JP2018129409A - Method for forming pattern wiring circuit on the basis of metal powder low temperature melting by irradiation with substrate back surface laser light and formed structure of the same - Google Patents
Method for forming pattern wiring circuit on the basis of metal powder low temperature melting by irradiation with substrate back surface laser light and formed structure of the same Download PDFInfo
- Publication number
- JP2018129409A JP2018129409A JP2017021815A JP2017021815A JP2018129409A JP 2018129409 A JP2018129409 A JP 2018129409A JP 2017021815 A JP2017021815 A JP 2017021815A JP 2017021815 A JP2017021815 A JP 2017021815A JP 2018129409 A JP2018129409 A JP 2018129409A
- Authority
- JP
- Japan
- Prior art keywords
- metal powder
- melting point
- wiring circuit
- base material
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 166
- 239000002184 metal Substances 0.000 title claims abstract description 166
- 239000000843 powder Substances 0.000 title claims abstract description 142
- 238000002844 melting Methods 0.000 title claims abstract description 110
- 230000008018 melting Effects 0.000 title claims abstract description 108
- 238000000034 method Methods 0.000 title claims abstract description 61
- 239000000758 substrate Substances 0.000 title claims description 57
- 239000000463 material Substances 0.000 claims abstract description 102
- 239000011812 mixed powder Substances 0.000 claims abstract description 19
- 230000008859 change Effects 0.000 claims description 3
- 239000002023 wood Substances 0.000 claims description 3
- 239000011368 organic material Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 description 14
- 239000002245 particle Substances 0.000 description 14
- 239000010419 fine particle Substances 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 238000000149 argon plasma sintering Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000003870 refractory metal Substances 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- -1 composed of these Chemical compound 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 229910000679 solder Inorganic materials 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- 239000002985 plastic film Substances 0.000 description 3
- 229920006255 plastic film Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 238000000879 optical micrograph Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCEUXSAXTBNJGO-UHFFFAOYSA-N [Ag].[Sn] Chemical compound [Ag].[Sn] QCEUXSAXTBNJGO-UHFFFAOYSA-N 0.000 description 1
- QLTBJHSQPNVBLW-UHFFFAOYSA-N [Bi].[In].[Ag].[Sn] Chemical compound [Bi].[In].[Ag].[Sn] QLTBJHSQPNVBLW-UHFFFAOYSA-N 0.000 description 1
- JVCDUTIVKYCTFB-UHFFFAOYSA-N [Bi].[Zn].[Sn] Chemical compound [Bi].[Zn].[Sn] JVCDUTIVKYCTFB-UHFFFAOYSA-N 0.000 description 1
- PQIJHIWFHSVPMH-UHFFFAOYSA-N [Cu].[Ag].[Sn] Chemical compound [Cu].[Ag].[Sn] PQIJHIWFHSVPMH-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- JWVAUCBYEDDGAD-UHFFFAOYSA-N bismuth tin Chemical compound [Sn].[Bi] JWVAUCBYEDDGAD-UHFFFAOYSA-N 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000009690 centrifugal atomisation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000005551 mechanical alloying Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- GZCWPZJOEIAXRU-UHFFFAOYSA-N tin zinc Chemical compound [Zn].[Sn] GZCWPZJOEIAXRU-UHFFFAOYSA-N 0.000 description 1
- 229910000969 tin-silver-copper Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000009692 water atomization Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Laser Beam Processing (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
本発明は、基材背面レーザ光照射による金属粉末低温融解に基くパターン配線回路形成方法とその形成された構造物に関する。さらに詳しくは、本発明は、高融点金属粉末と低融点金属粉末の混合粉を含有する形成材料を用い、基材背面レーザ光照射により低融点金属を低温融解させパターン配線回路を形成する方法、及びその形成された構造物に関する。 The present invention relates to a pattern wiring circuit forming method based on low-temperature melting of metal powder by irradiation of a substrate backside laser beam and a structure formed therewith. More specifically, the present invention uses a forming material containing a mixed powder of a high melting point metal powder and a low melting point metal powder, and forms a pattern wiring circuit by melting the low melting point metal at a low temperature by irradiation with a laser beam on the back of the substrate. And the formed structure.
従来、製品を造形するコンテナに粉末をリコータにより均一に敷き、次にCADデータに基づきガルバノメーターミラーを通してレーザを照射し、照射部分のみを固化し、この操作を繰り返して積層し三次元製品を作製するレーザ積層造形法が開発されている。レーザ積層造形法では、樹脂粉末、金属粉末、セラミックス粉末、及び複合材料粉末を用い選択的に焼結し造形するものである。これによれば、切削法などの他の加工法では不可能な三次元複雑形状品を迅速、低コストで作製できるとされている。 Conventionally, the powder is evenly spread on the container for modeling the product with a recoater, then the laser is irradiated through the galvanometer mirror based on the CAD data, only the irradiated part is solidified, and this operation is repeated to produce a three-dimensional product. Laser additive manufacturing methods have been developed. In the laser additive manufacturing method, resin powder, metal powder, ceramic powder, and composite material powder are selectively sintered and formed. According to this, it is said that a three-dimensional complex shape product that cannot be obtained by other processing methods such as a cutting method can be manufactured quickly and at low cost.
なかでも、金属粉末を用いレーザ光照射による電気回路形成方法として、絶縁基板上に散布堆積した金属粉末をレーザ光の照射により溶融付着させて、主に強電分野において利用する大電流を扱う電気回路を焼成生成して形成する方法(特許文献1)が提案されている。しかし、高出力レーザにより直接金属溶融を促して電気回路を作製する方法であり、高出力レーザが必要となり、作製時間、費用がかかるという問題がある。 In particular, as an electrical circuit formation method using metal powder by laser light irradiation, an electric circuit that handles a large current mainly used in the field of high power by melting and adhering metal powder spread and deposited on an insulating substrate by laser light irradiation. There has been proposed a method (Patent Document 1) for forming by baking. However, this is a method for producing an electric circuit by directly promoting metal melting with a high-power laser, and there is a problem that a high-power laser is required, which requires production time and cost.
また、金属パターン形成法として、金属微粒子と有機溶媒の混合物からなるペースト材料を用い、絶縁性樹脂の表面に金属微粒子層を形成し、金属微粒子層の表面の所望領域にレーザを照射して、該所望領域にある金属微粒子層を溶融し、レーザの照射により溶融しなかった金属微粒子層を除去することからなる絶縁性樹脂表面に配線を選択的に形成する方法(特許文献2)が提案されている。この方法では、従来の配線金属パターンの形成法であるリフト・オフ法によるよりも配線金属層の不溶部分の無駄が防止され配線形成が簡略化できるが、ペースト材料を用いるので、金属微粒子層の形成に塗布、乾燥工程が必要であり、工程数が多く、かつ作製時間、コストがかかるという問題がある。 Further, as a metal pattern forming method, a paste material composed of a mixture of metal fine particles and an organic solvent is used, a metal fine particle layer is formed on the surface of the insulating resin, and a desired region on the surface of the metal fine particle layer is irradiated with a laser, A method of selectively forming wiring on the surface of an insulating resin comprising melting a metal fine particle layer in the desired region and removing the metal fine particle layer not melted by laser irradiation has been proposed (Patent Document 2). ing. In this method, the insoluble portion of the wiring metal layer can be prevented from being wasted and the wiring formation can be simplified as compared with the conventional method of forming the wiring metal pattern, but the formation of the metal fine particle layer can be simplified. There are problems that a coating and drying process is required for formation, the number of processes is large, and production time and cost are high.
