WO2022172972A1 - Method for producing composite by laser irradiation, and composite - Google Patents

Method for producing composite by laser irradiation, and composite Download PDF

Info

Publication number
WO2022172972A1
WO2022172972A1 PCT/JP2022/005217 JP2022005217W WO2022172972A1 WO 2022172972 A1 WO2022172972 A1 WO 2022172972A1 JP 2022005217 W JP2022005217 W JP 2022005217W WO 2022172972 A1 WO2022172972 A1 WO 2022172972A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
linear material
composite
core
substrate
Prior art date
Application number
PCT/JP2022/005217
Other languages
French (fr)
Japanese (ja)
Inventor
宏昭 西山
春加 松本
Original Assignee
国立大学法人山形大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山形大学 filed Critical 国立大学法人山形大学
Priority to DE112022001009.6T priority Critical patent/DE112022001009T5/en
Priority to JP2022580667A priority patent/JPWO2022172972A1/ja
Publication of WO2022172972A1 publication Critical patent/WO2022172972A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • the present invention relates to a composite manufacturing method and a composite by laser irradiation.
  • Non-Patent Document 1 In contrast to lithography, which requires complex processes, material patterning by laser irradiation enables arbitrary pattern formation simply by scanning the light-collecting part, so it is expected to be applied to integrated devices with higher functionality and printable electronics.
  • Patent Document 1 Non-Patent Document 2.
  • Patent Document 1 it is necessary to disperse both the metal ions that are the material of the metal core and the solid fine particles that are the material of the coating layer in the same solution.
  • the solid fine particles dissolve in the solution or react with the solution to attach another substance, it is difficult to accumulate, and there are restrictions on the combination of the solid fine particles and the solution, and it is difficult to obtain a coating layer having desired properties. is difficult.
  • the component of the coating layer may enter the core, or a gap may be formed between the core and the coating layer, and it is difficult to stably obtain the desired composite. was difficult.
  • the gist of the present invention is as follows. (1) providing a linear material comprising metals, ceramics, or combinations thereof; immersing the linear material in a first dispersion in which a first solid nanomaterial is dispersed; and irradiating the linear material immersed in the first dispersion with a first laser beam. while moving the condensing portion of the first laser beam along the linear material to cover the surface of the linear material with the first covering layer composed of the first solid nanomaterial. forming at least in part to form a core composed of said linear material/ said first coating layer composite;
  • the first solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins.
  • the second solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins.
  • a linear material core comprising metal, ceramics, or a combination thereof, and a first coating layer composed of a first solid nanomaterial covering at least a portion of the surface of the linear material core; including
  • the first solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins, there is no gap between the linear material core and the first coating layer; Complex.
  • (12) The composite according to (11) above, which does not contain the first solid nanomaterial inside the linear material core.
  • the first solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins.
  • a topical coating composed of a first solid nanomaterial covering at least a portion of the surface of a convex material core comprising metal, ceramic, or a combination thereof;
  • the first solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins, there is no gap between the convex material core and the first coating layer; topical coating.
  • a composite can be stably produced in which the boundary between the core containing metal, ceramics, or a combination thereof and the coating layer is clearly separated and there is no gap between the core and the coating layer. becomes possible.
  • FIG. 1 is a schematic diagram during formation of a first coating layer 12 around a linear material 10 .
  • FIG. 2 is a cross-sectional view schematically showing this method when irradiation of the first laser beam 30 to the linear material 10 arranged along the main surface of the substrate 40 is started.
  • FIG. 3 is a schematic cross-sectional view of the first coating layer 12 covering the surface of the linear material 10 between itself and the substrate 40 in the first dispersion liquid 20 .
  • FIG. 4 is a schematic cross-sectional view showing a mode of laser irradiation from the substrate side toward a linear material.
  • FIG. 5 is a schematic cross-sectional view showing a mode in which the ends of the linear material are held by the substrate and the laser is irradiated from the ends in parallel with the axial direction of the linear material.
  • FIG. 6 is a schematic cross-sectional view showing a mode in which the linear material 10 is irradiated with the first laser beam 30 and bubbles 24 are generated around the linear material 10 .
  • FIG. 7 shows that the surface tension gradient generated from the temperature distribution (temperature gradient) on the surface of the air bubbles 24 causes the convection indicated by the arrows in the first dispersion liquid 20 to generate air bubbles 24 around the linear material 10 .
  • FIG. 2 is a schematic cross-sectional view showing a mode in which a first solid nanomaterial 22 is collected at a gas-liquid interface with a first dispersion liquid 20.
  • FIG. FIG. 8 is a schematic cross-sectional view of the first covering layer 12 formed to cover the linear material 10 between the substrate 40 and the substrate 40 .
  • FIG. 9 is a schematic cross-sectional view perpendicular to the longitudinal direction of an example of a composite formed by this method.
  • FIG. 10 is a schematic cross-sectional view perpendicular to the longitudinal direction of another example of a composite formed by this method.
  • FIG. 11 is a schematic cross-sectional view perpendicular to the longitudinal direction of another example of a composite formed by this method.
  • FIG. 12 is a schematic cross-sectional view perpendicular to the longitudinal direction of another example of the composite formed by this method.
  • FIG. 13 is a schematic cross-sectional view of a composite having a cavity 14 at the interface between a core 10 made of a linear material and a substrate 40.
  • FIG. 14 is a schematic diagram showing a mode in which the inside of a cylindrical substrate such as a transparent tube made of glass is irradiated with a laser.
  • FIG. 15 is a schematic diagram of a composite wiring formed on a curved substrate.
  • FIG. 16 is a schematic cross-sectional view showing a mode in which the laser source 32 is split by a beam splitter 34 and a plurality of first laser beams 30 are irradiated in parallel.
  • FIG. 17 is a schematic diagram of the configuration of a femtosecond laser.
  • FIG. 18 is a scanning electron microscope (SEM) image of the appearance of the composite wiring of Ag core/SiO 2 coating layer.
  • FIG. 19 is a Y-direction cross-sectional SEM image of the composite wiring shown in FIG.
  • FIG. 20 is a transmission electron microscope (TEM) image of the coating layer of FIG.
  • FIG. 21 is an external SEM image of the formed Ag wiring.
  • FIG. 22 is an appearance SEM image of a composite wiring of a composite coating layer of Ag core/SiO 2 particles and ZnO nanowires.
  • FIG. 23 is a cross-sectional TEM image of a composite wiring with a composite coating layer of Ag core/SiO 2 particles and ZnO nanowires.
  • FIG. 24 is a TEM image of the coating layer of FIG.
  • FIG. 25 is a cross-sectional SEM image of the coating layer.
  • FIG. 26 is a mapping photograph of Zn in the area of FIG. 25 by energy dispersive X-ray spectroscopy (EDX).
  • FIG. 27 is an external SEM image of the formed Ag wiring 10 and composite wiring.
  • FIG. 28 is a mapping photograph of Ti by EDX for the area of FIG.
  • FIG. 29 is an external SEM image of composite wiring of Ag core/polystyrene coating layer.
  • FIG. 30 is an external SEM image of wiring formed in a comparative example.
  • FIG. 31 is a cross-sectional TEM image of wiring formed in a comparative example.
  • FIG. 32 is an enlarged TEM image of the portion surrounded by a square in FIG.
  • FIG. 33 is a cross-sectional SEM image of wiring formed on a substrate.
  • FIG. 34 is a mapping photograph of Ag by EDX for the area of FIG.
  • FIG. 35 is a mapping photograph of Ti by EDX for the area of FIG.
  • FIG. 36 is an optical microscope image (FIG. 36(a)) and a fluorescence microscope observation image (FIG. 36(b)) of the composite wiring formed in Example.
  • FIG. 37 is an SEM photograph of the composite wiring formed in Example and mapping images of Si, Ti, and Ag.
  • FIG. 38 is an SEM photograph of the composite wiring formed in Example and mapping images of Ag and Ti.
  • FIG. 34 is a mapping photograph of Ag by EDX for the area of FIG.
  • FIG. 35 is a mapping photograph of Ti by EDX for the area of FIG.
  • FIG. 36 is an optical microscope image (FIG. 36(a)) and a flu
  • FIG. 39 is a schematic cross-sectional view of two adjacent linear materials each formed with a first coating layer of the same material.
  • FIG. 40 is a schematic cross-sectional view of two adjacent linear materials each having a first coating layer made of a different material.
  • FIG. 41 is a schematic cross-sectional view of two adjacent linear materials each formed with a first coating layer of a different material.
  • FIG. 42 is a schematic external view showing a mode in which air bubbles are generated around the linear material on which the laser beam is focused, and the air bubbles 24 move in accordance with the movement of the light collecting portion along the linear material ( is a perspective view).
  • the present disclosure provides a linear material comprising metals, ceramics, or combinations thereof, immersing the linear material in a first dispersion in which a first solid nanomaterial is dispersed, and While irradiating the linear material immersed in the first dispersion liquid with the first laser beam, the condensing part of the first laser beam is moved along the linear material to obtain the first laser beam.
  • a first coating layer composed of one solid nanomaterial is formed on at least a part of the surface of the linear material, and a composite of the core composed of the linear material and the first coating layer Manufacture of a composite, comprising forming a body, wherein the first solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins method.
  • the present inventors have found that in the formation of a metal core/coating layer composite by laser irradiation in Patent Document 1, the metal core is formed by photochemical reaction of metal ions in the solution, The coating layer is formed by collecting solid nanomaterials by bubbles in the dispersion liquid generated by the thermal energy of the laser beam. and are formed in separate steps.
  • the inventors also found that the core does not have to be composed only of metal, and that laser irradiation can form a coating layer around the core if the core is composed of materials including metals, ceramics, or combinations thereof. Found.
  • a first solid nanomaterial 22 is dispersed in a first dispersion 20 containing a linear material containing metals, ceramics, or a combination thereof.
  • a linear material 10 is immersed, and while irradiating the linear material 10 with the first laser beam 30, the condensing part of the first laser beam 30 is moved along the linear material 10.
  • the core 10/second core 10 is moved to form a first coating layer 12 on at least a portion of the surface of the linear material 10, and the linear material 10 includes metal, ceramics, or a combination thereof.
  • a composite of one covering layer 12 is formed.
  • the composite can be of any shape and is preferably a linear composite wiring.
  • FIG. 1 is a schematic diagram during formation of a first coating layer 12 around a linear material 10 including metal, ceramics, or a combination thereof.
  • the linear material 10 may be short as long as it has a length that allows it to move through the condensing portion of the laser beam 30 , for example, it may be dot-shaped and has a length that allows it to move through the condensing portion of the laser beam 30 .
  • the length of the linear material 10 is preferably 1 ⁇ m or longer, more preferably 2 ⁇ m or longer, and even more preferably 3 ⁇ m or longer.
  • FIG. 2 is a cross-sectional view schematically showing this method when irradiation of the first laser beam 30 to the linear material 10 arranged along the main surface of the substrate 40 is started.
  • FIG. 3 is a schematic cross-sectional view of the first coating layer 12 covering the surface of the linear material 10 between itself and the substrate 40 in the first dispersion liquid 20 .
  • the first coating layer 12 consists essentially of the first solid nanomaterial 22, although it may contain traces of a dispersing agent.
  • a linear material containing metal, ceramics, or a combination thereof is immersed in the first dispersion in which the first solid nanomaterial is dispersed, and then irradiated with laser light.
  • the irradiation direction of the first laser beam when forming the first coating layer is such that the linear material is heated by the first laser beam and bubbles are generated around the linear material serving as the core. It can be in any direction as long as it can cause convection.
  • a linear material arranged on the upper main surface of the substrate that transmits the first laser light may be irradiated from the substrate side, that is, from the bottom side.
  • laser irradiation may be performed from the side opposite to the substrate, that is, from the upper side.
  • the linear material may be irradiated with laser from a direction parallel or oblique to the main surface of the substrate.
  • laser irradiation may be performed from the substrate side, that is, from the upper side toward a linear material arranged on the lower main surface of the substrate that transmits the first laser beam. good.
  • FIG. 4 shows that shows that is, from the upper side toward a linear material arranged on the lower main surface of the substrate that transmits the first laser beam.
  • the linear material 10 may be held on the substrate 40 and the linear material 10 placed in the first dispersion may be irradiated with the laser. Without using a substrate, the linear material may be fixed in the first dispersion liquid by applying optical tweezers or a magnetic field, and laser irradiation may be performed.
  • the first laser beam When irradiating the linear material from the side of the substrate through which the first laser beam is transmitted, the first laser beam does not pass through the first dispersion liquid and therefore is dispersed in the first dispersion liquid. It is less susceptible to the first solid nanomaterial that is in contact. When laser irradiation is directed toward the linear material from the opposite side of the substrate, light loss and scattering may occur due to the first solid nanomaterial dispersed in the first dispersion, but the first solid nanomaterial having a small diameter By using one solid nanomaterial, reducing the concentration of the first solid nanomaterial in the first dispersion, or the like, the linear material can be efficiently irradiated with the first laser beam. .
  • FIG. 6 shows a mode in which air bubbles 24 are generated around the linear material 10 on which the laser beam 30 is focused, and the air bubbles 24 move in accordance with the movement of the condensing portion along the linear material 10.
  • FIG. 2 shows an external schematic diagram (perspective view). The first solid nanomaterial is collected behind the bubble 24 as the bubble 24 moves.
  • a surface tension gradient is generated from the temperature distribution (temperature gradient) on the surfaces of the bubbles 24, and as indicated by the arrows in FIG.
  • a convection occurs in the linear material 10 and the first solid nanomaterial 22 is collected at the gas-liquid interface between the air bubbles 24 around the linear material 10 and the first dispersion liquid 20 .
  • first laser beam 30 Since the first laser beam 30 is moving along the linear material 10, bubbles are generated around the linear material 10 irradiated with the first laser beam 30, but the movement causes the laser irradiation. When it stops, the bubble disappears. Since the first laser beam 30 is moving in this way, the first solid nanomaterial 22 is accumulated at the contact portion between the end of the bubble 24 and the linear material 10, and as shown in FIG. A first covering layer 12 is formed to cover the linear material 10 between the substrate 40 and the substrate 40 . No gap is formed at the interface between the linear material (core including metal, ceramics, or a combination thereof) 10 and the first coating layer 12 in the resulting composite.
  • the condensing portion of the first laser beam 30 When the condensing portion of the first laser beam 30 is moved along the linear material 10, the interface between the linear material 10 and the first coating layer 12 is formed of the linear material 10 in close contact. A core/first coating layer composite is obtained.
  • the moving speed of the condensing portion of the first laser beam 30 is preferably 10 to 2000 ⁇ m/sec, more preferably 20 to 1000 ⁇ m/sec, still more preferably 30 to 300 ⁇ m/sec.
  • the coating layer can be formed by such a mechanism, it is possible to achieve both integration of solid nanomaterials, stable formation of the coating layer, and fine patterning. It is possible to obtain composites with structures that are difficult to obtain with laser lithography.
  • the linear material is irradiated with the first laser beam, and the condensed portion of the first laser beam heats the linear material by irradiating the first laser beam so that the periphery of the linear material is heated. It may be in the linear material or in the vicinity of the linear material as long as air bubbles can be generated in the first dispersion and convection can be caused in the first dispersion.
  • the first coating layer can be formed even though the laser beam is used.
  • the material for the covering layer is not limited to a photosensitive material, and the range of material selection for the first covering layer is extremely wide. According to this method, various materials can be integrated around the core as coating layers without being limited by material properties, and the material of the first coating layer can be conductive, insulating, semiconducting, magnetic, It can be a material having biocompatibility, antibacterial properties, and the like.
  • the first solid nanomaterial even if a material such as SiO 2 that easily transmits a laser is used as the first solid nanomaterial, it is possible to form the first coating layer with a low-power laser. Therefore, according to this method, it is possible to fabricate sensors and devices with various configurations, for example, a micro-sized LED array in which a layer of quantum dots is arranged between p-type and n-type semiconductor layers. can do.
  • the dispersion medium of the first dispersion liquid is a liquid, but the dispersion medium can disperse the first solid nanomaterial and does not cause the first solid nanomaterial to dissolve, react, deform, or change properties.
  • the dispersion medium of the first dispersion is, for example, water, a mixed liquid of water and ethanol, or a liquid obtained by redispersing a solid nanomaterial dispersed in an organic solvent such as toluene in a mixed liquid of alcohol and water. can be done. Therefore, according to the present method, the dispersion medium of the first dispersion must be a solution in which metal ions, metal colloids, metal complexes, etc.
  • the first solid nanomaterial is a material, such as zinc oxide, which could not be conventionally used for dissolving in a solution, such as a silver nitrate solution, used to disperse metal ions and the like. and other solid nanomaterials.
  • the first dispersion may contain other components as long as they do not interfere with the irradiation of the laser beam, such as a dispersant used for dispersing the solid nanomaterial, which is soluble in the dispersion medium. .
  • the concentration of the first solid nanomaterial in the first dispersion is preferably 0.01-3.0% by mass. When the concentration of the first solid nanomaterial in the first dispersion is within the preferred range, the first coating layer can be formed more efficiently.
  • the viscosity of the first dispersion is preferably 1.0 mPa ⁇ s to 1.2 mPa ⁇ s. By setting the viscosity of the first dispersion to be within the preferred range, the concentration of the first solid nanomaterial is ensured, convection in the first dispersion is facilitated, and the first solid nanomaterial is dispersed. It can be made easier to collect.
  • the first solid nanomaterial is dispersible in the first dispersion, and the temperature at which the first dispersion is heated through the heating of the linear material by laser light irradiation, for example, 70 to 100 ° C. It can be a solid nanomaterial that can be collected by convection by air bubbles at a certain temperature without substantial deformation or alteration. Regarding the dispersibility in the first dispersion liquid, it is not necessary that the solid nanomaterials are uniformly distributed throughout the dispersion liquid, and it is sufficient that the solid nanomaterials are present in the vicinity of the light-collecting part of the laser. A portion of the solid nanomaterial may be precipitated. Moreover, the solid nanomaterial does not necessarily have to exist in the form of primary particles.
  • solid nanomaterials include nano-sized fine particles (nanoparticles), nanoclusters, nanocrystals, nanotubes, nanofibers, nanowires, nanorods, nanofilms, nanosheets, and combinations thereof.
  • the first solid nanomaterial preferably has a diameter of 1-3000 nm, more preferably 5-1000 nm, even more preferably 10-300 nm, still more preferably 15-100 nm.
  • the diameter here means the average value of the maximum lengths in the major axis direction of ten randomly selected first solid nanomaterials when the first solid nanomaterials are observed with an electron microscope.
  • the first coating layer can be formed in a shorter time or thicker.
  • the first solid nanomaterial preferably has a density of 0.95-21.45 g/cm 3 , more preferably 1.1-6.0 g/cm 3 .
  • the lower the density of the first solid nanomaterial the easier it is to collect with air bubbles. For example, since resin particles such as polystyrene beads have a relatively low density, they are easily collected by air bubbles even if they have a large particle size.
  • the first solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins.
  • metal oxides include zinc oxide, titania, alumina, cobalt oxide, zirconia, ceria, molybdenum oxide, magnesium oxide, tungsten oxide, tin oxide, iron oxide, manganese oxide, cobalt oxide, nickel oxide, zirconate titanate.
  • Lead, strontium titanate, lead titanate, lead zirconate, lead zirconate titanate, indium tin oxide and the like are included.
  • non-metal oxides examples include silica.
  • Ceramics are non-metallic inorganic materials, and examples of ceramics include, for example, nitrides, carbides, borides, halides, diamonds, carbon, and quantum dots.
  • Quantum dots are generally colloidal, nanoscale semiconductor crystals with unique optical, electrical, and magnetic properties that obey quantum mechanics. Examples of quantum dots also include PbS, CdS, and the like. Examples of carbon also include graphite, graphene, and the like.
  • nitrides examples include niobium nitride, titanium nitride, tantalum nitride, indium nitride, gallium nitride, indium nitride, gallium nitride, boron nitride, and aluminum nitride.
  • carbides include chromium carbide, boron carbide, vanadium carbide, tungsten carbide, molybdenum carbide, titanium carbide, zirconium carbide, niobium carbide, tantalum carbide, silicon carbide, and the like.
  • borides include boron, aluminum boride, chromium boride, titanium boride, molybdenum boride, tungsten boride, vanadium boride, zirconium boride, magnesium boride, niobium boride, tantalum boride, and the like. included.
  • halides include cerium fluoride and the like.
  • Other first solid nanomaterials include phosphate compounds such as hydroxyapatite, Li 2 SP 2 S 5 , LiCoO 2 , xLi 2 O-BPO 4 (0.5 ⁇ x ⁇ 1.5), and the like.
  • lithium-based compounds include compound semiconductors using group II elements and group VI elements.
  • metals examples include Ag, Cu, Au, Pt, Pd, Ni, Pb, Sn, alloys, and the like.
  • resins examples include polystyrene-based resins, polyolefin-based resins, polyacrylic-based resins, polycarbonate-based resins, polyester-based resins, polyvinyl chloride-based resins, polyamide-based resins, and the like.
  • the first solid nanomaterials include highly transparent coating film-forming materials, solid electrolyte fuel cell electrolyte materials, light-emitting diodes and photoresponsive semiconductor materials, resistor film-forming materials, metal magnetic powder materials, superconducting materials, and piezoelectric ceramics. Solid nanomaterials such as thick film materials, dielectric film materials, fine particle binding materials, and other functional materials may also be used.
  • the first solid nanomaterial includes particles in which solid particles of different materials are mixed, composite particles in which particles with different shapes such as nanoparticles and nanowires are mixed, composites of solid nanomaterials, solid nanomaterials composed of multiple components, Particles in which solid fine particles such as gold-supported titanium oxide (Au/TiO 2 ) are supported by solid fine particles, and particles having a composite structure such as a core-shell structure may be used.
  • a fine composite can be formed.
  • the width of the composite can be adjusted by the laser irradiation conditions, and is preferably 1 to 20 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the width of the composite is the maximum length of the cross-section perpendicular to the longitudinal direction of the composite.
  • the line width of the composite arranged along the main surface of the substrate is the length in the direction perpendicular to the longitudinal direction of the composite and parallel to the main surface of the substrate.
  • the composite formed by the method may be a composite wire.
  • the thickness of the composite formed by this method can be adjusted by the laser irradiation conditions, and is preferably 100 nm to 10 ⁇ m.
  • the thickness and width of the linear material (core comprising metals, ceramics, or combinations thereof) is preferably 1-10 ⁇ m.
  • the thickness of the first coating layer is preferably between 100 nm and 10 ⁇ m.
  • the first coating layer can cover part or all of the surface of the linear material in the width direction, and preferably covers the entire surface of the linear material in the width direction.
  • the linear material becomes the core as it is, but the larger the thickness and width of the linear material, the easier it is to collect the solid nanomaterials, and the time for forming the first coating layer can be shortened, or the thicker first coating layer can be formed. can be obtained.
  • the diameter of the bubble is preferably about 1.1 to 4.0 times, more preferably about 2.0 to 3.5 times, the thickness and width of the linear material.
  • the width of the composite and core is the length of the chord forming the maximum length in a cross section perpendicular to the longitudinal direction of the composite and core, and the thickness of the composite and core is perpendicular to said chord. Maximum length in a direction.
  • the width of the composite and the core arranged along the main surface of the substrate is the maximum length in the direction perpendicular to the longitudinal direction of the composite and the core and parallel to the main surface of the substrate,
  • the thickness of the composite and the core arranged in the same direction is the maximum length of the composite in the direction perpendicular to the longitudinal direction of the composite and the major surface of the substrate.
  • the thickness of the first coating layer is the average value of the thickness in the cross section perpendicular to the longitudinal direction of the composite.
  • FIG. 9 and 10 show schematic cross-sectional views perpendicular to the longitudinal direction of an example of the composite formed by this method.
  • FIG. 5 when a laser beam is emitted from the end of the linear material in a direction parallel to the axial direction of the linear material and the condensing part is moved along the linear material, the linear material Since the laser is irradiated on the outer periphery of the linear material, the first solid nanomaterial can gather around the entire periphery of the linear material to form the first coating layer.
  • a composite having a cross-sectional shape of the shape can be obtained.
  • a first coating layer with a circular cross section is formed around the linear material with a circular cross section.
  • a first covering layer with a rectangular cross section is formed around the linear material with a rectangular cross section.
  • FIGS. 11 and 12 show schematic cross-sectional views of another example of the composite formed by this method in the direction perpendicular to the longitudinal direction.
  • FIGS. 1 to 3 while irradiating a laser from the transparent substrate side toward a linear material placed on the main surface of the substrate, moving the condensing part along the linear material, As schematically shown in FIGS. 6 to 8, the first solid nanomaterials can gather on the surface of the linear material to form the first coating layer, so that as schematically shown in FIGS. 11 and 12, A composite having a substantially concentric cross-sectional shape can be obtained.
  • a first coating layer having a semicircular cross section is formed around the linear material having a semicircular cross section.
  • a first covering layer with a rectangular cross section is formed around the linear material with a rectangular cross section.
  • the linear material used according to the present method preferably has a substantially circular, substantially elliptical, substantially rectangular, substantially semi-elliptical, or substantially semi-circular cross-section, more preferably substantially circular or substantially semi-circular. It has a circular cross section. Since the core made of the linear material has a substantially circular or semicircular cross-sectional shape, when the linear material is irradiated with a laser beam to generate bubbles, It becomes easier to collect solid nanomaterials in
  • the first coating layer preferably has a substantially circular, substantially elliptical, substantially rectangular, substantially semi-elliptical, or substantially semi-circular cross-section, more preferably It has a substantially circular or semicircular cross section.
  • the first coating layer preferably has a cross-section that is substantially similar to the linear material.
  • the composite formed by this method includes two or more linear materials and may include a first coating layer composed of one or more materials.
  • a first coating layer can be formed for each adjacent linear material.
  • FIG. 39 shows a schematic cross-sectional view of two adjacent linear materials 10 each having the first covering layer 12 of the same material formed thereon.
  • the interval between adjacent linear materials is not particularly limited, and when the first coating layers formed on two or more linear materials are brought into contact with each other, the interval between adjacent linear materials may be narrowed. In the case where the first coating layers formed on the above linear materials are not in contact with each other, the distance between adjacent linear materials should be widened.
  • FIG. 40 and FIG. 41 show schematic cross-sectional views of two adjacent linear materials 101 and 102 formed with first coating layers 121 and 122 of different materials, respectively.
  • FIG. 40 shows an example in which the first coating layer 121 is formed on the linear material 101 and then the first coating layer 122 is formed on the linear material 102 .
  • FIG. 41 shows an example in which the first covering layer 122 is formed on the linear material 102 and then the first covering layer 121 is formed on the linear material 101 .
  • a cavity 14 may be formed in at least a part of the interface between.
  • the substrate used in this method is not particularly limited as long as it can form a linear material and does not dissolve or react with the dispersion medium for dispersing the first solid nanomaterial.
  • the substrate may be coated with another material, for example a transparent conductive film such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the substrate When a linear material is arranged along the main surface of the substrate, the temperature of the linear material increases due to the laser irradiation. And the substrate and bonding strength are improved. Further, since the substrate is in contact with the linear material heated by laser irradiation, the substrate preferably has a melting point higher than the temperature of the linear material to be heated in order to avoid damaging the substrate. For example, SiO2 glass has a high softening point, so when used as a substrate, the surface in contact with a linear material is difficult to melt. The surface in contact with is easy to melt.
  • the shape of the substrate used in this method is not particularly limited as long as it has a structure that allows a linear material immersed in a dispersion liquid to be irradiated with a laser beam.
  • the composite wiring 100 can be formed inside a tubular substrate 40 such as a transparent tube made of glass as shown in FIG. 14 or on a substrate 40 having a curved main surface as shown in FIG.
  • the present method it is possible to obtain a composite having no gaps at the interface between the core containing metal, ceramics, or a combination thereof and the first coating layer. Since there is no gap at the interface between the core and the first coating layer, it is possible to obtain a composite in which the interface between the core and the first coating layer is in intimate contact.
  • the presence or absence of interfacial gaps is a scanning electron microscope image (SEM image) or a transmission electron microscope image of the FIB processed surface of the cross section perpendicular to the longitudinal direction of the composite in a viewing range that includes the entire cross section of the composite. It is determined by observing with (TEM image).
