TW201139333A - Process for the manufacture of at least one ethylene derivative compound - Google Patents

Process for the manufacture of at least one ethylene derivative compound Download PDF

Info

Publication number
TW201139333A
TW201139333A TW099141468A TW99141468A TW201139333A TW 201139333 A TW201139333 A TW 201139333A TW 099141468 A TW099141468 A TW 099141468A TW 99141468 A TW99141468 A TW 99141468A TW 201139333 A TW201139333 A TW 201139333A
Authority
TW
Taiwan
Prior art keywords
fraction
ethylene
advantageously
column
compound
Prior art date
Application number
TW099141468A
Other languages
Chinese (zh)
Inventor
Andre Petitjean
Massimo Giansante
Dominique Balthasart
Michel Lempereur
Joachim Koetter
Hans-Dieter Winkler
Peter Mews
Original Assignee
Solvay
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay filed Critical Solvay
Publication of TW201139333A publication Critical patent/TW201139333A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/389Separation; Purification; Stabilisation; Use of additives by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/013Preparation of halogenated hydrocarbons by addition of halogens
    • C07C17/02Preparation of halogenated hydrocarbons by addition of halogens to unsaturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/15Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination
    • C07C17/152Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons
    • C07C17/156Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons of unsaturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Process for the manufacture of at least one ethylene derivative compound starting a hydrocarbon source according to which (a) the hydrocarbon source, optionally containing fraction E1 recycled from step (d), is subjected to a simplified cracking which produces a mixture of products containing ethylene and other constituents; (b) the said mixture of products is subjected to a first separation step S1 which consists of separating said products containing ethylene and other constituents into a fraction containing the compounds which are lighter than ethylene and part of the ethylene called fraction F1 and into a fraction F2; (c) fraction F1 is sent to an ethylene recovery unit in which it is separated into a fraction enriched with ethylene called fraction E1 and into a fraction enriched with the compounds which are lighter than ethylene called light fraction; (d) fraction E1 is recycled to step (a) or is conveyed to the manufacture of at least one ethylene derivative compound; (e) fraction F2 is subjected to a second separation step S2 which consists of separating fraction F2 into one fraction enriched with ethylene called fraction E2 or into two fractions enriched with ethylene called fractions E2a and E2b, and into a fraction enriched with ethane and hydrocarbon containing at least 3 carbon atoms called heavy fraction; (f) fraction E2 or fractions E2a and E2b are then conveyed to the manufacture of at least one ethylene derivative compound.

Description

201139333 六、發明說明: 【發明所屬之技術領域】 本發明涉及一種用於製造至少一種乙烯衍生的化合物 的方法,特別是一種用於製造1,2-二氯乙烷(DCE )以及 直接從乙烯開始製造的、不同於DCE的至少一種乙烯衍生 的化合物的方法。 0 【先前技術】 迄今爲止,通常使用純度超過99.8%的乙烯來製造乙 烯衍生的化合物,特別是DCE。這種非常高純度的乙烯係 藉由不同石油產品的裂解而獲得的,爲了從裂解的其他產 品中分離出乙烯並且爲了獲得一純度非常高的產物,隨後 進行多種複雜和昂貴的分離操作。 考慮到與生產這種高純度的乙烯相關的高成本,已經 開發了使用具有的純度低於99.8%的乙烯來製造乙烯衍生 Q 的化合物特別是DCE的不同方法。該等方法具有減少成本 的優點,這係藉由簡化從得自裂解的產品中分離的過程, 並因此藉由去掉了對乙烯衍生的化合物(特別是D C E )的 生產無益的複雜的分離而實現。 例如,專利申請w〇 00/26 1 64描述了 一種藉由乙烷的 簡化裂解配合乙烯的氯化來製造DCE的方法。爲了這一效 果,在乙烷的裂解過程中得到的雜質的存在下發生了一個 乙烯氯化步驟。 專利申請WO 03/04808 8描述了借助乙烷的脫氫作用生 201139333 產用於和氯進行化學反應的低濃度乙烯 流不僅含有氫氣和甲烷,而且含有大量 了經濟地設計該方法,在複雜的清除過 轉化的乙烷送回到乙烷脫氫作用。這種 烷作爲進料。一個顯著的缺點係非常低 6 0% )以及該氣體流的其他組分(例如 烯)僅允許在非常特殊的方法中使用乙 專利申請 WO 2008/000705、WO 2008/000693的一部分描述了從乙烷流開 ’該乙烷流首先經受了催化氧化脫氫作 專利申請中描述的該等方法,它們的目 用具有的純度小於9 9.8 %的乙烯,然而 化脫氫作用的一第一步驟的缺點,該步 這引起了生產成本的增加。 另外,專利申請WO 2006/067188 、WO 2006/067 1 9 1、WO 2006/067 1 92 以及WO 2007/147870描述了從一烴源, 斯油、液化天然氣、乙烷、丙烷、丁烷 混合物開始製造DCE的方法,該烴源首 。該等方法的目標係生產和使用具有纪 乙烯,其方式爲:此後將具有不同乙烯 簡化裂解排出的氣體混合物中分離出’ 乙烯,它富含輕於乙烯的化合物’並且 烯並且其特徵在於低的氫氣含量’分別 。載有乙烷的氣體 未轉化的乙烷。爲 程之後,必須將未 方法僅可以使用乙 濃度的乙烯(小於 氫氣、丙烯、丁二 烯的事實。 2008/000702 和 WO 1始製造D C E的方法 用。然而,在上述 標係爲了生產和使 存在著需要催化氧 驟需要重大投資, 、WO 2006/067 1 90 、WO 2006/067 1 93 特別是石腦油、瓦 、異丁烷或它們的 先經受了簡化裂解 3純度低於99.8%的 組成的兩種餾分從 第一餾分含有部分 第二種餾分富含乙 被獨立送入一個氯 -6- 201139333 化反應器和一個氧氯化反應器以生產DCE。 低價値殘餘氣體,如在煉油廠(在煉油廠的流體催化 裂解(FCC )單元、焦化單元等)產生的煉油廠廢氣(也 稱爲石油化學廢氣),通常是燒掉以及作爲燃料使用,例 如在煉油廠內,而不對其中所含的烯烴進行任何回收,這 係因爲烯烴的含量相對較小並且與此種回收方法相關的成 本太高。 在專利申請WO 2009/1 06479中描述了一種目的在於生 產並使用具有的純度少於99.8 %的乙烯以及增値此類低價 値的殘餘氣體的方法。有關方法係一種用於從此類氣體開 始製造至少一種乙烯衍生的化合物的方法,使其經受一分 離過程,成爲兩種含有不同乙烯組成的餾分,之後分別送 去製造至少一種乙烯衍生的化合物。這種方法從低價値的 殘餘氣體開始,然而受制於此類氣體的、以及與一種製造 (該製造具有可能相矛盾的目的和限制)直接聯合的非常 Q 有限的可用性。201139333 VI. INSTRUCTIONS OF THE INVENTION: FIELD OF THE INVENTION The present invention relates to a process for the manufacture of at least one ethylene-derived compound, in particular for the manufacture of 1,2-dichloroethane (DCE) and directly from ethylene A process for the manufacture of at least one ethylene-derived compound other than DCE. 0 [Prior Art] To date, ethylene having a purity of more than 99.8% has been generally used to produce ethylene-derived compounds, particularly DCE. This very high purity ethylene is obtained by cracking of different petroleum products, in order to separate ethylene from other products of cracking and to obtain a very high purity product, followed by various complicated and expensive separation operations. In view of the high cost associated with the production of such high purity ethylene, different methods have been developed for the use of ethylene having a purity of less than 99.8% to produce ethylene-derived Q compounds, particularly DCE. These methods have the advantage of reduced cost by simplifying the process of separation from the product obtained from cracking and thus by eliminating the complex separation of the production of ethylene-derived compounds (especially DCE). . For example, patent application WO 00/26 1 64 describes a process for the manufacture of DCE by simplified cleavage of ethane in combination with chlorination of ethylene. For this effect, an ethylene chlorination step occurs in the presence of impurities obtained during the cracking of ethane. Patent application WO 03/04808 8 describes the dehydrogenation by means of ethane. 201139333 The low-concentration ethylene stream produced for chemical reaction with chlorine contains not only hydrogen and methane, but also contains a large number of economically designed methods in complex The over-converted ethane is removed and sent back to the ethane dehydrogenation. This alkane is used as a feed. A significant disadvantage is that it is very low 60%) and that other components of the gas stream (such as alkenes) are only allowed to be used in very specific methods. Part B of the patent application WO 2008/000705, WO 2008/000693 describes from B The alkane stream is first subjected to catalytic oxidative dehydrogenation as described in the patent application, and their purpose is to have a purity of less than 99.8% of ethylene, but a first step of dehydrogenation Disadvantages, this step causes an increase in production costs. In addition, patent applications WO 2006/067188, WO 2006/067 1 9 1 , WO 2006/067 1 92 and WO 2007/147870 describe starting from a hydrocarbon source, a mixture of oil, liquefied natural gas, ethane, propane and butane. A method of making DCE, the hydrocarbon source first. The aim of these processes is to produce and use hexaethylene in the following manner: after that, a mixture of gases having a simplified cracking of different ethylene is separated to extract 'ethylene, which is rich in compounds lighter than ethylene' and is characterized by low The hydrogen content is 'respectively. Ethane-laden gas Unconverted ethane. After the process, it is necessary to use only the ethylene concentration of ethylene (less than hydrogen, propylene, butadiene). The method of manufacturing DCE is started in 2008/000702 and WO 1. However, in the above-mentioned standard system for production and There is a significant investment in the need for catalytic oxygenation, WO 2006/067 1 90, WO 2006/067 1 93, in particular naphtha, watt, isobutane or their first to undergo simplified cleavage 3 purity below 99.8% The two fractions consisting of the first fraction from the first fraction containing a portion of the second fraction enriched in B are fed separately into a chloro-6-201139333 reactor and an oxychlorination reactor to produce DCE. Low-cost 値 residual gas, as in Refinery off-gas (also known as petrochemical waste gas) from refineries (fluid catalytic cracking (FCC) units in refineries, coking units, etc.), usually burned off and used as fuel, for example in refineries, not The olefins contained therein are subjected to any recovery because the olefin content is relatively small and the cost associated with such a recovery process is too high. A patent application WO 2009/1 06479 describes a The aim is to produce and use a process having a purity of less than 99.8% ethylene and a residual gas of such a low enthalpy. The method is a method for producing at least one ethylene-derived compound starting from such a gas. Subjected to a separation process, which becomes two fractions containing different ethylene compositions, which are then sent separately to produce at least one ethylene-derived compound. This process begins with a low-cost residual gas, but is subject to such gases, and Manufacturing (the manufacturing has potentially contradictory purposes and limitations) is a very limited availability of direct Q.

