C、較 佳的是至少-65°C、並且特別佳的是至少-63°C。在柱C2”的 -60- 201125849 精餾段的頂部’它有利地爲最多〇、較佳的是最多_15°c、 並且特別佳的是最多-2 5 °c。 根據步驟e)的第二實施方式’有利的是將餾分F2經 受一第二分離步驟S2’該第二分離步驟包括將餾分F2分離 爲餾分E2 a和E2b,並且分離爲重質餾分。 根據步驟e)的這個第二實施方式’第二分離步驟S2 有利地在於餾分F2的分離分爲兩個不同的分離’被稱爲步 ζ) 驟S2’’,的一第一分離步驟和被稱爲步驟S2””的一第二分離 步驟,從而獲得餾分E2a和E2b以及重質餾分。 根據步驟e)的這個第二實施方式’將餾分F2經受以 下步驟 •—第一分離步驟S2’’’,它在於將餾分F2分離爲餾分 E2a、並且分離爲富含爲富含乙烷和含至少3個碳原 子的烴的、含有部分乙烯的、被稱爲餾分F2’,’的一 餾分;並且 〇 - 一第二分離步驟S2””,它在於將飽分F2’’’分離爲餾 分E2b以及重質餾分。 步驟S2’’’較佳的是在於將餾分F2在一第一蒸餾柱(被 稱爲柱C2’’’)中分級分離爲兩個不同的餾分,即有利地從 柱C 2 ’’’精餾段離開的餾分E 2 a、並且分離爲有利地從柱 C2’’’提餾段離開的餾分F2’’’。 步驟S2””較佳的是在於將餾分F2’’’在一第二蒸飽柱( 被稱爲柱C2””)中分級分離爲兩個不同的餾分,即有利地 從柱C 2 ” ”的精離段離開的館分e 2 b '並且分離爲有利地從 201125849 柱C2””的精餾段離開的重質餾分。 柱C 2,’’有利的是配有相關聯的配件,例如像至少一熱 源以及一冷卻源。該加熱源較佳的是一個再沸器。該冷卻 源可以是直接或間接冷卻。間接冷卻的實例係一個部分冷 凝器。直接冷卻的實例係由一個部分冷凝器產生的液體的 絕熱閃蒸。較佳的是藉由由一個部分冷凝器產生的液體的 絕熱閃蒸產生的直接冷卻。 能量要求的最佳化可以藉由本領域內任何已知技術進 行,諸如與適合的流體的交叉熱交換;該柱與蒸氣再壓縮 或者與冷卻和絕熱閃蒸相結合再壓縮循環的熱整合;用於 步驟b) 、c)以及e)的冷卻循環中的C2’’’或C2””(較佳 的是柱C 2 ’’’)柱中之一的材料整合;該柱和另一柱材料整 合中之一的熱整合;藉由對C2’’’和C2””柱壓力的一適合 的選擇對它們的熱整合’其方式爲該等柱中的一個的冷卻 器係另一個的再沸器,較佳的是將柱C 2,’,’在比柱C 2 ’ ’ ’更 高的壓力下操作,這樣使得柱C 2 ”,,的冷凝器可以是柱 C2’’’的再沸器。更較佳的是,該等能量要求的最佳化係藉 由如上說明的對柱C2’ ’’和柱C2””的熱整合做出的。 餾分F2可以作爲一個單獨的餾分或者作爲幾個細分餾 分在步驟S2’’’的過程中引入該柱C2,’,中。較佳的是將其 作爲一個單獨的餾分引入。 根據步驟e)的第二實施方式,步驟S2,,,有利地在至 少5、較佳的是至少1 0、並且特別佳的是至少丨2巴絕對値 的壓力下進行。步驟S2’’’有利的是在最多4〇、較佳的是最 -62- 201125849 多3 8、並且特別佳的是最多3 6巴絕對値的壓力下進行。 根據步驟e)的第二實施方式,進行步驟S2’’’的溫度 在柱C2’’’提餾段的底部有利地爲至少-50°C、較佳的是至 少-4(TC、並且特別佳的是至少-30°C。在柱C2’’’的提餾段 的底部,它有利地爲最多80°C、較佳的是最多60°C、並且 特別佳的是最多55°C。 根據步驟e)的第二實施方式,進行步驟S2’’’的溫度 ζ) 在柱C2’’’精餾段的頂部有利地爲至少-70°C、較佳的是至 少-60°C、並且特別佳的是至少- 55°C。在柱C2’’’的精餾段 的頂部,它有利地爲最多〇、較佳的是最多-1 5 t、並且特 別佳的是最多-25°C。 在將其引入柱C2””之前,可以將餾分F2’’’經受一個熱 調節步驟(如對於步驟S1定義的)、以及一個壓力調節步 驟(藉由將在柱C2’’’提餾段底部產生的液體泵送至柱 C 2,’,,中)。 〇 柱C2””有利的是配有相關聯的配件,例如像具有與在 此以上對柱C2 ’’’所定義的相同特徵的至少一個加熱源以及 —冷卻源。 餾分F2’’’可以作爲一個單獨的餾分或者作爲幾個細分 餾分在步驟S2””的過程中引入柱C2””中。較佳的是將其作 爲一個單獨的餾分引入。 根據步驟e)的第二實施方式,步驟S2””有利地在至 少5、較佳的是至少1 0 '並且特別佳的是至少1 2巴絕對値 的壓力下進行。步驟S2””有利的是在最多4〇、較佳的是最 -63- 201125849 多38、並且特別佳的是最多36巴絕對値的壓力下進行。 根據步驟e )的第二實施方式,有利的是步驟S 2 ” ”在 等於或不同於進行S2,’,的壓力的一個壓力下進行。較佳的 是,將步驟S 2 ” ”在不同於進行S 2,,,的壓力的一壓力下進行 。有利的是將步驟S2,,,,在大於進行步驟S2’’’的壓力的一廯 力下進行。將步驟S2,,,,在一壓力下進行’該壓力較佳的爱 比進行步驟S2,’’的壓力高至少2巴、更佳的是至少4巴、最 佳的是至少5巴。將步驟S 2,,,,在一壓力下進行’該壓力較 佳的是比進行步驟S2,,,的壓力高最多3 3巴、更佳的是最多 30巴、最佳的是最多20巴。 根據步驟e )的第二實施方式,進行步驟S2””的溫度 在柱C2,,,,提餾段的底部有利地爲至少-5〇°C、較佳的是至 少-40°C、並且特別佳的是至少-3〇t:。在柱C2,,,,的提離段 的底部,它有利地爲最多8 〇 °C、較佳的是最多6 0 °C、並且 特別佳的是最多5 5 °C。 根據步驟e )的第二實施方式’進行步驟S2,,”的溫度 在柱C2,,,,精餾段的頂部有利地爲至少_8〇。(:、較佳的是至 少-7(TC、並且特別佳的是至少_65°C。在柱C2”,,精餾段的 頂部,它有利地爲最多〇、較佳的是最多-1 5 °C、並且特別 佳的是最多-25t。 根據以上定義的步驟e)的兩個實施方式,重質餾分 可以在一個單獨的餾分中或者在幾個餾分中提取、較佳的 是兩個餾分、更佳的是一個在富含乙烷的氣態下較佳的是 在該柱的汽提段的下三分之一處提取’而一個在貧乏乙院 -64- 201125849 的液態下較佳的是在該柱的汽提段的底部處提取。 第一貫施方式的第二變體優於第二實施方式並且優於 第一實施方式的第一變體。第一實施方式的第二變體的第 二子變體優於第一實施方式的第二變體的第一子變體。第 二實施方式優於第一實施方式的第一變體。 以下定義來表徵餾分E2的該等量係分離步驟S2的出口 的那些。 〇 有利的是餾分E2的特徵爲除乙烯之外的可燃氣體的體 積含量有利地爲小於2 0 %、較佳的是小於丨5 %、並且更佳 的是小於1 2 %。 有利的是餾分E2的特徵在於,相對於餾分E2的總體積 ,氫氣的含量小於或等於按體積計2%,較佳的是小於或等 於0 · 5 %並且在一個特別佳的方式中小於或等於〇. 1 %。 有利的是餾分E2的特徵在於,相對於餾分E2的總體積 ,惰性氣體的含量爲小於或等於按體積計2%、較佳的是小 Ο 於或等於0.5%、並且在一個特別佳的方式中小於或等於 0.1%。 有利的是餾分E2的特徵在於氧合的化合物的體積含量 小於2 %、較佳的是小於1 %、並且更佳的是小於〇 · 8 %。 有利的是餾分E2的特徵在於氧的體積含量低於1 · 8 %、 較佳的是低於1 %、並且更佳的是低於0.8 %。 有利的是餾分E2的特徵在於氮氧化物的體積含量低於 0.00025%、較佳的是低於0.0002%,並且更佳的是低於 0.000 1 5% ° -65- 201125849 有利的是餾分E 2的特徵在於腐蝕性化合物的體積含量 低於0.2 %、較佳的是低於0.1 %、並且更佳的是低於0 · 0 8 % 〇 有利的是餾分E 2的特徵在於硫化氫的體積含量低於 0.0 0 5 %,較佳的是低於0.0 0 1 %、並且更佳的是低於 0.0005% ° 有利的是餾分E2的特徵在於反應性化合物的體積含量 小於2%、較佳的是小於1%、並且更佳的是小於〇.8%。 有利的是餾分E2的特徵在於除一氧化碳之外的反應性 化合物的體積含量低於0 · 0 2 %、較佳的是低於0 _ 0 1 %、並且 更佳的是低於0 · 0 0 5 %。 有利的是餾分E 2的特徵在於乙炔的體積含量低於0 · 2 % 、較佳的是低於〇 · 1 %、更佳的是低於0 · 0 5 %、並且最佳的 是低於0.02%。 餾分E2的特徵在於,相對於餾分E2的總體積’含有至 少3個碳原子的化合物的含量有利地是按體積計小於或等 於0.1%、較佳的是小於或等於0·005%、並且以一種特別佳 的方式小於或等於〇·〇〇1% ° 有利的是餾分Ε2的特徵在於催化劑中毒化合物的體積 含量低於〇 . 〇 〇 1 %、較佳的是低於0.0 0 0 5 %、並且更佳的是 低於 0 · 0 〇 〇 2 %。 有利的是餾分Ε2含有相對於餾分Ε2的總體積按體積計 從60%到99.5%的乙烯。有利的是餾分Ε2相對於餾分以的 總體積按體積計含有至少60%、較佳的是至少70%、在特 -66- 201125849 別佳的方式中至少8〇%並且在一更特別佳的方式中至少 8 5 %的乙烯。有利的是餾分Ε2相對於餾分Ε2的總體積按體 積計含有最多9 9 · 5 %、較佳的是最多9 8.5 %、以特別佳的方 式最多97.5 %並且以一更特別佳的方式最多96%的乙烯。因 此餾分Ε2的特徵在於它相對於餾分Ε2的總體積含有有利地 爲至少4 %、較佳的是至少2.5 %、更佳的是至少1 . 5 %、並 且最佳的是至少0.5%的不同於乙烯的化合物。 0 以下定義來表徵餾分E2a和E2b的該等量係分離步驟S2 的出口的那些。 有利的是餾分E2 a的特徵爲除乙烯之外的可燃氣體的 體積含量有利地爲低於2 0%、較佳的是低於1 5 %、並且更 佳的是低於12%。 有利的是餾分E 2 a的特徵在於,相對於餾分E 2的總體 積,氫氣的含量爲小於或等於按體積計2 %、較佳的是小於 或等於0_ 5%、並且在一特別佳的方式中小於或等於0.1 %。 ❹ 有利的是餾分E2a的特徵在於,相對於餾分E2的總體 積,情性氣體的含量小於或等於按體積計2%、較佳的是小 於或等於0.5 %、並且在一特別佳的方式中小於或等於〇 · 1 % 〇 有利的是餾分E2a的特徵在於氧合的化合物的體積含 量低於2 %、較佳的是低於1 %、並且更佳的是低於0 ·8 % ° 有利的是餾分E2 a的特徵在於氧的體積含量低於1 · 8 % 、較佳的是低於1 %、並且更佳的是低於0 _ 8 %。 有利的是餾分E2 a特徵在於氮氧化物的體積含量低於 -67- 201125849 0.00025%、較佳的是低於0.0002%,並且更佳的 0.000 1 5% 〇 有利的是餾分E2a的特徵在於腐蝕性化合物的 量低於0.02%、較佳的是低於〇·〇1%、並且更佳的 0.008% ° 有利的是餾分Ε2 a的特徵在於硫化氫的體積含 0.0005 %、較佳的是低於0.0001 %、並且更佳的 0.0000 5% ° 有利的是餾分E 2 a的特徵在於反應性化合物的 量低於0.2%、較佳的是低於〇·1%、並且更佳的 0.08%。 有利的是餾分E 2 a的特徵在於除一氧化碳之外 性化合物的體積含量低於0·002%、較佳的是低於〇. 並且更佳的是低於0.0005%。 有利的是餾分E 2 a的特徵在於乙炔的體積含 0.2%、較佳的是低於0.1%、更佳的是低於〇· 05 %、 佳的是低於〇·〇2%。 餾分E 2 a的特徵在於,相對於餾分E 2的總體積 至少3個碳原子的化合物的含量有利地是按體積計 等於0.0 0 1 %、較佳的是小於或等於0.0 0 0 5 %並且在 別佳的方式中小於或等於0.0 0 0 1 % ° 有利的是餾分E 2 a的特徵在於·催化劑中毒化合 積含量低於ο · ο ο ο 1 % '較佳的是低於〇 · 〇 〇 〇 〇5 %、並 的是低於〇. 〇 〇 〇 〇 2 %。 是低於 體積含 是低於 量低於 是低於 體積含 是低於 的反應 001%、 量低於 並且最 ,含有 小於或 一種特 物的體 且更佳 -68- 201125849 有利的是餾分E2 a的特徵爲類似於餾分E2含量的一乙 烯含量。 有利的是餾分E2b的特徵在於除乙烯之外的可燃氣體 的體積含量有利地爲低於20%、較佳的是低於1 5%、並且 更佳的是低於1 2 %。 有利的是餾分E2b的特徵在於,相對於餾分E2的總體 積,氫氣的含量爲小於或等於按體積計0.2%、較佳的是小 0 於或等於0.05%、並且在一特別佳的方式中小於或等於 0.01%。 有利的是餾分E2b的特徵在於,相對於餾分E2的總體 積,惰性氣體的含量爲小於或等於按體積計0.2% ’較佳的 是小於或等於〇.〇5% '並且在一特別佳的方式中小於或等 於 0 · 0 1 % ° 有利的是餾分E2b的特徵在於氧合的化合物的體積含 量小於0.2 %、較佳的是小於0.1 %、並且更佳的是小於 〇 0.08%。 有利的是餾分E2b的特徵在於氧的體積含量小於〇·18% 、較佳的是小於0 · 1 %、並且更佳的是小於0.0 8 %。 有利的是餾分E2b的特徵在於氮氧化物的體積含量低 於0.0 0 0 0 2 5 %、較佳的是低於〇 . 〇 0 0 0 2 %,並且更佳的是低 於 0.0 0 0 0 1 5 %。 有利的是餾分E2b的特徵在於腐蝕性化合物的體積含 量低於0.2%、較佳的是低於0.1%、並且更佳的是低於 0·08%。 -69- 201125849 有利的是餾分E2b的特徵在於硫化氫的體積含 0.0 0 5 %,較佳的是低於0 · 0 0 1 %、並且更佳的3 0.0005%。 有利的是餾分E2b的特徵在於反應性化合物的 量小於2 %、較佳的是小於1 % '並且更佳的是小於0 · 有利的是餾分E2b的特徵在於除一氧化碳之外 性化合物的體積含量低於0·02%、較佳的是低於〇.〇 且更佳的是低於0 ·0 0 5 %。 有利的是餾分E2b的特徵在於乙炔的體積含 0.2 %、較佳的是低於0.1 %、更佳的是低於0.0 5 %、 佳的是低於0 · 0 2 %。 食留分E 2b的特徵在於,相對於餾分E2的總體積 至少3個碳原子的化合物的含量有利地是按體積計 等於ο _ ο 1 %、較佳的是小於或等於0 ·0 〇5 %、並且在 別佳的方式中小於或等於0 ·0 01 %。 有利的是餾分E2b的特徵在於催化劑中毒化合 積含量低於〇. 〇 〇 1 %、較佳的是低於〇 · 〇 〇 〇 5 %、並且 是低於0.0002%。 有利的是餾分E2b的特徵爲類似於餾分E2的含 種乙嫌含量。 該重質餾分富含乙烷以及含有至少3個碳原子 包括至少3個碳原子的化合物由含乙烯和其他從步! 衍生的組分的產物的混合物生成。在包含至少3個 的該等化合物之中’可以提及丙烷、丙烯、丁烷以 量低於 善低於 體積含 8%。 的反應 1 %、並 量低於 並且最 ,含有 小於或 一種特 物的體 更佳的 量的一 的烴。 潔a )中 碳原子 及它們 -70- 201125849 的不飽和衍生物連同所有飽和或不飽和的更重的化合物。 重質餾分有利的是含有至少9 5 %、較佳的是至少9 8 % 、並且特別佳的是至少9 9 %的包含至少3個碳原子的化合物 ,該化合物含在從步驟a)的衍生的產物的混合物中。 相對於重質餾分的總重量’重質餾分有利的是包含按 重量計最多1 % ’較佳的是最多0.8 %、並且特別佳的是最多 0.5 %的乙烯。 0 重質餾分有利的是富含比乙烯重的組分。較佳的是’ 重質餾分作爲燃料燒掉或者進行化學增値(valorised ) ° 更較佳的是,將重質餾分進行化學增値。 根據步驟f ) ’然後將餾分E2或餾分E2a和E2b送去用 於製造至少一種乙烯衍生之化合物,較佳的是送去用於製 造DCE和可隨意地由其衍生的任何化合物,可隨意地在已 經經受一個乙炔氫化作用之後’並且送入直接用乙烯開始 製造的、不同於DCE的至少一種乙烯衍生之化合物並且可 〇 隨意地由其衍生的任何化合物的製造中’更佳的是送去用 於製造DCE和可隨意地由其衍生的任何化合物,可隨意地 在已經經受一個乙決氫化作用之後,最佳的是地或者送入 一個氯化反應器中和/或送入氧氯化反應器中’在這個反 應器中將在餾分E2或E2a和/或E2b中存在的大部分的乙烯 送入DCE中。 此後有利的是’將獲得的D C E在步驟f )之後的步驟g )中從氯化和/或氧氯化反應器衍生出的產物的流中分離 出來,並且較佳的是在步驟g )之後的步驟h )中經受一 -71 - 201125849 DCE裂解步驟以產生VC,然後仍然更佳的是地將VC在步 驟h)之後的步驟i)中聚合以產生PVC。 在步驟f)之前,可隨意地使餾分E2或E2a和/或E2b經 受乙炔氫化步驟,可隨意地跟隨有一個乾燥步驟,特別是 當送往D C E以及可隨意的由其衍生的任何化合物的製造時 。較佳的是,使送往DCE以及可隨意地由其衍生的任何化 合物的製造中的餾分E2或E2a和/或E2b經受乙炔氫化作用 。更較佳的是,使藉由直接氯化送往DCE製造中的餾分E2 或E2 a和/或E 2b經受乙炔氫化步驟,隨後是一個乾燥步驟 。更較佳的是,使藉由氧氯化送往製造DCE的餾分E2或 E2 a和/或E2b經受乙炔氫化作用,而沒有一個乾燥步驟。 在上一種情況中,富含乙烯的餾分的氫化可以獨立操作或 者與氯化氫的氫化同時發生,該氯化氫係在其被送回氧氯 化作用之前從衍生自熱解的產物的流中分離出的。較佳的 是,將它與氯化氫的氫化同時操作。 乙炔的氫化有利的是按照之前對於步驟a 8 a )所說明 的而進行。有利的是’在對飽分E2或E2a和/或E2b進行這 種乙炔氫化的情況下,處理後的餾分有利地是特徵在於乙 炔的體積含量低於0. 〇 1 %、較佳的是低於〇. 〇 〇 5 %、更佳的 是低於0.0 0 2 %、並且最佳的是低於0 · 0 0 1 %。 根據歩驟f)的一第一實施方式,有利的是餾分E2被 送去用於製造至少一種乙烯衍生之化合物。 根據這個第一實施方式,根據本發明的方法有利的是 這樣的,在步驟a)至 e)之後,f)然後將餾分E2送去用 -72- 201125849 於製造至少一種乙烯衍生之化合物,較佳的是地送去用於 製造DCE和可隨意地由其衍生的任何化合物,可隨意地在 已經經受一個乙炔氫化之後’並且送入直接用乙烯開始製 造的、不同於D C E的至少一種乙烯衍生之化合物和可隨意 地由其衍生的任何化合物的製造中,更佳的是送去用於製 造DCE和可隨意地由其衍生的任何化合物,可隨意地在已 經經受一個乙炔氫化之後。 根據步驟Ο的第一實施方式的一第一變體,有利的 是以一餾分送入餾分E2。 根據該第一變體,根據本發明的方法有利的是這樣的 ,在步驟a)至 e )之後,f)以一餾分將餾分E2送去用於 製造至少一種乙烯衍生之化合物,或者送去用於製造DCE 和可隨意地由其衍生的任何化合物,可隨意地在已經經受 一個乙炔氫化之後,或者送入直接用乙烯開始製造的、不 同於DCE的至少一種乙烯衍生之化合物和可隨意地由其衍 〇 生的任何化合物的製造中》 較佳的是,以一種餾分將餾分E2送去用於製造DCE和 可隨意地由其衍生的任何化合物,可隨意地在已經經受一 個乙炔氫化之後,或者送入一個氯化反應器中或者送入一 個氧氯化反應器中,在這個反應器中在餾分E2中存在的大 部分的乙烯被送入DCE中。 此後更佳的是,將獲得的DCE在步驟f)之後的步驟g )中從氯化和氧氯化反應器衍生出的產物的該等流中分離 出來,並且最佳的是在步驟g)之後的步驟h)中經受一 -73- 201125849 DCE裂解步驟以產生VC ’然後仍然最佳的是地將VC在步 驟h)之後的步驟i)中聚合以產生PVC。 當僅要求一分餾用於步驟f )時’這種情況係特別有 意義的。 根據步驟Ο的第一實施方式的第二變體,餾分E2有 利的是分成至少兩個具有相同組成或不同組成的餾分,較 佳的是分成具有相同組成或不同組成的餾分E 2 d ’和E 2 d ”。 當要求用於步驟f)的或者具有相同或不同構成的不 同餾分爲有待送入乙烯衍生之化合物相應的製造中時,該 上一種情況係特別有意義的。 根據該第二變體,根據本發明的方法有利地是這樣的 ,在步驟a)至 e )之後,f)在將餾分E2送去至少一種乙 烯衍生之化合物的製造之前將其分爲具有相同或不同構成 的至少兩個餾分,較佳的是分爲餾分E2d’和餾分E2d”。 較佳的是,將餾分E2d’和餾分E2d”中的一餾分送去製 造DCE和可隨意地由其衍生的任何化合物,可隨意的在已 經經受一個乙炔氫化作用之後,而將另一餾分送去直接用 乙烯開始製造的、不同於D C E的製造至少一種乙烯衍生之 化合物,並且可隨意地由其衍生的任何化合物的製造中。 更較佳的是,將兩個餾分送去用於製造DCE和可隨意 地由其衍生的任何化合物,可隨意地在已經經受一個乙炔 氫化之後,一餾分被送入一個氯化反應器中並且另一餾分 送入一個氧氯化反應器中,在這兩個反應器中在每個餾分 中存在的大部分的乙烯被送入DCE中。 -74- 201125849 此後有利的是’將獲得的DCE在步驟f)之後的步驟g )中從氯化和氧氯化反應器衍生出的產物的該等流中分離 出來,並且較佳的是在步驟g )之後的步驟h )中經受一 DCE裂解步驟以產生VC ’然後更佳的是將VC在步驟h )之 後的步驟i)中聚合以產生PVC。 在表述“將餾分E2分成至少兩個部分”中的術語“分 成”(或“分割”)應理解爲係指,爲了本發明的目的, 0 將餾分E2分成兩種或更多個子混合物,其方式爲:所有該 等子混合物的特徵爲在特定的壓力範圍下的一組成,該組 成包括在由餾分E2在泡點時的組成以及由餾分E2在露點時 的組成所限定的範圍內。 爲了本發明的目的,表述“泡點”應理解爲係指以下 的點,即在恒定壓力下從一起始溫度加熱餾分E2的過程中 ’餾分E2在液體狀態下在這裡形成了第一蒸汽泡;泡點的 組成係該第一蒸汽泡的組成。 〇 爲了本發明的目的,表述“露點”應理解爲係指以下 的點,即在恒定壓力下從一個起始溫度冷卻餾分F2的過程 中’餾分F2在蒸氣狀態下在這裡形成了第一液體泡,露點 的組成係該第一液體泡的組成。 將餾分E2分成至少兩個餾分,較佳的是分成餾分E2’ 和餾分E2”,有利的是藉由借助任何已知的手段將餾分E2 分成具有相同組成或不同組成的幾個(較佳的是兩個)餾 分而進行操作。 該分割步驟可以在一個或幾個裝置中進行。該分割步 -75- 201125849 驟有利的是包括一分割操作。分割操作的實例係將混合物 分成具有相同組成的多個子混合物,氣態混合物的部分冷 凝、液體混合物的部分蒸發、液體混合物的部分固化。 將餾分E2分成至少兩個具有不同構成的餾分(較佳的 是餾分E2d’和餾分E2d”)可以藉由任何已知的方式進行。 有利的是,餾分E 2係藉由在一換熱器內間接冷卻進行冷卻 ,其中餾分E2在膨脹之後被蒸發至一合適的壓力’並且藉 由在換熱器內(用一合適的冷卻介質冷卻)間接接觸進行 過冷卻,直至達到其所限定的溫度下降。較佳的是將液體 蒸汽混合物分開以產生蒸汽餾分E2d’以及液體餾分E2d”。 溫度下降有利的是大於5 °C、較佳的是大於7 °C、並且更佳 的是大於8°C。溫度下降有利的是小於3〇°C、較佳的是小於 2 5°C、並且更佳的是小於22°C。 餾分E2d’有利的是含有多於10%、較佳的是多於20% 、並且更佳的是多於2 5 %的包含在餾分E 2中的乙烯的量。 餾分E2d’有利的是含有小於90%、較佳的是小於80%、並 且更佳的是小於75 %的包含在餾分E2中的乙烯的量。 與餾分E2相比較,餾分E2d’有利的是富含氫氣。餾分 E2d,中的莫耳氫氣含量與餾分Ε2〇Γ'中的莫耳氫氣含量的比 値有利的是高於25、較佳的是高於50、並且更佳的是高於 6 0° 與餾分E2相比較,餾分E2d’有利的是富含甲烷。餾分 E2d,中的莫耳甲烷含量與餾分E2d"中的莫耳甲烷含量的比 値有利的是高於2 _ 5、較佳的是高於4、並且更佳的是高於 -76- 201125849 5 ° 與餾分E2相比較,餾分E2d,有利的是貧乏乙烷。餾分 E2d'中的莫耳乙烷含量與餾分E2d"中的莫耳乙烷含量的比 値有利的是低於〇 . 9、較佳的是低於0.8 5、並且更佳的是低 於 〇 . 8。 根據步驟f)的一第二實施方式,有利的是餾分E2a和 E2b被送去用於製造至少一種乙烯衍生之化合物。 0 根據這個第二實施方式,根據本發明的方法有利的是 這樣的,在步驟a)至 e)之後,f)然後將餾分E2a和E2b 送去用於製造至少一種乙烯衍生之化合物,較佳的是送去 用於製造DCE和可隨意地由其衍生的任何化合物,可隨意 地在已經經受一個乙炔氫化之後,並且送入直接用乙烯開 始製造的、不同於DCE的至少一種乙烯衍生之化合物和可 隨意地由其衍生的任何化合物的製造中,更佳的是送去用 於製造DCE和可隨意地由其衍生的任何化合物,可隨意地 〇 在已經經受一個乙炔氫化之後。 根據步驟f)的第二實施方式的一第一變體,將餾分 E2a和E2b分別傳送。 根據該第一變體,根據本發明的方法有利的是這樣的 ,在步驟a)至 e)之後,f)將餾分E2a和E2b分別送去用 於製造至少一種乙烯衍生之化合物。 較佳的是,將餾分E2a和E2b中的一餾分送去用於製造 DCE和可隨意地由其衍生的任何化合物,可隨意地在已經 經受一個乙炔氫化作用之後,而將另一餾分送去直接用乙 -77- 201125849 烯開始製造的、不同於D C E的製造至少一種乙烯衍生之化 合物,並且可隨意地由其衍生的任何化合物的製造中。 更較佳的是,將兩個餾分送去用於製造DCE和可隨意 地由其衍生的任何化合物,可隨意地在已經經受一個乙炔 氫化之後,一餾分(較佳的是E2a)至一個氯化反應器中 並且另一餾分(較佳的是E2b )至一個氧氯化反應器中’ 在這兩個反應器中在每個餾分中存在的大部分的乙烯被送 入DCE中。 此後有利的是,將獲得的D C E在步驟f )之後的步驟g )中從氯化和氧氯化反應器衍生出的產物的該等流中分離 出來,並且較佳的是在步驟g )之後的步驟h )中經受一 DCE裂解步驟以產生VC,然後更佳的是地將VC在步驟h ) 之後的步驟i)中聚合以產生PVC。 當要求不同的餾分用於步驟f)以被送入乙烯衍生之 化合物的相應的製造中時,這種情況係特別有意義的。 根據步驟f)的第二實施方式的一第二變體,將餾分 E2a和E2b在傳送之前進行混合。 餾分E2 a和E2b可以藉由任何已知的手段進行混合,例 如像一個液體混合用三通、一個靜態混合器、惰性顆粒的 一個塡充床、一連串的穿孔板或者一連串的孔口、連同旋 轉機器(泵或壓縮機)。Cl LVRG can be produced in at least one unit that processes a hydrocarbon source to produce a flammable liquid. Such units may be units of hydrocarbon source pyrolysis, hydrogen pyrolysis, catalytic pyrolysis, arc pyrolysis, Fischer-Tropsch synthesis or refinery. Hydrocarbon sources can be solid sources such as coal, lignite and wood; liquid sources like oil (petroleum) and naphtha; or gaseous sources like syngas or residual gases and/or natural gas fields from petroleum. Such LVRGs are typically burned as a fuel or vented. The expression "at least one unit for treating a hydrocarbon source" is understood to mean that, for the purposes of the present invention, LVRG can be produced in a unit for treating a hydrocarbon source or in several units for treating a hydrocarbon source. Preferably, LVRG is produced in a unit that treats hydrocarbon sources from -11 to 201125849. The LVRG is advantageously at a pressure above atmospheric pressure and preferably at a pressure comprised between atmospheric pressure and the pressure of the unit it produces. It is especially preferred that the LVRG used in the process according to the invention is a LVRG produced in a refinery, commonly referred to as refinery off-gas (also known as petrochemical off-gas) and hereinafter designated as ROG. Thus the method according to the invention is preferably a method starting from ROG. The ROG can be produced in one or more units present in the refinery. The ROG is preferably produced in at least one of the following units present in the refinery: fluid catalytic cracking (FCC), coker (delay coker, fluid coker 'flexible coker), gas plant ), reformers, hydrocrackers, hydrotreaters, and hydrodesulfurization units (HDS). More preferably, the ROG is produced in at least one FCC unit. ROG can be produced in one or several refineries. Most preferably, the ROG is produced in a refinery and is particularly preferred in an FCC unit. Preferably, LVRG is that ROG can significantly include some of the compounds hereinafter referred to as ROlj. LVRG preferably ROG typically comprises the compounds listed below: - hydrogen, methane, ethane, ethylene, propane, propylene, hydrocarbons having 4, 5 or 6 carbon atoms, heavier C6 + and Hydrogen sulfide; - nitrogen, argon, helium, carbon dioxide and water; -12- 201125849 - oxygen, carbon monoxide and nitrogen oxides; - hydrogen chloride, hydrogen cyanide, ammonia, nitrides, nitriles, carbonyl sulfide, each An organic compound containing a sulfur atom in the molecule like a thiol and a sulfide, an organic compound containing more than one sulfur atom such as a disulfide, a sulfur oxide, an acetylene, a propadiene, a methyl acetylene, a butadiene, a diethanolamine, Methanol, phosphines, other inorganic compounds containing chlorine, and organic compounds containing nitrogen; and - arsenic (like hydrazines), mercury, vanadium, bromine, fluorine, antimony, aluminum, and metal carbonyl compounds. All of the above ingredients except for ethylene can be designated as an undesired component. The expression "unwanted component" is understood to mean, for the purposes of the present invention, all components to be at least partially removed if at least one of the following steps of the process is detrimental. These undesired components can be classified as: - combustible gases, such as hydrogen, meth, ethane, propylene, hydrocarbons containing 4, 5 or 6 carbon atoms, heavier C 6+ ; - inert gases such as nitrogen, helium and argon; - oxygenated compounds like oxygen and nitrogen oxides; - corrosive compounds like carbon dioxide, hydrogen sulfide, water, hydrogen chloride, hydrogen cyanide, ammonia, nitrides, Nitriles, carbonyl sulfide, organic compounds containing one sulfur atom per molecule like thiols and sulfides, and sulfur oxides; - reactive compounds like propylene, acetylene, propadiene, methyl acetylene, butyl dichloride, diethanolamine , methanol, phosphines, other chlorine-containing-13-201125849 inorganic compounds, nitrogen-containing organic compounds, organic compounds containing more than one sulfur atom per molecule like disulfide, with the same carbon oxide; and - catalyst poisoning compounds, like arsenic (like hydrazines), mercury, vanadium, bromine, fluorine, sand, and metal sulfhydryl compounds. These undesired ingredients can also be classified as: 1.  Such undesired components which may be detrimental to at least step b) and which are advantageously substantially removed during the step a), ie corrosive compounds like carbon dioxide, hydrogen sulphide, water, hydrogen chloride, hydrogen cyanide , ammonia, nitrides, nitriles, carbonyl sulfide, organic compounds containing one sulfur atom per molecule like thiols and sulfides, and sulfur oxides; and - catalyst poisoning compounds like arsenic (like bismuth), mercury, vanadium, Bromine, fluorine, ruthenium, aluminum and metal carbonyl compounds. 2.  It is acceptable in step b) and in subsequent steps, but at least one of the steps following step e) may be detrimental and may be at least partially during the process of step a) The undesired components removed, ie, combustible gases, such as hydrogen, methane, ethane, propane, hydrocarbons containing 4, 5 or 6 carbon atoms, heavier C6+; inert gases, like nitrogen, Helium and argon; - oxygenated compounds like oxygen and nitrogen oxides; and - reactive compounds like propylene 'acetylene, propadiene, methyl acetylene, butadiene, diethanolamine, methanol, phosphines, Other chlorine-containing-14 - 201125849 Inorganic compounds, nitrogen-containing organic compounds, organic compounds containing more than one sulfur atom per molecule, such as sulfides, and carbon monoxide. The expression "at least partially removed" is understood to mean, for the purposes of the present invention, advantageously present in LVRG (preferably ROG), fed to step a) and/or in the process of step a) At least 25 %, preferably at least 40%, more preferably at least 50% of the 0 amount of each of the undesired ingredients formed is removed. Advantageously, the amount present in LVRG (preferably ROG), fed to step a) and/or up to 90% of each of the undesirable constituents formed during step a) is removed. The expression "substantially removed" is understood to mean, for the purposes of the present invention, advantageously present in LVRG (preferably ROG), fed to step a) and/or in the process of step a) At least 95%, preferably at least 98%, more preferably at least 99% of each of the undesired ingredients formed is removed. 1) The composition of LVRG (preferably ROG) given below is expressed on a dry gas basis (excluding water). As mentioned above, LVRG (preferably ROG) may be a gas containing a mixture of ethylene and/or one or more of its precursors or a mixture of several gases (combined LVRG). When a separate LVRG (preferably ROG) is mentioned, the composition given below corresponds to the case when LVRG (preferably ROG) is a gas containing ethylene and/or one or more precursors thereof. When referring to a combined LVRG (preferably ROG), the compositions correspond to when a LVRG (preferably ROG) is a -15 of several gases containing ethylene and/or one or more of its precursors. 201125849 The situation of the mixture. A separate LVRG (preferably ROG) is advantageously included by weight from 〇. 25% to 60% ethylene. 1^110 (preferably 110 〇) advantageously comprises at least 0 by weight. 25%, preferably at least 2%, more preferably at least 5%, most preferably at least 8%, and particularly preferably at least 1%. LVRG (preferably R〇G) advantageously comprises up to 60% by weight, preferably up to 5%, more preferably up to 50%, and most preferably up to 48% ethylene. . The combined LVRG (preferably ROG) advantageously comprises from 10% to 60% by weight of ethylene. LVRG (preferably ROG) advantageously comprises at least 1% by weight 'preferably at least 1 5%, more preferably at least 8%, and most preferably at least 20% ethylene. LVRG (preferably ROG) advantageously comprises up to 60% by weight, preferably up to 5%, more preferably up to 50%, and most preferably up to 48% by weight. The LVRG alone (preferably R 〇 G) advantageously comprises from 3% to 60% by weight of the susceptor plus one or more precursors thereof. LVRG (preferably ROG) advantageously comprises at least 3% by weight, preferably at least 5%, more preferably at least 8%, and most preferably at least 1% by weight. Or a variety of precursors. LVRG (preferably ROG) advantageously comprises up to 60% by weight, preferably up to 5%, more preferably up to 5%, and most preferably up to 8%. Suspected to add one or more bodies. The combined LVRG (preferably R 〇 G) advantageously comprises from 10% to 60% by weight of ethylene plus one or more precursors thereof. LVRG (preferably ROG) advantageously comprises at least 1% by weight, preferably -16 - 201125849 at least 1 5 %, more preferably at least 20%, most preferably at least 2 2 % And the best is at least 22. 5% ethylene plus one or more precursors. LVRG (better ROG) advantageously comprises up to 60% by weight, preferably up to 5%, more preferably up to 50%, and most preferably up to 48% of the fuel plus one or A variety of precursors. A separate LVRG (preferably ROG) is characterized by a lower enthalpy dry gas 0 LVRG (preferably ROG) characterized by between 10 MJ/kg and 90 MJ/kg. It is advantageous if a lower heat is at least 10 MJ/kg, preferably at least 12 MJ/kg, and more preferably at least 15 MJ/kg dry gas. LVRG (preferably ROG) is characterized by a lower heat enthalpy of up to 90 MJ/kg, preferably up to MJ/kg, and more preferably up to 80 MJ/kg of dry gas. The combined LVRG (preferably ROG) is characterized by a lower enthalpy dry gas LVRG (preferably ROG) comprised between 20 MJ/kg and 75 MJ/kg. Advantageously, a lower enthalpy is at least 20 MJ/kg, preferably at least 25 MJ/kg, more preferably less than 30 MJ/kg, and most preferably at least 35 MJ/kg dry gas. LVRG is preferably ROG) which is advantageously characterized by a lower enthalpy of up to 75 MJ/kg, preferably up to 70 MJ/kg, more preferably up to MJ/kg, and most preferably Up to 55 MJ/kg of dry gas. The individual LVRG (preferably ROG) advantageously comprises up to 90% by volume, preferably up to 85%, more preferably up to 80%, and most preferably up to 75% inert. gas. The combined LVRG (preferably ROG) is advantageous in that it is still more than 85 packs of heat per pack (more than 60 packs and -17-201125849 counts up to 25 percent, preferably Up to 2%, more preferably up to 18%, and most preferably up to 15% inert gas. The combined LVRG (preferably ROG) advantageously comprises up to 25% by volume, Preferably, the maximum is 2%, more preferably up to 18%, and the best is up to 15 °/. Nitrogen. Individual LVRG (preferably ROG) includes oxygenated compounds' The amount of enthalpy is advantageously lower or higher than the level required to make the gaseous mixture flammable (so outside the flammable zone). The total amount 値 is preferably up to 21% by volume, more preferably up to 1 8% 'and optimally up to 1 5%. The combined LVRG (preferably ROG) comprises an oxygenated compound', the total amount of which is advantageously lower than the level required to make the gaseous mixture flammable' Preferably, up to 10% by volume, more preferably up to 7% by volume, and most preferably up to 5%. Combined LVRG (preferably ROG) package The amount of oxygen is advantageously at most 9%, preferably at most 7%, and more preferably at most 5% by volume. Individual LVRG (preferably ROG) includes corrosive compounds' Advantageously, up to 50% by volume, preferably up to 40% by volume, and more preferably up to 35% by volume. The combined LVRG (preferably ROG) comprises a corrosive compound' Advantageously, up to 20% by volume, preferably up to 1 5%, and more preferably up to 10% by volume. The combined LVRG (preferably ROG) comprises a separate amount of each corrosive compound. It is up to 1% by volume, preferably 18-201125849 more than 8%, and more preferably up to 5%. Separate LVRG (preferably ROG) includes reactive compounds, the total amount of which is 値Advantageously, up to 40% by volume, preferably up to 35%, and more preferably up to 33%. The combined LVRG (preferably ROG) comprises a reactive compound, the total amount of which is advantageous It is up to 20% by volume, preferably up to 18%, and more preferably up to 15%. q Combined LVRG (better It is ROG) that the individual amount of each reactive compound is advantageously at most 15% by volume, preferably at most 12% by volume, and more preferably at most 10%. Combined LVRG (preferably The ROG) comprises carbon monoxide, the amount of which is advantageously at most 5% by volume, preferably at most 3%, and more preferably at most 2%. The LVRG alone (preferably ROG) comprises a catalyst poisoning compound, the total amount of which is advantageously at most 200 ppm by volume, preferably 0 up to 100 ppm, and more preferably up to 50 ppm. The combined LVRG (preferably R 〇 G ) comprises a catalyst poisoning compound, the total amount of which is advantageously at most 5 ppm by volume, preferably at most 2 ppm, and more preferably at most 1 ppm. The combined LVRG (preferably R 〇 G ) comprises a catalyst poisoning compound, the volume of which alone is advantageously up to 500 ppb by volume, preferably up to 300 ppb, and more preferably up to 200 ppb. In a process for the manufacture of at least one ethylene-derived compound starting from an LVRG (preferably R〇G), in particular in the manufacture of D c E with 201125849 and directly with ethylene, unlike dce In a method of at least one compound derived from B, 'in accordance with the present invention, LVRG (preferably ROG, optionally containing the fraction E1 reused from step d) is used in - LVRG (preferably R 〇 G ) The recovery unit is subjected to a series of processing steps (step a)) to remove the undesired components present therein and to obtain a mixture of products containing ethylene and other components that will be subjected to step b). When LVRG (preferably ROG) is a mixture of several gases, it is possible to subject all of the different gases to the same series of processing steps in step a), in step a) each subject to a dedicated series of processing steps or In step a) they are each subjected to a combination of a dedicated series of processing steps and a common series of processing steps. Preferably, each of them is subjected to a combination of a dedicated series of processing steps and a series of common processing steps in step a). The series of processing steps in the LVRG (preferably ROG) recovery unit in step a) advantageously consists of the following steps, but need not be carried out in the order they are listed: al) optionally - a compression step a 1 bis ) can be used anywhere - one or several dust removal steps, a2) removal of corrosive compounds » a3 ) removal of catalyst poisoning compounds > a4 ) can be optionally cooled 5 a5 ) \*r 思地 - at least part of the removal of a Jgi combustible gas, a6) can be removed with ^Z1 ground - at least part of an inert gas, -20- 201125849 a7 ) optionally at least some oxygenated compounds Partial removal; and a8) optionally removal of at least a portion of some reactive compounds. A compression step (step a) can be performed arbitrarily. A compression step (step a1) can be performed arbitrarily. When present, the compression step of LVRG (preferably ROG) is advantageous to increase the pressure to at least 8 kg/cm2. g ' is preferably at least 1 〇 kg/cm 2 . g, more preferably at least 12 kg/cm2. g and the best is at least 14 kg/cm2. g, and advantageously up to 60 kg/cm2. g, preferably up to 55 kg/cm2. g, more preferably up to 50 kg/cm2. g and the best is up to 45 kg/cm2. g. Step a) is preferably carried out in several stages in one multi-stage gas compressor or in several compressors. It is preferred to carry out droplet separation prior to compression step a). The compression ratio of Q at each compression stage is such that the temperature at the exit of the compression stage is advantageously at most 15 〇 ° C, preferably at most 1 20 ° C, and more preferably at 100 ° c. After leaving the gas at this stage, it is advantageous to carry out the cooling by direct cooling with a cooling medium. The cooling medium is advantageously selected from the group consisting of water from a cooling tower, cold water, air in the atmosphere, and colder gases flowing from the process. The cooling medium is preferably selected from the water of the cooling tower and the air in the atmosphere. More preferably, the cooling fluid is water in the cooling tower. The gas is advantageously cooled at 50 ° C, preferably at 48 ° C and more preferably at 45. (:low, but advantageously not lower than 0 °C 'better is not -21 - 201125849 is below 5 °c and better is not less than 1 〇 ° C. At the end of cooling 'can produce some Condensate. If some condensate is produced, it may or may not be separated. It is preferred to separate them. The condensate is advantageously degassed by pressure release, preferably at the upstream stage. The pressure is released. The separated liquid can be stripped to recover the volatile fraction. The generated gas is preferably reused with the upstream stage gas. Present in the gas or by any pretreatment step The resulting solid particles may optionally be removed by a suitable operation, i.e., one or more dust removal steps (one or more dust removal steps a bis )). Among such suitable operations, mention may be made, for example, of gravity settling, impact, use of a cyclone, filtration, electrical filtration and/or electrostatic dedusting. The use of cyclones, filtration and electrofiltration is preferred. Removal of the corrosive compound (step a2)) can be carried out in one or several sets of steps, each set comprising one or several steps. The first set of steps (step a2a)) advantageously comprises one or several absorption steps. The absorption is advantageously an absorption of a solution such as an amine (preferably an alkanolamine) with a regenerable solution; physical absorption with a suitable solvent, such as methanol or dimethyl ether polyethylene glycol; Absorption by chemical reaction by washing in an alkaline solution. The city is preferably a hydroxide, an oxide or a carbonate. Examples of the city are sodium hydroxide, potassium hydroxide, calcium oxide, magnesium oxide, sodium carbonate, and potassium carbonate. -22 - 201125849 The corrosive compound removable by absorption (step a2a)) preferably includes a first In the step, the step is carried out by absorption with a regenerable solution of an amine, preferably an alkanolamine followed by absorption with an alkaline solution (caustic/water scrubber), preferably sodium hydroxide solution. . The regenerable solution can be regenerated or not regenerated. If regeneration occurs, it is advantageously present in one or several stages, particularly for the separation of carbon dioxide and hydrogen sulfide. Preferably, the regenerable solution is regenerated and more preferably in two stages. Preferably, the corrosive compound which is removable by absorption (step a2a)) comprises a first step which is carried out by absorption of a regenerating solution of an amine, preferably an alkanolamine, in two stages. Medium regeneration, followed by absorption with an alkaline solution (caustic/water scrubber) is preferably a sodium hydroxide solution. The corrosive compound which can be at least partially removed by this step a2 a ) is advantageously hydrogen sulfide, hydrogen chloride, carbonyl sulfide, hydrogen cyanide 'carbon dioxide Q, ammonia and an organic compound containing one sulfur atom per molecule, like a mercaptan. And sulfides. Alternatively, an organic compound containing one sulfur atom per molecule such as a mercaptan and a sulfide, ammonia, together with a sulfur oxide may be at least partially hydrolyzed in the process of the step a2a). If a physical adsorbent like methanol ' is used, water can also be at least partially removed by such step a2 a ). The second set of steps (step a2b)) advantageously comprises one or several hydrogenation steps. -23- 201125849 Hydrogenation of corrosive compounds (such as hydrogen cyanide, nitrides, nitriles, carbonyl sulfide, organic compounds containing a sulfur atom per molecule like thiols and sulfides, together with sulfur oxides) is advantageously It is carried out in a hydrogenation reactor using a hydrogenation catalyst. After step a2b), hydrogen cyanide, a nitride, a nitrile, a carbonyl sulfide, an organic compound containing a sulfur atom per molecule such as a mercaptan and a sulfide, together with the sulfur oxide, is advantageously at least partially hydrogenated. Suitable catalyst species are advantageously comprised of a metal of Group VIII, a metal of Group lb, and a metal of Group VIb. Preferred are palladium based, nickel based, or gold based catalysts. More preferred are palladium based or nickel based catalysts. The nickel-based catalyst system is the most preferred of which is a sulfided nickel catalyst. The hydrogenation catalyst can be supported or unsupported. They are preferably loaded. It is also possible to use those catalysts as defined for step a7). The carbonyl sulfide, if still present in the hydrogenation feed, is advantageously at least partially converted to a mercaptan in the hydrogenation step a2b. Preferably, a palladium or nickel based catalyst is used, more preferably a monosulfide is used. Nickel catalyst. The nitriles present in the hydrogenation feed are advantageously also at least partially converted to amines in the hydrogenation step a2b), preferably with a fine or nickel based catalyst, more preferably a sulfided town catalyst. . Hydrogen cyanide, if still present in the hydrogenation feed, is advantageously at least partially removed in the hydrogenation step a2b, preferably a palladium or nickel based catalyst, more preferably a sulfided nickel catalyst. Step a2b) is advantageously carried out at a temperature between 25 ° C and 10 ° C. -24 - 201125849 The third set of steps (step a2c)) advantageously comprises one or several cooling steps. This cooling is advantageously carried out by direct or indirect cooling with a cooling medium. Direct cooling is used to refer to the physical contact of a process stream with a cooling medium. Examples of suitable cooling media for direct contact cooling are water, methanol, hydrocarbons or mixtures thereof. Other examples of suitable 0 cooling media are aqueous solutions of alkanolamines, metal carbonates or bicarbonates, mineral acids such as sulfuric acid or nitric acid. Other examples of suitable media are alkanolamine or metal carbonate or bicarbonate in methanol. Preferably, the cooling medium is then at a temperature below the temperature of the stream. The cooling is preferably carried out by indirect cooling with a cooling medium. The cooling medium is advantageously water selected from the group consisting of cooling towers, cold water, air in the atmosphere, and colder gases flowing from the process. The cooling medium is preferably selected from the water of the cooling tower and the air in the atmosphere. More preferably, the cooling fluid is the water tower of the cooling tower. The gas is advantageously cooled at 50 ° C, preferably at 48 ° C and more preferably at 45 ° C, but advantageously not lower than 〇 ° C, preferably not low At 5. (: and more preferably not lower than 10 ° C. Alternatively, a freeze-drying step may be used for drying. The condensate may or may not be separated. It is preferred to separate them. The fourth set of steps (step a2d)) advantageously comprises one or several adsorption steps. -25- 201125849 This adsorption is advantageously carried out on a suitable solid such as activated carbon, charcoal, molecular paving, zeolite, sand, or oxidized. The adsorption of water is advantageously achieved, at least in part, by an adsorption step on molecular sieves, vines or alumina. Preferably, the removal of water is carried out at least in part by a combination of cooling (step a2c)) and adsorption (step a2d)). The mercaptans derived from carbonyl sulfide, carbonyl sulfide, and sulfides are advantageously at least partially removed by adsorption in a bed of a suitable material. Suitable adsorbents are advantageously carbonaceous materials, such as activated carbon and especially activated carbon, molecular sieves 3, 4 A or 1 3 X, zeolites having a specific surface area between 500 m2/g and 2500 m2/g; mesoporous adsorbents Including activated alumina, such as mesoporous active oxidation, 矽, and specific BET surface area between 1 50 m2/g and 800 m2/g, with a BET surface area between 150 m 2 /g and 800 m 2 /g The mesoporous silica adsorbent, type A zeolite, type 5 A zeolite, X-type faujasite, Y-type faujasite, and MFI zeolite. Preferred are activated carbon, molecular sieve 3 or 4A and or activated alumina. The amines derived from the nitrile and the residual nitriles are advantageously at least partially removed by adsorption with the same type of adsorbent as the mercaptans. The nitride species may also be at least partially adsorbed during the step a2d). Ammonia, if not already removed, is advantageously at least partially removed by adsorption with the same type of adsorbent as the mercaptan is removed. The carbon dioxide', if not removed during the process of step a2a), can advantageously be removed at least partially by -26-201125849 by adsorption on a suitable adsorbent. Suitable adsorbents include activated copper, mineral clay, grit, and activated alumina. Removal of the catalyst poisoning compound (step a3)) can be carried out in one or several sets of steps' each set comprising one or several steps. The first set of steps (step a3a)) advantageously comprises one or several adsorption steps. The adsorption is advantageously a chemical or physical adsorption on a suitable solid, such as activated carbon, charcoal, molecular sieves, zeolites or alumina (which is activated or not activated). Preferably, the catalyst poisoning compound is at least partially removed by chemical or physical adsorption on alumina (preferably activated) or on activated carbon. It is advantageous to use at least one, preferably at least two, adsorbents for the adsorption. It is advantageous to use up to 6, preferably up to 5, more preferably up to 4 adsorbents for the adsorption. The best is to use 3 kinds of absorbing agents. The gas stream can be contacted with the solid adsorbents in any suitable device. Pneumatic transfer type moving beds as well as fixed beds can be mentioned as suitable means. A fixed bed system is preferred. The adsorbents can be arranged in a mixed bed or in a dedicated bed. They can be arranged in a single container or in separate containers. Preferably, the adsorbents are disposed in a dedicated bed' more preferably in three dedicated beds, and preferably in separate containers. Each adsorption step can be carried out in one or several parallel beds. Each of the -27-201125849 adsorption steps is preferably carried out in several parallel beds', more preferably in at least 2 separate beds. Regeneration can be achieved in the device itself or outside the device. Regeneration is preferably accomplished in the device itself. The second set of steps (step a3b)) advantageously comprises one or several absorption steps. The absorption is advantageously a physical absorption' such as with a suitable solvent such as dimethyl ether polyethylene glycol or methanol; or a chemical absorption' such as an aqueous alkaline solution as illustrated for step a2a). Step a3) is advantageously carried out at a temperature between 25 ° C and 1 ° C. In addition to step a2c), a cooling step (step a4) can be optionally performed. Step a4) is preferably advantageously carried out by direct cooling with a cooling medium. The series of processing steps (step a)) therefore advantageously comprises at least one compression step (step a)) and a cooling step (step a4)) 冷却 the cooling medium is advantageously water selected from the cooling tower 'cold water, hydrocarbons, like Ethylene, ethane, propylene, propane or a mixture of two or more of them 'C〇2' hydrofluorocarbon refrigerant, air in the atmosphere' and a cooler gas flowing out of the process. The cooling medium is preferably a water 'hydrocarbon selected from a cooling tower such as ethylene, ethane, propylene, propane or a mixture of two or more thereof, or a colder gas or atmospheric air flowing out of the process. . More preferably, the cooling fluid is water or hydrocarbons of the cooling tower, such as ethylene, propylene, propylene, propane or a mixture of two or more thereof or a cooler gas that flows out of the process -28-201125849. The gas is advantageously cooled at 0 ° C 'preferably at -1 〇 ° c and more preferably at _ 2 0 'but advantageously no less than -15 0 ° c ' is preferred. It is not lower than -2011 and more preferably not lower than -100 °C. The condensate may or may not be separated. It is preferred to separate them. The removal of at least a portion of some combustible gases can be performed arbitrarily (step 0 a5)). At least a portion of the hydrogen and/or methane may be at least partially removed (step a5 a )). This removal is optionally carried out during the step a) of the process according to the invention. This step for removing at least a portion of the hydrogen and/or methane may also be carried out during the step b) of the process according to the invention (for example during the separation of the mixture of products from step a) or for fractions E2, E2a or E2b. Preferably, when performed, at least a portion of the removal of hydrogen and/or methane is carried out during the step a) (step a5 a)) of the process according to the invention. Suitable separation steps for hydrogen and/or methane are advantageously membrane permeation and pressure swing adsorption (PSA). Preferred is PSA. At least a portion of the ethane, propane, and/or hydrocarbons having 4, 5 or 6 carbon atoms or heavier C6+ may advantageously be at least partially removed in several steps (step a5b)). This removal can optionally be carried out during the step a) of the process according to the invention. This step for removing at least a portion of ethane, propane, and/or hydrocarbons having 4, 5 or 6 carbon atoms or heavier C6 + may also be -29-201125849 in step b of the method according to the invention During the process of separating, for example, the mixture of products from step a). A suitable separation step for ethane, propane, and/or hydrocarbons having 4' 5 or 6 carbon atoms or heavier C6 + is advantageously condensed. It is advantageous to combine step a5b) with compression step ai) and/or cooling step a2c) and/or a4). Removal of at least a portion of some of the inert gas may be optionally performed (step a6)). This removal can optionally be carried out during the step a) of the process according to the invention. This step for removing at least a portion of the inert gas may also be carried out during the step b) of the process according to the invention (for example during the separation of the mixture of products from step a) or for fractions E2, E2a Or E2b. Preferably, when performed, at least a portion of the removal of the inert gas is carried out during the step a) (step a 6 )) of the process according to the invention. Suitable separation steps for inert gases are advantageously membrane permeation as well as pressure swing adsorption (PSA). Preferred is P S A. Removal of at least a portion of some of the oxygenated compounds can be optionally carried out (step a7)). At least a portion of the oxygen may be at least partially removed by a chemical step or a physical step (step a7a)). A suitable chemical step is advantageously carried out by using a reduction bed of copper or a sulfided nickel catalyst, preferably by using a sulfurized nickel catalyst (step a7al)). -30- 201125849 Another suitable chemical step is advantageously a hydrogenation step (step a7a2)) with or without catalysis (preferably catalysis). The above hydrogenation step can be carried out by any known hydrogenation catalyst, such as a catalyst based on palladium, platinum, rhodium, ruthenium, iridium, gold, silver, or a mixture of such elements, which is deposited on a support, such as oxidation. Aluminium, vermiculite, vermiculite/aluminum, carbon, calcium carbonate or barium sulfate' however there are also nickel-based catalysts and those based on cobalt-molybdenum complexes. More preferably, the hydrogenation step is carried out by a catalyst based on palladium or platinum deposited on alumina or carbon, on a nickel-based catalyst or on a cobalt-molybdenum complex-based catalyst. In a particularly preferred manner, it is carried out by a nickel-based catalyst. This hydrogenation step advantageously uses a portion of the hydrogen available in LVRG, preferably ROG. A suitable physical method is advantageously carried out by adsorption (step a 7 a 3 )), for example by PSA (pressure swing adsorption): by absorption (step 〇a7a4)); or by membrane process (step a7a5) )). Step a7a2) is more particularly good. Step Wa) is advantageously carried out at a temperature between 25 ° C and 100 ° C. At least a portion of the nitrogen oxides (step a7b) can be at least partially removed by a chemical step or a physical step. .  A suitable chemical step is advantageously carried out by removing nitrogen oxides (denox) with ammonia or urea, preferably with urea (step a7bl)). Another suitable chemical step is advantageously carried out with or without a catalytic hydrogenation step (step a7b2)) of -31 - 201125849 (preferably catalytic). Suitable catalysts are advantageously palladium or nickel based catalysts, more preferably sulfurized nickel catalysts. This hydrogenation step can be carried out by the same catalyst as those defined for the hydrogenation of oxygen (the same preferred manner). Advantageously, the hydrogenation catalyst used in all of the hydrogenation steps is the same. This hydrogenation step advantageously uses a portion of the hydrogen available in LVRG, preferably R〇g. Hydrogenation is more preferred than removal of nitrogen oxides. - a suitable physical method is advantageously carried out by adsorption (step a7b3)), for example by ps A (pressure swing adsorption): by absorption (a 7 b 4 )); or by membrane process (a7b5)) . Suitable adsorbents include active copper, mineral clay, tannin and activated alumina. Steps a 7 b 2 ) and a 7 b 3 ) are more particularly preferred. Step a7b) It is advantageous to carry out the removal of at least a portion of some of the reactive compounds at a temperature between 25 ° C and 10 ° C (step a8 )). Removal of the reactive compound (step a8)) can be carried out in one or several sets of steps, each set comprising one or several steps. The first set of steps (step a8a)) advantageously comprises one or several hydrogenation steps. Partial hydrogenation of acetylene is advantageously carried out in an acetylene converter by using an M-catalyst. After the step a), the acetylene-favorable -32-201125849 is at least partially hydrogenated. Suitable catalyst species are advantageously comprised of a metal of Group VIII, a metal of Group lb, and a metal of Group VIb. Preferred are palladium based, nickel based or gold based catalysts. More preferred are palladium based or nickel based catalysts. The most preferred of the nickel-based catalysts is a sulfided nickel catalyst. The hydrogenation catalyst can be either supported or unsupported. They are preferably loaded. In other words, those catalysts as defined for step a2b can be used. The nitrogen-containing organic compound present in the hydrogenation feed is advantageously at least partially removed in the hydrogenation step a8a), preferably with a palladium or nickel based catalyst, more preferably a sulfided nickel. catalyst. An organic compound containing more than one sulfur atom like a disulfide may be partially hydrogenated during the process of step a8a). Higher acetylenic compounds present in the hydrogenation feed, including methyl acetylene, propadiene and butadiene, are advantageously at least partially hydrogenated during the step a8a), preferably with a Palladium or nickel catalysts, more preferably a sulfurized nickel catalyst. Step a8a) is advantageously carried out at a temperature between 25 ° C and 10 ° C. The second set of steps (step a8b)) advantageously comprises one or several adsorption steps. The adsorption is advantageously carried out on a chemically specific adsorbent to at least partially remove other undesirable components. An organic compound containing more than one sulfur atom like a disulfide is advantageously at least partially removed by adsorption in a bed of a suitable material -33-201125849. Suitable adsorbents are advantageously carbonaceous materials, such as activated carbon and especially activated carbon, molecular sieves 3, 4A or 13X, zeolite having a specific surface area between 5 〇〇 m 2 /g and 25 〇 0 m 2 /g; mesopores Adsorbents, including activated alumina, such as mesoporous alumina with a BET surface area between 1 500 m /g and 800 m /g, tantalum gel than the BET surface area at 1 50 m2 / g and 8 〇〇 Mesoporous silica adsorbent between m2/g, zeolite A, zeolite 5 A 'type X faujasite, gamma faujasite and MFI zeolite. Preferred are activated carbon, molecular sieves 3 or 4 a and or activated alumina. The phosphines, methanol and chlorine-containing inorganic compounds can also be at least partially adsorbed during the step a8b). It is advantageous to use at least one, preferably at least two, adsorbents for the adsorption step a 8 b ). It is advantageous to use up to 6, preferably up to 5, more preferably up to 4 adsorbents for the adsorption step a8b). The best is to use three adsorbents. If it can be achieved, step aSb) can be combined with step a3). The gas stream can be contacted with the solid adsorbents in any suitable device. Pneumatic transfer type moving beds as well as fixed beds can be mentioned as suitable means. A fixed bed system is preferred. The adsorbents can be arranged in a mixed bed or in a dedicated bed. They can be arranged in a single container or in separate containers. Preferably, the adsorbents are disposed in a dedicated bed, more preferably in three dedicated beds, and preferably in separate containers. Each adsorption step can be carried out in one or several parallel beds. Preferably, each adsorption step is carried out in several parallel beds, more preferably in two separate beds up to -34-201125849. Regeneration can be achieved in the device itself or outside the device. It is implemented in the device itself. Step a 8 b ) advantageously a temperature between 25 ° C and 100 ° C. The third set of steps (step a 8 c )) advantageously comprises an absorption step. 0 This absorption is advantageously carried out with a suitable solvent, such as methyl ether polyethylene glycol, to at least partially remove (except for other organic compounds containing more than one sulfur atom, like disulfide < Diethanolamine and methanol can advantageously be removed in small portions of step a8 c ). The different steps mentioned earlier do not need to be listed by them. They can be implemented in any other order. All or some of the hydrogenation steps a2b), a7a2) 〇 and a8 a) may advantageously be combined. All or one of steps a3a), a7a3), a7b3) and a8b) may be advantageous. All or some of the absorption steps a2a, a3b), a7b4) and a8c) may advantageously be combined. A preferred step 1 a3a), based on which processing steps a2) and a3) occur.  Step a3b), 3.  Step a2b), perform one or more of the regeneration preferences, such as 'use two', every minute. In the process to the sequence, a7b2) some adsorption sites are a7 a 4 ) in the order -35- 201125849 4 . Step a 2 a ), 5. Step a2c), and 6 · Step a 2 d ). When the optional compression step a1 occurs, steps a3a, a3b), a2b) and a2c) are preferably inserted during the last compression phase. When the optional one or more dust removal steps alb bis ) occur, it is preferably after step a 2 d ). When the optional cooling step a4) occurs, it is preferably the last step. When step a5 a) occurs, it is advantageously inserted into the cooling step a2 c). When step a5b) occurs, it is advantageously carried out in several steps in cooling step a2c) and/or step a4). When step a6) occurs, it is advantageously inserted into the cooling step a2c). When step a5 a ) and step a6 ) occur, they are advantageously combined. When step a7a2) occurs, it is advantageously combined with step a2b). When step a7b2) occurs, it is advantageously combined with step a2b). When step a7b3) occurs, it is advantageously combined with step a3a) When steps a8a), a8b) and a8c) occur, they advantageously combine -36-201125849 with steps a2b), a3a) and a3b), respectively.