  • the focusing portion of the first laser beam is moved along the linear material.
  • the first solid nanomaterials forming the first coating layer are strongly agglomerated with each other.
  • the first coating layer and the core are also strongly bonded.
  • the first coating layer can be maintained around the core even if the substrate forming the composite is fractured. Without wishing to be bound by theory, it is believed that the first solid nanomaterials are aggregated together by van der Waals forces and liquid bridge forces.
  • the first solid nanomaterial is collected from the first dispersion by the action of the surface of the bubbles, but since the surface temperature of the bubbles rises only to a temperature similar to the boiling point of the first dispersion, the first solid nanomaterial is The temperature of solid nanomaterials rises only up to about 70-100°C. Therefore, the first solid nanomaterial constituting the first coating layer is not substantially sintered or melted, and the shape and properties of the first solid nanomaterial before forming the first coating layer are similar to those of the first solid nanomaterial. substantially maintained. Therefore, for example, when quantum dots having a core-shell structure are used as the first solid nanomaterial, the first coating layer can be formed while maintaining the properties of the quantum dots before coating. Since this method does not involve a sintering process, it is also possible to form the first coating layer composed of a high-melting-point material such as tantalum carbide, which is difficult to sinter.
  • composites can be obtained that do not contain the first solid nanomaterial inside a core that contains metals, ceramics, or combinations thereof.
  • the solid nanomaterial constituting the coating layer may enter the interior of the core, which may affect the properties of the core. For example, if you want to obtain a metal core with low resistivity, even if you try to form a metal core composed only of Ag, which has excellent conductivity, solid nanomaterials such as insulator SiO enter the inside of the metal core. , the conductivity of the metal core decreases.
  • a composite composed of the core and the first coating layer can be formed without affecting the properties of the core.
  • a composite can be formed consisting of one coating layer.
  • the resistivity of the metal core in the composite formed by this method is preferably between 1 ⁇ 10 ⁇ 8 ⁇ m and 10 ⁇ 10 ⁇ 8 ⁇ m. According to this method, it is also possible to form a core composed only of ceramics or a composite core of metal and ceramics, and to form a coating layer on the surface of the composite core.
  • the wavelength of the first laser light is not particularly limited as long as it is a wavelength at which the linear material used in this method is absorbed and heated.
  • the wavelength of the first laser light can be selected according to the absorption wavelength of the linear material.
  • the wavelength of the first laser light is preferably a wavelength at which the linear material has an absorption coefficient of 4000/cm or more.
  • the wavelength of the first laser light is preferably 200 nm to 2000 nm.
  • the first laser light is more preferably near-infrared light with a wavelength of 780 nm to 2500 nm.
  • the linear material is a metal
  • the first laser beam is preferable because the wavelength of 200 nm to 1000 nm is easily absorbed.
  • the linear material is ceramics
  • the first laser light is preferable because the wavelength of 200 nm to 700 nm is easily absorbed.
  • the size of the bubbles to be generated can be controlled by controlling the irradiation amount and intensity of the first laser light.
  • the first laser light can be continuous wave (CW) laser light or pulsed laser light.
  • the repetition frequency (number of pulses/second) is preferably 1 MHz or higher, more preferably 10 MHz or higher, and still more preferably 100 MHz or higher, in order to efficiently heat a linear material and form bubbles. is.
  • CW lasers examples include general semiconductor lasers (various wavelengths from visible to infrared), Yb fiber lasers (wavelength around 1030 nm), YAG lasers (around 1064 nm), and the like.
  • the average power of the CW laser is preferably between 10 and 1000 mW.
  • the condensed diameter of the CW laser beam is preferably 0.1 to 20 ⁇ m.
  • the pulsed laser light may be ultrashort pulsed laser light.
  • Ultrashort pulse laser light is a few femtoseconds (1 femtosecond is 1 ⁇ 10 ⁇ 15 seconds, also denoted as fs) to several hundred picoseconds (1 picosecond is 1 ⁇ 10 ⁇ 12 seconds, also denoted as ps ) is a pulsed laser with a pulse width of
  • the average output of the ultrashort pulse laser light is preferably 10 mW or more.
  • the focused diameter of the ultrashort pulse laser beam is preferably 20 ⁇ m or less.
  • the repetition frequency of the ultrashort pulse laser light is preferably 1 Hz to 500 MHz.
  • the fluence (energy applied to a unit area) of the wavelength of the pulse laser light as the first laser is preferably 0.01 mJ/cm 2 to 10 mJ/cm 2 .
  • a plurality of composites can be simultaneously formed by splitting the laser source 32 with a beam splitter 34 and irradiating a plurality of first laser beams 30 in parallel.
  • the method for producing the present composite preferably comprises: immersing the composite in a second dispersion in which a second solid nanomaterial is dispersed; While irradiating the laser light of 2, the condensing part of the second laser light is moved along the composite, so that the second coating layer composed of the second solid nanomaterial is covered with the first laser light.
  • said second solid nanomaterial comprising: It is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals and resins.
  • the second solid nanomaterial may be the same as or different from the first solid nanomaterial, and may be selected according to the function of the second coating layer.
  • the material, thickness, etc. of the second coating layer may be the same as or different from the material, thickness, etc. of the first coating layer, and may be selected according to the function of the second coating layer.
  • the medium of the second dispersion may be the same as or different from the medium of the first dispersion, and may be a medium in which the second solid nanomaterial is easily dispersed.
  • the second laser beam may be the same as or different from the first laser beam, and may be selected according to the material of the second coating layer and the like.
  • the method preferably comprises preparing a substrate, forming a linear material along a major surface of the substrate, and forming a first Forming a first coating layer composed of solid nanomaterials.
  • a first coating layer composed of solid nanomaterials.
  • the surface of the core is the substrate and the first coating layer. covered.
  • the metal, ceramics, or combination thereof contained in the linear material is not particularly limited as long as it is a material that is heated by absorbing the first laser light, and commercially available metals, ceramics, or , or metals, ceramics, or combinations thereof made by any desired method.
  • Materials including metals, ceramics, or combinations thereof include, for example, silver (Ag), indium tin oxide (ITO), glass containing dispersed metal particles, or combinations thereof.
  • a first laser light having a wavelength that can be absorbed and heated may be used, and the wavelength of the first laser light is matched to the wavelength of the first laser light that is absorbed and heated.
  • Materials including metals, ceramics, or combinations thereof may be used.
  • the linear material preferably includes metal, ceramics containing metallic elements, or combinations thereof.
  • the linear shape is not particularly limited. , and may be a three-dimensional shape.
  • the metal contained in the linear material is not particularly limited as long as it can be heated by absorbing the first laser beam and does not react with the first dispersion liquid, and has the properties required for the core of the composite. selected accordingly.
  • the metals contained in the linear material can be metals, alloys, or intermetallics.
  • the metal contained in the linear material is preferably composed of at least one selected from the group consisting of Ag, Cu, Au, Pt, Pd, Ni, Pb, and Sn, or an alloy containing them.
  • the ceramics contained in the linear material is not particularly limited as long as it can be heated by absorbing the first laser beam and does not react with the first dispersion liquid, and has the properties required for the core of the composite. selected accordingly.
  • the ceramics contained in the linear material can be ceramics containing metallic elements, ceramics containing non-metallic elements, or a combination thereof, preferably ceramics containing metallic elements.
  • the ceramics contained in the linear material are preferably indium tin oxide (ITO), fluorinated tin oxide ( FTO), Si3N4 , SiC, Al2O3 , Si, ZrO2 , Ag2O , Cu 2 O, and at least one selected from the group consisting of carbon or a combination thereof, more preferably indium tin oxide (ITO), fluorine-added tin oxide (FTO), Al 2 O 3 , ZrO 2 , Ag 2 O and Cu 2 O or at least one selected from the group consisting of Cu 2 O or a combination thereof.
  • the metal core When the composite core is made of metal, the metal core preferably has a resistivity of 1 ⁇ 10 ⁇ 8 ⁇ m to 10 ⁇ 10 ⁇ 8 ⁇ m.
  • the coating layer of the composite When the coating layer of the composite is made of an insulator, the coating layer preferably has a resistivity of 1 M ⁇ m or more.
  • the method of forming the linear material is not particularly limited, and may be formed by laser irradiation, screen printing, lithography, plating, or the like.
  • Ag nano-ink may be applied onto a polyimide film substrate by spin coating and irradiated with a laser to form a linear material composed of Ag.
  • a linear material may be formed by laser irradiation.
  • An example of formation by laser irradiation is to move the light collecting part while irradiating a laser so as to focus light in a mixed solution of water, ethanol, etc. containing metal ions. It can be reduced to deposit linear metal.
  • the Ag ions in the solution are reduced by the light energy of the laser and turned into Ag.
  • Structured linear metal can be deposited.
  • Cu ions and/or Au ions can be reduced by laser light energy to form Cu or Au wiring on the substrate.
  • Composite linear materials can also be obtained by mixing ceramics such as SiO 2 in addition to water and ethanol containing metal ions to the mixed solution.
  • the laser for forming the linear material and the first laser for forming the first coating layer may be the same or different.
  • the laser for forming the linear material is a laser capable of obtaining a photoreduction action
  • the first laser for forming the first coating layer is suitable for heating the linear material.
  • longer wavelength lasers are used.
  • a linear material may be formed using an inexpensive laser such as an ultraviolet laser, and the first coating layer may be formed using a near-infrared laser.
  • forming the linear material along the major surface of the substrate includes at least one major surface of the substrate being at least one selected from the group consisting of metal ions, metal colloids, and metal complexes.
  • the substrate is immersed in a solution or dispersion containing one species, and while irradiating the main surface of the substrate immersed in the solution or dispersion with a laser beam, the laser beam condensing part is moved along the surface of the substrate. forming said line of material thereon.
  • a solution or dispersion containing at least one selected from the group consisting of metal ions, metal colloids, and metal complexes is a solution or dispersion for forming a metal-containing material by irradiating with a laser to deposit a metal.
  • the laser beam is preferably an ultraviolet laser beam that provides a photoreduction effect.
  • Metals contained in metal ions, metal colloids, and metal complexes are preferably metals that do not react with water and high-temperature steam when water is selected as the solvent, such as silver, copper, nickel, lead, tin, platinum and metals. Selected from the group consisting of gold. Even in the case of metals that react with water or high-temperature steam (for example, metals with a high ionization tendency such as potassium, magnesium, aluminum, zinc, and iron), it is possible to select a preferable metal by appropriately selecting a solvent. It is possible.
  • the metal ions are for example Ag + , Cu + , Cu 2+ , Ni 2+ , Sn 2+ , Sn 3+ , Sn 4+ , Pb 2+ , Pt 2+ , Au + , Au3 + , and the like.
  • the counterion of the metal salt is selected from the group consisting of nitrate, sulfate, carboxylate, cyanide, sulfonate, borate, halide, carbonate, phosphate and perchlorate. is preferred.
  • Examples of metals that exist as colloids in solutions or dispersions include silver colloids, copper colloids, and nickel colloids.
  • Examples of the case where the metal exists as a complex in a solution or dispersion include a case in which a metal atom is coordinated with a ligand to facilitate dispersion and dissolution in a solvent.
  • silver complexes include silver docosanoate, silver chloro[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]silver, silver (II) pyridine-2-carboxylate, and silver sulfadiazine.
  • copper complexes include copper(I) acetate, bis(1,3-propanediamine)copper(II) dichloride, cupric acetylacetonate, bis(8-quinolinolato)copper(II), and the like. can be done.
  • gold complexes examples include tetrachloroaurate(III) acid tetrahydrate, (dimethylsulfide)gold(I) chloride, chloro[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene ] Gold (I) and the like can be mentioned.
  • lead complexes include lead tetraacetate and lead (II) acetate. Furthermore, it may be a product containing a metal complex such as silver nanoink or copper nanoink.
  • the concentration of the metal in the solution or dispersion is not particularly limited, but is preferably 0.1% by mass or more. When the concentration of the metal is 0.1% by mass or more, the thickness of the linear material formed by laser light irradiation can be increased. Although the upper limit of the metal concentration in the solution or dispersion is not particularly limited, it may be 3.0% by mass or less.
  • the present disclosure also provides a linear material core comprising metals, ceramics, or combinations thereof, and a first nanomaterial comprising a first solid nanomaterial covering at least a portion of the surface of the linear material core.
  • the first solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins, and comprises the linear material core and the
  • the target is a composite having no gap between it and the first coating layer.
  • the composite of the present disclosure preferably does not contain the first solid nanomaterial inside the linear material core.
  • the first solid nanomaterial constituting the first coating layer preferably has a diameter of 1-3000 nm.
  • the composite of the present disclosure preferably includes a substrate, the linear material cores arranged along the main surface of the substrate, and the surfaces of the linear material cores arranged so as to cover the surface between the substrate and the substrate. and a first coating layer composed of a first solid nanomaterial.
  • a first coating layer composed of a first solid nanomaterial.
  • the linear material core of the composite of the present disclosure has a substantially semi-circular cross-section.
  • the linear material core and coating layer of the composite of the present disclosure have cross sections of similar shapes to each other.
  • the composite of the present disclosure preferably includes one or more coating layers composed of other solid nanomaterials on the surface of the first coating layer.
  • the composite of the present disclosure can comprise a second coating layer composed of a second solid nanomaterial overlying the surface of the first coating layer.
  • the composite of the present disclosure can further comprise a third coating layer composed of a third solid nanomaterial overlying the surface of the second coating layer;
  • a plurality of coating layers can be provided such as a coating layer of .
  • the solid nanomaterials constituting each coating layer may be different from each other or the same, but preferably different from each other.
  • the composite of the present disclosure can comprise a coating layer such as, for example, an insulating layer, a semiconductor layer, or a layer in which different semiconductors are joined to form a pn junction. .
  • the present disclosure also provides a convex material comprising metals, ceramics, or combinations thereof, immersing the convex material in a first dispersion in which a first solid nanomaterial is dispersed; and while irradiating the convex material immersed in the first dispersion liquid with the first laser light, moving the condensing part of the first laser light along the convex material, forming a localized coating of said first solid nanomaterial on at least a portion of a surface of a convex material, said first solid nanomaterial being a metal oxide, a non-metal oxide;
  • the present invention is directed to a method for producing a topical coating composed of at least one selected from the group consisting of materials, ceramics, metals, and resins.
  • the shape of the convex material (hereinafter also referred to as convex material) containing metal, ceramics, or a combination thereof (hereinafter also referred to as convex material) may be any shape having convex portions, and may be linear, dotted, or irregular.
  • convex material containing metal, ceramics, or a combination thereof
  • convex material may be any shape having convex portions, and may be linear, dotted, or irregular.
  • the thickness of the localized coating formed by this method is preferably 100 nm to 10 ⁇ m.
  • the thickness and diameter of the protrusions are preferably 1 to 10 ⁇ m.
  • the diameter is equivalent circle diameter.
  • the convex material in the method of making the topical coating can be the same as the linear material described above.
  • the present disclosure also provides a topical coating composed of a first solid nanomaterial covering at least a portion of a surface of a convex material core comprising metals, ceramics, or combinations thereof, wherein said first
  • the solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins, and is between the convex material core and the first coating layer It is intended for topical coatings without gaps in the
  • the thickness of this topical coating is preferably between 100 nm and 10 ⁇ m.
  • the thickness and diameter of the convex material core is preferably between 1 and 10 ⁇ m.
  • the diameter is equivalent circle diameter.
  • the material of the convex material core can be the same as the linear material described above.
  • the shape of the convex material core (hereinafter also referred to as convex material core) containing metal, ceramics, or a combination thereof (hereinafter also referred to as convex material core) may be any shape having a convex portion, and may be linear, dotted, or irregular. .
  • Example 1 Formation of linear material
  • a silver nitrate solution (1 mol/L, Junsei Chemical Co., Ltd.
  • the solution was transferred from the brown bottle to a Teflon (registered trademark) holder, and a cover glass having a thickness of 0.15 mm as the substrate was placed on the holder so that one main surface of the substrate was in direct contact with the solution in the holder. .
  • a linear metal made of Ag was continuously formed on the substrate surface in the scanning direction.
  • the line width of the formed metal wire was 3.5 to 4.0 ⁇ m, and the thickness was 2 ⁇ m.
  • the prepared SiO2 particle dispersion is transferred to a Teflon holder, and as schematically shown in FIG. 4, the linear metal formed on the substrate is in direct contact with the SiO2 particle dispersion in the holder. I put it on the holder so that I could do it.
  • a femtosecond laser (C-Fiber780, MenloSystems Ltd.) having the configuration shown in FIG. While irradiating at 40 mW and a condensed diameter (theoretical value) of 2 ⁇ m, the laser condensing part was moved at 300 ⁇ m / sec along the linear metal, and SiO A first coating layer of two particles was formed to form a composite wiring of Ag core/SiO 2 coating layer.
  • FIG. 18 shows an appearance SEM image of a composite wiring 100 having a first coating layer composed of SiO 2 particles around an Ag core, that is, a composite wiring of Ag core/SiO 2 coating layer.
  • the line width of the composite wiring increased by the amount corresponding to the formation of the first coating layer, and the line width of the formed composite wiring was 10 ⁇ m and the thickness was 3.6 ⁇ m.
  • FIG. 19 shows a Y-direction cross-sectional SEM image (SEM image of the FIB-processed surface) of the composite wiring shown in FIG.
  • a cavity 14 was found at the interface between the Ag core 10 and the substrate 40 .
  • FIG. 20 shows a TEM image of the coating layer of FIG. Although the SiO 2 particles constituting the SiO 2 coating layer were densely packed, they were not melted and maintained the diameter of the SiO 2 particles before the accumulation.
  • the resistivity of the fabricated composite wiring with Ag core/SiO 2 coating layer with a length of 5 mm was measured.
  • the resistivity of the composite wiring measured by removing the coating layer only at both ends to expose the Ag core was 6.7 ⁇ 10 ⁇ 8 ⁇ m.
  • the resistivity between both ends of the Ag/SiO 2 composite wiring of the same length covered with the SiO 2 coating layer up to both ends was measured, it was 50 M ⁇ or more with a length of 5 mm, and insulation was confirmed.
  • Example 2 As in Example 1, a linear material to be Ag cores was formed on a cover glass.
  • FIG. 21 shows an appearance SEM image of the formed Ag wiring.
  • a substrate on which an Ag wiring serving as a core was formed was prepared in the same manner as in Example 1, except that the average laser output was 30 mW and the laser focusing portion was moved along the linear material at 50 ⁇ m/sec. It was immersed in a ZnO particle dispersion and irradiated with a laser to form a composite wiring of a composite coating layer of Ag core/SiO 2 particles and ZnO nanowires.
  • FIG. 22 shows an appearance SEM image of a composite wiring of a composite coating layer of Ag core/SiO 2 particles and ZnO nanowires.
  • the composite wiring thus formed had a line width of 4.5 to 9.1 ⁇ m and a thickness of 2.9 ⁇ m.
  • FIG. 23 shows a cross-sectional TEM image of the composite wiring.
  • a first covering layer 12 of a composite of SiO 2 nanoparticles and ZnO nanowires with a thickness of about 1.2 ⁇ m was densely formed around an approximately semicircular Ag core 10 with a diameter of 4.62 ⁇ m. No gap was observed at the interface between the Ag core and the composite coating layer. The interface between the Ag core and the composite coating layer was clearly formed, and SiO 2 and ZnO were not found inside the Ag core.
  • FIG. 24 shows a TEM image of the first coating layer 12 of FIG. SiO2 particles and ZnO nanowires were densely accumulated in the coating layer.
  • FIG. 25 shows a cross-sectional SEM image of the coating layer
  • FIG. 26 shows a mapping photograph of Zn in the area of FIG. 25 by energy dispersive X-ray analysis (EDX). ZnO nanowires are shown in white areas surrounded by squares in FIG. 25, and it was found from the mapping photograph of Zn that the ZnO nanowires are dispersed in the coating layer.
  • EDX energy dispersive X-ray analysis
  • Example 3 As in Example 1, a linear material to be Ag cores was formed on a cover glass.
  • a solution of 204 ⁇ L of water and 279 ⁇ L of ethanol was mixed with 17 ⁇ L of TiO 2 nanoparticle dispersion (Sigma - Aldrich, 700347, particle size (diameter) ⁇ 150 nm, concentration 33-37 wt%) to give a TiO concentration of 1.7.
  • a mass % TiO 2 particle dispersion was prepared.
  • Example 2 In the same manner as in Example 1, the substrate on which the Ag wiring serving as the core was formed was immersed in the prepared TiO 2 particle dispersion and irradiated with a laser to form an Ag core/TiO 2 coating layer with a line width of 4.6 ⁇ m. Composite wiring was formed.
  • Example 1 the cross-sectional shape of the formed composite wiring was observed under a microscope.
  • a TiO 2 coating layer 12 which is a first coating layer composed of TiO 2 particles, was densely formed around the Ag core 10 having a substantially semicircular shape. No gap was found at the interface between the Ag core and the TiO2 coating layer. The interface between the Ag core and the TiO2 coating layer was clearly formed, and no TiO2 particles were found inside the Ag core.
  • FIG. 27 shows an appearance SEM image of the formed Ag wiring 10 and composite wiring 100 .
  • FIG. 28 shows a mapping photograph of Ti measured by EDX in the area of FIG. It was found that Ti was present throughout the composite wiring.
  • Example 4 As in Example 1, a linear material to be Ag cores was formed on a cover glass.
  • a solution of 68 ⁇ L of water and 172 ⁇ L of ethanol was mixed with 160 ⁇ L of a polystyrene bead dispersion (Funakoshi co.jp, FCDG003, particle size 0.2 ⁇ m, 10 mg / ml) to obtain polystyrene beads having a polystyrene bead concentration of 0.44% by mass.
  • a particle dispersion was prepared.
  • the substrate on which the Ag wiring serving as the core was formed was immersed in the prepared polystyrene bead dispersion and irradiated with a laser to form a composite wiring of Ag core/polystyrene coating layer with a line width of 2.3 ⁇ m. formed.
  • Example 1 the cross-sectional shape of the formed composite wiring was observed under a microscope.
  • a polystyrene coating layer 12 which is a first coating layer made of polystyrene beads, was densely formed around the Ag core 10 having a substantially semicircular shape. No gap was observed at the interface between the Ag core and the polystyrene coating layer. The interface between the Ag core and the polystyrene coating layer was clearly formed, and no polystyrene beads were found inside the Ag core.
  • FIG. 29 shows an external SEM image of the composite wiring 100 formed. Although polystyrene beads were accumulated in the coating layer, they were not melted and the diameter of the polystyrene beads before accumulation was maintained.
  • the prepared dispersion was transferred from the brown bottle to a Teflon (registered trademark) holder, and a 1 mm thick slide glass serving as a substrate was placed on the holder so that one surface of the substrate was in direct contact with the dispersion in the holder. .
  • the focal point was adjusted to the contact surface between the substrate and the dispersion liquid.
  • Wiring was formed on the substrate surface by horizontally moving the holder at a scanning speed of 50 ⁇ m/sec while irradiating under the conditions of an output of 30 mW and a focused beam diameter (theoretical value) of 2 ⁇ m.
  • FIG. 30 shows an external SEM image of the formed wiring.
  • FIG. 31 shows a cross-sectional TEM image of the formed wiring.
  • FIG. 32 shows an enlarged TEM image of the portion surrounded by a square in FIG. Since the ZnO particles were dissolved in the AgNO 3 solution, the ZnO particles were only accumulated on the right edge of the Ag core and no coating layer was formed. The line width of the formed wiring was as thin as 6 ⁇ m.
  • the layer around the Ag core is carbon used for fixing the substrate and the composite wiring when cutting out the cross section.
  • Comparative example 2 Except that 1.9 mL of TiO 2 nanoparticle-dispersed aqueous solution (NTB-1, Showa Denko K.K., nanoparticle diameter 10 to 20 nm (catalog value), concentration 15% by mass) was used instead of the ZnO nanoparticle-dispersed aqueous solution.
  • a dispersion was prepared under the same conditions as in Comparative Example 1, and wiring was formed on the substrate by laser irradiation. The concentration of TiO2 in the prepared dispersion was 1.5% by weight.
  • FIG. 33 shows a cross-sectional SEM image of wiring formed on a substrate.
  • a semicircular Ag core with a diameter of about 5 ⁇ m and a coating layer of titanium oxide particles with a thickness of about 5 ⁇ m covering the core were confirmed.
  • Ag was contained inside the TiO2 coating layer, TiO2 particles were embedded inside the Ag core, and a gap was formed between the Ag core and the coating layer.
  • FIG. 34 shows a mapping photograph of Ag measured by EDX in the area of FIG. 33
  • FIG. 35 shows a mapping photograph of Ti measured by EDX in the area of FIG. Ag was detected inside the TiO2 coating layer and Ti was detected inside the Ag core.
  • Example 5 In a brown bottle, put 311 ⁇ L of pure water and 489 ⁇ L of ethanol, add 200 ⁇ L of a silver nitrate solution (1 mol / L, Junsei Chemical Co., Ltd.) and stir. A shaped material was formed.
  • the substrate on which the Ag wiring serving as the core is formed is immersed in the prepared quantum dot dispersion and irradiated with a laser to form a composite Ag core/quantum dot coating layer with a line width of 4.5 ⁇ m. Wiring was formed.
  • FIG. 36 shows an optical microscope image (FIG. 36(a)) and a fluorescence microscope observation photograph (FIG. 36(b)) of the formed composite wiring. Red fluorescence based on a fluorescence wavelength of 665 nm was confirmed from the formed composite wiring.
  • Example 6 In a brown bottle, put 11.3 mL of pure water and 4 mL of ethanol, 4 mL of silver nitrate solution (1 mol / L, Junsei Chemical Co., Ltd.) and 0.68 mL of SiO colloid solution (Sigma - Aldrich, LUDOX TM-50, 50 wt% , 420778, particle size of 22 nm or less) were added and stirred.
  • the solution was transferred from the brown bottle to a Teflon holder, and a CaF2 substrate (Sigma Koki, OPCF-20C01-P) with a thickness of 1 mm was placed so that one major surface of the substrate was in direct contact with the solution in the holder. I put it on the holder so that I could do it.
  • the focused part of the femtosecond laser was adjusted to be the contact surface between the substrate and the solution. Irradiation was performed under the condition of 0.9 ⁇ m.
  • the femtosecond laser used was obtained by converting light from FLINT1.0 (manufactured by Light conversion) into a double wave by a harmonic unit HIRO 2H (manufactured by Light conversion).
  • a linear material composed of Ag and SiO 2 was continuously formed on the surface of the CaF 2 substrate in the scanning direction.
  • the linear material formed had a line width of 2.3 to 2.8 ⁇ m and a thickness of 1.3 ⁇ m.
  • TiO 2 nanoparticle dispersion (Sigma-Aldrich, 700347, particle size (diameter) ⁇ 150 nm, concentration 33-37 wt%) to obtain TiO A TiO 2 particle dispersion with a 2 concentration of 1.8% by weight was prepared.
  • the prepared TiO2 particle dispersion was transferred to a Teflon holder, and as schematically shown in Fig. 4, the linear material formed on the substrate was in direct contact with the TiO2 particle dispersion in the holder. I put it on the holder so that I could do it. Adjust the focal part of the femtosecond laser so that it becomes a linear material, and irradiate under the conditions of a center wavelength of 517 nm, a repetition frequency of 75 MHz, a pulse width of 88 fs, an average laser output of 20 mW, and a focal diameter (theoretical value) of 0.9 ⁇ m.
  • a composite wiring was formed with a core of Ag and SiO 2 with a thickness of 4.4 ⁇ m and a coating layer of TiO 2 .
  • the movement of the laser condensing part was stopped halfway so that the part where the first coating layer was formed and the part where the first coating layer was not formed could be compared.
  • As a femtosecond laser light from FLINT1.0 (manufactured by Light conversion) was converted into a double wave by a harmonic unit HIRO 2H (manufactured by Light conversion).
  • FIG. 37 shows an SEM photograph of the formed composite wiring and mapping images of Si, Ti, and Ag. Ti, Ag, and Si were detected from the TiO2 -coated portion, and Ag and Si were detected from the uncoated portion.
  • Example 7 (Forming two linear materials) 12 mL of pure water and 4 mL of ethanol were placed in a brown bottle, and 4 mL of silver nitrate solution (1 mol/L, Junsei Chemical Co., Ltd.) was added and stirred. The solution was transferred from the brown bottle to a Teflon (registered trademark) holder, and a cover glass having a thickness of 1 mm was placed on the holder so that one main surface of the substrate was in direct contact with the solution in the holder.
  • Teflon registered trademark
  • the focal point of the femtosecond laser was adjusted to be the contact surface between the substrate and the solution, with a central wavelength of 517 nm, a repetition frequency of 75 MHz, a pulse width of 88 fs, an average laser output of 16 mW, and a focal diameter (theoretical value) of 0. Irradiation was performed under the condition of 0.9 ⁇ m.
  • the femtosecond laser used was obtained by converting light from FLINT1.0 (manufactured by Light conversion) into a double wave by a harmonic unit HIRO 2H (manufactured by Light conversion).
  • the second linear material was formed by moving the holder while irradiating the femtosecond laser so that the line-to-line gap was 2 ⁇ m with respect to the first linear material.
  • the first linear material and the second linear material thus formed had a line width of 2 ⁇ m and a thickness of 1 ⁇ m.
  • TiO 2 nanoparticle dispersion (Sigma-Aldrich, 700347, particle size (diameter) ⁇ 150 nm, concentration 33-37 wt%) to obtain TiO A TiO 2 particle dispersion with a 2 concentration of 1.8% by weight was prepared.
  • the prepared TiO 2 particle dispersion is transferred to a Teflon holder, and as schematically shown in Fig. 4, two linear materials formed on the substrate are aligned with the TiO 2 particle dispersion in the holder. It was put on the holder so that it was in direct contact with the The focal part of the femtosecond laser was adjusted to be a linear material, and the first linear material had a central wavelength of 517 nm, a repetition frequency of 75 MHz, a pulse width of 88 fs, an average laser output of 23 mW, and a lens numerical aperture of 0.5. 7.
  • a condensed diameter theoretical value
  • the formed composite wiring had a 1 ⁇ m thick TiO 2 coating layer over Ag cores with a 2 ⁇ m line-to-line gap and a line width of 2 ⁇ m each. No gap was found at the interface between the Ag core and the TiO2 coating layer.
  • FIG. 38 shows an SEM photograph of the formed composite wiring and mapping images of Ag and Ti.
  • Ti and AgSi were detected from the TiO2 -coated portion, and Ag was detected from the uncoated portion.