然而,在這一最近專利申請中描述的方法以及在專利 申請 WO 2006/067 1 8 8 、 WO 2006/067 1 90 、 WO 2006/067191、WO 2006/067192 ' WO 2006/067193 和 WO 2007/147870中描述的方法呈現出以下缺點,即:要求分 離爲兩種具有不同組成的乙嫌的飽分。另一缺點係這兩種 餾分的使用條件係不同的,這將會擾亂它們之後所用於的 方法。此外,考慮到它們含有的反應性雜質,對於兩種品 質的乙烯來說某些使用係不可接受的;例如氫氣,它在乙 201139333 烯的氧氯化過程中是不可接受的。另一缺點係,在乙烯餾 分中非常高含量的輕於乙烯的化合物暗示了增加待使用的 裝置的尺寸’並且致使提餾所帶來的損失增加,這使該方 法有效程度更低。最終,含有輕於乙烯的化合物的乙烯餾 分的增値變得更難,因爲它取決於所使用的單元的出口處 的壓力和溫度。 【發明內容】 本發明的目標的一部分係提供使用純度小於9 9 · 8 %的 乙烯來製造至少一種乙烯衍生的化合物、特別是至少D C E 的一種方法,該方法不存在使用具有純度小於9 9.8 %的乙 烯的上述方法的缺點,並且進一步允許對輕於乙烯的該等 化合物進行增値,在下游單元的操作中的更高的靈活性以 及在該等下游單元中的經濟性。 爲了這一效果,本發明涉及從一烴源開始製造至少一 種乙烯衍生的化合物的方法,根據該方法: a) 使隨意地含有從步驟d)再循環的餾分El之該烴源 進行簡化裂解作用,由此產生含有乙烯和其他組 分的產物的混合物; b) 使所述產物的混合物進行一第一分離步驟S 1,包 括含有乙烯和其他組分的所述產物分離成一含有 輕於乙烯的化合物以及部分乙烯之稱爲餾分F 1的 餾分,以及一餾分F2 ; c) 將餾分F1送入一乙烯回收單元,在其中它被分離 -8- 201139333 成富含乙烯之稱爲餾分El的一餾分,以及富含輕 於乙烯的化合物之稱爲輕餾分的一餾分; d) 將餾分El再循環到步驟a),或送去製造至少一種 乙烯衍生的化合物; e) 使餾分F2進行一第二分離步驟S2,包括將餾分F2 分離成富含乙烯之稱爲餾分E2的一餾分或者爲二 個富含乙烯之稱爲餾分E2 a和E2b的餾分,以及富 0 含乙烷和含有至少3個碳原子的烴之稱爲重餾分 的一餾分。 f) 然後將餾分E2或餾分E2a和E2b送去製造至少一種 乙烯衍生的化合物。 爲了本發明的目的,表述“至少一種乙烯衍生的化合 物”應理解爲係指可以由根據本發明的方法製造的一種或 多於一種的乙烯衍生的化合物。 表述“乙烯衍生的化合物”,以單數或複數形式在本 Q 文中使用,應理解爲係指爲了本發明的目的,直接從乙烯 開始製造的任何乙烯衍生的化合物連同任何由其衍生的化 合物。 表述“直接從乙烯開始製造的乙烯衍生的化合物”, 以單數或複數形式在本文中使用,應理解爲係指爲了本發 明的目的,直接由乙烯製造的任何化合物。 表述“由其衍生的化合物”,以單數或複數形式在本 文中使用,應理解爲係指爲了本發明的目的,從一本身由 乙烯製造的化合物製造的任何化合物連同由其衍生的任何 -9- 201139333 化合物。 作爲此類直接從乙烯開始製造的乙烯衍生的化合物的 實例’除其他之外可以提及:環氧乙烷、線性α-烯烴、線 性一級醇、乙烯的均聚物和共聚物、乙苯、乙酸乙烯酯、 乙醛、乙醇、丙醛和D C Ε。 作爲此種由其衍生的化合物的實例’除其他之外可以 提及, -由環氧乙烷製造的乙二醇類以及醚類, -由乙苯製造的苯乙烯以及衍生自苯乙烯的苯乙烯聚 合物, -從DCE製造的氯乙烯(VC), -由VC衍生的偏二氯乙烯、氟化的烴類和聚氯乙烯 (PVC ),以及由氟化的烴類衍生的氟化的聚合物 ,以及 -衍生自偏二氯乙烯的聚偏二氯乙烯以及氟化的烴類 (以及氟化的聚合物)。 根據本發明的方法係從烴源開始的一種方法。 所考慮的烴源可以是任何已知的烴源。較佳的是,經 受了裂解(步驟a))的烴源係選自:石腦油、瓦斯油、液 化天然氣、乙院、丙烷、丁烷、異丁烷以及它們的混合物 。在一特別佳的方式中,該烴源係選自下組,其組成爲: 乙烷、丙院、丁烷、以及丙烷/ 丁烷混合物。在一更特別 佳的方式中’該烴源係選自下組,其組成爲:丙烷、丁烷 、以及丙院/丁院混合物。該丙烷/丁烷混合物可以照這樣 -10- 201139333 存在或者可以由丙烷和丁烷的混合物構成。 爲了本發明的目的,表述乙院、丙院、丁院、以及丙 院/ 丁院混合物應理解爲係指可商購的產品,即主要包括 純的產品(乙烷、丙烷、丁烷或丙烷/ 丁烷作爲一混合物 )並且其次包括其他飽和或不飽和的烴類,它們比該純產 品本身更輕或更重。 在用於製造至少一種乙儲衍生的化合物的方法中,特 0 別是在用於製造DCE以及直接從乙烯開始製造的不同於 DCE的乙烯衍生的化合物的方法中,根據本發明,從一烴 源開始,使可隨意地含有從步驟d)再循環的餾分E1經受一 簡化裂解(步驟a)),由此產生含有乙烯和其他多種成分 、並且將經受步驟b)的一產物的混合物。 表述簡化裂解(步驟a))應理解爲係指爲了本發明的 目的,用於處理該烴源的所有步驟,該等步驟導致形成含 有乙烯和其他組分、並且將在此後進行分離的一產物的混 〇合物。 此種裂解可以根據已知的任何技術進行,只要它允許 產生含有乙烯以及其他組分的一產物的混合物。有利的是 ,該裂解包括在第三組分(如水、氧氣、一種硫衍生物和 /或一催化劑)存在或不存在時該烴源的熱解(也就是說 ,在熱的作用下的轉化)的第一裂解步驟。這一熱解的第 一裂解步驟有利地是在至少一個裂解爐中進行的,以引起 裂解產物的混合物的形成。 這種裂解產物的混合物有利地包括氫氣、一氧化碳、 -11 - 201139333 二氧化碳、氮氣、氧氣、硫化氫、包括至少一個碳原子的 有機化合物以及水。 熱解的第一裂解步驟較佳的是在至少兩個裂解爐內進 行,並且特別佳的是在至少三個裂解爐內進行。熱解的第 一裂解步驟較佳的是在最多五個裂解爐內進行,並且特別 佳的是在最多四個裂解爐內進行。更特別有利的是,當使 用中的該等裂解爐之一必須進行一除焦操作時,可用一額 外的裂解爐來替換這一裂解爐。 在一更特別佳的方式中,熱解的第一裂解步驟在三個 裂解爐內進行。在一最特別佳的方式中,熱解的第一裂解 歩驟在三個不同的裂解爐內進行,從每一爐中得到的裂解 產物的混合物被收集在一起。更特別有利的是,當裂解爐 必須經受一除焦操作時,可以用一第四裂解爐來替換使用 中的這三個裂解爐之一。 因此特別有利的是在三個不同的裂解爐內進行熱解的 第一裂解步驟,從每一爐中獲得的裂解產物的混合物以後 被收集在一起,並且使一第四裂解爐可用來替換使用中的 這三個裂解爐之一。 在這個熱解的第一裂解步驟之後,使所述裂解產物的 混合物經受一系列處理步驟,使之有可能獲得含有乙烯和 其他組分的一產物的混合物,這有利地由以下步驟組成’ 沒有必要按它們所列舉出的順序進行: -加熱該等裂解氣體的熱回收步驟, -可隨意地有機淬滅步驟(可隨意地包括跨過與中間 -12- 201139333 液體的一交換器網路的加熱回收), -水性淬滅步驟’ -壓縮步驟, -乾燥步驟,有利地包括一出口, -除去存在的或加入的大部分二氧化碳以及大部分硫 化合物的去除步驟(例如藉由一城液的洗滌), -對不希望的衍生物(例如乙炔)的可隨意的氫化步 驟,以及 -可隨意地對氫氣和/或甲烷的消除步驟,例如經由 一 PSA (變壓吸附)過程或經由一膜過程。 因此簡化裂解步驟a)有利地包括一熱解的第一裂解步 驟,接著是一系列處理步驟(以上詳細列出),在其中包 括一壓縮步驟和一乾燥步驟。 有利地,在根據本發明的方法中,來自步驟a)的含有 乙烯和其他組分的產物的混合物包括氫氣、甲烷、包含從 U 2至7個碳原子的化合物、一氧化碳、氮氣和氧氣。氫氣、 甲烷以及包含從2至7個碳原子的除乙炔之外的化合物,相 對於所述產物的混合物的總體積,較佳的是以按體積計至 少200 ppm的量存在。一氧化碳、氮氣、氧氣和乙炔,相 對於所述產物的混合物的總體積,可以按小於按體積計 200 ppm的量存在或者以按體積計至少200 ppm的量存在。 包含多於7個碳原子的化合物、二氧化碳、硫化氫以及其 他硫化合物以及還有水,相對於所述產物的混合物的總體 積’還能以按體積計小於200 ppm的量存在於上述產物的 -13- 201139333 混合物中。 該等氣體的壓縮和乾燥可以有利地在特殊的條件下進 行,這樣使得包含至少6個碳原子的化合物的通行減至最 小。可以使用的冷卻流體有利地是處於一溫度’該溫度低 於來自一空氣冷卻塔的水的溫度。該冷卻流體較佳的是處 於至少-5。(:的溫度,更佳的是至少〇 °C。該冷卻流體最佳的 是冰水。 在以上定義的步驟a)之後,使包含乙烯和其他組分的 產物的混合物經受步驟b )’該步驟係一第一分離步驟S 1 ’ 它包括將包含乙烯和其他組分的所述產物分離爲包含輕於 乙烯的化合物和部分乙烯的、稱爲餾分F1的一飽分’並且 分離爲一飽分F2。 在它的分離之前,可以使包含乙烯和其他組分的產物 的混合物經受一加熱調節步驟。 術語“加熱調節步驟”應理解爲是指爲了將混合物溫 度調節至分離的要求和/或爲了優化能量的使用的一系列 熱交換,較佳的是將混合物的溫度調節至分離的要求並且 優化能量的使用。 當熱調節步驟包括冷卻時’該冷卻有利地是在一套交 換器內逐級冷卻產物的混合物’首先用未處理的水冷卻’ 然後用冰冷的水冷卻,並且然後用漸冷的流體加上交叉交 換器冋收所產生的流的顯熱’當可獲得時可隨意地伴隨潛 熱。有利地,在冷卻步驟的過程中產生的該等冷凝物從氣 體流中被物理地分離,並且在隨後的處理中直接到適當位 -14- 201139333 置。在步驟s 1中包括的加熱調節較佳的是一冷卻過程,並 且分離的冷凝物較佳的是在步驟S 2中直接到一適當位置。 該第一分離步驟S 1有利地包括將包含乙烯和其他組分 的產物的混合物分級分離爲上述兩種不同的餾分。 爲了本發明的目的,術語“分級分離”應理解爲係指 可以被認爲是具有一種單一功能的潛在地多步過程的任意 一部分。該分級分離步驟可以在一或幾個相互連接的裝置 f > 中進彳了。 分級分離的實例係蒸餾、提取蒸餾、液-液提取、滲 透蒸發、氣體滲透、吸附、變壓吸附(P S A )、變溫吸附 (TSA )、吸收、色譜法、反滲透以及分子過濾。蒸餾係 較佳的。 因此步驟S 1較佳的是包括將包含乙烯和其他組分的的 產物的混合物在一蒸餾柱(稱爲柱C 1 )分級分離爲兩種不 同的餾分,即有利地從柱C 1的精餾段離開的餾分F 1和有利 Q 地從柱C 1的提餾段離開的餾分F2。 藉由蒸餾柱’根據本發明是指包括任意數目的相互連 接的塔的一柱。藉由塔,是指一單獨的塔,在其中實現了 液體和氣體的逆流接觸。 有利地’柱C 1並不包括多於兩個相互連接的塔。較佳 的是,柱C1由一單一的塔組成。 柱C1可以選自板式蒸餾柱、不規則塡充的蒸餾柱、規 整塡充的蒸餾柱以及組合了兩種或更多種上述內部構件的 蒸餾柱。 -15- 201139333 柱c 1有利地配有關聯的配件,例如像至少一個熱源以 及至少一個冷卻源。該熱源較佳的是一再沸器。該冷卻源 可以是直接或間接冷卻。間接冷卻的實例係一分凝器。直 接冷卻的實例係由一分凝器產生的液體的絕熱閃蒸。藉由 一分凝器產生的液體的絕熱閃蒸的直接冷卻係較佳的。在 分凝器中經受分凝的氣體可以源自柱C1或源自在可能的加 熱調節步驟之後進料至柱C1的多種產物的混合物,較佳的 是源自柱C1。源自該柱的流可以從提餾段或從精餾段獲取 ,較佳的是從柱c 1的提餾段獲取。它可以在提餾段的任何 地方獲取,較佳的是在提餾段的上三分之一的部分獲取, 更佳的是在其中進料了多種產物的混合物之處的下方的一 位置獲取。 所述產物的混合物可以作爲一單一的餾分或者作爲幾 個子餾分被引入柱C1。它較佳的是作爲幾個子餾分引入。 上述步驟s 1有利地是在至少5、較佳的是至少1 0、並 且特別佳的是至少12巴絕對値的壓力下進行。步驟s 1有利 地是在最多40、較佳的是最多38、並且特別佳的是最多36 巴絕對値的壓力下進行。 步驟S 1進行時的溫度在柱C1的提餾段的底端有利地爲 至少_ 4 0 °c、較佳的是至少-3 5 °C、並且特別佳的是至少-3〇°C。在柱C1的提餾段的底端有利地是最高80°C '較佳的 是最高6 0。(:、並且特別佳的是最高4 〇 °C。 步驟S 1進行時的溫度在柱C 1的精餾段的頂部有利地爲 至少-1 4 0 t:、較佳的是至少-1 3 0 °C、並且特別佳的是至少- -16 - 201139333 1 25 °c。在柱C 1的精餾段的頂部有利地是最高〇°C、較佳的 是最高-15°C、並且特別佳的是最高-25°C。 在以上定義的步驟b)之後,將餾分F1送入一個乙嫌回 收單元,在其中它被分離爲富含乙烯的、稱爲餾分E1的一 餾分,並且被分離爲富含輕於乙烯的該等化合物的、稱爲 輕餾分(步驟c))的一餾分。 在乙烯回收單元中的分離有利地包括將餾分F 1分級分 離爲以上提到的兩種不同的餾分。參照了術語“分級分離 ”的定義連同以上對於步驟b)提到的分級分離的實例。 根據步驟c)的一第一實施方式,使餾分F1有利地經受 一吸收步驟,隨後是一解吸步驟,其中使所述餾分F 1較佳 的是與含有一溶劑的洗滌劑相接觸,以分離爲餾分E 1以及 輕飽分。 表述“含有一溶劑的洗滌劑”或更簡單的“洗滌劑” 應理解爲係指其中的溶劑係以液態存在的一組合物。 因此,根據本發明可以使用的洗滌劑有利的是含有一 處於液態的溶劑。在所述洗滌劑中存在其他化合物完全沒 有被排除在本發明的範圍之外。然而,較佳的是該洗滌劑 包含至少5 0體積%的溶劑,更特別佳的是至少6 5體積%並 且最特別佳的是至少7 0體積%。 一可以使用的第一組溶劑有利地是其特徵在於熔融溫 度等於或小於-1 10°c、較佳的是等於或小於-105°c、更佳 的是等於或小於-1 0 0 °c的溶劑。 可以使用的第二組溶劑係特徵在於熔融溫度高於第一 -17- 201139333 組溶劑的熔融溫度的溶劑。然而在最後這個例子中 地應用了對餾分F 1進行的適當的熱調節步驟。較佳 熱調節係如步驟b)中限定的一加熱調節步驟。 作爲根據該第一組的溶劑,可以列舉例如飽和 飽和烴以及礦物油。 飽和或不飽和烴可以被用作純的烴或作爲烴的 。飽和以及不飽和烴的實例係丙烷/丁烷(LPG )混 苯、藉由根據本發明的方法產生的重餾分、環戊垸 物、環戊烯和衍生物(特別是甲基環戊烯和乙基環 、環己烷和衍生物(特別是甲基環己烷和乙基環己 環己烯和衍生物、以及C8-C9異鏈烷烴。甲基環己 基環己烷和c8-c9異鏈烷烴係較佳的。甲基環己烷 環己烷係特別佳的。 作爲根據該第二組的溶劑,可以列舉例如氯化 (像DCE )、醇類、二醇類、多元醇類、醚類、以 類和醚類的混合物。 第一組的溶劑優於第二組的溶劑。 用於吸收步驟的洗滌劑可以由新鮮的洗滌劑組 由在以下說明的解吸步驟中回收的所有的或部分的 組成,在可隨意的處理後,可隨意地添加了新鮮的 洗滌劑和餾分F 1的相應的通過量之間的比率並 ,並且可以在很大範圍內變化。它實際上僅受再 劑的成本所限制。一般說來,對於每噸餾分F 1 ’ ,有利 的是, 烴、不 混合物 合物、 和衍生 戊烯) 烷)、 烷、乙 和乙基 的溶劑 及二醇 成或者 洗滌劑 洗滌劑 不關鍵 該洗滌 漉劑的 -18- 201139333 通過量至少爲0·1噸、較佳的是至少爲0.2噸、並 的是爲至少0.25噸。一般說來,對於每噸餾分F1 的通過量最多爲100噸、較佳的是最多爲50噸、 佳的是最多爲25噸。 該吸收步驟有利地是借助一吸收器進行,例 膜或降膜吸收器,或者像選自板式柱、不規則塡 整塡充柱、結合有一或多種前述內部構件的柱、 0 柱的一吸收柱。該吸收步驟較佳的是地借助一吸 ,並且特別佳的是借助一板式吸收柱。 該吸收柱可以配備或者不配備相關的熱交換 用第一組的溶劑時,該吸收柱有利地不配備相關 器。當使用第二組的溶劑時,該吸收柱有利地配 熱交換器。 當使用第一組的溶劑時,上述吸收步驟有利 少1 5巴絕對、較佳的是在至少20巴絕對値、並且 Q 是在至少25巴絕對値的壓力下進行。該吸收步驟 最多40巴絕對値、較佳的是在最多35巴絕對値、 佳的是在最多3 0巴絕對値的壓力下進行。However, the method described in this most recent patent application, as well as in the patent applications WO 2006/067 1 8 8 , WO 2006/067 1 90 , WO 2006/067191 , WO 2006/067192 ' WO 2006/067193 and WO 2007/147870 The method described in the present invention presents the disadvantage of requiring separation into two suspected satieties with different compositions. Another disadvantage is that the conditions of use of the two fractions are different, which will confuse the methods that are used later. Moreover, given the reactive impurities they contain, certain uses are unacceptable for the two grades of ethylene; for example, hydrogen, which is unacceptable during the oxychlorination of B 201139333. Another disadvantage is that very high levels of lighter than ethylene compounds in the ethylene fraction suggest an increase in the size of the unit to be used' and result in increased losses due to stripping, which makes the process less effective. Finally, the increase in the ethylene fraction containing lighter than ethylene compounds becomes more difficult because it depends on the pressure and temperature at the outlet of the unit used. SUMMARY OF THE INVENTION A part of the object of the present invention is to provide a process for producing at least one ethylene-derived compound, in particular at least DCE, using ethylene having a purity of less than 99.8%, which method does not exist and has a purity of less than 99.8%. The above-described disadvantages of ethylene, and further allow for the enhancement of the compounds lighter than ethylene, the greater flexibility in the operation of downstream units and the economics in such downstream units. For this effect, the invention relates to a process for the production of at least one ethylene-derived compound starting from a hydrocarbon source, according to which: a) a simplified cracking of the hydrocarbon source optionally containing the fraction El recycled from step d) Thereby producing a mixture of products comprising ethylene and other components; b) subjecting the mixture of products to a first separation step S1, comprising separating the product containing ethylene and other components into a lighter than ethylene a compound and a fraction of ethylene referred to as fraction F 1 and a fraction F2; c) a fraction F1 is sent to an ethylene recovery unit where it is separated from -8-201139333 into an ethylene-rich fraction called fraction El a fraction, and a fraction known as a light fraction enriched in an ethylene-lightering compound; d) recycling fraction El to step a) or sent to produce at least one ethylene-derived compound; e) subjecting fraction F2 to a fraction The second separation step S2 comprises separating the fraction F2 into a fraction rich in ethylene called fraction E2 or a fraction of two ethylene-rich fractions E2 a and E2b, and 0 rich in ethane. And a fraction of a hydrocarbon containing at least 3 carbon atoms, referred to as a heavy fraction. f) Fraction E2 or fractions E2a and E2b are then sent to produce at least one ethylene-derived compound. For the purposes of the present invention, the expression "at least one ethylene-derived compound" is understood to mean one or more than one ethylene-derived compound which can be produced by the process according to the invention. The expression "ethylene-derived compound", used in the singular or plural form, is understood to mean any ethylene-derived compound which is directly produced from ethylene for the purposes of the present invention, together with any compound derived therefrom. The expression "ethylene-derived compound produced directly from ethylene", used herein in the singular or plural, is understood to mean any compound made directly from ethylene for the purposes of the present invention. The expression "a compound derived therefrom", used herein in the singular or plural, is understood to mean any compound made from a compound itself made from ethylene for the purposes of the present invention, together with any -9 derived therefrom. - 201139333 compound. Examples of such ethylene-derived compounds which are produced directly from ethylene can be mentioned, among others, ethylene oxide, linear alpha-olefins, linear primary alcohols, homopolymers and copolymers of ethylene, ethylbenzene, Vinyl acetate, acetaldehyde, ethanol, propionaldehyde and DC oxime. Examples of such compounds derived therefrom may be mentioned, among others, ethylene glycols and ethers made from ethylene oxide, styrene made from ethylbenzene and benzene derived from styrene. Ethylene polymer, - vinyl chloride (VC) manufactured from DCE, - vinylidene chloride derived from VC, fluorinated hydrocarbons and polyvinyl chloride (PVC), and fluorinated by fluorinated hydrocarbons Polymers, as well as - polyvinylidene chloride derived from vinylidene chloride and fluorinated hydrocarbons (and fluorinated polymers). The process according to the invention is a process starting from a hydrocarbon source. The source of hydrocarbons considered may be any known source of hydrocarbons. Preferably, the source of hydrocarbons subjected to cracking (step a)) is selected from the group consisting of: naphtha, gas oil, liquefied natural gas, acetylene, propane, butane, isobutane, and mixtures thereof. In a particularly preferred manner, the hydrocarbon source is selected from the group consisting of: ethane, propylene, butane, and propane/butane mixtures. In a more particularly preferred manner, the hydrocarbon source is selected from the group consisting of propane, butane, and a mixture of propylene/butadiene. The propane/butane mixture may be present as described in -10-201139333 or may consist of a mixture of propane and butane. For the purposes of the present invention, the expression of a mixture of a hospital, a hospital, a hospital, and a hospital is understood to mean a commercially available product, i.e., mainly comprising a pure product (ethane, propane, butane or propane). /butane as a mixture) and secondly other saturated or unsaturated hydrocarbons which are lighter or heavier than the pure product itself. In the process for producing at least one B-derived-derived compound, in a process for producing DCE and an ethylene-derived compound different from DCE which is directly produced from ethylene, according to the present invention, from a hydrocarbon The source is initially subjected to a simplified cleavage (step a)) optionally containing fraction E1 recycled from step d), thereby producing a mixture comprising ethylene and other various components which will be subjected to a product of step b). The expression simplified cleavage (step a)) is understood to mean all the steps for treating the hydrocarbon source for the purposes of the present invention, which result in the formation of a product containing ethylene and other components which will be separated thereafter. Mixed mixture. Such cracking can be carried out according to any known technique as long as it allows the production of a mixture of a product containing ethylene and other components. Advantageously, the cracking comprises pyrolysis of the hydrocarbon source in the presence or absence of a third component such as water, oxygen, a sulfur derivative and/or a catalyst (that is, conversion under the action of heat) The first lysis step. The first cracking step of this pyrolysis is advantageously carried out in at least one cracking furnace to cause the formation of a mixture of cracked products. The mixture of such cracking products advantageously comprises hydrogen, carbon monoxide, -11 - 201139333 carbon dioxide, nitrogen, oxygen, hydrogen sulfide, an organic compound comprising at least one carbon atom, and water. The first cracking step of pyrolysis is preferably carried out in at least two cracking furnaces, and particularly preferably in at least three cracking furnaces. The first cracking step of pyrolysis is preferably carried out in up to five cracking furnaces, and particularly preferably in up to four cracking furnaces. It is more particularly advantageous to replace the cracking furnace with an additional cracking furnace when one of the cracking furnaces in use must perform a decoking operation. In a more particularly preferred manner, the first cracking step of pyrolysis is carried out in three cracking furnaces. In a most particularly preferred manner, the first pyrolysis cracking step is carried out in three different cracking furnaces, and the mixture of cracking products obtained from each furnace is collected. More particularly advantageously, when the cracking furnace has to undergo a decoking operation, a fourth cracking furnace can be used to replace one of the three cracking furnaces in use. It is therefore particularly advantageous to carry out the first cracking step of pyrolysis in three different cracking furnaces, the mixture of cracking products obtained from each furnace is later collected together, and a fourth cracking furnace can be used for replacement. One of the three cracking furnaces. After this first pyrolysis cracking step, the mixture of cracking products is subjected to a series of processing steps, making it possible to obtain a mixture of products comprising ethylene and other components, which advantageously consists of the following steps: It is necessary to carry out the order in which they are listed: - a heat recovery step for heating the cracked gases, - an optional organic quenching step (optionally including an exchange network spanning the liquid with the intermediate -12-201139333) Heating recovery), - aqueous quenching step ' - compression step, - drying step, advantageously comprising an outlet, - removal of most or all of the added carbon dioxide and most sulfur compounds (for example by means of a city liquid Washing, - an optional hydrogenation step for undesired derivatives (such as acetylene), and - optionally a step of eliminating hydrogen and/or methane, for example via a PSA (pressure swing adsorption) process or via a membrane process. The simplified cracking step a) thus advantageously comprises a pyrolysis first cracking step followed by a series of processing steps (listed above in detail) comprising a compression step and a drying step. Advantageously, in the process according to the invention, the mixture of products comprising ethylene and other components from step a) comprises hydrogen, methane, a compound comprising from U 2 to 7 carbon atoms, carbon monoxide, nitrogen and oxygen. Hydrogen, methane and compounds other than acetylene containing from 2 to 7 carbon atoms are preferably present in an amount of at least 200 ppm by volume relative to the total volume of the mixture of products. Carbon monoxide, nitrogen, oxygen and acetylene may be present in an amount less than 200 ppm by volume or in an amount of at least 200 ppm by volume relative to the total volume of the mixture of products. Compounds containing more than 7 carbon atoms, carbon dioxide, hydrogen sulfide, and other sulfur compounds, and also water, relative to the total volume of the mixture of products, can also be present in the above products in an amount of less than 200 ppm by volume. -13- 201139333 In the mixture. The compression and drying of such gases can advantageously be carried out under special conditions such that the passage of compounds containing at least 6 carbon atoms is minimized. The cooling fluid that can be used is advantageously at a temperature that is lower than the temperature of the water from an air cooling tower. Preferably, the cooling fluid is at least -5. The temperature of (: is more preferably at least 〇 ° C. The cooling fluid is preferably ice water. After step a) as defined above, the mixture comprising the product of ethylene and other components is subjected to step b)' The step is a first separation step S 1 ' which comprises separating the product comprising ethylene and other components into a fraction comprising a compound lighter than ethylene and a portion of ethylene, referred to as fraction F1, and is separated into a full F2. The mixture comprising the product of ethylene and other components can be subjected to a heating conditioning step prior to its separation. The term "heating conditioning step" is understood to mean a series of heat exchanges for adjusting the temperature of the mixture to the requirements of separation and/or for optimizing the use of energy, preferably adjusting the temperature of the mixture to the requirements of separation and optimizing the energy. usage of. When the thermal conditioning step includes cooling, the cooling is advantageously a stepwise cooling of the product mixture in a set of exchangers 'first cooled with untreated water' and then cooled with ice-cold water, and then with a chilled fluid plus The sensible heat of the stream produced by the cross-exchanger is arbitrarily accompanied by latent heat when available. Advantageously, the condensate produced during the cooling step is physically separated from the gas stream and is passed directly to the appropriate position in subsequent processing -14-201139333. The heating adjustment included in step s 1 is preferably a cooling process, and the separated condensate is preferably directed to a suitable position in step S2. The first separation step S 1 advantageously comprises fractionating a mixture comprising products of ethylene and other components into the two different fractions described above. For the purposes of the present invention, the term "fractionation" is understood to mean any part of a potentially multi-step process that can be considered to have a single function. This fractionation step can be carried out in one or several interconnected devices f >. Examples of fractionation are distillation, extractive distillation, liquid-liquid extraction, pervaporation, gas permeation, adsorption, pressure swing adsorption (P S A ), temperature swing adsorption (TSA), absorption, chromatography, reverse osmosis, and molecular filtration. Distillation is preferred. Thus step S1 preferably comprises fractionating a mixture comprising products of ethylene and other components in a distillation column (referred to as column C1) into two different fractions, advantageously from column C1. Fraction F1 leaving the section and Fraction F2 leaving Q from the stripping section of column C1. By distillation column' is meant according to the invention a column comprising any number of interconnected columns. By tower, it is meant a separate column in which countercurrent contact of liquid and gas is achieved. Advantageously, column C 1 does not include more than two interconnected columns. Preferably, column C1 consists of a single column. Column C1 may be selected from the group consisting of a plate distillation column, an irregularly charged distillation column, a conditioned distillation column, and a distillation column in which two or more of the above internal components are combined. -15- 201139333 Column c 1 is advantageously provided with associated accessories, such as, for example, at least one heat source and at least one cooling source. The heat source is preferably a reboiler. The cooling source can be cooled directly or indirectly. An example of indirect cooling is a dephlegmator. An example of direct cooling is adiabatic flashing of the liquid produced by a dephlegmator. Direct cooling of the adiabatic flash of liquid produced by a dephlegmator is preferred. The gas subjected to partial condensation in the dephlegmator may be derived from column C1 or from a mixture of various products fed to column C1 after a possible heating conditioning step, preferably from column C1. The stream from the column can be taken from the stripping section or from the rectifying section, preferably from the stripping section of column c1. It can be taken anywhere in the stripping section, preferably in the upper third of the stripping section, and more preferably in a position below where the mixture of products is fed. . The mixture of products can be introduced into column C1 as a single fraction or as several sub-fractions. It is preferably introduced as several subfractions. The above step s 1 is advantageously carried out at a pressure of at least 5, preferably at least 10, and particularly preferably at least 12 bar absolute. Step s 1 is advantageously carried out at a pressure of at most 40, preferably at most 38, and particularly preferably at most 36 bar absolute. The temperature at which step S1 is carried out is advantageously at least _40 ° C, preferably at least -3 5 ° C, and particularly preferably at least -3 ° C at the bottom end of the stripping section of column C1. The bottom end of the stripping section of column C1 is advantageously up to 80 ° C ', preferably up to 60 °. (:, and particularly preferably up to 4 ° C. The temperature at which step S 1 is carried out is advantageously at least -1 40 t: preferably at least -1 3 at the top of the rectifying section of column C 1 0 ° C, and particularly preferably at least -16 - 201139333 1 25 °c. The top of the rectifying section of column C 1 is advantageously the highest 〇 ° C, preferably the highest -15 ° C, and special Preferably, it is up to -25 ° C. After step b) as defined above, fraction F1 is sent to a suspected recovery unit where it is separated into an ethylene-rich fraction called fraction E1 and is It is isolated as a fraction known as a light fraction (step c)) rich in such compounds lighter than ethylene. Separation in the ethylene recovery unit advantageously comprises fractionating the fraction F 1 into the two different fractions mentioned above. Reference is made to the definition of the term "fractionation" along with the examples of fractionation mentioned above for step b). According to a first embodiment of step c), fraction F1 is advantageously subjected to an absorption step followed by a desorption step wherein said fraction F 1 is preferably contacted with a detergent containing a solvent to separate It is fraction E 1 and light satiety. The expression "detergent containing a solvent" or more simply "detergent" is understood to mean a composition in which the solvent is present in a liquid state. Therefore, the detergent which can be used in accordance with the present invention advantageously contains a solvent in a liquid state. The presence of other compounds in the detergent is not excluded at all from the scope of the present invention. Preferably, however, the detergent comprises at least 50% by volume of solvent, more particularly preferably at least 5% by volume and most preferably at least 70% by volume. A first group of solvents which can be used is advantageously characterized in that the melting temperature is equal to or less than -1 10 ° C, preferably equal to or less than -105 ° C, more preferably equal to or less than -1 0 0 °c Solvent. A second group of solvents that can be used is characterized by a solvent having a melting temperature higher than the melting temperature of the first -17-201139333 group of solvents. However, in the last example, an appropriate thermal conditioning step for fraction F 1 is applied. Preferably, the thermal conditioning is as described in step b). As the solvent according to the first group, for example, a saturated saturated hydrocarbon and a mineral oil can be mentioned. Saturated or unsaturated hydrocarbons can be used as pure hydrocarbons or as hydrocarbons. Examples of saturated and unsaturated hydrocarbons are propane/butane (LPG) mixed benzene, heavy fractions produced by the process according to the invention, cyclopentamidines, cyclopentenes and derivatives (especially methylcyclopentene and Ethyl ring, cyclohexane and derivatives (especially methylcyclohexane and ethylcyclohexene hexene and derivatives, and C8-C9 isoparaffins. methylcyclohexylcyclohexane and c8-c9 The paraffin is preferably a methylcyclohexane cyclohexane. The solvent according to the second group may, for example, be chlorinated (like DCE), an alcohol, a glycol, or a polyhydric alcohol. a mixture of ethers, ethers and ethers. The first group of solvents is superior to the second group of solvents. The detergent used in the absorption step can be recovered from the fresh detergent group by all of the desorption steps described below. Or a partial composition, after a random treatment, the ratio between the fresh detergent and the corresponding throughput of the fraction F 1 can be optionally added and can vary over a wide range. The cost of the re-agent is limited. Generally speaking, for each ton of fraction F 1 ', Advantageously, hydrocarbons, non-mixtures, and derivatized pentene), alkane, ethyl and ethyl solvents and diols or detergents are not critical to the detergent -18-201139333 throughput at least It is 0.1 ton, preferably at least 0.2 ton, and is at least 0.25 ton. In general, the throughput per ton of fraction F1 is at most 100 tons, preferably at most 50 tons, and preferably at most 25 tons. The absorption step is advantageously carried out by means of an absorber, such as a membrane or a falling film absorber, or an absorption selected from the group consisting of a plate column, an irregularly entangled column, a column incorporating one or more of the aforementioned internal components, and a 0 column. column. The absorption step is preferably by means of a suction, and particularly preferably by means of a plate type absorption column. When the absorption column can be equipped with or without the associated first set of solvents for heat exchange, the absorption column is advantageously not equipped with a correlator. When a second set of solvents is used, the absorption column is advantageously equipped with a heat exchanger. When the first group of solvents is used, the above absorption step is advantageously 15 bar absolute, preferably at least 20 bar absolute, and Q is carried out at a pressure of at least 25 bar absolute. The absorption step is carried out at a maximum of 40 bar absolute, preferably at a maximum of 35 bar absolute, preferably at a pressure of up to 30 bar absolute.