導電パターンの形成方法として、下地層、及び20℃における比抵抗が20μΩ・cm以下である金属または複合金属からなり、かつ平均粒子サイズが1〜100nmであるコロイド粒子を含有する微粒子層を有する導電パターン描画用基板にレーザ光を照射する工程からなる形成方法(特許文献3)が提案されている。この方法では、コロイド粒子を準備しこれを含有する微粒子層を基板に形成するのに、作製時間を要するなどの問題がある。 As a method for forming a conductive pattern, a conductive layer having a base layer and a fine particle layer containing colloidal particles made of a metal or a composite metal having a specific resistance at 20 ° C. of 20 μΩ · cm or less and an average particle size of 1 to 100 nm. A forming method (Patent Document 3) comprising a step of irradiating a pattern drawing substrate with laser light has been proposed. In this method, there is a problem that preparation time is required for preparing colloidal particles and forming a fine particle layer containing them on a substrate.
以上のとおり、従来のレーザを用いたパターン配線回路形成方法では、金属微粒子と有機溶媒の混合物からなるペースト材料を原料として用いる必要があったり、コロイド粒子を用いたり、又金属粉をレーザ融解し、細線を形成するためには、レーザ焦点距離を一定にして走査する都合上、表面が平らで均質な金属粉層を作製する必要があった。さらに、表面接着性をよくするために、底部まで十分に融解できるよう金属粉層を薄くする必要があったり、高出力レーザが必要であったり、作製時間、コストがかかるという問題があった。 As described above, in the conventional pattern wiring circuit forming method using a laser, it is necessary to use a paste material composed of a mixture of metal fine particles and an organic solvent as a raw material, colloidal particles, or laser melting of metal powder. In order to form a thin line, it was necessary to produce a uniform metal powder layer with a flat surface for the convenience of scanning with a constant laser focal length. Furthermore, in order to improve surface adhesion, there is a problem that it is necessary to make the metal powder layer thin so that it can be sufficiently melted to the bottom, a high-power laser is required, production time and cost are high.
本発明は、上記従来技術に鑑みてなされたものであって、耐熱性が低い基材や凹凸がある基材であっても、金属粉末を融着可能でパターン配線回路形成を基材背面レーザ光照射法により、低エネルギーコストで、簡単な方法でパターン配線回路を形成する方法を提供することを目的とする。 The present invention has been made in view of the above-described conventional technology, and even if the substrate has low heat resistance or has unevenness, the metal powder can be fused and the pattern wiring circuit can be formed on the substrate rear surface laser. It is an object of the present invention to provide a method for forming a pattern wiring circuit by a light irradiation method at a low energy cost and with a simple method.
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、レーザ光照射により金属粉末を焼結するに際し、基材の背面からレーザ光照射により基材上の低融点金属粉末を融解させ高融点金属粉末とを導通化させることでパターン配線回路の形成が、低エネルギーで短時間に作製できることを見出し、本発明を完成するに至った。 As a result of intensive research to achieve the above-mentioned object, the present inventors have melted the low melting point metal powder on the base material by laser light irradiation from the back surface of the base material when sintering the metal powder by laser light irradiation. Then, the present inventors have found that the formation of the pattern wiring circuit can be made with low energy in a short time by making the refractory metal powder conductive, and the present invention has been completed.
本発明はこれらの知見に基づいて完成したものであり、本発明によれば、以下の発明が提供される。 The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1]高融点金属粉末と低融点金属粉末の混合粉を含有する形成材料を用い、基材背面からのレーザ光照射により基材上の低融点金属を融解させることで高融点金属粉末とを導通化させ、基材上にパターン配線回路を形成する方法。 [1] Using a forming material containing a mixed powder of a high melting point metal powder and a low melting point metal powder, and melting the low melting point metal on the substrate by laser light irradiation from the back of the substrate, A method of forming a pattern wiring circuit on a substrate by making it conductive.
[2]前記基材が非耐熱性基材であることを特徴とする上記[1]に記載のパターン配線回路を形成する方法。 [2] The method for forming a pattern wiring circuit according to the above [1], wherein the substrate is a non-heat resistant substrate.
[3]前記基材が有機物からなる基材であり、基材が一部状態変化を起こすことでパターン配線回路が密着することを特徴とする上記[1]又は[2]に記載のパターン配線回路を形成する方法。 [3] The pattern wiring according to the above [1] or [2], wherein the base material is a base material made of an organic substance, and the pattern wiring circuit is brought into close contact with the base material due to a partial state change. A method of forming a circuit.
[4]前記基材が紙、木材、植物であることを特徴とする上記[1]〜[3]のいずれか1つに記載のパターン配線回路を形成する方法。 [4] The method for forming a pattern wiring circuit according to any one of [1] to [3], wherein the substrate is paper, wood, or a plant.
[5]前記パターン配線回路が、微細電極パターンであることを特徴とする上記[1]〜[4]のいずれか1つに記載のパターン配線回路を形成する方法。 [5] The pattern wiring circuit according to any one of [1] to [4], wherein the pattern wiring circuit is a fine electrode pattern.
[6]高融点金属粉末と低融点金属粉末の混合粉を含有する、上記[1]〜[5]のいずれか1つに記載のパターン配線回路を形成する方法に用いる形成材料。 [6] A forming material used in the method for forming a patterned wiring circuit according to any one of [1] to [5] above, which contains a mixed powder of a high melting point metal powder and a low melting point metal powder.
[7]高融点金属が500〜1100℃に融点を有する導電性金属であり、低融点金属が100〜300℃に融点を有する導電性金属であることを特徴とする、上記[6]に記載に記載の形成材料。 [7] The above-mentioned [6], wherein the high melting point metal is a conductive metal having a melting point at 500 to 1100 ° C, and the low melting point metal is a conductive metal having a melting point at 100 to 300 ° C. The forming material described in 1.
[8]上記[1]〜[5]のいずれか1つに記載のパターン配線回路を形成する方法により形成された構造体。 [8] A structure formed by the method for forming a pattern wiring circuit according to any one of [1] to [5].
本発明は、高融点金属粉末と低融点金属粉末の混合粉を含有する形成材料を用い、基材の背面からのレーザ光照射により低融点金属粉末のみを融解、導通化させパターン配線回路を形成するレーザ焼結法であるので、耐熱性が低い基材や凹凸がある基材であっても、低出力レーザ、1造形物当たり低エネルギーコストで効率よく形成できる。また、当該パターン配線回路形成法に用いる形成材料、及び形成された構造体を提供することができる。 The present invention uses a forming material containing a mixed powder of a high melting point metal powder and a low melting point metal powder, and forms a pattern wiring circuit by melting and conducting only the low melting point metal powder by laser light irradiation from the back surface of the substrate. Therefore, even a base material with low heat resistance or a substrate with unevenness can be efficiently formed with a low output laser and a low energy cost per model. Moreover, the forming material used for the said pattern wiring circuit formation method and the formed structure can be provided.