Abstract

Provided is a composite production method that stably produces a composite in which a boundary distinctly divides a coating layer from a core containing a metal, ceramic, or combination thereof, and in which there are no gaps between the core and the coating layer. The composite production method comprises: preparing a linear material that contains a metal, ceramic, or combination thereof; immersing the linear material in a first dispersion in which a first solid nanomaterial is dispersed; and, while irradiating a first laser light onto the linear material that has been immersed in the first dispersion, moving a condensed region of the first laser light along the linear material to form, in at least a portion of the surface of the linear material, a first coating layer constituted of the first solid nanomaterial, thereby forming a core/first coating layer composite wherein the core is constituted of the linear material. The first solid nanomaterial is constituted of at least one selected from the group consisting of metal oxides, nonmetal oxides, ceramics, metals, and resins.

Description

レーザー照射による複合体の製造方法及び複合体Composite manufacturing method and composite by laser irradiation
 本発明は、レーザー照射による複合体の製造方法及び複合体に関する。 The present invention relates to a composite manufacturing method and a composite by laser irradiation.
 レーザー照射による材料パターニングは、複雑な工程を必要とするリソグラフィに対し、集光部を走査するだけで任意のパターン形成が可能なため、集積デバイスの高機能化やプリンタブルエレクトロニクスへの応用が期待されている(非特許文献1)。 In contrast to lithography, which requires complex processes, material patterning by laser irradiation enables arbitrary pattern formation simply by scanning the light-collecting part, so it is expected to be applied to integrated devices with higher functionality and printable electronics. (Non-Patent Document 1).
 しかしながら、レーザー照射による材料パターニングは光加工であるため、被加工材料には感光性が必須であり、このことが材料選択上の非常に大きな制限となっていた。 However, since material patterning by laser irradiation is an optical process, the material to be processed must have photosensitivity, which has been a significant limitation in material selection.
 従来のレーザーを用いた配線技術では、光を吸収しない材料の配線が難しく、被加工材料は感光性を有する材料に限定されていた。また、被加工材料は適切な感光性が必要であり、またレーザーの波長に対して、吸収が強すぎる場合は光侵入長が浅くなり表面が損傷しやすく、吸収が弱すぎるとレーザーが透過してしまい加工ができなかった。 With conventional wiring technology using lasers, it was difficult to wire materials that do not absorb light, and the materials to be processed were limited to materials with photosensitivity. In addition, the material to be processed must have appropriate photosensitivity. If the absorption is too strong for the wavelength of the laser, the light penetration depth will be shallow and the surface will be easily damaged. I couldn't process it because it was worn out.
 一方、近年、固体微粒子が分散した希薄AgNO溶液へのフェムト秒レーザー照射によって、周辺微粒子を階層構造を形成させながら集積固化させて、非感光性材料を含む多様な材料でのマイクロ配線化を行うことが提案されている(特許文献1、非特許文献2)。 On the other hand, in recent years, by irradiating femtosecond laser to dilute AgNO3 solution in which solid fine particles are dispersed, surrounding fine particles are accumulated and solidified while forming a hierarchical structure. It has been proposed to do so (Patent Document 1, Non-Patent Document 2).
 例えば、金属イオンとしてAgイオンが溶け込んだAgNO溶液中のTiO微粒子の集積が可能である。 For example, accumulation of TiO2 fine particles in AgNO3 solution with dissolved Ag ions as metal ions is possible.
 TiO微粒子が分散したAgNO溶液中にガラス基板を浸漬させて、ガラス基板の表面近傍の溶液中にレーザーを集光させると、レーザーのエネルギーで還元反応が起こり、ガラス基板上にAgのコアが形成され、Agのコア上にTiO粒子の被覆層(集積層)が形成される。 When a glass substrate is immersed in an AgNO3 solution in which TiO2 fine particles are dispersed and a laser is focused in the solution near the surface of the glass substrate, a reduction reaction occurs with the energy of the laser, and Ag cores are formed on the glass substrate. is formed, and a coating layer (accumulated layer) of TiO2 particles is formed on the Ag core.
特許第6964898号公報Japanese Patent No. 6964898
 しかしながら、特許文献1等の従来技術においては、同じ溶液中に金属コアの材料となる金属イオンと被覆層の材料となる固体微粒子を両方分散させる必要がある。固体微粒子が、溶液に溶解したり、溶液と反応して別の物質が付着する場合は、集積が難しく、固体微粒子と溶液との組み合わせに制限があり、所望の特性を有する被覆層を得ることが難しい。 However, in the prior art such as Patent Document 1, it is necessary to disperse both the metal ions that are the material of the metal core and the solid fine particles that are the material of the coating layer in the same solution. When the solid fine particles dissolve in the solution or react with the solution to attach another substance, it is difficult to accumulate, and there are restrictions on the combination of the solid fine particles and the solution, and it is difficult to obtain a coating layer having desired properties. is difficult.
 また、特許文献1等の従来技術においては、コア中に被覆層の成分が入り込んだり、コアと被覆層との間に隙間が形成されることがあり、所望の複合体を安定して得ることが難しいという問題があった。 In addition, in the prior art such as Patent Document 1, the component of the coating layer may enter the core, or a gap may be formed between the core and the coating layer, and it is difficult to stably obtain the desired composite. was difficult.
 さらには、レーザーを照射する際に、コアを形成する条件とコアの周囲に微粒子を集めて被覆層を形成する条件とが両立する必要があり、照射条件に制限があった。コアを形成するためにはレーザー出力を大きくする必要があるが、レーザー出力が大きいと発生させる気泡が大きすぎて、微粒子を緻密に集めることが困難であった。 Furthermore, when irradiating the laser, it was necessary to achieve both the conditions for forming the core and the conditions for collecting the fine particles around the core to form a coating layer, and there were restrictions on the irradiation conditions. In order to form the core, it is necessary to increase the laser output, but if the laser output is too high, the generated bubbles are too large, making it difficult to collect the fine particles densely.
 したがって、コアと被覆層との境界が明確に分かれており、且つコアと被覆層との間に隙間がない複合体を安定して作製する複合体の製造方法が求められている。 Therefore, there is a demand for a method of manufacturing a composite that can stably produce a composite in which the boundary between the core and the coating layer is clearly separated and there is no gap between the core and the coating layer.
 本発明の要旨は以下のとおりである。
 (1)金属、セラミックス、またはそれらの組合せを含む線状の材料を準備すること、
 前記線状の材料を、第1の固体ナノ材料が分散された第1の分散液に浸すこと、及び
 前記第1の分散液に浸した前記線状の材料に第1のレーザー光を照射しながら、前記線状の材料に沿って前記第1のレーザー光の集光部を移動させて、前記第1の固体ナノ材料で構成された第1の被覆層を前記線状の材料の表面の少なくとも一部に形成して、前記線状の材料で構成されたコア/前記第1の被覆層の複合体を形成すること
 を含み、
 前記第1の固体ナノ材料は、金属酸化物、非金属酸化物、セラミックス、金属、及び樹脂からなる群から選択される少なくとも一種で構成される、
 複合体の製造方法。
 (2)前記複合体の前記コアと前記第1の被覆層との間に隙間がない、上記(1)に記載の複合体の製造方法。
 (3)前記複合体の前記コアの内部に前記第1の固体ナノ材料を含まない、上記(1)または(2)に記載の複合体の製造方法。
 (4)前記第1の固体ナノ材料で構成された第1の被覆層を、前記線状の材料と同心形状で前記線状の材料の表面に形成する、上記(1)~(3)のいずれかに記載の複合体の製造方法。
 (5)前記第1の分散液中の前記第1の固体ナノ材料の濃度が、0.01~3.0質量%である、上記(1)~(4)のいずれかに記載の複合体の製造方法。
 (6)前記第1の固体ナノ材料が、1~3000nmの直径を有する、上記(1)~(5)のいずれかに記載の複合体の製造方法。
 (7)前記第1のレーザー光が近赤外光である、上記(1)~(6)のいずれかに記載の複合体の製造方法。
 (8)前記複合体を、第2の固体ナノ材料が分散された第2の分散液に浸すこと、並びに
 前記第2の分散液に浸した前記複合体に第2のレーザー光を照射しながら、前記複合体に沿って前記第2のレーザー光の集光部を移動させて、前記第2の固体ナノ材料で構成された第2の被覆層を前記第1の被覆層の表面の少なくとも一部に形成して、前記コア/前記第1の被覆層/前記第2の被覆層を有する複合体を形成すること
 を含み、
 前記第2の固体ナノ材料は、金属酸化物、非金属酸化物、セラミックス、金属、及び樹脂からなる群から選択される少なくとも一種で構成される、
 上記(1)~(7)のいずれかに記載の複合体の製造方法。
 (9)基板を準備すること、
 前記基板の主面に沿って前記線状の材料を形成すること、及び
 前記線状の材料の表面を前記基板との間で覆うように、前記第1の固体ナノ材料で構成された第1の被覆層を形成すること
 を含む、上記(1)~(8)のいずれかに記載の複合体の製造方法。
 (10)前記基板の主面に沿って前記線状の材料を形成することが、
 前記基板の少なくとも一方の主面を、金属イオン、金属コロイド、及び金属錯体からなる群から選択される少なくとも一種を含む溶液または分散液に浸すこと、並びに
 前記溶液または分散液に浸された前記基板の主面にレーザー光を照射しながら、前記基板の表面に沿って前記レーザー光の集光部を移動させて、前記基板上に線状の金属を形成すること
 を含む、上記(9)に記載の複合体の製造方法。
 (11)金属、セラミックス、またはそれらの組合せを含む線状の材料コア、及び
 前記線状の材料コアの表面の少なくとも一部を覆う、第1の固体ナノ材料で構成された第1の被覆層
 を含み、
 前記第1の固体ナノ材料は、金属酸化物、非金属酸化物、セラミックス、金属、及び樹脂からなる群から選択される少なくとも一種で構成され、
 前記線状の材料コアと前記第1の被覆層との間に隙間がない、
 複合体。
 (12)前記線状の材料コアの内部に前記第1の固体ナノ材料を含まない、上記(11)に記載の複合体。
 (13)前記第1の固体ナノ材料が、1~3000nmの直径を有する、上記(11)または(12)に記載の複合体。
 (14)基板、
 前記基板の主面に沿って配置された前記線状の材料コア、及び
 前記線状の材料コアの表面を前記基板との間で覆うように配置された、第1の固体ナノ材料で構成された第1の被覆層
 を含む、上記(11)~(13)のいずれかに記載の複合体。
 (15)前記第1の被覆層の表面に、他の固体ナノ材料で構成された1層以上の被覆層を含む、上記(11)~(14)のいずれかに記載の複合体。
 (16)金属、セラミックス、またはそれらの組合せを含む凸状の材料を準備すること、
 前記凸状の材料を、第1の固体ナノ材料が分散された第1の分散液に浸すこと、及び
 前記第1の分散液に浸した前記凸状の材料に第1のレーザー光を照射しながら、前記凸状の材料に沿って前記第1のレーザー光の集光部を移動させて、前記凸状の材料の表面の少なくとも一部上に前記第1の固体ナノ材料で構成された局所的コーティング物を形成すること
 を含み、
 前記第1の固体ナノ材料は、金属酸化物、非金属酸化物、セラミックス、金属、及び樹脂からなる群から選択される少なくとも一種で構成される、
 局所的コーティング物の製造方法。
 (17)金属、セラミックス、またはそれらの組合せを含む凸状の材料コアの表面の少なくとも一部を覆う、第1の固体ナノ材料で構成された局所的コーティング物であって、
 前記第1の固体ナノ材料は、金属酸化物、非金属酸化物、セラミックス、金属、及び樹脂からなる群から選択される少なくとも一種で構成され、
 前記凸状の材料コアと前記第1の被覆層との間に隙間がない、
 局所的コーティング物。
The gist of the present invention is as follows.
(1) providing a linear material comprising metals, ceramics, or combinations thereof;
immersing the linear material in a first dispersion in which a first solid nanomaterial is dispersed; and irradiating the linear material immersed in the first dispersion with a first laser beam. while moving the condensing portion of the first laser beam along the linear material to cover the surface of the linear material with the first covering layer composed of the first solid nanomaterial. forming at least in part to form a core composed of said linear material/ said first coating layer composite;
The first solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins.
A method for manufacturing a composite.
(2) The method for producing a composite according to (1) above, wherein there is no gap between the core and the first coating layer of the composite.
(3) The method for producing a composite according to (1) or (2) above, wherein the core of the composite does not contain the first solid nanomaterial.
(4) The above (1) to (3), wherein the first coating layer composed of the first solid nanomaterial is formed on the surface of the linear material concentrically with the linear material. A method for producing a composite according to any one of the above.
(5) The composite according to any one of (1) to (4) above, wherein the concentration of the first solid nanomaterial in the first dispersion is 0.01 to 3.0% by mass. manufacturing method.
(6) The method for producing a composite according to any one of (1) to (5) above, wherein the first solid nanomaterial has a diameter of 1 to 3000 nm.
(7) The method for producing a composite according to any one of (1) to (6) above, wherein the first laser light is near-infrared light.
(8) immersing the composite in a second dispersion in which a second solid nanomaterial is dispersed; and irradiating the composite immersed in the second dispersion with a second laser beam. and moving the condensing portion of the second laser beam along the composite to cover at least one surface of the first coating layer with the second coating layer composed of the second solid nanomaterial. forming into sections to form a composite having the core/first coating layer/second coating layer;
The second solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins.
A method for producing a composite according to any one of (1) to (7) above.
(9) preparing a substrate;
forming the linear material along the major surface of the substrate; and forming a first solid nanomaterial so as to cover the surface of the linear material between the substrate and the first The method for producing the composite according to any one of (1) to (8) above, comprising forming a coating layer of
(10) forming the linear material along the main surface of the substrate;
immersing at least one main surface of the substrate in a solution or dispersion containing at least one selected from the group consisting of metal ions, metal colloids, and metal complexes; and the substrate immersed in the solution or dispersion While irradiating the main surface of the laser light, moving the laser light condensing part along the surface of the substrate to form a linear metal on the substrate. A method of making the described composite.
(11) a linear material core comprising metal, ceramics, or a combination thereof, and a first coating layer composed of a first solid nanomaterial covering at least a portion of the surface of the linear material core; including
The first solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins,
there is no gap between the linear material core and the first coating layer;
Complex.
(12) The composite according to (11) above, which does not contain the first solid nanomaterial inside the linear material core.
(13) The composite according to (11) or (12) above, wherein the first solid nanomaterial has a diameter of 1 to 3000 nm.
(14) a substrate;
The linear material core arranged along the main surface of the substrate, and a first solid nanomaterial arranged so as to cover the surface of the linear material core between the substrate and the substrate. The composite according to any one of (11) to (13) above, further comprising a first coating layer.
(15) The composite according to any one of (11) to (14) above, comprising one or more coating layers composed of other solid nanomaterials on the surface of the first coating layer.
(16) providing a convex material comprising metals, ceramics, or combinations thereof;
immersing the convex material in a first dispersion in which a first solid nanomaterial is dispersed; and irradiating the convex material immersed in the first dispersion with a first laser beam. while moving the condensing portion of the first laser light along the convex material to form a localized portion composed of the first solid nanomaterial on at least a part of the surface of the convex material. forming a protective coating;
The first solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins.
A method for producing a topical coating.
(17) a topical coating composed of a first solid nanomaterial covering at least a portion of the surface of a convex material core comprising metal, ceramic, or a combination thereof;
The first solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins,
there is no gap between the convex material core and the first coating layer;
topical coating.
 本発明によれば、金属、セラミックス、またはそれらの組合せを含むコアと被覆層との境界が明確に分かれており、且つコアと被覆層との間に隙間がない複合体を安定して作製することが可能となる。 According to the present invention, a composite can be stably produced in which the boundary between the core containing metal, ceramics, or a combination thereof and the coating layer is clearly separated and there is no gap between the core and the coating layer. becomes possible.
図1は、線状の材料10の周囲に第1の被覆層12を形成中の模式図である。FIG. 1 is a schematic diagram during formation of a first coating layer 12 around a linear material 10 . 図2は、基板40の主面に沿って配置される線状の材料10に第1のレーザー光30の照射を開始したときの本方法を模式的に表した断面図である。FIG. 2 is a cross-sectional view schematically showing this method when irradiation of the first laser beam 30 to the linear material 10 arranged along the main surface of the substrate 40 is started. 図3は、第1の分散液20中において、線状の材料10の表面を基板40との間で覆った第1の被覆層12の断面模式図である。FIG. 3 is a schematic cross-sectional view of the first coating layer 12 covering the surface of the linear material 10 between itself and the substrate 40 in the first dispersion liquid 20 . 図4は、線状の材料に向かって基板側からレーザー照射する態様を表す断面模式図である。FIG. 4 is a schematic cross-sectional view showing a mode of laser irradiation from the substrate side toward a linear material. 図5は、線状の材料の端部を基板に保持して、端部から線状の材料の軸方向に平行にレーザー照射する態様を表す断面模式図である。FIG. 5 is a schematic cross-sectional view showing a mode in which the ends of the linear material are held by the substrate and the laser is irradiated from the ends in parallel with the axial direction of the linear material. 図6は、第1のレーザー光30を線状の材料10に照射して線状の材料10の周囲に気泡24が発生する態様を表す断面模式図である。FIG. 6 is a schematic cross-sectional view showing a mode in which the linear material 10 is irradiated with the first laser beam 30 and bubbles 24 are generated around the linear material 10 . 図7は、気泡24の表面の温度分布(温度勾配)から発生した表面張力勾配により第1の分散液20中に矢印で示す対流が発生して、線状の材料10の周囲の気泡24と第1の分散液20との気液界面に第1の固体ナノ材料22が集められる態様を表す断面模式図である。FIG. 7 shows that the surface tension gradient generated from the temperature distribution (temperature gradient) on the surface of the air bubbles 24 causes the convection indicated by the arrows in the first dispersion liquid 20 to generate air bubbles 24 around the linear material 10 . FIG. 2 is a schematic cross-sectional view showing a mode in which a first solid nanomaterial 22 is collected at a gas-liquid interface with a first dispersion liquid 20. FIG. 図8は、基板40との間で線状の材料10を覆うように形成された第1の被覆層12の断面模式図である。FIG. 8 is a schematic cross-sectional view of the first covering layer 12 formed to cover the linear material 10 between the substrate 40 and the substrate 40 . 図9は、本方法により形成される複合体の一例の長手方向に垂直方向の断面模式図である。FIG. 9 is a schematic cross-sectional view perpendicular to the longitudinal direction of an example of a composite formed by this method. 図10は、本方法により形成される複合体の他の例の長手方向に垂直方向の断面模式図である。FIG. 10 is a schematic cross-sectional view perpendicular to the longitudinal direction of another example of a composite formed by this method. 図11は、本方法により形成される複合体の他の例の長手方向に垂直方向の断面模式図である。FIG. 11 is a schematic cross-sectional view perpendicular to the longitudinal direction of another example of a composite formed by this method. 図12は、本方法により形成される複合体の他の例の長手方向に垂直方向の断面模式図である。FIG. 12 is a schematic cross-sectional view perpendicular to the longitudinal direction of another example of the composite formed by this method. 図13は、線状の材料で構成されるコア10と基板40との界面に空洞部14を有する複合体の断面模式図である。FIG. 13 is a schematic cross-sectional view of a composite having a cavity 14 at the interface between a core 10 made of a linear material and a substrate 40. As shown in FIG. 図14は、ガラス製の透明管等の筒基板の内側にレーザー照射する態様を表す模式図である。FIG. 14 is a schematic diagram showing a mode in which the inside of a cylindrical substrate such as a transparent tube made of glass is irradiated with a laser. 図15は、曲面形状の基板上に形成した複合配線の模式図である。FIG. 15 is a schematic diagram of a composite wiring formed on a curved substrate. 図16は、レーザー源32をビームスプリッター34で分岐して複数の第1のレーザー光30を並行に照射する態様を表す断面模式図である。FIG. 16 is a schematic cross-sectional view showing a mode in which the laser source 32 is split by a beam splitter 34 and a plurality of first laser beams 30 are irradiated in parallel. 図17は、フェムト秒レーザーの構成の模式図である。FIG. 17 is a schematic diagram of the configuration of a femtosecond laser. 図18は、Agコア/SiO被覆層の複合配線の外観の走査型電子顕微鏡(SEM)像である。FIG. 18 is a scanning electron microscope (SEM) image of the appearance of the composite wiring of Ag core/SiO 2 coating layer. 図19は、図18に示す複合配線のY方向の断面SEM像である。FIG. 19 is a Y-direction cross-sectional SEM image of the composite wiring shown in FIG. 図20は、図19の被覆層の透過型電子顕微鏡(TEM)像である。FIG. 20 is a transmission electron microscope (TEM) image of the coating layer of FIG. 図21は、形成したAg配線の外観SEM像である。FIG. 21 is an external SEM image of the formed Ag wiring. 図22は、Agコア/SiO粒子とZnOナノワイヤとのコンポジット被覆層の複合配線の外観SEM像である。FIG. 22 is an appearance SEM image of a composite wiring of a composite coating layer of Ag core/SiO 2 particles and ZnO nanowires. 図23は、Agコア/SiO粒子とZnOナノワイヤとのコンポジット被覆層の複合配線の断面TEM像である。FIG. 23 is a cross-sectional TEM image of a composite wiring with a composite coating layer of Ag core/SiO 2 particles and ZnO nanowires. 図24は、図23の被覆層のTEM像である。FIG. 24 is a TEM image of the coating layer of FIG. 図25は、被覆層の断面SEM像である。FIG. 25 is a cross-sectional SEM image of the coating layer. 図26は、図25のエリアについてのエネルギー分散型X線分析(EDX)によるZnのマッピング写真である。FIG. 26 is a mapping photograph of Zn in the area of FIG. 25 by energy dispersive X-ray spectroscopy (EDX). 図27は、形成したAg配線10及び複合配線の外観SEM像である。FIG. 27 is an external SEM image of the formed Ag wiring 10 and composite wiring. 図28は、図27のエリアについてのEDXによるTiのマッピング写真である。FIG. 28 is a mapping photograph of Ti by EDX for the area of FIG. 図29は、Agコア/ポリスチレン被覆層の複合配線の外観SEM像である。FIG. 29 is an external SEM image of composite wiring of Ag core/polystyrene coating layer. 図30は、比較例で形成した配線の外観SEM像である。FIG. 30 is an external SEM image of wiring formed in a comparative example. 図31は、比較例で形成した配線の断面TEM像である。FIG. 31 is a cross-sectional TEM image of wiring formed in a comparative example. 図32は、図31において四角で囲んだ部分の拡大TEM像である。FIG. 32 is an enlarged TEM image of the portion surrounded by a square in FIG. 図33は、基板上に形成した配線の断面SEM像である。FIG. 33 is a cross-sectional SEM image of wiring formed on a substrate. 図34は、図33のエリアについてのEDXによるAgのマッピング写真である。FIG. 34 is a mapping photograph of Ag by EDX for the area of FIG. 図35は、図33のエリアについてのEDXによるTiのマッピング写真である。FIG. 35 is a mapping photograph of Ti by EDX for the area of FIG. 図36は、実施例で形成した複合配線の光学顕微鏡像(図36(a))及び蛍光顕微鏡観察写真(図36(b))である。FIG. 36 is an optical microscope image (FIG. 36(a)) and a fluorescence microscope observation image (FIG. 36(b)) of the composite wiring formed in Example. 図37は、実施例で形成した複合配線のSEM写真、並びにSi、Ti、及びAgのマッピング像である。FIG. 37 is an SEM photograph of the composite wiring formed in Example and mapping images of Si, Ti, and Ag. 図38は、実施例で形成した複合配線のSEM写真、並びにAg及びTiのマッピング像である。FIG. 38 is an SEM photograph of the composite wiring formed in Example and mapping images of Ag and Ti. 図39は、近接する2つの線状の材料のそれぞれについて同じ材料の第1の被覆層を形成したものの断面模式図である。FIG. 39 is a schematic cross-sectional view of two adjacent linear materials each formed with a first coating layer of the same material. 図40は、近接する2つの線状の材料のそれぞれについて異なる材料の第1の被覆層を形成したものの断面模式図である。FIG. 40 is a schematic cross-sectional view of two adjacent linear materials each having a first coating layer made of a different material. 図41は、近接する2つの線状の材料のそれぞれについて異なる材料の第1の被覆層を形成したものの断面模式図である。FIG. 41 is a schematic cross-sectional view of two adjacent linear materials each formed with a first coating layer of a different material. 図42は、レーザー光が集光される線状の材料の周囲に気泡が発生し、線状の材料に沿った集光部の移動に合わせて気泡24が移動する態様を示す外観模式図(斜視図)である。FIG. 42 is a schematic external view showing a mode in which air bubbles are generated around the linear material on which the laser beam is focused, and the air bubbles 24 move in accordance with the movement of the light collecting portion along the linear material ( is a perspective view).
 本開示は、金属、セラミックス、またはそれらの組合せを含む線状の材料を準備すること、前記線状の材料を、第1の固体ナノ材料が分散された第1の分散液に浸すこと、及び前記第1の分散液に浸した前記線状の材料に第1のレーザー光を照射しながら、前記線状の材料に沿って前記第1のレーザー光の集光部を移動させて、前記第1の固体ナノ材料で構成された第1の被覆層を前記線状の材料の表面の少なくとも一部に形成して、前記線状の材料で構成されたコア/前記第1の被覆層の複合体を形成することを含み、前記第1の固体ナノ材料は、金属酸化物、非金属酸化物、セラミックス、金属、及び樹脂からなる群から選択される少なくとも一種で構成される、複合体の製造方法を対象とする。 The present disclosure provides a linear material comprising metals, ceramics, or combinations thereof, immersing the linear material in a first dispersion in which a first solid nanomaterial is dispersed, and While irradiating the linear material immersed in the first dispersion liquid with the first laser beam, the condensing part of the first laser beam is moved along the linear material to obtain the first laser beam. A first coating layer composed of one solid nanomaterial is formed on at least a part of the surface of the linear material, and a composite of the core composed of the linear material and the first coating layer Manufacture of a composite, comprising forming a body, wherein the first solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins method.
 本発明者は、鋭意研究した結果、特許文献1のレーザー照射による金属コア/被覆層の複合物の形成において、金属コアは溶液中の金属イオンが光化学反応で析出して形成される一方で、被覆層は、レーザー光の熱エネルギーにより発生した分散液中の気泡によって固体ナノ材料が集められて形成されること、すなわち、コアと被覆層の形成メカニズムが異なることを見出して、コアと被覆層とを別個の工程で形成する本方法を完成させた。本発明者はまた、コアは金属のみで構成される必要はなく、金属、セラミックス、またはそれらの組合せを含む材料で構成されたコアであればレーザー照射でコアの周囲に被覆層を形成できることも見いだした。 As a result of intensive research, the present inventors have found that in the formation of a metal core/coating layer composite by laser irradiation in Patent Document 1, the metal core is formed by photochemical reaction of metal ions in the solution, The coating layer is formed by collecting solid nanomaterials by bubbles in the dispersion liquid generated by the thermal energy of the laser beam. and are formed in separate steps. The inventors also found that the core does not have to be composed only of metal, and that laser irradiation can form a coating layer around the core if the core is composed of materials including metals, ceramics, or combinations thereof. Found.