當使用第一組的溶劑時,該吸收步驟進行時 該吸收器或吸收柱頂部有利地是在至少-1 20°C ’ 在至少-1 1 5 °c並且特別佳的是在至少·1 1 0 °C。在 或吸收柱的頂部有利地是在最高-5 0°C ’較佳的ί 6 (TC並且特別佳的是在最高-65 °C。此外’該吸收 時的溫度有利地比溶劑的熔融溫度高2 °c ’較佳E 且特別佳 ,洗滌劑 並且特別 如像一升 充柱、規 以及噴灑 收柱進行 器。當使 的熱交換 備相關的 地是在至 特別佳的 有利地在 並且特別 的溫度在 較佳的是 該吸收器 !在最筒_ 步驟進行 勺是高5 t -19- 201139333 當使用第一組的溶劑時’在該吸收器或吸收柱底端的 溫度爲至少-1 2 0 °C,較佳的是爲至少-1 1 5 °C並且特別佳的 是爲至少-1 1 0 °C。它有利地爲最高-5 0 °C ’較佳的是最高 爲-60°C並且特別佳的是爲最高_65 °C。 當使用第二組的溶劑時,上述吸收步驟有利地是在至 少1 5巴絕對値,較佳的是在至少2 〇巴絕對値並且特別佳的 是在至少2 5巴絕對値的壓力下進行。該吸收步驟有利地在 最多4 0巴絕對値,較佳的是在最多3 5巴絕對値並且特別佳 的是在最多3 0巴絕對値的壓力下進行。 當使用第二組的溶劑時,該吸收步驟進行時的溫度在 該吸收器或吸收柱頂部有利地是在至少-1 〇 °c,較佳的是在 至少o°c並且特別佳的是在至少1 o°c。在該吸收器或吸收柱 的頂部有利地是在最高60°c,較佳的是在最高50°c並且特 別佳的是在最筒4 0 °C。 當使用第二組的溶劑時,在該吸收器或吸收柱底端的 溫度爲至少0°c,較佳的是爲至少1 0°c並且特別佳的是爲至 少20°C。它有利地爲最高70°C,較佳的是最高爲60°C並且 特別佳的是爲最高5 0°C。 有利地,使從吸收步驟得到的流(該流係純化掉比乙 烯輕的化合物並且富含洗滌劑的餾分F 1 )經受解吸步驟。 較佳的是,在該解吸步驟之後回收的洗滌劑被全部或 部分地送回到該吸收步驟,在上述可隨意的處理之後,可 隨意地添加新鮮的洗滌劑。 -20- 201139333 該解吸步驟有利地是借助一解吸器進行,例如像一升 膜或降膜解吸器’ 一再沸器或者一選自板式柱、不規則塡 充柱、規整塡充柱、結合有一或多種前述內部構件的柱和 噴灑柱的解吸柱。該解吸步驟較佳的是借助一解吸柱進行 ,並且特別佳的是借助一板式解吸柱進行。 該解吸柱有利地配有關聯的配件,例如像在柱的內部 或外部的至少一個冷凝器或一個冷卻器以及至少一個再沸 器。 解吸壓力有利地被選擇爲使得再生溶劑中的乙烯含量 係按重量計小於或等於4%,較佳的是小於或等於3.2%。 當使用第一組的溶劑時,上述解吸步驟有利地是在至 少1巴絕對値,較佳的是在至少2巴絕對値並且特別佳的是 在至少3巴絕對値的壓力下進行。該解吸步驟有利地是在 最多25巴絕對値,較佳的是在最多20巴絕對値並且特別佳 的是在最多1 8巴絕對値的壓力下進行。 當使用第一組的溶劑時,該解吸步驟進行時的溫度在 該解吸器或解吸柱頂部有利地是在至少-1 ’較佳的是在 至少0°C並且特別佳的是在至少1 。在該解吸器或解吸柱 頂部有利地爲最高6(TC,較佳的是爲最高5〇°C並且特別佳 的是爲最高45°C。 當使用第一組的溶劑時,在該解吸器或解吸柱底端的 溫度爲至少2 0 t,較佳的是爲至少2 5。(:並且特別佳的是爲 至少3 0 °C。它有利地爲最高2 0 0 t,較佳的是爲最筒1 6 0 °C 並且特別佳的是爲最高150°C。 -21 - 201139333 當使用第二組的溶劑時,上述解吸步驟有利地是在至 少1巴絕對値,較佳的是在至少2巴絕對値並且特別佳的是 在至少3巴絕對値的壓力下進行。該解吸步驟有利地是在 最多2 0巴絕對値,較佳的是在最多1 5巴絕對値並且特別佳 的是在最多1 〇巴絕對値的壓力下進行。 當使用第二組的溶劑時,該解吸步驟進行時的溫度在 該解吸器或解吸柱頂部有利地是在至少-10 °c ’較佳的是在 至少01並且特別佳的是在至少1 〇 °c。在該解吸器或解吸柱 頂部有利地爲最高6 0 °c,較佳的是爲最高5 0 °C並且特別佳 的是爲最局4 5 °C。 當使用第二組的溶劑時,在該解吸器或解吸柱底端的 溫度爲至少6(TC,較佳的是爲至少80°c並且特別佳的是爲 至少1 0 0 °C。它有利地爲最高2 0 0 °C,較佳的是爲最高1 6 0 °C 並且特別佳的是爲最高1 5 0°C。 再生溶劑有利地的是在一加熱調節步驟之後的吸收中 至少部分地再使用,該加熱調節步驟較佳的是包括在一交 叉熱交換器中用離開吸收柱的溶劑進行冷卻。 一最特別的較佳的方案附屬於以下情況’即吸收步驟 在一吸收柱中進行並且解吸步驟在一解吸柱中進行。 在當根據本發明的方法係針對DCE的生產時的具體情 況下,使用由D C E組成的洗滌劑將是有意義的。在這種情 況下,用於該吸收步驟的洗滌劑可以由離開該氯化單元的 DCE粗品、離開該氧氯化單元的DC E粗品或者還未被純化 的這二者的混合物組成。它也可以由所述經預先純化的 -22- 201139333 DC E或者在解吸步驟的過程中回收的所有的或部分的洗滌 劑組成,在可隨意的處理之後,可隨意地添加了新鮮的洗 滌劑。該解吸還可以藉由直接噴射蒸汽以收集DCE來進行 〇 當D C E係洗滌劑時的情況的一實質的優點在於以下事 實,即該DCE的存在毫不麻煩,因爲它主要是在氧氯化作 用或氯化作用的過程中形成的化合物。 0 根據步驟c)的一第二實施方式,飽分F 1有利地經受一 吸附步驟,隨後是一解吸步驟,以分離爲餾分E 1以及輕餾 分。 該吸附步驟有利地包括使餾分F 1通過一裝有一吸附劑 的吸附床。該吸附床可以是一流化床或是一固定床。可以 使用任何在本領域中已知的吸附劑。此類吸附劑的例子係 那些基於銀的或基於銅的化合物。那些銀或銅的化合物通 常被支撐在一具有足夠高的表面積的載體上。載體的實例 Q 係活性炭、碳粉 '活性鋁以及沸石。吸附劑通常是以球粒 或者珠粒形式存在的固體。 吸附步驟有利地在至少1 5巴絕對値,較佳的是在至少 20巴絕對値並且特別佳的是至少在25巴絕對値的壓力下進 行。吸附步驟有利地在最多40巴絕對値,較佳的是在最多 3 5巴絕對値並且特別佳的是在最多3 0巴絕對値的壓力下進 行。When the first group of solvents is used, the absorber or absorption column top is advantageously at least -1 20 ° C ' at least -1 to 15 ° C and particularly preferably at least 1 1 when the absorption step is carried out. 0 °C. At the top of the or absorption column is advantageously at a maximum of -5 0 ° C 'better ί 6 (TC and particularly preferably at a maximum of -65 ° C. In addition, the temperature at the absorption is advantageously better than the melting temperature of the solvent High 2 °c 'better E and particularly good, detergents and specials like a one-liter filling column, gauge and spray-retractor. When the heat exchange is made to be in a particularly favorable and The special temperature is preferably the absorber! In the most barrel _ step the spoon is high 5 t -19- 201139333 when using the first group of solvents 'the temperature at the bottom of the absorber or absorption column is at least -1 20 ° C, preferably at least -1 to 15 ° C and particularly preferably at least -1 to 10 ° C. It is advantageously at most -5 0 ° C 'preferably up to -60 °C and particularly preferably at a maximum of _65 ° C. When a second group of solvents is used, the above absorption step is advantageously at least 15 bar absolute, preferably at least 2 bar absolute and special Preferably, the pressure is carried out at a pressure of at least 25 bar absolute. The absorption step is advantageously at most 40 bar absolute, It is carried out at a pressure of up to 3 5 bar absolute and particularly preferably at a pressure of up to 30 bar absolute. When a second group of solvents is used, the temperature at which the absorption step is carried out is at the top of the absorber or absorption column. Advantageously at least -1 ° C, preferably at least o ° c and particularly preferably at least 1 ° C. The top of the absorber or absorption column is advantageously at a maximum of 60 ° c, Preferably at a maximum of 50 ° C and particularly preferably at the maximum temperature of 40 ° C. When using the second group of solvents, the temperature at the bottom end of the absorber or absorption column is at least 0 ° C, preferably It is at least 10 ° C and particularly preferably at least 20 ° C. It is advantageously at most 70 ° C, preferably at most 60 ° C and particularly preferably at most 50 ° C. Advantageously The stream obtained from the absorption step which purifies the lighter compound than ethylene and the detergent-rich fraction F 1 is subjected to a desorption step. Preferably, the detergent recovered after the desorption step is wholly or Partially sent back to the absorption step, after the above optional treatment, optionally add fresh Detergent. -20- 201139333 The desorption step is advantageously carried out by means of a desorber, such as a one-liter membrane or falling membrane desorber 'a reboiler or a plate-type column, an irregular enthalpy column, a regular enthalpy column a column incorporating one or more of the aforementioned internal components and a desorption column of the spray column. The desorption step is preferably carried out by means of a desorption column, and particularly preferably by means of a plate desorption column. The desorption column is advantageously associated An accessory such as, for example, at least one condenser or a cooler inside or outside the column and at least one reboiler. The desorption pressure is advantageously selected such that the ethylene content in the regenerated solvent is less than or equal to 4% by weight. Preferably, it is less than or equal to 3.2%. When the first group of solvents are used, the above desorption step is advantageously carried out at a pressure of at least 1 bar absolute, preferably at least 2 bar absolute and particularly preferably at a pressure of at least 3 bar absolute. The desorption step is advantageously carried out at a pressure of at most 25 bar absolute, preferably at most 20 bar absolute and particularly preferably at a pressure of at most 18 bar absolute. When the first group of solvents is used, the temperature at which the desorption step is carried out is advantageously at least -1 ', preferably at least 0 ° C and particularly preferably at least 1 at the top of the desorber or desorption column. Advantageously at the top of the desorber or desorption column is a maximum of 6 (TC, preferably up to 5 ° C and particularly preferably up to 45 ° C. When using the first set of solvents, in the desorber Or the temperature at the bottom end of the desorption column is at least 20 t, preferably at least 2 5 (: and particularly preferably at least 30 ° C. It is advantageously at most 200 t, preferably The most cylindrical 1 60 ° C and particularly preferably at a maximum of 150 ° C. -21 - 201139333 When the second group of solvents is used, the above desorption step is advantageously at least 1 bar absolute, preferably at least 2 bar absolute and particularly preferably carried out at a pressure of at least 3 bar absolute. The desorption step is advantageously at most 20 bar absolute, preferably at most 15 bar absolute and particularly preferably Performing at a pressure of up to 1 bar absolute. When using a second set of solvents, the temperature at which the desorption step is carried out is advantageously at least -10 °c at the top of the desorber or desorption column. At least 01 and particularly preferably at least 1 ° C. Advantageously at the top of the desorber or desorption column For a maximum of 60 ° C, preferably a maximum of 50 ° C and particularly preferably a maximum of 45 ° C. When using a second group of solvents, the temperature at the bottom of the desorber or desorption column is At least 6 (TC, preferably at least 80 ° C and particularly preferably at least 100 ° C. It is advantageously at most 200 ° C, preferably at a maximum of 160 ° C and It is particularly preferred to be at a maximum of 150 ° C. The regenerated solvent is advantageously at least partially reused in absorption after a heating conditioning step, preferably including a cross-heat exchanger The solvent leaving the absorption column is cooled. A most particularly preferred embodiment is attached to the case where the absorption step is carried out in an absorption column and the desorption step is carried out in a desorption column. When the method according to the invention is directed to DCE In the specific case of production, it would make sense to use a detergent consisting of DCE. In this case, the detergent used in the absorption step can be removed from the crude DCE leaving the chlorination unit, leaving the oxychlorination. Unit DC E crude or this has not been purified Composition of the mixture. It can also be composed of the pre-purified -22-201139333 DC E or all or part of the detergent recovered during the desorption step, and can be added arbitrarily after being disposable A fresh detergent. The desorption can also be achieved by directly injecting steam to collect DCE for a DCE-based detergent. A substantial advantage lies in the fact that the presence of the DCE is no trouble because it is mainly Is a compound formed during oxychlorination or chlorination. 0 According to a second embodiment of step c), the saturated F 1 is advantageously subjected to an adsorption step followed by a desorption step to separate into fractions E 1 and light ends. The adsorption step advantageously comprises passing the fraction F 1 through an adsorbent bed containing an adsorbent. The adsorbent bed can be a fluidized bed or a fixed bed. Any adsorbent known in the art can be used. Examples of such adsorbents are those based on silver or copper. Those silver or copper compounds are usually supported on a support having a sufficiently high surface area. Examples of carriers Q-based activated carbon, carbon powder 'active aluminum and zeolite. The adsorbent is usually a solid which is present in the form of pellets or beads. The adsorption step is advantageously carried out at a pressure of at least 15 bar absolute, preferably at least 20 bar absolute and particularly preferably at least 25 bar absolute. The adsorption step is advantageously carried out at a pressure of at most 40 bar absolute, preferably at most 35 bar absolute and particularly preferably at a pressure of at most 30 bar absolute.