更 4 A better order according to these processing steps is: one or more first phases of step a), wherein the following steps & insert before the last or only compression phase, 2.  Step ah) is combined with step a8b) and step ""), 3.  Step a3b) is combined with step a8c), step 4.b) is combined with step a7a2), step a8a) and step 〇a7b2), 5 · step a 2 a ), 6.  Step a) The final compression phase, 7.  Step a2c) is combined with a portion of step a5b), 8 · step a 2 d ), 9 - or a plurality of steps albis, and 1 · step a4) combined with a portion of step aSb). The best order in which these processing steps occur is: Ο 1. One or more first phases of step a, wherein the following steps are inserted before the last or only compression phase, 2. Step a3a) is combined with step a8b) and step a7b3), 3 . Step a3 b) is combined with step a 8 c ), 4.  Step a2b) is combined with step a7a2), step a8a) and step a7b2), 5 · step a 2 a ), 6 . Step a 1) The final compression phase, 7. Step a2c) is combined with a part of step a5a), step a6), and step a5b-37-201125849), 8 · step a 2 d ), 9_ one or more steps albis), and 10. Step a4) is combined with a portion of step a5b). Advantageously, in the process according to the invention, the mixture of products comprising ethylene and other components from step a) comprises hydrogen, methane, ethane, ethylene, propane, containing 4, 5 or 6 carbon atoms. Hydrocarbons as well as heavier C6+, inert gases, oxygenated compounds, reactive compounds, and greatly reduced amounts of corrosive compounds and catalyst poisoning compounds. Optionally, the concentrations of the inert gases are at least partially reduced compared to their incorporated concentrations. Optionally, the amount of some reactive compounds is at least partially reduced as compared to their incorporated content. Preferably, it is at least partially reduced compared to their incorporated content. Optionally, the concentrations of combustible gases (other than ethylene) are at least partially reduced as compared to their incorporated concentrations. Optionally, the concentration of some of the combustible gases having a normal boiling point higher than the normal boiling point of ethylene is at least partially reduced as compared to their incorporated concentrations. Advantageously, the concentration of some combustible gases having a normal boiling point lower than the normal boiling point of ethylene is at least partially reduced as compared to their incorporated concentrations. More preferably, the concentration of some combustible gases having a normal boiling point lower than the normal boiling point of ethylene and the concentration of some combustible gases having a normal boiling point higher than the normal boiling point of ethylene are at least partially reduced as compared with their introduced concentrations. The composition given below for the mixture containing ethylene and other products of the group -38-201125849 from step a) is expressed on a dry gas basis (excluding water). The mixture of products comprising ethylene and other components from step a) advantageously comprises at least 10% by volume, preferably at least 5%, more preferably at least 20% by weight of ethylene. It advantageously comprises up to 60% by volume, preferably up to 55%, more preferably up to 50% ethylene. The mixture 0 of the product comprising ethylene and other components from step a) is advantageously characterized by at least 30 MJ/kg, preferably at least 33 MT/kg, more preferably at least 35 MJ/kg, and The best is a lower hot dry gas of at least 37 MJ/kg. The mixture of products comprising ethylene and other components from step a) is advantageously characterized by a maximum of 75 MJ/kg, preferably at most 70 MJ/kg, more preferably at most 65 MJ/kg, and most The best is a lower enthusiasm for dry gas up to 60 MJ/kg. The partial pressure of water comprised in the mixture of products comprising ethylene and other components from step a) is advantageously less than 55 mm, preferably less than Q 25 mm, more preferably less than 15 Mm and optimal is a mercury column below 1 mm. The mixture of products comprising ethylene and other components from step a) comprises an amount of each of the following components advantageously fed to step a) and/or LVRG formed during step a) (preferred Up to 5%, preferably up to 2% and more preferably up to 1% of the same component in ROG), such as carbon dioxide, hydrogen sulfide, carbonyl sulfide, organic containing one sulfur atom per molecule Compounds like thiols and sulfides, sulfur oxides, ammonia, nitrides, nitriles, hydrogen chloride, hydrogen cyanide, mercury, arsenic (like terpenoids) -39- 201125849, vanadium, bromine, fluorine, antimony, aluminum, and Metal carbonyl compound. After step a) as defined above, the mixture comprising the product of ethylene and other components is subjected to step b) 'step b) to a first separation step S1 'the first separation step comprising the ethylene-containing and other groups The product of the fraction is separated into a fraction called fraction F1 containing the compounds lighter than ethylene and a portion of ethylene, and is separated into a fraction F2. The mixture containing the product of ethylene and other components can be subjected to a thermal conditioning step prior to its separation. The term "thermal conditioning step" is understood to mean continuous heat exchange to adjust the temperature of the mixture to the requirements of separation and/or to optimize the use of energy, preferably to adjust the temperature of the mixture to the requirements of separation and Optimize the use of energy. When the thermal conditioning step consists in a cooling, the cooling advantageously involves the gradual cooling of a mixture of products in a series of exchangers, first with untreated water, then with ice-cold water, and then with a gradually cooled fluid. Cooling 'plus a crossover exchanger that recovers the sensible heat of the generated streams, optionally using latent heat (when available). Advantageously, the condensate produced during the cooling step is physically separated from the gas stream and sent to a suitable location in subsequent processing. The thermal conditioning included in step S1 is preferably a type of cooling, and the separated condensate is preferably sent to a suitable location in step 82. The first separation step S 1 is advantageously to fractionate the mixture containing the product of ethylene and other components into the two different saturations described above. The term "fractionation" is understood to mean that the multi-step method can be considered to have a single function for any part of the multi-step method of the present invention. This fractionation step can be carried out in one or several interconnected devices. Examples of fractionation are distillation, extractive distillation, liquid-liquid extraction, osmotic evaporation, gas permeation, adsorption, pressure swing adsorption (pSA), temperature swing adsorption (TSA), absorption, chromatography, reverse osmosis, and molecular filtration. Preferably, distillation is carried out. 〇 Therefore step s 1 preferably consists in fractionating a mixture of products containing ethylene and other components into two different fractions in a distillation column (referred to as column c 1 ), ie distillation from column C 1 The fraction F 1 which advantageously leaves the section and the fraction F2 which advantageously leaves from the stripping section of column C 1 pass through the distillation column, which according to the invention means: a column comprising any number of interconnected columns. Through the tower, it means a single envelope in which countercurrent contact between liquid and gas is achieved. Advantageously, column C 1 does not include more than two columns in contact with each other. Preferably, Q, the column ci consists of a single column. The column C 1 may be selected from the group consisting of a plate distillation column, an irregularly charged distillation column, a conditioned distillation column, and a column combining two or more of the aforementioned internal members. Column C 1 is advantageously provided with associated accessories such as, for example, at least one heating source and a cooling source. The heat source is preferably a reboiler. The cooling source can be cooled directly or indirectly. An example of indirect cooling is a partial condenser. An example of direct cooling is adiabatic flashing of a liquid produced by a partial condenser. Preferably, direct cooling is achieved by adiabatic flash evaporation of liquid -41 - 201125849 produced by a partial condenser. The gas subjected to partial condensation in the partial condenser may be derived from column C1 or a mixture derived from the product fed to column C1 after a possible thermal conditioning step' preferably derived from column c1. The stream from the column can be taken from the stripping section or from the rectifying section, preferably from the stripping section of column C1. It can be taken at any point in the stripping section, preferably in the upper third of the stripping section, more preferably in a position just below the location of the mixture of feed products. The mixture of products can be introduced into the column C1 as a single fraction or as several subfractions. It is preferably introduced as several subfractions. The above step s 1 is advantageously carried out at a pressure of at least 5, preferably at least 1 Torr and particularly preferably at least 1 2 bar absolute. Step S1 is advantageously carried out at a pressure of at most 40, preferably at most 3 8 and particularly preferably at a maximum of 3 6 bar absolute. The temperature at which step S1 is carried out is advantageously at least -40 ° C, preferably at least -35 ° C, and particularly preferably at least - 30 ° C at the bottom of the stripping section of column C 1 . At the bottom of the stripping section of column c1, it is advantageously at most 80 °C, preferably at most 60 °C, and particularly preferably at most 40 °C. The temperature at which step s 1 is carried out is advantageously at least -1 10 ° C, preferably at least -1 〇 5 ° C, and particularly preferably at least -10 CTC at the top of the rectifying section of column C 1 . At the top of the rectifying section of column c1, it is advantageously at most 〇, preferably at most -15 t, and particularly preferably at most -25 °C. After step b) as defined above, fraction F 1 is sent to an ethylene recovery unit where it is separated into an ethylene-rich, -42 * 201125849, fraction called £1, and is separated into A fraction known as a light fraction (step c)) rich in such compounds lighter than B. The separation in the ethylene recovery unit advantageously consists in separating the fraction of F1 into two different saturations as described above. The definition of the term "fractionation" is mentioned together with the above-mentioned example of fractionation of step b). According to a first embodiment of step C), it is advantageous to subject the saturated fraction F1 to an absorption step followed by a desorption step, wherein it is preferred to bring the saturated fraction F1 into contact with a detergent containing a solvent, It is thus separated into fraction E1 and separated into light fractions. The expression "detergent containing a solvent" or more simply "detergent" is understood to mean a composition in which the solvent is present in a liquid state. Therefore, the detergent which can be used according to the invention advantageously comprises a solvent in a liquid state. It is not excluded from the scope of the present invention that the detergent memory is completely excluded from other compounds. Preferably, however, the detergent comprises at least 50% by volume of solvent, more particularly at least Q 65% by volume, and most preferably at least 70% by volume. The first group of solvents which can be used are advantageously characterized by a melting temperature equal to or less than -1 to 10 ° C, preferably equal to or less than -1 to 10 ° C, more preferably equal to or less than -100 t. The second group of solvents that can be used are solvents characterized by a melting temperature that is higher than the melting temperature of the first group of solvents. In such a last case, however, a suitable step of thermal conditioning of the fraction F 1 is advantageously applied. Preferably, the thermal conditioning is as a thermal conditioning step as defined in step b). -43- 201125849 As the solvent according to the first group, one can cite, for example, saturated hydrocarbons, unsaturated hydrocarbons, and mineral oils. The saturated or unsaturated hydrocarbons can be used as pure hydrocarbons or as a mixture of a plurality of hydrocarbons. Examples of saturated or unsaturated hydrocarbons are propane/butylene (LPG) mixtures, benzene, heavy fractions produced by the process according to the invention, cyclopentanes and derivatives, cyclopentenes and derivatives, in particular Methylcyclopentene and ethylcyclopentene, cyclohexane and derivatives, especially methylcyclohexane and ethylcyclohexane, cyclohexene and derivatives, and C8-C9 isoparaffins. Preferred are methylcyclohexane, ethylcyclohexane, and c8-c9 isoparaffin. Particularly preferred are methylcyclohexane and ethylcyclohexane. As the solvent according to the second group, one can cite a solvent such as a chlorinated solvent (like DCE), an alcohol, a glycol, a polyol, an ether, a diol (or diol) and a mixture of one (or more) ethers. . The first group of solvents is superior to the second group of solvents. The detergent used in the absorption step may be composed of fresh detergent or all or a part of the detergent recovered during the desorption step described below (after a disposable treatment), and a fresh stripping agent may be optionally added. The ratio between the throughput of the detergent and the fraction F 1 is not critical' and can vary over a wide range. In practice, it is only limited by the cost of regenerating the detergent. In general, the throughput per ton of fraction F 1 'detergent is at least 〇 1 ton, preferably at least 0 · 2 ton and particularly preferably at least 0. 2 5 tons. In general, the throughput of the F 1 'detergent per ton of the fraction is up to 1 ton, preferably up to 5 ton, and particularly preferably -44 to 201125849 and more than 25 tons. The absorption step is advantageously carried out by means of an absorber such as a one-liter membrane or a falling film absorber, or an absorption column selected from the group consisting of a plate column, an irregular enthalpy column, a regular enthalpy column, and a combination. A column having one or more of the foregoing internal components, and a spray column. The absorption step is preferably carried out by means of an absorption column, and particularly preferably by means of a plate type absorption column. The absorption column may or may not be equipped with an associated heat exchanger. When the first set of solvents is used for 0, the absorption column is advantageously not associated with an associated heat exchanger. When a second set of solvents is used, the absorption column is advantageously provided with an associated heat exchanger. When the first group of solvents is used, the above absorption step is advantageously carried out at a pressure of at least 15 bar absolute, preferably at least 20 bar absolute, and particularly preferably at least 25 bar absolute. This absorption step is advantageously carried out at a pressure of at most 40 bar absolute, preferably at most 35 bar absolute, and particularly preferably at most 30 bar absolute. 0 When the first group of solvents is used, the temperature at which the absorption step is carried out is advantageously at least -1 1 〇 ° C, preferably at least -10 〇 5 t, and particularly preferably at least at the top of the absorber or absorption column. - l〇〇°C. At the top of the absorber or absorption column, it is advantageously at most -50 ° C, preferably at most -60 ° C, and particularly preferably at most - 6 5 ° C. Further, the temperature at which the absorption step is carried out is advantageously higher than the melting temperature of the solvent by 2 ° C, preferably 5 ° C. When the first group of solvents is used, the temperature at the bottom of the absorber or absorption column is at least -1 〇 ° C, preferably at least -1 〇 5 ° C, and particularly preferably at least -100 ° C. . It is advantageously at most - 50 ° C, preferably at most - 60 ° C, -45 - 201125849 and particularly preferably at most -6 5 °c. When a second group of solvents is used, the above-mentioned absorption step is advantageously carried out at a pressure of at least 15 bar absolute Torr, preferably at least 20 bar absolute 値 'and particularly preferably at least 2 5 bar absolute Torr. This absorption step is advantageously carried out at a pressure of at most 40 bar absolute, preferably at most 35 bar absolute, and particularly preferably at most 30 bar absolute. When the second set of solvents is used, the temperature at which the absorption step is carried out is advantageously at least _10 ° C, preferably at least 〇 ° C, and particularly preferably at least 10 ° at the top of the absorber or absorption column. At the top of the absorber or absorption column, it is advantageously at most 60 °c, preferably at most 50 °c, and particularly preferably at most 40 °c. When a second group of solvents is used, the temperature at the bottom of the absorber or absorption column is at least 0 ° C, preferably at least 10 ° C, and particularly preferably at least 2 CTC. It is advantageously at most 70 ° C, preferably at most 6 ° C, and particularly preferably at most 50 ° c. It is advantageous to subject the stream generated from the absorption step to a desorption step which is a purification ratio Ethylene light compound and detergent-rich fraction F1. Preferably, the detergent recovered after the desorption step is returned, in whole or in part, to the absorption step after the optional treatment described above, wherein fresh detergent is optionally added. The desorption step is advantageously carried out by means of a desorber, such as, for example, a one-liter membrane or a falling film desorber' a reboiler or a desorption column selected from the group consisting of a plate column, an irregular enthalpy column, and a regular charge. A column, a column and a spray column incorporating one or more of the foregoing internal components. Preferably, the desorption step is -46-201125849 by means of a desorption column and particularly preferably by means of a plate desorption column. The desorption column is advantageously provided with an associated fitting such as, for example, at least one condenser or a cooler inside or outside the column and at least one reboiler. It is advantageous to select the desorption pressure so that the content of ethylene in the regenerated solvent is less than or equal to 4% by weight, preferably less than or equal to 3. 2 %. When the first group of solvents is used, the above desorption step is advantageously carried out at a pressure of at least 1 bar absolute Torr, preferably at least 2 bar absolute 値 'and particularly preferably at least 3 bar absolute Torr. The desorption step is advantageously carried out at a pressure of at most 25 bar absolute, preferably at most 20 bar absolute and particularly preferably at most 18 bar absolute. When the first group of solvents is used, the temperature at which the desorption step is carried out is advantageously at least -1 〇 ° C, preferably at least 〇 ° CQ, and particularly preferably at least 1 ° ° at the top of the desorber or desorption column. c. It is advantageously at most 6 CTC, preferably at most 50 ° c, and particularly preferably at most 45 ° C at the top of the desorber or desorption column. When the first group of solvents is used, the temperature at the bottom of the desorber or desorption column is at least 2 Torr, preferably at least 25. (:, and particularly preferably at least 30T: it is advantageously at most 20 CTC, preferably at most 160 ° C, and particularly preferably at most 150 ° C. When a second group of solvents is used, the above desorption The step is advantageously carried out at a pressure of at least 1 bar absolute, preferably at least 2 bar absolute, and particularly preferably from -47 to 201125849 and less than 3 bar absolute. The desorption step is advantageously at most 20 Bar absolute, preferably at most 15 bar absolute and particularly preferably at a pressure of up to 10 bar absolute. When a second group of solvents is used, the temperature at which the desorption step is carried out is at the desorbent or desorption column The top portion is advantageously at least -1 〇 ° c, preferably at least 〇 ° c, and particularly preferably at least 1 〇 ° C. It is advantageously at most 60 ° C at the top of the desorber or desorption column, preferably Up to 50 ° C and particularly preferably up to 4 5 〇 C. When a second group of solvents is used, the temperature at the bottom of the desorber or desorption column is at least 60 ° C, preferably at least 80 ° C, And particularly preferably at least 100 ° C. It is advantageously at most 200 ° C, preferably Up to 160 ° C, and particularly preferably up to 150 ° C. It is advantageous to at least partially reuse the regenerated solvent during absorption after a thermal conditioning step, preferably including a cross heat Cooling in the exchanger with solvent leaving the absorption column. One of the most particularly preferred embodiments is that the absorption step is carried out in an absorption column and the desorption step is carried out in a desorption column. In this case, it may be useful to use a detergent consisting of DCE when the method according to the invention is directed to the manufacture of DCE. In this case, the detergent used in the absorption step may be crude by leaving the chlorination unit. DCE, crude DCE leaving the oxychlorination unit, or a mixture of the two, not purified. It may also be from the DCE that has been previously purified, or during the desorption step (at a random At -48- 201125849 afterwards) all or part of the recovered detergent, optionally adding fresh detergent to it. The desorption can also be The DCE is collected by direct injection of steam. A substantial advantage of this situation when DCE is a detergent is the fact that the presence of the DCE is not a problem since it is mainly in the oxychlorination or chlorination process. Formed compound According to a second embodiment of step c), it is advantageous to subject the fraction F 1 Q to an adsorption step followed by a desorption step to separate into fraction E 1 and separate into a light fraction. The adsorption step advantageously comprises passing the fraction F 1 through an adsorbent bed containing an adsorbent. The adsorbent bed can be a fluidized bed or a fixed bed. Any adsorbent known in the art can be used. Examples of such adsorbents are those based on silver compounds or copper based compounds. Those silver or copper compounds are usually supported on a carrier having a sufficiently large surface area. Examples of the carrier are activated carbon, charcoal, activated alumina, and yttrium zeolite. The adsorbents are typically solid bodies in the form of pellets or beads. The adsorption step is advantageously at a pressure of at least 15, preferably at least 20, and particularly preferably at least 2 5 bar absolute. get on. The adsorption step is advantageously carried out at a pressure of at most 40 bar absolute, preferably at most 35 bar absolute, and particularly preferably at most 30 bar absolute. The temperature at which the adsorption step is carried out is advantageously at least -10 ° C, preferably at least 〇 ° C, more preferably at least 1 ° C, and most preferably at least 20 ° C. It is advantageously at most 70 ° C, preferably at most 60 ° C, more preferably at most -49 - 201125849 50 ° C, and most preferably at most 40 ° 〇. The desorption step can be easily carried out by lowering the suction pressure for generating a regenerated adsorbent, by increasing its temperature, or by pressing it to increase its temperature. The desorption step is advantageously carried out at a pressure of at least 1, preferably at least 2, preferably at least 3 bar absolute Torr. The desorption is at most 20 bar absolute, preferably at most 15 bar absolute. Particularly preferred is carried out under a pressure of up to 10 bar absolute. The temperature at which the desorption step is carried out is advantageously at least -10 ° C, at least 10 °. (:, more preferably at least 20 ° C, and most preferably it is advantageously at most 200 ° C, preferably at most 16 ° C ° 'more 100 ° C, and the best is the most 60 ° C. When a fluidized bed is used, the adsorbent is advantageously continuously circulated from the desorption bed. When using a fixed bed, it is advantageous to pass several beds, more preferably At least one loop of at least one bed in the desorption stage is in operation at the adsorption stage. The first embodiment of step c) is superior to the second embodiment. Light fractions are rich in compounds that are lighter than ethylene. Those compounds which combine hydrogen, oxygen, nitrogen, helium, argon, carbon monoxide and, advantageously, the light fraction contains at least 75 %, preferably 80%, and more preferably at least 85% of methane, the methane In the fraction F1 of step c). Advantageously, the light fraction contains at least 90%, preferably the pressure of the applicator bed is reduced, and the particular step is advantageous, and preferably 60. . . Preferably, the most preferred of the adsorbent beds is the bed, and the material is generally decane. It is at least -50-201125849 95%, and more preferably at least 97% nitrogen, oxygen, hydrogen, carbon monoxide, argon, and helium, which are contained in the fraction subjected to step c) In F 1 . Advantageously, the light fraction contains less than 2% by volume, preferably less than 1.25 % by volume and more preferably less than 1% by weight of ethylene. After having been recovered, the light fraction can be burned or chemically enhanced as a fuel, preferably chemically enhanced. 