TW201123503A - Solar cell and method of manufacturing the same - Google Patents

Solar cell and method of manufacturing the same Download PDF

Info

Publication number
TW201123503A
TW201123503A TW099127192A TW99127192A TW201123503A TW 201123503 A TW201123503 A TW 201123503A TW 099127192 A TW099127192 A TW 099127192A TW 99127192 A TW99127192 A TW 99127192A TW 201123503 A TW201123503 A TW 201123503A
Authority
TW
Taiwan
Prior art keywords
layer
substrate
solar cell
forming
quantum dot
Prior art date
Application number
TW099127192A
Other languages
Chinese (zh)
Inventor
Yun-Sung Huh
Seung-Il Park
Keun-Joo Kim
Original Assignee
Snt Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090117817A external-priority patent/KR101075149B1/en
Priority claimed from KR1020090125015A external-priority patent/KR101093005B1/en
Priority claimed from KR1020090125001A external-priority patent/KR101079213B1/en
Priority claimed from KR1020090124969A external-priority patent/KR101124490B1/en
Priority claimed from KR1020090125008A external-priority patent/KR20110068161A/en
Application filed by Snt Co Ltd filed Critical Snt Co Ltd
Publication of TW201123503A publication Critical patent/TW201123503A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a solar cell and a method of manufacturing the same. The solar cell includes a substrate surface-treated to minimize solar reflectance; a quantum dot layer formed by vapor-depositing a thin film material on the surface of the substrate; a n-junction layer formed on the upper part of the quantum dot layer; an emitter formed in the n-junction layer and to which electric charges separated by the light incident to the quantum dot layer transmit; and an anti-reflection coating formed on the upper part of the n-junction layer and the emitter to prevent reflection of light. Therefore, when light passes through quantum dots formed in n-junction layer and multilayers, band gap energy from various regions may be generated, so that it allows separation of electric charges at various regions by the band gap energy and generation of electricity by such separated electric charges. Thus, the generation of electricity from the broad range of wavelengths in solar spectrums may be increased and it may allow manufacturing ultra-efficient solar cells.

Description

201123503 六、發明說明: 【發明所屬之技術領域】 [⑽1] 本發明是有關於一種太陽能電池及其製造方法,特別是 有關於一種使用廣泛的太陽光譜以產生電力之太陽能電 池及其製造方法。 【先前技術】 [0002] 太陽能電池是一種將光能轉換成電能的半導體裝置。 [0003] 當與太陽能電池材質之能帶隙能量對應的光線被吸收入 電池時,即產生電荷,而太陽能電池分離並收集這些電 荷。 [0004] 一般傳統太陽能電池是由一個單一PN接面結晶組成。這 種太陽能電池不能使用所有的頻譜以產生電荷,因為這 種太陽能電池只包含一種能帶隙能量,所以只能使用在 長波區域和可見光光譜中近紅外波長區域之波長。 [0005] 因此,目前有大量的太陽能電池開發研究正進行中,這 些研究結合不同能帶隙能量之材質,以廣泛從各波長獲 得電荷,而非僅使用單一接面太陽電池。 【發明内容】 [0006] 有鑑於上述習知技術之問題,本發明之目的就是在提供 一種使用廣泛的太陽光譜以產生電力之太陽能電池及其 製造方法。 [0007] 根據本發明之目的,提出一種太陽能電池,其包含一基 質,該基質表面係處理以降低太陽反射係數。一量子點 層由氣相沈積,並在基質表面形成薄模物質。一N接面層 099127192 表單編號A0101 第4頁/共65頁 201123503 係形成在量子點層上部。—射極係形成於Ν接面層,且被 傳射至該量子點層之人射光分離之複數個電荷傳送至該 射極。-防止反射輕層係形成於Ν接面層之上部與射極 ,以防止反射先。 [0008] [0009] Ο [0010] [0011] 其中’量子點層係形成於由量子點層堆疊之—多層結構 ,該多層結構具有不同能帶隙能量。 其令’量子點層係由初始擴大一薄膜物質產生且該薄 膜物質有-不同於基質至原子島⑷⑽Μ — )之原子 大小。 其卜量子點層每一層厚度係為奈米。 其中’薄膜物f係包含二氧切(Si〇2)、氮切(SiNx) 氧化石夕(SlO)、氧化紹、氧化鎮⑽、欽酸 鹤(SrTi〇3)、氧化组(%、)、二氧化欽(τ')、氣化 鎮(MgF2)、氧化鋅(Ζη0)、氧化姻錫(_、石夕(Si)組 成中至少一項。 ❹[0012] 根據本㈣之目的,再提出__造太陽能電池之方法 ’其包含下列步驟:準備-基質;處理該基質之表面以 減少該基質表面之人射光之反射係數;形成一量子點層 ’該量子點層係、由氣相沈積1膜物質於該處理基質之 表面;形成-N接面層於量子點層;形成一射極層,該射 極層係由熱處理N接面層而成;移除一财酸鹽玻璃,該 鱗石夕酸鹽玻璃係於形成該射極層時產生於該腿面層;以 及形成-防止反射覆蓋層於該N接面層與該射極層。 其中,薄膜物質係包含二氧切⑽ 糾(siN) 099127192 0993428504-0201123503 VI. Description of the Invention: [Technical Field of the Invention] [(10) 1] The present invention relates to a solar cell and a method of manufacturing the same, and more particularly to a solar cell using a wide solar spectrum to generate electric power and a method of manufacturing the same. [Prior Art] [0002] A solar cell is a semiconductor device that converts light energy into electrical energy. [0003] When light corresponding to the band gap energy of the solar cell material is absorbed into the battery, electric charges are generated, and the solar cells separate and collect these charges. [0004] A typical conventional solar cell consists of a single PN junction crystal. This type of solar cell cannot use all the spectrum to generate electric charge. Since this solar cell contains only one band gap energy, it can only use wavelengths in the long-wavelength region and the near-infrared wavelength region in the visible light spectrum. [0005] Therefore, a large number of solar cell development studies are currently underway. These studies combine materials of different band gap energies to obtain a wide range of charges from various wavelengths, rather than using only a single junction solar cell. SUMMARY OF THE INVENTION [0006] In view of the above problems of the prior art, it is an object of the present invention to provide a solar cell using a wide solar spectrum to generate electric power and a method of fabricating the same. In accordance with the purpose of the present invention, a solar cell is provided that includes a substrate that is treated to reduce the solar reflectance. A quantum dot layer is deposited by vapor phase and forms a thin film material on the surface of the substrate. One N junction layer 099127192 Form No. A0101 Page 4 of 65 201123503 is formed on the upper part of the quantum dot layer. An emitter is formed on the splicing surface layer, and a plurality of charges that are transmitted by the person that is transmitted to the quantum dot layer are transmitted to the emitter. - The anti-reflective light layer is formed on the upper part of the splicing surface layer and the emitter to prevent reflection first. [0009] [0011] wherein the 'quantum dot layer is formed in a multi-layered structure stacked by a quantum dot layer, the multilayer structure having different energy band gap energies. It causes the 'quantum dot layer to be produced by initially expanding a film material and the film material has an atomic size different from the matrix to the atomic island (4) (10) Μ - ). The thickness of each layer of the quantum dot layer is nanometer. Among them, the film f contains bismuth (Si〇2), nitrogen cut (SiNx), oxidized stone (S10), oxidized sulphate, oxidized town (10), acidified crane (SrTi〇3), oxidation group (%,) At least one of the composition of dioxin (τ'), gasification town (MgF2), zinc oxide (Ζη0), oxidized agaric (_, Shi Xi (Si). ❹[0012] According to the purpose of (4), The invention provides a method for manufacturing a solar cell, which comprises the steps of: preparing a substrate; treating the surface of the substrate to reduce the reflection coefficient of the human light on the surface of the substrate; forming a quantum dot layer, the quantum dot layer, by the gas phase Depositing a film material on the surface of the processing substrate; forming a -N junction layer on the quantum dot layer; forming an emitter layer formed by heat-treating the N junction layer; removing the monoacid salt glass, The scale silicate glass is formed on the leg layer when the emitter layer is formed; and the anti-reflective coating layer is formed on the N junction layer and the emitter layer. wherein the film material comprises dioxotomy (10) Correction (siN) 099127192 0993428504-0

表單編號A0101 第 5頁/共65頁 XForm No. A0101 Page 5 of 65 X

[0013] 201123503 、氧化石夕(Si〇)、氧化銘(Al2〇3)、氧化鎮(MgO)、鈦酸 錄(SrTi03)、氧化组(、〜)、二氧化鈦⑴〜)、氣化 鎮(MgF2)、氧化鋅(Zn〇)、氧化銦錫(ιτ〇)、矽(s〇組 成中至少一項。 [0014] [0015] [0016] [0017] [0018] [0019] [0020] [0021] 其中,形成該量子點層之步驟係執行於由量子點層堆疊 之一多層結構,該多層結構具有不同能帶隙能量。 其中,形成該量子點層之步驟係由初始擴大一薄膜物質 產生,且該薄膜物質有一不同於基質至原子島(at〇m is land)之原子大小。 其中,形成該量子點層之步坪<包'含一層層氣相沈積一薄 膜物質於一層狀結構,以及8熱'處喱該:氣相沈積之薄膜物 V1 - . ~ 質。 … - 其中,形成該量子點層之步驟包含依次反覆氣相沈積一 薄膜物質於至少一層狀結構,以及熱處理t亥至少一層氣 相沈積之薄膜物質。 其中,形成該量子點層之步驟包含:形成一遮罩於該基 質之表面’該遮罩具有一直徑〇. 1至2〇微米之孔洞;透過 該孔洞’氣相沈積一薄膜物質於該基質;以及移除該遮 罩後熱處理該薄膜物質。 其中,量子點層每一層厚度係為1至20奈米。 其中’更包含下列步驟:於形成該N接面層中或之後產生 一選擇性射極層。 根據本發明之目的,另提出一種太陽能電池,其包含一 099127192 表單編號A0101 第6頁/共65頁 0993428504-0 201123503 基質,該基質表面係處理以降低太陽反射係數。一N接面 層係形成於該基質上。一電漿子層係由複數個金屬粒子 組成並形成於該N接面層之上部。一防止反射覆蓋層係形 成於該電漿子層之上部,以防止反射光。 [0022] 其中,基質表面之處理係包含織理以在該基質表面形成 一表面紋理層。 [0023] 其中,電衆子層之該些金屬粒子係散佈於N接面整個表面 〇 〇 ^ [0024] 其中,電漿子層係包含該些金屬粒子,該些金屬粒子具 有直徑1至30奈米之一穿透區域(tunneling region)。 [0025] 其中,電漿子層係包含該些金屬粒子,該些金屬粒子具 有直徑30至100奈米之一光衍射區。 [0026] 其中,電漿子層之該些金屬粒子係包含由複數個孔洞形 成之篩孔型態。 [0027] ❹ 其中,電衆子層係包令—金屬粒子層於一篩孔型態,該 篩孔型態被包覆厚度最多達30奈米之該些金屬粒子。 [0028] 其中,該些金屬粒子係包含金(Au)、銀(Ag)、銅(Cu)、 錄(Ni)、絡.(Cr)、鐵(Fe)、嫣(W)、翻(Mo)、鋅(Zn)其 中至少一項。 [0029] 根據本發明之目的,另提出一種製造太陽能電池之方法 ,其包含下列步驟:準備一基質;處理該基質之表面以 減少該基質表面之入射光之反射係數;移除一磷矽酸鹽 玻璃;形成一電漿子層,該電漿子層係由複數個金屬粒 099127192 表單編號A0101 第7頁/共65頁 0993428504-0 201123503 子組成並形成於該N接面層之上部;以及形成一防止反射 覆蓋層。 [0030] 其中,處理該基質表面之步驟包含織理以在該基質表面 形成一表面紋理層。 [0031] 其中,形成該電漿子層之步驟係為分散該些金屬粒子以 形成一金屬粒子層。 [0032] 其中,形成該電漿子層之步驟係均勻分散直徑為1至30奈 米之該些金屬粒子。 [0033] 其中,形成該電漿子層之步驟係形成一金屬粒子層於由 複數個孔洞形成之一篩孔型態。 [0034] 其中,形成該電漿子層之步驟係形成一金屬粒子層於一 篩孔型態,該篩孔型態被包覆厚度最多達30奈米之該些 金屬粒子。 [0035] 其中,該些金屬粒子係包含金(Au)、銀(Ag)、銅(Cu)、 鑷(Ni)、鉻(Cr)、鐵(Fe)、鎢(W)、鉬(Mo)、鋅(Zn)其 中至少一項。 [0036] 其中,掃描濺射槍係用於分散該些金屬粒子以形成該電 漿子層,且每一喷射單位面積之一粒子密度為1013至 1 〇17個原子。 [0037] 根據本發明之目的,又提出一種太陽能電池,其包含一 基質,該基質表面係處理以降低太陽反射係數。一光子 晶體層,係具一週期性排列之晶格結構,該晶格結構由 刻蝕該基質而成。一N接面層,係形成於該基質之上部。 099127192 表單編號A0101 第8頁/共65頁 201123503 一防止反射覆蓋層,係形成於該Ν接面之上部,以防止反 射光。 [0038] [0039] [0040]Ο [0041] [0042] Ο [0043] [0044] [0045] 其中,基質表面之處理係包含織理以在該基質表面形成 一表面紋理層。 其中,光子晶體層係包含複數個針狀蝕刻溝槽,該複數 個針狀蝕刻溝槽由表面紋理層蝕刻而成。 其中,針狀蝕刻溝槽之直徑為30至200奈米,並包含數個 於週期性晶格結構形成之不規則針狀部份,該些不規則 針狀部份大小為0. 1至2微米。 其中,表面紋理層具有數個錐狀不規則部份,該些錐狀 不規則部份具有4至10微米之區間。 根據本發明之目的,又提出一種製造太陽能電池之方法 ,其包含下列步驟:準備一基質;處理該基質之表面以 減少該基質表面之入射光之反射係數;形成一光子晶體 r - . -! 層,係具一週期性排列之晶格結構,該晶格結構由刻蝕 該基質而成;形成一N接面層於該基質上,且該光子晶體 層形成於該基質;移除一磷矽酸鹽玻璃;以及形成一防 止反射覆蓋層。 其中,處理該基質表面之步驟包含織理以在該基質表面 形成一表面紋理層。 其中,形成該光子晶體層之步驟包含蝕刻以形成複數個 針狀姓刻溝槽。 其中,蝕刻之步驟係使用反應性離子蝕刻法以及感應偶 099127192 表單編號A0101 第9頁/共65頁 0993428504-0 201123503 合電漿法。 [0046] 其中,形成該光子晶體層之步驟包含:包覆一硬化型光 阻及硬化;形成一遮罩型樣,該遮罩型樣具有複數個型 樣孔洞,該些型樣孔洞與硬化型光阻上之光子晶體層型 樣對應;藉由該些型樣孔洞以暴露該基質並蝕刻該基質 ;移除該遮罩型樣;以及藉由擴散磷於該遮罩型樣移除 之基質以形成一 N接面層。 [0047] 其中,形成該遮罩型樣之步驟包含利用一印刻模組以形 成該些型樣孔洞於該基質,該印刻模組具有相對應該光 C) 子晶體層型樣之不規則部份。 [0048] 其中,遮罩型樣之大小為0. 1至2微米。 [0049] 其中,蝕刻該基質之步驟為放射一離子束。 [0050] 其中,蝕刻之步驟係使用反應性離子蝕刻法以及感應偶 合電漿法。 [0051] 根據本發明之目的,另提出一種太陽能電池,其包含一 d[0013] 201123503, oxidized stone Xi (Si〇), oxidized Ming (Al2〇3), oxidized town (MgO), titanic acid (SrTi03), oxidation group (, ~), titanium dioxide (1) ~), gasification town ( At least one of MgF2), zinc oxide (Zn〇), indium tin oxide (ITO), and 矽(s〇 composition) [0014] [0020] [0020] [0020] The step of forming the quantum dot layer is performed by stacking a multilayer structure of quantum dot layers having different energy band gap energies, wherein the step of forming the quantum dot layer is performed by initially expanding a thin film. The substance is produced, and the film material has an atomic size different from the matrix to the atomic island. The step of forming the quantum dot layer includes a layer of vapor deposited a film material. The layered structure, and the 8 hot 'gels: the vapor deposited film V1 - . . . - wherein the step of forming the quantum dot layer comprises sequentially vapor-depositing a film material in at least one layer structure And heat-treating at least one layer of vapor-deposited film material. wherein the amount is formed The step of layering comprises: forming a mask on the surface of the substrate. The mask has a hole having a diameter of 1 to 2 μm; through the hole, a film material is vapor-deposited on the substrate; and the film is removed. The film material is heat-treated after the masking, wherein each of the quantum dot layers has a thickness of 1 to 20 nm. wherein 'more includes the following steps: generating a selective emitter layer in or after forming the N junction layer. Another object of the present invention is to provide a solar cell comprising a 099127192 form number A0101 page 6 / a total of 65 pages 0993428504-0 201123503 matrix, the substrate surface is treated to reduce the solar reflectance. An N junction layer is formed in On the substrate, a plasmonic layer is composed of a plurality of metal particles and is formed on the upper portion of the N junction layer. An anti-reflection coating layer is formed on the upper portion of the plasmonic layer to prevent reflected light. [0022 Wherein the treatment of the surface of the substrate comprises weaving to form a surface texture layer on the surface of the substrate. [0023] wherein the metal particles of the electric sub-layer are dispersed over the entire surface of the N-junction. [0024] wherein the plasmonic sublayer comprises the metal particles, the metal particles having a tunneling region of 1 to 30 nm in diameter. [0025] wherein the plasmonic layer layer comprises the And a metal particle having a light diffraction region of 30 to 100 nm in diameter. [0026] wherein the metal particles of the plasmonic layer comprise a mesh pattern formed by a plurality of pores. ] , where the electric layer is ordered—the metal particle layer is in a mesh pattern, and the mesh pattern is coated with the metal particles having a thickness of up to 30 nm. [0028] wherein the metal particles comprise gold (Au), silver (Ag), copper (Cu), recorded (Ni), complex (Cr), iron (Fe), germanium (W), turn (Mo ), zinc (Zn) at least one of them. [0029] According to an object of the present invention, there is further provided a method of fabricating a solar cell comprising the steps of: preparing a substrate; treating a surface of the substrate to reduce a reflection coefficient of incident light on the surface of the substrate; removing a phosphonic acid Salt glass; forming a plasmonic layer consisting of a plurality of metal particles 099127192 Form No. A0101 Page 7 / Total 65 pages 0993428504-0 201123503 and formed on the upper portion of the N junction layer; An anti-reflective cover layer is formed. Wherein the step of treating the surface of the substrate comprises weaving to form a surface texture layer on the surface of the substrate. [0031] wherein the step of forming the plasmonic sublayer is to disperse the metal particles to form a metal particle layer. Wherein the step of forming the plasmonic sublayer uniformly disperses the metal particles having a diameter of from 1 to 30 nm. [0033] wherein the step of forming the plasmonic sublayer forms a metal particle layer in a mesh pattern formed by a plurality of pores. [0034] wherein the step of forming the plasmonic sublayer forms a metal particle layer in a mesh pattern, the mesh pattern being coated with the metal particles having a thickness of up to 30 nm. [0035] wherein the metal particles comprise gold (Au), silver (Ag), copper (Cu), niobium (Ni), chromium (Cr), iron (Fe), tungsten (W), molybdenum (Mo) And zinc (Zn) at least one of them. [0036] wherein a scanning sputtering gun is used to disperse the metal particles to form the plasma sub-layer, and one of the ejection unit areas has a particle density of 1013 to 1 〇17 atoms. [0037] In accordance with the purpose of the present invention, a solar cell is further provided that includes a substrate that is treated to reduce the solar reflectance. A photonic crystal layer having a periodically arranged lattice structure formed by etching the substrate. An N junction layer is formed on the upper portion of the substrate. 099127192 Form No. A0101 Page 8 of 65 201123503 A reflection-preventing cover is formed on top of the splicing surface to prevent reflection of light. [0040] [0044] [0045] wherein the treatment of the surface of the substrate comprises weaving to form a surface texture layer on the surface of the substrate. Wherein, the photonic crystal layer comprises a plurality of needle-shaped etching trenches, and the plurality of needle-shaped etching trenches are etched by the surface texture layer. The acicular portion of the acicular portion is 0. 1 to 2, wherein the acicular portion is 0. 1 to 2 Micron. Wherein, the surface texture layer has a plurality of tapered irregularities, and the tapered irregular portions have an interval of 4 to 10 micrometers. In accordance with the purpose of the present invention, a method of fabricating a solar cell is further provided comprising the steps of: preparing a substrate; treating the surface of the substrate to reduce the reflection coefficient of incident light on the surface of the substrate; forming a photonic crystal r - . a layer having a periodically arranged lattice structure, the lattice structure being formed by etching the substrate; forming an N junction layer on the substrate, and the photonic crystal layer is formed on the substrate; removing a phosphorus a tellurite glass; and forming an anti-reflective coating. Wherein the step of treating the surface of the substrate comprises weaving to form a surface texture layer on the surface of the substrate. Wherein the step of forming the photonic crystal layer comprises etching to form a plurality of acicular-shaped trenches. Among them, the etching step uses a reactive ion etching method and an induction couple 099127192 Form No. A0101 Page 9 / Total 65 page 0993428504-0 201123503 Combined plasma method. [0046] wherein the step of forming the photonic crystal layer comprises: coating a hardened photoresist and hardening; forming a mask pattern, the mask pattern having a plurality of pattern holes, the pattern holes and hardening Corresponding to the photonic crystal layer pattern on the type of photoresist; exposing the substrate by the patterning holes and etching the substrate; removing the mask pattern; and removing the mask pattern by diffusing phosphorus The matrix forms an N junction layer. [0047] wherein the step of forming the mask pattern comprises using an imprinting module to form the pattern holes in the substrate, the imprinting module having an irregular portion corresponding to the light C) sub-crystal layer pattern . 01至两个微米。 [0048] wherein the size of the mask is from 0.1 to 2 microns. [0049] wherein the step of etching the substrate is to emit an ion beam. [0050] wherein the etching step uses a reactive ion etching method and an inductive coupling plasma method. [0051] According to the purpose of the present invention, another solar cell is provided, which comprises a d