吸附步驟進行時的溫度有利地在至少-1 0 °C,較佳的是 在至少0 °C,更佳的是在至少1 〇 °C並且最佳的是在至少2 0 °C -23- 201139333 。它有利地是最高7〇r ’較佳的是最高60°c,更佳的是最 高50°C並且最佳的是最高4〇°C ° 解吸步驟可以容易地藉由降低吸附床的壓力、藉由提 高吸附床的溫度或藉由降低吸附床壓力且提高吸附床的溫 度而進行,從而導致產生再生的吸附劑。 該解吸步驟有利地在至少1巴絕對値’較佳的是在至 少2巴絕對値並且特別佳的是在至少3巴絕對値的壓力下進 行。該解吸步驟有利地是在最多2 0巴絕對値’較佳的是在 最多1 5巴絕對値並且特別佳的是在最多1 0巴絕對値的壓力 下進行。 解吸步驟進行時的溫度有利地在至少-1 0 °C ’較佳的是 在至少1 0 °C,更佳的是在至少2 0 °c並且最佳的是在至少 6(TC。它有利地是最高200°C ’較佳的是最高160°C ’更佳 的是最高100 °C並且最佳的是最高60 °c。 當使用流化床時’吸附劑有利地從吸附床到解吸床連 續地循環。 當使用固定床時’有利地通過與較佳的是平行的幾個 床、更佳的是通過與至少一個吸附相以及至少一個解吸相 一起循環來工作。 步驟c)的第一實施方式優於第二實施方式。 該輕餾分富含輕於乙烯的多種化合物。那些化合物總 體上是氫氣、氧氣、氮氣、氦氣、氬氣、一氧化碳和甲烷 〇 有利地,該輕餾分包含至少7 5 %,較佳的是至少8 0% -24- 201139333 並且更佳的是至少85%的甲烷,該甲烷包含在經受了步驟 c)的餾分F 1中。 有利地,該輕餾分包含至少90%,較佳的是至少95% 並且更佳的是至少97%的氮氣、氧氣、氫氣、一氧化碳、 氬氣和氦氣,該等氣體包含在經受了步驟c)的餾分F1中。 有利地,該輕餾分包含少於2 %,較佳的是少於1 .5 % 並且更佳的是少於1 %的按體積計的乙烯。 ^ 在已經進行回收之後,輕餾分可以作爲燃料燒掉或者 〇 進行化學增値,較佳的是進行化學增値。 在被化學增値以前可以使輕餾分經受像部分氧化或蒸 汽轉化的化學反應,以有利地將它的烴餾分轉化爲氫氣。 當輕餾分特別富含氫氣時,它可以用於任何氫化反應,例 如在藉由自身氧化作用製造過氧化氫時用於工作溶液的氫 化,或者用於過氧化氫的直接合成。 可替代地,在藉由蒸汽轉化或部分氧化對烴成分進行 Q 轉化、隨後進行水煤氣轉化以生產衍生物(例如甲醛)後 ,輕餾分可以在合成氣體或在一費-托單元中進行增値。 可替代地,可以生產合成天然氣。 輕飽分的能量也可以藉由渦輪膨膜(turbo expansion )進行回收。 有利地,餾分E1包含至少50%、較佳的是至少6〇%並 且更佳的是至少66%的乙烯’該乙烯包含在經受了步驟c) 的餾分F1中。 在以上定義的步驟c)之後,將餾分E 1再循環到步驟a) -25- 201139333 中或送去製造至少一種乙烯衍生的化合物(步驟d))。 在將餾分E 1再循環到步驟a)的情況下,餾分E 1可以在 步驟a)種的任何之處進行回收。餾分E1可以在步驟a)的入 口和/或在步驟a)的熱解的第一裂解步驟之後的一系列處理 步驟的一或多個處理步驟中被再循環。 餾分E 1有利地被再循環到步驟a)的壓縮步驟和/或乾 燥步驟(特別是到乾燥步驟的出口)和/或氫化步驟和/或 消除氫氣和/或甲烷的步驟。較佳的是,將餾分E1再循環 到步驟a)的壓縮步驟和/或乾燥步驟(特別是到乾燥步驟的 出口)。 餾分E1可以伴隨或不伴隨它的壓力的適配而進行再循 環。 當要求它的壓力適配時,在被再循環到步驟a)之前, 使餾分E 1有利地經過壓縮,可能在乙烯回收單元自身中或 者在已經離開該單元後與一上游或下游的冷卻過程相結合 。可以藉由任何已知的方法進行壓縮,例如機械壓縮機、 氣體噴射器、液體噴射器。較佳的是藉由機械壓縮機進行 壓縮。 當將餾分E 1不對其壓力進行適配而再循環時,餾分E 1 有利地被再循環到步驟a)的一或處理步驟,此處的壓力係 適當的,換言之,此處的壓力小於餾分E1的壓力。 餾分E 1可以按一部分或幾個部分進行再循環。有利地 ,將餾分E 1以一個部分進行再循環。 更佳的是,將餾分E 1再循環到步驟a)的壓縮步驟和/ -26- 201139333 或乾燥步驟的出口。 當將餾分E1再循環到步驟a)的壓縮步驟時,它有利地 是不對其壓力進行適配時進行再循環。之後餾分E1較佳的 是被再循環,當只使用一壓縮機時被再循環到多級氣體壓 縮機的一級,或者當使用幾個壓縮機時被再循環到一組壓 縮機中的某個壓縮機,該等壓縮機處於比餾分E 1的壓力低 的最高壓力下。 當將餾分E 1再循環到步驟a)的乾燥步驟的出口時,它 有利地在在將其壓力進行適配後進行再循環,較佳的是藉 由使它經受一壓縮過程。 最佳的是,將餾分E 1再循環到步驟a)的壓縮步驟而不 進行如上描述的對其壓力進行的適配。 可替代地,餾分E 1可以被送去製造至少一種乙烯衍生 的化合物。餾分E1可以按原樣被送去進行這種製造或可以 與在送去進行這種製造之前與在步驟e)中獲得的餾分E2或 Q 餾分E2 a和E2b中的一種進行混合。當將餾分E1送去製造至 少一種乙烯衍生的化合物時,它較佳的是被送去進行使乙 嫌成爲1,2 -二氯乙院的氯化反應。 餾分E 1的能量可以藉由渦輪膨脹來恢復。 餾分E1的一部分可以被再循環到步驟a),同時另一部 分被送去製造至少一種乙烯衍生的化合物。 較佳的是,將餾分E 1再循環到步驟a)。較佳的是,因 此使從步驟d)再循環的、包含餾分E1的烴源經受步驟a)中 定義的簡化裂解。 -27- 201139333 根據步驟e),使飽分F 2進行一第二分離步驟S 2,包括 將餾分F2分離成富含乙烯的、稱爲餾分E2的一餾分或者富 含乙烯的、稱爲餾分E2 a和E2b的兩個餾分,並且分離爲富 含乙烷和含有至少3個碳原子的烴的、稱爲重餾分的一餾 分。 餾分F2在其分離之前可以經受一加熱調節步驟。 術語“加熱調節步驟”應理解爲指爲了將餾分F2的溫 度調節至分離的要求和/或優化能量的使用的一系列熱交 換,較佳的是將餾分F 2的溫度調節至分離的要求並且調節 至優化能量的使用。可隨意地,餾分F2在S2中的進汽位置 的壓力下被絕熱地閃蒸,並且在該絕熱閃蒸過程中產生的 該等冷凝物被從氣體流中物理地分離並且在S2中直接到一 適當位置。 第二分離步驟S 2有利地包括將餾分F 2分級分離爲以上 提到的不同餾分。 爲了本發明的目的,術語“分級分離”應理解爲係指 可以被認爲是具有一單一功能的潛在地多步過程的任意部 分。該分級分離步驟可以在一或幾個相互連接的裝置中進 行。 分級分離的實例係蒸餾、提取蒸餾、液-液提取、滲 透蒸發、氣體滲透、吸附、變壓吸附(PSA )、變溫吸附 (TSA )、吸收、色譜法、反滲透以及分子過濾。蒸餾係 較佳的。 步驟S 2較佳的是包括有利地在至少一個蒸餾柱內(較 -28- 201139333 佳的是在一或兩個蒸餾柱內)將餾分F2分級分離爲以上提 到的不同餾分。 藉由蒸餾柱’根據本發明是指,包括任意數目的相互 連接的塔的一柱。藉由塔,是指一個單一外殼,在其中實 現了液體和氣體的逆流接觸。 較佳的是,每個蒸餾柱並不包括多於兩個相互連接的 塔。更佳的是,每個蒸餾柱由一個單一的塔組成。 每個蒸餾柱可以選自板式蒸餾柱、不規則塡充的蒸餾 柱、規整塡充的蒸餾柱以及組合了兩種或更多種上述內部 構件的柱。 根據步驟e)的一第一實施方式,使餾分F 2有利地經受 一第二分離步驟S2,該步驟包括將餾分F2分離爲餾分E2以 及重飽分。 根據步驟e)的第一實施方式的一第一變體,第二分離 步驟S2較佳的是包括將餾分F2在一蒸餾柱(稱爲柱C2)內 Q 分級分離爲兩種不同的餾分,即有利地從柱C 2的精餾段離 開的餾分E2以及有利地從柱C 2的提餾段離開的重餾分。 柱C 2有利地配有關聯的配件,例如像至少一個熱源以 及至少一個冷卻源。該熱源較佳的是一再沸器。該冷卻源 可以是直接或間接冷卻。間接冷卻的實例係一分凝器。直 接冷卻的實例係由一分凝器產生的液體的絕熱閃蒸。藉由 一分凝器產生的液體的絕熱閃蒸的直接冷卻是較佳的。能 量要求的最優化可以藉由本領域中已知的任何技術來進行 ,例如與合適流體的交叉熱交換,柱與蒸汽再壓縮、結合 -29- 201139333 有冷卻和絕熱閃蒸的再壓縮循環的熱整合。 餾分F2可以作爲一個單一的餾分或者作爲幾個子餾分 被引入柱C2中。它較佳的是作爲一個單一的餾分被引入。 根據步驟e)的第一實施方式,步驟S2有利地在至少5 巴絕對値,較佳的是在至少1 〇巴絕對値並且特別佳的是在 至少12巴絕對値的壓力下進行。步驟S2有利地在最多40巴 絕對値,較佳的是在最多3 8巴絕對値並且特別佳的是在最 多36巴絕對値的壓力下進行。 根據步驟e)的第一實施方式,步驟S2進行時的溫度在 柱C2的提餾段的底端有利地爲至少-5(rC,較佳的是爲至 少-40°C並且特別佳的是爲至少-30°C。在柱C2的提飽段的 底端有利地爲最高8 0 °C,較佳的是爲最高7 5。(:。 根據步驟e)的第一實施方式,步驟S2進行時的溫度在 柱C2的精餾段的頂部有利地爲至少-8〇乞,較佳的是爲至 少-7〇°C並且特別佳的是爲至少-65t:。在柱C2的精餾段的 頂部有利地是最高5 °C ’較佳的是最高〇 t並且特別佳的是 最闻· 3 C。 根據步驟e)的第一實施方式的一第二變體,第二分離 步驟S2有利地包括將餾分F2的分離分成兩個不同的分離過 程’稱爲步驟S2’的一第一分離步驟,以及稱爲步騾32,,的 第二分離步驟,以便獲得餾分E2和重餾分。 根據步驟e)的第一實施方式的這個第二變體,使飽分 F2經受 •—第一分離步驟S2’,它包括將餾分F2分離爲一富 -30- 201139333 含乙烯的、稱爲餾分E2’的第一餾分,並且分離爲 富含乙烷和包含至少3個碳原子的烴的、包含部分 乙嫌的、稱爲飽分F2’的一飽分;以及 -一第二分離步驟S2’’,它包括件餾分F2’分離爲一富 含乙烯的、稱爲餾分E2’’的一第二餾分以及該重餾 分。 餾分E2 ’和餾分E2 ’ ’此後被有利地混合。在已經在用 ^ 於能量回收的裝置中循環之後和/或在步驟b)至e)中使用的 Ό 冷卻循環中進行整合後’可以在獲得它們之後立即進行混 合。較佳的是,在已經在用於能量回收的裝置中循環之後 和/或在步驟b)至e)中使用的冷卻循環中進行整合後,將它 們進行混合。更佳的是,在已經在用於能量回收的裝置中 循環之後和/或在步驟b)至e)中使用的冷卻循環中進行整合 後,將它們進行混合。 步驟S2’較佳的是包括將餾分F2在一第一蒸餾柱(稱 爲柱C2’)內分級分離爲兩種不同的飽分,即有利地從柱 C2’的精餾段離開的餾分E2’和有利地從柱C2,的提餾段離 開的餾分F2’)。 步驟S 2 ’’較佳的是包括將餾分F 2 ’在一第二蒸餾柱(稱 爲柱C 2 ’’)內分級分離爲兩種不同的餾分,即有利地從柱 C 2 ’ ’的精飽段離開的飽分E 2 ’ ’和有利地從柱c 2,,的提餾段 離開的重餾分。 柱C 2 ’有利地配有關聯的配件,例如像至少一個熱源 以及至少一個冷卻源。該熱源較佳的是—再沸器。該冷卻 -31 - 201139333 源可以是直接或間接冷卻。間接冷卻的實例係一分凝器。 直接冷卻的實例係由一分凝器產生的液體的絕熱閃蒸。藉 由一分凝器產生的液體的絕熱閃蒸的直接冷卻是較佳的。 能量要求的最優化可以藉由本領域中已知的任何技術 來進行,例如與合適流體的交叉熱交換;在步驟b )、c)和 e)中使用的冷卻循環的其中一個中(較佳的是在步驟b)、 c)、e)中使用的冷卻循環中)的熱整合;柱C2’與蒸汽再壓 縮或結合有冷卻和絕熱閃蒸的再壓縮循環的熱整合;藉由 柱壓的合適選擇,柱C2’和柱C2’’的熱整合,其方式爲使 得該等柱中其中一個的冷凝器係其他柱的再沸器,較佳的 是以比柱C 2 ’更高的壓力操作柱C 2 ’ ’,這樣使得柱C 2 ’ ’的冷 凝器可以是柱C2’的再沸器。更佳的是,能量要求的最優 化係藉由在步驟b)、c)和e)中使用的冷卻循環中的其中一 個中(較佳的是在步驟b)、c)、e)中使用的冷卻循環中) 的熱整合進行的。 餾分F2可以作爲一個單一的餾分或者作爲幾個子餾分 在步驟S2’的過程中引入柱C2’內。它較佳的是作爲一個單 一的餾分被引入。 根據步驟e)的第一實施方式的一第二變體,步驟S2, 有利地在至少5巴絕對値’較佳的是在至少丨〇巴絕對値並 且特別佳的是在至少12巴絕對値的壓力下進行。步驟S2, 有利地是在痕多4 0巴絕對値,較佳的是在最多3 8巴絕對値 並且特別佳的是在最多3 6巴絕對値的壓力下進行。 根據步驟e)的第一實施方式的第二變體,步驟s2,進 -32- 201139333 行時的溫度在柱C2’的提餾段的底端有利地爲至少-5(TC, 較佳的是爲至少-45 t並且特別佳的是爲至少-43 °C。在柱 C2’的提餾段的底端有利地是最高30°C,較佳的是最高20t 並且特別佳的是最高1 0 °c。 根據步驟e)的第一實施方式的第二變體,步驟S2’進 行時的溫度在柱C2’的精餾段的頂部有利地爲至少-7(TC, 較佳的是爲至少-65 °C並且特別佳的是爲至少-63 °C。在柱 C2’的精餾段的頂部有利地是最高0°C,較佳的是最高-15°C 並且特別佳的是最高-25°C。 在被引入柱C2’’以前,可以使餾分F2’經受一加熱調 節步驟(如對於步驟S 1定義的)以及一壓力調節步驟,該 壓力調節步驟係藉由將在柱C2 ’的提餾段的底端產生的液 體泵入柱C2’’中而進行的。 柱C 2 ’’有利地配有關聯的配件,例如像具有與在此以 上對於柱C2’定義的那些相同的特徵的至少一個加熱源和 至少一個冷卻源。 餾分F2可以作爲一個單一的餾分或者作爲幾個子餾分 在步驟S2”的過程中引入柱C2”內。它較佳的是作爲一個 單一的餾分被引入。 根據步驟e)的第一實施方式的第二變體,步驟S2’’有 利地在至少5巴絕對値’較佳的是在至少1 〇巴絕對値並且 特別佳的是在至少1 2巴絕對値的壓力下進行。步驟S2 ’’有 利地是在最多40巴絕對値’較佳的是在最多3 8巴絕對値並 且特別佳的是在最多3 6巴絕對値的壓力下進行。 -33- 201139333 根據步驟e)的第一實施方式的第二變體的一第一子變 體’將餾分E2’和E2’’在它們已經被獲得後立即混合。在 這樣的子變體中’步驟S2’’有利地在與S2,進行時的壓力相 等或不同的壓力下進行。較佳的是,步驟S2,,在與S2,進行 時的壓力不同的壓力下進行。步驟S2’,有利地在比S2,進行 時的壓力略低的壓力下進行。 根據步驟e)的第一實施方式的第二變體的一第二子變 體’將餾分E2’和E2’’在已經在用於能量回收的裝置中循 環後和/或已經在步驟b)至e)使用的冷卻循環中被整合後進 行混合。在這樣的子變體中,步驟S 2,,有利地在與S 2,進行 時的壓力相等或不同的壓力下進行。較佳的是,步驟S2’’ 在與S2 ’進行時的壓力不同的壓力下進行。步驟S2,,有利地 在比S 2 ’進行時的壓力高的壓力下進行。步驟S 2,,在較佳的 是比步驟S2’進行時的壓力高至少2巴,更佳的是高至少4 巴,最佳的是高至少5巴的壓力下進行。步驟S2,,在較佳 的是比步驟S2’進行時的壓力高最多33巴,更佳的是高最 多30巴,最佳的是高最多20巴的壓力下進行。 根據步驟e)的第一實施方式的第二變體,步驟S2’’進 行時的溫度在柱C 2 ’’的提餾段的底端有利地爲至少_ 5 〇 °C ’ 較佳的是爲至少-40°C並且特別佳的是爲至少-30。(:。在柱 c 2 ’’的提飽段的底端有利地是最高8 0 °C,較佳的是最咼 7 5 °C並且特別佳的是最高7 2 °C。 根據步驟e)的第一實施方式的第二變體,步驟S2’進 行時的溫度在柱C 2 ’’的精餾段的頂部有利地爲至少_ 7 0 °C ’ -34- 201139333 較佳的是爲至少-65 °C並且特別佳的是爲至少-63 °C。在柱 C2’’的精餾段的頂部有利地是最高〇°C,較佳的是最高-15t並且特別佳的是最高-25t。 根據步驟e)的一第二實施方式,使餾分F2有利地經受 一第二分離步驟S2,該步驟包括將餾分F2分離爲餾分E2a 和E2b,並且分離爲重餾分。 根據步驟e)的這個第二實施方式,第二分離步驟S2有 利地包括將餾分F2的分離分爲兩個不同的分離過程,稱爲 步驟S2’’’的一第一分離步驟,以及稱爲步驟S2’’’’的一第 二分離步驟,以獲得餾分E2 a和E2b以及重餾分。 根據步驟e)的這個第二實施方式,使餾分F2經受 -一第一分離步驟S2’’’,它包括將餾分F2分離爲餾分 E2a並且分離爲富含乙烷和包含至少3個碳原子的烴 的、包含部分乙烯的、稱爲餾分F2’’’的一餾分; 以及 -一第二分離步驟S2’’’’,它包括將餾分F2’’’分離成 餾分E2b以及重餾分。 步驟S2’’較佳的是包括將餾分F2在一第一蒸餾柱(稱 爲柱C2’’’)內分級分離爲兩種不同的餾分,即從柱C2’’’ 的精餾段有利地離開的餾分E2 a和從柱C2’’’的提飽段有利 地離開的餾分F2’’’。 步驟S2’’’’較佳的是包括將餾分F2’’’在一第二蒸餾柱 (稱爲柱C2’ ’ ’ ’)內分級分離爲兩種不同的餾分,即從柱 C2’’’’的精餾段有利地離開的餾分E2b和從柱C2,,,,的提餾 -35- 201139333 段有利地離開的重餾分。 柱C2,,,有利地配有關聯的配件,例如像至少一個熱 源以及至少一個冷卻源。該熱源較佳的是一再沸器。該冷 卻源可以是直接或間接冷卻。間接冷卻的實例係一分凝器 。直接冷卻的實例係由一分凝器產生的液體的絕熱閃蒸。 藉由一分凝器產生的液體的絕熱閃蒸的直接冷卻係較佳的 〇 能量要求的最優化可以藉由本領域中已知的任何技術 進行,例如與合適流體的交叉熱交換;柱與蒸汽再壓縮或 結合有冷卻和絕熱閃蒸的再壓縮循環的熱整合;在用於步 驟b)、c)和e)的冷卻循環中的C2’’’或C2’’’’柱其中之一( 較佳的是C2’’’柱)的材料整合·,柱中其中一個的熱整合與 其他柱的材料整合;藉由柱壓的合適選擇,柱C2 ’’’和柱 C2’’’’的熱整合,其方式爲使得該等柱中其中一個的冷凝 器係其他柱的再沸器,較佳的是以比柱C2 ’’’更高的壓力操 作柱C2’’’’,這樣柱C2’’’’的冷凝器可以是柱C2’,’的再沸 器。更佳的是,如以上所說明的,藉由柱C 2,,,和柱C 2,,,, 的熱整合實現能量要求的最優化。 餾分F2可以作爲一個單一的餾分或者作爲幾個子餾分 引入步驟S2’’’中的柱C2’’’內。它較佳的是作爲一個單一 的餾分引入。 根據步驟e )的第二實施方式,步驟s 2,’,有利地在至少 5巴絕對値’較佳的是在至少1 0巴絕對値並且特別佳的是 在至少1 2巴絕對値的壓力下進行。步驟s 2 ’,,有利地是在最 -36- 201139333 多40巴絕對値,較佳的是在最多3 8巴絕對値並且特別佳的 是在最多36巴絕對値的壓力下進行。 根據步驟e)的第二實施方式,步驟S2’’’進行時的溫度 在柱C 2 ’’’的提餾段的底端有利地爲至少-5 0 °C,較佳的是 爲至少-40 °C並且特別佳的是爲至少-30 °C。在柱C2’’’的提 餾段的底端有利地是最高80 °C,較佳的是最高60°C並且特 別佳的是最高5 5 °C。 0 根據步驟e)的第二實施方式,步驟S2’’’進行時的溫度 在柱C2’ ’’的精餾段的頂部有利地爲至少-70°C,較佳的是 爲至少-60°C並且特別佳的是爲至少-55°C。在柱C2’’’的精 飽段的頂部有利地是最局0C ’較佳的是最尚-15 °C並且特 別佳的是最局-2 5 C。 在被引入柱C2’’’’以前,可以使餾分F2’’’經受一加熱 調節步驟(如對於步驟S 1定義的)以及一壓力調節步驟, 該壓力調節步驟係藉由將在柱C 2 ’’’的提餾段的底端產生的 Q 液體泵入柱C2’’’’中而進行的。 柱C2 ’’’’有利地配有關聯的配件,例如像具有與對於 柱C2’’’定義的那些相同的特徵的至少一個加熱源和至少一 個冷卻源。 餾分F2 ’’’可以作爲一個單一的餾分或者作爲幾個子餾 分引入步驟S2’’’’中的柱C2’’’’內。它較佳的是作爲一個單 一的飽分引入。 根據步驟e)的第二實施方式,步驟S2’’’’有利地在至 少5巴絕對値,較佳的是在至少丨〇巴絕對値並且特別佳的 -37- 201139333 是在至少1 2巴絕對値的壓力下進行。步驟S2 ’’’’有利地是 在最多40巴絕對値’較佳的是在最多38巴絕對値並且特別 佳的是在最多3 6巴絕對値的壓力下進行。 根據步驟e)的第二實施方式,步驟S 2 ’ ’ ’ ’有利地在與 S 2 ’’’進行時的壓力相等或不同的壓力下進行。較佳的是, 步驟S2’’’’在與S2’’’進行時的壓力不同的壓力下進行。步 驟S 2 ’ ’ ’ ’有利地在比S 2 ’ ’ ’進行時的壓力高的壓力下進行。 步驟S 2 ’ ’ ’ ’在較佳的是比步驟S 2 ’ ’ ’進行時的壓力高至少2巴 ,更佳的是高至少4巴,最佳的是高至少5巴的壓力下進行 。步驟S 2 ’ ’ ’ ’在較佳的是比步驟S 2 ’ ’ ’進行時的壓力高最多 33巴,更佳的是高最多30巴,最佳的是高最多20巴的壓力 下進行。 根據步驟e)的第二實施方式,步驟S2’’’’進行時的溫 度在柱C 2 ’ ’ ’ ’的提餾段的底端有利地爲至少-5 0 °C,較佳的 是爲至少-4 0 °C並且特別佳的是爲至少-3 0 °C。在柱C 2 ’ ’ ’ ’的 提餾段的底端有利地是最高80°C,較佳的是最高60 °C並且 特別佳的是最高5 5 °C。 根據步驟e)的第二實施方式,步驟S2’’’’進行時的溫 度在柱C 2 ’ ’ ’ ’的精餾段的頂部有利地爲至少-8 0 °C,較佳的 是爲至少-7 〇 °C並且特別佳的是爲至少-6 5 °C。在柱C 2 ’ ’ ’ ’的 精餾段的頂部有利地是最高〇 °c,較佳的是最高-1 5 °c並且 特別佳的是最高-25°C。 根據以上定義的步驟e)的這兩個實施方式,重餾分可 以在一個單獨的餾分中或者在幾個餾分(較佳的是兩個餾 -38- 201139333 分)中被提取,更佳的是一個係處於富含乙烷的氣態下( 較佳的是在柱的提餾段的下三分之一處被提取)並且一個 係處於耗乏了乙烷的液態下(較佳的是在柱的提餾段的底 端被提取)。 第一實施方式的第二變體優於第二實施方式,並且優 於第一實施方式的第一變體。第一實施方式的第二變體的 第二子變體優於第一實施方式的第二變體的第一子變體。 第二實施方式優於第一實施方式的第一變體。 Ο 以下定義的用於表徵餾分E2的量係在分離步驟S2的出 口的那些。 有利地,餾分E2的特徵在於,相對於餾分E2的總體積 ,氫氣的含量係小於或等於2體積%,較佳的是小於或等於 0.5體積%並且在一特別佳的方式中小於或等於0.1體積%。 有利地,餾分E2的特徵在於,相對於餾分E2的總體積 ,惰性氣體的含量係小於或等於〇.〇5體積%,較佳的是小 Q 於或等於〇.〇4體積%並且在一特別佳的方式中小於或等於 0 . 〇 3體積%。 有利地,餾分E2的特徵在於,氧氣的體積含量係低於 0.05%,較佳的是低於0.04%,並且更佳的是低於0.03%。 有利地,餾分E2的特徵在於,乙炔的體積含量係低於 0.2 %,較佳的是低於0.1 %,更佳的是低於〇 · 〇 5 %並且最優 地選低於0.02%。 有利地,餾分E2的特徵在於,相對於餾分E2的總體積 ,包含至少3個碳原子的化合物的含量係小於或等於〇. 〇 1 % -39 - 201139333 體積,較佳的是小於或等於0.0 0 5體積%並且在一特別佳的 方式中小於或等於0.001體積%。 相對於餾分E2的總體積’餾分E2有利地包含從60體積 %到9 9.5體積%的乙烯。有利地,相對於餾分E 2的總體積 ,餾分E 2包含至少6 0體積% ’較佳的是至少7 0體積°/。’在 一特別佳的方式中至少8 0體積。/。以及在一更特別佳的方式 中至少8 5體積%的乙嫌。有利地,相對於飽分E 2的總體積 ,餾分E2包含最多99.5體積%,較佳的是最多98.5體積%, 在一特別佳的方式中最多9 7 5體積%以及在一更特別佳的 方式中最多96體積%的乙烯。因此,餾分E2的特徵在於’ 相對於餾分E2的總體積,有利地包含至少4% ’較佳的是 至少2.5%,更佳的是至少1.5%以及最佳的是至少0.5%的不 同於乙烯的多種化合物。 以下定義的用來表徵餾分E2a和E2b的量係在分離步驟 S2的出口的那些。 餾分E2a的特徵在於,相對於餾分E2的總體積,氫氣 的含量有利地是小於或等於2體積%,較佳的是小於或等於 0.5體積%並且在一特別佳的方式中小於或等於〇.1體積%。 餾分E2a的特徵在於,相對於餾分E2的總體積,惰性 氣體的含量有利地是小於或等於1〇5體積%,較佳的是小 於或等於〇 · 04體積%並且在一特別佳的方式中小於或等於 〇. 〇 3體積%。 餾分E2 a的特徵在於,氧氣的體積含量有利地是低於 0 _ 0 5 %,較佳的是低於0.0 4 %,並且更佳的是低於〇 . 0 3 %。 -40- 201139333 餾分E2a的特徵在於,乙炔的體積含量有利地是低於 0.2%,較佳的是低於0.1%,更佳的是低於0.05%並且最優 地選低於0.02%。 餾分E2a的特徵在於,相對於餾分E2的總體積,包含 至少3個碳原子的化合物的含量有利地是小於或等於0.001 體積%,較佳的是小於或等於0.0005體積%並且在一特別佳 的方式中小於或等於0.0001體積%。 有利地,餾分E2a的特徵在於與餾分E2的含量類似的 —個乙烯含量。 有利地,餾分E2b的特徵在於,相對於餾分E2的總體 積,氫氣的含量係小於或等於〇.2體積%,較佳的是小於或 等於〇.〇5體積%並且在一特別佳的方式中小於或等於〇.〇1 體積%。 有利地,餾分E2b的特徵在於,相對於餾分E2的總體 積,惰性氣體的含量係小於或等於0.05體積%,較佳的是 Q 小於或等於〇.〇4體積%並且在一特別佳的方式中小於或等 於0.03體積%。 有利地,餾分E2b的特徵在於氧氣的體積含量係低於 〇 · 〇 5 %,較佳的是低於0.0 4 %,並且更佳的是低於0 . 〇 3 %。 有利地,餾分E2b的特徵在於乙炔的體積含量係低於 0.2%,較佳的是低於0.1%,更佳的是低於0.05%並且最優 地選低於〇 . 〇 2 %。 餾分E2b的特徵在於,相對於餾分E2的總體積,包含 至少3個碳原子的化合物的含量有利地是小於或等於0.0 1 -41 - 201139333 體積%,較佳的是小於或等於0.0 0 5體積%並且在一特別佳 的方式中小於或等於o.ool體積%。 有利地,餾分E2b的特徵在於與餾分Ε2烯含量相類似 的一個乙稀含量。 重餾分富含乙烷和包含至少3個碳原子的烴。包含至 少3個碳原子的該等化合物來自包含乙烯和其他得自步驟 a)的組分的產物的混合物在包含至少3個碳原子的該等化 合物之中,可以提及丙烷、丙烯、丁烷以及它們的不飽和 衍生物連同所有飽和或不飽和的更重的化合物。 重餾分有利地是包含至少9 5 % ’較佳的是至少9 8 %並 且特別佳的是至少9 9 %的包含至少3個碳原子的化合物’該 化合物包含在得自步驟a)的產物的混合物中。 相對於重餾分的總重量’重餾分有利地包含按重量計 最多1 %,較佳的是最多〇 . 8 %並且特別佳的是最多〇 · 5 °/。的 乙烯。 重餾分有利地富含比乙烯重的組分。較佳的是’重餾 分作爲燃料被燒掉或者被化學增値(v a 1 0 r i s e d )。更佳的 是,重餾分被化學增値。 還可以使重餾分經受一分離步驟,該步驟包括例如藉 由蒸餾將重餾分分離成兩種不同的餾分,這兩種不同的餾 分分別含有包含少於5個碳原子的化合物爲該等餾分中的 其中之一(餾分C 1 )以及包含至少5個碳原子的化合物爲 另一餾分(餾分C2)。然後較佳的是使餾分C1在再循環至 步驟a)之前經受至少一個氫化步驟以進行化學增値。飽分 -42- 201139333 C2’特別富含苯,特別佳的是被送去製造乙苯。因此將會 有意義的是使本方法適配於使得苯直接到重餾分以使其回 收最大化。 在一些情況下,將會有意義的是分離乙烷以使其增値 。在該等情形中’根據本發明的方法可以被適配爲使得乙 烷作爲一單獨餾分被分離。 在已經回收之後,乙烷可以作爲燃料燃燒或進行化學 0 增値。乙烷較佳的是進行化學增値。因此,乙烷更佳的是 如專利申請 WO 2008/000705、WO 2008/000702 以及 WO 2008/000693中所描述的那樣,或者再循環至步驟a)或者經 受一個氧化脫氫作用(ODH),以產生之後經受氧氯化反 應的乙烯。乙烷最佳的是被再循環至步驟a)。 根據步驟f),餾分E2或餾分E2a和E2b之後被送去製造 至少一種乙烯衍生的化合物,較佳的是製造DCE以及可隨 意地由其衍生的任何化合物,可隨意地在已經經受乙炔氫 Q 化作用後,並且被送去製造直接從乙烯開始製造的不同於 DCE的至少一種乙烯衍生的化合物以及可隨意地由其衍生 的任何化合物,更佳的是被送去製造DCE以及可隨意地由 其衍生的任何化合物,隨意地在已經經受乙炔氫化作用至 後’最佳的是被送入一個氯化反應器和/或一個氧氯化反 應器,在該反應器中大部分以餾分E2或E2a和/或E2b存在 的乙烯被轉化爲DCE。 獲得的DCE有利地在此之後在步驟f)之後的步驟g)中 與得自氯化和/或氧氯化反應器的產品流進行分離,並且 -43- 201139333 較佳的是在步驟g)之後的步驟h)中’經受一 D C E裂解步驟 來生產VC,然後仍更佳的是將VC在步驟h)之後的步驟i)中 進行聚合以生產PVC。 在步驟0之前’使餾分E2或E2a和/或E2b可隨意地經 受乙炔氫化步驟’可隨意地跟隨有一乾燥步驟’特別是當 直接到製造D C E以及可隨意地由其衍生的任何化合物時。 較佳的是,當直接到製造DCE以及可隨意地由其衍生的任 何化合物時,使餾分E2或E2a和/或E2b經受乙炔氫化作用 。更佳的是,當藉由直接氯化而直接到製造DCE時’使餾 分E2或E2a和/或E2b經受乙炔氫化作用,隨後是一乾燥步 驟。更佳的是,當藉由氧氯化作用直接到製造DCE時,使 餾分E2或E2a和/或E2b經受乙炔氫化作用而無需乾燥步驟 。在最後一情況下,在將富含乙烯的餾分送回氧氯化作用 之前,它的氫化作用可以獨立地操作或者與從得自熱解的 產物流中分離出的氯化氫的氫化作用同時操作。較佳的是 ,它與氯化氫的氫化作用同時操作。 有利地,在對餾分E2或E2a和/或E2b進行這種乙炔氫 化的情況下,處理後的餾分有利地是其特徵在於乙炔的體 積含量係低於0.01% ’較佳的是低於0.005%,更佳的是低 於0.0 0 2 %並且最佳的是低於〇 . 〇 〇 1 %。 根據步驟f)的第一實施方式,餾分E2有利地是被送去 製造至少一種乙烯衍生的化合物。 根據這個第一實施方式,根據本發明的方法有利地是 使得在步驟a)到e)、f)以後,餾分E2接下來被送去製造至 -44- 201139333 少一種乙烯衍生的化合物,較佳的是被送去製造DCE以及 可隨意地由其衍生的任何化合物,可隨意地是在己經經受 乙炔氫化作用之後,並且被送去製造直接從乙烯開始製造 的、不同於DCE的至少一種乙烯衍生的化合物以及可隨意 地由其衍生的任何化合物,更佳的是被送去製造DCE以及 可隨意地由其衍生的任何化合物,可隨意地是在已經經受 乙炔氫化作用之後。 0 根據步驟f)的第一實施方式的一第一變體,餾分E2有 利的是以一飽分被送入。 根據這個第一變體,根據本發明的方法有利地是使得 在步驟a)到e)、f)以後,餾分E2以一餾分被送去製造至少 一種乙烯衍生的化合物,或者被送去製造DCE以及可隨意 地由其衍生的任何化合物,可隨意地在已經經受乙炔氫化 作用之後,或者被送去製造直接從乙烯開始製造的、不同 於DCE的至少一種乙烯衍生的化合物以及可隨意地由其衍 Q 生的任何化合物。 較佳的是,餾分E2以一餾分被送去製造DC E以及可隨 意地由其衍生的任何化合物,可隨意地在已經經受乙炔氫 化作用之後,被送入一個氯化反應器或者一個氧氯化反應 器,在該反應器中大部分以餾分E2存在的乙烯被轉化爲 DCE。 獲得的DCE在此以後在步驟f)之後的步驟g)中更佳的 是與得自氯化或氧氯化反應器的產品流進行分離,並且最 佳的是,在步驟g)之後的步驟h)中,經受DCE裂解步驟來 -45- 201139333 生產VC,然後仍最佳的是將VC在步驟h)之後的步驟i)中進 行聚合以生產PVC。 當對於步驟f)只要求一種餾分時’這一情況係特別有 意義的。 根據步驟f)的第一實施方式的一第二變體’餾分E2有 利地被分割成至少兩種具有相同組成或不同組成的餾分’ 較佳的是分割成具有相同組成或不同組成的餾分E2 d ’和 E2d,,。 當對於步驟0要求將不同餾分(或者具有相同組成, 或者具有不同組成)各自送去製造乙烯衍生的化合物時, 這最後一情況係特別有意義的。 根據這個第二變體,根據本發明的方法有利地是使得 在步驟a)到步驟e)、f)之後’在將餾分E 2送去製造至少一 種乙烯衍生的化合物之前,將其分割成至少兩種餾分,較 佳的是將其分割成餾分E2d’和餾分E2d’’,它們具有相同 組成或具有不同組成。 較佳的是,將餾分E2d’和E2d”中的一餾分送去製造 DCE以及可隨意地由其衍生的任何化合物,可隨意地在已 經經受乙炔氫化作用後,而將另一餾分送去製造至少一種 直接從乙烯開始製造的、不同於DCE的乙烯以及可隨意地 由其衍生的任何化合物。 更佳的是,將這兩種餾分送去製造DCR以及可隨意地 由其衍生的任何化合物,可隨意地在已經經受乙炔氫化作 用後,將一餾分送入一個氯化反應器並且將另一餾分送入 -46- 201139333 一個氧氯化反應器,在該等反應器中大部分以每種餾分存 在的乙烯被轉化爲DCE。 將所獲得的D C E有利地在此以後在步驟f)之後的步驟 g)中與得自氯化和氧氯化反應器的產品流進行分離,並且 較佳的是在步驟g)之後的步驟h)中,經受DCE裂解步驟以 生產VC,然後更佳的是將該VC在步驟h)之後的步驟i)中進 行聚合以生產PVC。 q 在表述“將餾分E2分割成至少兩種餾分”中的術語“ 分割(divided) ” (或“division” )應理解爲係指爲了 本發明的目的,餾分E2分裂成兩種或更多種子混合物,其 方式爲使得所有子混合物在特定的壓力範圍下的特徵爲一 組成,該組成包括在由餾分E2在泡點時的組成以及由餾分 E2在露點時的組成所限定的範圍內。 爲了本發明的目的,表述“泡點”應理解爲係指以下 的點,該點使得:在恒定壓力下從一起始溫度開始對餾分 Q E2進行加熱的過程中,在餾分E2處於液體狀態時第一個蒸 汽泡形成;泡點組成係這個第一蒸汽泡的組成。 爲了本發明的目的,表述“露點”應理解爲係指以下 的點,該點使得:在恒定壓力下從一起始溫度開始對餾分 F2進行冷卻的過程中,在餾分F2處於蒸汽狀態時第一個液 體泡形成,露點組成係這個第一液體泡的組成。 將餾分E2分割成至少兩種餾分、較佳的是分割成餾分 E2 ’和餾分E2 ’ ’有利地係藉由借助任何已知的手段,將餾 分E2分割成幾個(較佳的是兩個)具有相同組成或不同組 -47- 201139333 成的餾分而進行操作的。 該分割步驟可以在一或幾個裝置中進行。該分剐步驟 有利地包括一分割操作。分割操作的實例係將將一混合物 分割成具有相同組成的多個子混合物、氣態混合物的部分 冷凝、液體混合物的部分蒸發、液體混合物的部分固化。 將餾分E2分割成至少兩種餾分、較佳的是分割成具有 不同組成的餾分E2d,和餾分E2d,’可以藉由任何已知的手 段進行。有利地,餾分E 2係藉由在一熱交換器內藉由間接 冷卻進行冷卻的,其中餾分E2在膨脹之後被蒸發至一合適 的壓力,並且藉由在一熱交換器內(用一合適的冷卻介質 冷卻)間接接觸而進行過冷卻’直至達到其溫度的限定的 降低。較佳的是將液體蒸汽混合物分開以產生蒸汽餾分 E2d’和液體餾分E2d’’。該溫度下降有利的是大於5°C、較 佳的是大於7 °C並且更佳的是大於8 °C。該溫度下降有利的 是小於3 0 °C、較佳的是小於2 5 °C並且更佳的是小於2 2 °C。 餾分E2d’有利地是含有多於包含在餾分E2中的乙烯的 量的1 0 %、較佳的是多於2 0 %並且更佳的是多於2 5 %。餾分 E2d’有利地是含有少於包含在餾分E2中的乙烯的量的90% 、較佳的是少於8 0 %並且更佳的是少於7 5 %。 與餾分E2相比,餾分E2d’有利的是富含氫氣。餾分 E2d’中的氫氣莫耳濃度對比餾分E2d”中的氫氣莫耳濃度 的比率有利的是高於2 5,較佳的是高於5 〇,並且更佳的是 高於6 0。 與餾分E2相比,餾分E2d’有利地富含甲烷。餾分E2d’ • 48 - 201139333 中的甲烷莫耳濃度對比餾分E2d’ ’中的甲院莫耳濃度的比 率有利的是高於2·5’較佳的是高於4 ’並且更佳的是高於 5。 與耀分E2相比,餾分E2d’有利地耗乏了乙烷。餾分 E2d,中的乙烷莫耳濃度對比餾分E2d”中的乙院莫耳濃度 的比率有利的是低於〇 · 9,較佳的是低於〇 . 8 5 ’並且更佳的 是低於〇 . 8。 α 根據歩驟f)的一第二實施方式’有利的是將餾分E2a 〇 和E2b送去製造至少一種乙烯衍生的化合物。 根據這個第二施方案’根據本發明的方法有利地是使 得在步驟a)到e)、f)之後’將餾分E2a和E2b接下來送去製 造至少一種乙烯衍生的化合物,較佳的是,隨意地在已經 進行乙炔氫化作用之後’送去製造DCE以及隨意地製造由 其衍生的任何化合物及送去製造直接從乙烯開始製造之不 同於DCE的至少一種乙烯衍生的化合物以及隨意地由其衍 Q 生的任何化合物,更佳的是送去製造D C E以及可隨意地由 其衍生的任何化合物,可隨意地在已經經受乙炔氫化作用 之後。 根據步驟f)的第二實施方式的一第一變體,將餾分 E2a和E2b分開送入。 根據這個第一變體,根據本發明的方法有利的是使得 在步驟a)到e)、f)之後,將餾分E2a和E2b分開送去製造至 少一種乙烯衍生的化合物。 較佳的是,將餾分E2 a和E2b中的一餾分,隨意地在已 -49- 201139333 經進行乙炔氫化作用後,送去製造DCE以及隨意地製造由 其衍生的任何化合物,而將另一餾分送去製造直接從乙烯 開始製造的、不同於D C E的至少一種乙烯衍生的化合物以 及可隨意地由其衍生的任何化合物。 更佳的是,將這兩種餾分,隨意地在已經進行乙炔氫 化作用之後,送去製造DCE以及隨意地製造由其衍生的任 何化合物將一餾分(較佳的是餾分E2a )送入一個氯化反 應器並且將另一餾分(較佳的是餾分E2b )送入一個氧氯 化反應器,在該等反應器中大部分以每種餾分存在的乙烯 被轉化爲D C E。 將所獲得的D C E有利地在此以後在步驟f)之後的步驟 g)中與得自氯化和氧氯化反應器的產品流進行分離,並且 較佳的是在步驟g)之後的步驟h)中,經受DCE裂解步驟來 生產VC,然後更佳的是將該VC在步驟h)之後的步驟i)中進 行聚合以生產PVC。 當對於步驟f)要求將不同餾分送去製造對應的乙烯衍 生的化合物時,這一情況係特別有意義的。 根據步驟〇的第二實施方式的一第二變體,將餾分 E2a和E2b在送入之前進行混合。 餾分E2a和E2b可以藉由任何已知手段進行混合,例如 像液體混合用三通、靜態混合器、惰性粒子的塡充床、一 系列穿孔的板或一系列節流孔、連同旋轉機器(泵或壓縮 機)。 根據這個第二變體,根據本發明的方法有利地是使得 -50- 201139333 在步驟a)到e)、f)以後’將餾分E2a和E2b在送去製造至少 一種乙烯衍生的化合物之前進行混合,或者是將其送去製 造DCE以及可隨意地由其衍生的任何化合物,可隨意地在 已經經過乙炔加氫過程後,或者是將其送去製造直接從乙 烯開始製造的、不同於D C E的至少一種乙烯衍生的化合物 以及可隨意地由其衍生的任何化合物。 較佳的是,在將餾分E2a和E2b送去製造DCE以及可隨 0 意地由其衍生的任何化合物之前進行混合,可隨意地在已 經經受乙炔氫化之作用後,或者將其送入一個氯化反應器 ,或者將其送入一個氧氯化反應器,在該反應器中大部分 以餾分E2存在的乙烯被轉化爲DCE。 將所獲得的DCE有利地在此以後在步驟f)之後的步驟 g)中與得自氯化或氧氯化反應器的產品流進行分離,並且 最佳的是在步驟g)之後的步驟h)中經受DCE裂解步驟來生 產VC,然後仍最佳的是將該VC在步驟h)之後的步驟i)中進 Q 行聚合以生產PVC。 當對於步驟f)只要求一種餾分時,這一情況係特別有 意義的。 作爲直接從乙烯開始製造的乙烯衍生的化合物(不同 於根據以上描述的那些實施方式可以製造的DCE)的實例 除其他之外可以提及:環氧乙烷、線性α烯烴、線性—級 醇、乙烯的均聚物和共聚物、乙苯、乙酸乙烯酯、乙醛、 乙醇和丙醛。給予較佳的是製造乙苯並且特別佳的是製造 本身又被送去製造苯乙烯的乙苯,苯乙嫌此後被聚合以獲 -51 - 201139333 得苯乙烯聚合物。 作爲由其衍生的可隨意的化合物的實例,除其他之外 可以提及,從環氧乙烷製造的二醇類、從乙苯製造的苯乙 烯以及從苯乙烯衍生的苯乙烯聚合物。 該氯化反應(通常稱爲直接氯化作用)有利地是在含 有一溶解的催化劑(例如FeCl3或者其他路易士酸)的一 液相(較佳的是主要爲DCE )中進行。有可能有利地將這 種催化劑與助催化劑(例如鹼金屬氯化物)進行組合。已 經給出良好結果的一配對係F e C13與L i C 1的絡合物(四氯高 鐵酸鋰-如專利申請NL 690 1 3 98中所描述的那樣)。 所使用的FeCl3的量有利地是每kg液體母料大約1 g至 3〇 g的FeCl3。FeCl3與LiCl的莫耳比有利地爲0.5至2的級別 此外,該氯化反應較佳的是在一種氯化的有機液體介 胃中進行。更佳的是,這種氯化的有機液體介質,也稱作 液體母料,主要由DCE構成。 根據本發明的氯化反應有利地是在30°C和1 50。(:之間的 溫度下進行。不管壓力如何,在低於沸點(在低溫冷卻條 #下的氯化過程)和在沸點本身(在沸點時氯化的過程) 的溫度下都已經獲得了良好的結果。 當根據本發明的氯化過程係一低溫冷卻條件下的氯化 過程時’藉由在以下溫度下以及以下氣相中的壓力下操作 @出了良好的結果,該溫度有利地是高於或等於5 〇它並且 較佳的是高於或者等於60°C,但是有利地是低於或等於 -52- 201139333 8 0 t:並且較佳的是低於或等於7 0 °c,該壓力有利地是高於 或等於1巴絕對値並且較佳的是高於或等於1 · I巴絕對値, 但是有利地是低於或等於20巴絕對値,較佳的是低於或等 於1 0巴絕對値並且特別佳的是低於或等於6巴絕對値。 在沸點下氯化的方法可以較佳的是有效地回收該反應 熱。在這種情況下,該反應有利地是在高於或等於60°C的 溫度下發生,較佳的是高於或等於70 °C並且特別佳的是高 0 於或等於8 5 °C,但是有利地是低於或等於1 5 0 °C並且較佳的 是低於或者等於135 °C,並且在該氣相中的壓力有利地是 高於或等於0.2巴絕對値,較佳的是高於或者等於0.5巴絕 對値,特別佳的是高於或等於1 .1巴絕對値並且更特別佳 的是高於或等於1 . 3巴絕對値,但是有利地是低於或等於 1 〇巴絕對値並且較佳的是低於或等於6巴絕對値。 該氯化過程也可以是一在沸點下氯化的混合回路冷卻 (hybrid loop-cooled)過程。表述“在沸點下氯化的混合 Q 回路冷卻過程”應理解爲係指一過程,其中例如藉由浸入 在該反應介質內的一交換器或者藉由在一交換器內循環的 一回路對該反應介質進行冷卻,同時在氣相中產生至少爲 所形成的量的DCE。有利地,調節該反應溫度和壓力來使 所產生的DCE在氣相中離開並且藉由交換表面積除去來自 該反應介質的剩餘熱量。 可以用任何已知的設備將進行氯化的餾分以及還有分 子氯(本身純淨或稀釋的)一起或單獨地引入該反應介質 。單獨引入經受了氯化作用的餾分可能是有利的,以增加 -53- 201139333 其分壓並且促進其溶解,這通常構成該方法的一限制步驟 〇 分子氯以足夠的量加入來轉化大部分乙烯,並且不胃 求添加過量的未轉化的氯。所用的氯/乙稀的比率較佳的 是在1.2 mol/mol和0.8 mol/mol之間,並且特別佳的是在 1.05 mol/mol和 0.95 mol/mol之間。 所獲得的氯化的產物主要含有DCE以及還有少量副產 物,例如1,1,2-三氯乙烷或少量的乙烷或甲烷的氯化產物 〇 從得自該氯化反應器的產品流中分離所獲得的DCE係 根據已知的方式進行的,並且總體上使之有可能利用該氯 化反應的熱量。然後,它較佳的是藉由冷凝作用和氣/液 分離來進行。 然後有利地是使未轉化的產物(甲烷、乙烷、一氧化 碳、氮氣、氧氣和氫氣)經受比分離起始於該最初混合物 的純乙烯所必需的分離更容易的一分離過程。 氫氣特別可以從未轉化的產物中提取並且作爲燃料燒 掉或進行化學增値,例如用於在過氧化氫的製造中工作溶 液的氫化或者用於過氧化氫的直接合成。 該氧氯化反應有利地是在包括活性元素的一催化劑的 存在下進行的,該活性元素包括沉積於一惰性載體上的銅 。該惰性載體有利地選自氧化鋁、矽膠、混合氧化物、粘 土以及其他天然來源的載體。氧化鋁構成一較佳的惰性載 體。 -54- 201139333 較佳的是包括活性元素的催化劑,該活性元素的數目 有利地爲至少兩個,其中之一係銅。在除了銅以外的該等 活性元素中,可以提及鹼金屬、鹼土金屬、稀土金屬以及 選自下組的金屬,該組的組成爲:釕、鍺、鈀、餓、銥、 鉑和金。包含下列活性元素的催化劑係特別有利的:銅/ 鎂/鉀,銅/鎂/鈉;銅/鎂/鋰,銅/鎂/鉋,銅/鎂/鈉/鋰,銅/ 鎂/鉀/鋰和銅/鎂/絶/鋰,銅/鎂/鈉/鉀,銅/鎂/鈉/鉋和銅/鎂 〇 /鉀/鉋。最特別佳的是在專利申請EP-A 25 5 1 56、EP-A 494 474、EP-A 657 212和EP-A 657 213中所描述的催化劑 ,該等專利申請藉由引用結合在此。 銅的含量,以金屬形式計算,有利地是在30 g/kg和90 g/kg之間,較佳的是在40 g/kg和80 g/kg之間並且特別佳的 是在5 0 g / k g和7 0 g / k g催化劑之間。 鎂的含量,以金屬形式計算,有利地是在1 0 g/kg和3 0 g/kg之間,較佳的是在12 g/kg和25 g/kg之間並且特別佳的 q 是在1 5 g/kg和20 g/kg催化劑之間。 鹼金屬的含量,以金屬形式計算,有利地是在0 · 1 g/kg和30 g/kg之間,較佳的是在0.5 g/kg和20 g/kg之間並 且特別佳的是在1 g/kg和1 5 g/kg催化劑之間。 銅:鎂:一或多種鹼金屬的原子比有利地是1 : 0.1-2 : 0 .0 5 - 2,較佳的是1 : 0.2 -1 · 5 : 0 · 1 -1 · 5並且特別佳的是1: 〇.5-1:〇·15·10 催化劑具有的一比表面積有利地是在25 m2/g和300 m2/g之間,較佳的是在50 m2/g和200 m2/g之間並且特別佳 •55- 201139333 的是在75 m2/g和175 m2/g之間(根據BET方法以氮測得) 是特別有利的° 該催化劑可以在一固定床或一流化床內使用。第二種 選擇係較佳的。該氧氛化過程在該反應所通吊建議的條件 範圍內進行操作。溫度有利地是在150°c和3〇〇°C之間’較 佳的是在2〇〇°C和27 5。(:之間並且最佳的是從215°C到2 5 5 °C 。壓力有利地是在大氣壓以上。在2巴絕對値和1 0巴絕對 値之間的値給出了良好的結果。在4巴絕對値至7巴絕對値 之間的範圍係較佳的。該壓力可以被有效地調節’以得到 在該反應器內的一最佳停留時間並且保持對於不同操作速 度而言恒定的通過率。通常的停留時間範圍係從1秒至6 0 秒,並且較佳的是從1 0秒至4 0秒。 這種氧氯化作用的氧源可以是空氣、純氧或它們的一 混合物,較佳的是純氧。較佳的是允許對未轉化的反應物 進行簡單再循環的後者的溶液。 該等反應物可以藉由任何已知的裝置引入該床層。爲 了安全因素,將氧氣與其他反應物分開引入總體上是有利 的。該等安全因素還要求在離開或再循環至該反應器的氣 體混合物在所討論的壓力和溫度下保持爲在可燃性的限度 之外。較佳的是保持一所謂的富集混合物,也就是說相對 於將引燃的燃料來說含有過少的氧氣。在這方面,如果這 種化合物具有寬的可燃性範圍,氫氣(> 2 vo 1 %,較佳的 是>5 vol% )的大量存在將構成一個缺點。 所使用的氯化氣/氧氣的比率有利地是在3 m ο 1 / m ο 1和6 -56- 201139333 mol/mol之間。該乙烯/氯化氫的比率有利地是在0.4 mol/mol和 〇_6 mol/m〇l之間。 所得到的氯化產物主要包含DCE以及還有少量副產物 ’例如1,1,2-三氯乙烷。 從得自氯化反應器的產品流中分離出的DCE可以在 DCE裂解步驟之前與從氧氯化反應器的產品流中分離出的 DCE混合或不混合。當兩種DCE混合時,可以將它們完全 q 地或部分地混合。 D C E的裂解步驟可以進行的條件係熟習該項技術者已 知的。DCE裂解可以在第三化合物存在或不存在時進行, 在該等第三化合物中可以提及催化劑;在這種情況下的 DCE裂解係一催化的DCE裂解。然而DCE裂解較佳的是在 第三化合物不存在時並且僅在熱的作用下進行的;在這種 情況下的DCE裂解經常稱爲熱解。 該熱解有利地是在一管式爐內藉由一在氣相內的反應 U 獲得的。通常的熱解溫度係在400°c和600°c之間,較佳的 是在48 0 °C和5 40°C之間的範圍。停留時間有利的是在1秒和 60秒之間,較佳的是從5秒至25秒的範圍。爲了限制副產 物的形成以及爐管道的沾汙,該D C E的轉化率有利地是限 制在45 %至75%。 分離從得自熱解的產品流中所獲得的VC和氯化氫係 根據已知的方式使用任何已知的裝置進行的,以收集純化 的V C和氯化氫。純化之後,有利地將未轉化的d C E送至該 熱解爐。 -57- 201139333 之後較佳的是使VC聚合以生產PVC。 PVC的製造可以是一本體、溶液或水性分散體聚合法 ,它較佳的是一水性分散體聚合法。 表述水性分散體聚合應理解爲係指在水性懸浮液中的 自由基聚合和在水性乳液中的自由基聚合,以及在水性微 懸浮液中的聚合。 表述水性懸浮液中的自由基聚合應理解爲係指在水性 介質中、在分散劑和油溶性自由基引發劑存在下的任何自 由基聚合過程。 表述水性乳液中的自由基聚合應理解爲係指在水性介 質中、在乳化劑和水溶性自由基引發劑存在下的任何自由 基聚合過程。 表述水性微懸浮聚合(也稱爲在均勻化的水性分散體 中的聚合)應理解爲係指在使用了油溶性引發劑、並且由 於強有力的機械攪拌以及在乳化劑的存在下製備單體小滴 的乳液的條件下的任何自由基聚合過程。 步驟f)的第一實施方式優於第二實施方式。 根據本發明的一種較佳的方法係從一烴源開始製造至 少一種乙烯衍生的化合物的方法,根據該方法: a) 使含有從步驟d)再循環的餾分E 1的烴源經受簡化 裂解,由此產生含有乙烯和其他組分的一產物的 混合物; b) 使所述產物的混合物經受一第一分離步驟s 1 ’該 第一分離步驟包括將所述含有乙烯和其他組分的 -58- 201139333 產物分離爲一含有輕於乙烯的化合物以及部分乙 烯的、稱爲餾分F 1的餾分以及一餾分F2 ; c) 將飽分F1送入一個乙烧回收單元,在其中它被分 離爲富含乙烯的、稱爲餾分E1的一餾分’並且分 離爲富含輕於乙烯的化合物的、稱爲輕餾分的一 餾分; d) 將餾分E1再循環到步驟a); e) 使餾分F2經受一第二分離步驟S2,該第二分離步 驟包括在一次或兩次分離中將餾分F2分離爲富含 乙烯的、稱爲餾分E2的一餾分,並且分離爲富含 乙烷和含有至少3個碳原子的烴的、稱爲重餾分的 —餾分; f) 然後將餾分E2送去製造至少一種乙烯衍生的化合 物。 根據本發明的一特別佳的方法係用於從一烴源開始製 Ο 造i,2-二氯乙烷的方法,包括在此以上限定的步驟a)到f) ’根據該方法,該乙烯衍生的化合物係1,2-二氯乙烷。 根據本發明的方法的一第一優點係它允許使用純度低 於9 9.8 %的乙烯。 根據本發明的方法的另一優點係它不包括需要引起生 產成本增加的重大投資的催化氧化脫氫步驟。 與在習知技術中描述的方法相比,根據本發明的方法 的優點係它不要求分離爲兩種在乙烯組成方面不同的乙烯 ®分’並且上述分離的使用條件也不同,考慮到它們所含 -59- 201139333 有的反應性雜質,這會擾亂它們之後所用於的方法並且會 限制它們的使用;例如在乙烯的氧氯化過程中氫氣係不可 接受的。 可以歸因於根據本發明的方法的其他優點係與以下事 實相關聯的優點,即:輕於乙烯的化合物從乙烯餾分中被 分離出。在該等優點中,可以提及在以下裝置中操作本方 法的優點,該裝置的尺寸不會被增加並且避免了提餾所帶 來的損失(該損失降低了該方法的效率)。 根據本發明的方法藉由允許分離富含輕於乙烯的化合 物的餾分而致使它們的增値更容易進行。 這種方法的另一優點係使之有可能經由重餾分來分離 包含至少3個碳原子的化合物,該等化合物總體上對於導 致形成難以分離的不希望的衍生物的一些不希望的副反應 負有責任。 最後’根據本發明的方法的一優點在於,它使之有可 能在同一工業地點擁有一完全一體化的過程。 【實施方式】 現將參照本說明書所附的圖對根據本發明的較佳的和 特別佳的方法進行說明。該圖包括附圖1,它圖解地示出 了根據本發明用於製造至少一種乙烯衍生的化合物的較佳 的方法’以及根據本發明用於製造1 ,2-二氯乙烷的特別佳 的方法。 使含有再循環的餾分E 1 (2)的一烴源(1)經受簡化裂解 -60- 201139333 (3),由此產生含有乙烯和其他組分的一產物的混合物(4) 。使這一混合物(4)經受一第一分離步驟Sl(5)’該桌一'分 離步驟包括將所述混合物分離爲一含有輕於乙烯的化合物 以及部分乙烯的、稱爲餾分F1的餾分(6),並且分離爲一 餾分F2(7)。然後將餾分Fl(6)送入一個乙烯回收單元(8), 在其中它被分離爲被再循環到第一步的富含乙烯的、稱爲 餾分E1的一餾分(2),並且分離爲富含輕於乙烯的化合物 0 的、稱爲輕餾分的一餾分(9)。使餾分F2(7)經受一第二分 離步驟S2(10),該第二分離步驟包括將餾分F2(7)在一次或 兩次分離中分離爲富含乙烯的、稱爲餾分E2的一餾分(11) ,並且分離爲富含乙烷和含有至少3個碳原子的烴的、稱 爲重餾分的一餾分(12)。然後將餾分E2(ll)送去製造至少 一種乙烯衍生的化合物,並且較佳的是,根據依照本發明 的特別佳的方法,將其送去製造1,2-二氯乙烷’然後可以 (在圖上沒有表示)使該1,2 -二氯乙烷經受裂解以生產氯 (J 乙烯,之後可以使該氯乙烯聚合以生產聚氯乙烯。 【圖式簡單說明】 圖1圖解地表不本發明之製造至少一種乙細衍生的化 合物之方法。 【主要元件符號說明】 1 :烴源 2 :餾分E1 -61 - 201139333 3 :簡化裂解作用 4 :產物的混合物 5:第一分離步驟S1 6 :餾分F 1 7 :餾分F2 8 :乙烯回收單元 9 :輕餾分 10:第二分離步驟S2 1 1 :餾分E2 1 2 :重餾分 1 3 :至少一種乙烯衍生之化合物 -62 -The temperature at which the adsorption step is carried out is advantageously at least -10 ° C, preferably at least 0 ° C, more preferably at least 1 ° C and most preferably at least 20 ° C - 23 - 201139333. It is advantageously at most 7 〇 r ' preferably up to 60 ° c, more preferably up to 50 ° C and optimally up to 4 ° ° C ° desorption step can be easily reduced by reducing the pressure of the adsorbent bed, This is done by increasing the temperature of the adsorbent bed or by lowering the pressure of the adsorbent bed and increasing the temperature of the adsorbent bed, resulting in a regenerated adsorbent. The desorption step is advantageously carried out at a pressure of at least 1 bar absolute Torr', preferably at least 2 bar absolute Torr and particularly preferably at least 3 bar absolute Torr. The desorption step is advantageously carried out at a pressure of at most 20 bar absolute Torr, preferably at most 15 bar absolute Torr and particularly preferably at a pressure of at most 10 bar absolute Torr. The temperature at which the desorption step is carried out is advantageously at least -10 ° C. Preferably at least 10 ° C, more preferably at least 20 ° C and most preferably at least 6 (TC. The ground is up to 200 ° C. Preferably, the highest is 160 ° C. More preferably, it is up to 100 ° C and optimally is up to 60 ° C. When using a fluidized bed, the adsorbent is advantageously from the adsorbent bed to the desorption The bed is continuously circulated. When a fixed bed is used, it is advantageously operated by several beds which are preferably parallel, more preferably by circulation with at least one adsorbed phase and at least one desorbed phase. An embodiment is superior to the second embodiment. The light fraction is rich in a variety of compounds lighter than ethylene. Those compounds are generally hydrogen, oxygen, nitrogen, helium, argon, carbon monoxide and methane. Advantageously, the light fraction comprises at least 75 %, preferably at least 80% -24 to 201139333 and more preferably At least 85% of methane, which is contained in fraction F 1 that has been subjected to step c). Advantageously, the light fraction comprises at least 90%, preferably at least 95% and more preferably at least 97% of nitrogen, oxygen, hydrogen, carbon monoxide, argon and helium, said gases being subjected to step c In the fraction F1. Advantageously, the light fraction comprises less than 2%, preferably less than one. 5% and more preferably less than 1% by volume of ethylene. ^ After the recovery has been carried out, the light fraction can be burned off as a fuel or chemically enhanced, preferably chemically enhanced. The light fraction can be subjected to a chemical reaction like partial oxidation or steam reforming prior to being chemically enhanced to advantageously convert its hydrocarbon fraction to hydrogen. When the light fraction is particularly rich in hydrogen, it can be used in any hydrogenation reaction, for example, hydrogenation of a working solution when hydrogen peroxide is produced by auto-oxidation, or for direct synthesis of hydrogen peroxide. Alternatively, the light fraction may be purified in a synthesis gas or in a Fischer-Tropsch unit after Q conversion of the hydrocarbon component by steam reforming or partial oxidation followed by water gas shift to produce a derivative such as formaldehyde. . Alternatively, synthetic natural gas can be produced. Light-saturated energy can also be recovered by turbo expansion. Advantageously, fraction E1 comprises at least 50%, preferably at least 6% and more preferably at least 66% of ethylene' which is contained in fraction F1 which has been subjected to step c). After step c) as defined above, fraction E 1 is recycled to step a) -25 to 201139333 or sent to produce at least one ethylene-derived compound (step d)). In the case where fraction E 1 is recycled to step a), fraction E 1 can be recovered anywhere in step a). Fraction E1 can be recycled in the inlet of step a) and/or in one or more processing steps of a series of processing steps after the first cracking step of pyrolysis of step a). Fraction E 1 is advantageously recycled to the compression step and/or the drying step of step a) (especially to the outlet of the drying step) and/or the hydrogenation step and/or the step of eliminating hydrogen and/or methane. Preferably, fraction E1 is recycled to the compression step and/or the drying step of step a) (especially to the outlet of the drying step). Fraction E1 can be recirculated with or without the adaptation of its pressure. When its pressure adaptation is required, the fraction E1 is advantageously subjected to compression before being recycled to step a), possibly in the ethylene recovery unit itself or after having left the unit with an upstream or downstream cooling process Combine. Compression can be performed by any known method, such as a mechanical compressor, a gas injector, a liquid ejector. Preferably, compression is performed by a mechanical compressor. When the fraction E 1 is recycled without adapting its pressure, the fraction E 1 is advantageously recycled to one of the steps a) or the treatment step, where the pressure is appropriate, in other words, the pressure here is less than the fraction The pressure of E1. Fraction E 1 can be recycled in one or several portions. Advantageously, fraction E 1 is recycled in one fraction. More preferably, the fraction E 1 is recycled to the compression step of step a) and / -26 to 201139333 or the outlet of the drying step. When fraction E1 is recycled to the compression step of step a), it is advantageously recycled without adapting its pressure. Fraction E1 is then preferably recycled, recycled to the stage of the multistage gas compressor when only one compressor is used, or recycled to one of a group of compressors when several compressors are used. Compressors, these compressors are at the highest pressure lower than the pressure of fraction E1. When fraction E 1 is recycled to the outlet of the drying step of step a), it is advantageously recycled after the pressure has been adapted, preferably by subjecting it to a compression process. Most preferably, fraction E 1 is recycled to the compression step of step a) without the adaptation of its pressure as described above. Alternatively, fraction E 1 can be sent to produce at least one ethylene derived compound. Fraction E1 may be sent as such for the manufacture or may be mixed with one of the fraction E2 or Q fractions E2a and E2b obtained in step e) prior to being sent for such manufacture. When the fraction E1 is sent to produce at least one ethylene-derived compound, it is preferably sent to carry out a chlorination reaction which causes the susceptibility to become 1,2-dichloroethane. The energy of fraction E 1 can be recovered by turboexpansion. A portion of fraction E1 can be recycled to step a) while another portion is sent to produce at least one ethylene-derived compound. Preferably, fraction E 1 is recycled to step a). Preferably, the hydrocarbon source comprising fraction E1 recycled from step d) is subjected to the simplified cracking as defined in step a). -27- 201139333 According to step e), the saturated F 2 is subjected to a second separation step S 2 comprising separating the fraction F2 into an ethylene-rich fraction called fraction E2 or an ethylene-rich fraction called a fraction The two fractions of E2 a and E2b are separated into a fraction called a heavy fraction rich in ethane and a hydrocarbon containing at least 3 carbon atoms. Fraction F2 can be subjected to a heating conditioning step prior to its separation. The term "heating conditioning step" is understood to mean a series of heat exchanges for adjusting the temperature of fraction F2 to the requirements of separation and/or optimizing the use of energy, preferably adjusting the temperature of fraction F2 to the requirements of separation and Adjust to optimize the use of energy. Optionally, fraction F2 is adiabatically flashed at the pressure of the inlet position in S2, and the condensate produced during the adiabatic flash is physically separated from the gas stream and directed directly in S2 A