0 The light fraction can be subjected to a chemical reaction like a partial oxidation or steam reforming to advantageously convert its hydrocarbon components to hydrogen prior to being chemically enhanced. When the light fraction is particularly rich in hydrogen, it can be used in any hydrogenation reaction such as, for example, in the production of hydrogen peroxide, by auto-oxidation for the hydrogenation of a working solution or for the direct synthesis of hydrogen peroxide. . Alternatively, the light fraction may be enriched in a synthesis gas after conversion by steam reforming or partial oxidation followed by conversion of the hydrocarbon component by water gas shift to produce a derivative such as methanol in a Fischer-Tropsch unit. Q Alternatively, synthetic natural gas can be produced. The energy of the light fraction can also be recovered by turboexpansion. Advantageously, fraction E1 contains at least 50%, preferably at least 60%, and more preferably at least 6 6 % acetylene, which is contained in fraction F 1 which has been subjected to step c). After step c) as defined above, fraction E1 is reused in step a) or sent to produce at least one ethylene-derived compound (step d)) ° In the following case, fraction E 1 is reused In step a), -51 - 201125849 fraction E 1 can be reused anywhere in step a). Fraction E丨 can be reused at the inlet of step a) and/or in one or more of steps a1) to a8). It is advantageous to reuse the saturated E 1 to the inlet of step a), step a 1 ) and/or step a4 ). Preferably, the fraction E 1 is reused to the inlet of step a 1 ) and/or step a4). It can be reused by or without the adaptation of the pressure of the fraction E1. When pressure adaptation is required, it is advantageous to subject the fraction El to a compression which may be combined with an upstream or downstream cooling which either in an ethylene recovery unit itself or has left the unit Thereafter, before being circulated to one or more of the steps in step a) and/or steps a) to a8). Compression can be carried out by any known method such as a mechanical compressor, a gas ejector, or a liquid ejector. Compression is preferably carried out by means of a mechanical compressor. When the fraction E 1 is reused without adapting its pressure, it is advantageous to recycle the fraction E1 into the inlet of step a) and/or one or more of steps a) to a8), Where the pressure is appropriate, in other words, where the pressure is less than the pressure of fraction E1. Fraction E 1 can be reused sub- or sub-portions. Advantageously, fraction E1 is recycled into a section. More preferably, the fraction E1 is reused to step ai or to step a4). When fraction E 1 is reused in step a 1 ), it is advantageously reused without the need to adapt its pressure. Then when only one compressor is used, it is better to use -52-201125849 to reuse fraction E1 to one stage in a multi-stage gas compressor, or to compress one to a row of compressors when several compressors are used. In the machine, the compressors are at a maximum pressure that is less than the pressure of fraction E1. When the fraction E1 is reused in the step a4), it is advantageous to recycle the fraction E 1 after its pressure has been adapted (preferably by subjecting it to a compression). Most preferably, it is reused in step a 1 ) as described above for the pressure adaptation of fraction E1. Alternatively, Fraction A is sent to produce at least one ethylene derived compound. Fraction E1 can be fed to the manufacturing as it is, or can be mixed with fraction E2 or fractions E2a and E2b obtained in step e) before being fed to such a production. When the fraction E1 is sent for the production of at least one ethylene-derived compound, it is preferably fed to ethylene for the chlorination of 1,2-dichloroethane. The energy of this fraction E 1 can be recovered by turboexpansion.一个 A portion of fraction E1 can be reused in step a) and another portion can be sent for the manufacture of at least one ethylene-derived compound. Preferably, fraction E 1 is reused in step a). Preferably, the LVRG containing fraction E1 reused from step d) is subjected to a series of processing steps as defined in step a). According to step e), fraction F 2 is subjected to a second separation step S 2 which comprises separating fraction F2 into an ethylene-rich fraction called fraction E2 or separating it into ethylene-rich, known as The two fractions of fractions E2a and E2b are separated into a fraction referred to as heavy fractions rich in ethane and hydrocarbons containing at least 3 carbon atoms - 53 - 201125849. Fraction F2 can be subjected to a thermal conditioning step prior to its separation. The term "thermal conditioning step" is understood to mean continuous heat exchange to adjust the temperature of fraction F2 to the requirements of separation and/or to optimize the use of energy 'preferably to adjust the temperature of fraction F2 to separation. Required and optimized for energy use. Optionally, the fraction F2 is adiabatically flashed at a pressure in the vapor feed position in S2, and the concentrate produced in the adiabatic flash process is physically separated from the gas stream and sent to s 2 appropriately The location. Advantageously, the second separation step S2 consists in fractionating the fraction F2 into the different fractions mentioned above. The term "fractionation" is understood to mean that the multi-step process can be considered to have a single function for any part of the potential multi-step process for the purposes of the present invention. This fractionation step can be carried out in one or several interconnected devices. Examples of fractionation are distillation, extractive distillation, liquid-liquid extraction, pervaporation, gas permeation, adsorption, pressure swing adsorption (PSA), temperature swing adsorption (TSA), absorption, chromatography, reverse osmosis, and molecular filtration. Preferably, the food is saturated. It is therefore preferred that step S2 consists in advantageously fractionating the fraction F2 in at least one distillation column, preferably one or two distillation columns, into the different sites mentioned above. By means of a distillation column, according to the invention it is meant to comprise a column of any number of interconnected columns. With the tower, it means a single package -54-201125849 set, which achieves countercurrent contact of liquids and gases. Preferably, each distillation column does not include more than two interconnected columns. More preferably, there is a separate column for each distillation column. Each of the distillation columns may be selected from a plate distillation column, an irregularly charged distillation column, a packed distillation column, and a distillation column in which two or more of the foregoing internal members are combined. According to a first embodiment of step e), it is advantageous to subject the fraction F2 to a second separation step S2 via 0, which consists in separating the fraction F2 into fraction E2 and separating into a heavy fraction. According to a first variant of the first embodiment of step e), the second separation step S 2 preferably consists in separating the fraction F2 in a distillation column (referred to as column C 2 ) into two different fractions That is, a fraction E2 which advantageously exits from the rectifying section of column C2 and a heavy fraction which advantageously exits from the stripping section of column C2. Column C2 is advantageously provided with associated accessories such as, for example, at least one heat source and a cooling source. The heat source is preferably a reboiler. The source of the cold can be either direct or indirect cooling. An example of indirect cooling is a partial condenser. An example of direct cooling is adiabatic flashing of a liquid produced by a partial condenser. Preferred is direct cooling by adiabatic flashing of the liquid produced by a partial condenser. Optimization of energy requirements can be performed by any technique known in the art, such as cross-heat exchange with a suitable fluid, thermal integration with a column of vapor recompression, recompression cycle combined with cooling and adiabatic flash. . Fraction F2 can be introduced into column C2 as a single fraction or as several subdivided fractions. It is preferred to introduce it as a separate fraction -55- 201125849. According to a first embodiment of step e), step S2 is advantageously at least 5, preferably at least 10, and particularly preferably at least 12 bar absolute. Under the pressure of sputum. Step S2 is advantageously carried out at a pressure of at most 4 Torr, preferably at most 38, and particularly preferably at most 3 6 bar absolute. The temperature at which step S2 is carried out according to the first embodiment of step e) is advantageously at least -50 ° C, preferably at least _ 4 CTC, and particularly preferably at least _3 〇 ° at the bottom of the stripping section of column C2. C. At the bottom of the stabilizing section of column C2, it is advantageously at most 8 〇 ° C, preferably at most 75 ° C. The temperature at which step S2 is carried out according to the first embodiment of step e) is advantageously at least -8 ° C, preferably at least _ 70 ° C, and particularly preferably at the top of the column C 2 rectifying section. At least _65 ° C. At the top of the rectifying section of column C2, it is advantageously at most 5 ° C, preferably at most 〇 ° C, and particularly preferably at most - 3 ° C. According to a second variant of the first embodiment of step e), the second separation step S2 is advantageously in that the separation of the fraction F2 is two different separations (referred to as a first separation step of step S2' and is referred to as a second separation step of step S2" to obtain fraction E2 and a heavy fraction. According to this second variant of the first embodiment of step e), fraction F2 is subjected to the following step - a first separation step S2, It consists in separating the fraction F2 into a first fraction which is rich in ethylene and is called fraction E2', and is separated into a part of ethylene containing a compound containing at least 3 carbon atoms. a fraction referred to as fraction F2; and -56-201125849 - a second separation step s 2" which separates fraction F2 into a second fraction of ethylene-rich, referred to as fraction E2", and Separation into heavy aliquots. It is then advantageous to mix fraction E2, and fraction E2". After the acquisition, after circulation in the equipment already used for energy recovery and/or after having been integrated into a cooling cycle used in steps b) to e), they can be mixed immediately. Preferably, they are mixed after being circulated in equipment 0 that has been used for energy recovery and/or after being integrated into a cooling cycle used in steps b) to e). More preferably, they are mixed after they have been circulated in the equipment for energy recovery and after they have been integrated into a cooling cycle used in steps b) to e). Step S2' is preferably in that fraction F2 is fractionated into two different fractions in a first distillation column (referred to as column C2'), i.e. fraction E2 which advantageously exits from the rectifying section of column C2' ', and separated into fraction F2' which advantageously exits from the stripping section of column C2'. Q step S2" is preferably in that the fraction F2' is fractionated into two different fractions in a second distillation column (referred to as column C2), i.e. advantageously from the rectification section of column C2, The exiting fraction E 2 "" and separated into a heavy fraction which advantageously exits from the rectifying section of column C 2". Column C 2 is advantageously provided with associated accessories such as, for example, at least one heat source and a cooling source. The heat source is preferably a reboiler. The cooling source can be cooled directly or indirectly. An example of indirect cooling is a portion of the condenser. An example of direct cooling is adiabatic flashing of liquid produced by a portion of the condenser. Preferably, direct cooling is achieved by adiabatic flash evaporation of the liquid produced by a partial condenser -57-201125849. The optimization of the energy requirements can be carried out by any technique known in the art, such as cross-heat exchange with a suitable fluid; the cooling cycle heat used in steps b), c) and e) is integrated into one (preferably Is the cooling cycle used in steps b), c) and e); the thermal integration of column C2' with vapor recompression or with cooling and adiabatic flashing and recompression cycle: by pair of columns C2' and C2 "A suitable option for the pressure of the column is to thermally integrate them in such a way that the cooler of one of the columns is the other reboiler, preferably the column C2" is more than the column C2' Operating at high pressure such that the condenser of column C 2 " can be a reboiler for column C 2 '. More preferably, the optimization of energy requirements can be achieved by steps b), c) The cooling cycle heat integration used in e) is integrated (preferably in the cooling cycle used in steps b), c) and e). Fraction F2 can be used as a single fraction or as several subdivision fractions in the step The column C2 is introduced during the process of S2'. Preferably, It is introduced as a separate fraction. According to a second variant of the first embodiment of step e), step S2' is advantageously at least 5, preferably at least 1 〇, and particularly preferably at least 1 2 bar The step S 2 'is advantageously carried out at a pressure of at most 40, preferably at most 3, and particularly preferably at most 3 6 bar absolute. According to the first step e) In a second variant of the embodiment, the temperature at which step S2' is carried out is advantageously at least _5 〇t:, preferably at least -4 5 ° C, and particularly preferably at least at the bottom of the column C2' stripping section _ 4 3. (: at the bottom of the column C 2, the -58- 201125849 fraction, which is advantageously at most 3 ° C, preferably at most 20 ° C, and particularly preferably at most l〇 °C. According to a second variant of the first embodiment of step e), the temperature at step S2' is advantageously at least -70 ° C, preferably at least -6 5 at the top of the column C2 'rectification section °C, and particularly preferably at least -6 3 ° C. At the top of the rectifying section of column C 2 ', it is advantageously at most 〇, preferably at most - 1 5 ° C, and particularly preferably at most -25 ° C. 0 The fraction F2' can be subjected to a thermal conditioning step (as defined for step S1), and by introducing it before the column C2" Pressure adjustment step (by pumping the liquid produced at the bottom of the column C2' stripping section to column C2)) Column C2" is advantageously equipped with associated fittings 'for example, like with column C2 above At least one heating source and a cooling source of the same characteristics as defined. Fraction F2' can be introduced into column C2" as a single fraction or as several subdivided fractions in the course of step S2". It is preferred to introduce it as a separate fraction. The second variant 'step s2' according to the first embodiment of step e) is advantageously carried out at a pressure of at least 5, preferably at least 1 Torr, and particularly preferably at least 1 2 bar absolute Torr. Step S2 "Advantageously carried out at a pressure of at most 40, preferably at most 38, and particularly preferably at most 36 bar absolute. According to the first sub-variant of the second variant of the first embodiment of step e), after fractions E2, and E2 are obtained, they are immediately mixed. In this sub-59-201125849 variant, it is advantageous that step S2" is carried out at a pressure equal to or different from the pressure at which S2' is performed. Preferably, step S2" is different from the pressure at which S2 is performed. Under a pressure. Advantageously, step s 2 ′ is performed at a pressure slightly less than the pressure at which step S2 ′ is performed. According to the second sub-variant of the second variant of the first embodiment of step e), in the equipment for energy recovery After the middle cycle and/or after being integrated into the cooling cycles used in steps b) to e), 'fractions E2, and E2' are mixed. In this sub-variant, it is advantageous that step S2" is carried out at a pressure equal to or different from the pressure at which S2' is carried out. Preferably, 'step S2' is at a pressure different from the pressure at which S2' is performed. get on. Advantageously, step S2" is carried out at a pressure higher than the pressure at which step S2' is carried out. Step S2" is carried out under a pressure which is preferably at least 2 bar higher than the pressure at which step S2' is carried out. The best is at least 4 bar, and the best is at least 5 bar. The step S2" is carried out under a pressure which is preferably at most 33 bar, more preferably at most 30 bar, most preferably at most 20 bar, than the pressure at which step S2' is carried out. According to step e) In a second variant of the first embodiment, the temperature at which step S2" is carried out is advantageously at least -50 ° C, preferably at least -4 ° C, at the bottom of the column C2" stripping section, and particularly preferably At least -30 ° C. At the bottom of the stripping section of column C2", it is advantageously at most 8 ° C, preferably at most 75 ° C, and particularly preferably at most 72 ° C. According to a second variant of the first embodiment of step e), the temperature at which step S2" is carried out is advantageously at least -70 ° C, preferably at least -65 ° C at the top of the column C2" rectifying section, and Particularly preferred is at least -63 ° C. At the top of the -60-201125849 rectifying section of column C2", it is advantageously at most 〇, preferably at most _15 ° c, and particularly preferably at most -2 5 ° C. According to step e) The second embodiment 'is advantageous to subject the fraction F2 to a second separation step S2' which comprises separating the fraction F2 into fractions E2a and E2b and separating into heavy fractions. This second according to step e) Embodiment 2 The second separation step S2 is advantageously in that the separation of the fraction F2 is divided into two different separations, referred to as steps S2'', a first separation step and a step referred to as step S2"" a second separation step to obtain fractions E2a and E2b and a heavy fraction. According to this second embodiment of step e), fraction F2 is subjected to the following steps: - a first separation step S2"", which consists in separating fraction F2 Is a fraction E2a, and is separated into a fraction containing a portion of ethylene, which is rich in ethane and containing at least 3 carbon atoms, called fraction F2', and a second separation step S2"", which is to separate the full F2''' Fraction E2b and heavy fraction. Step S2"' preferably consists in fractionating fraction F2 into two different fractions in a first distillation column (referred to as column C2'''), ie advantageously from The column C 2 ''' rectifying section leaves the fraction E 2 a and is separated into a fraction F2'' which is advantageously separated from the column C2'''s stripping section. Step S2"" preferably consists of fraction F2 '''In a second steam-saturated column (referred to as column C2"), the fraction is divided into two different fractions, namely the pavilion e 2 b ' that advantageously exits from the fine segment of the column C 2 ” And separated into a heavy fraction which advantageously exits from the rectifying section of the column 20112849 C2"". Column C2, '' is advantageously provided with associated fittings, such as, for example, at least one heat source and a cooling source. Preferred is a reboiler. The source of cooling may be direct or indirect cooling. An example of indirect cooling is a partial condenser. An example of direct cooling is adiabatic flashing of a liquid produced by a partial condenser. Is adiabatic flashing of liquid by a partial condenser Direct cooling produced. Optimization of energy requirements can be performed by any technique known in the art, such as cross-heat exchange with a suitable fluid; the column is combined with vapor recompression or with cooling and adiabatic flash to recompress cycle Thermal integration; material integration for one of the C2'' or C2" (preferably column C 2 ''') columns in the cooling cycle of steps b), c) and e); Thermal integration with one of the other column material integrations; thermal integration of them by a suitable choice of C2'' and C2" column pressures in a manner that is one of the columns of the cooler system In another reboiler, it is preferred to operate the column C 2, ', ' at a higher pressure than the column C 2 ' ', such that the condenser of the column C 2 "," can be the column C2' ''The reboiler. More preferably, the optimization of the energy requirements is made by thermal integration of the column C2'' and the column C2"" as explained above. Fraction F2 can be introduced into the column C2,' as a separate fraction or as several subfractions in the course of step S2''. It is preferred to introduce it as a separate fraction. According to a second embodiment of step e), step S2, advantageously, is carried out at a pressure of at least 5, preferably at least 10, and particularly preferably at least 巴2 bar absolute Torr. The step S2''' is advantageously carried out at a pressure of at most 4 Torr, preferably at most -62 - 201125849 and more than 38, and particularly preferably at most 3 6 bar absolute. According to a second embodiment of step e), the temperature at which step S2" is carried out is advantageously at least -50 ° C, preferably at least -4 (TC, and particularly at the bottom of the column C2"' stripping section Preferably, it is at least -30 C. It is advantageously at most 80 ° C, preferably at most 60 ° C, and particularly preferably at most 55 ° C at the bottom of the stripping section of column C2". According to a second embodiment of step e), the temperature of step S2" is carried out) advantageously at least -70 ° C, preferably at least -60 ° C at the top of the column C2" 'refinery section, And particularly preferred is at least - 55 ° C. At the top of the rectifying section of column C2''', it is advantageously at most 〇, preferably at most -5 5 t, and particularly preferably at most -25 °C. The fraction F2"' can be subjected to a thermal conditioning step (as defined for step S1) and a pressure adjustment step (by the bottom of the stripping section at column C2''' before it is introduced into column C2"" The resulting liquid is pumped to column C 2, ',, medium). The column C2"" is advantageously provided with associated fittings, such as at least one heating source and a cooling source having the same features as defined above for the column C2''. The fraction F2'' can be introduced as a single fraction or as several subdivided fractions in the column C2"" during the process of step S2"". Preferably, it is introduced as a separate fraction. According to a second embodiment of step e), step S2"" is advantageously carried out at a pressure of at least 5, preferably at least 10' and particularly preferably at least 1 2 bar absolute. Step S2"" is advantageously carried out at a pressure of at most 4 Torr, preferably at most -63 - 201125849 38, and particularly preferably at most 36 bar absolute. According to a second embodiment of step e), it is advantageous if step S 2 ′′ is carried out at a pressure equal to or different from the pressure at which S 2 , ' is performed. Preferably, the step S 2 ′′ is performed at a pressure different from the pressure at which S 2 , , is performed. It is advantageous to carry out step S2,,, at a pressure greater than the pressure at which step S2''' is performed. The step S2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Step S 2,,,, under a pressure, the pressure is preferably higher than the pressure of step S2, up to 3 3 bar, more preferably up to 30 bar, and most preferably up to 20 bar. . According to a second embodiment of step e), the temperature at which step S2"" is carried out at column C2, the bottom of the stripping section is advantageously at least -5 ° C, preferably at least -40 ° C, and Particularly good is at least -3〇t:. At the bottom of the lift-off section of column C2,,,, it is advantageously at most 8 〇 ° C, preferably at most 60 ° C, and particularly preferably at most 5 5 ° C. The temperature of step S2, according to the second embodiment of step e), is advantageously at least _8 顶部 at the top of the column C2, the rectifying section. (:, preferably at least -7 (TC) And particularly preferably at least _65 ° C. At column C2", at the top of the rectifying section, it is advantageously at most 〇, preferably at most -1 5 ° C, and particularly preferably at most -25 t According to the two embodiments of step e) as defined above, the heavy fraction may be extracted in a single fraction or in several fractions, preferably two fractions, more preferably one in ethane-rich form. Preferably, in the gaseous state, it is extracted at the lower third of the stripping section of the column, and one in the liquid state of the poor broth-64-201125849 is preferably at the bottom of the stripping section of the column. The second variant of the first embodiment is superior to the second embodiment and is superior to the first variant of the first embodiment. The second sub-variant of the second variant of the first embodiment is superior to the first A first sub-variant of a second variant of the embodiment. The second embodiment is superior to the first variant of the first embodiment. The same amount is used to characterize the outlet of the fraction E2 which is the outlet of the separation step S2. It is advantageous that the fraction E2 is characterized in that the volume fraction of the combustible gas other than ethylene is advantageously less than 20%, preferably less than丨 5%, and more preferably less than 12%. Advantageously, fraction E2 is characterized by a hydrogen content of less than or equal to 2% by volume, preferably less than or equal to the total volume of fraction E2. 