 本方法においては、図1~図3に模式的に示すように、第1の固体ナノ材料22が分散された第1の分散液20に金属、セラミックス、またはそれらの組合せを含む線状の材料(以下、線状の材料ともいう)10を浸し、線状の材料10に第1のレーザー光30を照射しながら、線状の材料10に沿って第1のレーザー光30の集光部を移動させて、線状の材料10の表面の少なくとも一部に第1の被覆層12を形成して、金属、セラミックス、またはそれらの組合せを含む線状の材料10で構成されるコア10/第1の被覆層12の複合体を形成する。複合体は任意の形状であることができ、好ましくは線状の複合配線である。 In this method, as schematically shown in FIGS. 1 to 3, a first solid nanomaterial 22 is dispersed in a first dispersion 20 containing a linear material containing metals, ceramics, or a combination thereof. (hereinafter also referred to as a linear material) 10 is immersed, and while irradiating the linear material 10 with the first laser beam 30, the condensing part of the first laser beam 30 is moved along the linear material 10. The core 10/second core 10 is moved to form a first coating layer 12 on at least a portion of the surface of the linear material 10, and the linear material 10 includes metal, ceramics, or a combination thereof. A composite of one covering layer 12 is formed. The composite can be of any shape and is preferably a linear composite wiring.
 図1は、金属、セラミックス、またはそれらの組合せを含む線状の材料10の周囲に第1の被覆層12を形成中の模式図である。図1に示すように、第1のレーザー光30を照射しながら線状の材料10に沿って第1のレーザー光30の集光部を移動させると、線状の材料10の周囲に発生した気泡によって、矢印で示すように第1の固体ナノ材料22が集められて、線状の材料10の周囲に第1の被覆層12が形成される。線状の材料10は、レーザー光30の集光部を移動できる長さを備える限り短くてもよく、例えばレーザー光30の集光部を移動できる長さを備えたドット状でもよい。線状の材料10の長さは、好ましくは1μm以上、より好ましくは2μm以上、さらに好ましくは3μm以上である。図2は、基板40の主面に沿って配置される線状の材料10に第1のレーザー光30の照射を開始したときの本方法を模式的に表した断面図である。図3は、第1の分散液20中において、線状の材料10の表面を基板40との間で覆った第1の被覆層12の断面模式図である。第1の被覆層12は、微量の分散剤を含み得るが、実質的に第1の固体ナノ材料22で構成されている。 FIG. 1 is a schematic diagram during formation of a first coating layer 12 around a linear material 10 including metal, ceramics, or a combination thereof. As shown in FIG. 1, when the first laser beam 30 is irradiated and the condensing portion of the first laser beam 30 is moved along the linear material 10, The air bubbles collect the first solid nanomaterial 22 as indicated by the arrows to form the first coating layer 12 around the linear material 10 . The linear material 10 may be short as long as it has a length that allows it to move through the condensing portion of the laser beam 30 , for example, it may be dot-shaped and has a length that allows it to move through the condensing portion of the laser beam 30 . The length of the linear material 10 is preferably 1 μm or longer, more preferably 2 μm or longer, and even more preferably 3 μm or longer. FIG. 2 is a cross-sectional view schematically showing this method when irradiation of the first laser beam 30 to the linear material 10 arranged along the main surface of the substrate 40 is started. FIG. 3 is a schematic cross-sectional view of the first coating layer 12 covering the surface of the linear material 10 between itself and the substrate 40 in the first dispersion liquid 20 . The first coating layer 12 consists essentially of the first solid nanomaterial 22, although it may contain traces of a dispersing agent.
 本方法においては、金属、セラミックス、またはそれらの組合せを含む線状の材料が、第1の固体ナノ材料が分散された第1の分散液に浸された状態でレーザー光が照射されればよい。第1の被覆層を形成する際の第1のレーザー光の照射方向は、第1のレーザー光により線状の材料が加熱されて、コアとなる線状の材料の周囲に気泡を発生させて対流を引き起こすことができれば、任意の方向であることができる。 In this method, a linear material containing metal, ceramics, or a combination thereof is immersed in the first dispersion in which the first solid nanomaterial is dispersed, and then irradiated with laser light. . The irradiation direction of the first laser beam when forming the first coating layer is such that the linear material is heated by the first laser beam and bubbles are generated around the linear material serving as the core. It can be in any direction as long as it can cause convection.
 図1~3に示すように、第1のレーザー光を透過する基板の上側の主面に配置された線状の材料に向かって基板側から、すなわち下側からレーザー照射してもよい。あるいは、図1~3において、基板とは反対側、すなわち上側からレーザー照射してもよい。あるいは、図1~3において、基板の主表面に対して平行方向または斜め方向から線状の材料に向かってレーザー照射してもよい。あるいは、図4に模式的に示すように、第1のレーザー光を透過する基板の下側の主面に配置された線状の材料に向かって基板側から、すなわち上側からレーザー照射してもよい。あるいは、図5に示すように、線状の材料10の端部のみを基板40に保持して、第1の分散液中に配置した線状の材料10にレーザー照射してもよい。基板を用いずに、光ピンセットや磁場を加えることにより線状の材料を第1の分散液中で固定して、レーザー照射を行ってもよい。 As shown in FIGS. 1 to 3, a linear material arranged on the upper main surface of the substrate that transmits the first laser light may be irradiated from the substrate side, that is, from the bottom side. Alternatively, in FIGS. 1 to 3, laser irradiation may be performed from the side opposite to the substrate, that is, from the upper side. Alternatively, in FIGS. 1 to 3, the linear material may be irradiated with laser from a direction parallel or oblique to the main surface of the substrate. Alternatively, as schematically shown in FIG. 4, laser irradiation may be performed from the substrate side, that is, from the upper side toward a linear material arranged on the lower main surface of the substrate that transmits the first laser beam. good. Alternatively, as shown in FIG. 5, only the ends of the linear material 10 may be held on the substrate 40 and the linear material 10 placed in the first dispersion may be irradiated with the laser. Without using a substrate, the linear material may be fixed in the first dispersion liquid by applying optical tweezers or a magnetic field, and laser irradiation may be performed.
 第1のレーザー光を透過する基板側から線状の材料に向かって照射する場合は、第1のレーザー光は、第1の分散液中を通過しないため、第1の分散液中に分散している第1の固体ナノ材料の影響を受けにくい。基板とは反対側から線状の材料に向かってレーザー照射する場合は、第1の分散液中に分散した第1の固体ナノ材料による光損失や散乱が起こることがあるが、直径が小さい第1の固体ナノ材料を用いること、第1の分散液中の第1の固体ナノ材料の濃度を小さくすること等により、線状の材料に効率的に第1のレーザー光を照射することができる。 When irradiating the linear material from the side of the substrate through which the first laser beam is transmitted, the first laser beam does not pass through the first dispersion liquid and therefore is dispersed in the first dispersion liquid. It is less susceptible to the first solid nanomaterial that is in contact. When laser irradiation is directed toward the linear material from the opposite side of the substrate, light loss and scattering may occur due to the first solid nanomaterial dispersed in the first dispersion, but the first solid nanomaterial having a small diameter By using one solid nanomaterial, reducing the concentration of the first solid nanomaterial in the first dispersion, or the like, the linear material can be efficiently irradiated with the first laser beam. .
 図6に例示するように、第1のレーザー光30を線状の材料10に照射すると、線状の材料10が加熱されて第1の分散液20中の線状の材料10の周囲に気泡24が発生する。レーザー光30が集光される線状の材料10の周囲に気泡24が発生し、線状の材料10に沿った集光部の移動に合わせて気泡24も移動する。図42に、レーザー光30が集光される線状の材料10の周囲に気泡24が発生し、線状の材料10に沿った集光部の移動に合わせて気泡24が移動する態様を示す外観模式図(斜視図)を示す。気泡24が移動しながら第1の固体ナノ材料が気泡24の後方に集められる。理論に束縛されるものではないが、本方法においては、気泡24の表面の温度分布(温度勾配)から表面張力勾配が発生し、図7において矢印で示すように、第1の分散液20中に対流が発生して、線状の材料10の周囲の気泡24と第1の分散液20との気液界面に第1の固体ナノ材料22が集められる。 As illustrated in FIG. 6 , when the linear material 10 is irradiated with the first laser beam 30 , the linear material 10 is heated and air bubbles are formed around the linear material 10 in the first dispersion liquid 20 . 24 occurs. Air bubbles 24 are generated around the linear material 10 on which the laser beam 30 is focused, and the air bubbles 24 move as the condensing portion moves along the linear material 10 . FIG. 42 shows a mode in which air bubbles 24 are generated around the linear material 10 on which the laser beam 30 is focused, and the air bubbles 24 move in accordance with the movement of the condensing portion along the linear material 10. FIG. 2 shows an external schematic diagram (perspective view). The first solid nanomaterial is collected behind the bubble 24 as the bubble 24 moves. Although not bound by theory, in this method, a surface tension gradient is generated from the temperature distribution (temperature gradient) on the surfaces of the bubbles 24, and as indicated by the arrows in FIG. A convection occurs in the linear material 10 and the first solid nanomaterial 22 is collected at the gas-liquid interface between the air bubbles 24 around the linear material 10 and the first dispersion liquid 20 .
 第1のレーザー光30は線状の材料10に沿って移動しているので、第1のレーザー光30が照射されている線状の材料10の周囲から気泡が発生するが、移動によりレーザー照射されなくなると気泡は消滅していく。このように第1のレーザー光30が移動しているので、気泡24の端部と線状の材料10との接触部に第1の固体ナノ材料22が集積され、図8に示すように、基板40との間で線状の材料10を覆うように第1の被覆層12が形成される。得られた複合体における線状の材料(金属、セラミックス、またはそれらの組合せを含むコア)10と第1の被覆層12との界面に隙間は形成されない。第1のレーザー光30の集光部を線状の材料10に沿って移動させると、線状の材料10と第1の被覆層12との界面が密着した線状の材料10で構成されたコア/第1の被覆層の複合体が得られる。第1のレーザー光30の集光部の移動速度は、好ましくは10~2000μm/秒、より好ましくは20~1000μm/秒、さらに好ましくは30~300μm/秒である。本方法では、このようなメカニズムで被覆層を形成することができるので、固体ナノ材料の集積、被覆層の安定した形成及び微細パターン化の両立が可能であり、インクジェット印刷、リソグラフィ、及び従来のレーザー描画では難しい構造の複合体を得ることができる。 Since the first laser beam 30 is moving along the linear material 10, bubbles are generated around the linear material 10 irradiated with the first laser beam 30, but the movement causes the laser irradiation. When it stops, the bubble disappears. Since the first laser beam 30 is moving in this way, the first solid nanomaterial 22 is accumulated at the contact portion between the end of the bubble 24 and the linear material 10, and as shown in FIG. A first covering layer 12 is formed to cover the linear material 10 between the substrate 40 and the substrate 40 . No gap is formed at the interface between the linear material (core including metal, ceramics, or a combination thereof) 10 and the first coating layer 12 in the resulting composite. When the condensing portion of the first laser beam 30 is moved along the linear material 10, the interface between the linear material 10 and the first coating layer 12 is formed of the linear material 10 in close contact. A core/first coating layer composite is obtained. The moving speed of the condensing portion of the first laser beam 30 is preferably 10 to 2000 μm/sec, more preferably 20 to 1000 μm/sec, still more preferably 30 to 300 μm/sec. In this method, since the coating layer can be formed by such a mechanism, it is possible to achieve both integration of solid nanomaterials, stable formation of the coating layer, and fine patterning. It is possible to obtain composites with structures that are difficult to obtain with laser lithography.
 第1のレーザー光は線状の材料に照射されるが、第1のレーザー光の集光部は、第1のレーザー光を照射して線状の材料が加熱されて線状の材料の周囲に気泡が発生して第1の分散液中に対流を引き起こすことができる範囲であれば、線状の材料または線状の材料の近傍でもよい。 The linear material is irradiated with the first laser beam, and the condensed portion of the first laser beam heats the linear material by irradiating the first laser beam so that the periphery of the linear material is heated. It may be in the linear material or in the vicinity of the linear material as long as air bubbles can be generated in the first dispersion and convection can be caused in the first dispersion.
 本方法においては、第1のレーザー光の熱エネルギーで第1の固体ナノ材料を集めて第1の被覆層を形成することができるので、レーザー光を利用しているにも関わらず第1の被覆層の材料は感光性材料に限られず、第1の被覆層の材料選択の幅が極めて広い。本方法によれば、材料特性に制限されずに、被覆層として様々な材料をコアの周囲に集積可能であり、第1の被覆層の材料は、導電性、絶縁性、半導体性、磁性、生体親和性、抗菌性等を有する材料であることができる。本方法によればまた、例えば、レーザーを透過しやすいSiO等の材料を第1の固体ナノ材料として用いても、低出力のレーザーで第1の被覆層の形成が可能である。したがって、本方法によれば、様々な構成のセンサやデバイスを作製することができ、例えば、p型及びn型の半導体層の間に量子ドットの層を配置したマイクロサイズのLEDアレイ等も作製することができる。 In this method, since the first solid nanomaterial can be collected by the thermal energy of the first laser beam to form the first covering layer, the first coating layer can be formed even though the laser beam is used. The material for the covering layer is not limited to a photosensitive material, and the range of material selection for the first covering layer is extremely wide. According to this method, various materials can be integrated around the core as coating layers without being limited by material properties, and the material of the first coating layer can be conductive, insulating, semiconducting, magnetic, It can be a material having biocompatibility, antibacterial properties, and the like. According to this method, for example, even if a material such as SiO 2 that easily transmits a laser is used as the first solid nanomaterial, it is possible to form the first coating layer with a low-power laser. Therefore, according to this method, it is possible to fabricate sensors and devices with various configurations, for example, a micro-sized LED array in which a layer of quantum dots is arranged between p-type and n-type semiconductor layers. can do.
 本方法において、第1の分散液の分散媒は液体であるが、第1の固体ナノ材料を分散させることができ且つ第1の固体ナノ材料が溶解、反応、変形、変質等しない分散媒であれば特に制限されない。第1の分散液の分散媒は、例えば、水、水とエタノールの混合液体、トルエン等の有機溶媒に分散された固体ナノ材料をアルコールと水の混合液に再分散させた液体等であることができる。そのため、本方法によれば、第1の分散液の分散媒は、特許文献1の方法で用いられるような、金属イオン、金属コロイド、金属錯体等が分散した溶液、例えば硝酸銀溶液等である必要がない。したがって、本方法によれば、第1の固体ナノ材料は、従来は、金属イオン等を分散させるために用いられる溶液、例えば硝酸銀溶液に溶解するために用いることができなかった材料、例えば酸化亜鉛等の固体ナノ材料でもよい。第1の分散液には、固体ナノ材料の分散のために使用される分散剤等の分散媒に溶解するもの、レーザー光の照射を妨げるものでなければ他の成分が含まれていてもよい。 In this method, the dispersion medium of the first dispersion liquid is a liquid, but the dispersion medium can disperse the first solid nanomaterial and does not cause the first solid nanomaterial to dissolve, react, deform, or change properties. There is no particular limitation if any. The dispersion medium of the first dispersion is, for example, water, a mixed liquid of water and ethanol, or a liquid obtained by redispersing a solid nanomaterial dispersed in an organic solvent such as toluene in a mixed liquid of alcohol and water. can be done. Therefore, according to the present method, the dispersion medium of the first dispersion must be a solution in which metal ions, metal colloids, metal complexes, etc. are dispersed, such as those used in the method of Patent Document 1, such as a silver nitrate solution. There is no Thus, according to the present method, the first solid nanomaterial is a material, such as zinc oxide, which could not be conventionally used for dissolving in a solution, such as a silver nitrate solution, used to disperse metal ions and the like. and other solid nanomaterials. The first dispersion may contain other components as long as they do not interfere with the irradiation of the laser beam, such as a dispersant used for dispersing the solid nanomaterial, which is soluble in the dispersion medium. .
 第1の分散液中の第1の固体ナノ材料の濃度は、好ましくは、0.01~3.0質量%である。第1の分散液中の第1の固体ナノ材料の濃度が前記好ましい範囲にあることにより、第1の被覆層をより効率的に形成することができる。 The concentration of the first solid nanomaterial in the first dispersion is preferably 0.01-3.0% by mass. When the concentration of the first solid nanomaterial in the first dispersion is within the preferred range, the first coating layer can be formed more efficiently.
 第1の分散液の粘度は、好ましくは1.0mPa・s~1.2mPa・sである。第1の分散液の粘度が前記好ましい範囲であることにより、第1の固体ナノ材料の濃度を確保しつつ、第1の分散液中の対流を起きやすくして、第1の固体ナノ材料をより集めやすくすることができる。 The viscosity of the first dispersion is preferably 1.0 mPa·s to 1.2 mPa·s. By setting the viscosity of the first dispersion to be within the preferred range, the concentration of the first solid nanomaterial is ensured, convection in the first dispersion is facilitated, and the first solid nanomaterial is dispersed. It can be made easier to collect.
 第1の固体ナノ材料は、第1の分散液中で分散性があり、レーザー光の照射による線状の材料の加熱を介して第1の分散液が加熱される温度、例えば70~100℃程度の温度で、実質的に変形や変質せずに、気泡による対流で集められる固体ナノ材料であることができる。第1の分散液中での分散性は、必ずしも分散液全体に均一に固体ナノ材料が分布している必要はなく、レーザーの集光部近傍に固体ナノ材料が存在してさえいればよく、固体ナノ材料の一部が沈殿していてもよい。また、固体ナノ材料が必ずしも一次粒子で存在している必要はなく、凝集していても凝集粒子の全体の直径が、所定の直径の範囲内であればよい。 The first solid nanomaterial is dispersible in the first dispersion, and the temperature at which the first dispersion is heated through the heating of the linear material by laser light irradiation, for example, 70 to 100 ° C. It can be a solid nanomaterial that can be collected by convection by air bubbles at a certain temperature without substantial deformation or alteration. Regarding the dispersibility in the first dispersion liquid, it is not necessary that the solid nanomaterials are uniformly distributed throughout the dispersion liquid, and it is sufficient that the solid nanomaterials are present in the vicinity of the light-collecting part of the laser. A portion of the solid nanomaterial may be precipitated. Moreover, the solid nanomaterial does not necessarily have to exist in the form of primary particles.
 固体ナノ材料の例には、ナノサイズの微粒子(ナノ粒子)、ナノクラスター、ナノ結晶、ナノチューブ、ナノファイバー、ナノワイヤ、ナノロッド、ナノフィルム、ナノシート、これらの組み合わせ等が含まれる。 Examples of solid nanomaterials include nano-sized fine particles (nanoparticles), nanoclusters, nanocrystals, nanotubes, nanofibers, nanowires, nanorods, nanofilms, nanosheets, and combinations thereof.
 第1の固体ナノ材料は、好ましくは1~3000nm、より好ましくは5~1000nm、さらに好ましくは10~300nm、さらにより好ましくは15~100nmの直径を有する。ここでいう直径とは、第1の固体ナノ材料を電子顕微鏡観察したときの長軸方向の最大長さを、ランダムに選択した10個の第1の固体ナノ材料について平均した値をいう。 The first solid nanomaterial preferably has a diameter of 1-3000 nm, more preferably 5-1000 nm, even more preferably 10-300 nm, still more preferably 15-100 nm. The diameter here means the average value of the maximum lengths in the major axis direction of ten randomly selected first solid nanomaterials when the first solid nanomaterials are observed with an electron microscope.
 第1の固体ナノ材料が、一次粒子として、または凝集粒子として、前記好ましい直径を有することにより、第1の被覆層をより短時間で形成、またはより厚く形成することができる。第1の固体ナノ材料の粒径が小さいほど、気泡で集めやすいため、第1の被覆層の形成時間を短縮、またはより厚い第1の被覆層を得ることができる。 By having the preferred diameter of the first solid nanomaterial as primary particles or as aggregated particles, the first coating layer can be formed in a shorter time or thicker. The smaller the particle size of the first solid nanomaterial, the easier it is to collect with air bubbles, so the formation time of the first coating layer can be shortened or a thicker first coating layer can be obtained.
 第1の固体ナノ材料は、好ましくは0.95~21.45g/cm、より好ましくは1.1~6.0g/cmの密度を有する。第1の固体ナノ材料の密度が小さいほど、気泡で集めやすい。例えば、ポリスチレンビーズ等の樹脂粒子は比較的密度が低いために、粒径が大きくても気泡で集めやすい。 The first solid nanomaterial preferably has a density of 0.95-21.45 g/cm 3 , more preferably 1.1-6.0 g/cm 3 . The lower the density of the first solid nanomaterial, the easier it is to collect with air bubbles. For example, since resin particles such as polystyrene beads have a relatively low density, they are easily collected by air bubbles even if they have a large particle size.
 第1の固体ナノ材料は、金属酸化物、非金属酸化物、セラミックス、金属、及び樹脂からなる群から選択される少なくとも一種で構成される。 The first solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins.
 金属酸化物の例には、酸化亜鉛、チタニア、アルミナ、酸化コバルト、ジルコニア、セリア、酸化モリブデン、酸化マグネシウム、酸化タングステン、酸化錫、酸化鉄、酸化マンガン、酸化コバルト、酸化ニッケル、チタン酸ジルコン酸鉛、チタン酸ストロンチウム、チタン酸鉛、ジルコン酸鉛、チタン酸ジルコン酸鉛、酸化インジウムスズ等が含まれる。 Examples of metal oxides include zinc oxide, titania, alumina, cobalt oxide, zirconia, ceria, molybdenum oxide, magnesium oxide, tungsten oxide, tin oxide, iron oxide, manganese oxide, cobalt oxide, nickel oxide, zirconate titanate. Lead, strontium titanate, lead titanate, lead zirconate, lead zirconate titanate, indium tin oxide and the like are included.
 非金属酸化物の例には、シリカ等が含まれる。 Examples of non-metal oxides include silica.
 セラミックスは非金属無機材料であり、セラミックスの例には、例えば、窒化物、炭化物、ホウ化物、ハロゲン化物、ダイヤモンド、カーボン、量子ドット等が含まれる。量子ドットとは、概してコロイド状であり、量子力学に従う独特な光学的、電気的、磁気的特性を持つナノスケールの半導体結晶である。量子ドットの例には、PbS、CdS等も含まれる。カーボンの例には、グラファイトやグラフェン等も含まれる。  Ceramics are non-metallic inorganic materials, and examples of ceramics include, for example, nitrides, carbides, borides, halides, diamonds, carbon, and quantum dots. Quantum dots are generally colloidal, nanoscale semiconductor crystals with unique optical, electrical, and magnetic properties that obey quantum mechanics. Examples of quantum dots also include PbS, CdS, and the like. Examples of carbon also include graphite, graphene, and the like.
 窒化物の例には、窒化ニオブ、窒化チタン、窒化タンタル、窒化インジウム、窒化ガリウム、窒化インジウム、窒化ガリウム、窒化硼素、窒化アルミニウム等が含まれる。 Examples of nitrides include niobium nitride, titanium nitride, tantalum nitride, indium nitride, gallium nitride, indium nitride, gallium nitride, boron nitride, and aluminum nitride.
 炭化物の例には、炭化クロム、炭化硼素、炭化バナジウム、炭化タングステン、炭化モリブデン、炭化チタン、炭化ジルコニウム、炭化ニオブ、炭化タンタル、炭化珪素等が含まれる。 Examples of carbides include chromium carbide, boron carbide, vanadium carbide, tungsten carbide, molybdenum carbide, titanium carbide, zirconium carbide, niobium carbide, tantalum carbide, silicon carbide, and the like.
 ホウ化物の例には、硼素、硼化アルミニウム、硼化クロム、硼化チタン、硼化モリブデン、硼化タングステン、硼化バナジウム、硼化ジルコニウム、硼化マグネシウム、硼化ニオブ、硼化タンタル等が含まれる。 Examples of borides include boron, aluminum boride, chromium boride, titanium boride, molybdenum boride, tungsten boride, vanadium boride, zirconium boride, magnesium boride, niobium boride, tantalum boride, and the like. included.
 ハロゲン化物の例には、フッ化セリウム等が含まれる。その他の第1の固体ナノ材料としては、ハイドロキシアパタイト等のリン酸化合物、LiS-P、LiCoO、xLiO-BPO(0.5≦x≦1.5)等のリチウム系化合物が、II族元素とVI族元素を用いた化合物半導体等が挙げられる。 Examples of halides include cerium fluoride and the like. Other first solid nanomaterials include phosphate compounds such as hydroxyapatite, Li 2 SP 2 S 5 , LiCoO 2 , xLi 2 O-BPO 4 (0.5≦x≦1.5), and the like. Examples of lithium-based compounds include compound semiconductors using group II elements and group VI elements.
 金属の例には、Ag、Cu、Au、Pt、Pd、Ni、Pb、Sn、合金等が含まれる。 Examples of metals include Ag, Cu, Au, Pt, Pd, Ni, Pb, Sn, alloys, and the like.
 樹脂の例には、ポリスチレン系樹脂、ポリオレフィン系樹脂、ポリアクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリ塩化ビニル系樹脂、ポリアミド系樹脂等が含まれる。 Examples of resins include polystyrene-based resins, polyolefin-based resins, polyacrylic-based resins, polycarbonate-based resins, polyester-based resins, polyvinyl chloride-based resins, polyamide-based resins, and the like.
 第1の固体ナノ材料は、透明性の高いコーティング膜形成材料、固体電解質型燃料電池電解質材料、発光ダイオードや光応答半導体材料、抵抗体膜形成材料、金属磁性体粉末材料、超電導材料、圧電セラミックス厚膜材料、誘電体膜材料、微粒子結合材料等の機能性材料の固体ナノ材料でもよい。 The first solid nanomaterials include highly transparent coating film-forming materials, solid electrolyte fuel cell electrolyte materials, light-emitting diodes and photoresponsive semiconductor materials, resistor film-forming materials, metal magnetic powder materials, superconducting materials, and piezoelectric ceramics. Solid nanomaterials such as thick film materials, dielectric film materials, fine particle binding materials, and other functional materials may also be used.
 第1の固体ナノ材料は、異種材料の固体粒子が混合された粒子、ナノ粒子とナノワイヤ等の形状が異なる粒子を混合した複合粒子、固体ナノ材料の複合物、複数成分からなる固体ナノ材料、金担持酸化チタン(Au/TiO)等の固体微粒子を固体微粒子が担持した粒子、コアシェル構造等の複合構造を有する粒子でもよい。 The first solid nanomaterial includes particles in which solid particles of different materials are mixed, composite particles in which particles with different shapes such as nanoparticles and nanowires are mixed, composites of solid nanomaterials, solid nanomaterials composed of multiple components, Particles in which solid fine particles such as gold-supported titanium oxide (Au/TiO 2 ) are supported by solid fine particles, and particles having a composite structure such as a core-shell structure may be used.
 本方法によれば、微細な複合体を形成することができる。複合体の幅は、レーザーの照射条件によって調整することができ、好ましくは1~20μm、より好ましくは2~10μmである。複合体の幅とは、複合体の長手方向に対して垂直方向の断面の最大長さである。基板の主面に沿って配置された複合体の線幅とは、複合体の長手方向に対して垂直方向且つ基板の主面に平行方向の長さである。本方法により形成される複合体は複合配線でもよい。 According to this method, a fine composite can be formed. The width of the composite can be adjusted by the laser irradiation conditions, and is preferably 1 to 20 μm, more preferably 2 to 10 μm. The width of the composite is the maximum length of the cross-section perpendicular to the longitudinal direction of the composite. The line width of the composite arranged along the main surface of the substrate is the length in the direction perpendicular to the longitudinal direction of the composite and parallel to the main surface of the substrate. The composite formed by the method may be a composite wire.
