TW201123258A - Fluorescent lamp. - Google Patents

Fluorescent lamp. Download PDF

Info

Publication number
TW201123258A
TW201123258A TW99132396A TW99132396A TW201123258A TW 201123258 A TW201123258 A TW 201123258A TW 99132396 A TW99132396 A TW 99132396A TW 99132396 A TW99132396 A TW 99132396A TW 201123258 A TW201123258 A TW 201123258A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
phosphor
fluorescent lamp
wavelength
light
Prior art date
Application number
TW99132396A
Other languages
Chinese (zh)
Other versions
TWI470667B (en
Inventor
Yukiharu Tagawa
Original Assignee
Ushio Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Electric Inc filed Critical Ushio Electric Inc
Publication of TW201123258A publication Critical patent/TW201123258A/en
Application granted granted Critical
Publication of TWI470667B publication Critical patent/TWI470667B/en

Links

Landscapes

  • Liquid Crystal (AREA)
  • Luminescent Compositions (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

The subject of the invention is to provide a rare-gas fluorescent lamp using phosphor for reducing the luminous intensity of 310 nm and below to the utmost, and increasing the luminous intensity of 310 nm to 380 nm to the utmost. To solve the problem, the fluorescent lamp of the present invention is used in the manufacturing process of a liquid crystal panel containing light reactive substance, which is characterized in that the phosphor layer formed inside an illumination tube contains phosphor activated by Ce<3+> using one of barium magnesium aluminate, yttrium phosphate gadolinium and lanthanum aluminate magnesium as a seed crystal.

Description

201123258 六、發明說明: 【發明所屬之技術領域】 本發明係關於在製造液晶面板時所使用的光源用燈’ 尤其係關於在將含有光反應性物質的液晶封入在內部的液 晶面板製造工程中所使用的螢光燈。 【先前技術】 液晶面板係在具有2枚光透過性的基板(玻璃基板)之 間封入液晶的構造,在其中一方玻璃板上形成多數主動元 件(TFT)與液晶驅動用電極,在其上形成配向膜。在另一 方玻璃基板係形成有彩色濾光片、配向膜、及透明電極 (ITO)。接著在兩玻璃基板的配向膜間封入液晶,利用密 封劑將周圍密封。 在如上所示之構造的液晶面板中,配向膜係用以控制 對電極間施加電壓而使液晶配向的液晶配向者。 以往,配向膜的控制係藉由擦磨來進行,但是近年來 則嘗試一種新的配向控制技術(參照專利文獻1)。 此係在設有TFT元件的第1玻璃基板與相對於該第1 玻璃基板的第2玻璃基板之間,封入將具有藉由電壓施加 進行配向的配向性的液晶、及與光反應而發生聚合的單體 加以混合的材料,在該液晶面板一面施加電壓一面照射光 而使單體聚合,將與玻璃基板相接的液晶(亦即表層的大 槪1分子層)的方向固定,藉此對液晶分子賦予預傾角者 -5- 201123258 藉由該方法,由於不需要設置以往具有爲賦予預傾角 所需的斜面的突起物,因此可簡化液晶面板的製造工程, 而且在最終製品中,由於因突起物所造成的陰影會不見, 因此可改善開口率,結果可刪減液晶面板的製造成本或製 造時間,另外可將背光省電力化。 參照第1 1圖,針對藉由該高分子所爲之液晶配向限 制技術加以說明。 面板90係在由玻璃所構成的光透過性基板91的各個 的面形成有藉由ITO等所致之電極92,而且在其周邊塗 佈密封劑(未圖示)而形成而予以貼合者。在基板9 1之間注 入有液晶。該液晶係在具有負的介電係數異方性的負型液 晶,以適當比例添加有紫外線硬化型單體93者。對該面 板90進行電壓施加及紫外線照射,藉此進行液晶的配向 限制。 如第1 1圖(a)所示在初期的無施加電壓時,液晶分子 94係作垂直配向,單體93亦還在單量體的狀態下沿著液 晶分子而存在。在此,若如(b)所示施加電壓,液晶分子 9 4係朝像素電極的微細圖案方向傾斜,單體9 3亦同樣地 傾斜。若在該狀態下如(c)所示進行紫外線照射,單體93 係保持傾斜的狀態進行聚合物化。如上所示單體93具有 傾斜而聚合物化,藉此使液晶分子94的配向受到限制。 在進行該新的配向控制的液晶面板的製造技術中,最 終製品中的面板的良否係與單體的聚合是否完成大有關係 ,萬一殘留有未硬化的單體時,會發生液晶面板的殘影而 -6- 201123258 造成不良的原因。 因此’如專利文獻1等已爲人所知,採用一種將紫外 線的照射分成複數階段的2階段紫外線照射工程。具體而 言’如第12圖所示,在(A)1次照射工程中,在對含有液 晶材料及光聚合性單體的液晶層施加電壓的狀態下對液晶 層照射紫外線’之後’在(B)2次照射工程中,在無施加電 壓狀態下照射紫外線。結果,在1次照射工程下在液晶材 料的分子配向呈傾斜的狀態下,配向膜附近的單體聚合而 形成聚合物層’在2次照射工程中,液晶分子的傾斜方向 被記憶在聚合物。經由如上所示之工程,殘留在液晶材料 中的單體會完全聚合,單體則消滅。 以往’在上述紫外線照射工程中,使用會放射出被稱 爲不可見光(black light)之波長約300〜400nm範圍附近的 紫外範圍的光的螢光燈。 [先前技術文獻] [專利文獻] [專利文獻1]特開2008-134668號公報 【發明內容】 (發明所欲解決之課題) 來自不可見光的放射光係包含有較多的短波長(例如 未達310nm的波長)的紫外線。但是,若將如上所示之波 長3 1 Onm以下的紫外線照射在液晶顯示面板,液晶會受到 損傷’而會導致液晶顯示面板的可靠性降低的新的問題。 201123258 爲了切掉不需要的波長範圍的光,簡單來說爲設置濾光片 ,但是螢光燈爲擴散光源,因此通常必須使用吸收特性的 濾光片。但是,爲了將波長3 1 Onm以下的光確實遮光, 310nm附近之例如 310〜3 40nm附近的頻譜光亦一部分被 吸收。亦即,有助於單體聚合的波長範圍的光會無可避免 地被吸收。結果’無法效率佳地照射聚合所需之波長範圍 的光’而會產生聚合速度降低、紫外線照射時間長、量產 性差的問題。 因此’本發明所欲解決之課題係提供一種在具備有電 極的2枚基板間塡充含有可聚合的單體的液晶組成物而形 成液晶層,一面對基板施加電壓,一面使單體聚合,藉此 在規定液晶分子之傾斜方向的液晶顯示裝置的製造工程中 ’放射可適於使用在前述單體聚合工程中之放射紫外線的 光源燈,具體而言’提供一種以儘量減小在其頻譜中比 310nm爲更短波長的紫外線強度,且在310〜 3 8 0nm具有 最大能量峰値的螢光燈爲目的。 (解決課題之手段) 爲了解決上述課題,本發明之螢光燈係具備有以下特 徵。 (1)一種螢光燈’係在含有光反應性物質的液晶面板的 製造工程中所使用的螢光燈,其特徵爲:在形成於發光管 內部的螢光體層係含有將鋁酸鎂鋇、磷酸釓.釔及鋁酸鎂 •鑭之任一者作爲母結晶而藉由C e3 +予以賦活的螢光體。 201123258 (2) 此外,前述螢光體係含有: 賦活鋁酸鎂鋇:[Technical Field] The present invention relates to a light source lamp used in manufacturing a liquid crystal panel, particularly in a liquid crystal panel manufacturing process in which a liquid crystal containing a photoreactive substance is sealed inside. The fluorescent lamp used. [Prior Art] A liquid crystal panel has a structure in which a liquid crystal is sealed between two substrates (glass substrates) having light transmittance, and a plurality of active devices (TFTs) and liquid crystal driving electrodes are formed on one of the glass plates, and a liquid crystal driving electrode is formed thereon. Orientation film. A color filter, an alignment film, and a transparent electrode (ITO) are formed on the other glass substrate. Then, liquid crystal was sealed between the alignment films of the two glass substrates, and the periphery was sealed with a sealing agent. In the liquid crystal panel constructed as described above, the alignment film is used to control a liquid crystal alignment person that applies a voltage between the electrodes to align the liquid crystal. Conventionally, the control of the alignment film has