0 · 5 % and less than or equal to 〇 in a particularly good way.  1 %. Advantageously, fraction E2 is characterized by a content of inert gas of less than or equal to 2% by volume, preferably less than or equal to 0, relative to the total volume of fraction E2. 5%, and in a particularly good way less than or equal to 0. 1%. Advantageously, fraction E2 is characterized by a volume fraction of oxygenated compound of less than 2%, preferably less than 1%, and more preferably less than 〇 · 8 %. Advantageously, fraction E2 is characterized by a volume fraction of oxygen of less than 1.8%, preferably less than 1%, and more preferably less than 0. 8 %. Advantageously, fraction E2 is characterized by a nitrogen oxide content of less than 0. 00025%, preferably less than 0. 0002%, and more preferably less than 0. 000 1 5% ° -65- 201125849 It is advantageous that the fraction E 2 is characterized in that the volume content of the corrosive compound is less than 0. 2%, preferably less than 0. 1%, and more preferably less than 0. 0 8 % 〇 Advantageously, the fraction E 2 is characterized by a volume content of hydrogen sulfide of less than 0. 0 0 5 %, preferably less than 0. 0 0 1 %, and more preferably less than 0. It is advantageous that the fraction E2 is characterized in that the volume content of the reactive compound is less than 2%, preferably less than 1%, and more preferably less than 〇. 8%. Advantageously, the fraction E2 is characterized in that the volume of the reactive compound other than carbon monoxide is less than 0. 02%, preferably less than 0_0 1%, and more preferably less than 0. 0 0 5 %. Advantageously, the fraction E 2 is characterized in that the volume content of acetylene is less than 0.2%, preferably less than 0.1%, more preferably less than 0.5%, and most preferably less than 0. 02%. The fraction E2 is characterized in that the content of the compound having at least 3 carbon atoms with respect to the total volume ' of the fraction E2 is advantageously less than or equal to 0 by volume. 1%, preferably less than or equal to 0. 005%, and in a particularly preferred manner less than or equal to 〇·〇〇1% °. Advantageously, the fraction Ε2 is characterized by a volumetric content of the catalyst poisoning compound being lower than 〇.  〇 〇 1%, preferably less than 0. 0 0 0 5 %, and more preferably less than 0 · 0 〇 〇 2 %. Advantageously, the fraction Ε2 contains from 60% to 99% by volume relative to the total volume of the fraction Ε2. 5% ethylene. Advantageously, the fraction Ε2 contains at least 60% by volume, preferably at least 70% by volume, relative to the total volume of the fraction, at least 8% by weight in a particularly preferred manner of -66-201125849 and is more particularly preferred. At least 85% of the ethylene in the mode. Advantageously, the total volume of the fraction Ε2 relative to the fraction Ε2 is up to 99.5%, preferably up to 9 8. 5 %, in a particularly good way up to 97. 5% and up to 96% ethylene in a more particularly preferred manner. The fraction Ε2 is therefore characterized in that it is advantageously at least 4%, preferably at least 2., relative to the total volume of the fraction Ε2. 5 %, more preferably at least 1 .  5 %, and the best is at least 0. 5% of a compound other than ethylene. 0 The following definitions are used to characterize the outlets of the equal separation steps S2 of fractions E2a and E2b. Advantageously, the fraction E2a is characterized by a volume fraction of combustible gas other than ethylene advantageously of less than 20%, preferably less than 15%, and more preferably less than 12%. Advantageously, the fraction E 2 a is characterized in that the hydrogen content is less than or equal to 2% by volume, preferably less than or equal to 0 to 5%, relative to the total volume of the fraction E 2 , and is particularly preferred. Less than or equal to 0 in the mode. 1 %.有利 Advantageously, the fraction E2a is characterized in that the content of the inert gas is less than or equal to 2% by volume, preferably less than or equal to 0, relative to the total product of fraction E2. 5%, and in a particularly preferred manner less than or equal to 〇·1% 〇 Advantageously, the fraction E2a is characterized by a volume content of the oxygenated compound of less than 2%, preferably less than 1%, and more Preferably, it is less than 0 · 8 % °. Advantageously, the fraction E2 a is characterized by a volume content of oxygen of less than 1.8%, preferably less than 1%, and more preferably less than 0 _ 8 %. . Advantageously, the fraction E2 a is characterized by a volume content of nitrogen oxides below -67-201125849 0. 00025%, preferably less than 0. 0002%, and better 0. 000 1 5% 〇 Advantageously, the fraction E2a is characterized by a corrosive compound content of less than 0. 02%, preferably less than 〇·〇1%, and more preferably 0. 008% ° It is advantageous that the fraction Ε 2 a is characterized by a volume of hydrogen sulfide of 0. 0005%, preferably less than 0. 0001%, and better 0. 0000 5% ° It is advantageous that the fraction E 2 a is characterized in that the amount of the reactive compound is less than 0. 2%, preferably less than 〇·1%, and more preferably 0. 08%. Advantageously, the fraction E 2 a is characterized in that the volume content of the organic compound other than carbon monoxide is less than 0.00002%, preferably less than 〇.  And more preferably less than 0. 0005%. Advantageously, the fraction E 2 a is characterized in that the volume of acetylene contains 0. 2%, preferably less than 0. 1%, more preferably less than 〇·05%, and preferably less than 〇·〇2%. The fraction E 2 a is characterized in that the content of the compound having at least 3 carbon atoms with respect to the total volume of the fraction E 2 is advantageously equal to 0 by volume. 0 0 1 %, preferably less than or equal to 0. 0 0 0 5 % and less than or equal to 0 in the better way. 0 0 0 1 % ° It is advantageous that the fraction E 2 a is characterized in that the catalyst poisoning content is lower than ο · ο ο ο 1 % ' preferably less than 〇· 〇〇〇〇 5%, and Below 〇.  〇 〇 〇 〇 2 %. Is less than the volume containing less than the amount below the volume containing less than the reaction 001%, the amount is lower than and most, containing less than or a specific substance and more preferably -68- 201125849 favorably the fraction E2 a It is characterized by a content of ethylene similar to the fraction of fraction E2. Advantageously, the fraction E2b is characterized in that the volume fraction of combustible gases other than ethylene is advantageously less than 20%, preferably less than 15%, and more preferably less than 12%. Advantageously, the fraction E2b is characterized in that the hydrogen content is less than or equal to 0 by volume relative to the total product of fraction E2. 2%, preferably 0 is equal to or equal to 0. 05%, and less than or equal to 0 in a particularly good manner. 01%. Advantageously, the fraction E2b is characterized in that the content of the inert gas is less than or equal to 0 by volume with respect to the total product of the fraction E2. 2% ' is preferably less than or equal to 〇. 〇 5% 'and less than or equal to 0 · 0 1 % ° in a particularly preferred manner. Advantageously, the fraction E2b is characterized by a volumetric content of the oxygenated compound of less than zero. 2%, preferably less than 0. 1%, and more preferably less than 〇 0. 08%. Advantageously, the fraction E2b is characterized by a volume fraction of oxygen of less than 〇18%, preferably less than 0. 1%, and more preferably less than 0. 0 8 %. Advantageously, the fraction E2b is characterized by a nitrogen oxide content of less than 0. 0 0 0 0 2 5 %, preferably lower than 〇.  〇 0 0 0 2 %, and more preferably lower than 0. 0 0 0 0 1 5 %. Advantageously, the fraction E2b is characterized in that the volume content of the corrosive compound is less than zero. 2%, preferably less than 0. 1%, and more preferably less than 0.08%. -69- 201125849 It is advantageous that the fraction E2b is characterized in that the volume of hydrogen sulfide contains 0. 0 0 5 %, preferably less than 0 · 0 0 1 %, and more preferably 3 0. 0005%. Advantageously, the fraction E2b is characterized in that the amount of reactive compound is less than 2%, preferably less than 1% 'and more preferably less than 0. Advantageously, the fraction E2b is characterized by the volume content of the organic compound other than carbon monoxide. Below 0. 02%, preferably below 〇. 且 and more preferably less than 0 · 0 0 5 %. Advantageously, the fraction E2b is characterized in that the volume of acetylene contains 0. 2%, preferably less than 0. 1%, more preferably less than 0. 0 5 %, preferably less than 0 · 0 2 %. The food residue E 2b is characterized in that the content of the compound having at least 3 carbon atoms with respect to the total volume of the fraction E2 is advantageously equal to ο _ ο 1 % by volume, preferably less than or equal to 0 · 0 〇 5 %, and less than or equal to 0 · 0 01 % in a better way. Advantageously, the fraction E2b is characterized by a catalyst poisoning content of less than 〇.  〇 〇 1 %, preferably less than 〇 · 〇 〇 〇 5 %, and is less than 0. 0002%. Advantageously, fraction E2b is characterized by a similar content to the fraction E2 of fraction E2. The heavy fraction is rich in ethane and contains at least 3 carbon atoms including at least 3 carbon atoms from the ethylene-containing and other steps! A mixture of products of the derivatized components is produced. Among the compounds containing at least 3, it can be mentioned that propane, propylene and butane are contained in an amount of less than 8% by volume. The reaction is 1%, the amount is lower than and most, and contains less than one or more of a particular amount of a preferred amount of hydrocarbon. Clean a) carbon atoms and their unsaturated derivatives of -70-201125849 along with all the more saturated or unsaturated compounds. The heavy fraction advantageously contains at least 5%, preferably at least 98%, and particularly preferably at least 9%, of a compound comprising at least 3 carbon atoms, the compound being derived from step a) The mixture of products. The heavy fraction relative to the total weight of the heavy fraction advantageously comprises up to 1% by weight, preferably up to 0. 8 %, and particularly good is up to 0. 5% ethylene. The heavy fraction is advantageously rich in components which are heavier than ethylene. Preferably, the heavy fraction is burned off as a fuel or chemically valorised. More preferably, the heavy fraction is chemically enhanced. According to step f) ', fraction E2 or fractions E2a and E2b are then sent for the manufacture of at least one ethylene-derived compound, preferably for the production of DCE and any compound optionally derived therefrom, optionally In the manufacture of any compound which has been subjected to hydrogenation of an acetylene and is fed to a compound which is directly produced from ethylene and which is different from DCE and which can be optionally derived from it, is better to send it. Any compound used in the manufacture of DCE and optionally derivatized therefrom, optionally after having been subjected to a hydrogenation, preferably or fed to a chlorination reactor and/or sent to oxychlorination In the reactor, the majority of the ethylene present in fraction E2 or E2a and/or E2b is fed to the DCE in this reactor. It is then advantageous to separate the obtained DCE from the stream of the product derived from the chlorination and/or oxychlorination reactor in step g) after step f), and preferably after step g) The step h) is subjected to a -71 - 201125849 DCE cracking step to produce VC, and then still more preferably the VC is polymerized in step i) after step h) to produce PVC. Prior to step f), the fraction E2 or E2a and/or E2b can optionally be subjected to an acetylene hydrogenation step, optionally followed by a drying step, in particular when transported to DCE and optionally any compound derived therefrom Time. Preferably, the fraction E2 or E2a and/or E2b in the manufacture of any compound which is sent to the DCE and optionally derivatized therefrom is subjected to acetylene hydrogenation. More preferably, the fraction E2 or E2a and/or E2b fed to the DCE by direct chlorination is subjected to an acetylene hydrogenation step followed by a drying step. More preferably, the fraction E2 or E2a and/or E2b which is sent to the DCE by oxychlorination is subjected to acetylene hydrogenation without a drying step. In the former case, the hydrogenation of the ethylene-rich fraction can be carried out independently or simultaneously with the hydrogenation of hydrogen chloride, which is separated from the stream derived from the pyrolysis product before it is sent back to the oxychlorination. . Preferably, it is operated simultaneously with the hydrogenation of hydrogen chloride. The hydrogenation of acetylene is advantageously carried out as previously described for step a 8 a ). Advantageously, in the case of such acetylene hydrogenation of the saturated E2 or E2a and/or E2b, the treated fraction is advantageously characterized by a volume content of acetylene below zero.  〇 1%, preferably lower than 〇.  〇 〇 5 %, more preferably less than 0. 0 0 2 %, and the best is less than 0 · 0 0 1 %. According to a first embodiment of step f), it is advantageous for fraction E2 to be sent for the manufacture of at least one ethylene-derived compound. According to this first embodiment, the process according to the invention is advantageously such that after steps a) to e), f) then the fraction E2 is sent to produce at least one ethylene-derived compound from -72 to 201125849, Preferably, it is sent to the manufacture of DCE and any compound optionally derived therefrom, optionally after having been subjected to an acetylene hydrogenation' and fed to at least one ethylene derivative different from DCE, which is produced directly starting with ethylene. In the manufacture of the compound and any compound from which it may be optionally derived, it is more preferred to send any compound for the production of DCE and optionally derived therefrom, optionally after having been subjected to an acetylene hydrogenation. According to a first variant of the first embodiment of the step ,, it is advantageous to feed the fraction E2 in a fraction. According to this first variant, the process according to the invention is advantageously such that after steps a) to e), f) the fraction E2 is sent in a fraction for the production of at least one ethylene-derived compound, or sent Any of the compounds used to make DCE and optionally derived therefrom, optionally after having been subjected to an acetylene hydrogenation, or to at least one ethylene-derived compound other than DCE, which is produced directly starting with ethylene, and optionally In the manufacture of any compound derived therefrom, it is preferred that the fraction E2 is sent in one fraction for the manufacture of DCE and any compound optionally derivable therefrom, optionally after having been subjected to an acetylene hydrogenation. Or it is sent to a chlorination reactor or to an oxychlorination reactor where most of the ethylene present in fraction E2 is fed to the DCE. More preferably thereafter, the obtained DCE is separated from the streams of the product derived from the chlorination and oxychlorination reactor in step g) after step f), and preferably in step g) Subsequent step h) is subjected to a -73-201125849 DCE cracking step to produce VC' and then still optimally polymerize VC in step i) after step h) to produce PVC. This is particularly relevant when only one fractionation is required for step f). According to a second variant of the first embodiment of the step ,, the fraction E2 is advantageously divided into at least two fractions having the same composition or different compositions, preferably fractions having the same composition or different compositions E 2 d 'and E 2 d ”. The former case is of particular interest when the different fractions required for step f) or of the same or different composition are to be fed into the corresponding manufacture of the ethylene-derived compound. The method according to the invention is advantageously such that, after steps a) to e), f) is divided into at least one ethylene-derived compound prior to its manufacture, at least one of the same or different constituents. The two fractions are preferably divided into fraction E2d' and fraction E2d". Preferably, a fraction of the fraction E2d' and the fraction E2d" is sent to produce DCE and any compound optionally derived therefrom, optionally after passing an acetylene hydrogenation, and sending another fraction The manufacture of at least one ethylene-derived compound, starting from ethylene directly, different from DCE, and optionally in the manufacture of any compound derived therefrom. More preferably, the two fractions are sent for use in the manufacture of DCE. And optionally any compound derived therefrom, optionally after a acetylene hydrogenation has been carried out, one fraction is fed to a chlorination reactor and the other fraction is fed to an oxychlorination reactor. Most of the ethylene present in each fraction in the reactor is fed to the DCE. -74- 201125849 It is then advantageous to 'obtain the DCE obtained in step g) after step f) from chlorination and oxychloride The same stream of product derived from the reactor is separated, and preferably subjected to a DCE cracking step in step h) after step g) to produce VC' and then more preferably VC in step h The subsequent step i) is polymerized to produce PVC. The term "divided into" (or "divided") in the expression "dividing fraction E2 into at least two parts" is understood to mean, for the purposes of the present invention, 0 Fraction E2 is divided into two or more sub-mixtures in such a way that all of the sub-mixes are characterized by a composition at a specific pressure range comprising the composition at fraction of the fraction E2 at the bubble point and by fraction E2 Within the scope defined by the composition at the time of dew point. For the purposes of the present invention, the expression "bubble point" is understood to mean the point in which the fraction E2 is in the process of heating the fraction E2 from a starting temperature under constant pressure. The first vapor bubble is formed here in the liquid state; the composition of the bubble point is the composition of the first vapor bubble. For the purposes of the present invention, the expression "dew point" is understood to mean the point below, ie under constant pressure. In the process of cooling the fraction F2 from an initial temperature, the fraction F2 forms a first liquid bubble therein in a vapor state, and the composition of the dew point is the composition of the first liquid bubble. The fraction E2 is divided into The two fractions, preferably divided into fraction E2' and fraction E2", advantageously divide fraction E2 into several (preferably two) fractions having the same composition or different compositions by any known means. And operate. This segmentation step can be performed in one or several devices. The split step -75 - 201125849 is advantageous in that it includes a split operation. An example of a splitting operation is to divide the mixture into a plurality of sub-mixtures having the same composition, a partial condensing of the gaseous mixture, partial evaporation of the liquid mixture, and partial solidification of the liquid mixture. Dividing the fraction E2 into at least two fractions having different compositions (preferably fraction E2d' and fraction E2d) can be carried out by any known means. Advantageously, fraction E 2 is carried out in a heat exchanger Internal indirect cooling is carried out, wherein fraction E2 is evaporated to a suitable pressure after expansion and is subcooled by indirect contact in a heat exchanger (cooled with a suitable cooling medium) until its defined temperature is reached It is preferred to separate the liquid vapor mixture to produce a vapor fraction E2d' and a liquid fraction E2d". The temperature drop is advantageously greater than 5 ° C, preferably greater than 7 ° C, and more preferably greater than 8 ° C. The temperature drop is advantageously less than 3 ° C, preferably less than 25 ° C, and more preferably less than 22 ° C. Fraction E2d' advantageously contains more than 10%, preferably more than 20%, and more preferably more than 25% of the amount of ethylene contained in fraction E2. The fraction E2d' advantageously contains less than 90%, preferably less than 80%, and more preferably less than 75% of the amount of ethylene contained in fraction E2. The fraction E2d' is advantageously rich in hydrogen compared to fraction E2. The ratio of the molar hydrogen content in the fraction E2d to the molar hydrogen content in the fraction 〇Γ2〇Γ' is advantageously higher than 25, preferably higher than 50, and more preferably higher than 60°. Compared to fraction E2, fraction E2d' is advantageously rich in methane. The ratio of the molar methane content in the fraction E2d to the molar methane content in the fraction E2d" is advantageously higher than 2 /5, preferably higher than 4, and more preferably higher than -76-201125849 5 ° Compared to fraction E2, fraction E2d is advantageously depleted in ethane. The ratio of the molar content of the molybdenum in the fraction E2d' to the molar content in the fraction E2d" is advantageously lower than that of rhodium.  9, preferably less than 0. 8 5, and better still lower than 〇.  8. According to a second embodiment of step f), it is advantageous for the fractions E2a and E2b to be sent for the manufacture of at least one ethylene-derived compound. According to this second embodiment, the process according to the invention is advantageously such that after steps a) to e), f) the fractions E2a and E2b are then sent for the manufacture of at least one ethylene-derived compound, preferably Any compound that is sent for the manufacture of DCE and optionally derivatized therefrom, optionally after having been subjected to an acetylene hydrogenation, and fed to at least one ethylene-derived compound other than DCE, which is produced directly starting with ethylene. And in the manufacture of any compound from which it may be optionally derived, it is more preferred to send any compound for the production of DCE and optionally derived therefrom, optionally after having been subjected to an acetylene hydrogenation. According to a first variant of the second embodiment of step f), the fractions E2a and E2b are delivered separately. According to this first variant, the process according to the invention is advantageously such that, after steps a) to e), f) fractions E2a and E2b are separately sent for the manufacture of at least one ethylene-derived compound. Preferably, a fraction of the fractions E2a and E2b is sent to any compound for the production of DCE and optionally derivatized therefrom, optionally after passing an acetylene hydrogenation and sending another fraction The manufacture of at least one ethylene-derived compound, starting from the production of B-77-201125849 olefin, differs from DCE, and can be optionally used in the manufacture of any compound derived therefrom. More preferably, the two fractions are sent for the manufacture of DCE and any compound optionally derivable therefrom, optionally after a acetylene hydrogenation, a fraction (preferably E2a) to a chlorine In the reactor and another fraction (preferably E2b) to an oxychlorination reactor, the majority of the ethylene present in each fraction in the two reactors is fed to the DCE. It is then advantageous to separate the obtained DCE from the streams of the product derived from the chlorination and oxychlorination reactor in step g) after step f), and preferably after step g) The step h) is subjected to a DCE cracking step to produce VC, and then more preferably the VC is polymerized in step i) after step h) to produce PVC. This situation is of particular interest when different fractions are required for use in step f) to be fed into the corresponding manufacture of ethylene derived compounds. According to a second variant of the second embodiment of step f), the fractions E2a and E2b are mixed prior to delivery. The fractions E2 a and E2b can be mixed by any known means, such as, for example, a liquid mixing tee, a static mixer, a helium filling bed of inert particles, a series of perforated plates or a series of orifices, together with rotation Machine (pump or compressor).