本発明は、高融点金属粉末と低融点金属粉末の混合粉を含有する形成材料を用い、基材背面から基材を通してのレーザ光照射により、基材上で低融点金属粉末を融解させ高融点金属粉末とが導通化し、基材上にパターン配線回路を形成する方法、当該高融点金属粉末と低融点金属粉末の混合粉を含有するレーザ焼結法に用いる形成材料、及びこれらパターン配線回路を形成する方法により形成された構造体に関する。 The present invention uses a forming material containing a mixed powder of a high-melting-point metal powder and a low-melting-point metal powder, and melts the low-melting-point metal powder on the base material by laser light irradiation from the back surface of the base material through the base material. A method for forming a pattern wiring circuit on a substrate by making the metal powder conductive, a forming material used for a laser sintering method containing a mixed powder of the high melting point metal powder and a low melting point metal powder, and the pattern wiring circuit. The present invention relates to a structure formed by a forming method.
本発明において、形成材料とは、パターン配線回路を形成するレーザ焼結法に用いる原料材料である。基本的には高融点金属粉末と低融点金属粉末の混合粉を含有する形成材料であり、それぞれ少なくとも1種の金属粉末を用いることができ、それぞれ複数種の金属粉末を混合して用いてもよい。高融点金属粉末としては、例えば、アルミニウム粉末と、銅粉末を混合してもよく、低融点金属粉末としては各種スズはんだを複数種混合して用いてもよい。 In the present invention, the forming material is a raw material used in a laser sintering method for forming a pattern wiring circuit. Basically, it is a forming material containing a mixed powder of a high melting point metal powder and a low melting point metal powder, and at least one kind of metal powder can be used for each, and a plurality of kinds of metal powders can be mixed and used. Good. As the high melting point metal powder, for example, aluminum powder and copper powder may be mixed, and as the low melting point metal powder, a plurality of various tin solders may be mixed and used.
高融点金属粉末と低融点金属粉末の混合比は、低融点金属粉末が融解し高融点金属粉末とが導通化し配線回路を形成できる範囲ならば、いかなる混合比でも構わない。高融点金属粉末1に対して低融点金属粉末0.1〜10が例示できる。好ましくは、高融点金属粉末1に対して低融点金属粉末0.5〜10の範囲がより好ましい。 The mixing ratio of the high melting point metal powder and the low melting point metal powder may be any mixing ratio as long as the low melting point metal powder melts and the high melting point metal powder becomes conductive and forms a wiring circuit. Examples of the low melting point metal powder 1 include low melting point metal powders 0.1 to 10. Preferably, the range of the low melting metal powder 0.5 to 10 is more preferable for the high melting metal powder 1.
本発明において、形成材料としての高融点金属粉末、低融点金属粉末は配線回路を形成するために導電性であることが好ましい。高融点金属としては、500〜1100℃に融点を有する導電性金属、低融点金属としては、100〜300℃に融点を有する導電性金属からなるのが好ましい。 In the present invention, the high melting point metal powder and the low melting point metal powder as the forming material are preferably conductive in order to form a wiring circuit. The high melting point metal is preferably composed of a conductive metal having a melting point at 500 to 1100 ° C., and the low melting point metal is preferably composed of a conductive metal having a melting point at 100 to 300 ° C.
高融点金属としては、アルミニウム、銅、銀、金、及びこれらの合金が例示でき、なかでもアルミニウム及びアルミニウム合金、銅、銅合金、銀、銀合金を用いるのがより好ましい。低融点金属としては、スズ、亜鉛、インジウム、ガリウム、ビスマス、鉛など、及びこれらを主にした合金が例示でき、なかでもスズ基の合金であるはんだを用いるのがより好ましい。スズ-銀-銅系、スズ-銀-ビスマス-インジウム系、スズ-銀系、スズ-亜鉛系、スズ-亜鉛-ビスマス系、スズ-ビスマス系、スズ-インジウム系の鉛フリーのはんだ合金を例示できる。 Examples of the refractory metal include aluminum, copper, silver, gold, and alloys thereof, among which aluminum and aluminum alloys, copper, copper alloys, silver, and silver alloys are more preferable. Examples of the low-melting point metal include tin, zinc, indium, gallium, bismuth, lead, and alloys mainly composed of these, and it is more preferable to use a solder that is a tin-based alloy. Examples include tin-silver-copper, tin-silver-bismuth-indium, tin-silver, tin-zinc, tin-zinc-bismuth, tin-bismuth, and tin-indium lead-free solder alloys it can.
形成材料としての高融点金属粉末、低融点金属粉末の粒子径は、1nm〜100μmの範囲から選ばれるのが低融点金属粉末を融解させ高融点金属粉末とが金属合金化あるいは粉末がその表面において接合部を有することにより導通化し、配線回路を形成するのに好ましい。好ましくは、100nm〜50μm、より好ましくは500nm〜10μmである。なお、本明細書における平均粒径とは、50%粒径(D50)を指し、レーザー回折、散乱式の粒度分布測定装置により測定することができる。例えば、レーザードップラー法を応用した粒度分布測定装置(日機装(株)製、マイクロトラック(登録商標)粒度分布測定装置)等により測定することができる。 The particle diameter of the high melting point metal powder and the low melting point metal powder as the forming material is selected from the range of 1 nm to 100 μm. The low melting point metal powder is melted to form a metal alloy with the high melting point metal powder or the powder on the surface. Having a junction is preferable for forming a wiring circuit by making the connection conductive. Preferably, they are 100 nm-50 micrometers, More preferably, they are 500 nm-10 micrometers. In addition, the average particle diameter in this specification refers to 50% particle diameter (D50), and can be measured by a laser diffraction or scattering type particle size distribution measuring apparatus. For example, it can be measured by a particle size distribution measuring device (Nikkiso Co., Ltd., Microtrac (registered trademark) particle size distribution measuring device) applying the laser Doppler method.
形成材料としての高融点金属粉末、低融点金属粉末の形状は、球形、楕円形、フレーク状などいかなる形状でもよい。また、金属粉末の製法上からしてガスアトマイズ法、水アトマイズ法、遠心力アトマイズ法、メルトスピニング法などの溶解プロセス、スタンプミル法、ボールミル法、メカニカルアロイング法などの機械的プロセス、酸化物還元法、塩化物還元法、湿式冶金法、電解法などの化学的プロセスなどいずれの製法によるものでもよい。 The shape of the high melting point metal powder and the low melting point metal powder as the forming material may be any shape such as a spherical shape, an elliptical shape, or a flake shape. In addition, from the standpoint of metal powder production, dissolution processes such as gas atomization, water atomization, centrifugal atomization, and melt spinning, mechanical processes such as stamp mill, ball mill, and mechanical alloying, oxide reduction, etc. Any method such as a chemical process such as a method, a chloride reduction method, a wet metallurgy method, or an electrolytic method may be used.
形成材料としての高融点金属粉末、低融点金属粉末を混合して混合粉とする。混合には、従来から用いられている混合装置を用い十分混合する。例えば、市販の高融点金属粉末、低融点金属粉末を用いV型混合器、Wコーンミキサーなどの容器回転型混合器、ジュリアミキサー、フラッシュブレンダーなどを用いて均一に混合すればよい。形成材料としての高融点金属粉末、低融点金属粉末のみを混合してもよいので、容易に混合することができる。 A high melting point metal powder and a low melting point metal powder as a forming material are mixed to obtain a mixed powder. For mixing, a conventional mixing device is used to sufficiently mix. For example, commercially available high melting point metal powder and low melting point metal powder may be used and mixed uniformly using a V-type mixer, a container rotating type mixer such as a W cone mixer, a Julia mixer, a flash blender, or the like. Since only the high melting point metal powder and the low melting point metal powder as the forming material may be mixed, they can be easily mixed.