U 基質,該基質表面係處理以降低太陽反射係數。一光子 晶體層,係形成於該基質之表面,且該光子晶體層係由 複數個細微金屬粒子及複數個量子線組成,該些量子線 形成於該些細微金屬粒子底部以反射來自内部之入射光 。一N接面層,係形成於該光子晶體層上。一防止反射覆 蓋層,係形成於該N接面層之上部,以防止反射光。 [0052] 其中,基質表面之處理係包含織理以在該基質表面形成 一表面紋理層。 0993428504-0 099127192 表單編號A0101 第10頁/共65頁 201123503 [0053] [0054] [0055] [0056] Ο [0057] [0058] ❹ [0059] [0060] 099127192 表單編號Α0101 其中,光子晶體層之該些量子線係為一針狀型態,且該 些量子線由氣相沈積矽於該些金屬粒子底部所形成。 其中,該些金屬粒子之直徑為5至50奈米。 其中,該些量子線之長度為10至100奈米。 根據本發明之目的,另提出一種製造太陽能電池之方法 ,其包含下列步驟:準備一基質;處理該基質之表面以 減少該基質表面之入射光之反射係數;形成一光子晶體 層於該基質之表面,且該光子晶體層係由複數個細微金 屬粒子及複數個量子線組成,該些量子線形成於該些細 微金屬粒子底部以反射來自内部之入射光;形成一Ν接面 層於該基質上,且該光子晶體層形成於該基質;移除一 磷矽酸鹽玻璃;以及形成一防止反射覆蓋層。 其中,基質表面之處理係包含織理以在該基質表面形成 一表面紋理層。 其中,形成該光子晶體層之步驟包含:藉由喷灑複數個 金屬粒子於該基質之表面以形成該些細微金屬粒子;以 及氣相沈積矽於該些細微金屬粒子之底部並產生該些量 子線® 其中,形成細微金屬粒子步驟係為掃描濺射搶以分散該 些金屬粒子,且每一單位面積之該些金屬粒子密度為 1013至1017個原子。 根據本發明之目的,另提出一種太陽能電池,其包含一 基質,該基質表面係處理以降低太陽反射係數。一光子 第11頁/共65頁 0993428504-0 201123503 晶體層,係具一週期性排列之晶格結構,該晶格結構由 刻钮該基質而成。一量子點層,係由氣相沈積,並在該 光子晶體層上部形成一薄膜物質。一 N接面層,係形成在 該量子點層上部。一防止反射覆蓋層,係形成於該N接面 層之上部,以防止反射光。 [0061] 其中,太陽能電池更包含一選擇性射極層於該N接面層上 [0062] 其中,太陽能電池更包含一電漿子層,該電漿子層位於 該N接面層上部並由複數個金屬粒子組成。 [0063] 根據本發明之目的,另提出一種製造太陽能電池之方法 ,其包含下列步驟:準備一基質;處理該基質之表面以 減少該基質表面之入射光之反射係數;形成一光子晶體 層,且該光子晶體層具一週期性排列之晶格結構,該晶 格結構由刻蝕該基質而成;形成一量子點層,係由氣相 沈積,並在該光子晶體層上部形成一薄膜物質;形成一N 接面層於該基質上,且該量子點層形成於該基質;移除 一磷矽酸鹽玻璃,該磷矽酸鹽玻璃係形成於該N接面層上 ;形成一射極層,該射極層由熱處理該N接面層而得;以 及形成一防止反射覆蓋層於該射極層上。 [0064] 如此,當光穿過於N接面層與多層形成的量子點,可能會 生成來自不同區域之能帶隙能量,因此,各區域能帶隙 能量使得電荷分離,而這些分離的電荷產生電力。所以 廣泛的納入太陽光譜的波長可增加產生的電力,並且可 製造超高效能的太陽能電池。 0993428504-0 099127192 表單編號A0101 第12頁/共65頁 201123503 [0065] 關於本發明的其他面向及優點將於下列實施方式中敘述 ,上述資訊某種程度上已明顯呈現於實施方式中,或經 由實踐該發明有更多了解。 【實施方式】 [0066] 雖然本發明與參考已被敘述為特定的實施例,許多被精 通技術人員在不偏離本發明所做的改變及修改是被領會 的,而被定義為附加的專利範圍及其相同物。貫穿本發 明的敘述中,當敘述某些科技被決定為避開本發明的某 ^ 些點時,適當的實施方式將被省略。 〇 [0067] 當像是”第一”和”第二”這些詞彙被用於敘述許多不 同的成分時,該成分絕不被限制於以上的詞彙,以上詞 彙只被做為辨識不同的成分用。 [0068] 此敘述的詞彙只為用於敘述某些實施例,且必須僅限制 於本發明,除非明確用於其他方面,表達為單數包含了 複數之意。在目前的敘述中,例如”構成”或”由…組 成”的表達是為了指定一特徵、一數目、一步驟、一操 ^ 作、一元素、一部分或其組合物,且不能被構成來排除 任何一或更多其它的特徵、數目、.步驟、操作、元素、 部分或其組合物的存在或是可能性。 [0069] 依照此發明某些實施例的太陽能電池及其製造方式,將 於下方更詳細及參照伴有的圖示被敘述,這些成分不論 圖號都被提供了相同的參照數字或是一致的,且省略了 多餘的解釋。 [0070] 請參閱第1圖,其係為依照此發明之太陽能電池實施例之 099127192 表單編號A0101 第13頁/共65頁 0993428504-0 201123503 截面圖。圖中,此發明一實施例的太陽能電池在基質ίο 上有由晶片型形成的電極,且有表面紋理層12以極小化 基質10表面上的太陽能反射。 [0071] 進一步來說,量子點層14是形成於表面紋理層12的上方 部分,且在層狀構造中形成於基質10上。 [0072] 量子點層14依照此發明之一實施例形成於至少一層狀構 造。 [0073] 例如,量子點層14形成於一多層的構造,每層的厚度為1 到2 0奈米。 [0074] 更好的情況為量子點層14形成於一五層的構造,總厚度 範圍為5到10 0奈米。 [0075] N接面層16形成於量子點層14的上方。 [0076] N接面層16經由許多不同的方法,在量子點層14上方部分 磷的擴散而形成。 [0077] 在此,由於基質10為P型,單一的P-N接面因為N接面層 1 6的緣故而沿著接面的部分形成,該沿著接面部分的附 帶光產生離子化且分離的電子-電洞對。 [0078] 部分通過N接面層1 6的光撞擊量子點層14且進一步釋放了 電荷。 [0079] 當量子點層14在多層構造上形成時,每層只對具有特定 的能帶隙能量的波長反應來釋放電荷。 [0080] 防止反射覆蓋層(ARC)18形成於N接面層16的上方部分來 099127192 表單編號A0101 第14頁/共65頁 0993^ 201123503 防止光的反射。 [0081] 基質10的雙面皆由雷射處理所以N接面層16的雙面皆為斷 電的。 [0082] 電極被設置於基質10的上方及下方部分,所以他們可使 外部電連接。 [0083] 請參閱第2圖,其係為本發明之太陽能電池方法一實施例 之流程圖,而第3圖為本發明之太陽能電池方法一實施例 之製程圖。 〇 [0084] 如第2圖及第3圖所示,本發明之太陽能電池實施例的一 種製造方法包括準備包含矽(S11)的晶片基質10。 [0085] 晶片基質10的表面接著被處理以最小化晶片基質(S12)上 的光反射。 [0086] 為達成此目的,晶片基質1 0的表面首先被處理以消除損 傷,例如消除鋸齒狀的損傷。 Q [0087] 此處理的目的為消除晶片基質10被切割時產生的碎片破 裂或任何晶片基質10表面上的不純物質。 [0088] 表面紋理層12於是由組織晶片基質10被形成。 [0089] 表面紋理層12形成是為了降低表面反射的損失及由儲存 光來增加光的吸收,經由在基質10的表面上形成角錐或 反角椎型、多孔或不規則型可以反射入射光(S12)。 [0090] 量子點經由組織過程形成於基質1 0上形成的表面紋理層 12,在此的量子點14形成於至少一層的構造上。 099127192 表單編號A0101 第15頁/共65頁 0993428504-0 201123503 [0091] [0092] [0093] [0094] [0095] [0096] [0097] [0098] [0099] 請參閱第4圖,其係為本發明之太陽能電池方法一實施例 之載面圖’圖中說明了(a)多層量子點層14及(1))形成於 太陽能電池上基質表面的單層量子點層14,量子點層14 可形成為如圖4(a)所示的多層結構或如圖4(b)所示的單 層結構。 依照本發明一實施例的多層量子點層14是依照基質1 〇的 成分性質形成,且形成為薄膜物質。 此種多層量子點層14由堆疊具有不同能帶隙能量的量子 點層形成。 f) 此種多層量子點層14也可由從基筲,1〇到原子島上,生成 具有不同原子大小的薄膜物 '質形成》 為了將量子點層14形成為多層構造,單層量子點層經由 氣相沉積被一層一層的堆疊,且重複了熱處理氣相沉積 薄膜物質的步驟。 ' ' : ; r t :- ^ ΜΓ ::!: V I I, h 量子點層14經由重複氣相沉積薄膜物質於至少一層的構 造,及同時熱處理氣相沉積薄膜物質層而形成,但是量 子點層14的形成不限於此》 量子點層14可由利用島生長模式做氣相沉積,且氣相沉 積材料包含例如碳化發(SiC)、二氧化^(si〇 )、氧化 2 鋅(ZnO)、奈米結晶矽(nano-crystalline SiH)類的 材料。 在島狀成長中,薄膜物質間的交互作用佔了主要地位。 依照此實施例,量子點層14由多層構造中的一層一層生 099127192 表單編號A0101 第16頁/共65頁 0993428504-0 201123503 長模式或島狀成長模式形成。 [0100] 量子點層14的各層由具有約為德布洛依(de Brogl ie)波 長之量子點尺寸的半導體奈米構成。 [0101] 依照此發明一實施例的太陽能電池,經由於量子點層14 上的入射光與各層的量子點反應來分離電荷及收集分離 的電荷,進而產生電能。 ❹ [0102] 量子點尺寸與量子點層14各層能帶隙能量的關係如方程 式1所示,能帶隙能量與量子點直徑的平方成反比。 [讎] 1 ϊΓ2 Γ2 ~· * \ MqμΟ ..方程式1 [0104] 在此Eo為主體矽的光學能帶隙能量,而D為晶體的直徑。 [0105] 依照方程式1,具有能帶隙能量2. 6eV的奈米結晶矽量子 點平均直徑為13A。U matrix, which is treated to reduce the solar reflectance. a photonic crystal layer is formed on the surface of the substrate, and the photonic crystal layer is composed of a plurality of fine metal particles and a plurality of quantum wires formed at the bottom of the fine metal particles to reflect incident from the inside. Light. An N junction layer is formed on the photonic crystal layer. An anti-reflective coating layer is formed on the upper portion of the N junction layer to prevent reflected light. Wherein the treatment of the surface of the substrate comprises weaving to form a surface texture layer on the surface of the substrate. 0993428504-0 099127192 Form No. A0101 Page 10 / Total 65 Page 201123503 [0055] [0056] [0058] [0060] [0060] 099127192 Form Number Α 0101 where photonic crystal layer The quantum wires are in a needle-like state, and the quantum wires are formed by vapor deposition on the bottom of the metal particles. Wherein, the metal particles have a diameter of 5 to 50 nm. Wherein, the quantum wires have a length of 10 to 100 nm. According to another aspect of the present invention, a method of fabricating a solar cell includes the steps of: preparing a substrate; treating a surface of the substrate to reduce a reflection coefficient of incident light on the surface of the substrate; and forming a photonic crystal layer on the substrate a surface, and the photonic crystal layer is composed of a plurality of fine metal particles and a plurality of quantum wires formed at the bottom of the fine metal particles to reflect incident light from the inside; forming a splicing surface layer on the substrate And the photonic crystal layer is formed on the substrate; the monophosphorus phosphate glass is removed; and an anti-reflection coating layer is formed. Wherein the treatment of the surface of the substrate comprises weaving to form a surface texture layer on the surface of the substrate. Wherein the step of forming the photonic crystal layer comprises: forming a plurality of metal particles on the surface of the substrate to form the fine metal particles; and vapor deposition on the bottom of the fine metal particles and generating the quantum Line® wherein the step of forming fine metal particles is performed by scanning sputtering to disperse the metal particles, and the density of the metal particles per unit area is 1013 to 1017 atoms. In accordance with the purpose of the present invention, a solar cell is further provided which comprises a substrate which is treated to reduce the solar reflectance. A photon Page 11 of 65 0993428504-0 201123503 A crystal layer with a periodically arranged lattice structure formed by engraving the matrix. A quantum dot layer is deposited by vapor deposition and forms a thin film material on top of the photonic crystal layer. An N junction layer is formed on the upper portion of the quantum dot layer. A reflection preventing cover layer is formed on the upper portion of the N junction layer to prevent reflected light. [0061] wherein the solar cell further comprises a selective emitter layer on the N junction layer [0062] wherein the solar cell further comprises a plasmonic sublayer, the plasmonic sublayer is located at the upper portion of the N junction layer It consists of a plurality of metal particles. [0063] According to another aspect of the present invention, a method of fabricating a solar cell includes the steps of: preparing a substrate; treating a surface of the substrate to reduce a reflection coefficient of incident light on the surface of the substrate; forming a photonic crystal layer, And the photonic crystal layer has a periodically arranged lattice structure, the lattice structure is formed by etching the matrix; forming a quantum dot layer, which is deposited by vapor deposition, and forms a film substance on the upper portion of the photonic crystal layer Forming an N junction layer on the substrate, and the quantum dot layer is formed on the substrate; removing a phosphosilicate glass, the phosphonate glass is formed on the N junction layer; forming a shot a pole layer obtained by heat-treating the N junction layer; and forming an anti-reflection coating layer on the emitter layer. [0064] As such, when light passes through the quantum junction formed by the N junction layer and the plurality of layers, energy band gap energy from different regions may be generated, and therefore, each region can have band gap energy to separate charges, and these separated charges are generated. electric power. Therefore, the wide inclusion of the wavelength of the solar spectrum increases the power generated and enables the manufacture of ultra-efficient solar cells. 0993428504-0 099127192 Form No. A0101 Page 12 of 65 201123503 [0065] Other aspects and advantages of the present invention will be described in the following embodiments, and the above information is somewhat apparent in the embodiments, or via More understanding of the invention is practiced. [0066] While the present invention has been described with respect to the specific embodiments thereof, many modifications and changes may be made by those skilled in the art without departing from the invention. And its equivalent. Throughout the description of the present invention, appropriate embodiments will be omitted when it is stated that certain technologies are determined to avoid some of the points of the present invention. 〇[0067] When words like "first" and "second" are used to describe many different components, the component is by no means limited to the above vocabulary. The above vocabulary is only used to identify different components. . The vocabulary is used to describe certain embodiments and is only intended to be limited to the invention. In the present description, the expression "constituting" or "consisting of" is used to designate a feature, a number, a step, an operation, an element, a part or a combination thereof, and cannot be constructed to exclude The existence or possibility of any one or more other features, numbers, steps, operations, elements, parts or combinations thereof. [0069] Solar cells in accordance with certain embodiments of the present invention and methods of making the same will be described in greater detail below and with reference to the accompanying drawings, which are provided with the same reference numerals or And the redundant explanation is omitted. [0070] Please refer to FIG. 1 , which is a cross-sectional view of a solar cell embodiment according to the invention. 099127192 Form No. A0101 Page 13 of 65 0993428504-0 201123503. In the figure, a solar cell according to an embodiment of the invention has an electrode formed of a wafer type on a substrate ίο, and has a surface texture layer 12 to minimize solar reflection on the surface of the substrate 10. Further, the quantum dot layer 14 is formed on the upper portion of the surface texture layer 12, and is formed on the substrate 10 in a layered configuration. [0072] The quantum dot layer 14 is formed in at least one layer structure in accordance with an embodiment of the invention. [0073] For example, the quantum dot layer 14 is formed in a multilayer structure, each layer having a thickness of 1 to 20 nm. More preferably, the quantum dot layer 14 is formed in a five-layer structure with a total thickness ranging from 5 to 100 nm. [0075] The N junction layer 16 is formed over the quantum dot layer 14. [0076] The N junction layer 16 is formed by partial diffusion of phosphorus over the quantum dot layer 14 via a number of different methods. [0077] Here, since the substrate 10 is of a P type, a single PN junction is formed along the junction portion due to the N junction layer 16 , and the incidental light along the junction portion is ionized and separated. The electron-hole pair. [0078] Light that partially passes through the N junction layer 16 strikes the quantum dot layer 14 and further releases charge. [0079] When the quantum dot layer 14 is formed on a multilayer structure, each layer reacts only to a wavelength having a specific energy band gap energy to release the charge. [0080] An anti-reflection cover layer (ARC) 18 is formed on the upper portion of the N junction layer 16 099127192 Form No. A0101 Page 14 of 65 0993^201123503 Prevents reflection of light. [0081] Both sides of the substrate 10 are treated by laser so that both sides of the N junction layer 16 are electrically de-energized. [0082] The electrodes are disposed above and below the substrate 10 so that they can be electrically connected externally. Referring to FIG. 2, which is a flow chart of an embodiment of a solar cell method of the present invention, and FIG. 3 is a process diagram of an embodiment of a solar cell method of the present invention. As shown in FIGS. 2 and 3, a method of manufacturing a solar cell embodiment of the present invention includes preparing a wafer substrate 10 comprising ruthenium (S11). [0085] The surface of the wafer substrate 10 is then processed to minimize light reflection on the wafer substrate (S12). [0086] To achieve this, the surface of the wafer substrate 10 is first treated to eliminate damage, such as to eliminate jagged damage. Q [0087] The purpose of this treatment is to eliminate chip breakage or any impure material on the surface of the wafer substrate 10 when the wafer substrate 10 is cut. [0088] The surface texture layer 12 is then formed from the tissue wafer substrate 10. [0089] The surface texture layer 12 is formed to reduce the loss of surface reflection and to increase the absorption of light by storing light, and to reflect incident light by forming a pyramid or a reverse-angled, porous or irregular shape on the surface of the substrate 10 ( S12). [0090] The quantum dots are formed via a tissue process on a surface texture layer 12 formed on a substrate 10, where the quantum dots 14 are formed on at least one layer of the structure. 099127192 Form No. A0101 Page 15 / Total 65 Page 0993428504-0 201123503 [0091] [0093] [0099] [0099] [0099] [0099] Please refer to FIG. 4, which is a system A plan view of an embodiment of a solar cell method of the present invention is illustrated in which a (a) multi-layer quantum dot layer 14 and (1) a single-layer quantum dot layer 14 formed on a surface of a substrate on a solar cell, a quantum dot layer 14 may be formed as a multilayer structure as shown in Fig. 4 (a) or a single layer structure as shown in Fig. 4 (b). The multilayer quantum dot layer 14 according to an embodiment of the present invention is formed in accordance with the compositional properties of the substrate 1 and is formed into a film material. Such a multilayer quantum dot layer 14 is formed by stacking quantum dot layers having different energy band gap energies. f) Such a multi-layer quantum dot layer 14 may also be formed from a substrate, from 1 Å to an atomic island, to form a film having a different atomic size. In order to form the quantum dot layer 14 into a multilayer structure, the single-layer quantum dot layer is passed through The vapor deposition is stacked one by one, and the step of heat-treating the vapor-deposited film material is repeated. ' ' : ; rt :- ^ ΜΓ ::!: VII, h The quantum dot layer 14 is formed by repeating vapor deposition of a thin film material in at least one layer structure, and simultaneously heat-treating a vapor deposited thin film material layer, but the quantum dot layer 14 The formation of the quantum dot layer 14 can be vapor deposited by using an island growth mode, and the vapor deposited material includes, for example, carbonized hair (SiC), bismuth (si〇), oxidized 2 zinc (ZnO), and nanometer. A material of the class of nano-crystalline SiH. In island growth, the interaction between film materials plays a major role. According to this embodiment, the quantum dot layer 14 is formed by a layer in a multilayer structure. 099127192 Form No. A0101 Page 16 of 65 0993428504-0 201123503 Long mode or island growth mode is formed. [0100] Each layer of the quantum dot layer 14 is composed of a semiconductor nanocrystal having a quantum dot size of a de Broglie wavelength. According to the solar cell of one embodiment of the invention, the incident light on the quantum dot layer 14 reacts with the quantum dots of the respective layers to separate the charges and collect the separated charges, thereby generating electric energy. ❹ [0102] The relationship between the quantum dot size and the band gap energy of each layer of the quantum dot layer 14 is as shown in Equation 1, and the band gap energy is inversely proportional to the square of the quantum dot diameter. [雠] 1 ϊΓ2 Γ2 ~· * \ MqμΟ .. Equation 1 [0104] Here Eo is the optical band gap energy of the host ,, and D is the diameter of the crystal. [0105] According to Equation 1, the nanocrystals having a band gap energy of 2. 6 eV have an average diameter of 13 A.