proper location. The second separation step S 2 advantageously comprises fractionating the fraction F 2 into the different fractions mentioned above. For the purposes of the present invention, the term "fractionation" is understood to mean any portion of a potentially multi-step process that can be considered to have a single function. This fractionation step can be carried out in one or several interconnected devices. Examples of fractionation are distillation, extractive distillation, liquid-liquid extraction, pervaporation, gas permeation, adsorption, pressure swing adsorption (PSA), temperature swing adsorption (TSA), absorption, chromatography, reverse osmosis, and molecular filtration. Distillation is preferred. Preferably, step S2 comprises advantageously fractionating fraction F2 into the different fractions mentioned above in at least one distillation column (compared to -28-201139333 preferably in one or two distillation columns). By distillation column', according to the invention, a column comprising any number of interconnected columns. By tower is meant a single outer shell in which countercurrent contact of liquid and gas is achieved. Preferably, each distillation column does not include more than two interconnected columns. More preferably, each distillation column consists of a single column. Each distillation column may be selected from the group consisting of a plate distillation column, an irregularly charged distillation column, a packed distillation column, and a column in which two or more of the above internal members are combined. According to a first embodiment of step e), fraction F 2 is advantageously subjected to a second separation step S2 which comprises separating fraction F2 into fraction E2 and heavy fraction. According to a first variant of the first embodiment of step e), the second separation step S2 preferably comprises fractionating the fraction F2 into a different fraction in a distillation column (referred to as column C2). That is, the fraction E2 which advantageously exits from the rectifying section of column C 2 and the heavy fraction which advantageously exits from the stripping section of column C 2 . Column C 2 is advantageously provided with associated fittings such as, for example, at least one heat source and at least one cooling source. The heat source is preferably a reboiler. The cooling source can be cooled directly or indirectly. An example of indirect cooling is a dephlegmator. An example of direct cooling is adiabatic flashing of the liquid produced by a dephlegmator. Direct cooling of the adiabatic flash of liquid produced by a dephlegmator is preferred. The optimization of the energy requirements can be carried out by any technique known in the art, such as cross heat exchange with a suitable fluid, column and steam recompression, bonding -29-201139333 heat of recompression cycle with cooling and adiabatic flash Integration. Fraction F2 can be introduced into column C2 as a single fraction or as several subfractions. It is preferably introduced as a single fraction. According to a first embodiment of step e), step S2 is advantageously carried out at a pressure of at least 5 bar absolute, preferably at least 1 bar absolute and particularly preferably at least 12 bar absolute. Step S2 is advantageously carried out at a pressure of at most 40 bar absolute, preferably at most 3 8 bar absolute and particularly preferably at a pressure of up to 36 bar absolute. According to a first embodiment of step e), the temperature at which step S2 is carried out is advantageously at least -5 (rC, preferably at least -40 ° C) at the bottom end of the stripping section of column C2 and particularly preferably It is at least -30 ° C. The bottom end of the replenishing section of column C2 is advantageously up to 80 ° C, preferably up to 75. (:. According to the first embodiment of step e), step S2 The temperature at the time of progress is advantageously at least -8 Torr at the top of the rectifying section of column C2, preferably at least -7 ° C and particularly preferably at least -65 t: Rectification at column C2 The top of the segment is advantageously at most 5 ° C. Preferably, the highest 〇 t and particularly preferably the most s 3 C. According to a second variant of the first embodiment of step e), the second separation step S2 Advantageously, the separation of fraction F2 is divided into two different separation processes, a first separation step referred to as step S2', and a second separation step, referred to as step 32, to obtain fraction E2 and heavy fraction. According to this second variant of the first embodiment of step e), the saturated fraction F2 is subjected to a first separation step S2' which comprises separating the fraction F2 into a rich -30-201139333 containing ethylene, referred to as a fraction a first fraction of E2', and is separated into a portion containing a ethane and a hydrocarbon containing at least 3 carbon atoms, comprising a portion of a suspected full salt F2'; and - a second separation step S2 '', which includes the fraction F2' separated into an ethylene-rich second fraction called fraction E2'' and the heavy fraction. The fraction E2' and the fraction E2'' are thereafter advantageously mixed. The mixing may be carried out immediately after obtaining them after circulating in the apparatus for energy recovery and/or after the integration in the 冷却 cooling cycle used in steps b) to e). Preferably, they are mixed after they have been circulated in the apparatus for energy recovery and/or after the integration in the cooling cycles used in steps b) to e). More preferably, they are mixed after they have been recycled in the apparatus for energy recovery and/or after the integration in the cooling cycles used in steps b) to e). Step S2' preferably comprises fractionating the fraction F2 into two different fractions in a first distillation column (referred to as column C2'), i.e. fraction E2 advantageously exiting from the rectifying section of column C2' 'and fraction F2' which advantageously exits from the stripping section of column C2. Step S 2 '' preferably comprises fractionating the fraction F 2 ' into a second distillation column (referred to as column C 2 '') into two different fractions, advantageously from column C 2 ' ' The saturated fraction leaving the saturated E 2 ' ' and advantageously the heavy fraction leaving the stripping section of column c 2,. Column C 2 ' is advantageously provided with associated fittings such as, for example, at least one heat source and at least one cooling source. The heat source is preferably a reboiler. The cooling -31 - 201139333 source can be directly or indirectly cooled. An example of indirect cooling is a dephlegmator. An example of direct cooling is adiabatic flashing of a liquid produced by a dephlegmator. Direct cooling by adiabatic flashing of the liquid produced by a partial condenser is preferred. The optimization of the energy requirements can be carried out by any technique known in the art, such as cross-heat exchange with a suitable fluid; in one of the cooling cycles used in steps b), c) and e) (preferred Is the thermal integration of the cooling cycle used in steps b), c), e); the thermal integration of column C2' with steam recompression or a recompression cycle combined with cooling and adiabatic flashing; Suitably, the thermal integration of column C2' and column C2" is such that the condenser of one of the columns is a reboiler for the other column, preferably at a higher pressure than column C2' The column C 2 ' ' is operated such that the condenser of column C 2 ' ' can be a reboiler for column C2'. More preferably, the optimization of the energy requirements is carried out in one of the cooling cycles used in steps b), c) and e) (preferably in steps b), c), e) The thermal integration of the cooling cycle is carried out. Fraction F2 can be introduced into column C2' as a single fraction or as several subfractions during the step S2'. It is preferably introduced as a single fraction. According to a second variant of the first embodiment of step e), step S2, advantageously at least 5 bar absolute 値 'preferably at least 丨〇 absolute 値 and particularly preferably at least 12 bar absolute 値Under the pressure. Step S2 is advantageously carried out at a pressure of 40 bar absolute, preferably at most 3 8 bar absolute and particularly preferably at a pressure of up to 3 6 bar absolute. According to a second variant of the first embodiment of step e), step s2, the temperature at the -32-201139333 row is advantageously at least -5 (TC) at the bottom end of the stripping section of column C2'. It is at least -45 t and particularly preferably at least -43 ° C. The bottom end of the stripping section of column C2' is advantageously up to 30 ° C, preferably up to 20 t and particularly preferably up to 1 0 °c. According to a second variant of the first embodiment of step e), the temperature at which step S2' is carried out is advantageously at least -7 (TC, preferably at the top of the rectifying section of column C2' At least -65 ° C and particularly preferably at least -63 ° C. The top of the rectifying section of column C2 ' is advantageously at most 0 ° C, preferably at most -15 ° C and particularly preferably at the highest -25 ° C. Before being introduced into the column C2", the fraction F2' can be subjected to a heating conditioning step (as defined for step S1) and a pressure regulating step by means of a column C2 The liquid produced at the bottom of the stripping section is pumped into the column C2''. The column C 2 '' is advantageously equipped with associated fittings, such as At least one heating source and at least one cooling source of the same features defined above for column C2'. Fraction F2 may be introduced as a single fraction or as several sub-fractions into column C2" during the step S2". Preferably, it is introduced as a single fraction. According to a second variant of the first embodiment of step e), step S2" is advantageously at least 5 bar absolute 较佳 'preferably at least 1 〇 absolute It is especially preferred to carry out at a pressure of at least 1 2 bar absolute. The step S2'' is advantageously carried out at a pressure of at most 40 bar absolute Torr, preferably at most 3 8 bar absolute and particularly preferably at a pressure of at most 3 6 bar absolute. -33- 201139333 According to a first sub-variant of the second variant of the first embodiment of step e), the fractions E2' and E2'' are mixed immediately after they have been obtained. In such a sub-variant, the 'step S2'' is advantageously carried out under a pressure equal to or different from the pressure at which S2 is performed. Preferably, step S2 is performed at a pressure different from the pressure at which S2 is performed. Step S2' is advantageously carried out at a pressure slightly lower than the pressure at which S2 is carried out. According to a second sub-variant of the second variant of the first embodiment of step e), the fractions E2' and E2'' are already circulated in the device for energy recovery and/or already in step b) To the e) used in the cooling cycle is integrated and mixed. In such a sub-variant, step S2, advantageously, is carried out at a pressure equal to or different from the pressure at which S2 is carried out. Preferably, step S2'' is performed at a pressure different from the pressure at which S2' is performed. Step S2, advantageously, is carried out at a pressure higher than the pressure at which S 2 ' is performed. Step S2, preferably at a pressure of at least 2 bar, more preferably at least 4 bar, and most preferably at least 5 bar, is greater than the pressure at step S2'. Step S2, preferably at a pressure of up to 33 bar, more preferably up to 30 bar, and most preferably up to 20 bar, is carried out at a pressure greater than step S2'. According to a second variant of the first embodiment of step e), the temperature at which step S2'' is carried out is advantageously at least _ 5 〇 ° C ' at the bottom end of the stripping section of column C 2 ''. It is at least -40 ° C and particularly preferably at least -30. (:. at the bottom end of the stabilizing section of the column c 2 '' is advantageously at most 80 ° C, preferably at most 75 ° C and particularly preferably at a maximum of 72 ° C. According to step e) A second variant of the first embodiment, the temperature at which step S2' is carried out is advantageously at least _70 °C '-34-201139333 at the top of the rectifying section of column C2'', preferably at least -65 ° C and particularly preferably at least -63 ° C. The top of the rectifying section of column C2'' is advantageously at most 〇 ° C, preferably at most -15 t and particularly preferably at most -25 t. According to a second embodiment of step e), fraction F2 is advantageously subjected to a second separation step S2 which comprises separating fraction F2 into fractions E2a and E2b and separating into heavy fractions. According to this second embodiment of step e), the second separation step S2 advantageously comprises dividing the separation of the fraction F2 into two separate separation processes, referred to as a first separation step of step S2"", and A second separation step of step S2"" to obtain fractions E2a and E2b and heavy fractions. According to this second embodiment of step e), the fraction F2 is subjected to a first separation step S2"" which comprises separating the fraction F2 into fraction E2a and separating it into ethane-rich and comprising at least 3 carbon atoms. a fraction of a hydrocarbon comprising a portion of ethylene, referred to as fraction F2"'; and - a second separation step S2"" comprising separating fraction F2"' into fraction E2b and a heavy fraction. Step S2'' preferably comprises fractionating the fraction F2 into two different fractions in a first distillation column (referred to as column C2''), i.e. advantageously from the rectifying section of column C2" The exiting fraction E2a and the fraction F2" which advantageously exits from the stabilizing section of the column C2"". Step S2"" preferably comprises fractionating the fraction F2"' into a second distillation column (referred to as column C2''') into two different fractions, ie from column C2'' The rectifying section advantageously leaves the fraction E2b and the heavy fraction advantageously exiting from the section of the column C2,,,,, -35-201139333. The column C2,, is advantageously provided with associated accessories, such as for example at least one heat source and at least one cooling source. The heat source is preferably a reboiler. The source of cooling can be direct or indirect cooling. An example of indirect cooling is a decoagulator. An example of direct cooling is adiabatic flashing of a liquid produced by a dephlegmator. The direct cooling of the adiabatic flash of the liquid produced by a dephlegmator is preferably optimized by any technique known in the art, such as cross-heat exchange with a suitable fluid; column and steam Recompression or thermal integration of a recompression cycle incorporating cooling and adiabatic flash; one of the C2'' or C2''' columns in the cooling cycle used in steps b), c) and e) Preferably, the material integration of the C2''' column), the thermal integration of one of the columns is integrated with the material of the other columns; by the appropriate choice of column pressure, the column C2 ''' and the column C2''' Thermal integration in such a way that the condenser of one of the columns is a reboiler for the other column, preferably the column C2"' is operated at a higher pressure than the column C2"", such that column C2 The '''' condenser can be a column C2', a reboiler. More preferably, as explained above, the energy requirements are optimized by thermal integration of the columns C 2 , , and the columns C 2 , . Fraction F2 can be introduced as a single fraction or as several subfractions into column C2'' in step S2''. It is preferably introduced as a single fraction. According to a second embodiment of step e), step s 2, ', advantageously at least 5 bar absolute 値' is preferably at least 10 bar absolute Torr and particularly preferably at least 1 2 bar absolute Torr. Go on. Step s 2 ', advantageously at most -36-201139333, 40 bar absolute, preferably at most 3 8 bar absolute and particularly preferably at a pressure of up to 36 bar absolute. According to a second embodiment of step e), the temperature at which step S2" is carried out is advantageously at least -5 0 ° C, preferably at least - at the bottom end of the stripping section of column C 2 '' 40 ° C and particularly preferably at least -30 ° C. The bottom end of the stripping section of column C2''' is advantageously up to 80 °C, preferably up to 60 °C and particularly preferably up to 55 °C. 0 According to a second embodiment of step e), the temperature at which step S2" is carried out is advantageously at least -70 ° C, preferably at least -60 ° at the top of the rectifying section of column C2" C and particularly preferred is at least -55 °C. At the top of the fine section of column C2''' is advantageously the most local 0C', preferably the most -15 °C and especially the most -2 5 C. Before being introduced into the column C2"", the fraction F2"' can be subjected to a heating conditioning step (as defined for step S1) and a pressure regulating step by means of a column C2 The Q liquid produced at the bottom of the ''''s stripping section is pumped into the column C2''''. The column C2'''' is advantageously provided with associated fittings, such as at least one heating source and at least one cooling source having the same features as those defined for the column C2''. The fraction F2'' can be introduced as a single fraction or as several subfractions into the column C2''' in the step S2'''. It is preferably introduced as a single satiety. According to a second embodiment of step e), step S2"" is advantageously at least 5 bar absolute, preferably at least absolute, and particularly preferably -37-201139333 is at least 1 2 bar Under absolute pressure. The step S2''' is advantageously carried out at a pressure of at most 40 bar absolute Torr, preferably at most 38 bar absolute and particularly preferably at a pressure of at most 3 6 bar absolute. According to a second embodiment of step e), step S 2 ' ' ' ' is advantageously carried out at a pressure equal to or different from the pressure at which S 2 '' Preferably, the step S2'''' is performed under a pressure different from the pressure at which S2''' is performed. The step S 2 ' ' ' ' is advantageously carried out under a pressure higher than the pressure at which S 2 ' ' ' is performed. The step S 2 ' ' ' is preferably carried out at a pressure of at least 2 bar, more preferably at least 4 bar, and most preferably at least 5 bar, higher than the pressure at the step S 2 ' '. The step S 2 ' ' ' is preferably carried out at a pressure of at most 33 bar, more preferably at most 30 bar, and most preferably at a pressure of at most 20 bar, when the step S 2 ' ' is performed. According to a second embodiment of step e), the temperature at which step S2" is carried out is advantageously at least -5 0 ° C at the bottom end of the stripping section of column C 2 ' ' ', preferably At least -40 ° C and particularly preferably at least -3 0 ° C. The bottom end of the stripping section of column C 2 ' ' ' ' is advantageously up to 80 ° C, preferably up to 60 ° C and particularly preferably up to 55 ° C. According to a second embodiment of step e), the temperature at which step S2" is carried out is advantageously at least -8 ° C at the top of the rectifying section of column C 2 ' ' ', preferably at least -7 ° C and particularly preferably at least -6 5 ° C. The top of the rectifying section at column C 2 ' ' ' ' is advantageously at most 〇 °c, preferably at most -5 5 °c and particularly preferably at most -25 °C. According to the two embodiments of step e) as defined above, the heavy fraction can be extracted in a single fraction or in several fractions (preferably two fractions - 38 - 201139333), more preferably One is in an ethane-rich gas state (preferably extracted in the lower third of the stripping section of the column) and one is in a liquid state depleted of ethane (preferably in the column) The bottom end of the stripping section is extracted). The second variation of the first embodiment is superior to the second embodiment and is superior to the first variation of the first embodiment. The second sub-variant of the second variant of the first embodiment is superior to the first sub-variant of the second variant of the first embodiment. The second embodiment is superior to the first variant of the first embodiment. The amount of the fraction E2 defined below for characterizing the fraction E2 is those which are separated at the outlet of the step S2. Advantageously, fraction E2 is characterized in that the hydrogen content is less than or equal to 2% by volume, preferably less than or equal to 0, relative to the total volume of fraction E2. 5 vol% and less than or equal to 0 in a particularly preferred manner. 1% by volume. Advantageously, fraction E2 is characterized in that the content of inert gas is less than or equal to 〇 relative to the total volume of fraction E2. 〇 5 vol%, preferably small Q is equal to or equal to 〇. 〇 4% by volume and less than or equal to 0 in a particularly preferred manner.  〇 3 vol%. Advantageously, fraction E2 is characterized in that the volumetric content of oxygen is below zero. 05%, preferably less than 0. 04%, and more preferably less than 0. 03%. Advantageously, fraction E2 is characterized in that the volume fraction of acetylene is below zero. 2%, preferably less than 0. 1%, more preferably less than 〇 · 〇 5 % and optimally below 0. 02%. Advantageously, fraction E2 is characterized in that the content of the compound comprising at least 3 carbon atoms is less than or equal to 〇 relative to the total volume of fraction E2.  〇 1 % -39 - 201139333 Volume, preferably less than or equal to 0. 0 0 5 vol% and less than or equal to 0 in a particularly preferred manner. 001% by volume. The fraction E2 relative to the total volume of fraction E2 advantageously comprises from 60% by volume to 9 9. 5 vol% of ethylene. Advantageously, fraction E 2 comprises at least 60% by volume, preferably at least 70% by volume, relative to the total volume of fraction E 2 . 'At least 80 volumes in a particularly good way. /. And at least 85 vol% of B in a more particularly preferred manner. Advantageously, fraction E2 contains up to 99. relative to the total volume of saturated E2. 5 vol%, preferably at most 98. 5 vol%, up to 795 vol% in a particularly preferred manner and up to 96 vol% ethylene in a more particularly preferred manner. Thus, fraction E2 is characterized by 'with respect to the total volume of fraction E2, advantageously comprising at least 4%', preferably at least 2. 5%, more preferably at least 1. 5% and the best is at least 0. 5% of various compounds different from ethylene. The amounts defined below for characterizing the fractions E2a and E2b are those at the outlet of the separation step S2. The fraction E2a is characterized in that the content of hydrogen gas is advantageously less than or equal to 2% by volume, preferably less than or equal to 0%, relative to the total volume of the fraction E2. 5 vol% and less than or equal to 〇 in a particularly good manner. 1% by volume. The fraction E2a is characterized in that the content of the inert gas is advantageously less than or equal to 1.5% by volume, preferably less than or equal to 〇·04% by volume, and is small in a particularly preferred manner, relative to the total volume of the fraction E2. Or equal to 〇.  〇 3 vol%. The fraction E2 a is characterized in that the volume fraction of oxygen is advantageously below 0 _ 0 5 %, preferably below zero. 0 4 %, and better still lower than 〇.  0 3 %. -40- 201139333 Fraction E2a is characterized in that the volume content of acetylene is advantageously less than 0. 2%, preferably less than 0. 1%, more preferably less than 0. 05% and optimally below 0. 02%. The fraction E2a is characterized in that the content of the compound containing at least 3 carbon atoms is advantageously less than or equal to 0. 001% by volume, preferably less than or equal to 0. 0005 vol% and less than or equal to 0 in a particularly preferred manner. 0001% by volume. Advantageously, fraction E2a is characterized by an ethylene content similar to that of fraction E2. Advantageously, fraction E2b is characterized by a hydrogen content of less than or equal to 〇 relative to the total product of fraction E2. 2% by volume, preferably less than or equal to 〇. 〇 5 vol% and less than or equal to 〇 in a particularly good manner. 〇1 vol%. Advantageously, the fraction E2b is characterized in that the content of the inert gas is less than or equal to 0 with respect to the total product of the fraction E2. 05% by volume, preferably Q is less than or equal to 〇. 〇 4% by volume and less than or equal to 0 in a particularly preferred manner. 03% by volume. Advantageously, fraction E2b is characterized by a volumetric content of oxygen of less than 〇·〇 5 %, preferably less than 0. 0 4 %, and more preferably less than 0.  〇 3 %. Advantageously, the fraction E2b is characterized in that the volume fraction of acetylene is below zero. 2%, preferably less than 0. 1%, more preferably less than 0. 05% and optimally below 〇.  〇 2 %. The fraction E2b is characterized in that the content of the compound containing at least 3 carbon atoms is advantageously less than or equal to 0. 0 1 -41 - 201139333 vol%, preferably less than or equal to 0. 0 0 5 vol% and less than or equal to o in a particularly preferred manner. Ool volume %. Advantageously, fraction E2b is characterized by an ethylene content similar to that of the fraction Ε2 olefin. The heavy fraction is rich in ethane and hydrocarbons containing at least 3 carbon atoms. The compounds comprising at least 3 carbon atoms are derived from a mixture of products comprising ethylene and other components derived from step a). Among the compounds comprising at least 3 carbon atoms, mention may be made of propane, propylene, butane. And their unsaturated derivatives along with all of the more saturated or unsaturated compounds. The heavy fraction advantageously comprises at least 95% 'preferably at least 98% and particularly preferably at least 99% of a compound comprising at least 3 carbon atoms' which is contained in the product from step a) In the mixture. The heavy fraction relative to the total weight of the heavy fraction advantageously comprises up to 1% by weight, preferably up to 〇.  8 % and particularly good is up to 〇 · 5 °/. Ethylene. The heavy fraction is advantageously enriched in components that are heavier than ethylene. Preferably, the heavy fraction is burned off as a fuel or chemically enhanced (v a 1 0 r i s e d ). More preferably, the heavy fraction is chemically enhanced. It is also possible to subject the heavy fraction to a separation step which comprises, for example, separating the heavy fraction into two different fractions by distillation, the two different fractions each containing a compound comprising less than 5 carbon atoms in the fractions One of the fractions (fraction C 1 ) and the compound containing at least 5 carbon atoms are another fraction (fraction C2). It is then preferred to subject fraction C1 to at least one hydrogenation step for chemical enhancement prior to recycling to step a). Saturation -42- 201139333 C2' is especially rich in benzene, and it is especially good to be sent to make ethylbenzene. It would therefore make sense to adapt the process to direct benzene to the heavy fraction to maximize recovery. In some cases, it would make sense to separate the ethane to increase it. In such cases the process according to the invention may be adapted such that the ethane is separated as a separate fraction. After it has been recovered, ethane can be burned as a fuel or chemically enhanced. Preferably, ethane is chemically enhanced. Thus, ethane is more preferably recycled to step a) or subjected to an oxidative dehydrogenation (ODH) as described in the patent applications WO 2008/000705, WO 2008/000702 and WO 2008/000693, Ethylene which is subjected to an oxychlorination reaction after the generation. The ethane is most preferably recycled to step a). According to step f), fraction E2 or fractions E2a and E2b are then sent to produce at least one ethylene-derived compound, preferably DCE and any compound optionally derived therefrom, optionally subjected to acetylene hydrogen Q After the reaction, and sent to manufacture at least one ethylene-derived compound different from DCE, which is directly manufactured from ethylene, and any compound optionally derived therefrom, more preferably sent to manufacture DCE and optionally Any compound derived therefrom, optionally after being subjected to hydrogenation of acetylene, is preferably fed to a chlorination reactor and/or an oxychlorination reactor where most of the fraction is E2 or Ethylene in the presence of E2a and/or E2b is converted to DCE. The obtained DCE is advantageously thereafter separated from the product stream from the chlorination and/or oxychlorination reactor in step g) after step f), and -43-201139333 is preferably in step g) Subsequent to h), 'subject to a DCE cracking step to produce VC, and still more preferably, the VC is polymerized in step i) after step h) to produce PVC. Prior to step 0, the fraction E2 or E2a and/or E2b may optionally be subjected to a acetylene hydrogenation step' optionally followed by a drying step', particularly when directly to the manufacture of DCE and any compounds optionally derivable therefrom. Preferably, the fraction E2 or E2a and/or E2b is subjected to acetylene hydrogenation directly to the manufacture of DCE and any compound optionally derived therefrom. More preferably, the fraction E2 or E2a and/or E2b is subjected to acetylene hydrogenation by direct chlorination directly to the manufacture of DCE, followed by a drying step. More preferably, the fraction E2 or E2a and/or E2b is subjected to acetylene hydrogenation by oxychlorination directly to the manufacture of DCE without a drying step. In the last case, prior to feeding the ethylene-rich fraction back to oxychlorination, its hydrogenation can be operated independently or simultaneously with the hydrogenation of hydrogen chloride separated from the pyrolysis product stream. Preferably, it operates simultaneously with the hydrogenation of hydrogen chloride. Advantageously, in the case of such acetylene hydrogenation of fraction E2 or E2a and/or E2b, the treated fraction is advantageously characterized in that the volume content of acetylene is below zero. 01% ‘ is preferably less than 0. 005%, more preferably lower than 0. 0 0 2 % and the best is below 〇.  