金属粉末に対して必要に応じて防錆剤、フラックスなどの添加剤を添加してもよい。銅粉末と低融点金属粉末との混合粉を形成材料として用いる際には、銅粉末表面の酸化を抑えて低融点金属粉末と混合するのが更によい。そのために、銅粉末表面にあらかじめ耐酸化性の保護膜を設けておくか、混合粉の形成時に、焼成時に酸化膜を除去できるフラックスを添加しておくことがより好ましい。銅粉末表面にあらかじめ設ける耐酸化性の保護膜とは、アルカンチオールに代表される、金属吸着官能基として、カルボキシル基、スルホン酸基、アミノ基、チオール基、ジスルフィド基、リン酸基等を少なくとも1つ有する有機基を有する保護膜が例示できる。また、銅金属の酸化膜除去に使用できるはんだ付け用フラックスを用いることができる。 You may add additives, such as a rust inhibitor and a flux, with respect to a metal powder as needed. When using a mixed powder of copper powder and low melting point metal powder as a forming material, it is better to mix with the low melting point metal powder while suppressing oxidation of the copper powder surface. Therefore, it is more preferable to provide an oxidation-resistant protective film on the surface of the copper powder in advance, or to add a flux capable of removing the oxide film during firing when the mixed powder is formed. The oxidation-resistant protective film provided in advance on the surface of the copper powder includes at least a carboxyl group, a sulfonic acid group, an amino group, a thiol group, a disulfide group, a phosphoric acid group, etc. as a metal adsorption functional group represented by alkanethiol. A protective film having one organic group can be exemplified. Moreover, the flux for soldering which can be used for the oxide film removal of copper metal can be used.
本発明において、レーザ焼結法とは、形成材料としての基材上の金属粉末に対して、基材背面から基材を通してレーザ光を照射して、基材上の低融点金属粉末を融解し高融点金属粉末とを導通化し基材上にパターン配線回路を形成する方法をいう。具体的には、配線回路を形成する基材に金属粉末をリコータにより敷き、次にCADデータに基づきレーザ光を照射し、照射部分のみの低融点金属粉末を融解し高融点金属粉末とを導通化し、又は金属合金化し、敷きつめられた金属粉末層の照射部分のみを基材に固着させ、パターン配線回路を得るレーザ成形法である。最後に、レーザ光照射の照射部分以外の金属粉末を除去し、配線回路とする。 In the present invention, the laser sintering method means that a metal powder on a base material as a forming material is irradiated with laser light from the back side of the base material through the base material to melt the low melting point metal powder on the base material. It refers to a method of forming a pattern wiring circuit on a base material by making it conductive with a refractory metal powder. Specifically, a metal powder is laid on a substrate forming a wiring circuit with a recoater, and then laser light is irradiated based on CAD data to melt the low-melting-point metal powder only at the irradiated portion and to conduct the high-melting-point metal powder. This is a laser forming method in which only the irradiated portion of the metal powder layer that has been made into a metal alloy or made into a metal alloy is fixed to a substrate to obtain a pattern wiring circuit. Finally, the metal powder other than the irradiated portion of the laser light irradiation is removed to form a wiring circuit.
本レーザ焼結法によれば、形成したい二次元、三次元データ(二次元、三次元CADデータ)、X線CTの輪切りデータ等に基づき必要な部分のみの金属粉末を融解、導通化させ、焼結固化させて製品化しているので、工程が簡略化でき、かつ除去された金属粉末は、再度製品作製に使用することができるので原料金属粉末の無駄が回避できる。 According to this laser sintering method, the metal powder of only the necessary part is melted and made conductive based on the 2D, 3D data (2D, 3D CAD data) to be formed, the X-ray CT slice data, etc. Since the product is made by sintering and solidifying, the process can be simplified, and the removed metal powder can be used again for product production, so that waste of the raw metal powder can be avoided.
レーザ焼結法に用いるレーザ焼結装置としては、造形部、レーザ光発光装置、ミラー、レーザ制御部を備えた装置であればよい。基材上に堆積させた金属粉末に対して、基材背面から基材を通してレーザ光を照射して、低融点金属粉末を融解し高融点金属粉末とが導通化し、金属合金化し、パターン配線回路を形成できる装置であれば使用できる。具体的には、用いる基材表面に形成材料を略均一に敷き、次にCADデータに基づきレーザ発光装置、ミラーを介してレーザ光を金属粉末の堆積した基材の背面から照射し、照射部分のみの低融点金属粉末を融解し高融点金属粉末とを導通化し、敷きつめられた金属粉末層を照射部分のみ基材上で固化させ、パターン配線回路を得て、更に、この操作後レーザ光照射の照射部分以外の金属粉末を除去できる装置であるならばいかなるものでもよい。 The laser sintering apparatus used in the laser sintering method may be an apparatus provided with a modeling unit, a laser light emitting device, a mirror, and a laser control unit. The metal powder deposited on the base material is irradiated with laser light from the back side of the base material through the base material to melt the low melting point metal powder and become conductive with the high melting point metal powder. Any device that can form the film can be used. Specifically, the forming material is spread almost uniformly on the surface of the base material to be used, and then laser light is irradiated from the back surface of the base material on which the metal powder is deposited through a laser light emitting device and a mirror based on CAD data. Only melt the low melting point metal powder and make it conductive with the high melting point metal powder, solidify the laid metal powder layer on the substrate only on the substrate, obtain the pattern wiring circuit, and after this operation, laser light irradiation Any device can be used as long as it can remove the metal powder other than the irradiated portion.
レーザ光照射は、通常の空気中、不活性ガス雰囲気、真空中のいずれの雰囲気で照射されるものでも構わない。好ましくは、酸化防止のため窒素、アルゴン、又はこれらの混合物からなる不活性ガス雰囲気中で行うのがよい。用いるレーザ光は、波長0.75−1.4μm 、光エネルギー0.9−1.7eVの近赤外レーザ、Arレーザなどの気体レーザ、ルビーレーザ、Nd:YAGレーザなどの固体レーザ、半導体レーザ、色素レーザなど、いずれのレーザ発振器によるものでもよい。また、基材の劣化防止の観点より吸収帯から外れている波長が望ましい。なかでも、波長0.70−1.1μmの近赤外領域の波長の光は生体透過性が高く使用することができる。 The laser light irradiation may be performed in any of normal air, inert gas atmosphere, and vacuum atmosphere. Preferably, it is carried out in an inert gas atmosphere composed of nitrogen, argon, or a mixture thereof to prevent oxidation. Laser light to be used is a near-infrared laser having a wavelength of 0.75 to 1.4 μm and a light energy of 0.9 to 1.7 eV, a gas laser such as an Ar laser, a ruby laser, a solid-state laser such as an Nd: YAG laser, and a semiconductor laser. Any laser oscillator such as a dye laser may be used. Moreover, the wavelength which remove | deviated from the absorption band from a viewpoint of deterioration prevention of a base material is desirable. In particular, light having a wavelength in the near-infrared region with a wavelength of 0.70 to 1.1 μm can be used with high biological permeability.