[0106] 由於量子點的尺寸與能帶隙能量相關,並被稱為量子尺 寸效應,當量子點於多層構造中形成時,允許了光在許 多不同的波長被吸收。 [0107] 依照此實施例,量子點存在於量子激發層且此量子激發 層可堆疊於五層以下。 [0108] 各量子激發層的厚度約為1到20奈米,而五層量子點層的 總厚度約為5-100奈米(S13)。 [0109] N接面層16形成於量子點層14(S14)形成為多層構造之後 099127192 表單編號A0101 第17頁/共65頁 0993428504-0 201123503 [0110] N接面層16經由使用包含磷化氫(ρη3)的矽烷(siH4)及化 學氣相沉積裝置形成為N型矽層,n接面層16可形成為單 層或多層。 [0111] 當N接面層16形成單層時,每單位體積的磷被控制在 10ι6-2〗個原子的範圍内。 [0112] 另一方面,當N接面層16形成多層時,一層從底部至頂端 形成時需要增加磷的含量。 [0113] N接面層16充填例如包含磷參雜時會成為放射層,在此N ^ 接面層16被形成為多層結構,且結構的各層具有不同數 量的磷’例如當結構從底部至頂端時,數量為1〇16到 1018,以及到1〇20立方公分分之一。 [0114] 在N接面層16形成後,一選擇性射極層17會進一步形成以 提向收集電子的能力(S15),依照此實施例,選擇性射極 層經由雷射光束局部注射能量形减,且可在N接面層16形 成時或形成後發生》 剛在細節上,五氧化二难(ΡΛ)層(預氣相沉積)由高溫三 ❹ 氯氧碟(P0C13)和氧氣(〇2)反應,且五氧化二鱗(P2〇5) 膚的碟(P)在高溫時做熱處理以傳遞和擴散到石夕(si)而形 成放射層。 [_放射層會產生電位能以簡化分離電荷到N層的傳遞。 [_依照此實施例,選擇性射極層17由局部雷射照射在放射 1’或是採用加熱及雷射照射基質1〇上各部份的擴散過 程形成。 099127192 表單編號A0101 第18頁/共65頁 0993428504-0 201123503 [0118]在使用雷射形成選擇性射極層17前,可藉由在雷射使用 之處以印刷方式形成高濃度的p材料層來加速選擇性射極 層1 7的形成。 [Oil9]原子在固態時會從高濃度到低濃度擴散,直到原子在加 熱狀況下從不均勻濃度成為均勻濃度。 [0120]擴散現象可由方程式2表示,依照第一菲克(Fick,s)擴 散定律’擴散出現於回應濃度的梯度。 〇 [0121]Since the size of the quantum dots is related to the energy of the band gap energy and is referred to as the quantum size effect, the equivalent sub-points are formed in the multilayer structure, allowing light to be absorbed at many different wavelengths. According to this embodiment, quantum dots are present in the quantum excitation layer and this quantum excitation layer can be stacked below five layers. [0108] Each of the quantum excitation layers has a thickness of about 1 to 20 nm, and the total thickness of the five-layer quantum dot layer is about 5 to 100 nm (S13). [0109] The N junction layer 16 is formed after the quantum dot layer 14 (S14) is formed into a multilayer structure. 099127192 Form No. A0101 Page 17 / Total 65 Page 0993428504-0 201123503 [0110] The N junction layer 16 contains phosphating via use. The hydrogen (ρη3) decane (siH4) and chemical vapor deposition apparatus are formed as an N-type tantalum layer, and the n-junction layer 16 may be formed as a single layer or a plurality of layers. When the N junction layer 16 is formed into a single layer, phosphorus per unit volume is controlled within a range of 10 ι 6 - 2 atoms. On the other hand, when the N junction layer 16 is formed into a plurality of layers, it is necessary to increase the phosphorus content when the layer is formed from the bottom to the top. [0113] When the N junction layer 16 is filled, for example, containing phosphorus, it becomes a radiation layer, where the N^ junction layer 16 is formed into a multilayer structure, and each layer of the structure has a different amount of phosphorus, for example, when the structure is from the bottom to At the top, the number is 1〇16 to 1018, and to 1〇20 cubic centimeters. [0114] After the N junction layer 16 is formed, a selective emitter layer 17 is further formed to enhance the ability to collect electrons (S15). According to this embodiment, the selective emitter layer locally injects energy via the laser beam. The shape is reduced and can occur when the N junction layer 16 is formed or formed. Just prior to the details, the pentoxide layer (pre-vapor deposition) consists of a high temperature trioxo oxychloride disk (P0C13) and oxygen ( 〇 2) The reaction, and the disc (P) of the bismuth pentoxide (P2〇5) skin is heat-treated at a high temperature to transfer and diffuse to Si Xi to form a radiation layer. [The radiation layer generates potential energy to simplify the transfer of separated charge to the N layer. According to this embodiment, the selective emitter layer 17 is formed by partial laser irradiation at the radiation 1' or by diffusion of the portions of the substrate 1 by heating and laser irradiation. 099127192 Form No. A0101 Page 18 of 65 0993428504-0 201123503 [0118] Before the selective emitter layer 17 is formed using a laser, a high concentration p material layer can be formed by printing at the point where the laser is used. The formation of the selective emitter layer 17 is accelerated. [Oil9] Atoms diffuse from a high concentration to a low concentration in the solid state until the atom becomes a uniform concentration from an uneven concentration under heating conditions. [0120] The diffusion phenomenon can be expressed by Equation 2, which occurs in response to the gradient of the response concentration in accordance with the first Fick (s) law of diffusion. 〇 [0121]

J n^c Sx ..方程式2 [0122]進一步而言,鉍散係數D在溫.度增加時迅速提高,且此函 數被表示於方程式3: ..方程式3J n^c Sx .. Equation 2 [0122] Further, the divergence coefficient D increases rapidly as the temperature increases, and this function is expressed in Equation 3: .. Equation 3