 本方法により形成される複合体の厚みは、レーザーの照射条件によって調整することができ、好ましくは100nm~10μmである。線状の材料(金属、セラミックス、またはそれらの組合せを含むコア)の厚み及び幅は、好ましくは1~10μmである。第1の被覆層の厚みは、好ましくは100nm~10μmである。第1の被覆層は、線状の材料の幅方向における表面の一部または全部を被覆することができ、好ましくは線状の材料の幅方向における表面の全部を被覆する。線状の材料はそのままコアになるが、線状の材料の厚み及び幅が大きいほど、固体ナノ材料を集めやすく、第1の被覆層形成の時間を短縮することができ、またはより厚い第1の被覆層を得ることができる。線状の材料の厚み及び幅が気泡に包まれる程度の大きさの場合、気泡が線状の材料に付着して安定化し、第1の被覆層の形成をより安定して行うことができる。線状の材料の厚み及び幅が大きすぎると、気泡が線状の材料を包むことができずに、線状の材料のエッジ部だけに粒子が集まりやすくなる。線状の材料の厚み及び幅が小さすぎると、気泡が動きやすくなり第1の被覆層の形成を安定して行いにくくなる。したがって、気泡の直径は、線状の材料の厚み及び幅の1.1~4.0倍程度が好ましく、2.0~3.5倍程度がより好ましい。複合体及びコアの幅とは、複合体及びコアの長手方向に対して垂直方向の断面における最大長さを形成する弦の長さであり、複合体及びコアの厚みとは、前記弦に垂直方向の最大長さである。基板の主面に沿って配置された複合体及びコアの幅とは、複合体及びコアの長手方向に垂直方向且つ基板の主面に平行方向の最大長さであり、基板の主面に沿って配置された複合体及びコアの厚みとは、複合体の長手方向と基板の主面とに垂直方向の最大長さである。第1の被覆層の厚みは、複合体の長手方向に対して垂直方向の断面における厚みの平均値である。 The thickness of the composite formed by this method can be adjusted by the laser irradiation conditions, and is preferably 100 nm to 10 μm. The thickness and width of the linear material (core comprising metals, ceramics, or combinations thereof) is preferably 1-10 μm. The thickness of the first coating layer is preferably between 100 nm and 10 μm. The first coating layer can cover part or all of the surface of the linear material in the width direction, and preferably covers the entire surface of the linear material in the width direction. The linear material becomes the core as it is, but the larger the thickness and width of the linear material, the easier it is to collect the solid nanomaterials, and the time for forming the first coating layer can be shortened, or the thicker first coating layer can be formed. can be obtained. When the thickness and width of the linear material are large enough to be surrounded by air bubbles, the air bubbles adhere to the linear material and stabilize it, so that the first coating layer can be formed more stably. If the thickness and width of the linear material are too large, the air bubbles cannot envelop the linear material, and particles tend to gather only at the edges of the linear material. If the thickness and width of the linear material are too small, air bubbles move easily, making it difficult to stably form the first coating layer. Therefore, the diameter of the bubble is preferably about 1.1 to 4.0 times, more preferably about 2.0 to 3.5 times, the thickness and width of the linear material. The width of the composite and core is the length of the chord forming the maximum length in a cross section perpendicular to the longitudinal direction of the composite and core, and the thickness of the composite and core is perpendicular to said chord. Maximum length in a direction. The width of the composite and the core arranged along the main surface of the substrate is the maximum length in the direction perpendicular to the longitudinal direction of the composite and the core and parallel to the main surface of the substrate, The thickness of the composite and the core arranged in the same direction is the maximum length of the composite in the direction perpendicular to the longitudinal direction of the composite and the major surface of the substrate. The thickness of the first coating layer is the average value of the thickness in the cross section perpendicular to the longitudinal direction of the composite.
 図9及び図10に、本方法により形成される複合体の一例の長手方向に垂直方向の断面模式図を示す。図5に示すように、線状の材料の端部から線状の材料の軸方向に平行方向にレーザーを照射しながら線状の材料に沿って集光部を移動させると、線状の材料の外周にレーザーが照射されるため線状の材料の全周に第1の固体ナノ材料が集まり第1の被覆層を形成できるので、図9及び図10に模式的に示すような、略同心形状の断面形状を有する複合体を得ることができる。断面が円形の線状の材料の周囲には断面が円形の第1の被覆層が形成される。断面が矩形の線状の材料の周囲には断面が矩形の第1の被覆層が形成される。図5において線状の材料の軸方向に垂直方向または斜め方向からレーザーを照射すると、線状の材料の外周においてレーザー照射によるエネルギーの相違が生じるので、第1の被覆層はコアに対して略同心形状には形成されず、偏りを有して形成される。 9 and 10 show schematic cross-sectional views perpendicular to the longitudinal direction of an example of the composite formed by this method. As shown in FIG. 5, when a laser beam is emitted from the end of the linear material in a direction parallel to the axial direction of the linear material and the condensing part is moved along the linear material, the linear material Since the laser is irradiated on the outer periphery of the linear material, the first solid nanomaterial can gather around the entire periphery of the linear material to form the first coating layer. A composite having a cross-sectional shape of the shape can be obtained. A first coating layer with a circular cross section is formed around the linear material with a circular cross section. A first covering layer with a rectangular cross section is formed around the linear material with a rectangular cross section. In FIG. 5, if a laser beam is irradiated perpendicularly or obliquely to the axial direction of the linear material, a difference in energy due to the laser irradiation occurs at the periphery of the linear material. They are not formed in a concentric shape, but are formed with a deviation.
 図11及び図12に、本方法により形成される複合体の他の例の長手方向に垂直方向の断面模式図を示す。図1~図3に示すように、基板の主面上に配置した線状の材料に向かって透明基板側からレーザーを照射しながら線状の材料に沿って集光部を移動させると、図6~図8で模式的に示すように、線状の材料の表面に第1の固体ナノ材料が集まり第1の被覆層を形成できるので、図11及び図12に模式的に示すような、略同心形状の断面形状を有する複合体を得ることができる。断面が半円状の線状の材料の周囲には断面が半円状の第1の被覆層が形成される。断面が矩形の線状の材料の周囲には断面が矩形の第1の被覆層が形成される。 11 and 12 show schematic cross-sectional views of another example of the composite formed by this method in the direction perpendicular to the longitudinal direction. As shown in FIGS. 1 to 3, while irradiating a laser from the transparent substrate side toward a linear material placed on the main surface of the substrate, moving the condensing part along the linear material, As schematically shown in FIGS. 6 to 8, the first solid nanomaterials can gather on the surface of the linear material to form the first coating layer, so that as schematically shown in FIGS. 11 and 12, A composite having a substantially concentric cross-sectional shape can be obtained. A first coating layer having a semicircular cross section is formed around the linear material having a semicircular cross section. A first covering layer with a rectangular cross section is formed around the linear material with a rectangular cross section.
 本方法により用いられる線状の材料は、好ましくは、略円形状、略楕円状、略矩形状、略半楕円形状、または略半円形状の断面を有し、より好ましく略円形状または略半円形状の断面を有する。線状の材料で構成されるコアの断面形状が略円形状または略半円形状であることにより、レーザー光で線状の材料を照射して気泡を発生させる際に、線状の材料の周囲に固体ナノ材料をより集めやすくなる。 The linear material used according to the present method preferably has a substantially circular, substantially elliptical, substantially rectangular, substantially semi-elliptical, or substantially semi-circular cross-section, more preferably substantially circular or substantially semi-circular. It has a circular cross section. Since the core made of the linear material has a substantially circular or semicircular cross-sectional shape, when the linear material is irradiated with a laser beam to generate bubbles, It becomes easier to collect solid nanomaterials in
 本方法により形成される複合体において、第1の被覆層は、好ましくは、略円形状、略楕円状、略矩形状、略半楕円形状、または略半円形状の断面を有し、より好ましく略円形状または略半円形状の断面を有する。第1の被覆層は、好ましくは、線状の材料と略相似形の断面を有する。 In the composite formed by this method, the first coating layer preferably has a substantially circular, substantially elliptical, substantially rectangular, substantially semi-elliptical, or substantially semi-circular cross-section, more preferably It has a substantially circular or semicircular cross section. The first coating layer preferably has a cross-section that is substantially similar to the linear material.
 本方法により形成される複合体は、2以上の線状の材料を含み、1種または2種以上の材料で構成された第1の被覆層を含んでもよい。近接する線状の材料のそれぞれについて、第1の被覆層を形成することができる。図39に、近接する2つの線状の材料10のそれぞれについて同じ材料の第1の被覆層12を形成したものの断面模式図を示す。近接する線状の材料の間隔は特に限定されず、2以上の線状の材料に形成する第1の被覆層同士を接触させる場合は近接する線状の材料の間隔を狭めればよく、2以上の線状の材料に形成する第1の被覆層同士を接触させない場合は近接する線状の材料の間隔を広げればよい。 The composite formed by this method includes two or more linear materials and may include a first coating layer composed of one or more materials. A first coating layer can be formed for each adjacent linear material. FIG. 39 shows a schematic cross-sectional view of two adjacent linear materials 10 each having the first covering layer 12 of the same material formed thereon. The interval between adjacent linear materials is not particularly limited, and when the first coating layers formed on two or more linear materials are brought into contact with each other, the interval between adjacent linear materials may be narrowed. In the case where the first coating layers formed on the above linear materials are not in contact with each other, the distance between adjacent linear materials should be widened.
 近接する線状の材料のそれぞれについて、異なる材料の第1の被覆層を形成することができる。図40及び図41に、近接する2つの線状の材料101、102のそれぞれについて異なる材料の第1の被覆層121、122を形成したものの断面模式図を示す。図40は、線状の材料101に第1の被覆層121を形成し、次いで線状の材料102に第1の被覆層122を形成したものの例である。図41は、線状の材料102に第1の被覆層122を形成し、次いで線状の材料101に第1の被覆層121を形成したものの例である。 A first covering layer of a different material can be formed for each adjacent linear material. FIG. 40 and FIG. 41 show schematic cross-sectional views of two adjacent linear materials 101 and 102 formed with first coating layers 121 and 122 of different materials, respectively. FIG. 40 shows an example in which the first coating layer 121 is formed on the linear material 101 and then the first coating layer 122 is formed on the linear material 102 . FIG. 41 shows an example in which the first covering layer 122 is formed on the linear material 102 and then the first covering layer 121 is formed on the linear material 101 .
 本方法では、レーザー照射により線状の材料の温度が高くなるために、線状の材料が接する基板の表面の一部が溶融することがあり、図13に示すようなコア10と基板40との界面の少なくとも一部に空洞部14が形成されることがある。 In this method, since the temperature of the linear material increases due to the laser irradiation, a part of the surface of the substrate in contact with the linear material may be melted. A cavity 14 may be formed in at least a part of the interface between.
 本方法で用いられる基板は、線状の材料を形成することができ且つ第1の固体ナノ材料を分散させる分散媒に溶解、反応等しない基板であれば特に制限されず、ガラス、ポリイミド、フッ化カルシウム等であることができる。基板は、別の材料でコーティングされたものでもよく、例えば、酸化インジウムスズ(ITO)等の透明導電成膜がコーティングされたものでもよい。 The substrate used in this method is not particularly limited as long as it can form a linear material and does not dissolve or react with the dispersion medium for dispersing the first solid nanomaterial. calcium chloride and the like. The substrate may be coated with another material, for example a transparent conductive film such as indium tin oxide (ITO).
 基板の主面に沿って線状の材料が配置されている場合、レーザー照射により線状の材料の温度が高くなるために、線状の材料が接する基板の表面の一部が溶融すると、コアと基板と接合強度が向上する。また、基板はレーザー照射により加熱される線状の材料に接するため、基板の損傷を避けるためには、加熱される線状の材料の温度よりも高い融点を有する基板が好ましい。例えば、SiOガラスは軟化点が高いので、基板として用いると線状の材料と接する面が溶融しにくく、ソーダ石灰ガラスやホウケイ酸ガラスは軟化点が低いので、基板として用いると線状の材料と接する面が溶融しやすい。 When a linear material is arranged along the main surface of the substrate, the temperature of the linear material increases due to the laser irradiation. And the substrate and bonding strength are improved. Further, since the substrate is in contact with the linear material heated by laser irradiation, the substrate preferably has a melting point higher than the temperature of the linear material to be heated in order to avoid damaging the substrate. For example, SiO2 glass has a high softening point, so when used as a substrate, the surface in contact with a linear material is difficult to melt. The surface in contact with is easy to melt.
 本方法で用いられる基板の形状は、分散液に浸した線状の材料にレーザー光を照射することが可能な構造であれば、特に制限されずに適用可能である。例えば、図14に示すようなガラス製の透明管等の筒基板40の内側や、図15に示すような曲面形状の主表面を有する基板40上にも複合配線100を形成することができる。 The shape of the substrate used in this method is not particularly limited as long as it has a structure that allows a linear material immersed in a dispersion liquid to be irradiated with a laser beam. For example, the composite wiring 100 can be formed inside a tubular substrate 40 such as a transparent tube made of glass as shown in FIG. 14 or on a substrate 40 having a curved main surface as shown in FIG.
 本方法によれば、金属、セラミックス、またはそれらの組合せを含むコアと第1の被覆層との界面に隙間がない複合体を得ることができる。コアと第1の被覆層との界面に隙間がないので、コアと第1の被覆層との界面が密着した複合体を得ることができる。界面の隙間有無は、複合体の長手方向に垂直方向の断面のFIB加工面を、複合体の断面全体が含まれる程度の視野範囲の走査型電子顕微鏡像(SEM像)または透過型電子顕微鏡像(TEM像)で観察することにより、判定される。 According to this method, it is possible to obtain a composite having no gaps at the interface between the core containing metal, ceramics, or a combination thereof and the first coating layer. Since there is no gap at the interface between the core and the first coating layer, it is possible to obtain a composite in which the interface between the core and the first coating layer is in intimate contact. The presence or absence of interfacial gaps is a scanning electron microscope image (SEM image) or a transmission electron microscope image of the FIB processed surface of the cross section perpendicular to the longitudinal direction of the composite in a viewing range that includes the entire cross section of the composite. It is determined by observing with (TEM image).
 レーザー光を移動させないで線状の材料の同じ箇所にレーザー光を照射し続けると、線状の材料の周囲に気泡が発生して固体ナノ材料が集められるものの、同じ箇所に気泡が発生し続けるので、線状の材料と第1の被覆層との界面に、気泡による隙間が形成されてしまう。 If the laser beam continues to irradiate the same part of the linear material without moving the laser beam, air bubbles are generated around the linear material and the solid nanomaterials are collected, but the air bubbles continue to be generated in the same position. Therefore, gaps due to air bubbles are formed at the interface between the linear material and the first coating layer.
 本方法においては、線状の材料に第1のレーザー光を照射しながら第1のレーザー光の集光部を線状の材料に沿って移動させるため、線状の材料の周囲に第1の固体ナノ材料が集まりつつあるときに、第1の固体ナノ材料が集まりつつある線状の材料の周囲に気泡がさらに発生しないため、界面に隙間がない複合体を形成することができる。 In this method, while the linear material is irradiated with the first laser beam, the focusing portion of the first laser beam is moved along the linear material. When the solid nanomaterials are gathering, no additional air bubbles are generated around the linear material on which the first solid nanomaterial is gathering, so a composite with no gaps at the interface can be formed.
 第1の被覆層を形成する第1の固体ナノ材料は互いに強固に凝集している。第1の被覆層とコアも強固に結合している。複合体を形成した基板を破断しても第1の被覆層はコアの周囲に維持されることができる。理論に束縛されるものではないが、第1の固体ナノ材料は、互いにファンデルワールス力と液架橋力によって凝集していると考えられる。 The first solid nanomaterials forming the first coating layer are strongly agglomerated with each other. The first coating layer and the core are also strongly bonded. The first coating layer can be maintained around the core even if the substrate forming the composite is fractured. Without wishing to be bound by theory, it is believed that the first solid nanomaterials are aggregated together by van der Waals forces and liquid bridge forces.
 第1の固体ナノ材料は気泡の表面の作用で第1の分散液中から集められるが、気泡の表面温度は第1の分散液の沸点と同程度の温度までしか上がらないので、第1の固体ナノ材料の温度は70~100℃程度の温度までしか上がらない。したがって、第1の被覆層を構成する第1の固体ナノ材料は、焼結や溶融は実質的にしておらず、第1の被覆層を形成する前の第1の固体ナノ材料の形状及び特性を実質的に維持している。そのため、例えば、コアシェル構造を有する量子ドットを第1の固体ナノ材料として用いた場合、被覆前の量子ドットの特性を維持したまま、第1の被覆層を形成することができる。本方法によれば焼結プロセスを経ないので、焼結が難しい炭化タンタル等の高融点材料で構成された第1の被覆層を形成することもできる。 The first solid nanomaterial is collected from the first dispersion by the action of the surface of the bubbles, but since the surface temperature of the bubbles rises only to a temperature similar to the boiling point of the first dispersion, the first solid nanomaterial is The temperature of solid nanomaterials rises only up to about 70-100°C. Therefore, the first solid nanomaterial constituting the first coating layer is not substantially sintered or melted, and the shape and properties of the first solid nanomaterial before forming the first coating layer are similar to those of the first solid nanomaterial. substantially maintained. Therefore, for example, when quantum dots having a core-shell structure are used as the first solid nanomaterial, the first coating layer can be formed while maintaining the properties of the quantum dots before coating. Since this method does not involve a sintering process, it is also possible to form the first coating layer composed of a high-melting-point material such as tantalum carbide, which is difficult to sinter.
 本方法によれば、金属、セラミックス、またはそれらの組合せを含むコアの内部に第1の固体ナノ材料を含まない複合体を得ることができる。金属コアの形成と被覆層の形成とを同時に行う特許文献1の方法では、コアの内部に被覆層を構成する固体ナノ材料が入り込むことがあり、コアの特性に影響がでることがあった。例えば、抵抗率の低い金属コアを得たい場合、導電性に優れたAgのみで構成された金属コアを形成しようとしても、金属コアの内部に絶縁体のSiO等の固体ナノ材料が入り込むと、金属コアの導電性が低下する。本方法によれば、コアの特性に影響を及ぼさずに、コアと第1の被覆層とから構成される複合体を形成することができるので、所望の金属のみで構成された金属コアと第1の被覆層とから構成される複合体を形成することができる。本方法で形成される複合体における金属コアの抵抗率は、好ましくは1×10-8Ω・m~10×10-8Ω・mである。本方法によればまた、セラミックスのみで構成されたコアや金属とセラミックスとの複合体のコアを形成し、複合体コアの表面に被覆層を形成することもできる。 According to the method, composites can be obtained that do not contain the first solid nanomaterial inside a core that contains metals, ceramics, or combinations thereof. In the method of Patent Document 1, in which the formation of the metal core and the formation of the coating layer are performed simultaneously, the solid nanomaterial constituting the coating layer may enter the interior of the core, which may affect the properties of the core. For example, if you want to obtain a metal core with low resistivity, even if you try to form a metal core composed only of Ag, which has excellent conductivity, solid nanomaterials such as insulator SiO enter the inside of the metal core. , the conductivity of the metal core decreases. According to this method, a composite composed of the core and the first coating layer can be formed without affecting the properties of the core. A composite can be formed consisting of one coating layer. The resistivity of the metal core in the composite formed by this method is preferably between 1×10 −8 Ω·m and 10×10 −8 Ω·m. According to this method, it is also possible to form a core composed only of ceramics or a composite core of metal and ceramics, and to form a coating layer on the surface of the composite core.
 第1のレーザー光の波長は、本方法で使用する線状の材料が吸収及び加熱される波長であれば、特に限定されない。第1のレーザー光の波長を、線状の材料の吸収波長に合わせて選択することができる。第1のレーザー光の波長は、好ましくは、線状の材料の吸光係数が4000/cm以上となる波長である。 The wavelength of the first laser light is not particularly limited as long as it is a wavelength at which the linear material used in this method is absorbed and heated. The wavelength of the first laser light can be selected according to the absorption wavelength of the linear material. The wavelength of the first laser light is preferably a wavelength at which the linear material has an absorption coefficient of 4000/cm or more.
 第1のレーザー光の波長は、200nm~2000nmであるのが好ましい。第1のレーザー光は、より好ましくは780nm~2500nmの波長の近赤外光である。第1のレーザー光は、線状の材料が金属の場合、200nm~1000nmの波長が吸収されやすく好ましい。第1のレーザー光は、線状の材料がセラミックスである場合、200nm~700nmの波長が吸収されやすく好ましい。発生させる気泡の大きさは、第1のレーザー光の照射量および強度を制御することで、制御することができる。 The wavelength of the first laser light is preferably 200 nm to 2000 nm. The first laser light is more preferably near-infrared light with a wavelength of 780 nm to 2500 nm. When the linear material is a metal, the first laser beam is preferable because the wavelength of 200 nm to 1000 nm is easily absorbed. When the linear material is ceramics, the first laser light is preferable because the wavelength of 200 nm to 700 nm is easily absorbed. The size of the bubbles to be generated can be controlled by controlling the irradiation amount and intensity of the first laser light.
 第1のレーザー光は、連続発振(CW)レーザー光またはパルスレーザー光であることができる。パルスレーザー光の場合、効率的に線状の材料を加熱して気泡を形成するために、繰返し周波数(パルス数/秒)は、好ましくは1MHz以上、より好ましくは10MHz以上、さらに好ましくは100MHz以上である。 The first laser light can be continuous wave (CW) laser light or pulsed laser light. In the case of pulsed laser light, the repetition frequency (number of pulses/second) is preferably 1 MHz or higher, more preferably 10 MHz or higher, and still more preferably 100 MHz or higher, in order to efficiently heat a linear material and form bubbles. is.
 連続発振(CW)レーザーとして、例えば、一般的な半導体レーザー(波長は可視から赤外まで多様)、Ybファイバーレーザー(波長1030nm付近)、YAGレーザー(1064nm付近)等が挙げられる。CWレーザーの平均出力は、10~1000mWであるのが好ましい。CWレーザー光の集光径は、0.1~20μmであるのが好ましい。 Examples of continuous wave (CW) lasers include general semiconductor lasers (various wavelengths from visible to infrared), Yb fiber lasers (wavelength around 1030 nm), YAG lasers (around 1064 nm), and the like. The average power of the CW laser is preferably between 10 and 1000 mW. The condensed diameter of the CW laser beam is preferably 0.1 to 20 μm.
 パルスレーザー光は、超短パルスレーザー光でもよい。超短パルスレーザー光とは、数フェムト秒(1フェムト秒は1×10-15秒、fsとも表記される。)~数百ピコ秒(1ピコ秒は1×10-12秒、psとも表記される。)のパルス幅をもつパルスレーザーである。超短パルスレーザー光の平均出力は、10mW以上であるのが好ましい。超短パルスレーザー光の集光径は、20μm以下であるのが好ましい。超短パルスレーザー光の繰返し周波数は、1Hz~500MHzであるのが好ましい。第1のレーザーとしてのパルスレーザー光の波長のフルエンス(単位面積に投入されるエネルギー)は、0.01mJ/cm~10mJ/cmであるのが好ましい。 The pulsed laser light may be ultrashort pulsed laser light. Ultrashort pulse laser light is a few femtoseconds (1 femtosecond is 1×10 −15 seconds, also denoted as fs) to several hundred picoseconds (1 picosecond is 1×10 −12 seconds, also denoted as ps ) is a pulsed laser with a pulse width of The average output of the ultrashort pulse laser light is preferably 10 mW or more. The focused diameter of the ultrashort pulse laser beam is preferably 20 μm or less. The repetition frequency of the ultrashort pulse laser light is preferably 1 Hz to 500 MHz. The fluence (energy applied to a unit area) of the wavelength of the pulse laser light as the first laser is preferably 0.01 mJ/cm 2 to 10 mJ/cm 2 .
 本方法では、図16に示すように、レーザー源32をビームスプリッター34で分岐して複数の第1のレーザー光30を並行に照射して、複数の複合体を同時に形成することもできる。 In this method, as shown in FIG. 16, a plurality of composites can be simultaneously formed by splitting the laser source 32 with a beam splitter 34 and irradiating a plurality of first laser beams 30 in parallel.
 本複合体の製造方法は、好ましくは、前記複合体を、第2の固体ナノ材料が分散された第2の分散液に浸すこと、並びに前記第2の分散液に浸した前記複合体に第2のレーザー光を照射しながら、前記複合体に沿って前記第2のレーザー光の集光部を移動させて、前記第2の固体ナノ材料で構成された第2の被覆層を前記第1の被覆層の表面の少なくとも一部に形成して、前記コア/前記第1の被覆層/前記第2の被覆層を有する複合体を形成することを含み、前記第2の固体ナノ材料は、金属酸化物、非金属酸化物、セラミックス、金属、及び樹脂からなる群から選択される少なくとも一種で構成される。 The method for producing the present composite preferably comprises: immersing the composite in a second dispersion in which a second solid nanomaterial is dispersed; While irradiating the laser light of 2, the condensing part of the second laser light is moved along the composite, so that the second coating layer composed of the second solid nanomaterial is covered with the first laser light. forming on at least a portion of a surface of a coating layer of to form a composite having said core/ said first coating layer/ said second coating layer, said second solid nanomaterial comprising: It is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals and resins.
 第2の固体ナノ材料は、第1の固体ナノ材料と同じでも異なっていてもよく、第2の被覆層の機能等に応じて選択すればよい。第2の被覆層の材料や厚み等は、第1の被覆層の材料や厚み等と同じでも異なっていてもよく、第2の被覆層の機能等に応じて選択すればよい。第2の分散液の媒体は、第1の分散液の媒体と同じでも異なっていてもよく、第2の固体ナノ材料を分散しやすい媒体等にすることができる。第2のレーザー光は、第1のレーザー光と同じでも異なっていてもよく、第2の被覆層の材料等に応じて選択すればよい。 The second solid nanomaterial may be the same as or different from the first solid nanomaterial, and may be selected according to the function of the second coating layer. The material, thickness, etc. of the second coating layer may be the same as or different from the material, thickness, etc. of the first coating layer, and may be selected according to the function of the second coating layer. The medium of the second dispersion may be the same as or different from the medium of the first dispersion, and may be a medium in which the second solid nanomaterial is easily dispersed. The second laser beam may be the same as or different from the first laser beam, and may be selected according to the material of the second coating layer and the like.
 第1の被覆層の上に第2の被覆層を形成する際も、第1の被覆層と第2の被覆層との界面に隙間を形成せずに、被覆層同士が密着した多層被覆層を有する複合体を得ることができる。3層以上の被覆層を得る場合も同様である。 Even when forming the second coating layer on the first coating layer, a multilayer coating layer in which the coating layers are in close contact with each other without forming a gap at the interface between the first coating layer and the second coating layer can be obtained. The same applies to the case of obtaining three or more coating layers.
 本方法は、好ましくは、基板を準備すること、基板の主面に沿って線状の材料を形成すること、及び線状の材料の表面を前記基板との間で覆うように、第1の固体ナノ材料で構成された第1の被覆層を形成することを含む。図3、図8、及び図11~13に模式的に例示するように、線状の材料の軸方向に垂直方向の断面において、好ましくは、コアの表面が基板と第1の被覆層とで覆われる。 The method preferably comprises preparing a substrate, forming a linear material along a major surface of the substrate, and forming a first Forming a first coating layer composed of solid nanomaterials. As schematically illustrated in FIGS. 3, 8, and 11 to 13, in a cross section perpendicular to the axial direction of the linear material, preferably the surface of the core is the substrate and the first coating layer. covered.