〇 〇 1 %. According to a first embodiment of step f), fraction E2 is advantageously sent to produce at least one ethylene-derived compound. According to this first embodiment, the process according to the invention is advantageously such that after steps a) to e), f), the fraction E2 is subsequently sent to produce -44-201139333 less ethylene-derived compound, preferably Any compound that is sent to make DCE and optionally derivatized therefrom, optionally after being subjected to acetylene hydrogenation, and sent to produce at least one ethylene different from DCE, which is manufactured directly from ethylene. Derivatized compounds, as well as any compounds optionally derivable therefrom, are more preferably sent to make DCE and any compound optionally derived therefrom, optionally after having been subjected to acetylene hydrogenation. According to a first variant of the first embodiment of step f), fraction E2 is advantageously fed in one full charge. According to this first variant, the process according to the invention is advantageously such that after steps a) to e), f), fraction E2 is sent as a fraction to produce at least one ethylene-derived compound or sent to manufacture DCE And any compound optionally derivable therefrom, optionally after having been subjected to acetylene hydrogenation, or sent to produce at least one ethylene-derived compound different from DCE, which is produced directly from ethylene, and optionally Any compound derived from Q. Preferably, fraction E2 is sent in a fraction to produce DC E and any compound optionally derivable therefrom, optionally fed to a chlorination reactor or an oxychloride after having been subjected to acetylene hydrogenation. The reactor in which most of the ethylene present in fraction E2 is converted to DCE. The obtained DCE is thereafter preferably separated from the product stream from the chlorination or oxychlorination reactor in step g) after step f), and most preferably, the step after step g) In h), subjected to the DCE cracking step to produce VC from -45 to 201139333, and then it is still preferred to polymerize the VC in step i) after step h) to produce PVC. This is particularly relevant when only one fraction is required for step f). According to a second variant of the first embodiment of step f), the fraction E2 is advantageously divided into at least two fractions having the same composition or different compositions. Preferably, the fraction E2 is divided into fractions E2 having the same composition or different compositions. d 'and E2d,,. This last case is of particular interest when it is required for step 0 to deliver different fractions (or have the same composition, or have different compositions) to each of the ethylene-derived compounds. According to this second variant, the process according to the invention is advantageously such that after step a) to steps e), f) 'divide the fraction E 2 into at least one ethylene-derived compound before it is produced to at least The two fractions, preferably divided into fractions E2d' and fractions E2d'', have the same composition or have different compositions. Preferably, a fraction of the fractions E2d' and E2d" is sent to the manufacture of DCE and any compound optionally derivable therefrom, optionally after passing the acetylene hydrogenation, another fraction is sent to the manufacture. At least one ethylene different from DCE produced directly from ethylene and any compound optionally derived therefrom. More preferably, the two fractions are sent to produce DCR and any compound optionally derived therefrom, Optionally, after having been subjected to acetylene hydrogenation, a fraction is sent to a chlorination reactor and another fraction is sent to an oxychlorination reactor at -46-201139333, in which most of each The ethylene present in the fraction is converted to DCE. The obtained DCE is advantageously separated thereafter from the product stream from the chlorination and oxychlorination reactor in step g) after step f), and preferably In step h) after step g), the DCE cracking step is carried out to produce VC, and then it is more preferred to polymerize the VC in step i) after step h) to produce PVC. q In the expression "will distillate E2 The term "divided" (or "division") in the division into at least two fractions is understood to mean that for the purposes of the present invention, fraction E2 is split into two or more seed mixtures in such a way that all The sub-mixture is characterized by a composition at a particular pressure range, which composition is included within the range defined by the fraction of fraction E2 at the bubble point and by the composition of fraction E2 at the dew point. For the purposes of the present invention, the expression " "Powder point" is understood to mean the point at which the first vapor bubble is formed while the fraction E2 is in a liquid state during the heating of the fraction Q E2 from a starting temperature under a constant pressure; The dot composition is the composition of this first vapor bubble. For the purposes of the present invention, the expression "dew point" is understood to mean the point at which the process of cooling the fraction F2 from a starting temperature at a constant pressure is achieved. The first liquid bubble is formed when the fraction F2 is in a vapor state, and the dew point composition is the composition of the first liquid bubble. The fraction E2 is divided into at least two fractions. Preferably, the fractionation into fraction E2' and fraction E2'' is advantageously divided into several (preferably two) identical or different groups by any known means. The fractionation step can be performed in one or several devices. The branching step advantageously includes a segmentation operation. An example of a segmentation operation is to divide a mixture into multiple segments having the same composition. Partial condensation of the mixture, gaseous mixture, partial evaporation of the liquid mixture, partial solidification of the liquid mixture. Dividing fraction E2 into at least two fractions, preferably fractionated into fractions E2d having different compositions, and fraction E2d, 'can be borrowed It is carried out by any known means. Advantageously, the fraction E 2 is cooled by indirect cooling in a heat exchanger wherein the fraction E2 is evaporated to a suitable pressure after expansion and by means of a suitable heat exchanger (with a suitable The cooling medium is cooled by indirect contact and subcooled 'until a defined decrease in its temperature is reached. Preferably, the liquid vapor mixture is separated to produce a vapor fraction E2d' and a liquid fraction E2d''. The temperature drop is advantageously greater than 5 ° C, more preferably greater than 7 ° C and more preferably greater than 8 ° C. The temperature drop is advantageously less than 30 ° C, preferably less than 25 ° C and more preferably less than 22 ° C. The fraction E2d' is advantageously more than 10%, preferably more than 20% and more preferably more than 25%, more than the amount of ethylene contained in the fraction E2. The fraction E2d' is advantageously contained in an amount of less than 90%, preferably less than 80% and more preferably less than 75 % of the amount of ethylene contained in the fraction E2. The fraction E2d' is advantageously rich in hydrogen compared to fraction E2. The ratio of the hydrogen molar concentration in the fraction E2d' to the hydrogen molar concentration in the fraction E2d" is advantageously higher than 25, preferably higher than 5 Torr, and more preferably higher than 60. Compared to E2, the fraction E2d' is advantageously rich in methane. The ratio of the methane molar concentration in the fraction E2d' • 48 - 201139333 to the molar concentration in the fraction E2d' 'is advantageously greater than 2.5· Preferably, it is higher than 4' and more preferably higher than 5. The fraction E2d' advantageously consumes ethane compared to the radiance E2. The fraction of ethane molar in the fraction E2d, in the fraction E2d" The ratio of the molar concentration of the hospital is advantageously lower than 〇·9, preferably lower than 〇.  8 5 ' and better yet lower than 〇.  8. α According to a second embodiment of the step f), it is advantageous to send the fractions E2a 〇 and E2b to produce at least one ethylene-derived compound. According to this second embodiment, the process according to the invention advantageously makes it possible to subsequently send the fractions E2a and E2b to produce at least one ethylene-derived compound after steps a) to e), f), preferably Optionally, after the acetylene hydrogenation has been carried out, 'delivered to manufacture DCE and optionally manufacture any compound derived therefrom and sent to produce at least one ethylene-derived compound different from DCE produced directly from ethylene and optionally derived therefrom Any compound derived from Q, more preferably, is sent to the manufacture of DCE and any compound optionally derived therefrom, optionally after having been subjected to hydrogenation of acetylene. According to a first variant of the second embodiment of step f), the fractions E2a and E2b are fed separately. According to this first variant, the process according to the invention is advantageously such that after steps a) to e), f), the fractions E2a and E2b are separately sent to produce at least one ethylene-derived compound. Preferably, a fraction of the fractions E2a and E2b is optionally subjected to acetylene hydrogenation at -49-201139333, sent to the manufacture of DCE and optionally to produce any compound derived therefrom, and the other The fraction is sent to produce at least one ethylene-derived compound other than DCE, which is produced directly from ethylene, and any compound optionally derived therefrom. More preferably, the two fractions are optionally sent to the manufacture of DCE after acetylene hydrogenation has been carried out and any compound derived therefrom is optionally produced to feed a fraction (preferably fraction E2a) to a chlorine. The reactor is fed and another fraction, preferably fraction E2b, is fed to an oxychlorination reactor where most of the ethylene present in each fraction is converted to DCE. The obtained DCE is advantageously separated thereafter from the product stream from the chlorination and oxychlorination reactor in step g) after step f), and preferably step h after step g) In the process of undergoing the DCE cracking step to produce VC, it is more preferred to polymerize the VC in step i) after step h) to produce PVC. This situation is of particular interest when it is required for step f) to send different fractions to produce the corresponding ethylene-derived compound. According to a second variant of the second embodiment of the step ,, the fractions E2a and E2b are mixed prior to being fed. The fractions E2a and E2b can be mixed by any known means, such as a tee for liquid mixing, a static mixer, a packed bed of inert particles, a series of perforated plates or a series of orifices, together with a rotating machine (pump) Or compressor). According to this second variant, the process according to the invention advantageously makes it possible to mix the fractions E2a and E2b in steps a) to e), f) after the sending of the at least one ethylene-derived compound after steps a) to e), f) Or send it to the manufacture of DCE and any compound that can be optionally derived therefrom, optionally after the acetylene hydrogenation process has been carried out, or sent to manufacture directly from ethylene, unlike DCE. At least one ethylene derived compound and any compound optionally derived therefrom. Preferably, the fractions E2a and E2b are mixed prior to being sent to produce DCE and any compound which may be derivatized therefrom, optionally after being subjected to the action of acetylene hydrogenation or by feeding it to a chlorination The reactor is either fed to an oxychlorination reactor where most of the ethylene present in fraction E2 is converted to DCE. The obtained DCE is advantageously separated thereafter from the product stream from the chlorination or oxychlorination reactor in step g) after step f), and preferably step h after step g) It is subjected to the DCE cracking step to produce VC, and then it is still preferred to polymerize the VC in step i) after step h) to produce PVC. This situation is particularly interesting when only one fraction is required for step f). Examples of ethylene-derived compounds which are directly produced from ethylene (different from DCE which can be produced according to the embodiments described above) may, among other things, mention: ethylene oxide, linear alpha olefins, linear-alcohols, Homopolymers and copolymers of ethylene, ethylbenzene, vinyl acetate, acetaldehyde, ethanol and propionaldehyde. It is preferred to produce ethylbenzene and it is particularly preferred to manufacture ethylbenzene which itself is sent to produce styrene, which is then polymerized to obtain a styrene polymer of -51 - 201139333. As examples of the optional compound derived therefrom, there may be mentioned, among others, glycols produced from ethylene oxide, styrene produced from ethylbenzene, and styrene polymers derived from styrene. The chlorination reaction (commonly referred to as direct chlorination) is advantageously carried out in a liquid phase (preferably predominantly DCE) containing a dissolved catalyst (e.g., FeCl3 or other Lewis acid). It is possible to advantageously combine this catalyst with a cocatalyst such as an alkali metal chloride. A complex of F e C13 and Li c C 1 (lithium tetrachloroferrate - as described in patent application NL 690 1 3 98) has been given good results. The amount of FeCl3 used is advantageously from about 1 g to 3 〇g of FeCl3 per kg of liquid masterbatch. The molar ratio of FeCl3 to LiCl is advantageously 0. In the range of 5 to 2, the chlorination reaction is preferably carried out in a chlorinated organic liquid. More preferably, the chlorinated organic liquid medium, also referred to as liquid masterbatch, consists essentially of DCE. The chlorination reaction according to the invention is advantageously at 30 ° C and 1 50. (: at the temperature between the two. Regardless of the pressure, it is already well below the boiling point (the chlorination process under the cryogenic cooling strip #) and at the boiling point itself (the process of chlorination at the boiling point) The result is that when the chlorination process according to the invention is a chlorination process under a cryogenic cooling condition, 'good results are obtained by operating at a temperature below and below the pressure in the gas phase, which is advantageously It is higher than or equal to 5 〇 and is preferably higher than or equal to 60 ° C, but is advantageously lower than or equal to -52 to 201139333 8 0 t: and preferably lower than or equal to 70 ° C, The pressure is advantageously greater than or equal to 1 bar absolute enthalpy and preferably greater than or equal to 1 · I bar absolute enthalpy, but advantageously less than or equal to 20 bar absolute enthalpy, preferably less than or equal to 10 bar absolute and particularly preferably less than or equal to 6 bar absolute. The method of chlorinating at the boiling point may preferably recover the heat of reaction efficiently. In this case, the reaction is advantageously Occurring at a temperature higher than or equal to 60 ° C, preferably At or equal to 70 ° C and particularly preferably high 0 or equal to 85 ° C, but advantageously lower than or equal to 150 ° C and preferably lower than or equal to 135 ° C, and in The pressure in the gas phase is advantageously higher than or equal to 0. 2 bar absolute 値, preferably higher than or equal to 0. 5 Bars are absolutely good, especially good is higher than or equal to 1. 1 bar is absolutely 値 and more particularly good is higher than or equal to 1.  3 bar absolute, but advantageously less than or equal to 1 bar absolute and preferably less than or equal to 6 bar absolute. The chlorination process can also be a hybrid loop-cooled process that chlorinates at the boiling point. The expression "mixed Q loop cooling process chlorinating at boiling point" is understood to mean a process in which the process is carried out, for example, by immersing in an exchanger in the reaction medium or by circulating a circuit in an exchanger. The reaction medium is cooled while producing at least the amount of DCE formed in the gas phase. Advantageously, the reaction temperature and pressure are adjusted to cause the produced DCE to exit in the gas phase and to remove residual heat from the reaction medium by exchanging the surface area. The chlorinated fraction and also the molecular chlorine (either pure or diluted by itself) can be introduced into the reaction medium together or separately by any known means. It may be advantageous to separately introduce a fraction subjected to chlorination to increase its partial pressure and promote its dissolution, which usually constitutes a limiting step of the process. Molecular chlorine is added in a sufficient amount to convert most of the ethylene. And do not want to add an excess of unconverted chlorine. The ratio of chlorine/ethylene used is preferably at 1. 2 mol/mol and 0. Between 8 mol/mol, and particularly good at 1. 05 mol/mol and 0. Between 95 mol/mol. The chlorinated product obtained mainly contains DCE and also a small amount of by-products such as 1,1,2-trichloroethane or a small amount of chlorinated product of ethane or methane from products obtained from the chlorination reactor. The DCE obtained by separation in the stream is carried out in a known manner and generally makes it possible to utilize the heat of the chlorination reaction. Then, it is preferably carried out by condensation and gas/liquid separation. It is then advantageous to subject the unconverted product (methane, ethane, carbon monoxide, nitrogen, oxygen and hydrogen) to a separation process which is easier than the separation necessary to separate the pure ethylene starting from the initial mixture. Hydrogen can be extracted in particular from unconverted products and burned off or chemically enriched as a fuel, for example for the hydrogenation of working solutions in the production of hydrogen peroxide or for the direct synthesis of hydrogen peroxide. The oxychlorination reaction is advantageously carried out in the presence of a catalyst comprising an active element comprising copper deposited on an inert support. The inert carrier is advantageously selected from the group consisting of alumina, silicone, mixed oxides, clays and other carriers of natural origin. Alumina constitutes a preferred inert carrier. From -54 to 201139333 preferred are catalysts comprising an active element, the number of active elements being advantageously at least two, one of which is copper. Among the active elements other than copper, there may be mentioned an alkali metal, an alkaline earth metal, a rare earth metal, and a metal selected from the group consisting of ruthenium, rhodium, palladium, starvation, ruthenium, platinum, and gold. Catalysts comprising the following active elements are particularly advantageous: copper/magnesium/potassium, copper/magnesium/sodium; copper/magnesium/lithium, copper/magnesium/planing, copper/magnesium/sodium/lithium, copper/magnesium/potassium/lithium And copper/magnesium/absolute/lithium, copper/magnesium/sodium/potassium, copper/magnesium/sodium/planing and copper/magnesium/potassium/planing. Most particularly preferred are the catalysts described in the patent applications EP-A 25 5 1 56, EP-A 494 474, EP-A 657 212 and EP-A 657 213, the disclosures of which are incorporated herein by reference. The copper content, calculated as metal, is advantageously between 30 g/kg and 90 g/kg, preferably between 40 g/kg and 80 g/kg and particularly preferably at 50 g. / kg and 70 g / kg between catalysts. The magnesium content, calculated in the form of metal, is advantageously between 10 g/kg and 30 g/kg, preferably between 12 g/kg and 25 g/kg and particularly preferably q is Between 1 5 g/kg and 20 g/kg of catalyst. The alkali metal content, calculated as metal, is advantageously between 0 · 1 g / kg and 30 g / kg, preferably at 0. Between 5 g/kg and 20 g/kg and particularly preferably between 1 g/kg and 15 g/kg of catalyst. Copper: Magnesium: The atomic ratio of one or more alkali metals is advantageously 1:0. 1-2 : 0 . 0 5 - 2, preferably 1 : 0. 2 -1 · 5 : 0 · 1 -1 · 5 and especially good is 1: 〇. 5-1: 〇·15·10 The catalyst has a specific surface area advantageously between 25 m2/g and 300 m2/g, preferably between 50 m2/g and 200 m2/g and particularly preferably • 55- 201139333 is particularly advantageous between 75 m2/g and 175 m2/g (measured by nitrogen according to the BET method). The catalyst can be used in a fixed bed or a fluidized bed. The second option is preferred. The oxy-inflation process operates within the range of conditions recommended for the reaction. The temperature is advantageously between 150 ° C and 3 ° ° C and is preferably between 2 ° C and 27 5 . (Between and optimally from 215 ° C to 2 5 5 ° C. The pressure is advantageously above atmospheric pressure. The enthalpy between 2 bar absolute enthalpy and 10 bar absolute enthalpy gives good results. A range between 4 bar absolute and 7 bar absolute is preferred. This pressure can be effectively adjusted 'to obtain an optimum residence time in the reactor and to maintain constant for different operating speeds. Pass rate. Typical residence time ranges from 1 second to 60 seconds, and preferably from 10 seconds to 40 seconds. The source of oxygen for oxychlorination can be air, pure oxygen or one of them. The mixture, preferably pure oxygen, is preferably a solution of the latter which allows simple recycle of the unconverted reactants. The reactants can be introduced into the bed by any known means. For safety reasons, It is advantageous to introduce oxygen separately from other reactants. These safety factors also require that the gas mixture exiting or recirculating to the reactor be kept outside the limits of flammability at the pressures and temperatures in question. It is better to keep a so-called rich The mixture, that is to say contains too little oxygen relative to the fuel to be ignited. In this respect, if the compound has a broad range of flammability, hydrogen (> 2 vo 1%, preferably > A large amount of 5 vol%) will constitute a disadvantage. The ratio of chlorinated gas/oxygen used is advantageously between 3 m ο 1 / m ο 1 and 6 -56 to 201139333 mol/mol. The ratio is advantageously at 0. Between 4 mol/mol and 〇_6 mol/m〇l. The resulting chlorinated product mainly contains DCE and also a small amount of by-products such as 1,1,2-trichloroethane. The DCE separated from the product stream from the chlorination reactor may or may not be mixed with the DCE separated from the product stream of the oxychlorination reactor prior to the DCE cracking step. When the two DCEs are mixed, they can be mixed completely q or partially. The conditions under which the cleavage step of D C E can be carried out are well known to those skilled in the art. The DCE cleavage can be carried out in the presence or absence of a third compound, among which the catalyst can be mentioned; in this case the DCE cleavage is a catalyzed DCE cleavage. However, DCE cleavage is preferably carried out in the absence of the third compound and only under the action of heat; in this case the DCE cleavage is often referred to as pyrolysis. The pyrolysis is advantageously obtained in a tube furnace by a reaction U in the gas phase. The usual pyrolysis temperature is between 400 ° C and 600 ° C, preferably between 48 ° C and 5 40 ° C. The residence time is advantageously between 1 second and 60 seconds, preferably from 5 seconds to 25 seconds. In order to limit the formation of by-products and the contamination of the furnace piping, the conversion of the D C E is advantageously limited to 45% to 75%. The separation of VC and hydrogen chloride obtained from the pyrolysis product stream is carried out according to known methods using any known apparatus to collect purified V C and hydrogen chloride. After purification, unconverted d C E is advantageously sent to the pyrolysis furnace. -57- 201139333 It is then preferred to polymerize the VC to produce PVC. The manufacture of PVC may be a bulk, solution or aqueous dispersion polymerization process, which is preferably an aqueous dispersion polymerization process. The expression aqueous dispersion polymerization is understood to mean free radical polymerization in aqueous suspensions and free radical polymerization in aqueous emulsions, as well as polymerization in aqueous microsuspensions. The expression of free radical polymerization in an aqueous suspension is understood to mean any free radical polymerization process in the presence of a dispersant and an oil soluble free radical initiator in an aqueous medium. The expression of free radical polymerization in an aqueous emulsion is understood to mean any free radical polymerization process in the presence of an emulsifier and a water soluble free radical initiator in an aqueous medium. The expression of aqueous microsuspension polymerization (also referred to as polymerization in a homogenized aqueous dispersion) is understood to mean the use of oil-soluble initiators and the preparation of monomers in the presence of emulsifiers due to strong mechanical agitation and in the presence of emulsifiers. Any free radical polymerization process under the conditions of droplets of the emulsion. The first embodiment of step f) is superior to the second embodiment. A preferred process according to the invention is a process for the manufacture of at least one ethylene-derived compound starting from a hydrocarbon source, according to which: a) subjecting a hydrocarbon source comprising fraction E 1 recycled from step d) to a simplified cracking, Thereby producing a mixture comprising a product of ethylene and other components; b) subjecting the mixture of products to a first separation step s 1 'the first separation step comprising -58 of said ethylene and other components - 201139333 The product is separated into a fraction containing a lighter than ethylene compound and a part of ethylene, referred to as fraction F 1 and a fraction F2; c) a saturated fraction of F1 is fed to an ethylene recovery unit where it is separated into rich a fraction containing ethylene, referred to as fraction E1, and separated into a fraction called light fraction rich in lighter than ethylene; d) recycling fraction E1 to step a); e) subjecting fraction F2 to a second separation step S2, the second separation step comprising separating the fraction F2 into an ethylene-rich fraction called fraction E2 in one or two separations, and separating into ethane-rich and containing at least 3 carbon Sub hydrocarbons, known as the heavy fraction - fraction; F) fraction is then conveyed to the manufacture of at least one ethylene E2-derived compound. A particularly preferred process according to the invention is a process for the manufacture of i,2-dichloroethane starting from a source of hydrocarbons, comprising the steps a) to f) defined above, according to the process, the ethylene The derivative compound is 1,2-dichloroethane. A first advantage of the method according to the invention is that it allows the use of purity lower than 9 9. 8 % ethylene. Another advantage of the process according to the invention is that it does not include a catalytic oxidative dehydrogenation step requiring a significant investment in increasing production costs. The advantage of the process according to the invention is that it does not require separation into two ethylene® fractions which differ in ethylene composition compared to the processes described in the prior art, and the use conditions of the above separations are also different, taking into account their Containing -59-201139333 Some reactive impurities, which disturb the methods used after them and limit their use; for example, hydrogen is unacceptable during the oxychlorination of ethylene. Other advantages that can be attributed to the process according to the invention are the advantages associated with the fact that compounds lighter than ethylene are separated from the ethylene fraction. Among these advantages, the advantages of operating the method in the following apparatus can be mentioned, the size of the apparatus is not increased and the loss due to stripping is avoided (the loss reduces the efficiency of the method). The process according to the invention makes it easier to carry out the growth by allowing the fractions rich in ethylene-rich compounds to be separated. Another advantage of this method is that it is possible to separate compounds containing at least 3 carbon atoms via heavy fractions, which are generally negative for some undesirable side reactions leading to the formation of undesired derivatives which are difficult to separate. responsible. Finally, an advantage of the method according to the invention is that it makes it possible to have a fully integrated process at the same industrial location. [Embodiment] A preferred and particularly preferred method according to the present invention will now be described with reference to the drawings attached to the specification. The figure includes Figure 1, which graphically illustrates a preferred method for making at least one ethylene-derived compound according to the present invention, and particularly preferred for the manufacture of 1,2-dichloroethane according to the present invention. method. A hydrocarbon source (1) containing the recycled fraction E 1 (2) is subjected to a simplified cracking -60-201139333 (3), thereby producing a mixture (4) containing a product of ethylene and other components. The mixture (4) is subjected to a first separation step S1 (5) 'the table-separation step comprises separating the mixture into a fraction containing a lighter than ethylene compound and a portion of ethylene, referred to as fraction F1 ( 6) and separated into a fraction F2 (7). The fraction F1 (6) is then sent to an ethylene recovery unit (8) where it is separated into an ethylene-rich fraction (2) called fraction E1 which is recycled to the first step and separated into A fraction (9) known as a light fraction rich in compound 0 lighter than ethylene. Fraction F2 (7) is subjected to a second separation step S2 (10) which comprises separating fraction F2 (7) into an ethylene-rich fraction called fraction E2 in one or two separations. (11), and is separated into a fraction (12) called a heavy fraction rich in ethane and a hydrocarbon having at least 3 carbon atoms. Fraction E2 (ll) is then sent to produce at least one ethylene-derived compound, and preferably, according to a particularly preferred method in accordance with the present invention, it is sent to produce 1,2-dichloroethane' and then The 1,2-dichloroethane is subjected to cracking to produce chlorine (J ethylene), which can then be polymerized to produce polyvinyl chloride. [Simplified Schematic] Figure 1 illustrates the surface. The invention discloses a method for producing at least one compound derived from ethylene. [Key element symbol description] 1 : Hydrocarbon source 2: fraction E1 - 61 - 201139333 3 : Simplified cleavage 4: mixture of products 5: first separation step S1 6 : Fraction F 1 7 : fraction F2 8 : ethylene recovery unit 9 : light fraction 10 : second separation step S2 1 1 : fraction E2 1 2 : heavy fraction 13: at least one ethylene-derived compound - 62 -