[0123] 一I £} = ^ [0124] 在此D〇為不受溫度影響的常數,,T為溫度,在指數函數中 的Q為激發能量且依材料不同約為2到5 eV。 [0125] 例如,當Q=2eV且Do=8xl〇-V/sec時,若T = 3〇〇K,D約 為l(T38m2/Sec,若當τ = 15〇〇κ時,D迅速增加到約 10 1 Wsec。 [0126]當基質1〇在執行擴散過程時,填矽酸鹽玻璃 (phosphorus Siiicate glass,PSG)會被移除。 剛财酸鹽玻璃包含了三氣氧磷(、)和氧在擴散過程之 間反應的墙,且包含石夕之中的不純物,所以磷硬酸鹽玻 璃在Ν接面層16形成後應被移除(S16)。 099127192 表單編號A0101 第19頁/共65頁 0993428504-0 201123503 [0128] 防止反射覆蓋層18在N層形成時型成於基質10上,防止反 射覆蓋層1 8的形成是藉由電漿增強的化學氣相沉積儀器 或是喷濺儀器(S17),達到氮化矽(SiNx)的氣相沉積。 [0129] 由於基質10與所有N層的表面連接,基質10可在雙面產生 溝槽以切斷電。 [0130] 電極形成於基質10的底部與頂端部分以做為外部電的連 接。 [0131] 請參閱第5圖,其係為參照另一發明之太陽能電池方法實 〇 施例之截面圖。 [0132] 本發明的太陽能電池如第5圖所示,包含了由晶片形式準 備的基質10,及表面紋理層12形成於基質10的表面以最 小化太陽能的反射。 [0133] 基質的組成為P型晶體且N接面層54為磷的擴散形成。 [0134] 電漿子層56形成於P-N接面的表面。 [0135] 依照實施例,電漿子層56由喷灑奈米銀(Ag)粒子形成, y 也可由喷灌金(Au)、銀(Ag)、銅(Cu)、錄(Ni)、絡 (Cr),鐵(Fe),鎢(W),鉬(Mo),鋅(Zn)或其奈米粒子 的混合物形成電漿子層56,但是不只限制於此。 [0136] 電漿子層56在光入射時具有小的電磁干擾現象,在金屬 表面的光入射經由干擾現象會產生波,且入射光由此電 磁波震動粒子以有效率的散射光。 [0137] 在此,當入射光具有特定的共振顏色時,散射光會相互 干擾並產生部分重疊現象以提供更佳的散射效果。 099127192 表單編號A0101 第20頁/共65頁 0993428504-0 201123503 [0138] 防止反射覆蓋層18形成以防止太陽能在電漿子層56上方 部分的反射。 [0139] 溝槽19接著形成在基質10的雙面以斷開電,之後電極20 、22形成於基質10的下方及上方部分。 [0140] 請參閱第6圖,其係為本發明另一實施例之電漿子層說明 〇 [0141] 第6圖(a)中表示了電漿子層56可由均勻喷灑金屬奈米粒 子16a形成。 〇 [0142] 依照此實施例,金屬奈米粒子16a在穿隧區域的直徑約為 1到30奈米。 [0143] 依照此實施例,金屬奈米粒子16a在光衍射區域的直徑約 為30到100奈米。 [0144] 請參閱第7圖,其係為本發明之太陽能電池中,由喷濺方 法形成電漿子層實施例之平面圖。喷濺方法包含喷濺搶 30以喷濺金屬粒子及模組(未顯示)以移動太陽能基質10 ❹ 或喷濺搶30。 [0145] 喷濺槍30喷濺了固定數量的金屬粒子於基質上,被喷濺 於基質表面上的金屬粒子數量可由喷濺搶30的形狀、喷 濺搶30的移動速度、喷濺搶30與基質10間的距離、喷濺 搶30使用的電流、加工氣體的壓力...等所改變。 [0146] 依照此實施例,當形成電漿子層的金屬粒子由喷濺程序 喷濺時,基質10上的每單位面積約有1013到1017個原子 099127192 表單編號A0101 第21頁/共65頁 0993428504-0 201123503 [0147] 第6圖(b)中,電漿子層56以網狀形式與複數的孔洞16c 形成為金屬粒子層16b。 [0148] 依照此實施例,金屬粒子層16b可有30奈米以下的厚度以 提供光通道。 [0149] 當電漿子層56由喷濺金屬粒子於基質10形成後,防止反 射覆蓋層18形成以防止光的反射。 [0150] 更進一步,溝槽19形成於基質10的雙面由使用雷射使N接 面層54斷電。 [0151] 電極20、22形成於基質10的底部與頂面部分以外部電子 連結。 [0152] 請參閱第8圖,其係為本發明之太陽能電池製造方法之另 一實施例之流程圖。請參閱第9圖,其係為本發明之太陽 能電池製造方法之另一實施例之製程圖。 [0153] 如第8圖及第9圖所示,依照本實施例的太陽能電池製造 方法包括準備包含矽的晶片基質10(S11)。 [0154] 基質1 0的表面被處理以最小化基質表面(S1 2)入射光的反 射。 [0155] 為了此目標,晶片基質1 0的表面首先被處理以消除傷害 ,例如鋸齒傷害的移除。 [0156] 此處理是為了消除在晶片基質1 0被切割時產生的碎片裂 痕,或是晶片基質10表面任何的不純物。 [0157] 表面紋理層12接著在晶片基質10上的紋理形成,表面紋 099127192 表單編號A0101 第22頁/共65頁 201123503 2的&成ιχ ; 成低表面反射損失和以儲存光以增加光 :吸收#由形成角錐或反角錐形、或許多孔洞或在基 貝1〇表面上形成不規則形以反射人射光(S12)。 _] N接面層94是以N型以⑴層形成,藉由使用化學氣相沉 積儀器(S13)及包含魏氫⑽3)的㈣(SiH4)。 闺在基質1〇上的擴散程序被執行時,初酸鹽玻璃_被 移除了。 剛_酸鹽玻璃為-包含碑的氣化物,由在擴散程序中的 三氣氧鱗(順3)及氧氣間的反應產生,且包含了存在梦 中的不純物,所以射时破續在N接面層94形成(S14) 後被移除。 闺㈣石夕酸鹽玻璃被移除之後,電激子層96形成於N接面層 94的上方部分。 [_電漿子層96由以使用_搶_動基質1D或以固定移動 速率來喷灑金屬奈米粒子》 剛在每單㈣積财1()13_17個金>1粒子被錢在基質 10上以形成電漿子層96(S15)。 圆電好層96在基質H)上形成後,防止反射覆蓋層18形成 以防止光的反射。 [0165] [0166] 099127192 防止反射覆蓋層18可由氣相沉積氮化石夕(SiNx)&電聚加 強化學氣相沉積法或喷濺法形成(S16)。 既然基質10由N層連接到所有的表面,它可由產生溝槽19 在基質10的雙面被斷電。 表單編號A0101 第23頁/共65百 M 0993428504-0 201123503 [0167] 電極形成於基質1 0的底部與頂端部分提供外部電連接 (S17)。 [0168] 請參閱第10圖,其係為本發明之太陽能電池方法另一實 施例之截面圖。 [0169] 如第10圖中所示,此發明之實施例的太陽能電池在基質 10上的電極以晶片形式形成,且表面紋理層12形成以最 小化太陽能在基質10表面的反射。 [0170] 光子晶體層104具有由蝕刻基質10形成的週期性排列晶格 結構。 [0171] 光子晶體層104防止入射光反射到外界,且提供持續的外 界反射以加強入射光。 [0172] 光子晶體層104可包含複數個由蝕刻表面紋理層12形成的 針狀蝕刻溝槽。 [0173] N接面層16由擴散在針狀蝕刻溝槽上方的磷所形成。 [0174] 在此,既然基質10為P型,由於N接面層16以許多不同方 式的磷擴散形成,單層P-N接面層沿著接面部份形成,沿 著接面部分的入射光產生離子化且分離的電洞對。 [0175] 防止反射覆蓋層1 8形成於N接面層1 6的頂端部分以防止光 的反射。 [0176] 基質上雙面的溝槽形成以斷開電,且電極20、22被安裝 於基質1 0的底部和頂端部分。 [0177] 請參閱第11圖,其係為本發明之太陽能電池製造方法一 099127192 表單編號A0101 第24頁/共65頁 0993428504-0 201123503 實施例之流程圖。請參閱第12圖,其係為本發明之太陽 能電池製造方法另一實施例之製程圖。 [0178] 如第11及12圖所示的實施例之太陽能電池製造方法包括 準備包含矽(S11)的晶片基質10。 [0179] 晶片基質10的表面被處理以最小化入射光在基質表面的 反射。 [0180] 為了此目標,晶片基質10的表面首先被處理以消除傷害 ,例如鋸齒傷害的移除。 Ο [0181] 此處理是為了消除在晶片基質10被切割時產生的碎片裂 痕,或是晶片基質10表面的任何的不純物。 [0182] 表面紋理層12藉由紋理化晶片基質10,以形成於晶片基 質10上。 [0183] 表面紋理層12接著形成以減低表面反射損失和以儲存光 以增加光的吸收,藉由形成角錐或反角錐形、或許多孔 洞或在基質10表面上形成不規則形以反射入射光(S1 2)。[0123] An I £} = ^ [0124] Here D is a constant that is not affected by temperature, T is temperature, and Q in the exponential function is excitation energy and is about 2 to 5 eV depending on the material. [0125] For example, when Q=2eV and Do=8xl〇-V/sec, if T=3〇〇K, D is about 1 (T38m2/Sec, if D is τ = 15〇〇κ, D increases rapidly. Up to about 10 1 Wsec. [0126] Phosphorus Siiicate glass (PSG) is removed when the matrix 1 is performing the diffusion process. The gallate glass contains phosphorus oxyphosphorus (,) A wall that reacts with oxygen during the diffusion process and contains impurities in the stone eve, so the phosphate silicate glass should be removed after the splicing surface layer 16 is formed (S16). 099127192 Form No. A0101 Page 19/ A total of 65 pages 0993428504-0 201123503 [0128] The anti-reflection cover layer 18 is formed on the substrate 10 when the N layer is formed, and the formation of the reflective cover layer 18 is prevented by plasma enhanced chemical vapor deposition instruments or sprays. The sputtering apparatus (S17) reaches the vapor deposition of tantalum nitride (SiNx). [0129] Since the substrate 10 is connected to the surfaces of all the N layers, the substrate 10 can generate grooves on both sides to cut off electricity. Formed on the bottom and top end portions of the substrate 10 as an external electrical connection. [0131] Please refer to FIG. 5 for reference to another invention. A cross-sectional view of a battery cell embodiment. [0132] The solar cell of the present invention, as shown in FIG. 5, includes a substrate 10 prepared in the form of a wafer, and a surface texture layer 12 is formed on the surface of the substrate 10 to minimize Reflection of Solar Energy [0133] The composition of the matrix is a P-type crystal and the N junction layer 54 is formed by diffusion of phosphorus. [0134] The plasmonic sub-layer 56 is formed on the surface of the PN junction. [0135] According to an embodiment, electricity The slurry layer 56 is formed by spraying nano silver (Ag) particles, and y can also be sprayed with gold (Au), silver (Ag), copper (Cu), recorded (Ni), complex (Cr), iron (Fe), The mixture of tungsten (W), molybdenum (Mo), zinc (Zn) or its nanoparticles forms the plasmonic layer 56, but is not limited thereto. [0136] The plasmonic layer 56 has a small electromagnetic upon light incidence. Interference phenomenon, light incident on the metal surface generates waves through the interference phenomenon, and the incident light thereby vibrates the particles to efficiently scatter the light. [0137] Here, when the incident light has a specific resonance color, the scattered light will Interference and partial overlap to provide better scattering. 099127192 Forms A0101 Page 20 of 65 0993428504-0 201123503 [0138] The anti-reflective cover layer 18 is formed to prevent reflection of solar energy in a portion above the plasmonic layer 56. [0139] The trench 19 is then formed on both sides of the substrate 10 to The electricity is turned off, and then the electrodes 20, 22 are formed on the lower portion and the upper portion of the substrate 10. [0140] Please refer to FIG. 6 , which is a description of a plasmonic layer according to another embodiment of the present invention. [0141] FIG. 6( a ) shows that the plasmonic layer 56 can be uniformly sprayed with metal nanoparticles. 16a is formed. According to this embodiment, the metal nanoparticle 16a has a diameter of about 1 to 30 nm in the tunneling region. According to this embodiment, the metal nanoparticles 16a have a diameter of about 30 to 100 nm in the light diffraction region. [0144] Referring to Fig. 7, which is a plan view showing an embodiment of a plasmonic layer formed by a sputtering method in a solar cell of the present invention. The splatter method includes splattering 30 to spray metal particles and modules (not shown) to move the solar substrate 10 ❹ or splatter 30. [0145] The spray gun 30 sprays a fixed amount of metal particles on the substrate, and the number of metal particles sprayed on the surface of the substrate can be changed by the shape of the splash 30, the movement speed of the splash 30, and the splash 30 The distance from the substrate 10, the current used for the splash 30, the pressure of the processing gas, etc. are changed. [0146] According to this embodiment, when the metal particles forming the plasmonic sublayer are sputtered by the sputtering process, about 1013 to 1017 atoms per unit area on the substrate 10 are 099127192. Form No. A0101 Page 21 of 65 0993428504-0 201123503 [0147] In Fig. 6(b), the plasmonic sub-layer 56 is formed in a mesh form and a plurality of holes 16c as a metal particle layer 16b. [0148] According to this embodiment, the metal particle layer 16b may have a thickness of 30 nm or less to provide a light tunnel. [0149] When the plasmonic sub-layer 56 is formed of the sputtered metal particles on the substrate 10, the reflective cover layer 18 is prevented from being formed to prevent reflection of light. Further, the groove 19 is formed on both sides of the substrate 10 by de-energizing the N-junction layer 54 using a laser. [0151] The electrodes 20, 22 are formed on the bottom of the substrate 10 and are externally electronically coupled to the top surface portion. Please refer to FIG. 8, which is a flow chart of another embodiment of the method for fabricating a solar cell of the present invention. Please refer to Fig. 9, which is a process diagram of another embodiment of the solar cell manufacturing method of the present invention. As shown in FIGS. 8 and 9, the solar cell manufacturing method according to the present embodiment includes preparing a wafer substrate 10 containing germanium (S11). [0154] The surface of the substrate 10 is treated to minimize reflection of incident light from the surface of the substrate (S1 2). [0155] For this purpose, the surface of the wafer substrate 10 is first treated to eliminate damage, such as the removal of sawtooth damage. [0156] This treatment is for eliminating debris cracks generated when the wafer substrate 10 is cut, or any impurities on the surface of the wafer substrate 10. [0157] The surface texture layer 12 is then formed on the texture of the wafer substrate 10, surface grain 099127192 Form No. A0101, page 22 / total 65 pages 201123503 2 &ι; into low surface reflection loss and to store light to increase light : Absorption # is formed by forming a pyramid or a contralateral cone, perhaps a porous hole or forming an irregular shape on the surface of the base to reflect human light (S12). _] The N junction layer 94 is formed of a (1) layer by an N type by using a chemical vapor deposition apparatus (S13) and (IV) (SiH4) containing Wei hydrogen (10) 3). When the diffusion program on the substrate 1 is executed, the initial acid salt glass _ is removed. Just-salt glass is a gas containing a monument, which is produced by the reaction between the three gas oxygen scales (cis 3) and oxygen in the diffusion process, and contains the impurities in the dream, so the time is broken at N The junction layer 94 is formed (S14) and removed. After the bismuth (iv) silicate glass is removed, the ohmic layer 96 is formed on the upper portion of the N junction layer 94. [_The plasmonic layer 96 is sprayed with metal nanoparticles by using _grab-moving substrate 1D or at a fixed moving rate." Just in each (four) accumulation of money 1 () 13_17 gold > 1 particles are money in the matrix 10 is formed to form the plasmonic layer 96 (S15). After the rounded good layer 96 is formed on the substrate H), the reflective cover layer 18 is prevented from being formed to prevent reflection of light. [0166] 099127192 The anti-reflection coating layer 18 may be formed by vapor deposition of a nitride (SiNx) & electropolymerization enhanced chemical vapor deposition method or a sputtering method (S16). Since the substrate 10 is connected to all surfaces by the N layer, it can be de-energized on both sides of the substrate 10 by the creation of the grooves 19. Form No. A0101 Page 23/Total 65 100 M 0993428504-0 201123503 [0167] The electrode is formed at the bottom and the top end portion of the substrate 10 to provide an external electrical connection (S17). [0168] Please refer to Fig. 10, which is a cross-sectional view showing another embodiment of the solar cell method of the present invention. As shown in FIG. 10, the solar cell of the embodiment of the invention is formed in the form of a wafer on the substrate 10, and the surface texture layer 12 is formed to minimize the reflection of solar energy on the surface of the substrate 10. [0170] The photonic crystal layer 104 has a periodically arranged lattice structure formed by the etching substrate 10. [0171] Photonic crystal layer 104 prevents incident light from being reflected to the outside and provides sustained external reflection to enhance incident light. [0172] Photonic crystal layer 104 may comprise a plurality of acicular etched trenches formed by etched surface texture layer 12. [0173] The N junction layer 16 is formed of phosphorus diffused over the needle-shaped etched trenches. [0174] Here, since the substrate 10 is of a P-type, since the N-junction layer 16 is formed by diffusion of phosphorus in many different ways, a single-layer PN junction layer is formed along the junction portion, and incident light along the junction portion Generate ionized and separated pairs of holes. [0175] The anti-reflection cover layer 18 is formed on the top end portion of the N junction layer 16 to prevent reflection of light. [0176] The grooves on both sides of the substrate are formed to be electrically disconnected, and the electrodes 20, 22 are mounted to the bottom and top portions of the substrate 10. [0177] Please refer to FIG. 11 , which is a solar cell manufacturing method of the present invention. 099127192 Form No. A0101 Page 24 of 65 0993428504-0 201123503 Flow chart of the embodiment. Please refer to Fig. 12, which is a process diagram of another embodiment of the solar cell manufacturing method of the present invention. [0178] The solar cell manufacturing method of the embodiment shown in Figs. 11 and 12 includes preparing a wafer substrate 10 containing ruthenium (S11). [0179] The surface of the wafer substrate 10 is treated to minimize reflection of incident light at the surface of the substrate. [0180] For this purpose, the surface of the wafer substrate 10 is first treated to eliminate damage, such as the removal of sawtooth damage.此 [0181] This treatment is to eliminate debris cracks generated when the wafer substrate 10 is cut, or any impurities on the surface of the wafer substrate 10. [0182] The surface texture layer 12 is formed on the wafer substrate 10 by texturing the wafer substrate 10. [0183] The surface texture layer 12 is then formed to reduce surface reflection loss and to store light to increase absorption of light by forming a pyramid or a conical pyramid, perhaps a porous hole or forming an irregular shape on the surface of the substrate 10 to reflect incident light. (S1 2).