 本方法では、線状の材料に含まれる金属、セラミックス、またはそれらの組合せは、第1のレーザー光を吸収して加熱される材料であれば特に限定されず、市販の金属、セラミックス、またはそれらの組合せを含む線状の材料でもよく、所望の方法で作製した金属、セラミックス、またはそれらの組合せを含む線状の材料でもよい。金属、セラミックス、またはそれらの組合せを含む材料は、例えば、銀(Ag)、酸化インジウムスズ(ITO)、金属粒子を分散させて含有するガラス、またはそれらの組合せ等が挙げられる。金属、セラミックス、またはそれらの組合せを含む材料に合わせて、吸収されて加熱できる波長を有する第1のレーザー光を用いてもよく、第1のレーザー光の波長に合わせて、吸収して加熱される金属、セラミックス、またはそれらの組合せを含む材料を用いてもよい。線状の材料は、好ましくは金属、金属元素を含むセラミックス、またはそれらの組合せを含む。線状の形状は特に限定されず、例えば、直線形状、2本以上の直線が異なる角度で交わる直線形状、屈曲部を有する直線形状、曲線形状、またはそれらの組み合わせでよく、二次元的な形状に限られず、三次元的な形状でもよい。 In this method, the metal, ceramics, or combination thereof contained in the linear material is not particularly limited as long as it is a material that is heated by absorbing the first laser light, and commercially available metals, ceramics, or , or metals, ceramics, or combinations thereof made by any desired method. Materials including metals, ceramics, or combinations thereof include, for example, silver (Ag), indium tin oxide (ITO), glass containing dispersed metal particles, or combinations thereof. For materials including metals, ceramics, or combinations thereof, a first laser light having a wavelength that can be absorbed and heated may be used, and the wavelength of the first laser light is matched to the wavelength of the first laser light that is absorbed and heated. Materials including metals, ceramics, or combinations thereof may be used. The linear material preferably includes metal, ceramics containing metallic elements, or combinations thereof. The linear shape is not particularly limited. , and may be a three-dimensional shape.
 線状の材料に含まれる金属は、第1のレーザー光を吸収して加熱可能であり且つ第1の分散液と反応しない金属であれば特に制限されず、複合体のコアとして求められる特性に応じて選択される。線状の材料に含まれる金属は、金属、合金、または金属間化合物でもよい。線状の材料に含まれる金属は、好ましくは、Ag、Cu、Au、Pt、Pd、Ni、Pb、及びSnからなる群から選択される少なくとも一種またはそれらを含む合金で構成される。 The metal contained in the linear material is not particularly limited as long as it can be heated by absorbing the first laser beam and does not react with the first dispersion liquid, and has the properties required for the core of the composite. selected accordingly. The metals contained in the linear material can be metals, alloys, or intermetallics. The metal contained in the linear material is preferably composed of at least one selected from the group consisting of Ag, Cu, Au, Pt, Pd, Ni, Pb, and Sn, or an alloy containing them.
 線状の材料に含まれるセラミックスは、第1のレーザー光を吸収して加熱可能であり且つ第1の分散液と反応しないセラミックスであれば特に制限されず、複合体のコアとして求められる特性に応じて選択される。線状の材料に含まれるセラミックスは、金属元素を含むセラミックス、非金属元素を含むセラミックス、またはそれらの組合せであることができ、好ましくは金属元素を含むセラミックスである。線状の材料に含まれるセラミックスは、好ましくは、酸化インジウムスズ(ITO)、フッ素添加酸化スズ(FTO)、Si、SiC、Al、Si、ZrO、AgO、CuO、及びカーボンからなる群から選択される少なくとも一種またはそれらの組み合わせで構成され、より好ましくは、酸化インジウムスズ(ITO)、フッ素添加酸化スズ(FTO)、Al、ZrO、AgO、及びCuOからなる群から選択される少なくとも一種またはそれらの組み合わせで構成される。 The ceramics contained in the linear material is not particularly limited as long as it can be heated by absorbing the first laser beam and does not react with the first dispersion liquid, and has the properties required for the core of the composite. selected accordingly. The ceramics contained in the linear material can be ceramics containing metallic elements, ceramics containing non-metallic elements, or a combination thereof, preferably ceramics containing metallic elements. The ceramics contained in the linear material are preferably indium tin oxide (ITO), fluorinated tin oxide ( FTO), Si3N4 , SiC, Al2O3 , Si, ZrO2 , Ag2O , Cu 2 O, and at least one selected from the group consisting of carbon or a combination thereof, more preferably indium tin oxide (ITO), fluorine-added tin oxide (FTO), Al 2 O 3 , ZrO 2 , Ag 2 O and Cu 2 O or at least one selected from the group consisting of Cu 2 O or a combination thereof.
 複合体のコアを金属で構成するときの金属コアの抵抗率は、好ましくは1×10-8Ω・m~10×10-8Ω・mである。複合体の被覆層を絶縁体で作製した場合の被覆層の抵抗率は、好ましくは1MΩ・m以上である。 When the composite core is made of metal, the metal core preferably has a resistivity of 1×10 −8 Ω·m to 10×10 −8 Ω·m. When the coating layer of the composite is made of an insulator, the coating layer preferably has a resistivity of 1 MΩ·m or more.
 線状の材料の形成方法は、特に限定されず、レーザー照射、スクリーン印刷、リソグラフィ、メッキ等で形成してもよい。例えば、ポリイミドフィルム基板上にAgナノインクをスピンコート法により塗布し、レーザー照射して、Agで構成された線状の材料を形成してもよい。 The method of forming the linear material is not particularly limited, and may be formed by laser irradiation, screen printing, lithography, plating, or the like. For example, Ag nano-ink may be applied onto a polyimide film substrate by spin coating and irradiated with a laser to form a linear material composed of Ag.
 線状の材料は、レーザー照射で形成してもよい。レーザー照射で形成する一例は、金属イオンを含む水、エタノール等の混合溶液中に集光するようにレーザーを照射しながら集光部を移動させると、溶液中の金属イオンがレーザーの光エネルギーで還元されて線状の金属を析出させることができる。Agの場合、硝酸銀を含む水、エタノール等の混合溶液中に集光するようにレーザーを照射しながら集光部を移動させると、溶液中のAgイオンがレーザーの光エネルギーで還元されてAgで構成された線状の金属を析出させることができる。Cu及びAuについても同様に、Cuイオン及びまたはAuイオンが、レーザーの光エネルギーで還元されて、基板上にCuまたはAuの配線を形成することができる。混合溶液に、金属イオンを含む水、エタノールに加えて、SiO等のセラミックス等を混合することにより、複合体の線状の材料を得ることもできる。 A linear material may be formed by laser irradiation. An example of formation by laser irradiation is to move the light collecting part while irradiating a laser so as to focus light in a mixed solution of water, ethanol, etc. containing metal ions. It can be reduced to deposit linear metal. In the case of Ag, when a laser beam is irradiated so as to focus light in a mixed solution of water, ethanol, etc. containing silver nitrate, and the light-collecting portion is moved, the Ag ions in the solution are reduced by the light energy of the laser and turned into Ag. Structured linear metal can be deposited. Similarly for Cu and Au, Cu ions and/or Au ions can be reduced by laser light energy to form Cu or Au wiring on the substrate. Composite linear materials can also be obtained by mixing ceramics such as SiO 2 in addition to water and ethanol containing metal ions to the mixed solution.
 線状の材料をレーザー照射で形成する場合、線状の材料を形成するレーザーと第1の被覆層を形成する第1のレーザーとは同じでも異なってもよい。好ましくは、線状の材料を形成するためのレーザーは光還元作用が得られるレーザーが用いられ、第1の被覆層を形成するための第1のレーザーは線状の材料を加熱するのに適した、波長がより長いレーザーが用いられる。例えば、線状の材料を紫外線レーザー等の安価なレーザーを用いて形成して、第1の被覆層を近赤外線レーザーで形成してもよい。 When forming a linear material by laser irradiation, the laser for forming the linear material and the first laser for forming the first coating layer may be the same or different. Preferably, the laser for forming the linear material is a laser capable of obtaining a photoreduction action, and the first laser for forming the first coating layer is suitable for heating the linear material. Also, longer wavelength lasers are used. For example, a linear material may be formed using an inexpensive laser such as an ultraviolet laser, and the first coating layer may be formed using a near-infrared laser.
 本方法において、好ましくは、基板の主面に沿って線状の材料を形成することは、基板の少なくとも一方の主面を、金属イオン、金属コロイド、及び金属錯体からなる群から選択される少なくとも一種を含む溶液または分散液に浸すこと、並びに溶液または分散液に浸された基板の主面にレーザー光を照射しながら、基板の表面に沿ってレーザー光の集光部を移動させて、基板上に前記線状の材料を形成することを含む。 In this method, preferably, forming the linear material along the major surface of the substrate includes at least one major surface of the substrate being at least one selected from the group consisting of metal ions, metal colloids, and metal complexes. The substrate is immersed in a solution or dispersion containing one species, and while irradiating the main surface of the substrate immersed in the solution or dispersion with a laser beam, the laser beam condensing part is moved along the surface of the substrate. forming said line of material thereon.
 金属イオン、金属コロイド、及び金属錯体からなる群から選択される少なくとも一種を含む溶液または分散液は、レーザーを照射して金属を析出させて金属を含む材料を形成するための溶液または分散液である。レーザー光は、光還元作用が得られる紫外線レーザー光が好ましい。 A solution or dispersion containing at least one selected from the group consisting of metal ions, metal colloids, and metal complexes is a solution or dispersion for forming a metal-containing material by irradiating with a laser to deposit a metal. be. The laser beam is preferably an ultraviolet laser beam that provides a photoreduction effect.
 金属イオン、金属コロイド、及び金属錯体に含まれる金属は、溶媒に水を選択した場合、水および高温の水蒸気と反応しない金属であるのが好ましく、銀、銅、ニッケル、鉛、錫、白金及び金からなる群から選ばれる。水や高温の水蒸気と反応する金属(例えば、カリウム、マグネシウム、アルミニウム、亜鉛、鉄などイオン化傾向の高い金属)の場合であっても、溶媒を適宜選択することにより、好ましい金属を選択することが可能である。 Metals contained in metal ions, metal colloids, and metal complexes are preferably metals that do not react with water and high-temperature steam when water is selected as the solvent, such as silver, copper, nickel, lead, tin, platinum and metals. Selected from the group consisting of gold. Even in the case of metals that react with water or high-temperature steam (for example, metals with a high ionization tendency such as potassium, magnesium, aluminum, zinc, and iron), it is possible to select a preferable metal by appropriately selecting a solvent. It is possible.
 金属が溶液または分散液中にイオンとして存在する場合、金属イオンは、例えばAg+、Cu+、Cu2+、Ni2+、Sn2+、Sn3+、Sn4+、Pb2+、Pt2+、Au+、Au3+などであってよい。金属塩の対イオンは、硝酸イオン、硫酸イオン、カルボン酸イオン、シアン化物イオン、スルホン酸イオン、ホウ酸イオン、ハロゲンイオン、炭酸イオン、リン酸イオンおよび過塩素酸イオンからなる群から選択されるのが好ましい。 When the metal is present as ions in the solution or dispersion, the metal ions are for example Ag + , Cu + , Cu 2+ , Ni 2+ , Sn 2+ , Sn 3+ , Sn 4+ , Pb 2+ , Pt 2+ , Au + , Au3 + , and the like. The counterion of the metal salt is selected from the group consisting of nitrate, sulfate, carboxylate, cyanide, sulfonate, borate, halide, carbonate, phosphate and perchlorate. is preferred.
 金属が溶液または分散液中にコロイドとして存在する例としては、銀コロイド、銅コロイド、ニッケルコロイドなどが挙げられる。金属が溶液または分散液中に錯体として存在する場合としては、例えば、金属原子に配位子を配位することにより、溶媒に分散、溶解しやすくしたような場合が挙げられる。 Examples of metals that exist as colloids in solutions or dispersions include silver colloids, copper colloids, and nickel colloids. Examples of the case where the metal exists as a complex in a solution or dispersion include a case in which a metal atom is coordinated with a ligand to facilitate dispersion and dissolution in a solvent.
 銀の錯体の例としては、ドコサン酸銀、クロロ[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]銀、ピリジン-2-カルボン酸銀(II)、スルファジアジン銀等を挙げることができる。銅の錯体の例としては、酢酸銅(I)、ビス(1,3-プロパンジアミン)銅(II)ジクロリド、第二銅アセチルアセトナート、ビス(8-キノリノラト)銅(II)等を挙げることができる。金の錯体の例としては、テトラクロロ金(III)酸四水和物、(ジメチルスルフィド)金(I)クロリド、クロロ[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン]金(I)等を挙げることができる。鉛の錯体の例としては、四酢酸鉛、酢酸鉛(II)等を挙げることができる。更に、銀ナノインク、銅ナノインクのような金属錯体を含む製品であってよい。 Examples of silver complexes include silver docosanoate, silver chloro[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]silver, silver (II) pyridine-2-carboxylate, and silver sulfadiazine. can be mentioned. Examples of copper complexes include copper(I) acetate, bis(1,3-propanediamine)copper(II) dichloride, cupric acetylacetonate, bis(8-quinolinolato)copper(II), and the like. can be done. Examples of gold complexes include tetrachloroaurate(III) acid tetrahydrate, (dimethylsulfide)gold(I) chloride, chloro[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene ] Gold (I) and the like can be mentioned. Examples of lead complexes include lead tetraacetate and lead (II) acetate. Furthermore, it may be a product containing a metal complex such as silver nanoink or copper nanoink.
 溶液または分散液中の金属の濃度は、特に限定されないが、0.1質量%以上が好ましい。金属の濃度を0.1質量%以上にすると、レーザー光の照射により形成される線状の材料の厚みを大きくすることができる。溶液または分散液中の金属の濃度の上限は特に限定されないが、3.0質量%以下にしてもよい。 The concentration of the metal in the solution or dispersion is not particularly limited, but is preferably 0.1% by mass or more. When the concentration of the metal is 0.1% by mass or more, the thickness of the linear material formed by laser light irradiation can be increased. Although the upper limit of the metal concentration in the solution or dispersion is not particularly limited, it may be 3.0% by mass or less.
 本開示はまた、金属、セラミックス、またはそれらの組合せを含む線状の材料コア、及び前記線状の材料コアの表面の少なくとも一部を覆う、第1の固体ナノ材料で構成された第1の被覆層を含み、前記第1の固体ナノ材料は、金属酸化物、非金属酸化物、セラミックス、金属、及び樹脂からなる群から選択される少なくとも一種で構成され、前記線状の材料コアと前記第1の被覆層との間に隙間がない、複合体を対象とする。 The present disclosure also provides a linear material core comprising metals, ceramics, or combinations thereof, and a first nanomaterial comprising a first solid nanomaterial covering at least a portion of the surface of the linear material core. The first solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins, and comprises the linear material core and the The target is a composite having no gap between it and the first coating layer.
 本開示の複合体は、好ましくは、線状の材料コアの内部に第1の固体ナノ材料を含まない。 The composite of the present disclosure preferably does not contain the first solid nanomaterial inside the linear material core.
 本開示の複合体において、第1の被覆層を構成する第1の固体ナノ材料は、好ましくは、1~3000nmの直径を有する。 In the composite of the present disclosure, the first solid nanomaterial constituting the first coating layer preferably has a diameter of 1-3000 nm.
 本開示の複合体は、好ましくは、基板、前記基板の主面に沿って配置された前記線状の材料コア、及び前記線状の材料コアの表面を前記基板との間で覆うように配置された、第1の固体ナノ材料で構成された第1の被覆層を含む。図3、図8、及び図11~13に模式的に例示するように、線状の材料の軸方向に垂直方向の断面において、好ましくは、材料コアの表面が基板と第1の被覆層とで覆われる。 The composite of the present disclosure preferably includes a substrate, the linear material cores arranged along the main surface of the substrate, and the surfaces of the linear material cores arranged so as to cover the surface between the substrate and the substrate. and a first coating layer composed of a first solid nanomaterial. As schematically illustrated in FIGS. 3, 8, and 11 to 13, in a cross section perpendicular to the axial direction of the linear material, preferably, the surface of the material core is the substrate and the first coating layer. covered with
 好ましくは、本開示の複合体の線状の材料コアは、略半円形状の断面を有する。断面が半円形状に近いほど、固体ナノ材料を集めやすく、被覆層形成の時間を短縮することができる。 Preferably, the linear material core of the composite of the present disclosure has a substantially semi-circular cross-section. The closer the cross section is to a semicircular shape, the easier it is to collect the solid nanomaterials, and the shorter the time to form the coating layer.
 好ましくは、本開示の複合体の線状の材料コアと被覆層とが、互いに相似形状の断面を有する。 Preferably, the linear material core and coating layer of the composite of the present disclosure have cross sections of similar shapes to each other.
 本開示の複合体は、好ましくは、第1の被覆層の表面に、他の固体ナノ材料で構成された1層以上の被覆層を含む。本開示の複合体は、第1の被覆層の表面を覆うように、第2の固体ナノ材料で構成された第2の被覆層を備えることができる。本開示の複合体は、第2の被覆層の表面を覆うように、第3の固体ナノ材料で構成された第3の被覆層をさらに備えることができ、さらに第4の被覆層、第5の被覆層・・・というように複数の被覆層を備えることができる。各被覆層を構成する固体ナノ材料は、互いに異なってもよく同じでもよいが、好ましくは互いに異なる。このような被覆層が多層構造を有することにより、本開示の複合体は、例えば、絶縁層、半導体層、p-nジャンクションを構成する異なる半導体が接合した層等の被覆層を備えることができる。 The composite of the present disclosure preferably includes one or more coating layers composed of other solid nanomaterials on the surface of the first coating layer. The composite of the present disclosure can comprise a second coating layer composed of a second solid nanomaterial overlying the surface of the first coating layer. The composite of the present disclosure can further comprise a third coating layer composed of a third solid nanomaterial overlying the surface of the second coating layer; A plurality of coating layers can be provided such as a coating layer of . The solid nanomaterials constituting each coating layer may be different from each other or the same, but preferably different from each other. Due to the multi-layered structure of such a coating layer, the composite of the present disclosure can comprise a coating layer such as, for example, an insulating layer, a semiconductor layer, or a layer in which different semiconductors are joined to form a pn junction. .
 本開示の複合体に関する他の構成について、上述した複合体の製造方法において記載した複合体に関する構成が適用される。 For other configurations related to the composite of the present disclosure, the configuration related to the composite described in the method for manufacturing the composite described above is applied.
 本開示はまた、金属、セラミックス、またはそれらの組合せを含む凸状の材料を準備すること、前記凸状の材料を、第1の固体ナノ材料が分散された第1の分散液に浸すこと、及び前記第1の分散液に浸した前記凸状の材料に第1のレーザー光を照射しながら、前記凸状の材料に沿って前記第1のレーザー光の集光部を移動させて、前記凸状の材料の表面の少なくとも一部上に前記第1の固体ナノ材料で構成された局所的コーティング物を形成することを含み、前記第1の固体ナノ材料は、金属酸化物、非金属酸化物、セラミックス、金属、及び樹脂からなる群から選択される少なくとも一種で構成される、局所的コーティング物の製造方法を対象とする。 The present disclosure also provides a convex material comprising metals, ceramics, or combinations thereof, immersing the convex material in a first dispersion in which a first solid nanomaterial is dispersed; and while irradiating the convex material immersed in the first dispersion liquid with the first laser light, moving the condensing part of the first laser light along the convex material, forming a localized coating of said first solid nanomaterial on at least a portion of a surface of a convex material, said first solid nanomaterial being a metal oxide, a non-metal oxide; The present invention is directed to a method for producing a topical coating composed of at least one selected from the group consisting of materials, ceramics, metals, and resins.
 金属、セラミックス、またはそれらの組合せを含む凸状の材料(以下、凸状の材料ともいう)の形状は、凸部を有する形状であればよく、線状、点状、不定形状でもよい。上述した線状の材料への第1のレーザー光を照射する場合と同様に、第1のレーザー光を凸状の材料に照射して集光部を移動させると、気泡が移動しながら第1の固体ナノ材料が気泡の後方に集められ、第1の被覆層を形成することができる。 The shape of the convex material (hereinafter also referred to as convex material) containing metal, ceramics, or a combination thereof (hereinafter also referred to as convex material) may be any shape having convex portions, and may be linear, dotted, or irregular. As in the case of irradiating the linear material with the first laser beam described above, when the convex material is irradiated with the first laser beam and the condensing part is moved, the bubbles move and move the first laser beam. of solid nanomaterials can be collected behind the bubbles to form a first coating layer.
 本方法により形成される局所的コーティング物の厚みは、好ましくは100nm~10μmである。凸部の厚み及び直径は、好ましくは1~10μmである。直径は円相当径である。本局所的コーティング物の製造方法における凸状の材料は、上記の線状の材料と同じであることができる。 The thickness of the localized coating formed by this method is preferably 100 nm to 10 μm. The thickness and diameter of the protrusions are preferably 1 to 10 μm. The diameter is equivalent circle diameter. The convex material in the method of making the topical coating can be the same as the linear material described above.
 本局所的コーティング物の製造方法に関する他の構成について、上述した複合体の製造方法において記載した構成が適用される。 For other configurations related to the method for producing the topical coating, the configurations described in the method for producing the composite described above are applied.
 本開示はまた、金属、セラミックス、またはそれらの組合せを含む凸状の材料コアの表面の少なくとも一部を覆う、第1の固体ナノ材料で構成された局所的コーティング物であって、前記第1の固体ナノ材料は、金属酸化物、非金属酸化物、セラミックス、金属、及び樹脂からなる群から選択される少なくとも一種で構成され、前記凸状の材料コアと前記第1の被覆層との間に隙間がない、局所的コーティング物を対象とする。 The present disclosure also provides a topical coating composed of a first solid nanomaterial covering at least a portion of a surface of a convex material core comprising metals, ceramics, or combinations thereof, wherein said first The solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins, and is between the convex material core and the first coating layer It is intended for topical coatings without gaps in the
 本局所的コーティング物の厚みは、好ましくは100nm~10μmである。凸状の材料コアの厚み及び直径は、好ましくは1~10μmである。直径は円相当径である。凸状の材料コアの材料は、上記の線状の材料と同じであることができる。金属、セラミックス、またはそれらの組合せを含む凸状の材料コア(以下、凸状の材料コアともいう)の形状は、凸部を有する形状であればよく、線状、点状、不定形状でもよい。 The thickness of this topical coating is preferably between 100 nm and 10 μm. The thickness and diameter of the convex material core is preferably between 1 and 10 μm. The diameter is equivalent circle diameter. The material of the convex material core can be the same as the linear material described above. The shape of the convex material core (hereinafter also referred to as convex material core) containing metal, ceramics, or a combination thereof (hereinafter also referred to as convex material core) may be any shape having a convex portion, and may be linear, dotted, or irregular. .
 本局所的コーティング物に関する他の構成について、上述した複合体において記載した構成が適用される。 For other configurations regarding this topical coating, the configurations described in the composite above apply.
 (実施例1)
 (線状の材料の形成)
 褐色ビン中に、純水6mLとエタノール10mlを入れ、硝酸銀溶液(1moL/L、純正化学株式会社)を4mL入れて、攪拌した。褐色ビンから溶液をテフロン(登録商標)製のホルダーに移し、基板となる厚みが0.15mmのカバーガラスを、基板の一方の主表面がホルダー中の溶液と直接接触するようにホルダーに被せた。
(Example 1)
(Formation of linear material)
In a brown bottle, 6 mL of pure water and 10 mL of ethanol were put, and 4 mL of a silver nitrate solution (1 mol/L, Junsei Chemical Co., Ltd.) was added and stirred. The solution was transferred from the brown bottle to a Teflon (registered trademark) holder, and a cover glass having a thickness of 0.15 mm as the substrate was placed on the holder so that one main surface of the substrate was in direct contact with the solution in the holder. .
 次に、図17に示す構成を備えるフェムト秒レーザー(C-Fiber780、MenloSystems Ltd.)を用いて、レーザーの集光部が基板と溶液との接触面となるように調整し、中心波長780nm、繰返し周波数100MHz、パルス幅127fs、平均レーザー出力40mW、集光径(理論値)2μmの条件で照射した。 Next, using a femtosecond laser (C-Fiber 780, Menlo Systems Ltd.) having the configuration shown in FIG. Irradiation was performed under the conditions of a repetition frequency of 100 MHz, a pulse width of 127 fs, an average laser output of 40 mW, and a focused diameter (theoretical value) of 2 μm.
 ホルダーを走査速度30μm/秒で水平に動かすことで、基板表面にAgで構成された線状の金属を走査方向に連続的に形成した。形成した線状の金属の線幅は3.5~4.0μm、厚みは2μmであった。 By moving the holder horizontally at a scanning speed of 30 μm/sec, a linear metal made of Ag was continuously formed on the substrate surface in the scanning direction. The line width of the formed metal wire was 3.5 to 4.0 μm, and the thickness was 2 μm.
 (第1の被覆層の形成)
 水300μL及びエタノール183μLの溶液に、17μLのSiOナノ粒子分散液(Sigma-aldrich、LUDOX、TM-50、粒径(直径)22nm、濃度50質量%)を混合して、SiO濃度が2.5質量%のSiO粒子分散液を調製した。
(Formation of first coating layer)
A solution of 300 μL of water and 183 μL of ethanol was mixed with 17 μL of SiO 2 nanoparticle dispersion (Sigma-aldrich, LUDOX, TM-50, particle size (diameter) 22 nm, concentration 50% by mass), and the SiO concentration was 2 . A 0.5% by weight SiO2 particle dispersion was prepared.
 調製したSiO粒子分散液をテフロン(登録商標)製のホルダーに移し、図4に模式的に示すように、基板上に形成した線状の金属がホルダー中のSiO粒子分散液と直接接触するようにホルダーに被せた。図17に示す構成を備えるフェムト秒レーザー(C-Fiber780、MenloSystems Ltd.)の集光部が線状の金属となるように調整し、中心波長780nm、繰返し周波数100MHz、パルス幅127fs、平均レーザー出力40mW、集光径(理論値)2μmの条件で照射しながら、レーザーの集光部を線状の金属に沿って300μm/秒で移動させて、金属コアとなる線状の金属の周囲にSiO粒子の第1の被覆層を形成して、Agコア/SiO被覆層の複合配線を形成した。 The prepared SiO2 particle dispersion is transferred to a Teflon holder, and as schematically shown in FIG. 4, the linear metal formed on the substrate is in direct contact with the SiO2 particle dispersion in the holder. I put it on the holder so that I could do it. A femtosecond laser (C-Fiber780, MenloSystems Ltd.) having the configuration shown in FIG. While irradiating at 40 mW and a condensed diameter (theoretical value) of 2 μm, the laser condensing part was moved at 300 μm / sec along the linear metal, and SiO A first coating layer of two particles was formed to form a composite wiring of Ag core/SiO 2 coating layer.
 図18に、Agコアの周囲にSiO粒子で構成された第1の被覆層を有する複合配線100、すなわちAgコア/SiO被覆層の複合配線の外観SEM像を示す。第1の被覆層を形成した分、複合配線の線幅が大きくなり、形成した複合配線の線幅は10μm、厚みは3.6μmであった。 FIG. 18 shows an appearance SEM image of a composite wiring 100 having a first coating layer composed of SiO 2 particles around an Ag core, that is, a composite wiring of Ag core/SiO 2 coating layer. The line width of the composite wiring increased by the amount corresponding to the formation of the first coating layer, and the line width of the formed composite wiring was 10 μm and the thickness was 3.6 μm.
 形成された複合配線にカーボン保護膜をつけ、集束イオンビーム(Focused Ion Beam:FIB)で加工した断面について顕微鏡観察した。図19に、図18に示す複合配線のY方向の断面SEM像(FIB加工面のSEM像)を示す(以下の断面写真も同様のFIB加工面のSEM像またはTEM像である)。略半円形状の直径4μmのAgコア10の周囲にSiO粒子で構成された第1の被覆層である厚み約1.5μmSiO被覆層12が緻密に形成されていた。AgコアとSiO被覆層との界面に隙間はみられなかった。AgコアとSiO被覆層との界面は明確に形成されており、Agコアの内部にSiO粒子はみられなかった。Agコア10と基板40との界面に空洞部14がみられた。 A carbon protective film was attached to the formed composite wiring, and a cross section processed with a focused ion beam (FIB) was observed under a microscope. FIG. 19 shows a Y-direction cross-sectional SEM image (SEM image of the FIB-processed surface) of the composite wiring shown in FIG. A SiO 2 coating layer 12 having a thickness of about 1.5 μm, which is a first coating layer composed of SiO 2 particles, was densely formed around an approximately semicircular Ag core 10 having a diameter of 4 μm. No gap was found at the interface between the Ag core and the SiO2 coating layer. The interface between the Ag core and the SiO2 coating layer was clearly formed, and no SiO2 particles were found inside the Ag core. A cavity 14 was found at the interface between the Ag core 10 and the substrate 40 .