been performed by rubbing, but in recent years, a new alignment control technique has been tried (see Patent Document 1). In this case, between the first glass substrate provided with the TFT element and the second glass substrate with respect to the first glass substrate, an alignment liquid crystal having an alignment by voltage application and a photopolymerization reaction are formed. The material to be mixed with the monomer is irradiated with light while applying a voltage to the liquid crystal panel to polymerize the monomer, and the direction of the liquid crystal that is in contact with the glass substrate (that is, the outer layer of the outer layer of the surface layer) is fixed. Liquid crystal molecules impart pretilt angle-5-201123258 By this method, since it is not necessary to provide a protrusion having a slope which is required to impart a pretilt angle, the manufacturing process of the liquid crystal panel can be simplified, and in the final product, The shadow caused by the protrusions is not visible, so that the aperture ratio can be improved, and as a result, the manufacturing cost or manufacturing time of the liquid crystal panel can be reduced, and the backlight can be saved. Referring to Fig. 1, a liquid crystal alignment limiting technique by the polymer will be described. The panel 90 is formed with an electrode 92 made of ITO or the like on each surface of the light-transmitting substrate 91 made of glass, and is formed by applying a sealant (not shown) to the periphery thereof. . Liquid crystal is injected between the substrates 9 1 . This liquid crystal is a negative liquid crystal having a negative dielectric anisotropy, and an ultraviolet curable monomer 93 is added in an appropriate ratio. Voltage application and ultraviolet irradiation are applied to the panel 90, whereby alignment of the liquid crystal is restricted. As shown in Fig. 1(a), when the initial voltage is not applied, the liquid crystal molecules 94 are vertically aligned, and the monomer 93 is also present along the liquid crystal molecules in the state of a single body. Here, when a voltage is applied as shown in (b), the liquid crystal molecules 94 are inclined toward the fine pattern direction of the pixel electrode, and the monomer 193 is also inclined in the same manner. When ultraviolet irradiation is performed as shown in (c) in this state, the monomer 93 is polymerized while being kept inclined. The monomer 93 has a tilt and polymerization as described above, whereby the alignment of the liquid crystal molecules 94 is restricted. In the manufacturing technique of the liquid crystal panel in which the new alignment control is performed, whether the panel in the final product is related to the completion of polymerization of the monomer is large, and if the unhardened monomer remains, the liquid crystal panel may occur. Afterimage -6- 201123258 caused the cause of the bad. Therefore, as disclosed in Patent Document 1, a two-stage ultraviolet irradiation process in which ultraviolet irradiation is divided into a plurality of stages is employed. Specifically, as shown in Fig. 12, in the (A) one-time irradiation process, after applying a voltage to a liquid crystal layer containing a liquid crystal material and a photopolymerizable monomer, the liquid crystal layer is irradiated with ultraviolet rays 'after' ( B) In the secondary irradiation project, ultraviolet rays are irradiated without applying voltage. As a result, in the state in which the molecular alignment of the liquid crystal material is inclined in one irradiation operation, the monomer in the vicinity of the alignment film is polymerized to form a polymer layer. In the secondary irradiation process, the tilt direction of the liquid crystal molecules is memorized in the polymer. . Through the engineering as shown above, the monomer remaining in the liquid crystal material is completely polymerized, and the monomer is eliminated. Conventionally, in the ultraviolet irradiation project, a fluorescent lamp that emits light in the ultraviolet range in the vicinity of a wavelength range of about 300 to 400 nm, which is called black light, is used. [PRIOR ART DOCUMENT] [Patent Document 1] JP-A-2008-134668 SUMMARY OF INVENTION [Problems to be Solved by the Invention] A radiation source derived from invisible light contains a large number of short wavelengths (for example, Ultraviolet light up to a wavelength of 310 nm. However, when the ultraviolet light having a wavelength of 3 1 Onm or less as described above is irradiated onto the liquid crystal display panel, the liquid crystal is damaged, and the reliability of the liquid crystal display panel is lowered. 