レーザ光の出力は、高融点金属粉末と低融点金属粉末の混合粉を含有する形成材料の低融点金属粉末を融解でき、基材上に密着できる範囲内の出力でよい。好ましくは、レーザ光の出力は、50W以下の低出力で操作される。より好ましくは、10W以下の出力である。低出力で連続モードまたはパルスモードで作動することができる。レーザ光照射の走査ピッチ、走査速度、積層ピッチなど操作条件は形成しようとするパターン配線回路に応じて決めることができる。レーザ光照射のエネルギー密度としては、0.1〜20J/cm2以内で選択することができる。 The output of the laser beam may be an output within a range in which the low melting point metal powder of the forming material containing the mixed powder of the high melting point metal powder and the low melting point metal powder can be melted and adhered onto the substrate. Preferably, the output of the laser beam is operated at a low output of 50 W or less. More preferably, the output is 10 W or less. Can operate in low power or continuous mode or pulse mode. Operating conditions such as the scanning pitch, scanning speed, and stacking pitch of laser light irradiation can be determined according to the pattern wiring circuit to be formed. The energy density of laser light irradiation can be selected within 0.1 to 20 J / cm 2 .
本発明のレーザ光による金属粉末を用いる金属粉末融解メカニズムを図1に示す。金属粉末、即ち、高融点金属粉末(AgまたはCu)と低融点金属粉末(ハンダ粉)を均一の混合した形成材料を基材上に堆積させ、基材の背面からのレーザ光照射により低融点金属粉末が融解し高融点金属粉末とが導通化し、基材上にパターン配線回路が形成できる。基材背面からレーザ光照射を行うため、金属粉の均しは不要で、基材の平滑性により均一な融解が可能となる。また基材底部から一部融解が生じるため、接着性が良好となる。さらに、低出力レーザにより融解が可能なため、非耐熱性基材、即ち、有機物、耐熱性が低いプラスチックフィルム、シート及び生体、葉っぱなどの植物上で行うことができる。 The metal powder melting mechanism using the metal powder by the laser beam of the present invention is shown in FIG. A metal powder, that is, a forming material in which a high melting point metal powder (Ag or Cu) and a low melting point metal powder (solder powder) are uniformly mixed is deposited on a base material, and a low melting point is obtained by laser irradiation from the back surface of the base material. The metal powder melts and becomes conductive with the refractory metal powder, and a pattern wiring circuit can be formed on the substrate. Since laser light irradiation is performed from the back surface of the base material, the metal powder does not need to be leveled, and uniform melting is possible due to the smoothness of the base material. Moreover, since partial melting occurs from the bottom of the substrate, the adhesiveness is good. Furthermore, since it can be melted by a low-power laser, it can be performed on non-heat-resistant substrates, that is, organic substances, plastic films, sheets having low heat resistance, and plants such as living bodies and leaves.
本発明の背面レーザ光照射により作製されたグリッド電極パターンの表面顕微鏡写真を図2に示す。高融点金属粉末と低融点金属粉末を均一に混合した形成材料をPET基材、例えば、基材上に厚さ約30〜60μmに一面に形成し、次に基材の背面からレーザ光を照射する。本発明においては、基材上の金属混合粉が背面レーザ光照射により、金属混合粉中の低融点金属粉末のみが融解し、高融点金属粉末とが導通化しグリッド電極パターンが形成される。即ち、基材背面よりレーザ光照射すると、金属の融解拡散条件に応じてグリッド電極パターンが基材上に形成され固定化される。 FIG. 2 shows a surface micrograph of the grid electrode pattern produced by the backside laser light irradiation of the present invention. A forming material in which a high melting point metal powder and a low melting point metal powder are uniformly mixed is formed on a PET base material, for example, a single side with a thickness of about 30 to 60 μm, and then irradiated with laser light from the back side of the base material. To do. In the present invention, when the metal mixed powder on the substrate is irradiated with the back surface laser light, only the low melting metal powder in the metal mixed powder is melted, and the high melting metal powder becomes conductive and a grid electrode pattern is formed. That is, when the laser beam is irradiated from the back surface of the base material, the grid electrode pattern is formed and fixed on the base material according to the melting and diffusion conditions of the metal.
本発明の実施例で形成されたグリッド電極パターンの断面顕微鏡写真及びSEM電子顕微鏡写真を図3に示す。図3に示すグリッド電極パターンは、基材上に高融点金属粉末と低融点金属粉末を均一の混合した形成材料を厚さ約30〜60μmに基材上にほぼ一面に堆積形成し、基材背面レーザ光照射をグリッド電極パターン状に照射したものを顕微鏡写真としたものである。図3のグリッド電極パターン断面によれば、基材のグリッド電極パターンが形成された面には基材の一部が若干溶けている状態が確認される。 FIG. 3 shows a cross-sectional micrograph and a SEM electron micrograph of the grid electrode pattern formed in the example of the present invention. The grid electrode pattern shown in FIG. 3 is formed by depositing a forming material in which a high melting point metal powder and a low melting point metal powder are uniformly mixed on a base material so as to have a thickness of about 30 to 60 μm on the base material. A photomicrograph is obtained by irradiating the back surface laser light in a grid electrode pattern. According to the grid electrode pattern cross section of FIG. 3, it is confirmed that a part of the base material is slightly melted on the surface of the base material on which the grid electrode pattern is formed.
本発明の実施例での近赤外レーザ光背面照射により葉っぱ上に形成する配線パターン作製図を図4に示す。表面に凹凸がある葉っぱ上に高融点金属粉末と低融点金属粉末を均一に混合した形成材料を略平面均一に堆積し、葉っぱの背面から近赤外レーザ光を照射し、葉っぱ上で低融点金属粉末が融解し高融点金属粉末とが導通化し一体化した配線パターンが形成できる。低出力レーザにより融解が可能なため、耐熱性が低い生体、植物(葉っぱなど)上でも密着して形成できる。また、基材底部から融解するため葉っぱなどのようにある程度の凸凹な表面上においても融解した低融点金属粉末を固着することが可能である。 FIG. 4 shows a wiring pattern manufacturing diagram formed on the leaf by back irradiation of the near infrared laser beam in the embodiment of the present invention. A material with a uniform mixture of high-melting-point metal powder and low-melting-point metal powder is deposited almost uniformly on a leaf with irregularities on the surface, irradiated with near-infrared laser light from the back of the leaf, and low-melting point on the leaf. A wiring pattern in which the metal powder is melted and the refractory metal powder becomes conductive and integrated can be formed. Since it can be melted by a low-power laser, it can be formed on a living body or plant (such as a leaf) with low heat resistance. In addition, since it melts from the bottom of the base material, it is possible to fix the melted low melting point metal powder even on a certain uneven surface such as a leaf.
基材としては、絶縁性基材、導電性基材のいずれでもよく、用途に応じて用いることができる。低出力レーザ照射によって、分解、損傷などが生じない、例えば、有機物からなる基材、プラスチックス、薄紙、厚紙などの紙質材、葉っぱ、植物、箔、薄板など木質材、生体などの耐熱性が低い、非耐熱性基材と称されるいかなる基材でも用いることができる。プラスチックス基材としては、アクリル酸エステル、メチルメタアクリレート(PMMA)樹脂等のアクリル系樹脂、ポリカーボネート(PC)樹脂、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリスチレン(PS)樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ポリ塩化ビニル(PVC)樹脂等各種汎用プラスチック、機能性プラスチックが例示できる。また、フレキシブル基材として、ポリイミド基材、ポリエステル基材、ポリオレフィン基材などを用いることもできる。 As a base material, any of an insulating base material and an electroconductive base material may be sufficient, and it can be used according to a use. Low power laser irradiation does not cause decomposition, damage, etc., for example, substrate materials made of organic matter, plastic materials such as plastics, thin paper, cardboard, leaves, plants, foil, thin wood materials such as thin plates, heat resistance of living organisms, etc. Any substrate referred to as a low, non-heat resistant substrate can be used. Plastics base materials include acrylic resins, acrylic resins such as methyl methacrylate (PMMA) resin, polycarbonate (PC) resin, polyethylene (PE) resin, polypropylene (PP) resin, polystyrene (PS) resin, polyethylene terephthalate Examples include various general-purpose plastics and functional plastics such as polyester resins such as (PET) and polybutylene terephthalate (PBT), epoxy resins, phenol resins, and polyvinyl chloride (PVC) resins. Moreover, a polyimide base material, a polyester base material, a polyolefin base material etc. can also be used as a flexible base material.