 図20に、図19の被覆層のTEM像を示す。SiO被覆層の構成するSiO粒子は緻密に集積しているが、溶融はしておらず、集積前のSiO粒子の直径を維持していた。 FIG. 20 shows a TEM image of the coating layer of FIG. Although the SiO 2 particles constituting the SiO 2 coating layer were densely packed, they were not melted and maintained the diameter of the SiO 2 particles before the accumulation.
 作製した長さが5mmのAgコア/SiO被覆層を有する複合配線の抵抗率を測定した。両端部だけ被覆層を取り除きAgコアをむき出しにして測定した複合配線の抵抗率は6.7x10-8Ω・mであった。両端部までSiO被覆層が覆っている同じ長さのAg/SiO複合配線の両端部間の抵抗率を測定したところ、5mm長で50MΩ以上であり、絶縁性が確認された。 The resistivity of the fabricated composite wiring with Ag core/SiO 2 coating layer with a length of 5 mm was measured. The resistivity of the composite wiring measured by removing the coating layer only at both ends to expose the Ag core was 6.7×10 −8 Ω·m. When the resistivity between both ends of the Ag/SiO 2 composite wiring of the same length covered with the SiO 2 coating layer up to both ends was measured, it was 50 MΩ or more with a length of 5 mm, and insulation was confirmed.
 (実施例2)
 実施例1と同様に、カバーガラス上にAgコアとなる線状の材料を形成した。図21に、形成したAg配線の外観SEM像を示す。
(Example 2)
As in Example 1, a linear material to be Ag cores was formed on a cover glass. FIG. 21 shows an appearance SEM image of the formed Ag wiring.
 水168μL及びエタノール300μLの溶液に、17μLのSiOナノ粒子分散液(Sigma-Aldrich、LUDOX、TM-50、粒径(直径)22nm、濃度50質量%)及び84mgのZnOナノワイヤ粉末(Sigma-Aldrich、773980、長さ300nm、直径50nm、粉末)を混合して、SiO濃度が4.65質量%及びZnO濃度が16.4質量%のSiOナノ粒子とZnOナノワイヤとの分散液を調製した。 In a solution of 168 μL of water and 300 μL of ethanol, 17 μL of SiO 2 nanoparticle dispersion (Sigma-Aldrich, LUDOX, TM-50, particle size (diameter) 22 nm, concentration 50% by weight) and 84 mg of ZnO nanowire powder (Sigma-Aldrich). , 773980, length 300 nm, diameter 50 nm, powder) were mixed to prepare a dispersion of SiO2 nanoparticles and ZnO nanowires with a SiO2 concentration of 4.65 wt% and a ZnO concentration of 16.4 wt%. .
 平均レーザー出力を30mWとし、レーザーの集光部を線状の材料に沿って50μm/秒で移動させたこと以外は実施例1と同様に、コアとなるAg配線を形成した基板を、調製したZnO粒子分散液中に浸漬し、レーザー照射して、Agコア/SiO粒子とZnOナノワイヤとのコンポジット被覆層の複合配線を形成した。 A substrate on which an Ag wiring serving as a core was formed was prepared in the same manner as in Example 1, except that the average laser output was 30 mW and the laser focusing portion was moved along the linear material at 50 μm/sec. It was immersed in a ZnO particle dispersion and irradiated with a laser to form a composite wiring of a composite coating layer of Ag core/SiO 2 particles and ZnO nanowires.
 図22に、Agコア/SiO粒子とZnOナノワイヤとのコンポジット被覆層の複合配線の外観SEM像を示す。形成した複合配線の線幅は4.5~9.1μm、厚みは2.9μmであった。 FIG. 22 shows an appearance SEM image of a composite wiring of a composite coating layer of Ag core/SiO 2 particles and ZnO nanowires. The composite wiring thus formed had a line width of 4.5 to 9.1 μm and a thickness of 2.9 μm.
 実施例1と同様に、形成した複合配線の断面形状を顕微鏡観察した。図23に複合配線の断面TEM像を示す。略半円形状の直径4.62μmのAgコア10の周囲に厚み約1.2μmのSiOナノ粒子とZnOナノワイヤとのコンポジットの第1の被覆層12が緻密に形成されていた。Agコアとコンポジット被覆層との界面に隙間はみられなかった。Agコアとコンポジット被覆層との界面は明確に形成されており、Agコアの内部にSiO及びZnOはみられなかった。 As in Example 1, the cross-sectional shape of the formed composite wiring was observed under a microscope. FIG. 23 shows a cross-sectional TEM image of the composite wiring. A first covering layer 12 of a composite of SiO 2 nanoparticles and ZnO nanowires with a thickness of about 1.2 μm was densely formed around an approximately semicircular Ag core 10 with a diameter of 4.62 μm. No gap was observed at the interface between the Ag core and the composite coating layer. The interface between the Ag core and the composite coating layer was clearly formed, and SiO 2 and ZnO were not found inside the Ag core.
 図24に、図23の第1の被覆層12のTEM像を示す。被覆層中にSiO粒子及びZnOナノワイヤが緻密に集積していた。図25に被覆層の断面SEM像、及び図26に、図25のエリアについてのエネルギー分散型X線分析(EDX)によるZnのマッピング写真を示す。図25の四角で囲んだ白い部分がZnOナノワイヤであり、Znのマッピング写真から被覆層中にZnOナノワイヤが分散して存在していることが分かった。 FIG. 24 shows a TEM image of the first coating layer 12 of FIG. SiO2 particles and ZnO nanowires were densely accumulated in the coating layer. FIG. 25 shows a cross-sectional SEM image of the coating layer, and FIG. 26 shows a mapping photograph of Zn in the area of FIG. 25 by energy dispersive X-ray analysis (EDX). ZnO nanowires are shown in white areas surrounded by squares in FIG. 25, and it was found from the mapping photograph of Zn that the ZnO nanowires are dispersed in the coating layer.
 (実施例3)
 実施例1と同様に、カバーガラス上にAgコアとなる線状の材料を形成した。
(Example 3)
As in Example 1, a linear material to be Ag cores was formed on a cover glass.
 水204μL及びエタノール279μLの溶液に、17μLのTiOナノ粒子分散液(Sigma-Aldrich、700347、粒径(直径)<150nm、濃度33~37wt%)を混合して、TiO濃度が1.7質量%のTiO粒子分散液を調製した。 A solution of 204 μL of water and 279 μL of ethanol was mixed with 17 μL of TiO 2 nanoparticle dispersion (Sigma - Aldrich, 700347, particle size (diameter) <150 nm, concentration 33-37 wt%) to give a TiO concentration of 1.7. A mass % TiO 2 particle dispersion was prepared.
 実施例1と同様に、コアとなるAg配線を形成した基板を、調製したTiO粒子分散液中に浸漬し、レーザー照射して、線幅が4.6μmのAgコア/TiO被覆層の複合配線を形成した。 In the same manner as in Example 1, the substrate on which the Ag wiring serving as the core was formed was immersed in the prepared TiO 2 particle dispersion and irradiated with a laser to form an Ag core/TiO 2 coating layer with a line width of 4.6 μm. Composite wiring was formed.
 実施例1と同様に、形成した複合配線の断面形状を顕微鏡観察した。略半円形状のAgコア10の周囲にTiO粒子で構成された第1被覆層であるTiO被覆層12が緻密に形成されていた。AgコアとTiO被覆層との界面に隙間はみられなかった。AgコアとTiO被覆層との界面は明確に形成されており、Agコアの内部にTiO粒子はみられなかった。 As in Example 1, the cross-sectional shape of the formed composite wiring was observed under a microscope. A TiO 2 coating layer 12, which is a first coating layer composed of TiO 2 particles, was densely formed around the Ag core 10 having a substantially semicircular shape. No gap was found at the interface between the Ag core and the TiO2 coating layer. The interface between the Ag core and the TiO2 coating layer was clearly formed, and no TiO2 particles were found inside the Ag core.
 図27に、形成したAg配線10及び複合配線100の外観SEM像を示す。図28に、図27のエリアについてEDXで測定したTiのマッピング写真を示す。複合配線の全体にTiが存在していることが分かった。 FIG. 27 shows an appearance SEM image of the formed Ag wiring 10 and composite wiring 100 . FIG. 28 shows a mapping photograph of Ti measured by EDX in the area of FIG. It was found that Ti was present throughout the composite wiring.
 (実施例4)
 実施例1と同様に、カバーガラス上にAgコアとなる線状の材料を形成した。
(Example 4)
As in Example 1, a linear material to be Ag cores was formed on a cover glass.
 水68μL及びエタノール172μLの溶液に、160μLのポリスチレンビーズ分散液(Funakoshi co.jp、FCDG003、粒径0.2um、10mg/ml)を混合して、ポリスチレンビーズ濃度が0.44質量%のポリスチレンビーズ粒子分散液を調製した。 A solution of 68 μL of water and 172 μL of ethanol was mixed with 160 μL of a polystyrene bead dispersion (Funakoshi co.jp, FCDG003, particle size 0.2 μm, 10 mg / ml) to obtain polystyrene beads having a polystyrene bead concentration of 0.44% by mass. A particle dispersion was prepared.
 実施例1と同様に、コアとなるAg配線を形成した基板を、調製したポリスチレンビーズ分散液中に浸漬し、レーザー照射して、線幅2.3μmのAgコア/ポリスチレン被覆層の複合配線を形成した。 In the same manner as in Example 1, the substrate on which the Ag wiring serving as the core was formed was immersed in the prepared polystyrene bead dispersion and irradiated with a laser to form a composite wiring of Ag core/polystyrene coating layer with a line width of 2.3 μm. formed.
 実施例1と同様に、形成した複合配線の断面形状を顕微鏡観察した。略半円形状のAgコア10の周囲にポリスチレンビーズで構成された第1被覆層であるポリスチレン被覆層12が緻密に形成されていた。Agコアとポリスチレン被覆層との界面に隙間はみられなかった。Agコアとポリスチレン被覆層との界面は明確に形成されており、Agコアの内部にポリスチレンビーズはみられなかった。 As in Example 1, the cross-sectional shape of the formed composite wiring was observed under a microscope. A polystyrene coating layer 12, which is a first coating layer made of polystyrene beads, was densely formed around the Ag core 10 having a substantially semicircular shape. No gap was observed at the interface between the Ag core and the polystyrene coating layer. The interface between the Ag core and the polystyrene coating layer was clearly formed, and no polystyrene beads were found inside the Ag core.
 図29に、形成した複合配線100の外観SEM像を示す。被覆層にポリスチレンビーズが集積しているが、溶融はしておらず、集積前のポリスチレンビーズの直径を維持していた。 FIG. 29 shows an external SEM image of the composite wiring 100 formed. Although polystyrene beads were accumulated in the coating layer, they were not melted and the diameter of the polystyrene beads before accumulation was maintained.
 (比較例1)
 褐色ビン中に、純水170μLとエタノール220μLを入れ、硝酸銀溶液(1mol/L、純正化学株式会社)を90μL入れて、攪拌した。その後、ZnOナノ粒子分散水溶液(Sigma-Aldrich,721077,平均粒径<40nm,濃度20wt%)を16μL入れて、再度1時間撹拌して、AgイオンとZnO粒子が分散した分散液を調製した。調製した分散液中のZnOの濃度は、1.1質量%であった。
(Comparative example 1)
In a brown bottle, 170 μL of pure water and 220 μL of ethanol were added, and 90 μL of silver nitrate solution (1 mol/L, Junsei Chemical Co., Ltd.) was added and stirred. After that, 16 μL of ZnO nanoparticle-dispersed aqueous solution (Sigma-Aldrich, 721077, average particle diameter <40 nm, concentration 20 wt %) was added and stirred again for 1 hour to prepare a dispersion in which Ag ions and ZnO particles were dispersed. The concentration of ZnO in the prepared dispersion was 1.1% by weight.
 褐色ビンから、調製した分散液をテフロン(登録商標)製のホルダーに移し、基板となる1mm厚のスライドガラスを、基板の一方表面がホルダー中の分散液と直接接触するようにホルダーに被せた。 The prepared dispersion was transferred from the brown bottle to a Teflon (registered trademark) holder, and a 1 mm thick slide glass serving as a substrate was placed on the holder so that one surface of the substrate was in direct contact with the dispersion in the holder. .
 次に、フェムト秒レーザー(C-Fiber780、MenloSystems Ltd.)を用いて、焦点が基板と分散液との接触面となるように調整し、中心波長780nm、繰返し周波数100MHz、パルス幅127fs、平均レーザー出力30mW、集光径(理論値)2μmの条件で照射しながら、ホルダーを走査速度50μm/秒で水平に動かして、基板表面に配線を形成した。 Next, using a femtosecond laser (C-Fiber 780, Menlo Systems Ltd.), the focal point was adjusted to the contact surface between the substrate and the dispersion liquid. Wiring was formed on the substrate surface by horizontally moving the holder at a scanning speed of 50 μm/sec while irradiating under the conditions of an output of 30 mW and a focused beam diameter (theoretical value) of 2 μm.
 図30に、形成した配線の外観SEM像を示す。図31に、形成した配線の断面TEM像を示す。図32に、図31において四角で囲んだ部分の拡大TEM像を示す。ZnO粒子がAgNO溶液中に溶解したため、ZnO粒子はAgのコアの右端部に集積されただけで被覆層は形成されなかった。形成した配線の線幅は6μmと細かった。なお、Agコアの周囲の層は、断面を切り出す際に基板と複合配線を固定するために用いたカーボンである。 FIG. 30 shows an external SEM image of the formed wiring. FIG. 31 shows a cross-sectional TEM image of the formed wiring. FIG. 32 shows an enlarged TEM image of the portion surrounded by a square in FIG. Since the ZnO particles were dissolved in the AgNO 3 solution, the ZnO particles were only accumulated on the right edge of the Ag core and no coating layer was formed. The line width of the formed wiring was as thin as 6 μm. The layer around the Ag core is carbon used for fixing the substrate and the composite wiring when cutting out the cross section.
 (比較例2)
 ZnOナノ粒子分散水溶液に代えて、TiOナノ粒子分散水溶液(NTB-1、昭和電工株式会社、ナノ粒子粒径10~20nm(カタログ値)、濃度15質量%)を1.9mL使用したこと以外は、比較例1と同じ条件で、分散液を調製し、レーザー照射により基板上に配線を形成した。調製した分散液中のTiOの濃度は、1.5質量%であった。
(Comparative example 2)
Except that 1.9 mL of TiO 2 nanoparticle-dispersed aqueous solution (NTB-1, Showa Denko K.K., nanoparticle diameter 10 to 20 nm (catalog value), concentration 15% by mass) was used instead of the ZnO nanoparticle-dispersed aqueous solution. A dispersion was prepared under the same conditions as in Comparative Example 1, and wiring was formed on the substrate by laser irradiation. The concentration of TiO2 in the prepared dispersion was 1.5% by weight.
 図33に、基板上に形成した配線の断面SEM像を示す。半円の直径約5μmのAgのコアと、コアを覆う厚みが約5μmの酸化チタン粒子による被覆層が確認された。TiO2被覆層の内部にAgが含まれ、Agコアの内部にTiO粒子が入り込んでおり、Agコアと被覆層との間に隙間が形成されていた。図34に、図33のエリアについてのEDXで測定したAgのマッピング写真、図35に、図33のエリアについてのEDXで測定したTiのマッピング写真を示す。TiO被覆層の内部にAgが検出され、Agコアの内部にTiが検出された。 FIG. 33 shows a cross-sectional SEM image of wiring formed on a substrate. A semicircular Ag core with a diameter of about 5 μm and a coating layer of titanium oxide particles with a thickness of about 5 μm covering the core were confirmed. Ag was contained inside the TiO2 coating layer, TiO2 particles were embedded inside the Ag core, and a gap was formed between the Ag core and the coating layer. FIG. 34 shows a mapping photograph of Ag measured by EDX in the area of FIG. 33, and FIG. 35 shows a mapping photograph of Ti measured by EDX in the area of FIG. Ag was detected inside the TiO2 coating layer and Ti was detected inside the Ag core.
 (実施例5)
 褐色ビン中に、純水311μLとエタノール489μLを入れ、硝酸銀溶液(1moL/L、純正化学株式会社)を200μL入れて攪拌して、実施例1と同様に、カバーガラス上にAgコアとなる線状の材料を形成した。
(Example 5)
In a brown bottle, put 311 μL of pure water and 489 μL of ethanol, add 200 μL of a silver nitrate solution (1 mol / L, Junsei Chemical Co., Ltd.) and stir. A shaped material was formed.
 水210μL及びエタノール491μLの溶液に、297μLのCdSe/ZnSコアシェル型量子ドット分散液(Sigma-Aldrich、900227-1 ML、粒径:コア直径4.2nm、シェル厚2nm、全体直径8.2nm、蛍光波長665nm、1mLの水中1mg)を混合して、CdSe/ZnS量子ドット濃度が0.05質量%の量子ドット分散液を調製した。 In a solution of 210 μL of water and 491 μL of ethanol, 297 μL of CdSe/ZnS core-shell quantum dot dispersion (Sigma-Aldrich, 900227-1 ML, particle size: core diameter 4.2 nm, shell thickness 2 nm, overall diameter 8.2 nm, fluorescence wavelength 665 nm, 1 mg in 1 mL water) was mixed to prepare a quantum dot dispersion with a CdSe/ZnS quantum dot concentration of 0.05% by mass.
 実施例1と同様に、コアとなるAg配線を形成した基板を、調製した量子ドット分散液中に浸漬し、レーザー照射して、線幅が4.5μmのAgコア/量子ドット被覆層の複合配線を形成した。 In the same manner as in Example 1, the substrate on which the Ag wiring serving as the core is formed is immersed in the prepared quantum dot dispersion and irradiated with a laser to form a composite Ag core/quantum dot coating layer with a line width of 4.5 μm. Wiring was formed.
 形成した複合配線を落射型蛍光顕微鏡(G励起)で観察した。図36に、形成した複合配線の光学顕微鏡像(図36(a))及び蛍光顕微鏡観察写真(図36(b))を示す。形成した複合配線から665nmの蛍光波長に基づく赤色蛍光が確認された。 The formed composite wiring was observed with an epi-illumination fluorescence microscope (G excitation). FIG. 36 shows an optical microscope image (FIG. 36(a)) and a fluorescence microscope observation photograph (FIG. 36(b)) of the formed composite wiring. Red fluorescence based on a fluorescence wavelength of 665 nm was confirmed from the formed composite wiring.
 (実施例6)
 褐色ビン中に、純水11.3mLとエタノール4mLを入れ、硝酸銀溶液(1moL/L、純正化学株式会社)を4mLとSiOコロイド液0.68mL(Sigma-Aldrich、LUDOX TM-50、50wt%、420778、粒径22nm以下)を入れて攪拌した。褐色ビンから溶液をテフロン(登録商標)製のホルダーに移し、厚みが1mmのCaF基板(シグマ光機、OPCF-20C01-P)を、基板の一方の主表面がホルダー中の溶液と直接接触するようにホルダーに被せた。
(Example 6)
In a brown bottle, put 11.3 mL of pure water and 4 mL of ethanol, 4 mL of silver nitrate solution (1 mol / L, Junsei Chemical Co., Ltd.) and 0.68 mL of SiO colloid solution (Sigma - Aldrich, LUDOX TM-50, 50 wt% , 420778, particle size of 22 nm or less) were added and stirred. The solution was transferred from the brown bottle to a Teflon holder, and a CaF2 substrate (Sigma Koki, OPCF-20C01-P) with a thickness of 1 mm was placed so that one major surface of the substrate was in direct contact with the solution in the holder. I put it on the holder so that I could do it.
 次に、フェムト秒レーザーの集光部が基板と溶液との接触面となるように調整し、中心波長517nm、繰返し周波数75MHz、パルス幅88fs、平均レーザー出力20mW、集光径(理論値)0.9μmの条件で照射した。フェムト秒レーザーは、FLINT1.0(Light conversion社製)からの光を高調波ユニットHIRO 2H(Light conversion社製)で2倍波へ変換したものを利用した。 Next, the focused part of the femtosecond laser was adjusted to be the contact surface between the substrate and the solution. Irradiation was performed under the condition of 0.9 μm. The femtosecond laser used was obtained by converting light from FLINT1.0 (manufactured by Light conversion) into a double wave by a harmonic unit HIRO 2H (manufactured by Light conversion).
 ホルダーを走査速度500μm/秒で水平に動かすことで、CaF基板表面にAgとSiOで構成された線状の材料を走査方向に連続的に形成した。形成した線状の材料の線幅は2.3~2.8μm、厚みは1.3μmであった。 By horizontally moving the holder at a scanning speed of 500 μm/sec, a linear material composed of Ag and SiO 2 was continuously formed on the surface of the CaF 2 substrate in the scanning direction. The linear material formed had a line width of 2.3 to 2.8 μm and a thickness of 1.3 μm.
 水2.7mL及びエタノール4.5mLの溶液に、0.26mLのTiOナノ粒子分散液(Sigma-Aldrich、700347、粒径(直径)<150nm、濃度33-37wt%)を混合して、TiO濃度が1.8質量%のTiO粒子分散液を調製した。 A solution of 2.7 mL water and 4.5 mL ethanol was mixed with 0.26 mL TiO 2 nanoparticle dispersion (Sigma-Aldrich, 700347, particle size (diameter) <150 nm, concentration 33-37 wt%) to obtain TiO A TiO 2 particle dispersion with a 2 concentration of 1.8% by weight was prepared.
 調製したTiO粒子分散液をテフロン(登録商標)製のホルダーに移し、図4に模式的に示すように、基板上に形成した線状の材料がホルダー中のTiO粒子分散液と直接接触するようにホルダーに被せた。フェムト秒レーザーの集光部が線状の材料となるように調整し、中心波長517nm、繰返し周波数75MHz、パルス幅88fs、平均レーザー出力20mW、集光径(理論値)0.9μmの条件で照射しながら、レーザーの集光部を線状の材料に沿って300μm/秒で移動させて、コアとなる線状の材料の周囲にTiO粒子の第1の被覆層を形成して、線幅が4.4μmのAgとSiOをコアとしTiOを被覆層とする複合配線を形成した。レーザーの集光部の移動を途中で止めて第1の被覆層の形成した部分と形成しない部分を比較できるようにした。フェムト秒レーザーは、FLINT1.0(Light conversion社製)からの光を高調波ユニットHIRO 2H(Light conversion社製)で2倍波へ変換したものを利用した。 The prepared TiO2 particle dispersion was transferred to a Teflon holder, and as schematically shown in Fig. 4, the linear material formed on the substrate was in direct contact with the TiO2 particle dispersion in the holder. I put it on the holder so that I could do it. Adjust the focal part of the femtosecond laser so that it becomes a linear material, and irradiate under the conditions of a center wavelength of 517 nm, a repetition frequency of 75 MHz, a pulse width of 88 fs, an average laser output of 20 mW, and a focal diameter (theoretical value) of 0.9 μm. while moving the focusing part of the laser along the linear material at 300 μm/sec to form a first coating layer of TiO particles around the linear material to be the core, and the line width A composite wiring was formed with a core of Ag and SiO 2 with a thickness of 4.4 μm and a coating layer of TiO 2 . The movement of the laser condensing part was stopped halfway so that the part where the first coating layer was formed and the part where the first coating layer was not formed could be compared. As a femtosecond laser, light from FLINT1.0 (manufactured by Light conversion) was converted into a double wave by a harmonic unit HIRO 2H (manufactured by Light conversion).
 形成した複合配線についてSEM観察及び元素マッピング分析を行った。図37に、形成した複合配線のSEM写真、並びにSi、Ti、及びAgのマッピング像を示す。TiO被覆部からはTi、Ag、及びSiが検出され、非被覆部からはAgとSiが検出された。 The formed composite wiring was subjected to SEM observation and elemental mapping analysis. FIG. 37 shows an SEM photograph of the formed composite wiring and mapping images of Si, Ti, and Ag. Ti, Ag, and Si were detected from the TiO2 -coated portion, and Ag and Si were detected from the uncoated portion.
 (実施例7)
 (2本の線状の材料を形成)
 褐色ビン中に、純水12mLとエタノール4mlを入れ、硝酸銀溶液(1moL/L、純正化学株式会社)を4mL入れて、攪拌した。褐色ビンから溶液をテフロン(登録商標)製のホルダーに移し、基板となる厚みが1mmのカバーガラスを、基板の一方の主表面がホルダー中の溶液と直接接触するようにホルダーに被せた。
(Example 7)
(Forming two linear materials)
12 mL of pure water and 4 mL of ethanol were placed in a brown bottle, and 4 mL of silver nitrate solution (1 mol/L, Junsei Chemical Co., Ltd.) was added and stirred. The solution was transferred from the brown bottle to a Teflon (registered trademark) holder, and a cover glass having a thickness of 1 mm was placed on the holder so that one main surface of the substrate was in direct contact with the solution in the holder.
 次に、フェムト秒レーザーの集光部が基板と溶液との接触面となるように調整し、中心波長517nm、繰返し周波数75MHz、パルス幅88fs、平均レーザー出力16mW、集光径(理論値)0.9μmの条件で照射した。フェムト秒レーザーは、FLINT1.0(Light conversion社製)からの光を高調波ユニットHIRO 2H(Light conversion社製)で2倍波へ変換したものを利用した。 Next, the focal point of the femtosecond laser was adjusted to be the contact surface between the substrate and the solution, with a central wavelength of 517 nm, a repetition frequency of 75 MHz, a pulse width of 88 fs, an average laser output of 16 mW, and a focal diameter (theoretical value) of 0. Irradiation was performed under the condition of 0.9 μm. The femtosecond laser used was obtained by converting light from FLINT1.0 (manufactured by Light conversion) into a double wave by a harmonic unit HIRO 2H (manufactured by Light conversion).
 ホルダーを走査速度500μm/秒で水平に動かすことで、基板表面にAgで構成された第1の線状の材料を走査方向に連続的に形成した。 By horizontally moving the holder at a scanning speed of 500 μm/sec, a first linear material made of Ag was continuously formed on the substrate surface in the scanning direction.
 次いで、第1の線状の材料に対してライン間ギャップが2μmになるように、フェムト秒レーザーを照射しながらホルダーを動かして、第2の線状の材料を形成した。形成した第1の線状の材料及び第2の線状の材料の線幅はそれぞれ2μm、厚みは1μmであった。 Next, the second linear material was formed by moving the holder while irradiating the femtosecond laser so that the line-to-line gap was 2 μm with respect to the first linear material. The first linear material and the second linear material thus formed had a line width of 2 μm and a thickness of 1 μm.
 水2.7mL及びエタノール4.5mLの溶液に、0.26mLのTiOナノ粒子分散液(Sigma-Aldrich、700347、粒径(直径)<150nm、濃度33-37wt%)を混合して、TiO濃度が1.8質量%のTiO粒子分散液を調製した。 A solution of 2.7 mL water and 4.5 mL ethanol was mixed with 0.26 mL TiO 2 nanoparticle dispersion (Sigma-Aldrich, 700347, particle size (diameter) <150 nm, concentration 33-37 wt%) to obtain TiO A TiO 2 particle dispersion with a 2 concentration of 1.8% by weight was prepared.
 調製したTiO粒子分散液をテフロン(登録商標)製のホルダーに移し、図4に模式的に示すように、基板上に形成した2本の線状の材料がホルダー中のTiO粒子分散液と直接接触するようにホルダーに被せた。フェムト秒レーザーの集光部が線状の材料となるように調整し、第1の線状の材料に、中心波長517nm、繰返し周波数75MHz、パルス幅88fs、平均レーザー出力23mW、レンズ開口数0.7、集光径(理論値)0.9μmの条件で照射しながら、レーザーの集光部を線状の材料に沿って300μm/秒で移動させて、コアとなる第1の線状の材料の周囲にTiO粒子の第1の被覆層を形成した。次いで、第2の線状の材料に同様にレーザー照射して、コアとなる第2の線状の材料の周囲にTiO粒子の第1の被覆層を形成し、2本のAg配線をコアとしTiOを被覆層とする複合配線を形成した。第1の線状の材料及び第2の線状の材料へのレーザーの集光部の移動を途中で止めて第1の被覆層の形成した部分と形成しない部分を比較できるようにした。フェムト秒レーザーは、FLINT1.0(Light conversion社製)からの光を高調波ユニットHIRO 2H(Light conversion社製)で2倍波へ変換したものを利用した。形成した複合配線は、ライン間ギャップが2μmで線幅がそれぞれ2μmのAgコアを覆うように厚みが1μmのTiO被覆層を有していた。AgコアとTiO被覆層との界面に隙間はみられなかった。 The prepared TiO 2 particle dispersion is transferred to a Teflon holder, and as schematically shown in Fig. 4, two linear materials formed on the substrate are aligned with the TiO 2 particle dispersion in the holder. It was put on the holder so that it was in direct contact with the The focal part of the femtosecond laser was adjusted to be a linear material, and the first linear material had a central wavelength of 517 nm, a repetition frequency of 75 MHz, a pulse width of 88 fs, an average laser output of 23 mW, and a lens numerical aperture of 0.5. 7. While irradiating with a condensed diameter (theoretical value) of 0.9 μm, move the laser condensing part at 300 μm/sec along the linear material to form the first linear material that will be the core. A first coating layer of TiO2 particles was formed around the . Then, the second linear material is similarly irradiated with a laser to form a first coating layer of TiO2 particles around the second linear material that serves as the core, and two Ag wirings are formed as the core. A composite wiring was formed with TiO 2 as a coating layer. The movement of the laser condensing part to the first linear material and the second linear material was stopped halfway so that the part where the first coating layer was formed and the part where the first coating layer was not formed could be compared. As a femtosecond laser, light from FLINT1.0 (manufactured by Light conversion) was converted into a double wave by a harmonic unit HIRO 2H (manufactured by Light conversion). The formed composite wiring had a 1 μm thick TiO 2 coating layer over Ag cores with a 2 μm line-to-line gap and a line width of 2 μm each. No gap was found at the interface between the Ag core and the TiO2 coating layer.
 形成した複合配線についてSEM観察及び元素マッピング分析を行った。図38に、形成した複合配線のSEM写真、並びにAg及びTiのマッピング像を示す。TiO被覆部からはTi及びAgSiが検出され、非被覆部からはAgが検出された。 The formed composite wiring was subjected to SEM observation and elemental mapping analysis. FIG. 38 shows an SEM photograph of the formed composite wiring and mapping images of Ag and Ti. Ti and AgSi were detected from the TiO2 -coated portion, and Ag was detected from the uncoated portion.
 100  複合配線
 10  線状の材料(金属、セラミックス、またはそれらの組合せを含むコア)
 101  線状の材料(金属、セラミックス、またはそれらの組合せを含むコア)
 102  線状の材料(金属、セラミックス、またはそれらの組合せを含むコア)
 12  第1の被覆層
 121  第1の被覆層
 122  第1の被覆層
 20  第1の分散液
 22  第1の固体ナノ材料
 24  気泡
 30  第1のレーザー光
 32  レーザー源
 34  ビームスプリッター
 40  基板