根據該第二變體’根據本發明的方法有利的是這樣的 ’在步驟a)至e)之後,f)在將餾分E2a和E2b送去用於 製造至少一種乙烯衍生之化合物,或者送去用於製造DCE -78 - 201125849 和可隨意地由其衍生的任何化合物,可隨意地在已經經受 一個乙炔氫化之後,或者送入直接用乙烯開始製造的、不 同於DCE的至少一種乙烯衍生之化合物和可隨意地由其衍 生的任何化合物的製造中之前,將餾分它們進行混合。 較佳的是,在將餾分E2a和E2b送去用於製造DCE和可 隨意地由其衍生的任何化合物,可隨意地在已經經受一個 乙炔氫化之後,或者送入一個氯化反應器中或者送入一氧 0 氯化反應器中(在這個反應器中在餾分E2中存在的大部分 的乙烯被送入DCE)之前,將它們進行混合。 此後更佳的是,將獲得的D C E在步驟f )之後的步驟g )中從氯化和氧氯化反應器衍生出的產物的該等流中分離 出來,並且最佳的是在步驟g)之後的步驟h)中經受一 DCE裂解步驟以產生VC,然後仍然最佳的是地將VC在步 驟h)之後的步驟〇中聚合以產生PVC。 當僅要求一個分餾用於步驟f )時,這種情況係特別 Q 有意義的。 作爲直接用乙烯開始製造的、不同於DCE、根據上述 該等實施方式製造的乙烯衍生之化合物的實例’除其他之 外’可以提及環氧乙烷、直鏈α-烯烴類、直鏈—級醇類、 乙烯的均聚物和共聚物、乙苯、乙酸乙烯酯、乙醛、乙醇 、以及丙醛。較佳的是給予乙苯的製造並且特別佳的是給 予被送去製造苯乙烯的乙苯其本身的製造’苯乙烯此後被 聚合從而獲得苯乙烯聚合物。 作爲可隨意的由其衍生的化合物的實例’除其他之外 -79 - 201125849 可以提及從環氧乙烷製造的乙二醇類、從乙苯製造的苯乙 烯以及衍生於苯乙烯的苯乙烯聚合物。 該氯化反應(通常稱爲直接氯化作用)有利的是在含 有一種溶解的催化劑例如F e C 13或者另一路易士酸的一液 相(較佳的是主要爲DCE )中進行。有可能有利地將這種 催化劑與多種助催化劑如鹼金屬氯化物進行組合。已經得 到良好結果的一個配對係F e C 13與L i C1的絡合物(四氯高鐵 酸鋰-如專利申請N L 6 9 0 1 3 9 8中所說明)。 所使用的卩…“的量有利的是每kg液體母料大約1 g至 30 g的FeCl3。FeCl3與LiCl的莫耳比有利地爲0.5至2的級別 〇 此外,該氯化反應較佳的是在一種氯化的有機液體介 質中進行。更較佳的是,這種氯化的有機液體介質,也稱 作液體母料,主要由DCE構成。 根據本發明的氯化反應有利的是在3 0 °C與1 5 0 °C之間的 溫度下進行。不管壓力如何,在低於沸點(在過冷卻條件 下的氯化過程)和在沸點本身(在沸點時的氯化過程)的 溫度都得到了良好的結果。 當根據本發明的氯化過程係一過冷卻條件下的氯化過 程時,藉由在以下溫度下以及以下氣相中的壓力下操作得 到了良好的結果,該溫度有利的是高於或者等於5 (TC並且 較佳的是高於或者等於60。(:,但是有利的是低於或者等於 8 0°C並且較佳的是低於或者等於70 °C ’以及該壓力有利的 是高於或者等於1巴絕對値並且較佳的是高於或者等於1 . 1 -80- 201125849 巴絕對値’但是有利的是低於或者等於2 〇巴絕對値,較佳 的是低於或者等於1 0巴絕對値並且特別佳的是低於或者等 於6巴絕對値。 在沸點下氯化的方法可以較佳的是有效地回收該反應 熱。在這種情況下’該反應有利的是在高於或者等於6(rc 的溫度下發生’較佳的是高於或者等於70 °c並且特別佳的 是高於或者等於8 5 °C,但是有利的是低於或者等於丨5 〇它並 0 且較佳的是低於或者等於135 °C,並且在該氣相中的壓力 有利的是高於或者等於0.2巴絕對値,較佳的是高於或者 等於〇. 5巴絕對値’特別佳的是高於或者等於1 . i巴絕對値 並且更特別佳的是高於或者等於1 · 3巴絕對値,但是有利 的是低於或者等於10巴絕對値並且較佳的是低於或者等於 6巴絕對値。 該氯化過程也可以是一在沸點下氯化的混合回路冷卻 (hybrid loop-co〇led )過程。表述“在沸點下氯化的混合 〇 回路冷卻過程”應理解爲係指一過程,其中例如藉由浸入 在該反應介質內的一個交換器或者藉由在一交換器內循環 的一回路對該反應介質進行冷卻,同時在氣相中產生至少 爲所形成的量的DCE。有利地,調節該反應溫度和壓力來 使所產生的DCE離開氣相並且藉由交換表面積除去來自該 反應介質的剩餘熱量。 可以用任何已知的設備將進行氯化的餾分以及還有分 子氯(本身純淨或稀釋的)一起或單獨地引入該反應介質 。單獨引入進行氯化作用的餾分可能是有利的,以便增加 -81 - 201125849 其分壓並且促進其溶解,這通常構成該方法的一限制步驟 〇 分子氯以足夠的量加入來轉化大部分乙烯,並且不要 求添加過量的未轉化的氯。所用的氯/乙烯的比値較佳的 是在1.2 mol/mol和0.8 mol/mol之間,並且特別佳的是在 1.05 mol/mol和 0.95 mol/mol之間。 所獲得的氯化產物主要含有DCE以及還有少量副產物 ,例如1,1,2 -三氯乙烷或少量的乙烷或甲烷氯化產物。 從得自該氯化反應器的產品流中分離所獲得的DCE係 根據已知的方式進行並且一般來說使之有可能利用該氯化 反應的熱。然後,它較佳的是藉由冷凝作用和氣/液分離 來進行。 然後有利地是使未轉化的產物(甲烷、乙烷 '一氧化 碳、氮氣、氧氣和氫氣)經受比分離起始於該最初混合物 的純乙烯所必需的更容易的一個分離。 氫氣特別是可以從未轉化的產物中提取出來並且作爲 燃料燒掉或者進行化學增値例如用於在過氧化氫的生產中 工作溶液的氫化或者用於過氧化氫的直接合成。 該氧氯化反應有利的是在包含活性元素的一催化劑的 存在下進行,該活性元素包括沉積於一惰性載體上的銅。 該惰性載體有利地選自氧化鋁、矽膠 '混合氧化物、粘土 以及其他天然來源的載體。氧化鋁構成一較佳的惰性載體 〇 較佳的是包含活性元素(其中之一是銅)的催化劑’ 82 - 201125849 該活性元素的數目有利地爲至少兩個。在除了銅以外的該 等活性元素中,可以提及鹼金屬、鹼土金屬、稀土金屬以 及選自下組的金屬,該組的構成爲釕、鍺、鈀、餓、銥、 鉑和金。包含下列活性元素的催化劑係特別有利的:銅/ 鎂/鉀,銅/鎂/鈉;銅/鎂/鋰,銅/鎂/鉋,銅/鎂/鈉/鋰,銅/ 鎂/鉀/鋰和銅/鎂/鉋/鋰,銅/鎂/鈉/鉀,銅/鎂/鈉/鉋以及銅/ 鎂/鉀/鉋。最特別佳的是在專利申請EP-A 255 1 56、EP-A 0 494 474、EP-A 657 212和EP-A 657 213中所說明的催化劑 ,該等專利申請藉由引用結合在此。 銅的含量,以金屬形式計算,有利的是在30 g/kg和90 g/kg之間,較佳的是在40 g/kg和80 g/kg之間並且特別佳的 是在50 g/kg和70 g/kg催化劑之間。 鎂的含量,以金屬形式計算,有利的是在10 g/kg與30 g/kg之間、較佳的是在12 g/kg與25 g/kg之間、並且特別佳 的是在1 5 g/kg和20 g/kg催化劑之間。According to this second variant, the process according to the invention is advantageously such that after steps a) to e), f) is sent to the fraction E2a and E2b for the manufacture of at least one ethylene-derived compound, or sent Any compound which is used in the manufacture of DCE-78 - 201125849 and optionally derivatized therefrom, optionally after having been subjected to an acetylene hydrogenation, or to a compound derived from at least one ethylene derivative which is manufactured directly starting with ethylene and which is different from DCE The fractions are mixed prior to the manufacture of any compound from which they are optionally derived. Preferably, any of the compounds from which the fractions E2a and E2b are sent for the manufacture of DCE and optionally derivatized therefrom, optionally after being subjected to an acetylene hydrogenation, or sent to a chlorination reactor or sent Into an oxygen 0 chlorination reactor (in this reactor, most of the ethylene present in fraction E2 is fed to DCE), they are mixed. More preferably thereafter, the obtained DCE is separated from the streams of the product derived from the chlorination and oxychlorination reactor in step g) after step f), and preferably in step g) Subsequent step h) is subjected to a DCE cracking step to produce VC, and then it is still optimal to polymerize the VC in step 之后 after step h) to produce PVC. This case is particularly Q meaningful when only one fractionation is required for step f). As examples of the ethylene-derived compound which is manufactured directly from ethylene and which is different from DCE and produced according to the above-described embodiments, 'other than' may be mentioned as ethylene oxide, linear alpha-olefins, straight chain - Alcohols, homopolymers and copolymers of ethylene, ethylbenzene, vinyl acetate, acetaldehyde, ethanol, and propionaldehyde. It is preferred to impart the production of ethylbenzene and it is particularly preferred to give the ethylbenzene which is sent to produce styrene. The manufacture of styrene itself is thereafter polymerized to obtain a styrene polymer. Examples of compounds which can be optionally derived therefrom include, among others, -79 - 201125849, mention may be made of ethylene glycols produced from ethylene oxide, styrene made from ethylbenzene, and styrene derived from styrene. polymer. The chlorination reaction (commonly referred to as direct chlorination) is advantageously carried out in a liquid phase (preferably predominantly DCE) containing a dissolved catalyst such as F e C 13 or another Lewis acid. It is possible to advantageously combine this catalyst with various promoters such as alkali metal chlorides. A pairing system of F e C 13 and Li c C1 (lithium tetrachloroferrate - as described in the patent application N L 6 9 0 1 3 9 8) has been obtained with good results. The amount of hydrazine used is advantageously about 1 g to 30 g of FeCl3 per kg of liquid masterbatch. The molar ratio of FeCl3 to LiCl is advantageously in the order of 0.5 to 2, hi addition, the chlorination reaction is preferred. It is carried out in a chlorinated organic liquid medium. More preferably, the chlorinated organic liquid medium, also referred to as liquid masterbatch, consists essentially of DCE. The chlorination reaction according to the invention is advantageously Performed at a temperature between 30 ° C and 150 ° C. Regardless of the pressure, below the boiling point (chlorination process under supercooled conditions) and at the boiling point itself (chlorination process at the boiling point) Good results have been obtained at temperatures. When the chlorination process according to the invention is a chlorination process under supercooling conditions, good results are obtained by operating at the following temperatures and under pressure in the gas phase below, The temperature is advantageously greater than or equal to 5 (TC and preferably greater than or equal to 60. (:, but advantageously less than or equal to 80 ° C and preferably less than or equal to 70 ° C ' And the pressure is advantageously higher than or equal to 1 bar absolute And preferably higher than or equal to 1. 1 -80 - 201125849 bar absolute 値 'but advantageously less than or equal to 2 〇 bar absolute 値, preferably less than or equal to 10 bar absolute 値 and particularly good It is lower than or equal to 6 bar absolute. The method of chlorinating at the boiling point may preferably be to efficiently recover the heat of reaction. In this case, the reaction is advantageously at or above 6 (rc). It occurs at a temperature which is preferably higher than or equal to 70 ° C and particularly preferably higher than or equal to 85 ° C, but is advantageously lower than or equal to 丨 5 〇 it is 0 and preferably lower than Or equal to 135 ° C, and the pressure in the gas phase is advantageously higher than or equal to 0.2 bar absolute enthalpy, preferably higher than or equal to 〇. 5 bar absolute 値 ' particularly good is higher than or equal to 1 i bar is absolutely 値 and more particularly preferably higher than or equal to 1.3 bar absolute 値, but advantageously less than or equal to 10 bar absolute 値 and preferably less than or equal to 6 bar absolute 値. The process can also be a mixed circuit cooling with chlorination at the boiling point ( Hybrid loop-co〇led process. The expression "mixed helium circuit cooling process chlorinating at boiling point" is understood to mean a process in which, for example, by immersing in an exchanger within the reaction medium or by The primary circuit of the internal circulation of the exchanger cools the reaction medium while producing at least the amount of DCE formed in the gas phase. Advantageously, the reaction temperature and pressure are adjusted to cause the generated DCE to leave the gas phase and by The exchange surface area removes residual heat from the reaction medium. The chlorinated fraction and also molecular chlorine (either pure or diluted by itself) can be introduced into the reaction medium together or separately using any known equipment. It may be advantageous to introduce a fraction which is chlorinated separately in order to increase its partial pressure and promote its dissolution, which usually constitutes a limiting step of the process. Molecular chlorine is added in a sufficient amount to convert most of the ethylene, It is also not required to add an excess of unconverted chlorine. The chlorine/ethylene ratio used is preferably between 1.2 mol/mol and 0.8 mol/mol, and particularly preferably between 1.05 mol/mol and 0.95 mol/mol. The chlorination product obtained contains mainly DCE and also a small amount of by-products such as 1,1,2-trichloroethane or a small amount of ethane or methane chlorination product. The DCE obtained from the separation of the product stream from the chlorination reactor is carried out according to known methods and generally makes it possible to utilize the heat of the chlorination reaction. Then, it is preferably carried out by condensation and gas/liquid separation. It is then advantageous to subject the unconverted product (methane, ethane 'carbon monoxide, nitrogen, oxygen and hydrogen) to an easier separation than is necessary to separate the pure ethylene starting from the initial mixture. Hydrogen can be extracted, in particular, from unconverted products and burned off as a fuel or chemically enriched, for example for the hydrogenation of working solutions in the production of hydrogen peroxide or for the direct synthesis of hydrogen peroxide. The oxychlorination reaction is advantageously carried out in the presence of a catalyst comprising an active element comprising copper deposited on an inert support. The inert carrier is advantageously selected from the group consisting of alumina, silicone rubber, mixed oxides, clays, and other carriers of natural origin. Alumina constitutes a preferred inert support 〇 A catalyst comprising an active element, one of which is copper, is preferred. 82 - 201125849 The number of active elements is advantageously at least two. Among the active elements other than copper, there may be mentioned an alkali metal, an alkaline earth metal, a rare earth metal, and a metal selected from the group consisting of ruthenium, rhodium, palladium, hungry, ruthenium, platinum, and gold. Catalysts comprising the following active elements are particularly advantageous: copper/magnesium/potassium, copper/magnesium/sodium; copper/magnesium/lithium, copper/magnesium/planing, copper/magnesium/sodium/lithium, copper/magnesium/potassium/lithium And copper / magnesium / planer / lithium, copper / magnesium / sodium / potassium, copper / magnesium / sodium / planing and copper / magnesium / potassium / planing. Most particularly preferred are the catalysts described in the patent applications EP-A 255 1 56, EP-A 0 494 474, EP-A 657 212 and EP-A 657 213, the disclosures of which are incorporated herein by reference. The copper content, calculated as metal, is advantageously between 30 g/kg and 90 g/kg, preferably between 40 g/kg and 80 g/kg and particularly preferably at 50 g/ Between kg and 70 g/kg of catalyst. The magnesium content, calculated as metal, is advantageously between 10 g/kg and 30 g/kg, preferably between 12 g/kg and 25 g/kg, and particularly preferably at 15 Between g/kg and 20 g/kg of catalyst.