非耐熱性基材のなかでもプラスチックフィルム、フレキシブルプラスチック基材、生体、葉っぱなどの植物などを基材として用いるのが好ましい。有機物からなる基材の場合、基材が一部状態変化を起こすことでパターン配線回路が密着する。基材がプラスチックス基材の場合、レーザ照射部直下の基材の一部が融解することによりパターン配線回路の密着性が高まるのでより好ましい。又基材の表面に凹凸があってもよく、これらの基材の表面状態に関係なく金属粉末を融解固着させ、パターン配線回路を形成することができる。基材の厚みは、低出力レーザ照射によって基材上の低融点金属粉末を融解することができる厚みならば使用できる。例えば、1μm〜1000μm程度の厚みである。 Among non-heat-resistant substrates, it is preferable to use a plastic film, a flexible plastic substrate, a living body, a plant such as a leaf as the substrate. In the case of a base material made of an organic material, the pattern wiring circuit is brought into close contact with the base material due to a partial state change. When a base material is a plastics base material, since the adhesiveness of a pattern wiring circuit improves because a part of base material just under a laser irradiation part melt | dissolves, it is more preferable. Further, the surface of the substrate may be uneven, and the pattern wiring circuit can be formed by melting and fixing the metal powder regardless of the surface state of these substrates. The thickness of the base material can be used as long as the low melting point metal powder on the base material can be melted by low power laser irradiation. For example, the thickness is about 1 μm to 1000 μm.
本発明は、レーザ光照射による金属粉末を用いた金属回路作成法であるので、複雑な形状のパターン配線回路を寸法精度よく製作することができる。また、従来の方法によっては作製できなかった形状のパターン配線回路をも工程数少なく、短時間で、CADデータを基に作製できる。更に、めっき法、スパッタリング、真空蒸着などにより全面に金属層形成し、フォトリソグラフィーにより所望のパターンにエッチングする方法、マスクを用いて導電パターンを形成する方法、はんだや導電ペーストを用いて基板上に描画する方法、転写、圧着の方法とは異なり、作成が簡便で、小ロット生産や従来の方法では作成できないような複雑、微細な形状のパターン配線回路を製造するのに有益である。 Since the present invention is a method for producing a metal circuit using metal powder by laser light irradiation, it is possible to manufacture a pattern wiring circuit having a complicated shape with high dimensional accuracy. In addition, a pattern wiring circuit having a shape that cannot be produced by a conventional method can be produced based on CAD data in a short time with a small number of steps. Furthermore, a metal layer is formed on the entire surface by plating, sputtering, vacuum deposition, etc., a method of etching to a desired pattern by photolithography, a method of forming a conductive pattern using a mask, and a substrate using solder or a conductive paste. Unlike the drawing method, transfer method, and pressure bonding method, the production is simple and useful for producing a pattern wiring circuit having a complicated and fine shape that cannot be produced by a small lot production or a conventional method.
本発明は、本発明のパターン配線回路を形成する方法により形成された構造体にも関する。パターン配線回路を形成する方法により形成された構造体とは、基材とその上に形成されたパターン配線回路を備えた構造体をいう。本発明のパターン配線回路を形成する方法は、基材背面からレーザ光照射に基材上方からのレーザ光照射を繰り返して積層し立体構造体を作製することもできる。 The present invention also relates to a structure formed by the method for forming the patterned wiring circuit of the present invention. The structure formed by the method of forming a pattern wiring circuit refers to a structure including a substrate and a pattern wiring circuit formed thereon. In the method for forming the pattern wiring circuit of the present invention, a three-dimensional structure can be produced by repeatedly laminating laser light irradiation from the back surface of the base material and laser light irradiation from above the base material.
従来は、金属粉末をレーザ融解し、細線を形成するためには、レーザ焦点距離を一定にして走査する都合上、表面が平らで均質な金属粉層を作製する必要があった。また、表面接着性をよくするために、底部まで十分に融解できるよう金属粉末層を薄くする必要があった。本発明では、基材背面からレーザ光照射を行うため、金属粉末の均しは不要で、基材の平滑性により均一な融解が可能で、低出力レーザにより融解が可能となる。また底部から融解が生じるため、例えば、プラスチック基材を用いる場合、基材の表面の一部が融解し、金属層、パターン配線回路とが密着し接着性が良好となる。 Conventionally, in order to laser-melt metal powder and form a thin line, it has been necessary to produce a metal powder layer having a flat surface and a uniform surface for the convenience of scanning with a constant laser focal length. In addition, in order to improve surface adhesion, it is necessary to make the metal powder layer thin so that the bottom part can be sufficiently melted. In the present invention, since the laser beam irradiation is performed from the back surface of the base material, the metal powder does not need to be leveled, can be uniformly melted by the smoothness of the base material, and can be melted by a low-power laser. Further, since melting occurs from the bottom, for example, when a plastic substrate is used, a part of the surface of the substrate is melted, and the metal layer and the pattern wiring circuit are in close contact with each other, thereby improving the adhesiveness.
本発明は、従来のレーザ光照射法で用いている装置をそのままで、基材上の形成材料に対して、レーザ光を基材を通して基材の背面から照射すればよく、高融点金属粉末と低融点金属粉末の混合粉末を均一にする必要がなく、凹凸のある基材上にもパターン配線回路を作製することができる。しかも、低出力レーザを用いることで耐熱性の低い基材上に密着して回路を形成することができる。 In the present invention, the apparatus used in the conventional laser light irradiation method may be used as it is, and the formation material on the base material may be irradiated with laser light from the back surface of the base material through the base material. It is not necessary to make the mixed powder of the low melting point metal powder uniform, and a pattern wiring circuit can be produced even on an uneven substrate. In addition, by using a low-power laser, a circuit can be formed in close contact with a substrate having low heat resistance.
次に、実施例および比較例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例などによって何ら限定されるものではない。 Next, the present invention will be specifically described based on examples and comparative examples, but the present invention is not limited to the following examples.