 
100 composite wiring 10 linear materials (cores containing metals, ceramics, or combinations thereof)
101 linear materials (cores containing metals, ceramics, or combinations thereof)
102 linear materials (cores containing metals, ceramics, or combinations thereof)
12 First covering layer 121 First covering layer 122 First covering layer 20 First dispersion 22 First solid nanomaterial 24 Bubble 30 First laser light 32 Laser source 34 Beam splitter 40 Substrate

Claims (17)

  1.  金属、セラミックス、またはそれらの組合せを含む線状の材料を準備すること、
     前記線状の材料を、第1の固体ナノ材料が分散された第1の分散液に浸すこと、及び
     前記第1の分散液に浸した前記線状の材料に第1のレーザー光を照射しながら、前記線状の材料に沿って前記第1のレーザー光の集光部を移動させて、前記第1の固体ナノ材料で構成された第1の被覆層を前記線状の材料の表面の少なくとも一部に形成して、前記線状の材料で構成されたコア/前記第1の被覆層の複合体を形成すること
     を含み、
     前記第1の固体ナノ材料は、金属酸化物、非金属酸化物、セラミックス、金属、及び樹脂からなる群から選択される少なくとも一種で構成される、
     複合体の製造方法。
    preparing a linear material comprising metals, ceramics, or combinations thereof;
    immersing the linear material in a first dispersion in which a first solid nanomaterial is dispersed; and irradiating the linear material immersed in the first dispersion with a first laser beam. while moving the condensing portion of the first laser beam along the linear material to cover the surface of the linear material with the first covering layer composed of the first solid nanomaterial. forming at least in part to form a core composed of said linear material/ said first coating layer composite;
    The first solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins.
    A method for manufacturing a composite.
  2.  前記複合体の前記コアと前記第1の被覆層との間に隙間がない、請求項1に記載の複合体の製造方法。 The manufacturing method of the composite according to claim 1, wherein there is no gap between the core and the first coating layer of the composite.
  3.  前記複合体の前記コアの内部に前記第1の固体ナノ材料を含まない、請求項1または2に記載の複合体の製造方法。 The method for producing a composite according to claim 1 or 2, wherein the interior of the core of the composite does not contain the first solid nanomaterial.
  4.  前記第1の固体ナノ材料で構成された第1の被覆層を、前記線状の材料と同心形状で前記線状の材料の表面に形成する、請求項1~3のいずれか一項に記載の複合体の製造方法。 4. The first coating layer composed of the first solid nanomaterial is formed on the surface of the linear material concentrically with the linear material. A method for producing a composite of
  5.  前記第1の分散液中の前記第1の固体ナノ材料の濃度が、0.01~3.0質量%である、請求項1~4のいずれか一項に記載の複合体の製造方法。 The method for producing a composite according to any one of claims 1 to 4, wherein the concentration of said first solid nanomaterial in said first dispersion is 0.01 to 3.0% by mass.
  6.  前記第1の固体ナノ材料が、1~3000nmの直径を有する、請求項1~5のいずれか一項に記載の複合体の製造方法。 The method for producing a composite according to any one of claims 1 to 5, wherein the first solid nanomaterial has a diameter of 1 to 3000 nm.
  7.  前記第1のレーザー光が近赤外光である、請求項1~6のいずれか一項に記載の複合体の製造方法。 The method for producing a composite according to any one of claims 1 to 6, wherein the first laser light is near-infrared light.
  8.  前記複合体を、第2の固体ナノ材料が分散された第2の分散液に浸すこと、並びに
     前記第2の分散液に浸した前記複合体に第2のレーザー光を照射しながら、前記複合体に沿って前記第2のレーザー光の集光部を移動させて、前記第2の固体ナノ材料で構成された第2の被覆層を前記第1の被覆層の表面の少なくとも一部に形成して、前記コア/前記第1の被覆層/前記第2の被覆層を有する複合体を形成すること
     を含み、
     前記第2の固体ナノ材料は、金属酸化物、非金属酸化物、セラミックス、金属、及び樹脂からなる群から選択される少なくとも一種で構成される、
     請求項1~7のいずれか一項に記載の複合体の製造方法。
    soaking the composite in a second dispersion in which a second solid nanomaterial is dispersed; and irradiating the composite soaked in the second dispersion with a second laser beam, A second coating layer composed of the second solid nanomaterial is formed on at least part of the surface of the first coating layer by moving the focusing portion of the second laser beam along the body. to form a composite having the core/first coating layer/second coating layer;
    The second solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins.
    A method for producing the composite according to any one of claims 1 to 7.
  9.  基板を準備すること、
     前記基板の主面に沿って前記線状の材料を形成すること、及び
     前記線状の材料の表面を前記基板との間で覆うように、前記第1の固体ナノ材料で構成された第1の被覆層を形成すること
     を含む、請求項1~8のいずれか一項に記載の複合体の製造方法。
    preparing the substrate,
    forming the linear material along the main surface of the substrate; A method for producing the composite according to any one of claims 1 to 8, comprising forming a coating layer of
  10.  前記基板の主面に沿って前記線状の材料を形成することが、
     前記基板の少なくとも一方の主面を、金属イオン、金属コロイド、及び金属錯体からなる群から選択される少なくとも一種を含む溶液または分散液に浸すこと、並びに
     前記溶液または分散液に浸された前記基板の主面にレーザー光を照射しながら、前記基板の表面に沿って前記レーザー光の集光部を移動させて、前記基板上に線状の金属を形成すること
     を含む、請求項9に記載の複合体の製造方法。
    forming the linear material along the main surface of the substrate;
    immersing at least one main surface of the substrate in a solution or dispersion containing at least one selected from the group consisting of metal ions, metal colloids, and metal complexes; and the substrate immersed in the solution or dispersion 10. The method according to claim 9, wherein a linear metal is formed on the substrate by moving the focusing part of the laser beam along the surface of the substrate while irradiating the main surface of the A method for producing a composite of
  11.  金属、セラミックス、またはそれらの組合せを含む線状の材料コア、及び
     前記線状の材料コアの表面の少なくとも一部を覆う、第1の固体ナノ材料で構成された第1の被覆層
     を含み、
     前記第1の固体ナノ材料は、金属酸化物、非金属酸化物、セラミックス、金属、及び樹脂からなる群から選択される少なくとも一種で構成され、
     前記線状の材料コアと前記第1の被覆層との間に隙間がない、
     複合体。
    a linear material core comprising a metal, ceramic, or a combination thereof; and a first coating layer composed of a first solid nanomaterial covering at least a portion of a surface of the linear material core,
    The first solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins,
    there is no gap between the linear material core and the first coating layer;
    Complex.
  12.  前記線状の材料コアの内部に前記第1の固体ナノ材料を含まない、請求項11に記載の複合体。 The composite according to claim 11, wherein the interior of the linear material core does not contain the first solid nanomaterial.
  13.  前記第1の固体ナノ材料が、1~3000nmの直径を有する、請求項11または12に記載の複合体。 The composite according to claim 11 or 12, wherein said first solid nanomaterial has a diameter of 1-3000 nm.
  14.  基板、
     前記基板の主面に沿って配置された前記線状の材料コア、及び
     前記線状の材料コアの表面を前記基板との間で覆うように配置された、第1の固体ナノ材料で構成された第1の被覆層
     を含む、請求項11~13のいずれか一項に記載の複合体。
    substrate,
    The linear material core arranged along the main surface of the substrate, and a first solid nanomaterial arranged so as to cover the surface of the linear material core between the substrate and the substrate. A composite according to any one of claims 11 to 13, comprising a second coating layer.
  15.  前記第1の被覆層の表面に、他の固体ナノ材料で構成された1層以上の被覆層を含む、請求項11~14のいずれか一項に記載の複合体。 The composite according to any one of claims 11 to 14, comprising one or more coating layers composed of other solid nanomaterials on the surface of the first coating layer.
  16.  金属、セラミックス、またはそれらの組合せを含む凸状の材料を準備すること、
     前記凸状の材料を、第1の固体ナノ材料が分散された第1の分散液に浸すこと、及び
     前記第1の分散液に浸した前記凸状の材料に第1のレーザー光を照射しながら、前記凸状の材料に沿って前記第1のレーザー光の集光部を移動させて、前記凸状の材料の表面の少なくとも一部上に前記第1の固体ナノ材料で構成された局所的コーティング物を形成すること
     を含み、
     前記第1の固体ナノ材料は、金属酸化物、非金属酸化物、セラミックス、金属、及び樹脂からなる群から選択される少なくとも一種で構成される、
     局所的コーティング物の製造方法。
    providing a convex material comprising metals, ceramics, or combinations thereof;
    immersing the convex material in a first dispersion in which a first solid nanomaterial is dispersed; and irradiating the convex material immersed in the first dispersion with a first laser beam. while moving the condensing portion of the first laser light along the convex material to form a localized portion composed of the first solid nanomaterial on at least a part of the surface of the convex material. forming a protective coating;
    The first solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins.
    A method for producing a topical coating.
  17.  金属、セラミックス、またはそれらの組合せを含む凸状の材料コアの表面の少なくとも一部を覆う、第1の固体ナノ材料で構成された局所的コーティング物であって、
     前記第1の固体ナノ材料は、金属酸化物、非金属酸化物、セラミックス、金属、及び樹脂からなる群から選択される少なくとも一種で構成され、
     前記凸状の材料コアと前記第1の被覆層との間に隙間がない、
     局所的コーティング物。

     
    A topical coating composed of a first solid nanomaterial covering at least a portion of the surface of a convex material core comprising metal, ceramic, or a combination thereof, comprising:
    The first solid nanomaterial is composed of at least one selected from the group consisting of metal oxides, non-metal oxides, ceramics, metals, and resins,
    there is no gap between the convex material core and the first coating layer;
    topical coating.

PCT/JP2022/005217 2021-02-09 2022-02-09 Method for producing composite by laser irradiation, and composite WO2022172972A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112022001009.6T DE112022001009T5 (en) 2021-02-09 2022-02-09 Method for producing a composite based on laser irradiation and composite
JP2022580667A JPWO2022172972A1 (en) 2021-02-09 2022-02-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021019324 2021-02-09
JP2021-019324 2021-02-09

Publications (1)

Publication Number Publication Date
WO2022172972A1 true WO2022172972A1 (en) 2022-08-18

Family

ID=82838834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005217 WO2022172972A1 (en) 2021-02-09 2022-02-09 Method for producing composite by laser irradiation, and composite

Country Status (3)

Country Link
JP (1) JPWO2022172972A1 (en)
DE (1) DE112022001009T5 (en)
WO (1) WO2022172972A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149774A (en) * 1999-12-01 2001-06-05 Japan Science & Technology Corp Light immobilizing method for metallic fine particles
JP2002088487A (en) * 2000-09-12 2002-03-27 Japan Science & Technology Corp Method for precipitating and fixing metallic fine particle to surface of elecrically conductive material by using beam
JP2007140193A (en) * 2005-11-18 2007-06-07 Canon Inc Patterning method
JP2008068222A (en) * 2006-09-15 2008-03-27 Nano Processes Kenkyusho:Kk Method for producing assembly of fine particles by light irradiation
WO2019078100A1 (en) * 2017-10-16 2019-04-25 国立大学法人山形大学 Method for producing composite including metal coated with solid microparticles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149774A (en) * 1999-12-01 2001-06-05 Japan Science & Technology Corp Light immobilizing method for metallic fine particles
JP2002088487A (en) * 2000-09-12 2002-03-27 Japan Science & Technology Corp Method for precipitating and fixing metallic fine particle to surface of elecrically conductive material by using beam
JP2007140193A (en) * 2005-11-18 2007-06-07 Canon Inc Patterning method
JP2008068222A (en) * 2006-09-15 2008-03-27 Nano Processes Kenkyusho:Kk Method for producing assembly of fine particles by light irradiation
WO2019078100A1 (en) * 2017-10-16 2019-04-25 国立大学法人山形大学 Method for producing composite including metal coated with solid microparticles

Also Published As

Publication number Publication date
DE112022001009T5 (en) 2023-12-21
JPWO2022172972A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
JP5062721B2 (en) Manufacturing method of nano-sized wire
Theerthagiri et al. Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo-and electrocatalytic applications
TWI381781B (en) Method of forming a conductive wiring pattern by laser irradiation and a conductive wiring pattern
JP6619335B2 (en) LIFT printing of multiple composition material structures
KR101317067B1 (en) Process for producing metal, microparticle
Liang et al. Synthesis of ultrafine SnO2-x nanocrystals by pulsed laser-induced reactive quenching in liquid medium
Mondal et al. Plasmon‐Induced Hot Carrier Separation across Dual Interface in Gold–Nickel Phosphide Heterojunction for Photocatalytic Water Splitting
Oh et al. Transformation of silver nanowires into nanoparticles by Rayleigh instability: Comparison between laser irradiation and heat treatment
JP2014170973A (en) Method for fabricating pattern
Lin et al. Rapid synthesis of metallic and alloy micro/nanoparticles by laser ablation towards water
Zamiri et al. Laser assisted fabrication of ZnO/Ag and ZnO/Au core/shell nanocomposites
JP2008541481A (en) Patterned metal layer formed using thermal transfer
Saraeva et al. Laser synthesis of colloidal Si@ Au and Si@ Ag nanoparticles in water via plasma-assisted reduction
Mintcheva et al. Nanomaterials produced by laser beam ablating Sn-Zn alloy in water
Zhou et al. The laser writing of highly conductive and anti-oxidative copper structures in liquid
Liu et al. 3D laser nanoprinting of functional materials
WO2022172972A1 (en) Method for producing composite by laser irradiation, and composite
JP6964898B2 (en) Method for Producing Complex Containing Metal Coated with Solid Fine Particles
Ghorbani et al. Properties of TiO 2/Au nanocomposite produced by pulsed laser irradiation of mixture of individual colloids
Pathak et al. Effect of laser power on conductivity and morphology of silver nanoparticle thin films prepared by a laser assisted electrospray deposition method
JP2018129409A (en) Method for forming pattern wiring circuit on the basis of metal powder low temperature melting by irradiation with substrate back surface laser light and formed structure of the same
JP7119380B2 (en) Copper powder and its manufacturing method
JP2004190089A (en) Method for manufacturing inorganic-nanoparticle fusion or accretion structure, and fusion or accretion structure
Łapiński et al. Transformation of bimetallic Ag–Cu thin films into plasmonically active composite nanostructures
Gondal et al. Synthesis and characterization of copper oxides nanoparticles via pulsed laser ablation in liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752794

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022580667

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112022001009

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752794

Country of ref document: EP

Kind code of ref document: A1