Claims (1)

201139333 七、申請專利範圍: 1 一種從烴源開始之製造至少一種乙烯衍生的化合 物之方法,該方法包括: a) 使隨意地含有從步驟d)再循環的餾分E1之該烴源 進行簡化裂解作用,由此產生含有乙烯和其他組分的產物 之混合物; b) 使所述產物之混合物進行第一分離步驟S1,該第 一分離步驟包括將所述含有乙烯和其他組分之產物分離成 含有輕於乙烯的化合物以及部分乙烯之稱爲餾分F1的餾分 ,以及餾分F2 ; c) 將餾分F1送入乙烯回收單元,在其中它被分離成 富含乙烯之稱爲餾分E1的餾分,以及富含輕於乙烯的化合 物之稱爲輕餾分的餾分; d) 將餾分E1再循環到步驟a),或送去製造至少一種 乙烯衍生的化合物; e) 使餾分F2進行第二分離步驟S2,該第二分離步驟 包括將餾分F2分離成富含乙烯之稱爲餾分E2的餾分或者爲 二個富含乙烯之稱爲餾分E2a和E2b的餾分,以及富含乙烷 和含有至少3個碳原子的烴之稱爲重餾分的餾分; f) 然後將餾分E2或餾分E2a和E2b送去製造至少一種 乙烯衍生的化合物。 2.如申請專利範圍第1項之方法,其中,該烴源係選 自:石腦油、瓦斯油、液化天然氣、乙烷、丙烷、丁烷、 異丁烷以及它們的混合物。 -63- 201139333 3 ·如申請專利範圍第2項之方法’其中,該烴源係選 自:乙烷、丙烷、丁烷、以及丙烷/丁烷混合物。 4 .如申S靑專利範圍第1項之方法,其中,步驟a)包括 進行熱解作用的第一裂解步驟,接著是一系列處理步驟, 在該等處理步驟中包括壓縮步驟和乾燥步驟。 5·如申請專利範圍第1項之方法,其中,步驟d)中, 將餾分E1再循環到步驟a)。 6 ·如申請專利範圍第1到5項中任何一項之方法,其 中’將餾分E1再循環到步驟a)中的壓縮步驟和/或乾燥步驟 〇 7.如申請專利範圍第1項之方法,其中,步驟e)中, 使餾分F2進行第二分離步驟S2,該分離步驟包括將餾分F2 分離成餾分E2以及重餾分。 8 .如申請專利範圍第1項之方法,其中,步驟f)中, 將餾分E2送去製造至少一種乙烯衍生的化合物。 9 .如申請專利範圍第1項之方法,其中,步驟f)中’ 將餾分E2或餾分E2a和E2b,隨意地在已經進行乙炔氫化作 用之後,送去製造DCE以及隨意地製造由其衍生的任何化 合物,及送去製造直接從乙烯開始製造之不同於DCE的至 少一種乙烯衍生的化合物以及隨意地製造由其衍生的任何 化合物。 1 〇.如申請專利範圍第1項之方法,其中,步驟Π中’ 將餾分E2或餾分E2a和E2b,隨意地在已經進行乙炔氫化作 用之後,送去製造DCE以及隨意地製造由其衍生的任何化 -64- 201139333 合物。 1 1 .如申請專利範圍第1項之方法,其中,餾分E 2 、E 2 a和E 2 b包含以它們的總體積計最多9 9.5體積%的乙201139333 VII. Patent application scope: 1 A method for producing at least one ethylene-derived compound starting from a hydrocarbon source, the method comprising: a) simplifying the cracking of the hydrocarbon source optionally containing the fraction E1 recycled from step d) Acting thereby producing a mixture of products comprising ethylene and other components; b) subjecting the mixture of products to a first separation step S1, the first separation step comprising separating the product comprising ethylene and other components into a fraction containing a compound lighter than ethylene and a part of ethylene called fraction F1, and a fraction F2; c) a fraction F1 is sent to an ethylene recovery unit where it is separated into a fraction rich in ethylene called fraction E1, and a fraction known as a light fraction rich in lighter than ethylene; d) recycling fraction E1 to step a) or sent to produce at least one ethylene-derived compound; e) subjecting fraction F2 to a second separation step S2, The second separation step comprises separating the fraction F2 into a fraction rich in ethylene called fraction E2 or as a fraction of two ethylene-rich fractions E2a and E2b. And rich in ethane and a hydrocarbon of at least 3 carbon atoms fraction called heavy fraction; F) then the E2 fraction or fractions E2a and E2b sent producing a compound of at least one ethylene-derived. 2. The method of claim 1, wherein the hydrocarbon source is selected from the group consisting of naphtha, gas oil, liquefied natural gas, ethane, propane, butane, isobutane, and mixtures thereof. -63- 201139333 3 - The method of claim 2, wherein the hydrocarbon source is selected from the group consisting of: ethane, propane, butane, and a propane/butane mixture. 4. The method of claim 1, wherein the step a) comprises a first cracking step of performing pyrolysis, followed by a series of processing steps, wherein the processing step comprises a compressing step and a drying step. 5. The method of claim 1, wherein in step d), fraction E1 is recycled to step a). 6. The method of any one of claims 1 to 5, wherein the step of recycling the fraction E1 to the step a) and/or the drying step 〇 7. The method of claim 1 In step e), the fraction F2 is subjected to a second separation step S2 which comprises separating the fraction F2 into a fraction E2 and a heavy fraction. 8. The method of claim 1, wherein in step f), the fraction E2 is sent to produce at least one ethylene-derived compound. 9. The method of claim 1, wherein in step f), the fraction E2 or the fractions E2a and E2b are optionally sent to the manufacture of DCE and optionally produced therefrom after the acetylene has been hydrogenated. Any compound, and is sent to produce at least one ethylene-derived compound different from DCE, which is produced directly from ethylene, and optionally produces any compound derived therefrom. 1 方法. The method of claim 1, wherein in step ', the fraction E2 or the fractions E2a and E2b are optionally sent to the manufacture of DCE and optionally produced therefrom after the acetylene has been hydrogenated. Any compound -64-201139333. The method of claim 1, wherein the fractions E 2 , E 2 a and E 2 b comprise up to 99.5 vol% of B based on their total volume.
TW099141468A 2009-12-03 2010-11-30 Process for the manufacture of at least one ethylene derivative compound TW201139333A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09177960 2009-12-03