[実施例1]
高融点金属粉末として銀粉末(三井金属鉱業社製SL−3、平均粒径3μm)、低融点金属粉末としてスズ72質量%、ビスマス28質量%からなるスズ合金粉末(三井金属鉱業社製ST−3、平均粒径3μm)を1:1の重量比で混合し金属粉末形成材料を調整した。ポリエチレンテレフタレート(PET:厚み100μm)基板上に混合粉末を30〜60μmの厚さで一面に広げた。ファイバーレーザ(波長:1075nm、出力パワー密度:約6J/cm2)をPET基板背面より連続モードでグリッド電極パターン状に走査し照射した。次に、未照射部分の金属粉末形成材料を除去し、PET基板上に厚さ3〜6μm、線幅25μmのグリッド電極パターンを形成した。形成されたグリッド電極パターンの光学顕微鏡像を図2に示す。また、その時のレーザ照射部断面である導通化したパターンの断面顕微鏡像及びSEM写真を図3に示す。
[Example 1]
Silver powder (SL-3 manufactured by Mitsui Mining & Smelting Co., Ltd., average particle size 3 μm) as the high melting point metal powder, and tin alloy powder comprising 72% by mass of tin and 28% by mass of bismuth as the low melting point metal powder (ST- manufactured by Mitsui Kinzoku Mining Co., Ltd.) 3 and an average particle diameter of 3 μm) were mixed at a weight ratio of 1: 1 to prepare a metal powder forming material. The mixed powder was spread on one surface with a thickness of 30 to 60 μm on a polyethylene terephthalate (PET: thickness 100 μm) substrate. A fiber laser (wavelength: 1075 nm, output power density: about 6 J / cm 2 ) was scanned and irradiated in a grid electrode pattern form in continuous mode from the back of the PET substrate. Next, the metal powder forming material in the unirradiated portion was removed, and a grid electrode pattern having a thickness of 3 to 6 μm and a line width of 25 μm was formed on the PET substrate. An optical microscope image of the formed grid electrode pattern is shown in FIG. Further, FIG. 3 shows a cross-sectional microscopic image and an SEM photograph of the conductive pattern which is a cross section of the laser irradiation portion at that time.
形成されたパターン配線回路の長さ0.3mm、平均幅1mm、平均高さ4μmのラインを用いて、抵抗を4端子測定器(KB100、KB・esi社製)を用いて測定した。その結果、抵抗値:0.6Ω、比抵抗値:8μΩmであった。また、透過型電子顕微鏡による分析によりPET基板中にスズが銀に拡散し合金を形成していることが観察されている。また、図3の断面観察により、照射部直下のPETが一部融解しており、グリッド電極パターン構造体のPET基板表面に対しての接着性向上に寄与していることがわかる。 Resistance was measured using a 4-terminal measuring instrument (KB100, manufactured by KB • esi) using a line having a length of 0.3 mm, an average width of 1 mm, and an average height of 4 μm of the formed pattern wiring circuit. As a result, the resistance value was 0.6Ω and the specific resistance value was 8 μΩm. Further, it has been observed by analysis with a transmission electron microscope that tin diffuses into silver and forms an alloy in the PET substrate. Moreover, it is understood from the cross-sectional observation in FIG. 3 that a part of the PET immediately under the irradiated part is melted, which contributes to the improvement of the adhesion of the grid electrode pattern structure to the surface of the PET substrate.
[実施例2]
実施例1において、ファイバーレーザ(波長:1075nm、出力パワー密度:約6J/cm2)を植物の葉っぱ背面より連続モードでグリッド電極パターン状に走査し照射した以外は、実施例1と同様にして、葉っぱ上に長さ約1cm、厚さ4μm、線幅1mmの櫛形電極パターンを形成した。形成された櫛型電極パターンの導体部の導通はテスターで確認した。
[Example 2]
In Example 1, a fiber laser (wavelength: 1075 nm, output power density: about 6 J / cm 2 ) was scanned and irradiated in a continuous mode from the back of the leaf of the plant in a grid electrode pattern, and was the same as Example 1. A comb-shaped electrode pattern having a length of about 1 cm, a thickness of 4 μm, and a line width of 1 mm was formed on the leaf. The conductivity of the conductor part of the formed comb electrode pattern was confirmed by a tester.
[比較例1]
高融点金属粉末として銀(三井金属鉱業社製SL−3、平均粒径3μm)だけを用い金属粉末形成材料を調整した。PET基板上に金属粉末形成材料を30〜60μmの厚さで均一に一面に広げた。ファイバーレーザ(波長:1075nm、出力パワー密度:約6J/cm2)を下方より連続モードでグリッド型電極パターン状に走査し照射した。次に、エアガンで未照射部分の金属粉末形成材料を除去すると、未照射部と同様照射部においてもPET上には焼結及び固着されず除去された。
[Comparative Example 1]
A metal powder forming material was prepared using only silver (SL-3 manufactured by Mitsui Mining & Smelting Co., Ltd., average particle size of 3 μm) as the refractory metal powder. A metal powder forming material was uniformly spread on one surface with a thickness of 30 to 60 μm on a PET substrate. A fiber laser (wavelength: 1075 nm, output power density: about 6 J / cm 2 ) was scanned and irradiated in a continuous mode in a grid-type electrode pattern from below. Next, when the metal powder forming material in the unirradiated part was removed with an air gun, the irradiated part was removed from the PET without being sintered and fixed in the same manner as the unirradiated part.
[比較例2]
実施例1において、ファイバーレーザをPET基板上面より連続モードでグリッド電極パターン状に走査し照射した以外は、実施例1と同様にして、PET上にグリッド型電極パターンを形成した。形成されたグリッド電極パターンの光学顕微鏡像を図5に示す。
[Comparative Example 2]
In Example 1, a grid electrode pattern was formed on PET in the same manner as in Example 1 except that the fiber laser was scanned and irradiated in a continuous mode from the upper surface of the PET substrate into a grid electrode pattern. An optical microscope image of the formed grid electrode pattern is shown in FIG.
実施例1において形成されたグリッド電極パターンは、PET基板に強固に密着しており、比抵抗は8μΩm以下であり、レーザ出力、照射法、混合粉末の混合比を最適化すればより微細で低抵抗なパターン配線回路が形成できる。実施例2においては、ファイバーレーザ(波長:1075nm、出力パワー密度:約6J/cm2)を植物の葉っぱ背面より連続モードでグリッド電極パターン状に走査し微細なパターン配線回路が形成できる。 The grid electrode pattern formed in Example 1 is firmly adhered to the PET substrate, has a specific resistance of 8 μΩm or less, and is finer and lower if the laser output, irradiation method, and mixing ratio of the mixed powder are optimized. A resistive pattern wiring circuit can be formed. In Example 2, a fine pattern wiring circuit can be formed by scanning a fiber laser (wavelength: 1075 nm, output power density: about 6 J / cm 2 ) in a grid electrode pattern from the back of a plant leaf in a continuous mode.
一方、比較例1において形成された金属配線パターンは、低融点金属粉末を配合していないので、高融点金属粉末はPET上に焼結および密着しないため、基板から剥がれてしまった。また、比較例2では、粒子サイズが3μmの金属粉末をPET基板上に均一に広げ堆積することは難しく、照射部において低融点合金粉末の深さ方向の融解可能な距離が異なるため、融解領域が基板近くまで達していない金属粉末照射部は剥がれており、複雑なパターン形成が難しいものであった。 On the other hand, since the metal wiring pattern formed in Comparative Example 1 does not contain the low melting point metal powder, the high melting point metal powder does not sinter and adhere to the PET, and thus peeled off from the substrate. Further, in Comparative Example 2, it is difficult to uniformly spread and deposit a metal powder having a particle size of 3 μm on a PET substrate, and the meltable distance in the depth direction of the low-melting-point alloy powder is different in the irradiated portion. However, it was difficult to form a complicated pattern because the metal powder irradiated portion that had not reached the vicinity of the substrate was peeled off.