Q 光子晶體層104在表面紋理層12形成之後,具有由蝕刻基 質10形成的週期性排列晶格結構。 [0184] 光子晶體層104形成於表面紋理層12上。 [0185] 光子晶體層104防止入射光反射到外界,且提供持續的外 界反射以加強入射光。 [0186] 光子晶體層104由細微金屬粒子14a(如第14圖所示)及量 子線14b(如第14圖所示)組成,量子線14b(形成於細微 金屬粒子14a下方部分。 099127192 表單編號A0101 第25頁/共65頁 0993428504-0 201123503 [0187] [0188] 光子晶體層104的形成是藉由噴覆細微金屬粒子Ua於在 基質12上成升々的表面紋理層12的掃描喷濺法達成,且在 每單位面積噴灑的粒子密度約為1〇13到1〇17個原子。 光子晶體層104的形成是藉由以高密度離子蝕刻法蝕刻表 面紋理層12而形成針狀蝕刻溝槽。 [0189] [0190] [0191] [0192] [0193] [0194] [0195] 099127192 咼密度離子餘刻法可由反應性離子钱刻(react i ve i on etching, RIE)法或感應偶合電漿(inductive coupled plasma,ICP)法執行。 高密度離子餘刻法的程序氣體可為六氟化硫(S6)、氧氣 (02)、氣氣(C12)、氮氣(N2)及類似氣體,且程序壓力 為 10_2到 1 托耳(Τ〇ι·ι〇。 針狀蝕刻溝槽由在表面紋理層12上的高密度離子蝕刻形 成’且針狀蚀刻溝槽具有3〇到2〇〇奈米的蝕刻型樣及〇. 1 到2微米的晶格週期。 依照此實施例,光子晶體層104由以高蜜度離子蝕刻法形 成,其也可藉由不限制於此的許多其他方法形成。 例如,光子晶體層1〇4可由如第13圖所示的奈米印痕法形 成。 請參閱第13圖,其係為本發明之太陽能電池製造方法另 一實施例之製程圖。圖中敘述了奈米印痕法的使用。 如第13圖所示’晶片基質11〇包含準備好的矽,且表面紋 理層由基質紋理形成於晶片基質丨丨〇上。 在表面紋理層形成之後,光子晶體層接著由奈米印痕法 表單編號A0101 第26頁/共65頁 0993428504-0 [0196] 201123503 形成。 [0197] 硬化型光阻11 3覆蓋於基質110的表面上,且硬化結果。 硬化型光阻113可為光阻抗或電阻抗。 [0198] 型樣孔洞113 a由使用奈米印痕模116之對照於光子晶體層 的型樣周期的不規則部件116a,形成於基質11〇的光阻 11 3上,奈米印痕模上的不規則部件11 6a的晶體周期為 0. 1到2奈米,且孔直徑為30到200奈米。 [0199] Ο 光阻113具有功能為奈米遮罩的型樣孔洞113a以暴露相對 於光子晶體層型樣的部分基質11G。 [0200] 基質1 1 0由使,用離子束蚀刻,在此,部分的基質110由型 樣孔洞113a暴露及被離子束蝕刻。 [0201] 離子触刻是由反應性離子钱刻(reactive·, ion etching, RIE) 法或感應偶合電漿 (inductive coupled plasma, ICP)法執行。 [0202] ❹ 離子姓刻法的程序氣體可‘六氟化硫(S6)、氧氣(op、 氣氣(ci2)、氮氣(ν2)及類似氣體,且程序壓力為ι〇-2到 1 托耳(Torr)。 [0203] 當餘刻程序完成後’用為奈米遮罩的光阻113用例如丙網 被移除。 [0204] 當具有複數個蝕刻溝槽的光子晶體層被形成時,N接面層 116由在表面上擴散磷而形成。 [0205] 再度的參閱第11及12圖,N接面層16藉由使用化學氣相沉 099127192 積儀器及包含磷化氩(PH3)的矽烷(SiH4),形成為N型的 表單編號A0101 第27頁/共65頁 0993428504-0 201123503 [0206] [0207] [0208] [0209] [0210] [0211] [0212] [0213] [0214] 矽(Si)層(S14)。 在基質10上的擴散程序被執行時,磷矽酸鹽玻璃(PSG)被 移除了。 碟石夕酸鹽玻璃為一包含填的氧化物,由在N接面層16之擴 散程序中的三氣氧磷(P0C13)及氧氣間的反應產生,且包 含了存在矽中的不純物,所以磷矽酸鹽破螭在N接面層16 形成(S15)後被移除。在基質1〇形成N層後,形成一防止 反射覆蓋層18。 防止反射覆蓋層18可由氣相沉積氮化矽(SiNx)以電漿加 Ο 強化學氣相沉積法或喷濺法形成. ㈣基質10由N層連接到所^^面’它可由使用雷射產 生溝槽19在基質10的雙面被斷電》 電極20、22形成於基質1〇的底部與頂端部分提供外部電 連接(S17)。 請參閱第14圖,其俾為本發明之太陽能電池方法另一實 施例之截面圖。 0 第14圖中,本太陽能電池發明之一實施例包括晶片基質 上之電極且表面紋理層12被形成以最小化太陽能在基質 10表面的反射。 表面紋理層12以具有約4到12奈米的間隔之角錐狀構造被 形成。 光子晶體層104形成於表面紋理層12上。 099127192 表單編號A0101 第28頁/共65頁 0993428504-0 201123503 [0215] 光子晶體層104防止入射光反射到外界,且提供持續的外 界反射以加強入射光。 [0216] 光子晶體層104由細微金屬粒子14a及量子線14b組成, 量子線14b形成於細微金屬粒子14a下方部分。 [0217] 光子晶體層104的形成是藉由喷灑細微金屬粒子14a於在 基質10上成形的表面紋理層12的掃描喷濺法達成,且在 每單位面積喷灑的粒子密度約為1013到1017個原子。 [0218] 〇 依照此實施例,如圖7所示的喷濺方法描述了掃描喷濺方 法的平面圖,包含了喷濺搶30以喷灑金屬粒子及未顯示 的模組以移動太陽能電池基質10或喷濺搶30。 [0219] 喷濺搶30喷濺了固定數量的金屬粒子於基質表面上,被 喷濺於基質表面上的金屬粒子數量可由喷濺搶30的形狀 、喷濺槍30的移動速度、喷濺搶30與基質10間的距離、 喷濺槍30使用的電流、加工氣體的壓力...等所改變。 [0220] 細微金屬粒子14a的尺寸約為5到50奈米。 〇 [0221] 依照此實施例,細微金屬粒子的金屬可為金(Au),銀 (Ag),銅(Cu),鎳(Ni),鉻(Cr),鐵(Fe),鶴(W),紹 (Mo),或鋅(Zn)…等。 [0222] 矽粒子由化學氣相沉積儀器以氣相沉積擴散,並生長於 細微金屬粒子14a的下方部分,對量子線14b具有低的束 缚能。 [0223] 量子線14b形成以具有約10到100奈米的長度。 [0224] 當矽粒子在基質10上之表面紋理層12生長時,細微金屬 099127192 表單編號A0101 第29.頁/共65頁 0993428504-0 201123503 粒子14a轉變成為上方部分。 [0225] 細微金屬粒子14 a以電漿子效應振動入射光以散射光,且 由於共振增加了散射效應而加強了此散射光。 [0226] [0227] 在此,當入射光具有特定的共振顏色時,散射光會互相 干涉並產生部分重疊現像以提供更好的散射效應。 N接面層146由在量子點層14上擴散磷而形成,其由細微 金屬粒子14a及量子線14b組成。 [0228] [0229] 在此,由於基質10為P型’單一的p_N接面因為N接面層 146的緣故而沿著接面的部分形成,並由許多不同方式擴 散磷形成’沿著接面部分的人射先產生雜子化且分離的 電子-電洞對。 “二I : * 防止反射覆蓋層18形成於N接面層146的頂端部分以防止 光的反射。 [0230] [0231] 基質上雙面的溝槽形成从斷開電,i電植20、22被安裝· 於基質10的底部和項崎部分。 ... .丨... 請參閱第15圖,其料本發明之太陽能電池製造方法另 -實施例之流程圖,請參„16圖,其係為本發明之太 陽能電池製造方法另一實施例之製程圖。The Q photonic crystal layer 104 has a periodically arranged lattice structure formed by the etching substrate 10 after the surface texture layer 12 is formed. [0184] The photonic crystal layer 104 is formed on the surface texture layer 12. [0185] The photonic crystal layer 104 prevents incident light from being reflected to the outside and provides continuous external reflection to enhance incident light. [0186] The photonic crystal layer 104 is composed of fine metal particles 14a (as shown in FIG. 14) and quantum wires 14b (shown in FIG. 14), and a quantum wire 14b (formed in the lower portion of the fine metal particles 14a. 099127192 A0101 Page 25 of 65 pages 0993428504-0 201123503 [0187] The photonic crystal layer 104 is formed by spraying a fine metal particle Ua on a scanning surface of the surface texture layer 12 which is lifted on the substrate 12. The method achieves a particle density of about 1 〇 13 to 1 〇 17 atoms per unit area. The photonic crystal layer 104 is formed by etching the surface texture layer 12 by high-density ion etching to form a needle-shaped etching groove.咼 咼 离子 019 019 019 019 019 019 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 咼 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子The inductive coupled plasma (ICP) method is performed. The program gas of the high-density ion remnant method may be sulfur hexafluoride (S6), oxygen (02), gas (C12), nitrogen (N2) and the like. And the program pressure is 10_2 to 1 Torr (Τ〇ι·ι〇. Needle etching) The grooves are formed by high-density ion etching on the surface texture layer 12 and the needle-shaped etched trenches have an etching pattern of 3 Å to 2 Å nanometers and a lattice period of 1 to 2 μm. According to this embodiment The photonic crystal layer 104 is formed by a high-melting ion etching method, which can also be formed by many other methods not limited thereto. For example, the photonic crystal layer 1〇4 can be formed by a nano-imprint method as shown in FIG. Referring to Fig. 13, which is a process diagram of another embodiment of the solar cell manufacturing method of the present invention, the use of the nano-imprint method is described. As shown in Fig. 13, the wafer substrate 11 is prepared. A good flaw, and the surface texture layer is formed on the wafer substrate by the matrix texture. After the surface texture layer is formed, the photonic crystal layer is then formed by the nano-imprint method number A0101 page 26/65 pages 0993428504-0 [0196 ] 201123503 is formed. [0197] The hardened photoresist 11 3 covers the surface of the substrate 110 and hardens as a result. The hardened photoresist 113 may be optical impedance or electrical impedance. [0198] The pattern hole 113 a is made of nanometer Comparison of imprinting mold 116 1至两纳米, and the hole of the irregularity of the pattern 11 of the photonic crystal layer is formed on the photoresist 11 of the substrate 11 ,, the crystal period of the irregular part 11 6a on the nano-printing mold is 0.1 to 2 nm, and the hole The diameter is 30 to 200 nm. [0199] The photoresist 113 has a pattern hole 113a functioning as a nano mask to expose a portion of the substrate 11G with respect to the pattern of the photonic crystal layer. [0200] The substrate 110 is etched by ion beam, where a portion of the substrate 110 is exposed by the pattern holes 113a and etched by the ion beam. [0201] Ion lithography is performed by a reactive ion etching (RIE) method or an inductive coupled plasma (ICP) method. [0202] The program gas of the 离子 ion characterization method can be 'sulphur hexafluoride (S6), oxygen (op, gas (ci2), nitrogen (ν2) and the like, and the program pressure is ι〇-2 to 1 Torr. Ear (Torr) [0203] When the residual program is completed, the photoresist 113, which is a nano-mask, is removed with, for example, a propylene mesh. [0204] When a photonic crystal layer having a plurality of etched trenches is formed The N junction layer 116 is formed by diffusing phosphorus on the surface. [0205] Referring again to FIGS. 11 and 12, the N junction layer 16 is formed by using a chemical vapor deposition 099127192 device and containing arsenic phosphide (PH3). The decane (SiH4), formed as an N-type form number A0101, page 27, a total of 65 pages, 0993428504-0, 201123503 [0206] [0208] [0209] [0210] [0212] [0213] 0214] 矽(Si) layer (S14). Phosphite glass (PSG) is removed when the diffusion procedure on substrate 10 is performed. Disc silicate glass is a filled oxide containing The reaction between the phosphorus oxyphosphorus (P0C13) and the oxygen in the diffusion process of the N junction layer 16 is generated, and contains impurities present in the ruthenium, so the phosphonate is destroyed at the N junction. The surface layer 16 is removed after being formed (S15). After the substrate 1 is formed into an N layer, an anti-reflection coating layer 18 is formed. The anti-reflection coating layer 18 can be strengthened by vapor deposition of tantalum nitride (SiNx) by plasma addition. Formed by vapor deposition or sputtering. (4) The substrate 10 is connected to the surface by the N layer. It can be electrically disconnected on both sides of the substrate 10 by using the laser to generate the trench 19. The electrodes 20, 22 are formed on the substrate. The bottom and the top portion of the 1 提供 provide an external electrical connection (S17). Please refer to Fig. 14, which is a cross-sectional view of another embodiment of the solar cell method of the present invention. 0 In Fig. 14, one of the inventions of the solar cell Embodiments include electrodes on a wafer substrate and a surface texture layer 12 is formed to minimize reflection of solar energy on the surface of the substrate 10. The surface texture layer 12 is formed in a pyramidal configuration having a spacing of about 4 to 12 nanometers. Photonic Crystal Layer 104 is formed on the surface texture layer 12. 099127192 Form No. A0101 Page 28 / Total 65 Page 0993428504-0 201123503 [0215] The photonic crystal layer 104 prevents incident light from being reflected to the outside and provides continuous external reflection to enhance incident light. 0216] The sub-crystal layer 104 is composed of fine metal particles 14a and quantum wires 14b, and the quantum wires 14b are formed under the fine metal particles 14a. [0217] The photonic crystal layer 104 is formed by spraying the fine metal particles 14a on the substrate 10. The scanning of the formed surface texture layer 12 is achieved by spraying, and the particle density per unit area is about 1013 to 1017 atoms. [0218] In accordance with this embodiment, a sputtering method as illustrated in FIG. 7 depicts a plan view of a scanning splattering method including splattering 30 to spray metal particles and a module not shown to move the solar cell substrate 10 Or splatter grab 30. [0219] The splashing 30 splashes a fixed amount of metal particles on the surface of the substrate, and the number of metal particles sprayed on the surface of the substrate can be splattered by the shape of the splash 30, the moving speed of the spray gun 30, and the splashing. The distance between 30 and the substrate 10, the current used by the spray gun 30, the pressure of the process gas, etc. are changed. [0220] The fine metal particles 14a have a size of about 5 to 50 nm. According to this embodiment, the metal of the fine metal particles may be gold (Au), silver (Ag), copper (Cu), nickel (Ni), chromium (Cr), iron (Fe), crane (W). , Shao (Mo), or zinc (Zn) ... and so on. The ruthenium particles are diffused by vapor deposition by a chemical vapor deposition apparatus and grown in a lower portion of the fine metal particles 14a to have a low binding energy to the quantum wires 14b. [0223] The quantum wires 14b are formed to have a length of about 10 to 100 nm. [0224] When the ruthenium particles are grown on the surface texture layer 12 on the substrate 10, the fine metal 099127192 Form No. A0101 Page 29. Total 65 Page 0993428504-0 201123503 The particle 14a is transformed into the upper portion. [0225] The fine metal particles 14 a vibrate the incident light with a plasmon effect to scatter the light, and the scattered light is enhanced by the resonance increasing the scattering effect. [0227] Here, when the incident light has a specific resonance color, the scattered light interferes with each other and produces a partially overlapping image to provide a better scattering effect. The N junction layer 146 is formed by diffusing phosphorus on the quantum dot layer 14, and is composed of fine metal particles 14a and quantum wires 14b. [0229] Here, since the substrate 10 is a P-type 'single p_N junction formed by a portion of the junction due to the N junction layer 146, and diffused by a plurality of different ways to form a 'bridged junction' The person in the face portion first produces a hetero and a separate pair of electron-hole pairs. "III: * The anti-reflection cover layer 18 is formed on the top end portion of the N junction layer 146 to prevent reflection of light. [0231] The double-sided groove on the substrate is formed to be disconnected from electricity, i 22 is installed at the bottom of the substrate 10 and the part of the Kanzaki. .... 丨... Please refer to Fig. 15, which is a flow chart of another embodiment of the solar cell manufacturing method of the present invention, please refer to Fig. 16 It is a process diagram of another embodiment of the solar cell manufacturing method of the present invention.