201123258 In order to cut off the light of the unnecessary wavelength range, simply set the filter, but the fluorescent lamp is a diffused light source, so it is usually necessary to use a filter with absorption characteristics. However, in order to shield light having a wavelength of 3 1 Onm or less, a part of the spectrum light near 310 nm, for example, around 310 to 3 40 nm, is also absorbed. That is, light in a wavelength range that contributes to the polymerization of the monomer is inevitably absorbed. As a result, the light in the wavelength range required for the polymerization cannot be efficiently irradiated, and the polymerization rate is lowered, the ultraviolet irradiation time is long, and the mass productivity is poor. Therefore, the problem to be solved by the present invention is to provide a liquid crystal layer by filling a liquid crystal composition containing a polymerizable monomer between two substrates having electrodes, and to polymerize a monomer while applying a voltage to the substrate. Thereby, in the manufacturing process of the liquid crystal display device which stipulates the tilt direction of the liquid crystal molecules, 'the light source lamp which can be suitably used to emit the ultraviolet rays in the above-mentioned monomer polymerization process, specifically, 'provides a kind to minimize The ultraviolet light intensity of the shorter wavelength in the spectrum than 310 nm is aimed at a fluorescent lamp having a maximum energy peak at 310 to 380 nm. (Means for Solving the Problem) In order to solve the above problems, the fluorescent lamp of the present invention has the following features. (1) A fluorescent lamp is a fluorescent lamp used in a manufacturing process of a liquid crystal panel containing a photoreactive substance, characterized in that the phosphor layer formed inside the arc tube contains magnesium aluminate bismuth A phosphor that is activated by C e3 + as a parent crystal of either yttrium phosphate or lanthanum aluminate. 201123258 (2) In addition, the aforementioned fluorescent system contains: activating magnesium aluminate bismuth:

Cex(Mgi.y.z &gt; B a y. 2) A11 1 Ο 19. (3 ( (其中,0.6 S x S 0.8)。 (3) 此外,前述螢光體係含有: 賦活磷酸釓•釔: (Yi-x &gt; Gdx)P04 : Ce (其中,〇· 1 S x S 0.5)。 (4) 此外,前述螢光體係含有: 賦活鋁酸鎂•鑭: (Lai.x &gt; Cex)MgAl 1 1 Ο 1 9 (其中,0.07 S x S 0_ 1 2)。 (5) 此外,前述螢光體係含有: 及鑭賦活鋁酸鎂鋇: (Ce〇 8 &gt; Lax)(Mg〇.g - Ba〇.i)Al, (其中,〇 &lt; x g 0.06)。 (發明之效果) 藉由本發明,可提供一種螢光 射的光的波長中,不會損及32 1〜 可減小3 1 Onm以下之波長的紫外線 晶造成損傷的3 00nm附近的短波長 減小對液晶造成的損傷,一面確實 於使用在將含有光反應性物質的液 一般式以下式表示的铈 1 *x) + 2z)/2 一般式以下式表示的姉 —般式以下式表示的铈Cex(Mgi.yz &gt; B a y. 2) A11 1 Ο 19. (3 (where 0.6 S x S 0.8). (3) In addition, the aforementioned fluorescent system contains: Reactive phosphoric acid 钇•钇: (Yi -x &gt; Gdx)P04 : Ce (where 〇· 1 S x S 0.5). (4) In addition, the aforementioned fluorescent system contains: activating magnesium aluminate • 镧: (Lai.x &gt; Cex) MgAl 1 1 Ο 1 9 (where 0.07 S x S 0_ 1 2) (5) In addition, the aforementioned fluorescent system contains: and an endowed magnesium aluminate strontium: (Ce〇8 &gt; Lax) (Mg〇.g - Ba〇) .i) Al, (where 〇&lt; xg 0.06). (Effect of the Invention) According to the present invention, it is possible to provide a wavelength of light emitted by the fluorescent light without damaging 32 1~ and can be reduced by 3 1 Onm or less The short wavelength near 300 nm caused by the ultraviolet ray of the wavelength reduces the damage to the liquid crystal, and is used in the general formula of the liquid containing the photoreactive substance as 铈1 *x) + 2z)/ 2 General formula: 姊 expressed by the following formula:

一般式以下式表示的鈽 1 0 1 8 . 6 + 3 X 燈,其在由螢光燈所放 3 5 Onm間的光強度,而 強度,因此可減小對液 的紫外線強度,可一面 進行單體的聚合,可適 晶封入在內部的液晶面 -9 - 201123258 板的製造工程。 【實施方式】 以下根據圖示,說明本發明之實施形態。但是,以下 所示實施形態係例示用以將本發明之技術思想具體化之液 晶製造用的紫外線照射裝置及螢光燈者,本發明並非將螢 光燈特定爲以下所示者。 第1圖係在將含有光反應性物質的液晶封入在內部的 液晶面板的製造工程中,用以將作爲光反應性物質的單體 聚合物化的紫外線照射裝置1 00的槪略說明圖。在工作台 S係將藉由輥子等適當的搬送裝置所被搬運而來的液晶面 板3 0載置於光照射部的正下方。液晶面板3 0係在例如由 玻璃所構成之具備有光透過性的2枚基板31之間,以框 狀塗佈有密封劑32,並且在其內部注入含有未反應狀態之 光反應性物質(單體)的液晶3 3所構成者。 在基板31的各個係設有在該圖中並未圖示的電極, 各電極係與施加電壓的機構3 4相連接。 在液晶面板3 0的上部形成有用以照射紫外線的光照 射部2 0。 光源爲螢光燈1 〇,在此排列配置有複數燈(在該圖中 爲5支)。其中,在螢光燈的背後具備有將來自燈的光朝 向載台作反射的反射鏡2 1。 第2圖係螢光燈之說明圖。該圖(a)係斜視圖,(1))係 與燈的管軸呈垂直的剖面圖,(c)係在(b)中以線段A所 -10- 201123258 切斷的管軸方向剖面圖。 針對本發明之一實施形態之螢光燈1 〇詳加說明。在 由玻璃等介電質所構成之透光性的氣密容器11的內壁係 形成有層積螢光體所形成的螢光體層12。在該氣密容器 11的內部係被封入有由氙等稀有氣體所構成的放電媒體, 在氣密容器11的外面上係配置有一對外部電極13、14。 若透過引線1 5、1 6而在該一對外部電極1 3、1 4間施加高 頻高電壓,形成有使藉由氣密容器11所構成的介電質的 壁部介於其中的放電,而放出屬於氙之頻譜的172 nm的紫 外線。 本發明中所使用的螢光體層1 2係具備有:當照射如 上所示之短波長紫外線,例如由氙所發出的波長1 72nm紫 外線時,發出在波長3 1 0〜3 8 Onm的區域具有發光峰値波 長的長波長紫外線的螢光體。 具體而言,螢光體係含有將鋁酸鎂鋇、磷酸釓·釔及 鋁酸鎂·鑭之任一者作爲母結晶,而且藉由铈(Ce)而將各 自的母結晶賦活的螢光體。尤其,Ce係可取3價及4價 的價數,惟在本發明中係作爲3價的陽離子而存在。如上 所示之螢光體亦可以適當比例來混合使用,但是由於作業 工時會增加,因此在實用上係以單獨使用爲佳。以下,針 對各自的螢光體,根據實施例詳加說明。 其中,在以下說明中,在將含有光反應性物質的液晶 封入在內部的液晶面板的製造工程中,與以往被使用在光 反應性物質之反應的所謂的不可見光作對比說明。其中’ -11 - 201123258 被使用在不可見光的螢光體雖有各式各樣’但在此將屬於 一般螢光體的铈賦活磷酸鑭使用在比較例加以說明’在後 段說明中,係將使用該铈賦活磷酸鑭螢光體的不可見光稱 爲「習知例1」。 其中,鈽賦活磷酸鑭螢光體的一般式係如以下所示。 铈賦活磷酸鑭螢光體的一般式:(La,Ce)P〇4 〔實施形態1〕 本實施形態1之螢光燈係主要使用姉賦活鋁酸鎂鋇 (Ce_Mg-Ba-Al-0)系的螢光體作爲螢光體層12。該螢光體 層12係一般式以下式(1)所表示的螢光體,尤其铈(Ce)的 莫耳比(X)爲0.6〜0.8的範圍者。 式(1) . Cex(Mgi.y_z ’ Bay.z)Alii〇i9-(3(i-x) + 2z)/2 在上述式(1)中’屬於賦活金屬元素的Ce在理想上係 全部作爲3價的陽離子而存在。藉由將該鈽的莫耳比設定 在X = 0.6〜0.8的範圍,可在將含有光反應性物質的液晶封 入在內部的液晶面板的製造工程使有效區域的紫外光增大 〇 以下藉由實施例,更進一步詳加說明本實施形態。 (比較例1) 以波長3 10nm以下、尤其波長3〇〇nm以下的紫外線 -12- 201123258 放射較少的螢光體而言,一般已知如下式(2)所示之铈賦活 鋁酸鋇·鎂螢光體(簡稱CAM螢光體)。 式(2) : CeMgAlu019 其中’在式(2)中,姉(Ce)的莫耳數爲1。 以第3圖中的比較例1的曲線來表示使用該式(2)的 CAM螢光體的螢光燈之波長250〜45 Onm範圍的發光頻譜 波形。其中該圖中的習知例1係铈賦活磷酸鑭螢光體發光 頻S普波形。如上所不,比較例1之曲線中的發光頻譜的峰 値値在波長360〜3 70nm附近,在將含有光反應性物質的 液晶封入在內部的液晶面板的製造工程中,確認出在光反 應性物質的反應所被使用的頻譜範圍(波長321〜350nm ; 稱爲「有效波長範圍」)的強度爲較大。 但是,若考慮到有效波長範圍的強度有改善的空間, 本發明人係嘗試根據該鈽賦活鋁酸鎂鋇(Ce-Mg-Ba-Al-O) 系的螢光體,使波長310〜3 80nm之波長範圍的紫外光增 大。 其中,在該驗證中,係在將含有光反應性物質的液晶 封入在內部的液晶面板的製造工程中,分爲:光反應性物 質的反應所使用的頻譜範圍、亦即有效波長範圍(波長3 2 1 〜35〇nm)、對液晶造成損傷的頻譜範圍(波長3 00〜31 Onm :以下稱爲「損傷波長範圍」)、及該等之間的頻譜範圍( 波長311〜320nm),將各區域的積算光量與習知技術之不 -13- 201123258 可見光者相比較來進行。 (比較例2、3) 首先,未改變鈽的摻合比例而將在CAM螢光體之一 般式(式(1))中屬於2價金屬離子的鎂的一部分,置換成同 爲2價金屬離子的鋇,製作出比較例2、比較例3之螢光 體。以下顯示各自螢光體的一般式。 (比較例 2)Ce(Mg〇.95,Ba〇.〇5)Alii〇i9 (比較例 3)Ce(Mg〇.9,Bao dAhiOu 比較例2之螢光燈之螢光體係將鋇添加量設爲0.05 莫耳,比較例3之螢光燈之螢光體係將鋇添加量設爲0.1 莫耳,而將鎂置換所製作的螢光體》在製造該等螢光體時 ,經由將Ce、Mg、Ba、A1以一般式所表示的莫耳比加以 混合,之後進行燒成來製作。 使用該等螢光體,按照第2圖所示構成.,製作出比較 例2及比較例3之螢光燈。 在如上所示所製作的螢光燈投入預定的電壓而亮燈, 來測定出燈的發光強度。結果確認出雖未發現藉由添加鋇 所造成的大幅改善,但是相較於比較例3之螢光燈,比較 例2之螢光燈係波長的峰値移位至短波長側,發光強度稍 微變高。 (比較例4 ) 接著,嘗試在經置換鋇的螢光體之中,採用鋇的莫耳 -14 - 201123258 數0 · 1莫耳,使鈽的添加量改變。在此,鈽的莫耳比係設 爲0.5。其中,螢光體係經過將Ce、Mg、Ba、Α1以一般 式所表示的莫耳比加以混合,之後進行燒成來製作,製作 出第2圖所示構成的螢光燈。使該螢光燈亮燈,而驗證出 發光頻譜。 結果可知螢光的峰値係更加移位至短波長側而使發光 強度增加而大幅改善。 因此,製作出另外使铈(Ce)濃度改變的螢光體。 (實施例1〜3) 以實施例1〜3而言,將上述式(2)中的X的値以依序 成爲0.6、0.7、0.8的方式進行調製而製造出螢光體。其 中各實施例的姉濃度爲0.6莫耳、0.7莫耳、0.8莫耳。 使用所得的螢光體而構成第2圖的燈,施加預定的電 壓而亮燈,驗證出其發光頻譜。結果,峰値強度的絕對値 增加,可得良好的發光頻譜。在該等實施例1〜3中,與 作爲習知例1之不可見光的構成相比較,一面使至波長 3 00〜3 1 Onm爲止之波長範圍的積分強度減低至1/1〇以下 爲止,一面在將含有光反應性物質的液晶封入在內部的液 晶面板的製造工程中,尤其可放出更多爲有效之至波長 320〜3 5 0nm爲止之紫外線的波長。 在第3圖中彙整顯示習知例1、比較例1〜4、實施例 1〜3的發光頻譜波形。此外,在下述表1顯示習知例、比 較例、實施例之螢光體組成、及波長3 00〜3 1 Onm範圍、 -15- 201123258 波長311〜320nm、波長321 強度的積分値。 表1中,左側的「測 25mm的位置藉由分光器所: 實測値。右側係以習知例1 設爲100的相對値來表示該^ 3 50nm之個別之各燈的頻譜 ί値」欄係在距離發光管爲 定出的頻譜的該積分強度的 燈中的各波長範圍的積分値 分強度。 -16- 201123258The 钸1 0 1 8 . 6 + 3 X lamp represented by the following formula, which has a light intensity of 3 5 Onm by a fluorescent lamp, and the intensity thereof, thereby reducing the ultraviolet intensity of the liquid, can be performed while The polymerization of the monomer can be crystallized into the internal liquid crystal surface -9 - 201123258 board manufacturing process. [Embodiment] Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the embodiment shown in the following, the ultraviolet irradiation device and the fluorescent lamp for liquid crystal production for embodying the technical idea of the present invention are exemplified, and the present invention does not specify the fluorescent lamp as described below. Fig. 1 is a schematic explanatory view of an ultraviolet irradiation device 100 for polymerizing a monomer which is a photoreactive substance in a manufacturing process of a liquid crystal panel in which a liquid crystal containing a photoreactive substance is sealed. In the table S, the liquid crystal panel 30 transported by an appropriate conveying device such as a roller is placed directly under the light irradiation portion. The liquid crystal panel 30 is, for example, coated with a sealant 32 in a frame shape between two substrates 31 having light transmittance, which is made of glass, and is filled with a photoreactive substance containing an unreacted state. The constituents of the liquid crystal 3 3 of the monomer). Electrodes (not shown) are provided in each of the substrates 31, and each electrode is connected to a mechanism 34 that applies a voltage. A light-emitting portion 20 for irradiating ultraviolet rays is formed on the upper portion of the liquid crystal panel 30. The light source is a fluorescent lamp 1 〇, in which a plurality of lamps (5 in the figure) are arranged. Among them, a mirror 21 for reflecting light from the lamp toward the stage is provided on the back of the fluorescent lamp. Figure 2 is an explanatory diagram of a fluorescent lamp. Figure (a) is a perspective view, (1)) is a cross-sectional view perpendicular to the tube axis of the lamp, and (c) is a cross-sectional view of the tube axis direction cut in line (b) by line segment A-10-201123258. . The fluorescent lamp 1 according to an embodiment of the present invention will be described in detail. The phosphor layer 12 formed by laminating the phosphor is formed on the inner wall of the light-transmitting airtight container 11 made of a dielectric material such as glass. A discharge medium composed of a rare gas such as helium is sealed inside the airtight container 11, and a pair of external electrodes 13 and 14 are disposed on the outer surface of the airtight container 11. When a high-frequency high voltage is applied between the pair of external electrodes 13 and 14 through the leads 15 and 16 , a discharge in which a wall portion of a dielectric formed by the hermetic container 11 is interposed is formed. And emit 172 nm of ultraviolet light belonging to the spectrum of 氙. The phosphor layer 12 used in the present invention is provided in a region having a wavelength