Publications (1)

Publication Number Publication Date
TW201139333A true TW201139333A (en) 2011-11-16

Family

ID=42154427

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099141468A TW201139333A (en) 2009-12-03 2010-11-30 Process for the manufacture of at least one ethylene derivative compound

Country Status (5)

Country Link
CN (1) CN102725252B (en)
AR (1) AR079302A1 (en)
EA (1) EA201290428A1 (en)
TW (1) TW201139333A (en)
WO (1) WO2011067237A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014048864A2 (en) 2012-09-28 2014-04-03 Solvay Sa Process for producing liquefied impure ethylene

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1229999B (en) * 1964-01-31 1966-12-08 Huels Chemische Werke Ag Process for the production of 1, 2-dichloroethane
NL6901398A (en) 1969-01-29 1969-11-25
US4046822A (en) * 1971-10-26 1977-09-06 Stauffer Chemical Company Method for recovering ethylene values
DE3226042A1 (en) * 1982-07-12 1984-01-12 Hoechst Ag, 6230 Frankfurt Process for the preparation of 1,2-dichloroethane
FR2600643B1 (en) 1986-06-27 1988-09-23 Solvay ETHYLENE OXYCHLORATION PROCESS AND CATALYTIC COMPOSITIONS FOR OXYCHLORATION
US5260247A (en) 1991-01-11 1993-11-09 Solvay (Societe Anonyme) Catalytic composition for oxychlorination and process for the oxychlorination of ethylene using such a composition
BE1007818A3 (en) 1993-12-08 1995-10-31 Solvay CATALYST COMPOSITION AND METHOD oxychlorination of ethylene USING THE COMPOSITION.
BE1013616A3 (en) 1998-10-30 2002-05-07 Solvay Chlorination ethylene cracking hydrocarbons obtained.
DE10159615A1 (en) 2001-12-05 2003-06-12 Basf Ag Process for the preparation of 1,2-dichloroethane
KR20070094936A (en) 2004-12-23 2007-09-27 솔베이(소시에떼아노님) Process for the manufacture of 1, 2 - dichloroehane
EA010364B1 (en) 2004-12-23 2008-08-29 Солвей (Сосьете Аноним) Process for the manufacture of 1.2-dichloroethane
FR2880019B1 (en) * 2004-12-23 2007-03-09 Solvay PROCESS FOR PRODUCING 1,2-DICHLOROETHANE
KR20070094935A (en) 2004-12-23 2007-09-27 솔베이(소시에떼아노님) Process for the manufacture of 1,2-dichloroethane
US7863490B2 (en) 2004-12-23 2011-01-04 Solvay (Société Anonyme) Process for the manufacture of 1,2-dichloroethane
FR2902784B1 (en) 2006-06-23 2008-09-05 Solvay PROCESS FOR PRODUCING 1,2-DICHLOROETHANE
FR2902787B1 (en) 2006-06-26 2008-09-05 Solvay PROCESS FOR PRODUCING 1,2-DICHLOROETHANE
FR2902786B1 (en) 2006-06-26 2008-08-29 Solvay PROCESS FOR PRODUCING 1,2-DICHLOROETHANE
FR2902785B1 (en) 2006-06-26 2008-08-08 Solvay PROCESS FOR PRODUCING 1,2-DICHLOROETHANE
CN101959835A (en) * 2008-02-28 2011-01-26 索维公司 Be used to produce the method for at least a ethylene derivative compounds
EP2096095A1 (en) * 2008-02-28 2009-09-02 SOLVAY (Société Anonyme) Process for the manufacture of at least one ethylene derivative compound

Also Published As

Publication number Publication date
CN102725252B (en) 2015-11-25
WO2011067237A2 (en) 2011-06-09
WO2011067237A3 (en) 2011-08-04
EA201290428A1 (en) 2013-01-30
AR079302A1 (en) 2012-01-18
CN102725252A (en) 2012-10-10

Similar Documents

Publication Publication Date Title
US20110077366A1 (en) Process for the manufacture of at least one ethylene derivative compound
US20090270579A1 (en) Process for the Manufacture of 1,2-Dichloroethane
TW200827325A (en) Process for the manufacture of 1,2-dichloroethane
US20100331587A1 (en) Process for the manufacture of at least one ethylene derivative compound
US20110082267A1 (en) Process for the manufacture of 1,2-dichloroethane and of at least one ethylene derivative compound different from 1,2-dichloroethane
TW201012778A (en) Process for the manufacture of at least one ethylene derivative compound
TW201139333A (en) Process for the manufacture of at least one ethylene derivative compound
WO2011067231A1 (en) Process for the manufacture of at least one ethylene derivative compound
EP2130815A1 (en) Process for the manufacture of at least one ethylene derivative compound