[0232] 如第15及16圖所示,本發 赞明實施例之太陽能電池製造方 法包括準備包含石夕的晶片基質10(S⑴。 [0233] 晶片基質10的表面被處理以县,, 外理以最小化入射光在基 射0 質上的反 099127192 表單编號A0101 第30 頁/共65頁 0993428504-0 201123503 [0234] [0235] [0236] [0237] Ο [0238] [0239] [0240] Ο [0241] [0242] [0243] 為了此目標’晶片基質1〇的表面首先被處理以消除傷宝 ,例如鋸齒傷害的移除。 此處理是為了消除在晶片基質10被切割時產生的碎片裂 痕,或是晶片基質10表面的任何的不純物。 表面紋理層12接者形成由紋理晶片基質10於晶片基質 上形成。 表面紋理層12的形成是為了減低表面反射損失和由儲存 光以增加光的吸收,藉由形成角錐或反角錐形、或許多 孔洞或在基質1 0表面上形成不規則形以反射入射光(S12) 表面紋理層12形成後,光子晶體層14接著形咸。 在光子晶體層14形成之前,細微金屬粒子14a被喷瀵於表 面紋理層12的表面。 細微金屬粒子14a由喷濺槍30#動基質:1〇或噴濺搶3〇以 固定移動速率喷灑形成(S13) « 矽粒子由化學氣相沉積儀器擴散,並生長於細微金屬粒 子14a到量子線14b的下方部分,而細微金屬粒子有催化 劑的作用。 因此,被擴散的矽進一步的被氣相沉積且生長於細微金 屬粒子14a的下方部分,並對量子線14b有低束縛能,量 子線14b生長的越長時,細微金屬粒子會越大。 量子線14b最適合生長為長度介於1〇到1〇〇奈米的範圍 (S14)〇 099127192 表單編號A0101 第31頁/共65頁 0993428504-0 201123503 [0244] N接面層16是透過於光子晶體層擴散螢光的方式構成’上 述的光子晶體層是由細微金屬粒子和量子線構成。 [0245] N接面層16作為一n型Si層,經由使用包含磷化氫(PH3) 的矽烷(SiH4)及化學氣相沉積裝置形成(S15)。 [0246] 在擴散程序執行於基質1〇,磷矽酸鹽玻璃(PSG)被移除了 〇 [0247] 磷矽酸鹽玻璃為一氧化物包含了三氣氧磷(P〇Cl3)和氧在 擴散過程之間反應的礙,且包含矽之中的不純物,所以 磷矽酸鹽玻璃在N接面層16形成後應被移除(s16)。 〆 、 f " ^ [0248] 防止反射覆蓋層18形成於基貧10上形 的N層。 [0249] 防止反射覆蓋層18可由氣相^積::氮化砍CSi:Nx )以電漿加 強化學氣相沉積法或噴濺法形成(S17)。 [0250] 既然基質10由N層連接到所有的表面,它可由使用雷射產 生溝槽19在基質1〇的雙面被斷電^ [0251] 電極20、22形成於基質10的底部與頂端部分提供外部電 連接(S18)。 [0252] 請參閱第17圖,其係為本發明之太陽能電池方法另一實 施例之截面圖。 [0253] 第1 7圖中表示了此發明一實施例的太陽能電池,包含晶 片基質10上的電極及表面紋理層丨2被形成以最小化太陽 能在基質10表面的反射。 [0254] 表面紋理層12以具有約4到10奈米的間隔之角錐狀構造被 099127192 表單編號A0101 第32頁/共65頁 0993428504-0 201123503 形成。 [0255] 光子晶體層14料於表料闕12上。 [0256] 光子晶體層14防止入射糸 界反射以加強入射光。 、势外界,且提供持續的外 [0257] 光子晶體層104可包含複數個 針狀蝕刻溝槽。 餘刻表面紋理層12形成的 [0258] 〇 量子點層14在表面紋理層丨2上 成後,形成為層狀構造。 部份之光子晶體層104形 [0259] 依照此實施例,量子點層14 成辱至伞一層之構造。 [0260] 例如,量子點層14可被形成 巧夕層構造,而每層的厚度 為1到20奈米》 ^ a』坪汉 [0261] 較佳的,量子點層14可形成為尤η 馬五層構造)而總厚度為5到 100奈米的範圍。 [0262] 〇 ; Κ 1 ϋ ϋ ? % ί""^ ::.:y f 當量子點層Η依照本發明1施例在多層構造上形成時 ,每層會對具有相S特定能帶料量的波長反應來釋放 電荷。 刚依照此實施例’光子晶體層可進—步的形成於量子點層 14的上方。N接面層16形成於量子點川的上部分。 _] N接面層16以多種^同方法在量子點層㈣上方部分擴散 填而形成,其由細微金屬板子l4a及量子線Ub組成。 剛在此,由於基質為P型’單-的P_N接面因接面層 16的緣故而沿著接面的部分形成,沿著接面部分的入射 099127192 表單編號A0101 第33頁/共65 0993428504-0 201123503 光產生離子化且分離的電子-電洞對。 [0266] 部分穿過N接面層16的光撞擊量子點層14且釋放電荷。 [0267] 電漿子層170接著被形成於N接面層16的表面。 [0268] 依照實施例,電漿子層170由喷灑奈米銀(Ag)粒子形成, 電漿子層170也可由喷麗金(Au)、銀(Ag)、銅(Cu)、錄 (Ni)、鉻(Cr),鐵(Fe),鎢(W),鉬(Mo),鋅(Zn)或其 奈米粒子的混合物形成電漿子層170,但是不只限制於此 〇 [0269] 電漿子層170在光入射時具有小的電磁干擾現象,在金屬 表面的光入射經由干擾現象會產生波,且入射光由此電 磁波震動粒子以有效率的散射光。 [0270] 在此,當入射光具有特定的共振顏色時,散射光會相互 干擾並產生部分重疊現象以提供更佳的散射效果。 [0271] 電漿子層170由使用均勻喷灑金屬奈米粒子形成。 [0272] 依照此實施例,金屬粒子在穿隧區域的直徑約為1到30奈 米。 [0273] 依照此實施例,金屬奈米粒子16a在光散射區域的直徑約 為30到100奈米。 [0274] 請參閱第7圖,其係為本發明之太陽能電池中,由喷濺方 法形成電漿子層實施例之平面圖。噴濺方法包含噴濺搶 30以喷濺金屬粒子及模組(未顯示)以移動太陽能基質10 或噴濺搶30。 099127192 表單編號A0101 第34頁/共65頁 0993^ 201123503 [0275] [0276] 噴濺搶30噴濺了固定數量的金屬粒子於基質上,被噴濺 於基質表面上的金屬粒子數量可由喷濺搶3〇的形狀、噴 濺搶30的移動速度、喷濺搶3〇與基質1〇間的距離、噴濺 搶30使用的電流、加工氣體的壓力...等所改變。 依照此實施例,當形成電漿子層的金屬粒子由喷濺程序 喷錢時,基質10上的每單位面積约有1〇〖3到1〇17個原子 [0277] Ο [0278] [0279] [0280] Ο [0281] [0282] 電漿子層170以網狀形式與複數的孔洞形成為金屬粒子層 〇 依照此實施例,金屬粒子層可有30奈米以下的厚度以提 供光通道。 防止反射覆蓋層18形成於電漿子層20的上方部分以防止 光的反射。 更進一步,溝槽24形成於基質1〇的雙面由彳吏用雷射以斷 電’電極26、28形成辦:基質l(K的底部與頂面部分以外部 電子連結。 i , 請參閱第18圖’其係為本發明之太陽能電池製造方法另 一實施例之流程圖。請參閱第19圖,其係為本發明之太 陽能電池製造方法另一實施例之製程圖。 如第20圖及第21圖所示,係為本發明之太陽能電池製造 方法之一實施例,包含準備一包含Si晶片的基材 10(S11)。 [0283] 晶片基質1〇的表面接著被處理以最小化晶片基質(S12)上 099127192 表單编號A0101 第35頁/共65頁 0993428504-0 201123503 的光反射。 [0284] 為達成此目的,晶片基質10的表面首先被處理以消除損 傷,例如消除鋸齒狀的損傷。 [0285] 此處理的目的為消除晶片基質10被切割時產生的碎片破 裂或任何晶片基質10表面上的不純物質。 [0286] 表面紋理層12於是由組織晶片基質10被形成。 [0287] 表面紋理層12形成是為了降低表面反射的損失及由儲存 光來增加光的吸收’經由在基質10..的表面上形成角錐或 反角椎型、多孔或不規則型可以反射入射光(S12)。 [0288] 表面紋理層12形成後,光子晶體層104接著形成。 [0289] 光子晶體層1 〇 4的形成是藉由以高密度華子蝕刻法蝕刻表 面紋理層12而形成針狀蝕刻溝槽。 [0290] 高密度離子蝕刻法可由反應性離子蝕刻法或感應偶合電 漿法執行。 [0291] 高密度離子蝕刻法的程序氣體可為六氟化硫(S6)、氧氣 (〇2)、氣氣(ci2)、氮氣(n2)及類似氣體,且程序壓力為 1(Γ2到 1 托耳(Torr)。 [0292] 針狀蝕刻溝槽由在表面紋理層12上的高密度離子蝕刻形 成’且針狀姓刻溝槽具有30到200奈米的蝕刻型樣及0. 1 到2微米的晶格週期。 [0293] 依照此實施例’光子晶體層1〇4由以高密度離子蝕刻法形 成’其也可藉由不限制於此的許多其他方法形成。 099127192 表單編號A0101 第36頁/共65頁 0993428504-0 201123503 [0294] 例如,光子晶體層104可由如第13圖所示的奈米壓印法形 成。 [0295] 光子晶體層14形成於表面紋理層12和量子點層16上,量 子點層16可形成於至少一層結構。 [0296] 依照本發明一實施例的多層量子點層14是依照基質1 0的 成分性質形成,且形成為薄膜物質。 [0297] 此種多層量子點層16由堆疊具有不同能帶隙能量的量子 點層形成。 〇 [0298] 此種多層量子點層14也可由從基質10到原子島上,生成 具有不同原子大小的薄膜物質形成。 [0299] 為了將量子點層14形成為多層構造,單層量子點層經由 氣相沉積被一層一層的堆疊,且重複了熱處理氣相沉積 薄膜物質的步驟。 [0300] 量子點層14經由重複氣相沉積薄膜物質於至少一層的構 造,及同時熱處理氣相沉積薄膜物質層而形成,但是量 ❹ 子點層14的形成不限於此。 [0301] 量子點層14可由利用島狀成長模式做氣相沉積,且氣相 沉積材料包含例如碳化矽(SiC)、二氧化矽(Si〇2)、氧 化鋅(ZnO)、奈米結晶石夕(nano-crystalline Si-H)類 的材料。 [0302] 在島狀成長中,薄膜物質間的交互作用佔了主要地位以 形成量子點層16。 [0303] 依照此實施例,量子點層14由多層構造中的一層一層生 099127192 表單編號A0101 第37頁/共65頁 0993428504-0 201123503 長模式或島狀成長模式形成。 [0304] 量子點層14的各層由具有約為德布洛依(de Brogl ie)波 長之量子點尺寸的半導體奈米構成。 [0305] 光子晶體層進一步成形於量子點層14上。 [0306] N接面層16接著形成。 [0307] N接面層16藉由使用化學氣相沉積儀器(S1 3)及包含磷化 氫(PH3)的矽烷(SiH4),形成為N型矽(Si)層。N接面層 16可形成為單層或多層。 [0308] 當N接面層1 6形成單層時,每單位體積的填被控制在 1016-21個原子的範圍内。 [0309] 另一方面,當N接面層16形成多層時,一層從底部至頂端 形成時需要增加破的含量(S15)。 [0310] 電漿子層190形成於N接面層16的上方部分。 [0311] 電漿子層190由以使用喷濺搶30移動基質10或以固定移動 速率來喷灑金屬奈米粒子。 [0312] 在每單位面積約有1013到1017個金屬粒子被喷灑在基質 10上以形成電漿子層190(S16)。 [0313] 射極層在電漿子層190形成之後被形成以改善收集電子的 能力(S17)。 [0314] 依照此實施例,選擇性射極層21可由在N接面層上擴散高 密度的磷形成,並區域性的照射雷射束。 [0315] 選擇性射極層21可形成於當N接面層16形成時或形成後。 099127192 表單編號A0101 第38頁/共65頁 201123503 [0316] 在細節上,五氧化二碟(P 〇、爲,π a 、 〜^2υ5)層(預氣相沉積)由高溫三 氣氧磷(P〇C13)和氧氣(〇2)反應,且五氧化二磷(Ρ2〇 ) 層的峨(Ρ)在高溫時做熱處理以傳遞和擴散到石夕(si2^形 成放射層。 剛放射層會產生電位能以簡化分離電荷到N層的傳遞。 [_依照此實施例,選擇性射極層21由局部雷射照射在放射 層,或是採用加熱及雷射照射基質10上各部份的擴散過 程形成。 〇_在使用雷射形成選擇性射極層21前,可藉由在雷射使用 之處以印刷方式形成高濃度的P材料層來加速選擇性射極 層21的形成》 [0320]磷矽酸鹽玻璃(PSG)為一包含磷的氧化物,由在擴散程序 中的二氣氧填(POCip及氧氣間的反應產生’且包含了存 在矽中的不純物,所以磷矽酸鹽玻璃在!^接面層16形成 (S14)後應被移除(S18)。 Ο [0321]防止反射覆蓋層22形成於基質10上形成的N層,防止反射 覆蓋層22可由氣相沉積氮化矽(SiNx)以電漿加強化學氣 相沉積法或喷濺法形成(S19)。 [0322] 更進一步,溝槽24形成於基質10的雙面由使用雷射以斷 電’電極26、28形成於基質10的底部與頂面部分(s2〇) [0323] 依照本發明實施例的太陽能電池包含光子晶體層104及量 子點層14或更進一步的包含電漿子層190或選擇性射極層 0993428504-0 099127192 表單編號A0101 第39頁/共65頁 21 ° 201123503 [0324] 更進一步,此發明的太陽能電池可包含所有提到的這些 層 104、14、190及21。 [0325] 亦即,依照本發明實施例的太陽能電池包含至少一光子 晶體層104、量子點層14、電漿子層190或選擇性射極層 21,更佳的情況為包含所有104、14、190及21層。 [0326] 雖然本發明與參考已被敘述為特定的實施例,許多被精 通技術人員在不偏離本發明所做的改變及修改是被領會 的,而被定義為附加的專利範圍及其相同物。 [0327] 因此,以上所述之外的其他實施例可以在附加的專利範 圍中被發現" 【圖式簡單說明】 [0328] 第1圖係為依照此發明之太陽能電池實施例之截面圖; 第2圖係為本發明之太陽能電池方法一實施例之流程圖; 第3圖係為本發明之太陽能電池方法一實施例之製程圖; 第4圖係為本發明之太陽能電池方法一實施例之截面圖; 第5圖係為參照另一發明之太陽能電池方法實施例之截面 圖, 第6圖係為本發明另一實施例之電漿子層說明; 第7圖係為本發明之太陽能電池中,由喷濺方法形成電漿 子層實施例之平面圖; 第8圖係為本發明之太陽能電池製造方法之另一實施例之 流程圖; 第9圖係為本發明之太陽能電池製造方法之另一實施例之 099127192 表單編號A0101 第40頁/共65頁 0993428504-0 201123503 製程圖; 第1 〇圖係為本發明之太陽能電池方法另一實施例之截面 圖; 第11圖係為本發明之太陽能電池製造方法—實施例之流 程圖; 第12圖係為本發明之太陽能電池製造方法另一實施例之 製程圖; 第13圖係為本發明之太陽能電池製造方法另一實施例之 製程圖;[0232] As shown in FIGS. 15 and 16, the solar cell manufacturing method of the presently exemplified embodiment includes preparing a wafer substrate 10 (S(1)) containing the stone eve. [0233] The surface of the wafer substrate 10 is processed by the county, To minimize the incident light on the base zero. 099127192 Form No. A0101 Page 30 / Total 65 Page 0993428504-0 201123503 [0234] [0236] [0237] [0238] [0239] [ 0240] [0242] [0243] For this purpose, the surface of the wafer substrate 1 is first treated to eliminate the damage, such as the removal of sawtooth damage. This process is to eliminate the occurrence of wafer substrate 10 when it is cut. Fragmentation of the fragments, or any impurities on the surface of the wafer substrate 10. The surface texture layer 12 is formed by the textured wafer substrate 10 on the wafer substrate. The surface texture layer 12 is formed to reduce surface reflection loss and to store light by Increasing the absorption of light, after forming a pyramid or a conical taper, perhaps a porous hole or forming an irregular shape on the surface of the substrate 10 to reflect the incident light (S12) surface texture layer 12, the photonic crystal layer 14 is then salty. Photonic crystal Before the formation of 14, the fine metal particles 14a are squirted on the surface of the surface texture layer 12. The fine metal particles 14a are sprayed by a spray gun 30# moving substrate: 1 〇 or splatter 3 〇 spray at a fixed moving rate (S13) « The ruthenium particles are diffused by a chemical vapor deposition apparatus and grown on the fine metal particles 14a to the lower portion of the quantum wire 14b, while the fine metal particles act as a catalyst. Therefore, the diffused ruthenium is further vapor-deposited and grown on The lower portion of the fine metal particles 14a has a low binding energy to the quantum wires 14b, and the longer the quantum wires 14b grow, the larger the fine metal particles. The quantum wires 14b are most suitable for growth to a length of 1 〇 to 1 〇〇. The range of the nanometer (S14) 〇 099127192 Form No. A0101 Page 31 / Total 65 page 0993428504-0 201123503 [0244] The N junction layer 16 is formed by diffusing fluorescence through the photonic crystal layer. It is composed of fine metal particles and quantum wires. [0245] The N junction layer 16 is formed as an n-type Si layer by using decane (SiH4) containing phosphine (PH3) and a chemical vapor deposition device (S15). 0246] in The diffusion procedure is performed on the substrate 1 and the phosphosilicate glass (PSG) is removed. [0247] The phosphonium glass is an oxide containing tris (P〇Cl3) and oxygen in the diffusion process. The inter-reaction is impeded and contains impurities in the crucible, so the phosphonate glass should be removed after the N-junction layer 16 is formed (s16). 〆 , f " ^ [0248] The anti-reflection coating layer 18 is formed on the N layer of the base-poor shape. [0249] The anti-reflection coating layer 18 may be formed by gas phase deposition: nitriding CSi: Nx) by plasma enhanced chemical vapor deposition or sputtering (S17). [0250] Since the substrate 10 is connected to all surfaces by the N layer, it can be electrically disconnected from both sides of the substrate 1 by using the laser generating trench 19. [0251] The electrodes 20, 22 are formed at the bottom and the top of the substrate 10 An external electrical connection is provided in part (S18). Please refer to Fig. 17, which is a cross-sectional view showing another embodiment of the solar cell method of the present invention. A solar cell according to an embodiment of the invention is shown in Fig. 17. The electrode and surface texture layer 2 on the wafer substrate 10 are formed to minimize the reflection of solar energy on the surface of the substrate 10. [0254] The surface texture layer 12 is formed by a pyramidal structure having an interval of about 4 to 10 nm by 099127192 Form No. A0101 Page 32 of 65 pages 0993428504-0 201123503. [0255] Photonic crystal layer 14 is deposited on surface layer 12. [0256] Photonic crystal layer 14 prevents incident boundary reflections to enhance incident light. External, and providing a continuous outer [0257] Photonic crystal layer 104 may comprise a plurality of acicular etched trenches. The 量子 quantum dot layer 14 formed by the surface texture layer 12 is formed into a layered structure after being formed on the surface texture layer 丨2. Part of the photonic crystal layer 104 shape [0259] According to this embodiment, the quantum dot layer 14 is humiliated to the structure of the umbrella layer. [0260] For example, the quantum dot layer 14 may be formed into a layer structure, and each layer has a thickness of 1 to 20 nm. ^ a"Ping Han [0261] Preferably, the quantum dot layer 14 may be formed as a η The five-layer structure of the horse has a total thickness of 5 to 100 nanometers. 026; Κ 1 ϋ ϋ ? % ί""^ ::.:yf When a quantum dot layer is formed on a multilayer structure in accordance with an embodiment of the present invention, each layer will have a specific energy band of phase S The amount of wavelength reacts to release the charge. The photonic crystal layer can be formed stepwise above the quantum dot layer 14 just in accordance with this embodiment. The N junction layer 16 is formed on the upper portion of the quantum dot. _] The N junction layer 16 is formed by diffusing and filling a portion of the quantum dot layer (4) in a plurality of ways, and is composed of a fine metal plate 14a and a quantum wire Ub. Immediately here, since the matrix is a P-type 'single-P_N junction, which is formed along the junction portion due to the junction layer 16, the incident along the junction portion is 099127192. Form No. A0101 Page 33 / 65 0993428504 -0 201123503 Light produces ionized and separated electron-hole pairs. [0266] Light that partially passes through the N junction layer 16 strikes the quantum dot layer 14 and discharges charge. [0267] The plasmonic sub-layer 170 is then formed on the surface of the N-junction layer 16. [0268] According to an embodiment, the plasmonic sub-layer 170 is formed by spraying nano-silver (Ag) particles, and the plasmonic sub-layer 170 may also be etched with gold (Au), silver (Ag), copper (Cu), recorded ( A mixture of Ni), chromium (Cr), iron (Fe), tungsten (W), molybdenum (Mo), zinc (Zn) or its nanoparticles forms a plasma sub-layer 170, but is not limited thereto only [0269] The plasmonic sub-layer 170 has a small electromagnetic interference phenomenon when light is incident, and light incident on the metal surface generates a wave via an interference phenomenon, and the incident light thereby vibrates the particles to efficiently scatter light. [0270] Here, when the incident light has a specific resonance color, the scattered light interferes with each other and generates a partial overlap phenomenon to provide a better scattering effect. [0271] The plasmonic sub-layer 170 is formed by uniformly spraying metal nanoparticles. [0272] According to this embodiment, the metal particles have a diameter of about 1 to 30 nm in the tunneling region. [0273] According to this embodiment, the metal nanoparticle 16a has a diameter of about 30 to 100 nm in the light scattering region. Referring to FIG. 7, which is a plan view showing an embodiment of a plasmonic layer formed by a sputtering method in a solar cell of the present invention. The splatter method includes splattering 30 to sputter metal particles and modules (not shown) to move the solar substrate 10 or splatter 30. 099127192 Form No. A0101 Page 34 of 65 0993^ 201123503 [0275] [0276] Splashing 30 Splashes a fixed amount of metal particles onto the substrate, and the number of metal particles spattered on the surface of the substrate can be sputtered. Grab the shape of the 3 、, the movement speed of the splatter 30, the distance between the splatter 3 and the substrate 1 , the current used for the splash 30, the pressure of the processing gas, etc. According to this embodiment, when the metal particles forming the plasmonic sublayer are ejected by the splattering process, about 1 〇 3 to 1 〇 17 atoms per unit area on the substrate 10 [0277] Ο [0278] [0279 [0280] [0282] The plasmonic sub-layer 170 is formed in a mesh form and a plurality of pores as a metal particle layer. According to this embodiment, the metal particle layer may have a thickness of 30 nm or less to provide a light channel. . An anti-reflection coating layer 18 is formed on the upper portion of the plasmonic sub-layer 20 to prevent reflection of light. Further, the trench 24 is formed on both sides of the substrate 1 彳吏 by the laser to turn off the 'electrode 26, 28 formed: the substrate 1 (the bottom and the top portion of the K are externally electronically connected. i , see Figure 18 is a flow chart showing another embodiment of the solar cell manufacturing method of the present invention. Please refer to Fig. 19, which is a process diagram of another embodiment of the solar cell manufacturing method of the present invention. And Fig. 21 is an embodiment of the solar cell manufacturing method of the present invention, comprising preparing a substrate 10 (S11) comprising a Si wafer. [0283] The surface of the wafer substrate 1 is then processed to minimize Light reflection on the wafer substrate (S12) 099127192 Form No. A0101 Page 35 / Total 65 pages 0993428504-0 201123503 [0284] To achieve this, the surface of the wafer substrate 10 is first treated to eliminate damage, such as anti-aliasing The purpose of this process is to eliminate chip breakage or any impure material on the surface of the wafer substrate 10 when the wafer substrate 10 is cut. [0286] The surface texture layer 12 is then formed from the tissue wafer substrate 10. 0287] The surface texture layer 12 is formed to reduce the loss of surface reflection and to increase the absorption of light by storing light. The incident light can be reflected by forming a pyramid or a reverse-angled, porous or irregular type on the surface of the substrate 10.. (S12) [0288] After the surface texture layer 12 is formed, the photonic crystal layer 104 is subsequently formed. [0289] The photonic crystal layer 1 〇4 is formed by etching the surface texture layer 12 by high-density Huazi etching to form a needle shape. The trench is etched. [0290] The high-density ion etching method can be performed by a reactive ion etching method or an inductively coupled plasma method. [0291] The program gas of the high-density ion etching method can be sulfur hexafluoride (S6) or oxygen (〇). 2), gas (ci2), nitrogen (n2) and the like, and the program pressure is 1 (Γ2 to 1 Torr) [0292] The needle-shaped etched trench is made of high density on the surface texture layer 12. Ion etching forms 'and the acicular-shaped trench has an etching pattern of 30 to 200 nm and a lattice period of 0.1 to 2 μm. [0293] According to this embodiment, the photonic crystal layer 1〇4 is high. Density ion etching forms 'it can also be used without limitation A number of other methods are formed. 099127192 Form No. A0101 Page 36 / Total 65 Page 0993428504-0 201123503 [0294] For example, the photonic crystal layer 104 can be formed by a nanoimprint method as shown in Fig. 13. [0295] Photonic crystal layer 14 is formed on the surface texture layer 12 and the quantum dot layer 16, and the quantum dot layer 16 may be formed in at least one layer structure. [0296] The multilayer quantum dot layer 14 according to an embodiment of the present invention is formed according to the compositional properties of the matrix 10, And formed into a film material. [0297] Such a multilayer quantum dot layer 16 is formed by stacking quantum dot layers having different energy band gap energies. [0298] Such a multilayer quantum dot layer 14 can also be formed by forming a film material having a different atomic size from the substrate 10 to an atomic island. [0299] In order to form the quantum dot layer 14 into a multilayer structure, a single-layer quantum dot layer is stacked one by one via vapor deposition, and the step of heat-treating the vapor-deposited thin film substance is repeated. The quantum dot layer 14 is formed by repeating the vapor deposition of a thin film material in at least one layer and simultaneously heat-treating the vapor deposited thin film material layer, but the formation of the amount of the germanium dot layer 14 is not limited thereto. [0301] The quantum dot layer 14 may be vapor deposited by using an island growth mode, and the vapor deposition material includes, for example, tantalum carbide (SiC), germanium dioxide (Si〇2), zinc oxide (ZnO), and nanocrystalline crystal. A material of the nano-crystalline Si-H type. [0302] In island growth, the interaction between film materials predominates to form the quantum dot layer 16. [0303] According to this embodiment, the quantum dot layer 14 is formed by one layer in a multilayer structure. 099127192 Form No. A0101 Page 37 of 65 0993428504-0 201123503 Long mode or island growth mode is formed. [0304] Each layer of the quantum dot layer 14 is composed of a semiconductor nanocrystal having a quantum dot size of a de Broglie wavelength. [0305] The photonic crystal layer is further formed on the quantum dot layer 14. [0306] The N junction layer 16 is then formed. [0307] The N junction layer 16 is formed into an N-type bismuth (Si) layer by using a chemical vapor deposition apparatus (S13) and decane (SiH4) containing phosphine (PH3). The N junction layer 16 may be formed as a single layer or a plurality of layers. When the N junction layer 16 forms a single layer, the filling per unit volume is controlled in the range of 1016-21 atoms. On the other hand, when the N junction layer 16 is formed into a plurality of layers, it is necessary to increase the amount of breakage when the layer is formed from the bottom to the top (S15). [0310] The plasmonic sub-layer 190 is formed on the upper portion of the N junction layer 16. [0311] The plasmonic sub-layer 190 is sprayed with metal nanoparticles by moving the substrate 10 using a splash 30 or at a fixed rate of movement. About 1013 to 1017 metal particles per unit area are sprayed on the substrate 10 to form a plasmonic sub-layer 190 (S16). [0313] The emitter layer is formed after the formation of the plasma sub-layer 190 to improve the ability to collect electrons (S17). [0314] In accordance with this embodiment, the selective emitter layer 21 may be formed by diffusing a high density of phosphorous on the N junction layer and illuminating the laser beam regionally. [0315] The selective emitter layer 21 may be formed when the N junction layer 16 is formed or formed. 099127192 Form No. A0101 Page 38 of 65 201123503 [0316] In detail, the bismuth oxide (P 〇, π a , ~^2υ5) layer (pre-vapor deposition) consists of high-temperature phosphorus oxysulfide ( P〇C13) reacts with oxygen (〇2), and the bismuth (Ρ2) layer of bismuth pentoxide (做2〇) is heat-treated at a high temperature to transfer and diffuse to Shi Xi (si2^ forms a radiation layer. Potential energy is generated to simplify the transfer of the separated charge to the N layer. [_In accordance with this embodiment, the selective emitter layer 21 is irradiated to the radiation layer by a local laser, or the portions of the substrate 10 are illuminated by heating and laser irradiation. The diffusion process is formed. 〇_ Before the selective emitter layer 21 is formed using the laser, the formation of the selective emitter layer 21 can be accelerated by forming a high concentration layer of the P material at the place where the laser is used. [0320 Phosphonite glass (PSG) is an oxide containing phosphorus, which is produced by a two-oxygen gas in a diffusion process (reaction between POCip and oxygen) and contains impurities present in the ruthenium. The glass should be removed after the formation of the junction layer 16 (S14) (S18). Ο [0321] Anti-reflection The cap layer 22 is formed on the N layer formed on the substrate 10, and the anti-reflective cap layer 22 can be formed by vapor deposition of tantalum nitride (SiNx) by plasma enhanced chemical vapor deposition or sputtering (S19). Further, the trench 24 is formed on both sides of the substrate 10 by using a laser to turn off the 'electrodes 26, 28 formed on the bottom and top portions of the substrate 10 (s2). The solar cell according to an embodiment of the present invention comprises Photonic crystal layer 104 and quantum dot layer 14 or further comprising plasmonic sublayer 190 or selective emitter layer 0993428504-0 099127192 Form No. A0101 Page 39 / Total 65 Page 21 ° 201123503 [0324] Further, the invention The solar cell may include all of the layers 104, 14, 190, and 21 mentioned. [0325] That is, the solar cell according to an embodiment of the present invention includes at least one photonic crystal layer 104, a quantum dot layer 14, and a plasma sublayer. 190 or the selective emitter layer 21, more preferably all 104, 14, 190 and 21 layers are included. [0326] Although the invention has been described with respect to specific embodiments, many skilled practitioners are not deviating The changes and repairs made by the present invention Modifications are to be understood, and are defined as additional patent ranges and their equivalents. [0327] Therefore, other embodiments than those described above can be found in the scope of additional patents " [Simple Description] 1 is a cross-sectional view of an embodiment of a solar cell according to the present invention; FIG. 2 is a flow chart of an embodiment of a solar cell method of the present invention; and FIG. 3 is a solar cell method 1 of the present invention. FIG. 4 is a cross-sectional view showing an embodiment of a solar cell method according to another embodiment of the present invention; FIG. 5 is a cross-sectional view showing an embodiment of a solar cell method according to another invention, and FIG. 6 is a view of the present invention. A plasma layer description of another embodiment; FIG. 7 is a plan view showing an embodiment of a plasma layer formed by a sputtering method in the solar cell of the present invention; and FIG. 8 is a method for manufacturing a solar cell of the present invention. FIG. 9 is a flow chart of another embodiment of the solar cell manufacturing method of the present invention. 099127192 Form No. A0101 Page 40/65 pages 0993428504-0 201123503 Process chart; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 11 is a cross-sectional view showing another embodiment of a solar cell method of the present invention; FIG. 11 is a flow chart of a method for manufacturing a solar cell of the present invention; and FIG. 12 is a method for manufacturing a solar cell of the present invention. Process diagram of an embodiment; FIG. 13 is a process diagram of another embodiment of a solar cell manufacturing method of the present invention;