of 3 1 0 to 3 8 Onm when irradiated with a short-wavelength ultraviolet ray as described above, for example, an ultraviolet ray having a wavelength of 1 72 nm emitted from ruthenium. A long-wavelength ultraviolet ray having a luminescence peak wavelength. Specifically, the fluorescent system contains a phosphor which is obtained by using any of magnesium aluminate strontium, strontium phosphate strontium, and magnesium aluminate strontium as a mother crystal, and each mother crystal is activated by cerium (Ce). . In particular, Ce is a valence of trivalent and tetravalent, but is present as a trivalent cation in the present invention. The phosphors as shown above may also be used in combination at an appropriate ratio, but since the number of working hours is increased, it is preferable to use them individually. Hereinafter, the respective phosphors will be described in detail based on the examples. In the following description, the manufacturing process of the liquid crystal panel in which the liquid crystal containing the photoreactive substance is sealed is described in comparison with the so-called invisible light which has been conventionally used for the reaction of the photoreactive substance. Among them, ' -11 - 201123258 is used in the invisible light, although there are various types of 'fluorescent body, but here is the general fluorescent material, the endowment of active yttrium phosphate is used in the comparative example to explain 'in the following paragraph, the system will The invisible light using this anthracene active strontium phosphate phosphor is referred to as "conventional example 1". Among them, the general formula of the endogenous active yttrium phosphate phosphor is as follows. General formula of the endogenous active yttrium phosphate phosphor: (La, Ce) P 〇 4 [Embodiment 1] The fluorescent lamp of the first embodiment mainly uses magnesium lanthanum aluminate (Ce_Mg-Ba-Al-0). The phosphor of the system serves as the phosphor layer 12. The phosphor layer 12 is a phosphor represented by the following formula (1), and in particular, the molar ratio (X) of cerium (Ce) is in the range of 0.6 to 0.8. Formula (1) . Cex(Mgi.y_z ' Bay.z)Alii〇i9-(3(ix) + 2z)/2 In the above formula (1), Ce belonging to the living metal element is ideally all 3 The cation of the valence exists. By setting the molar ratio of the ruthenium in the range of X = 0.6 to 0.8, the ultraviolet light of the effective region can be increased by the manufacturing process of the liquid crystal panel in which the liquid crystal containing the photoreactive substance is sealed. In the embodiment, the present embodiment will be described in further detail. (Comparative Example 1) In the case of a phosphor having a wavelength of 3 10 nm or less, particularly a wavelength of 3 〇〇 nm or less, which emits less ultraviolet light, -12-201123258 is generally known as an anthraquinone aluminate as shown in the following formula (2). · Magnesium phosphor (referred to as CAM phosphor). Formula (2): CeMgAlu019 wherein 'In the formula (2), the number of moles of cerium (Ce) is 1. The luminescence spectrum waveform of the wavelength range of 250 to 45 Onm of the fluorescent lamp using the CAM phosphor of the formula (2) is shown by the curve of Comparative Example 1 in Fig. 3 . The conventional example 1 in the figure is an active yttrium phosphate phosphor light-emitting waveform. As described above, the peak of the luminescence spectrum in the curve of the comparative example 1 is in the vicinity of the wavelength of 360 to 3 70 nm, and the photoreaction is confirmed in the manufacturing process of the liquid crystal panel in which the liquid crystal containing the photoreactive substance is sealed. The intensity of the spectrum range (wavelength 321 to 350 nm; referred to as "effective wavelength range") used for the reaction of the substance is large. However, in consideration of the space in which the intensity of the effective wavelength range is improved, the inventors attempted to activate the phosphor of the magnesium aluminosilicate (Ce-Mg-Ba-Al-O) system according to the endowment to make the wavelength of 310 to 3 The ultraviolet light in the wavelength range of 80 nm is increased. In this verification, in the manufacturing process of a liquid crystal panel in which a liquid crystal containing a photoreactive substance is sealed, it is divided into a spectrum range used for the reaction of a photoreactive substance, that is, an effective wavelength range (wavelength). 3 2 1 to 35 〇 nm), the spectrum range that damages the liquid crystal (wavelength 3 00 to 31 Onm: hereinafter referred to as the "damage wavelength range"), and the spectral range between the wavelengths (wavelength 311 to 320 nm), The amount of integrated light in each region is compared with that of the prior art. (Comparative Examples 2 and 3) First, a part of magnesium belonging to a divalent metal ion in the general formula (Formula (1)) of the CAM phosphor was replaced with the same divalent metal without changing the blending ratio of rhodium. The phosphor of the comparative example 2 and the comparative example 3 was produced by the enthalpy of the ion. The general formula of the respective phosphors is shown below. (Comparative Example 2) Ce (Mg〇.95, Ba〇.