Ci 鹼金屬的含量,以金屬形式計算,有利的是在o.l .g/kg和30 g/kg之間、較佳的是在0.5 g/kg和20 g/kg之間、 並且特別佳的是在1 g/kg和1 5 g/kg催化劑之間。 銅:鎂:一種或多種鹼金屬的原子比有利地是1:0.1-2: 0.05-2,較佳的是1: 0.2-1.5: 0.1-1.5並且特別佳的是 1:0.5-1:0.15-1。 具有比表面積,有利的是在25 m2/g與3 00 m2/g之間、 較佳的是在50 m2/g與200 m2/g之間、並且特別佳的是在75 m2/g與175 m2/g之間的催化劑(根據BET方法藉由氮測得 -83- 201125849 )是特別有利的。 該催化劑可以在一固定床或一流化床中使用。較佳的 是第二種選擇。該氧氯化過程在該反應所通常建議的條件 範圍內進行操作。溫度有利地是在1 5 0 °c與3 0 0 °C之間' 較 佳的是在200°c與275°C之間、並且最佳的是從215°c到 2 5 5 °C。壓力有利的是在大氣壓以上。在2巴絕對値與1 0巴 絕對値之間的値給出了良好的結果。較佳的是在4巴絕對 値至7巴絕對値之間的範圍。該壓力可以被有效地調節’ 以得到在該反應器內的一最佳停留時間並且保持對於不同 操作速度而言恒定的通過率。通常的停留時間範圍係從1 秒至6 0秒,並且較佳的是從1 0秒至4 0秒。 這種氧氯化作用的氧源可以是空氣、純氧或它們的一 種混合物,較佳的是純氧。較佳的是允許易於再利用未轉 化的反應物的後者的溶液。 該等反應物可以藉由任何已知的裝置引入該床層。爲 了安全因素,將氧氣與其他反應物分開引入總體上是有利 的。該等安全因素還要求保持離開或再利用至該反應器的 氣體混合物在所討論的壓力和溫度下在可燃性的限度之外 。較佳的是保持一所謂的富集混合物,即相對於引燃該燃 料含有過少的氧氣。在這方面,在這種化合物寬的可燃性 範圍的條件下,氫(>2 vol%,較佳的是>5 vol% )的充足 存在將構成一缺點。 所用的氯化氫/氧氣的比例有利地是在3 mol/mol與6 m ο 1 / m ο 1之間。該乙烯/氯化氫的比例有利地是在0 · 4 -84 - 201125849 mol/mol至 0.6 mol/mol之間。 所得到的氯化產物主要包含DCE以及還有少量副產物 ,例如1,1,2-三氯乙烷。 從得自氯化反應器的產品流中分離出的DCE可以在 DCE裂解步驟之前與從得自氧氯化反應器的產品流中分離 出的DCE混合或不混合。當兩種DCE混合時,它們可以完 全地或部分地混合。 0 DCE的裂解步驟可以進行的條件係熟習該項技術者已 知的。DCE裂解可以在第三化合物存在或不存在時進行, 在該等第三化合物中可以提及的有催化劑;DCE裂解在這 種情況下係一催化性D C E裂解。然而D C E裂解較佳的是在 第三化合物的存在下並且僅在熱的作用下進行;DCE裂解 在這種情況下經常稱爲熱解。 該熱解有利的是在一管式爐內藉由一在氣相內的反應 而獲得。通常的熱解溫度係在400 °C和600 °C之間並且較佳 〇 的是480°C和540°c之間的範圍。停留時間有利的是在1秒與 60秒之間,較佳的是從5秒至25秒的範圍。爲了限制副產 物的形成以及爐管道的沾汙,該DCE的轉化率有利地是限 制在4 5 %至7 5 %。 分離從得自熱解的產物流中所獲得的VC和氯化氫係根 據已知的方式使用任何已知的裝置進行的,以便收集純化 的VC和氯化氫。純化之後,有利地是將未轉化的DCE送至 該熱解爐中。 此後較佳的是將VC聚合以生產PVC。 -85- 201125849 P V C的製造可以是一種塊狀、溶液、或水性分散系聚 合法,它較佳的是一種水性分散聚合法。 表述水性分散系聚合應理解爲係指在水性懸浮液中的 自由基聚合以及在水性乳液中的自由基聚合以及在水性微 懸浮液中的聚合。 表述水性分散系中的自由基聚合應理解爲係指在分散 劑以及油可溶的自由基引發劑的存在下在水性介質中進行 的任何自由基聚合過程。 表述水性乳液中的自由基聚合應理解爲係指在乳化劑 以及水可溶的自由基引發劑的存在下在水性介質中進行的 任何自由基聚合過程。 表述水性微懸浮聚合(也稱爲在均勻化的水性分散體 中的聚合)應理解爲係指任何自由基聚合過程,其中使用 了油溶性引發劑’並且由於強有力的機械攪拌以及在乳化 劑的存在下製備了單體小滴的乳液。 步驟f)的第一實施方式優於第二實施方式。 根據本發明的方法的特徵係遍及其所有的步驟,較佳 的是在步驟b) 、c)以及e)處,更佳的是在步驟b)和 C )處’有利的是在至少-1 lot:、較佳的是至少-105。(:、並 且特別佳的是至少-1 〇〇°C的溫度下有利地進行該方法。 根據本發明的一種較佳的方法係用於從一種低價値殘 餘氣體開始製造至少一種乙烯衍生之化合物的方法,根據 該方法: a )使該低價値殘餘氣體,含有從步驟d )中再利用的 -86- 201125849 餾分E 1,在一個低價値殘餘氣體回收單元中經受 —系列處理步驟以去除其中存在的不希望的成分 並且獲得含有乙烯以及其他組分的產物的一混合 物; b) 使所述多種產物的混合物經受一第一分離步驟S1 ,該步驟包括將所述含有乙烯和其他組分的產物 分離爲含有比乙烯輕的該等化合物和部分乙烯的 〇 、稱爲餾分F1的一部分’並且分離爲一餾分F2; c) 將餾分F1送入一乙烯回收單元,其中它被分離爲 富含乙烯的、被稱爲餾分E1的一餾分,並且被分 離爲富含比乙烯輕的該等化合物的、被稱爲輕質 餾分的一飽分; d )將餾分E 1再利用至步驟a )中。 e) 使餾分F2經受一第二分離步驟S2,該第二分離步 驟包括將餾分F2分離(在一個或兩個分離中)爲 r | —個虽含乙細的、被稱爲飽分E2的飽分並且分離 爲富含乙烷和含有至少3個碳原子的烴的、被稱爲 重質餾分的一餾分; f) 然後將餾分E2送去製造至少一種乙烯衍生之化合 物。 根據本發明的一個特別佳的方法係一種用於從一種低 價値殘餘氣體開始製造1,2 -二氯乙烷的方法,包括在此以 上定義的步驟a)至f),根據該方法該乙烯衍生之化合物 係1,2 -二氯乙烷。 -87- 201125849 根據本發明的方法的一第一優點係它允許使用具有純 度爲小於9 9.8 %的乙烯。 根據本發明的方法的另一優點係它回收並且轉化了含 有顯著量的乙烧和/或其一種或多種前體的氣體流,該氣 體知L·先則的特徵爲一'個低的增値(低價値殘餘氣體)。 根據本發明的方法的另一優點係它既不包括之後跟隨 者有機或水急冷步驟的裂解步驟,也不包括需要重大投畜 的催化氧化脫氫步驟(這引起生產成本的增加並且涉及到 使用昂貴的烴源)。 與在現有技術中說明的方法相比較,根據本發明的方 法的一優點還係它不要求分離爲乙烯的兩個餾分,這兩個 餾分在乙烯的組成上是不同的並且它們的使用條件係不同 的’考慮到它們含有反應性雜質這可以擾亂後來使用它們 的方法並且該等方法可以限制其使用;例如氫氣,它在乙 烯的氧氯化過程中是不可接受的。 可以歸於根據本發明的方法的其他優點係與以下事實 有關的該等優點,即將比乙烯輕的化合物從該乙烯餾分中 分離出。在該等優點之中,人們可以提及在以下裝置中操 作該方法的優點’該裝置的尺寸將不被增加並且避免了藉 由汽提產生的損失’該等損失降低了該方法的效率。 根據本發明的方法藉由允許富含比乙烯輕的化合物的 分離使它們的增値更容易。 這種方法的另一優點係它使之可能藉由重分餾分離出 包括至少3個碳原子的該等化合物,該等化合物一般爲某 -88- 201125849 些不希望的副反應負責,該等副反應導致了難以分離的不 希望的衍生物的形成。 最終,根據本發明的方法的一優點係,它使之有可能 在同一工業地點擁有一完整的綜合工藝。 【實施方式】 現將參見本說明書所附的圖對根據本發明的較佳的並 Q 且特別佳的方法進行說明。該圖包括所附的圖1,示意性 表示了根據本發明的用於製造至少一種乙烯衍生之化合物 的較佳的方法以及根據本發明的用於製造1,2 -二氯乙烷的 特別佳的方法。 使含有再利用的餾分E1 (2)的低價値殘餘氣體(1) ,在一個低價値殘餘氣體回收單元(3 )中經受一系列處 理步驟以去除其中存在的不希望的成分並且獲得含有乙烯 以及其他組分的產物的一種混合物(4)。使該混合物(4 〇 )經受一第一分離步驟s 1 ( 5),該步驟包括將所述混合 物分離爲含有比乙烯輕的該等化合物和部分乙烯的、被稱 爲餾分F1 (6)的一餾分,並且分離爲一餾分F2 (7)。然 後將餾分F1 (6)送入一乙烯回收單元(8)中,其中它被 分離爲富含乙烯、被稱爲餾分E1 (2)的、被再利用至第 一步驟的一餾分,並且被分離爲富含比乙烯輕的該等化合 物的、被稱爲輕質餾分(9)的一餾分。使餾分F2 (7)經 受一個第二分離步驟S2( 10),該第二分離步驟包括將餾 分F2(7)分離(在一個或兩個分離中)爲一個富含乙烯 -89- 201125849 的、被稱爲飽分E2 (11)的餾分並且分離爲富含乙烷和含 有至少3個碳原子的烴的、被稱爲重質餾分(12 )的一餾 分。然後將餾分E2( 11)送去用於製造至少一種乙烯衍生 之化合物並且較佳的是根據依照本發明的特別佳的方法送 去用於製造I,2-二氯乙烷,然後可以將丨,2_二氯乙烷經受 一個裂解(在該圖中未示出)以生產氯乙烯,然後可以將 氯乙烯聚合以生產聚氯乙燦。 【圖式簡單說明】 圖1係圖示出本發明之方法’其用於製造至少_種乙 烯衍生物之化合物。 【主要元件符號說明】 1 :低價値殘餘氣體 2 :回收的餾分 3 :低價値殘餘氣體回收單元 4 :混合物 5 :第一分離步驟 6 :餾分 7 ·’餾分 8 :乙烯回收單元 9 :輕質餾分 1 〇 :第二分離步驟 1 1 :餾分 -90- 201125849 1 2 :重質餾分 1 3 :乙烯衍生之化合物之製法The content of the alkali metal of Ci, calculated in the form of metal, is advantageously between ol.g/kg and 30 g/kg, preferably between 0.5 g/kg and 20 g/kg, and particularly preferably Between 1 g/kg and 15 g/kg of catalyst. Copper: Magnesium: The atomic ratio of one or more alkali metals is advantageously 1:0.1-2: 0.05-2, preferably 1:0.2-1.5: 0.1-1.5 and particularly preferably 1:0.5-1:0.15 -1. Having a specific surface area is advantageously between 25 m2/g and 300 m2/g, preferably between 50 m2/g and 200 m2/g, and particularly preferably at 75 m2/g and 175. A catalyst between m2/g (measured by nitrogen according to the BET method - 83 to 201125849) is particularly advantageous. The catalyst can be used in a fixed bed or a fluidized bed. The second option is preferred. The oxychlorination process operates within the conditions generally recommended for the reaction. The temperature is advantageously between 1 50 °c and 300 °C, preferably between 200 ° C and 275 ° C, and most preferably from 215 ° C to 2 5 5 ° C. The pressure is advantageously above atmospheric pressure. The 値 between 2 bar absolute 1 and 10 bar absolute 値 gives good results. It is preferably in the range between 4 bar absolute and 7 bar absolute. This pressure can be effectively adjusted' to obtain an optimum residence time within the reactor and maintain a constant throughput for different operating speeds. Typical residence times range from 1 second to 60 seconds, and preferably from 10 seconds to 40 seconds. The source of oxygen for oxychlorination may be air, pure oxygen or a mixture thereof, preferably pure oxygen. It is preferred to allow the latter solution of the unconverted reactant to be readily reused. The reactants can be introduced into the bed by any known means. For safety reasons, it is advantageous to introduce oxygen separately from other reactants. These safety factors also require that the gas mixture that remains or is reused to the reactor be outside the limits of flammability at the pressures and temperatures in question. It is preferred to maintain a so-called enriched mixture which contains too little oxygen relative to the ignition of the fuel. In this regard, sufficient presence of hydrogen (> 2 vol%, preferably > 5 vol%) under the condition of a wide range of flammability of such a compound will constitute a disadvantage. The proportion of hydrogen chloride/oxygen used is advantageously between 3 mol/mol and 6 m ο 1 / m ο 1 . The ratio of ethylene/hydrogen chloride is advantageously between 0. 4 - 84 and 201125849 mol/mol to 0.6 mol/mol. The resulting chlorinated product mainly comprises DCE and also a small amount of by-products such as 1,1,2-trichloroethane. The DCE separated from the product stream from the chlorination reactor may or may not be mixed with the DCE separated from the product stream from the oxychlorination reactor prior to the DCE cracking step. When the two DCEs are mixed, they can be mixed completely or partially. The conditions under which the DCE cleavage step can be carried out are well known to those skilled in the art. The DCE cleavage can be carried out in the presence or absence of a third compound, among which a catalyst can be mentioned; DCE cleavage in this case is a catalytic D C E cleavage. However, D C E cleavage is preferably carried out in the presence of a third compound and only under the action of heat; DCE cleavage is often referred to as pyrolysis in this case. The pyrolysis is advantageously obtained in a tube furnace by a reaction in the gas phase. The usual pyrolysis temperature is between 400 ° C and 600 ° C and preferably 〇 is between 480 ° C and 540 ° c. The residence time is advantageously between 1 second and 60 seconds, preferably from 5 seconds to 25 seconds. In order to limit the formation of by-products and the contamination of the furnace tubes, the conversion of the DCE is advantageously limited to between 45% and 75%. The separation of VC and hydrogen chloride obtained from the pyrolysis product stream is carried out in a known manner using any known apparatus to collect purified VC and hydrogen chloride. After purification, it is advantageous to feed the unconverted DCE to the pyrolysis furnace. Thereafter it is preferred to polymerize the VC to produce PVC. -85- 201125849 The manufacture of P V C may be a bulk, solution, or aqueous dispersion polymerization, which is preferably an aqueous dispersion polymerization process. The expression aqueous dispersion polymerization is understood to mean free radical polymerization in aqueous suspensions as well as free radical polymerization in aqueous emulsions and polymerization in aqueous microsuspensions. The expression of free-radical polymerization in aqueous dispersions is understood to mean any free radical polymerization process carried out in an aqueous medium in the presence of a dispersant and an oil-soluble free radical initiator. The expression of free-radical polymerization in an aqueous emulsion is understood to mean any free radical polymerization process carried out in an aqueous medium in the presence of an emulsifier and a water-soluble free radical initiator. The expression aqueous microsuspension polymerization (also referred to as polymerization in a homogenized aqueous dispersion) is understood to mean any free radical polymerization process in which an oil soluble initiator is used and due to strong mechanical agitation and in the emulsifier An emulsion of monomer droplets was prepared in the presence of. The first embodiment of step f) is superior to the second embodiment. The method according to the invention is characterized by all of its steps, preferably at steps b), c) and e), more preferably at steps b) and C), advantageously at least -1 Lot:, preferably at least -105. (The method is advantageously carried out at a temperature of at least -1 ° C. The preferred method according to the invention is for the production of at least one ethylene starting from a low-cost residual gas. a method according to the method according to the method: a) subjecting the low-cost hydrazine residual gas to the fraction E1 of -86-201125849, which is reused from step d), is subjected to a series of treatment steps in a low-cost 値 residual gas recovery unit To remove an undesired component present therein and to obtain a mixture of products comprising ethylene and other components; b) subjecting the mixture of said plurality of products to a first separation step S1 comprising the step of including said ethylene and others The product of the component is separated into ruthenium containing these compounds and a portion of ethylene lighter than ethylene, referred to as a fraction of fraction F1 and separated into a fraction F2; c) the fraction F1 is sent to an ethylene recovery unit where it is separated Is a fraction rich in ethylene, referred to as fraction E1, and is separated as a fraction rich in lighter fractions rich in such compounds than ethylene; d) Reusing fraction E 1 to step a). e) subjecting the fraction F2 to a second separation step S2, the second separation step comprising separating the fraction F2 (in one or two separations) into r | a thin, otherwise known as saturated E2 It is saturated and separated into a fraction called a heavy fraction rich in ethane and a hydrocarbon containing at least 3 carbon atoms; f) Fraction E2 is then sent to produce at least one ethylene-derived compound. A particularly preferred process according to the invention is a process for the production of 1,2-dichloroethane starting from a low-cost hydrazine residual gas, comprising the steps a) to f) defined above, according to which The ethylene-derived compound is 1,2-dichloroethane. -87- 201125849 A first advantage of the method according to the invention is that it allows the use of ethylene having a purity of less than 99.8%. Another advantage of the process according to the invention is that it recovers and converts a gas stream containing a significant amount of ethidium and/or one or more of its precursors, the gas being characterized by a low increase値 (low price 値 residual gas). Another advantage of the method according to the invention is that it does not include the subsequent cleavage step of the organic or water quenching step, nor the catalytic oxidative dehydrogenation step requiring significant animal feeding (which causes an increase in production costs and involves the use of Expensive hydrocarbon source). An advantage of the process according to the invention is that it does not require the separation of two fractions of ethylene, the two fractions differing in the composition of the ethylene and their conditions of use, compared to the process described in the prior art. Different 'considering that they contain reactive impurities can disrupt the methods used later and such methods can limit their use; for example, hydrogen, which is unacceptable during the oxychlorination of ethylene. Further advantages which can be attributed to the process according to the invention are those advantages associated with the fact that compounds lighter than ethylene are separated from the ethylene fraction. Among these advantages, one can mention the advantages of operating the method in the following devices: the size of the device will not be increased and the loss due to stripping will be avoided. Such losses reduce the efficiency of the method. The process according to the invention makes their growth easier by allowing the separation of compounds rich in lighter than ethylene. Another advantage of this method is that it makes it possible to separate such compounds comprising at least 3 carbon atoms by heavy fractionation, which are generally responsible for some undesirable side reactions of -88-201125849, which are responsible for The reaction results in the formation of undesired derivatives that are difficult to separate. Finally, an advantage of the method according to the invention is that it makes it possible to have a complete integrated process at the same industrial location. [Embodiment] A preferred and more preferred method according to the present invention will now be described with reference to the drawings attached to the present specification. The figure includes the accompanying Figure 1 which schematically shows a preferred process for the manufacture of at least one ethylene-derived compound according to the invention and a particularly preferred process for the manufacture of 1,2-dichloroethane according to the invention. Methods. The low-cost oxime residual gas (1) containing the recycled fraction E1 (2) is subjected to a series of processing steps in a low-cost 値 residual gas recovery unit (3) to remove undesired components present therein and obtain A mixture of products of ethylene and other components (4). The mixture (4 Torr) is subjected to a first separation step s 1 (5) which comprises separating the mixture into a compound containing lighter than ethylene and a portion of ethylene, referred to as fraction F1 (6) A fraction is separated and separated into a fraction F2 (7). Fraction F1 (6) is then fed to an ethylene recovery unit (8) where it is separated into a fraction rich in ethylene, referred to as fraction E1 (2), which is reused to the first step and is Separated into a fraction known as light fraction (9) rich in such compounds lighter than ethylene. Fraction F2 (7) is subjected to a second separation step S2 (10) which comprises separating fraction F2 (7) (in one or two separations) into an ethylene-rich-89-201125849, The fraction referred to as saturated E2 (11) is separated into a fraction referred to as heavy fraction (12) which is rich in ethane and a hydrocarbon containing at least 3 carbon atoms. The fraction E2 (11) is then sent for the manufacture of at least one ethylene-derived compound and is preferably sent for the manufacture of 1,2-dichloroethane according to a particularly preferred process according to the invention, which can then be used. 2 - Dichloroethane is subjected to a cracking (not shown in the figure) to produce vinyl chloride, which can then be polymerized to produce polychloroethylene. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the method of the present invention for producing a compound of at least one ethylene derivative. [Explanation of main component symbols] 1 : Low-cost 値 residual gas 2 : recovered fraction 3 : low-cost 値 residual gas recovery unit 4 : mixture 5 : first separation step 6 : fraction 7 · 'fraction 8 : ethylene recovery unit 9 : Light fraction 1 〇: second separation step 1 1 : fraction -90- 201125849 1 2 : heavy fraction 13: method for preparing ethylene-derived compound