第14圖係為本發明之太陽能電池方法另一實施例之截面 圖, 第15圖係為本發明之太陽能電池製造方法另J實施例之 流程圖; 第1 6圖係為本發明之太陽能電池製造方法另一實施例之 製程圖; 第17圖係為本發明之太陽能電池方,法另—實施例之截面 圖;Figure 14 is a cross-sectional view showing another embodiment of the solar cell method of the present invention, and Figure 15 is a flow chart showing another embodiment of the solar cell manufacturing method of the present invention; Figure 16 is a solar cell of the present invention. Process diagram of another embodiment of the manufacturing method; FIG. 17 is a cross-sectional view of the solar cell of the present invention, and another embodiment;

第18圖係為本發明之太陽能電池製造方法另一實施例之 流程圖;以及 第19圖係為本發明之太陽能電池製造方法另一實施例之 製程圖。 【主要元件符號說明】 [0329] 1 0、11 0 :基質 12 :表面紋理層 14 :量子點層 14a :細微金屬粒子 099127192 表單編號A0101 第41頁/共65頁 0993428504-0 201123503 14b :量子線 16、54、94 : N接面層 16a :金屬奈米粒子 16b :金屬粒子層 16c :孔洞 17 : 選擇性射極層 18 : 防止反射 覆蓋層 19、 • 24 :溝槽 20、 • 22 ' 26 ' 28 : 電極 20 ' > 22 ' 26 ' 28 : 電極 21 : :選擇性射極層 30 : :喷濺搶 56、96、170、190 :電漿子層 104 :光子晶體層 113 :硬化型光阻 113a :型樣孔洞 116 :奈米印痕模 116a :不規則部件 S11〜S20 :步驟 099127192 表單編號A0101 第42頁/共65頁 0993428504-0Fig. 18 is a flow chart showing another embodiment of the solar cell manufacturing method of the present invention; and Fig. 19 is a process chart showing another embodiment of the solar cell manufacturing method of the present invention. [Description of main component symbols] [0329] 1 0, 11 0 : Substrate 12 : Surface texture layer 14 : Quantum dot layer 14a : Fine metal particles 099127192 Form No. A0101 Page 41 / Total 65 Page 0993428504-0 201123503 14b : Quantum wire 16, 54, 94: N junction layer 16a: metal nanoparticle 16b: metal particle layer 16c: hole 17: selective emitter layer 18: anti-reflection coating layer 19, • 24: trench 20, • 22 ' 26 ' 28 : Electrode 20 ' > 22 ' 26 ' 28 : Electrode 21 : : Selective emitter layer 30 : : Splashing 56, 96, 170, 190 : Plasma sub-layer 104 : Photonic crystal layer 113 : Hardening type Photoresist 113a: pattern hole 116: nano-imprinting mold 116a: irregular parts S11 to S20: step 099127192 form number A0101 page 42/total 65 page 0993428504-0

Claims (1)