〇5) Alii〇i9 (Comparative Example 3) Ce (Mg〇.9, Bao dAhiOu Fluorescent system of the fluorescent lamp of Comparative Example 2 In the fluorescent system of the fluorescent lamp of Comparative Example 3, the amount of strontium added is set to 0.1 mol, and the phosphor produced by replacing magnesium is produced by using Ce in the production of the phosphor. Mg, Ba, and A1 were mixed by a molar ratio represented by a general formula, and then fired and produced. Using these phosphors, the composition shown in Fig. 2 was used to prepare Comparative Example 2 and Comparative Example 3. The fluorescent lamp produced as described above was turned on by a predetermined voltage and was turned on to measure the luminous intensity of the lamp. As a result, it was confirmed that although no significant improvement was caused by the addition of bismuth, In the fluorescent lamp of Comparative Example 3, the peak of the wavelength of the fluorescent lamp of Comparative Example 2 was shifted to the short wavelength side, and the luminous intensity was slightly increased. (Comparative Example 4) Next, an attempt was made to replace the phosphor of the germanium lamp. Among them, the molar amount of 莫-14 - 201123258 is 0 1 1 m, which changes the amount of 钸 added. Here, the molar ratio of 钸 is set to 0.5. In the fluorescent system, Ce, Mg, Ba, and Α1 are mixed in a molar ratio represented by a general formula, and then fired to prepare a fluorescent lamp having the configuration shown in Fig. 2. When the lamp was turned on, the luminescence spectrum was verified. As a result, it was found that the peak of the fluorescing was shifted to the short-wavelength side to greatly increase the luminescence intensity, and thus the phosphor having a different concentration of cerium (Ce) was produced. (Examples 1 to 3) In the examples 1 to 3, the enthalpy of X in the above formula (2) was prepared so as to be 0.6, 0.7, and 0.8 in order to produce a phosphor. The enthalpy concentration of the examples was 0.6 mol, 0.7 mol, and 0.8 mol. The lamp of Fig. 2 was formed using the obtained phosphor, and a predetermined voltage was applied thereto to illuminate, and the emission spectrum was verified. The absolute enthalpy of the intensity is increased, and a good luminescence spectrum is obtained. In the first to third embodiments, the wavelength to the wavelength of 00 to 3 1 Onm is obtained as compared with the configuration of the invisible light as the conventional example 1. The intensity of the range is reduced to less than 1/1〇, and the light will be reversed. In the manufacturing process of the liquid crystal panel in which the liquid crystal of the substance is sealed, in particular, more wavelengths of ultraviolet rays effective to a wavelength of 320 to 350 nm can be released. In the third figure, the conventional example 1 and the comparative example are shown. 1 to 4, the light-emitting spectrum waveforms of Examples 1 to 3. Further, the phosphor compositions of the conventional examples, comparative examples, and examples, and wavelengths of 300 to 3 1 Onm, and -15 to 201123258 are shown in Table 1 below. Integral 値 of the wavelength 311 to 320 nm and the intensity of the wavelength 321 . In Table 1, the position of the 25 mm measured on the left side is measured by the spectroscope: 値. The right side is represented by the relative enthalpy of the conventional example 1 being set to 100. The spectrum of each of the lamps of the ^3 50 nm column is at each wavelength in the integrated intensity lamp from the determined spectrum of the arc tube. The integral of the range is divided into intensity. -16- 201123258

【II 良否 I X X X X 〇 〇 o 相對値 ---V 囫 &lt;w 11¾ |321 〜350 | 100 CM CO 寸 GO CO 00 S r- 丨311 〜320 | 100 CO CO ΙΛ 00 CD CO ^r 窠 丨300〜310 | 100 OJ CO CO f— o 〇 卜 測定値 波長範圍 丨321 〜350 | 584 1_188j 1 2381 I_216l I 4551 I_ _5471 567 丨311 〜320 | 245 0D ΙΛ CQ ΙΛ ΙΛ ΙΛ CO 300〜310 ΙΛ CD CQ CQ CD OD &lt;〇 莫耳數 Ce:1 Ce:1 . Ba:0.05 Ce:1 , Ba:0.1 Ce:0.5 . Ba:0.1 iCe:0.6 . Ba:0.1 Ce:0.7 . Ba:0.1 Ce:0.8 . Ba:0.1 螢光體組成 0^ 0) 〇 to Ce MgAli i〇 i9 C e (M g〇9s. Ba〇.〇s) A 丨 11019 Ge(Mg〇.9 .Ba。」)AI”〇i9 (Mg0.8.Ba。」〉AI”〇is」s Ce〇.g (Mgo.g.Bao.t) Aln〇ig.3 5 w q 5 〇 f〇 m w s g r-. 6 a&gt; 〇 Ce〇g (Mg〇gtBa〇.i) Aln〇is.8 習知例1 比較例1 比較例2 比較例3 比較例4 實施例1 實施例2 實施例3 -17- 201123258 此外’在第4圖中,將縱軸設爲相對値,將橫軸設爲 姉的濃度’以座標表示之前顯示之表1的比較例及實施例 的各個積分強度的相對値。曲線(甲)係表示有效波長範圍 、曲線(乙)係表示損傷波長範圍。由該圖可知,損傷波長 範圍係在相對値中在1 0的附近作推移,但是姉的濃度在 0.6〜0.8莫耳的範圍內,有效波長範圍中的光輸出較大。 但是,可知在铈的莫耳數中若增大至1莫耳爲止,效率會 變差。 由以上結果可知,實施例1〜3的任一者均可將相對 習知例1的損傷波長範圍的強度減低至1 0以下,且可將 有效波長範圍的強度形成爲80以上。因此,在上述式中 可知,若X的値在0.6〜0.8的範圍內,損傷波長範圍中的 發光較少、有效波長範圍中的發光較大。 〔實施形態2〕 接著針對本發明之實施形態2加以說明。 本實施形態之螢光燈係使用铈賦活磷酸釓·釔(Gd-Y-P-0 :Ce)系的螢光體作爲第2圖中所示之螢光燈之螢光體層 12者。