本発明は、原料調整工程、作製工程、後処理工程など多工程を必要とすることなく、低出力レーザを用い1造形物当たり低エネルギーコストで、簡単な方法として背面レーザ光照射による金属粉末を用いたパターン配線回路形成法を提供できる。微細なパターン配線回路として耐熱性が低いPETなどのプラスチックフィルムや葉っぱ、生体などの上に、パターン配線回路が形成でき有用である。 The present invention does not require multiple steps such as a raw material adjustment step, a production step, and a post-treatment step, and uses a low-power laser and a low energy cost per shaped object, and as a simple method, a metal powder by irradiation with a rear laser beam is used. The pattern wiring circuit forming method used can be provided. As a fine pattern wiring circuit, a pattern wiring circuit can be formed on a plastic film such as PET having low heat resistance, a leaf, a living body, or the like, which is useful.
Claims (8)
The structure formed by the method of forming the pattern wiring circuit of any one of Claims 1-5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017021815A JP2018129409A (en) | 2017-02-09 | 2017-02-09 | Method for forming pattern wiring circuit on the basis of metal powder low temperature melting by irradiation with substrate back surface laser light and formed structure of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017021815A JP2018129409A (en) | 2017-02-09 | 2017-02-09 | Method for forming pattern wiring circuit on the basis of metal powder low temperature melting by irradiation with substrate back surface laser light and formed structure of the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018129409A true JP2018129409A (en) | 2018-08-16 |
Family
ID=63173186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017021815A Pending JP2018129409A (en) | 2017-02-09 | 2017-02-09 | Method for forming pattern wiring circuit on the basis of metal powder low temperature melting by irradiation with substrate back surface laser light and formed structure of the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018129409A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110605390A (en) * | 2019-08-13 | 2019-12-24 | 浙江工业大学 | Wire forming method for metal additive manufacturing |
CN113275567A (en) * | 2021-04-30 | 2021-08-20 | 广东工业大学 | Laser sintering forming method |
WO2023136285A1 (en) * | 2022-01-14 | 2023-07-20 | 三菱マテリアル株式会社 | Aluminum powder product, method for producing same, and lamination molded article |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002092674A1 (en) * | 2001-05-11 | 2002-11-21 | The United States Of America, As Represented By The Secretary Of The Navy Naval Research Laboratory | Laser forward transfer of rheological systems |
JP2006257463A (en) * | 2005-03-15 | 2006-09-28 | Sony Corp | Powdery material to be sintered by laser, manufacturing method therefor, three-dimensional structure and manufacturing method therefor |
JP2009016724A (en) * | 2007-07-09 | 2009-01-22 | Panasonic Corp | Wiring forming method and wiring forming device |
JP2014139343A (en) * | 2006-08-07 | 2014-07-31 | Inktec Co Ltd | Method for manufacturing silver nanoparticle, silver ink composition containing silver nanoparticle manufactured by the same |
JP2015065445A (en) * | 2008-08-18 | 2015-04-09 | センブラント リミテッド | Halo-hydrocarbon polymer coating |
JP2016089191A (en) * | 2014-10-30 | 2016-05-23 | 国立研究開発法人産業技術総合研究所 | Creating method of metal molded object using metal powder by laser irradiation, formation material for the method, and created structure |
JP2016139686A (en) * | 2015-01-27 | 2016-08-04 | 株式会社コムラテック | Electronic circuit board and method of manufacturing the same |
-
2017
- 2017-02-09 JP JP2017021815A patent/JP2018129409A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002092674A1 (en) * | 2001-05-11 | 2002-11-21 | The United States Of America, As Represented By The Secretary Of The Navy Naval Research Laboratory | Laser forward transfer of rheological systems |
JP2006257463A (en) * | 2005-03-15 | 2006-09-28 | Sony Corp | Powdery material to be sintered by laser, manufacturing method therefor, three-dimensional structure and manufacturing method therefor |
JP2014139343A (en) * | 2006-08-07 | 2014-07-31 | Inktec Co Ltd | Method for manufacturing silver nanoparticle, silver ink composition containing silver nanoparticle manufactured by the same |
JP2009016724A (en) * | 2007-07-09 | 2009-01-22 | Panasonic Corp | Wiring forming method and wiring forming device |
JP2015065445A (en) * | 2008-08-18 | 2015-04-09 | センブラント リミテッド | Halo-hydrocarbon polymer coating |
JP2016089191A (en) * | 2014-10-30 | 2016-05-23 | 国立研究開発法人産業技術総合研究所 | Creating method of metal molded object using metal powder by laser irradiation, formation material for the method, and created structure |
JP2016139686A (en) * | 2015-01-27 | 2016-08-04 | 株式会社コムラテック | Electronic circuit board and method of manufacturing the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110605390A (en) * | 2019-08-13 | 2019-12-24 | 浙江工业大学 | Wire forming method for metal additive manufacturing |
CN113275567A (en) * | 2021-04-30 | 2021-08-20 | 广东工业大学 | Laser sintering forming method |
WO2023136285A1 (en) * | 2022-01-14 | 2023-07-20 | 三菱マテリアル株式会社 | Aluminum powder product, method for producing same, and lamination molded article |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6464341B2 (en) | Method for creating metal shaped object using metal powder by laser irradiation, forming material therefor, and created structure | |
JP6295080B2 (en) | Conductive pattern forming method and composition for forming conductive pattern by light irradiation or microwave heating | |
CN108349120B (en) | Surface property control of printed three-dimensional structures | |
CN109843479B (en) | Metal powder for metal additive manufacturing and molded object made by using metal powder | |
JP2018129409A (en) | Method for forming pattern wiring circuit on the basis of metal powder low temperature melting by irradiation with substrate back surface laser light and formed structure of the same | |
EP3187285B1 (en) | Powder for layer-by-layer additive manufacturing, and process for producing object by layer-by-layer additive manufacturing | |
CN104704930B (en) | The method and system of electric component and manufacture electric component | |
JP5618309B2 (en) | Conductive pattern forming method and composition for forming conductive pattern by light irradiation or microwave heating | |
EP3116706B1 (en) | Sintering particulate material | |
JP2012119611A (en) | Manufacturing method of through hole electrode substrate | |
CN104668807B (en) | Spherical low-melting-point brazing filler metal powder manufacturing method | |
JP2009270130A (en) | Silver powder or silver alloy powder, method for producing shaped article of silver or silver alloy, and shaped article of silver or silver alloy | |
TW201419315A (en) | Photosintering of micron-sized copper particles | |
JP6823287B2 (en) | A method for forming a low resistance or porous structure of a metal alloy containing tin by a galvanic substitution reaction, and the formed structure. | |
CN104105353A (en) | Preparation method of high-accuracy ceramic printed circuit board | |
TWI694469B (en) | Composition for forming conductive pattern and method of forming conductive pattern | |
KR20160117470A (en) | Method for thin-film via segments in photovoltaic device | |
Shin et al. | Direct conductive patterning on 3D printed structure using laser | |
MX2015004040A (en) | Electrical components and methods and systems of manufacturing electrical components. | |
JP7174049B2 (en) | material set | |
DE102013220886A1 (en) | Method for producing a metallic contacting structure on a semiconductor substrate | |
JP2013196881A (en) | Method for forming electrical conduction pattern, and composition for electrical conduction pattern formation by light irradiation or microwave heating | |
JP2017095747A (en) | Manufacturing method of metal film formation article | |
JP6721934B2 (en) | Additive-manufactured copper powder, manufacturing method of additive-molded copper powder, additive-manufactured product manufacturing method, and additive-molded product | |
US20240189907A1 (en) | Hybrid Printing of Copper Conductive Material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20170814 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170814 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170908 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171002 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210526 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20211124 |