201123503 七、申請專利範圍: 1 . 一種太陽能電池,係包.含: 一基質,該基質表面係處理以降低太陽反射係數; 一量子點層,係由氣相沈積,並在該基質表面形成一薄膜 物質; 一 N接面層,係形成在該量子點層上部; 一射極,係形成於該N接面層,且被傳射至該量子點層之 入射光分離之複數個電荷傳送至該射極;以及 ^ 一防止反射覆蓋層,係形成於該N接面層之上部與該射極 〇 ,以防止反射光。 2.如申請專利範圍第1項所述之太陽能電池,其中該量子點 層係形成於由量子點層堆疊之一多層結構,該多層結構具 有不同能帶隙能量。 3 .如申請專利範圍第1項所述之太陽能電池,其中該量子點 層係由初始擴大一薄膜物質產生,且該薄膜物質有一不同 於該基質至原子島(atom island)之原子大小。 q 4 .如申請專利範圍第1項至第3項任一項所述之太陽能電池, 其中該量子點層每一層厚度係為1至20奈米。 5 .如申請專利範圍第1項至第3項任一項所述之太陽能電池, 其中該薄膜物質係包含二氧化矽(SiOJ、氮化矽(SiN ) 2 X 、氧化矽(SiO)、氧化鋁(ΑΙ,Ο。)、氧化鎂(MgO)、鈦酸 u Ο 鋰(SrTiOQ)、氧化钽(Ta^O,)、二氧化鈦(TiO。)、氟化 ο ο 〇 L 鎂(MgF2)、氧化辞(ZnO)、氧化銦錫(ΙΤ0)、矽(Si)組 成中至少一項。 6 . —種製造太陽能電池方法,包含下列步驟: 099127192 表單編號A0101 第43頁/共65頁 0993428504-0 201123503 準備一基質; 處理該基質之表面以減少該基質表面之入射光之反射係數 9 形成一量子點層,該量子點層係由氣相沈積一薄膜物質於 該處理基質之表面; 形成一 N接面層於該量子點層; 形成一射極層,該射極層係由熱處理該N接面層而成; 移除一磷矽酸鹽玻璃,該磷矽酸鹽玻璃係於形成該射極層 時產生於該N接面層;以及 形成一防止反射覆蓋層於該N接面層與該射極層。 7 .如申請專利範圍第6項所述之製造太陽能電池方法,其中 形成該量子點層之步驟係執行於由量子點層堆疊之一多層 結構,該多層結構具有不同能帶隙能量。 8.如申請專利範圍第6項所述之製造太陽能電池方法,其中 形成該量子點層之步驟係由初始擴大一薄膜物質產生,且 該薄膜物質有一不同於該基質至原子島(atom i s land) 之原子大小。 9 .如申請專利範圍第6項至第8項任一項所述之製造太陽能電 池方法,其中形成該量子點層之步驟包含一層層氣相沈積 一薄膜物質於一層狀結構,以及熱處理該氣相沈積之薄膜 物質。 10 .如申請專利範圍第6項至第8項任一項所述之製造太陽能電 池方法,其中形成該量子點層之步驟包含依次反覆氣相沈 積一薄膜物質於至少一層狀結構,以及熱處理該至少一層 氣相沈積之薄膜物質。 11 .如申請專利範圍第6項至第8項任一項所述之製造太陽能電 099127192 表單編號A0101 第44頁/共65頁 0993428504-0 201123503 池方法,其中形成該量子點層之步驟包含: 形成一遮罩於該基質之表面,該遮罩具有一直徑0.1至20 微米之孔洞; 透過該孔洞,氣相沈積一薄膜物質於該基質;以及 移除該遮罩後熱處理該薄膜物質。 12 .如申請專利範圍第6項至第8項任一項所述之製造太陽能電 池方法,其中該量子點層每一層厚度係為1至20奈米。 13 .如申請專利範圍第6項至第8項任一項所述之製造太陽能電201123503 VII. Patent application scope: 1. A solar cell, comprising: a substrate, the surface of the substrate is treated to reduce the solar reflection coefficient; a quantum dot layer is deposited by vapor deposition and forms a surface on the surface of the substrate. a film material; an N junction layer is formed on the upper portion of the quantum dot layer; an emitter is formed on the N junction layer, and a plurality of charges that are transmitted to the quantum dot layer for separation of incident light are transmitted to The emitter electrode and the anti-reflection coating layer are formed on the upper portion of the N junction layer and the emitter electrode to prevent reflected light. 2. The solar cell of claim 1, wherein the quantum dot layer is formed in a multilayer structure stacked by a quantum dot layer having different energy band gap energies. 3. The solar cell of claim 1, wherein the quantum dot layer is produced by initially expanding a film material, and the film material has an atomic size different from the substrate to an atom island. The solar cell according to any one of claims 1 to 3, wherein the quantum dot layer has a thickness of 1 to 20 nm per layer. The solar cell according to any one of claims 1 to 3, wherein the film material comprises cerium oxide (SiOJ, cerium nitride (SiN) 2 X , cerium oxide (SiO), oxidation Aluminum (ΑΙ, Ο.), magnesium oxide (MgO), titanate u Ο lithium (SrTiOQ), yttrium oxide (Ta^O,), titanium dioxide (TiO.), fluorinated ο 〇L magnesium (MgF2), oxidation At least one of (ZnO), indium tin oxide (ΙΤ0), yttrium (Si) composition. 6. A method for manufacturing a solar cell, comprising the following steps: 099127192 Form No. A0101 Page 43 / Total 65 Page 0993428504-0 201123503 Preparing a substrate; treating the surface of the substrate to reduce the reflection coefficient of incident light on the surface of the substrate 9 to form a quantum dot layer, wherein the quantum dot layer is formed by vapor deposition of a film material on the surface of the processing substrate; Forming a layer on the quantum dot layer; forming an emitter layer formed by heat-treating the N junction layer; removing a phosphosilicate glass, the phosphorosilicate glass being formed to form the emitter Layers are generated in the N junction layer; and forming a prevention The method of manufacturing a solar cell according to the sixth aspect of the invention, wherein the step of forming the quantum dot layer is performed by one of the quantum dot layer stacks. A multilayer structure having a different energy band gap energy. The method of manufacturing a solar cell according to claim 6, wherein the step of forming the quantum dot layer is performed by initially expanding a film material, and The film material has a different atomic size from the substrate to the atom is. The method of manufacturing a solar cell according to any one of claims 6 to 8, wherein the quantum dot layer is formed. The method comprises the steps of: vapor-depositing a film material in a layered structure, and heat-treating the vapor-deposited film material. 10. The method of manufacturing a solar cell according to any one of claims 6 to 8, The step of forming the quantum dot layer comprises sequentially vapor-depositing a film material in at least one layer structure, and heat treating the at least one vapor deposited film material 11. The method of manufacturing a solar cell according to any one of claims 6 to 8, wherein the method of forming the quantum dot layer comprises the method of forming a solar cell 099127192, a form number A0101, a page 44, a total of 65 pages 0993428504-0, 201123503. Forming a mask on the surface of the substrate, the mask having a hole having a diameter of 0.1 to 20 microns; through the hole, vapor depositing a film material on the substrate; and removing the mask to heat the film material. The method of manufacturing a solar cell according to any one of claims 6 to 8, wherein the quantum dot layer has a thickness of from 1 to 20 nm per layer. 13. The manufacture of solar energy according to any one of claims 6 to 8. ❹ 池方法,其中該量子點層係包含二氧化矽(Si〇 )、氮化 石夕(SiNx)、氧化石夕(SiO)、氧化銘(Al2〇3)、氧化錢 (MgO)、鈦酸錁(SrTi〇3)、氧.化组二氧化鈦 (Ti〇2)、氟化鎂(MgF )、氧化鋅、氧化銦錫(ΙΤ0) 、咬(S i )組成中至少一項。 14 .如申請專利範圍第6項至第8項任一項所述之製造太陽能電 池方法,其中該方法更包含下列步驟: 於形成該N接面層中或之後產生―選擇性射極層。 15 . —種太陽能電池,係包含: 一基質’該基質表面係處理以降低太陽反射係數; 一N接面層,係形成於該基質上; 一電漿子層,係由複數個金屬粒子組成並形成於該N接面 層之上部;以及 一防止反射覆蓋層’係形成於該電聚子層之上部,以防止 反射光。 16 17 如申請專利範園第15項所述之太陽能電池,其中該基質表 面之處理係包含織理以在該基質表面形成一表面紋理層。 如申請專利範圍第15項所述之太陽能電池,其中該電浆子 099127192 表單編號A0101 第45頁/共65頁 0993428504-0 201123503 層之該些金屬粒子係散佈於該N接面層整個表面。 18 . 19 . 20 . 21 . 22 . 23 . 如申請專利範圍第17項所述之太陽能電池,其中該電絮^子 層係包含該些金屬粒子,該些金屬粒子具有直徑 米之一穿透區域(tunneling region)。 如申請專利範圍第17項所述之太陽能電池,其中該電榮_子 層係包含該些金屬粒子,該些金屬粒子具有直徑3〇至1〇〇 奈米之一光衍射區。The pool method, wherein the quantum dot layer comprises cerium oxide (Si〇), cerium nitride (SiNx), oxidized stone (SiO), oxidized (Al2〇3), oxidized money (MgO), barium titanate At least one of (SrTi〇3), oxygenated group of titanium dioxide (Ti〇2), magnesium fluoride (MgF), zinc oxide, indium tin oxide (ΙΤ0), and bite (S i ). The method of manufacturing a solar cell according to any one of claims 6 to 8, wherein the method further comprises the step of: generating a selective emitter layer in or after forming the N junction layer. 15. A solar cell comprising: a substrate 'the surface of the substrate is treated to reduce the solar reflectance; an N junction layer formed on the substrate; and a plasmonic layer consisting of a plurality of metal particles And formed on the upper portion of the N junction layer; and an anti-reflection coating layer is formed on the upper portion of the electropolymer layer to prevent reflected light. The solar cell of claim 15, wherein the treatment of the surface of the substrate comprises weaving to form a surface texture layer on the surface of the substrate. The solar cell according to claim 15, wherein the plasmonics 099127192 Form No. A0101 Page 45 / Total 65 pages 0993428504-0 201123503 The metal particles of the layer are dispersed on the entire surface of the N junction layer. 18 . 19 . 20 . 21 . 22 . The solar cell of claim 17 , wherein the electro-floc layer comprises the metal particles, the metal particles having a diameter of one of the penetrating Zone (tunneling region). The solar cell according to claim 17, wherein the Koryo_sublayer comprises the metal particles, the metal particles having a light diffraction region of 3 Å to 1 Å in diameter. 如申請專利範圍第15項所述之太陽能電池,其中該電製子 層之該些金屬粒子係包含由複數個孔洞形成之筛孔型態。 如申請專利範圍第20項所述之太陽能電池,其中該電聚子 層係包含一金屬粒子層於該辞孔型態,該篩孔型態被包覆 厚度最多達30奈米之該些金屬粒.子》 如申請專利範圍第15項至第21項任一項所述之太陽能電 池’其中該些金屬粒子係包含金(Au)、銀(Ag)、銅(Cu) 、鑷(Ni)、鉻(cr)、鐵(Fe)、鎢(W)、翻(Mo)、鋅(Zn) 其中至少一項。 二 一種製造太陽能電池方法,包含下列步驟:The solar cell of claim 15, wherein the metal particles of the electrical sub-layer comprise a mesh pattern formed by a plurality of holes. The solar cell of claim 20, wherein the electropolymer layer comprises a metal particle layer in the vocal form, and the mesh pattern is coated with the metal having a thickness of up to 30 nm. A solar cell according to any one of the items 15 to 21 wherein the metal particles comprise gold (Au), silver (Ag), copper (Cu), or niobium (Ni). At least one of chromium (cr), iron (Fe), tungsten (W), turn (Mo), and zinc (Zn). A method of manufacturing a solar cell comprising the following steps: 準備一基質; 處理該基質之表面以減少該基質表面之入射光之反射係數 移除一磷矽酸鹽玻璃; 形成一電漿子層,該電漿子層係由複數個金屬粒子組成並 形成於一N接面層之上部;以及 形成一防止反射覆蓋層。 如申請專利範圍第23項所述之製造太陽能電池方法,其中 處理該基質表面之步驟包含織理以在該基質表面形成一表 099127192 表單編號A0101 第46頁/共65頁 0993428504-0 24 . 201123503 面紋理層。 25 .如申請專利範圍第23項所述之製造太陽能電池方法,其中 形成該電漿子層之步驟係為分散該些金屬粒子以形成一金 屬粒子層。 26 .如申請專利範圍第25項所述之製造太陽能電池方法,其中 形成該電漿子層之步驟係均勻分散直徑為1至30奈米之該 些金屬粒子。 27 .如申請專利範圍第23項所述之製造太陽能電池方法,其中 形成該電漿子層之步驟係形成一金屬粒子層於由複數個孔 ® 洞形成之一篩孔型態。 28 .如申請專利範圍第27項所述之製造太陽能電池方法,其中 形成該電漿子層之步驟係形成該金屬粒子層於該篩孔型態 ,該篩孔型態被包覆厚度最多達30奈米之該些金屬粒子。 29 .如申請專利範圍第23項至第28項任一項所述之製造太陽 能電池方法,其中該些金屬粒子係包含金(Au)、銀(Ag) 、銅(Cu)、鑷(Ni)、鉻(Cr)、鐵(Fe)、鎢(W)、鉬(Mo) 、鋅(Zn)其中至少一項。 30 .如申請專利範圍第25項至第28項任一項所述之製造太陽 能電池方法,其中掃描濺射搶係用於分散該些金屬粒子以 形成該電漿子層,且每一喷射單位面積之一粒子密度為 1〇13至1017個原子。 31 . —種太陽能電池,係包含: 一基質,該基質表面係處理以降低太陽反射係數; 一光子晶體層,係具一週期性排列之晶格結構,該晶格結 構由刻蚀該基質而成, 一N接面層,係形成於該基質之上部;以及 099127192 表單編號A0101 第47頁/共65頁 0993428504-0 201123503 一防止反射覆蓋層,係形成於該N接面層之上部,以防止 反射光。 32 33 34 . 35 . 36 . 37 . 099127192 如申請專利範圍第31項所述之太陽能電池,其中該基質表 面之處理係包含織理以在該基質表面形成一表面紋理層。 如申請專利範圍第31項所述之太陽能電池,其中該光子晶 體層係包含複數個針狀蝕刻溝槽,該複數個針狀蝕刻溝槽 由表面紋理層蝕刻而成。 职T萌·寻刊抵 喟所迷之太陽能电❿,丹^該針狀蝕 刻溝槽之餘為3⑴叫米,並包含數個於週期性晶格 =至形 =残騎㈣份,料錢騎㈣份大小為 如申請專職_32衫恤項任_摘述之太陽能電 池,其中該表面紋理層具有數個錐狀錢料份,該些錐 狀不規則部份具有4至1〇微米之區間。 -種製造太陽能電池方法,包含下列步‘: 準備一基質; 處理該基質之表面錢少該基f表面之人射光之反射係數 形成-光子晶體層,係'具—週期性排列之晶格結構該曰£ 格結構由刻姓該基質而成; 形成-N接面層於該基質上’且該光子晶體層形成於該基 移除一磷梦酸鹽玻璃;以及 形成一防止反射覆蓋層。 電池方法,其中 質表面形成一表 0993428504-0 如申請專利範圍第36項所述之製造太陽能 處理該基質表面之步驟包含織理以在該基 表單編號A0101 第妨頁/共65頁 201123503 38 . 39 . 40 . Ο 41 . 〇 42 . 43 . 44 · 面紋理層。 如申請專利範圍第36項或第37項所述之製造太陽能電池 方法,其中形成該光子晶體層之步驟包含蝕刻以形成複數 個針狀蝕刻溝槽。 如申請專利範圍第38項所述之製造太陽能電池方法,其中 蝕刻之步驟係使用反應性離子蝕刻法以及感應偶合電漿法 〇 如申請專利範圍第36項或第37項所述之製造太陽能電池 方法,其中形成該光子晶體層之步驟包含: 包覆一硬化型光阻及硬化; 形成一遮罩型樣,該遮罩型樣具有複數個型樣孔洞,該些 型樣孔洞與硬化型光阻上之光子晶體層型樣對應; 藉由該些型樣孔洞以暴露該基質並蝕刻該基質; 移除該遮罩型樣;以及 藉由擴散磷於該遮罩型樣移除之基質以形成一 Ν接面層。 如申請專利範圍第40項所述之製造太陽能電池方法,其中 形成該遮罩型樣之步驟包含利用一印刻模組以形成該些型 樣孔洞於該基質,該印刻模組具有相對應該光子晶體層型 樣之不規則部份。 如申請專利範圍第41項所述之製造太陽能電池方法,其中 該遮罩型樣之大小為0. 1至2微米。 如申請專利範圍第40項所述之製造太陽能電池方法,其中 蝕刻該基質之步驟為放射一離子束。 如申請專利範圍第40項所述之製造太陽能電池方法,其中 蝕刻之步驟係使用反應性離子蝕刻法以及感應偶合電漿法 099127192 表單編號Α0101 第49頁/共65頁 0993428504-0 201123503 4 5 . —種太陽能電池,係包含: 一基質,該基質表面係處理以降低太陽反射係數; 一光子晶體層,係形成於該基質之表面,且該光子晶體層 係由複數個細微金屬粒子及複數個量子線組成,該些量子 線形成於該些細微金屬粒子底部以反射來自内部之入射光 > 一N接面層,係形成於該光子晶體層上;以及 一防止反射覆蓋層,係形成於該N接面層之上部,以防止 反射光。 46 .如申請專利範圍第45項所述之太陽能電池,其中該基質表 面之處理係包含織理以在該基質表面形成一表面紋理層。 47 .如申請專利範圍第45項所述之太陽能電池,其中該光子晶 體層之該些量子線係為一針狀型態,且該些量子線由氣相 沈積矽於該些金屬粒子底部所形成。 48 .如申請專利範圍第45項至第47項任一項所述之太陽能電 池,其中該些金屬粒子之直徑為5至50奈米。 49 .如申請專利範圍第45項至第47項任一項所述之太陽能電 池,其中該些量子線之長度為10至100奈米。 50 . —種製造太陽能電池之方法,包含下列步驟: 準備一基質; 處理該基質之表面以減少該基質表面之入射光之反射係數 形成一光子晶體層於該基質之表面,且該光子晶體層係由 複數個細微金屬粒子及複數個量子線組成,該些量子線形 成於該些細微金屬粒子底部以反射來自内部之入射光; 形成一N接面層於該基質上,且該光子晶體層形成於該基 099127192 表單編號A0101 第50頁/共65頁 0993428504-0 201123503 51 . 52 . Ο 53 . 54 . ❹ 55 質; 移除一磷矽酸鹽玻璃;以及 形成一防止反射覆蓋層。 如申請專利範圍第50項所述之製造太陽能電池方法,其中 該基質表面之處理係包含織理以在該基質表面形成一表面 紋理層。 如申請專利範圍第50項或第51項所述之製造太陽能電池 方法,其中形成該光子晶體層之步驟包含: 藉由喷灑複數個金屬粒子於該基質之表面以形成該些細微 金屬粒子;以及 氣相沈積矽於該些細微金屬粒子之底部並產生該些量子線 〇 '/&S3議囊讓f ,纏馨 如申請專利範圍第52項所述之製造太陽能電池方法,其中 形成該些細微金屬粒子步驟係為掃描濺射搶以分散該些細 微金屬粒子,且每一單位面積之該些金屬細微粒子密度為 1013至1017個原子。 一種太陽能電池,係包含: 一基質,該基質表面係處理以降低太陽反射係數; 一光子晶體層,係具一週期性排列之晶格結構,該晶格結 構由刻蝕該基質而成; 一量子點層,係由氣相沈積,並在該光子晶體層上部形成 一薄膜物質; 一N接面層,係形成在該量子點層上部;以及 一防止反射覆蓋層,係形成於該N接面層之上部,以防止 反射光。 如申請專利範圍第54項所述之太陽能電池,其中該太陽能 099127192 表單編號A0101 第51頁/共65頁 0993428504-0 201123503 電池更包含一選擇性射極層於該N接面層上。 56 .如申請專利範圍第54項所述之太陽能電池,其中該太陽能 電池更包含一電漿子層,該電漿子層位於該N接面層上部 並由複數個金屬粒子組成。 57 . —種製造太陽能電池方法,包含下列步驟: 準備一基質; 處理該基質之表面以減少該基質表面之入射光之反射係數 9 形成一光子晶體層,且該光子晶體層具一週期性排列之晶 格結構,該晶格結構由刻蝕該基質而成; 形成一量子點層,係由氣相沈積,並在該光子晶體層上部 形成一薄膜物質; 形成一N接面層於該基質上,且該量子點層形成於該基質 * 移除一磷矽酸鹽玻璃,該磷矽酸鹽玻璃係形成於該N接面 層上; 形成一射極層,該射極層由熱處理該N接面層而得;以及 形成一防止反射覆蓋層於該射極層上。 099127192 表單編號A0101 第52頁/共65頁 0993428504-0Preparing a substrate; treating the surface of the substrate to reduce the reflection coefficient of the incident light on the surface of the substrate to remove the monophosphoric acid glass; forming a plasmonic layer consisting of a plurality of metal particles and forming An upper portion of the N junction layer; and an anti-reflection coating layer. The method of manufacturing a solar cell according to claim 23, wherein the step of treating the surface of the substrate comprises weaving to form a surface on the surface of the substrate 099127192 Form No. A0101 Page 46 / Total 65 Page 0993428504-0 24 . 201123503 Surface texture layer. The method of manufacturing a solar cell according to claim 23, wherein the step of forming the plasmonic layer is to disperse the metal particles to form a metal particle layer. The method of manufacturing a solar cell according to claim 25, wherein the step of forming the plasmonic layer uniformly disperses the metal particles having a diameter of from 1 to 30 nm. The method of manufacturing a solar cell according to claim 23, wherein the step of forming the plasmonic layer forms a metal particle layer in a mesh pattern formed by a plurality of holes. The method of manufacturing a solar cell according to claim 27, wherein the step of forming the plasmonic layer forms the metal particle layer in the mesh pattern, the mesh pattern being coated up to a thickness of up to 30 nanometers of these metal particles. The method of manufacturing a solar cell according to any one of claims 23 to 28, wherein the metal particles comprise gold (Au), silver (Ag), copper (Cu), niobium (Ni). At least one of chromium (Cr), iron (Fe), tungsten (W), molybdenum (Mo), and zinc (Zn). The method of manufacturing a solar cell according to any one of claims 25 to 28, wherein the scanning sputtering system is used for dispersing the metal particles to form the plasmonic layer, and each of the ejection units One of the areas has a particle density of 1〇13 to 1017 atoms. 31. A solar cell comprising: a substrate having a surface treated to reduce a solar reflectance; a photonic crystal layer having a periodically arranged lattice structure, the lattice structure being etched by the substrate Forming, an N junction layer formed on the upper portion of the substrate; and 099127192 Form No. A0101 Page 47 / Total 65 Page 0993428504-0 201123503 A reflection preventing coating layer formed on the upper portion of the N junction layer Prevent reflected light. The solar cell of claim 31, wherein the treatment of the surface of the substrate comprises weaving to form a surface texture layer on the surface of the substrate. The solar cell of claim 31, wherein the photonic crystal layer comprises a plurality of acicular etched trenches, the plurality of acicular etched trenches being etched from the surface texture layer. The job of T-Meng·Functions meets the solar energy embarrassment, Dan ^ The needle-shaped etching groove is 3 (1) called m, and contains several in the periodic lattice = to shape = residual ride (four) copies, pay The riding (four) size is a solar cell as described in the application for a full-time _32 shirt item, wherein the surface texture layer has a plurality of tapered money portions, and the tapered irregular portions have a thickness of 4 to 1 micron. Interval. - a method of manufacturing a solar cell comprising the steps of: preparing a substrate; treating the surface of the substrate with less reflection of the reflection of a person's surface light on the surface of the substrate - a photonic crystal layer, having a lattice structure of a periodic arrangement The structure is formed by engraving the substrate; forming a -N junction layer on the substrate' and the photonic crystal layer is formed on the substrate to remove a phosphophosic acid glass; and forming an anti-reflection coating. A battery method in which a surface is formed into a table 0993428504-0. The step of manufacturing solar energy to treat the surface of the substrate as described in claim 36 of the patent application includes weaving in the base form number A0101 page 61/2011. 39 . 40 . Ο 41 . 〇 42 . 43 . 44 · Surface texture layer. The method of fabricating a solar cell according to claim 36, wherein the step of forming the photonic crystal layer comprises etching to form a plurality of needle-shaped etched trenches. The method of manufacturing a solar cell according to claim 38, wherein the etching step is a method of using a reactive ion etching method and an inductively coupled plasma method, such as the manufacturing of a solar cell according to claim 36 or 37. The method, wherein the step of forming the photonic crystal layer comprises: coating a hardened photoresist and hardening; forming a mask pattern, the mask pattern having a plurality of pattern holes, the pattern holes and the hardened light Corresponding to the photonic crystal layer pattern; the pattern holes are used to expose the substrate and the substrate is etched; the mask pattern is removed; and the substrate removed by diffusing phosphorus in the mask pattern is A joint layer is formed. The method of manufacturing a solar cell according to claim 40, wherein the step of forming the mask pattern comprises using an imprinting module to form the pattern holes in the substrate, the imprinting module having a corresponding photonic crystal The irregular part of the layer type. 1至2微米。 The size of the mask type is 0.1 to 2 microns, as described in claim 41. The method of manufacturing a solar cell according to claim 40, wherein the step of etching the substrate is to emit an ion beam. The method for manufacturing a solar cell according to claim 40, wherein the etching step is a reactive ion etching method and an inductive coupling plasma method. 099127192 Form No. 1010101 Page 49/65 Page 0993428504-0 201123503 4 5 . a solar cell comprising: a substrate, the surface of the substrate is treated to reduce a solar reflectance; a photonic crystal layer is formed on a surface of the substrate, and the photonic crystal layer is composed of a plurality of fine metal particles and a plurality of a quantum wire composition, the quantum wires are formed at the bottom of the fine metal particles to reflect incident light from the inside; an N junction layer is formed on the photonic crystal layer; and an anti-reflection coating layer is formed on The N is connected to the upper portion of the surface layer to prevent reflected light. The solar cell of claim 45, wherein the treatment of the surface of the substrate comprises weaving to form a surface texture layer on the surface of the substrate. 47. The solar cell of claim 45, wherein the quantum wires of the photonic crystal layer are in a needle-like state, and the quantum wires are deposited by vapor deposition on the bottom of the metal particles. form. The solar battery according to any one of claims 45 to 47, wherein the metal particles have a diameter of 5 to 50 nm. The solar battery according to any one of claims 45 to 47, wherein the quantum wires have a length of 10 to 100 nm. 50. A method of fabricating a solar cell, comprising the steps of: preparing a substrate; treating a surface of the substrate to reduce a reflection coefficient of incident light on a surface of the substrate to form a photonic crystal layer on a surface of the substrate, and the photonic crystal layer And consisting of a plurality of fine metal particles and a plurality of quantum wires formed at the bottom of the fine metal particles to reflect incident light from the inside; forming an N junction layer on the substrate, and the photonic crystal layer Formed on the base 099127192 Form No. A0101 Page 50 / Total 65 Page 0993428504-0 201123503 51 . 52 . Ο 53 . 54 . ❹ 55 quality; remove the monophosphonate glass; and form an anti-reflective coating. The method of manufacturing a solar cell according to claim 50, wherein the treatment of the surface of the substrate comprises weaving to form a surface texture layer on the surface of the substrate. The method for manufacturing a solar cell according to claim 50, wherein the step of forming the photonic crystal layer comprises: forming a plurality of fine metal particles by spraying a plurality of metal particles on a surface of the substrate; And forming a solar cell method according to the invention of claim 52 The fine metal particle step is performed by scanning sputtering to disperse the fine metal particles, and the metal fine particles have a density of 1013 to 1017 atoms per unit area. A solar cell comprising: a substrate having a surface treated to reduce a solar reflection coefficient; a photonic crystal layer having a periodically arranged lattice structure, the lattice structure being formed by etching the substrate; a quantum dot layer deposited by vapor deposition and forming a film material on the upper portion of the photonic crystal layer; an N junction layer formed on an upper portion of the quantum dot layer; and an anti-reflection coating layer formed on the N junction Above the top layer to prevent reflected light. The solar cell of claim 54, wherein the solar energy 099127192 Form No. A0101 Page 51 of 65 0993428504-0 201123503 The battery further comprises a selective emitter layer on the N junction layer. The solar cell of claim 54, wherein the solar cell further comprises a plasmonic layer, the plasmonic layer being located above the N junction layer and composed of a plurality of metal particles. 57. A method of fabricating a solar cell comprising the steps of: preparing a substrate; treating a surface of the substrate to reduce a reflection coefficient of incident light on the surface of the substrate 9 to form a photonic crystal layer, and the photonic crystal layer has a periodic arrangement a lattice structure formed by etching the substrate; forming a quantum dot layer formed by vapor deposition and forming a film material on the upper portion of the photonic crystal layer; forming an N junction layer on the substrate And the quantum dot layer is formed on the substrate* to remove a phosphonate glass, the phosphonate glass is formed on the N junction layer; forming an emitter layer, the emitter layer is heat treated N is connected to the surface layer; and an anti-reflective coating layer is formed on the emitter layer. 099127192 Form No. A0101 Page 52 of 65 0993428504-0
TW099127192A 2009-12-01 2010-08-13 Solar cell and method of manufacturing the same TW201123503A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR1020090117817A KR101075149B1 (en) 2009-12-01 2009-12-01 Solar cell and method of the same
KR1020090125015A KR101093005B1 (en) 2009-12-15 2009-12-15 Solar cell and manufacturing method of the same
KR1020090125001A KR101079213B1 (en) 2009-12-15 2009-12-15 Solar cell and manufacturing method of the same
KR1020090124969A KR101124490B1 (en) 2009-12-15 2009-12-15 Solar cell and manufacturing method of the same
KR1020090125008A KR20110068161A (en) 2009-12-15 2009-12-15 Solar cell and manufacturing method of the same

Publications (1)

Publication Number Publication Date
TW201123503A true TW201123503A (en) 2011-07-01

Family

ID=44088032

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099127192A TW201123503A (en) 2009-12-01 2010-08-13 Solar cell and method of manufacturing the same

Country Status (2)

Country Link
CN (1) CN102082184B (en)
TW (1) TW201123503A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485876B (en) * 2013-01-11 2015-05-21 Tainergy Tech Co Ltd Capacitive solar battery and manufacturing method thereof
TWI492403B (en) * 2013-09-09 2015-07-11 Motech Ind Inc Solar cell, method for manufacturing the same and solar cell module

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337530A (en) * 2013-06-09 2013-10-02 国电光伏有限公司 N-shaped efficient heterojunction battery and manufacturing method thereof
TWI495127B (en) * 2013-06-24 2015-08-01 Motech Ind Inc Solar cell, method of manufacturing the same and module comprising the same
US10348058B1 (en) * 2018-01-22 2019-07-09 National Tsing Hua University Two-dimensional material plasmonic laser

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2945647B2 (en) * 1998-02-02 1999-09-06 株式会社日立製作所 Solar cell
KR101176132B1 (en) * 2006-07-03 2012-08-22 엘지전자 주식회사 High Efficient Si-Thin Film Solar Cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485876B (en) * 2013-01-11 2015-05-21 Tainergy Tech Co Ltd Capacitive solar battery and manufacturing method thereof
TWI492403B (en) * 2013-09-09 2015-07-11 Motech Ind Inc Solar cell, method for manufacturing the same and solar cell module

Also Published As

Publication number Publication date
CN102082184B (en) 2013-05-22
CN102082184A (en) 2011-06-01

Similar Documents

Publication Publication Date Title
Kojima et al. Nanoparticle formation in Au thin films by electron-beam-induced dewetting
TW201123503A (en) Solar cell and method of manufacturing the same
JP2016189469A (en) Method for forming nanostructure on substrate and use of the same
US7790243B2 (en) Method for producing large-diameter 3D carbon nano-onion structures at room temperature
Haider et al. A comprehensive review on pulsed laser deposition technique to effective nanostructure production: Trends and challenges
WO2008116616A1 (en) Method for producing an anti-reflection surface on an optical element, and optical elements comprising an anti-reflection surface
Mukhopadhyay et al. Silicon rich silicon oxide films deposited by radio frequency plasma enhanced chemical vapor deposition method: optical and structural properties
Kang et al. Ion irradiation of III–V semiconductor surfaces: From self-assembled nanostructures to plasmonic crystals
He et al. Vertically well-aligned ZnO nanowires generated with self-assembling polymers
Li et al. Shaped femtosecond laser-regulated deposition sites of galvanic replacement for simple preparation of large-area controllable noble metal nanoparticles
Chhikara et al. On the synthesis of Zn/ZnO core–shell solid microspheres on quartz substrate by thermal evaporation technique
KR101079213B1 (en) Solar cell and manufacturing method of the same
TW201044640A (en) Group-III nitride-based light emitting device and method for improving light extraction efficiency thereof
JP2012185014A (en) Sample preparation method for transmission electron microscope
Mäder et al. Nanostructures by diffraction mask projection laser ablation
Fominski et al. Chemical composition, structure and light reflectance of W–Se and W–Se–C films prepared by pulsed laser deposition in rare and reactive buffer gases
JP2004190089A (en) Method for manufacturing inorganic-nanoparticle fusion or accretion structure, and fusion or accretion structure
CN108022694A (en) A kind of preparation method of transparent conductive oxide film-nanometer line network
WO2012026359A1 (en) Three-dimensional structure having laser-induced surface layer and method for manufacturing the structure
Boltaev et al. Creation of azimuthally and radially directed laser-induced periodic structures on large tantalum surface
JP2015117147A (en) Production method of glass member, and glass member
US11824128B2 (en) Photocurrent-generating electrode
WO2014086903A1 (en) Method for producing nanostructures
TWI303495B (en) Light emitter with metal-oxide coating
WO2022172972A1 (en) Method for producing composite by laser irradiation, and composite