該螢光體層12係一般式以下式(3)所表示的螢光體 ,尤其釓(Gd)的莫耳比(X)爲〇.1〜0.5的範圍者。 式(3 ) : (Y 1 X,G d x) P 0 4 : C e (其中,〇 _ 1 g X $ 〇 5 ) 在上述式(3)中’屬於賦活金屬元素的Ce在理想上係 -18- 201123258 全部作爲3價陽離子而存在。藉由將該釓的莫耳比設在 x = 0.1〜0.5的範圍,在鈽賦活磷酸亂.i乙(Gd-Y-P-O: 系螢光體中,在進行將含有光反應性物質的液晶封入在內 部的液晶面板的製造工程時,可使有效區域的紫外光增大 〇 以下藉由實施例,更進一步詳加說明本實施形態。 其中,在以下說明中,亦將使用铈賦活磷酸鑭螢光體 的不可見光作爲習知例之燈而稱爲習知例1。 (比較例5 )[II 良不 IXXXX 〇〇o Relative 値---V 囫&lt;w 113⁄4 |321 ~350 | 100 CM CO inch GO CO 00 S r- 丨311 ~320 | 100 CO CO ΙΛ 00 CD CO ^r 窠丨300 ~310 | 100 OJ CO CO f— o 値 値 値 値 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 4 4 4 Q Q Q Q Q Q Q Q Q Q ΙΛ ΙΛ Q Q Q Q Q ΙΛ ΙΛ ΙΛ ΙΛ Q Q Q C C ΙΛ ΙΛ C C C C C C C C C C C C C C CQ CD OD &lt;〇莫耳数 Ce:1 Ce:1 . Ba:0.05 Ce:1 , Ba:0.1 Ce:0.5 . Ba:0.1 iCe:0.6 . Ba:0.1 Ce:0.7 . Ba:0.1 Ce:0.8 Ba: 0.1 Phosphor composition 0^ 0) 〇 to Ce MgAli i〇i9 C e (M g〇9s. Ba〇.〇s) A 丨11019 Ge(Mg〇.9 .Ba.))AI”〇 I9 (Mg0.8.Ba.)>AI"〇is"s Ce〇.g (Mgo.g.Bao.t) Aln〇ig.3 5 wq 5 〇f〇mwsg r-. 6 a&gt; 〇Ce〇 g (Mg〇gtBa〇.i) Aln〇is.8 Conventional Example 1 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Example 1 Example 2 Example 3 -17- 201123258 In addition, in Figure 4 , the vertical axis is set as the relative 値, and the horizontal axis is set as the 浓度 concentration ′, and the comparative example of the previously displayed table 1 is represented by coordinates. The relative enthalpy of each integrated intensity of the embodiment. The curve (A) indicates the effective wavelength range, and the curve (B) indicates the damage wavelength range. As can be seen from the figure, the damage wavelength range is shifted in the vicinity of 10 in the relative 値. However, the concentration of ruthenium is in the range of 0.6 to 0.8 mol, and the light output in the effective wavelength range is large. However, it is understood that the efficiency is deteriorated when the molar number of 铈 is increased to 1 mol. As a result of the above, it is understood that any of Examples 1 to 3 can reduce the intensity of the damage wavelength range of the conventional example 1 to 10 or less, and can set the intensity of the effective wavelength range to 80 or more. In the formula, when the enthalpy of X is in the range of 0.6 to 0.8, the luminescence in the damage wavelength range is small, and the luminescence in the effective wavelength range is large. [Embodiment 2] Next, the embodiment 2 of the present invention will be described. In the fluorescent lamp of the present embodiment, a phosphor of the Gd-Y-P-0:Ce type is used as the phosphor layer 12 of the fluorescent lamp shown in Fig. 2 . The phosphor layer 12 is a phosphor represented by the following formula (3), and in particular, the molar ratio (X) of yttrium (Gd) is in the range of 0.1 to 0.5. Formula (3): (Y 1 X, G dx) P 0 4 : C e (where 〇_ 1 g X $ 〇5 ) In the above formula (3), Ce belonging to the living metal element is ideally- 18- 201123258 All exist as trivalent cations. By setting the molar ratio of the ruthenium in the range of x = 0.1 to 0.5, in the Gd-YPO: phosphor, the liquid crystal containing the photoreactive substance is sealed in the phosphoric acid. In the manufacturing process of the internal liquid crystal panel, the ultraviolet light in the effective area can be increased. Hereinafter, the present embodiment will be further described in detail by way of examples. However, in the following description, the endowment-active phosphoric acid phosphoric acid will also be used. The invisible light of the body is referred to as a conventional example lamp as a conventional example. (Comparative Example 5)

以波長3 1 Onm以下、尤其波長3 OOnm以下的紫外線 放射較少的螢光體而言,一般已知下式(4)所示之鈽賦活磷 酸釔(Υ-Ρ-0 ·· Ce)螢光體(簡稱YPC螢光體P 式(4) : ΥΡ04 : Ce 該式(4)鈽賦活磷酸釔(Y-P-O: Ce)螢光體,尤其有效 波長區域中的光強度爲習知例1的一半以下,效率不佳。 本發明人係根據該螢光體,嘗試使波長310〜 3 8 0nm的波 H SI的紫外光放大來提升效率。 (比較例6) 胃先’將上述式(4)之螢光體的釔(Y)的一部分置換成 A (Gd)來製作螢光體,而製作出比較例6之螢光燈。 -19&quot; 201123258 (比較例 6)(Υ〇.95,Gd〇.〇5)P〇4: Ce 比較例6的螢光燈之螢光體係釓的莫耳數爲〇·〇5莫 耳,釔的莫耳數爲0.95莫耳。在製造該螢光體時,經由 將Gd、Υ、Ρ、Ce以一般式所表示的莫耳比加以混合,進 行燒成而製作。使用該螢光體,製作出比較例6之營光燈 。對如上所示所製作的螢光燈施加預定的電壓而亮燈,獲 得來自螢光燈之放射光的波長250〜450nm範圍的發光頻 譜波形與強度。結果以第5圖中的比較例6的曲線表示。 (實施例4〜7) 以實施例4〜7而言’將上述式(3)中的X的値以成爲 0.1、0.2、0.3、0.5的方式進行調製而製造出螢光體。其 中,相對釔(Y)與釓(Gd)的合計値全爲0.95莫耳,鈽濃度 係全爲0.05莫耳。 使用所得的螢光體而構成第2圖的燈,施加預定的電 壓而亮燈而對發光頻譜進行驗證。結果,峰値強度的絕對 値增加,可得良好的發光頻譜。在該等實施例4〜7中, 與作爲習知例1之不可見光的構成相比較,一面使至波長 300〜310nm爲止之波長範圍的積分強度減低至1/1〇以下 爲止,一面在將含有光反應性物質的液晶封入在內部的液 晶面板的製造工程中,可放出更多尤其有效之至波長320 〜3 5 0nm爲止的紫外線的波長。 在第5圖中彙整顯示習知例1、比較例6、實施例4〜 7的發光頻譜波形。此外,在下述表2中顯示習知例、比 -20- 201123258 較例、實施例之螢光 波長311〜320nm、被 強度的積分値。 表2的左側欄位 習知例1之燈中的各 値來表示該積分強度 體組成、及波長3 00〜3 1 Onm範圍、 :長321〜3 50nm之個別之各燈的頻譜 爲該積分強度的實測値。右側係以將 波長範圍的積分値設爲1 00時的相對 -21 - 201123258 【s】 良否: I X X o o &lt;S&gt; o 相對値 波長範B(nm〉 321〜350 I_1〇〇1 ΙΛ CO ΙΛ &lt;N (O CO KO 311〜320 1_100] CO CD 寸 CD 300〜310 1_ι〇〇Ι 寸 lO in (〇 a&gt; 展 波長範圍in m&gt; 丨321 〜350 | 1 584.31 1 249.61 1 277.61 I 311.31 I 315.51 I 360.21 I 367.81 311〜320 1 244.71 寸 ΙΛ ΙΛ CsJ cd 寸 (0 00 σ&gt; 15.61 300 〜310 1_8mI 寸 CQ 卜 CO (D CO CO ιο 0□ 莫耳數 Gd:0.05 . Ce:1 Gd:0.1 . Ce:1 Gd:0.2. Ce:1 Gd:0.3 . Ce 1 Gd:0.5 . Ce:1 螢光體組成 (La.Ce)POd YP〇4: Ce (Y〇.9S. G d〇.