-91-91

Claims (1)

201125849 七、申請專利範圍: 1 · 一種從低價値殘餘氣體開始製造至少一種乙烯衍生 之化合物之方法,根據該方法: a)使該低價値殘餘氣體,可隨意地含有從步驟d )中 再循環的餾分E1,在低價値殘餘氣體回收單元中 經受一系列處理步驟以去除其中存在的不希望的 成分並且獲得含有乙烯以及其他組分的產物之混 合物; b )使該多種產物之混合物經受第一分離步驟S 1,該 步驟包括將該含有乙烯和其他組分的產物分離爲 含有比乙烯輕的該等化合物和部分乙烯的、被稱 爲餾分F1的一餾分,並且分離爲一餾分F2; c) 將餾分F1送入乙烯回收單元,其中它被分離爲富 含乙烯的、被稱爲餾分E1的一餾分,並且被分離 爲富含比乙烯輕的該等化合物的、被稱爲輕質餾 分的一餾分; d) 將餾分E1再循環至步驟a)中或者送去用於製造至 少一種乙烯衍生之化合物; e) 使餾分F2經受第二分離步驟S2,該步驟包括將餾 分F2分離爲富含乙烯的、被稱爲餾分E2的一餾分 ,或者分離爲富含乙烯、被稱爲餾分E2a和E2b的 兩個部分,並且分離爲富含乙烷以及含有至少3個 碳原子的烴的、被稱爲重質餾分的一餾分; f) 然後將餾分E2或者餾分E2a和E2b送去用於製造至 201125849 少一種乙稀衍生之化合物。 2 ·如申請專利範圍第1項之方法,其中該低價値殘餘 氣體係煉油廠廢氣。 3 ·如申請專利範圍第2項之方法’其中該煉油廠廢氣 係在至少一個流體催化裂化單元中產生的。 4 ·如申請專利範圍第1至3項中的任一項之方法,其中 該低價値殘餘氣體係含有乙焴和/或其一種或多種前體的 0 幾種氣體之混合物並且包括按重量計從10%到60 %的乙烯 〇 5 ·如申請專利範圍第4項之方法,其中該低價値殘餘 氣體以包括在20與75 MJ/kg之間之較低熱値的乾氣爲特徵 〇 6 ·如申請專利範圍第1項之方法,其中d )將餾分E 1再 循環至步驟a )中。 7 ·如申請專利範圍第1項之方法,其中e )使餾分F 2經 〇 受第二分離步驟S2’該第二分離步驟包括將餾分F2分離爲 餾分E2並且分離爲重質餾分。 8. 如申請專利範圍第1項之方法,其中f)將餾分以送 去用於製造至少一種乙烯衍生之化合物。 9. 如申請專利範圍第1項之方法,其中f )將餾分E 2或 餾分E 2 a和E 2 b送入D C E和可隨意地由其衍生的任何化合物 之生產中,可隨意地在已經受乙炔氫化作用之後,並且送 入直接用乙烯開始製造的、不同於DCE的至少一種乙烯衍 生之化合物以及可隨意地由其衍生的任何化合物之製造中 -93- 201125849 10.如申請專利範圍第1項之方法,其中f)將餾分E2 或餾分E2a和E2b送去用於製造DCE以及可隨意地由其衍生 的任何化合物,可隨意地在經受乙炔氫化作用之後。 η·如申請專利範圍第1項之方法,其中餾分E2、E2a 和E2b相對於它們的總體積含有按體積計最多99.5 %的乙烯 -94 -201125849 VII. Patent application scope: 1 · A method for producing at least one ethylene-derived compound starting from a low-cost residual gas, according to the method: a) making the low-valent hydrazine residual gas optionally contained in step d) The recycled fraction E1 is subjected to a series of treatment steps in a low-cost 値 residual gas recovery unit to remove undesired components present therein and to obtain a mixture of products containing ethylene and other components; b) to make a mixture of the various products Subjecting to a first separation step S1, the step comprises separating the product containing ethylene and other components into a fraction containing the compound lighter than ethylene and a portion of ethylene, referred to as fraction F1, and is separated into a fraction. F2; c) feeding the fraction F1 to an ethylene recovery unit in which it is separated into an ethylene-rich fraction called fraction E1 and is separated into a compound rich in lighter than ethylene, which is called a fraction of the light fraction; d) recycling fraction E1 to step a) or sent to produce at least one ethylene-derived compound; e) distilling F2 is subjected to a second separation step S2 which comprises separating fraction F2 into an ethylene-rich fraction called fraction E2, or separating into two fractions rich in ethylene, referred to as fractions E2a and E2b, and Separating into a fraction known as a heavy fraction enriched in ethane and a hydrocarbon containing at least 3 carbon atoms; f) then sending fraction E2 or fractions E2a and E2b for manufacture to 201125849, one less ethylene derivative Compound. 2. The method of claim 1, wherein the low-cost residual gas system refinery waste gas. 3. The method of claim 2, wherein the refinery offgas is produced in at least one fluid catalytic cracking unit. The method of any one of claims 1 to 3, wherein the low-cost residual gas system contains a mixture of 0 gases of acetamidine and/or one or more precursors thereof and includes by weight From 10% to 60% of ethylene 〇5. The method of claim 4, wherein the low-cost 値 residual gas is characterized by a lower enthalpy of dry gas comprising between 20 and 75 MJ/kg. 〇6. The method of claim 1, wherein d) recycling fraction E1 to step a). 7. The method of claim 1, wherein e) subjecting the fraction F 2 to the second separation step S2', the second separation step comprises separating the fraction F2 into fraction E2 and separating into a heavy fraction. 8. The method of claim 1, wherein f) the fraction is sent for use in the manufacture of at least one ethylene derived compound. 9. The method of claim 1, wherein f) feeding the fraction E 2 or the fractions E 2 a and E 2 b to the DCE and any compound optionally derived therefrom, optionally After the hydrogenation of acetylene, and feeding to at least one ethylene-derived compound different from DCE, which is directly produced with ethylene, and any compound optionally derived therefrom, -93-201125849 10. The process of item 1, wherein f) the fraction E2 or the fractions E2a and E2b are sent to the compound for the manufacture of DCE and optionally derivatized therefrom, optionally after being subjected to acetylene hydrogenation. η. The method of claim 1, wherein the fractions E2, E2a and E2b contain up to 99.5% by volume of ethylene-94 relative to their total volume.
TW099141467A 2009-12-03 2010-11-30 Process for the manufacture of at least one ethylene derivative compound TW201125849A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09177959 2009-12-03

Publications (1)

Publication Number Publication Date
TW201125849A true TW201125849A (en) 2011-08-01

Family

ID=42086348

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099141467A TW201125849A (en) 2009-12-03 2010-11-30 Process for the manufacture of at least one ethylene derivative compound

Country Status (9)

Country Link
CN (1) CN102725253B (en)
AR (1) AR079436A1 (en)
BR (1) BR112012013333A2 (en)
CO (1) CO6571897A2 (en)
EA (1) EA024187B1 (en)
MX (1) MX2012006124A (en)
PE (1) PE20130169A1 (en)
TW (1) TW201125849A (en)
WO (1) WO2011067231A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014048864A2 (en) 2012-09-28 2014-04-03 Solvay Sa Process for producing liquefied impure ethylene

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1229999B (en) * 1964-01-31 1966-12-08 Huels Chemische Werke Ag Process for the production of 1, 2-dichloroethane
NL6901398A (en) 1969-01-29 1969-11-25
US4046822A (en) * 1971-10-26 1977-09-06 Stauffer Chemical Company Method for recovering ethylene values
DE3226042A1 (en) * 1982-07-12 1984-01-12 Hoechst Ag, 6230 Frankfurt Process for the preparation of 1,2-dichloroethane
FR2600643B1 (en) 1986-06-27 1988-09-23 Solvay ETHYLENE OXYCHLORATION PROCESS AND CATALYTIC COMPOSITIONS FOR OXYCHLORATION
EP0494474B1 (en) 1991-01-11 1994-09-21 SOLVAY (Société Anonyme) Oxychlorination catalytic composition and ethylene oxychlorination process using this composition
BE1007818A3 (en) 1993-12-08 1995-10-31 Solvay CATALYST COMPOSITION AND METHOD oxychlorination of ethylene USING THE COMPOSITION.
BE1013616A3 (en) 1998-10-30 2002-05-07 Solvay Chlorination ethylene cracking hydrocarbons obtained.
DE10159615A1 (en) * 2001-12-05 2003-06-12 Basf Ag Process for the preparation of 1,2-dichloroethane
BRPI0519701A2 (en) * 2004-12-23 2009-07-14 Solvay processes for the manufacture of 1,2 - dichloroethane and for the manufacture of vinyl chloride
WO2006067188A1 (en) 2004-12-23 2006-06-29 Solvay (Société Anonyme) Process for the manufacture of 1,2-dichloroethane
US20080108856A1 (en) 2004-12-23 2008-05-08 Michel Strebelle Process For The Manufacture Of 1,2-Dichloroethane
WO2006067190A1 (en) 2004-12-23 2006-06-29 Solvay (Société Anonyme) Process for the manufacture of 1,2-dichloroethane
FR2902784B1 (en) 2006-06-23 2008-09-05 Solvay PROCESS FOR PRODUCING 1,2-DICHLOROETHANE
FR2902785B1 (en) 2006-06-26 2008-08-08 Solvay PROCESS FOR PRODUCING 1,2-DICHLOROETHANE
FR2902786B1 (en) 2006-06-26 2008-08-29 Solvay PROCESS FOR PRODUCING 1,2-DICHLOROETHANE
FR2902787B1 (en) 2006-06-26 2008-09-05 Solvay PROCESS FOR PRODUCING 1,2-DICHLOROETHANE
EP2096095A1 (en) * 2008-02-28 2009-09-02 SOLVAY (Société Anonyme) Process for the manufacture of at least one ethylene derivative compound
JP2011513270A (en) * 2008-02-28 2011-04-28 ソルベイ(ソシエテ アノニム) Method for producing at least one ethylene derivative compound

Also Published As

Publication number Publication date
BR112012013333A2 (en) 2016-03-01
CN102725253A (en) 2012-10-10
WO2011067231A1 (en) 2011-06-09
EA201290427A1 (en) 2013-01-30
CO6571897A2 (en) 2012-11-30
PE20130169A1 (en) 2013-03-09
EA024187B1 (en) 2016-08-31
MX2012006124A (en) 2012-06-19
CN102725253B (en) 2015-11-25
AR079436A1 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
CN102056874B (en) Process for the manufacture of at least one ethylene derivative compound
KR101681388B1 (en) Process for Separating Propylene from Dehydrogenation Products of Propane-containing Feedstock
TW200946481A (en) Process for the manufacture of at least one ethylene derivative compound
CN105555923B (en) method for catalytic reforming
WO2001025174A1 (en) Process for producing ethylene
KR20070100322A (en) Process for the manufacture of 1,2-dichloroethane
TW200827325A (en) Process for the manufacture of 1,2-dichloroethane
JPH0679123A (en) Method for separating gaseous alkene from gas mixture containing gaseous alkene and not less than one kind of alkanes
JP2009541425A (en) Process for producing 1,2-dichloroethane
KR20110037960A (en) Process for the manufacture of 1,2-dichloroethane and of at least one ethylene derivative compound different from 1,2-dichloroethane
NZ264809A (en) Recovery of ethylene and/or propylene from cracked hydrocarbon stream by condensing the hydro-carbon stream followed by selective adsorption onto a solid and desorption of the alkene-rich fraction
TW201125849A (en) Process for the manufacture of at least one ethylene derivative compound
TW201139333A (en) Process for the manufacture of at least one ethylene derivative compound
CZ133197A3 (en) Process for preparing partial oxidation products derived from ethylene
EP2096095A1 (en) Process for the manufacture of at least one ethylene derivative compound
EP2130815A1 (en) Process for the manufacture of at least one ethylene derivative compound