〇g) P〇4: Ce 0) 〇 a O o &lt;» 0) 〇 a CD Q0 (D o 己 a _^P 〇 ΓΚ &lt;YD.5.Gd0.5)PO4:Ce 習知例1 1比較例5 I 比較例6 實施例4 實施例5 實施例6 實施例7 -22- 201123258 此外’在第6圖中,將縱軸設爲相對値,將橫軸設爲 姉的濃度,以座標表示之前顯示之表1的比較例及實施例 的各個積分強度的相對値。曲線(甲)係表示有效波長範圍 、曲線(乙)係表示損傷波長範圍。由該圖可知,隨著釓的 莫耳數變大,有效波長範圍域中的光輸出會變大。但是, 同時損傷波長範圍的相對値亦隨著有效波長範圍域中的光 輸出的增加而變大。因此,以釓的添加量而言,〇.;[莫耳 〜〇·5莫耳的範圍爲實用上的範圍。尤佳爲釓爲0.3莫耳 的情形。 由以上結果確認出,實施例4〜7之任一者均可將相 對習知例1之損傷波長範圍的強度減低爲丨〇以下,且可 更加增大有效波長範圍的強度。因此,在上述式(3)中可知 ’若X値在0 · 1〜0.5的範圍’損傷波長範圍中的發光較少 、有效波長範圍中的發光較大。 〔實施形態3〕 接著針對本發明之實施形態3加以說明。 本實施形態之螢光燈係使用铈賦活鋁酸鎂.鑭(La_ Mg-Al-0 : Ce)系螢光體來作爲第2圖所示之螢光燈之螢光 體層12。該螢光體層12係一般式爲下式(5)所表示的螢光 體’尤其鈽(Ce)的莫耳比(x)爲〇.07〜0.12的範圍者。 式(5) : (La 卜x ’ CeOMgAluChd其中,〇.〇7$ X客 〇 12) -23- 201123258 上述式(5)中’屬於賦活金屬元素的Ce理想上係全部 作爲3價的陽離子而存在。藉由將該铈的莫耳比設爲 χ = 0·07〜0.12的範圍,在姉賦活鋁酸鎂·鑭(La-Mg-Al-0 :Ce)系的螢光體中’在將含有光反應性物質的液晶封入 在內部的液晶面板的製造工程時,可使有效區域的紫外光 增大。 以下藉由實施例’更進一步詳加說明本實施形態。 其中’在以下說明中,將使用铈賦活磷酸鑭螢光體的 不可見光燈作爲習知例之燈而稱爲習知例1。铈賦活磷酸 鑭螢光體(一般式:LaP04: Ce)中的鈽(Ce)的莫耳數爲 0.05莫耳。 (實施例8〜1 1) 以實施例8〜1 1而言,將上述式(5)中的X値以成爲 0.07、0.09、0_1、0.12的方式進行調製而製造出螢光體。 其中各實施例中的铈的莫耳數爲0.07莫耳、0.09莫耳、 0.1莫耳、0.12莫耳。 使用所得的螢光體而構成第2圖的燈,施加預定的電 壓而亮燈而對發光頻譜進行驗證。結果,峰値強度的絕對 値增加,可得良好的發光頻譜。在該等實施例8〜1 1中, 與作爲習知例1之不可見光的構成相比較,一面使至波長 300〜310nm爲止之波長範圍的積分強度減低至2/5以下 爲止,一面在將含有光反應性物質的液晶封入在內部的液 晶面板的製造工程中,可放出更多尤其有效之至波長320 -24- 201123258 〜3 5 0 n m爲止的紫外線的波長。 在第7圖中彙整顯示習知例丨及實施例8〜u的發光 頻譜波形。此外,在下述表3中顯示習知例、實施例之螢 光體組成、波長300〜310nm範圍、波長311〜320nm、波 長3 2 1〜3 5 Onm之個別之各燈的頻譜強度的積分値。 表3的左側欄位爲該積分強度的測定値。右側係以將 習知例1之燈中的各波長範圍的積分値設爲1 〇〇時的相對 値來表示該積分強度。 -25- 201123258 【s】 良否 I 〇 o o 〇 相對値 波長範圍(nm) 丨321 〜35〇| I__100] 〇 GO ΙΛ 00 CD 卜 丨311 〜32〇| 1__l〇〇J o CO CO 〇 CO (〇 (Si 丨300 〜31〇| 1__i〇〇J CO 00 CO CQ CD CM 測定値 波長範圍(n m) 丨321 〜35〇| 1 584.21 1 435.21 I 470.21 I .4951 1 453.61 丨311 〜32〇| 1 244.71 1__7451 I__zmI I_73,51 64.2 |300 〜31〇| [85lJ 1 30.61 I_2mI ! 26.7 22.2 莫耳數 |Ce:0.07 | |Ce:0.09 | [Ce:0.1 | Ce:0.12 螢光體組成 o Q. 0) 〇 (〇 (La〇93.Ce〇.〇7)MgAli i〇i9 (La〇,9i.Ce〇.〇9)MgAln〇i9 (La〇.9.Ge(j.i〉MgAlii〇i9 (La〇.8S.Ge〇.i2〉MgAln〇 is 習知例1 實施例8 實施例9 實施例10 實施例11 -26- 201123258 此外,在第8圖中,將縱軸設爲相對値,將橫軸設爲 鈽的濃度,以座標表示之前顯示之表3的比較例及實施例 的各個積分強度的相對値。曲線(甲)係表示有效波長範圍 、曲線(乙)係表示損傷波長範圍。由該圖可知,在铈的莫 耳數0.1附近,有效波長區域的相對値成爲峰値,在相對 値亦爲8 0以上,顯示良好的效率。以損傷波長範圍的強 度而言,係以相對値在20〜40之間推移,但是可藉由將 铈濃度稍高設定爲0.1〜0.12,可抑制較低爲20左右。 由以上結果可確認出,實施例8〜1 1的任一者均可將 相對習知例1的損傷波長範圍的強度減低至40以下,且 可更加大有效波長範圍的強度。因此,在上述式(3 )中可知 ’若X的値在0.1〜0.12的範圍內時,損傷波長範圍中的 發光較少、有效波長範圍中的發光較大。 〔實施形態4〕 本實施形態4之螢光燈係主要使用铈及鑭賦活鋁酸鎂 鋇(Ce-La-Mg-Ba-A1_0)系的螢光體作爲螢光體層12者。 該螢光體層12係一般式以下式(6)所表示的螢光體,尤其 鈽(Ce)的莫耳比(X)爲0.8,鑭(La)的莫耳比爲〇.〇6以下的 範圍(但是不含0)者。 式(6) : (Ce。8 ’ Lax)(Mg0.8,Bao.dAlnOw.e + h 在上述式(6)中,屬於賦活金屬元素的Ce及La理想In the case of a phosphor having a wavelength of 3 1 Onm or less, particularly a wavelength of 30,000 nm or less, it is generally known that the yttrium-activated yttrium phosphate (Υ-Ρ-0 ·· Ce) is represented by the following formula (4). Light body (referred to as YPC phosphor P formula (4): ΥΡ04 : Ce This formula (4) is an active yttrium phosphate (YPO: Ce) phosphor, especially in the effective wavelength region, the light intensity is half of the conventional example 1 The inventors of the present invention attempted to increase the efficiency by amplifying the ultraviolet light of the wave H SI having a wavelength of 310 to 380 nm according to the phosphor. (Comparative Example 6) The stomach first 'will be the above formula (4) A part of the phosphor (Y) of the phosphor was replaced with A (Gd) to prepare a phosphor, and a fluorescent lamp of Comparative Example 6 was produced. -19 &quot; 201123258 (Comparative Example 6) (Υ〇.95, Gd 〇.〇5)P〇4: Ce The fluorescent system of the fluorescent lamp of Comparative Example 6 has a molar number of 〇·〇5 mol and a molar number of 0.95 m. The phosphor is produced. In the case of Gd, Υ, Ρ, and Ce, which are mixed in the general formula, the mixture is prepared by firing. The phosphor of Comparative Example 6 was produced using the phosphor. system The fluorescent lamp was turned on by applying a predetermined voltage, and an emission spectrum waveform and intensity in a wavelength range of 250 to 450 nm from the fluorescent light of the fluorescent lamp were obtained. The results are shown by the curve of Comparative Example 6 in Fig. 5. Examples 4 to 7) In the examples 4 to 7, 'the enthalpy of X in the above formula (3) was prepared so as to be 0.1, 0.2, 0.3, and 0.5 to produce a phosphor. The total of Y) and yttrium (Gd) is 0.95 mol, and the yttrium concentration is 0.05 mol. The lamp of Fig. 2 is formed using the obtained phosphor, and a predetermined voltage is applied to illuminate the luminescence spectrum. As a result, the absolute enthalpy of the peak enthalpy intensity was increased, and a good luminescence spectrum was obtained. In the above Examples 4 to 7, the wavelength was 300 to be compared with the configuration of the invisible light as the conventional example 1. In the manufacturing process of the liquid crystal panel in which the liquid crystal containing the photoreactive substance is sealed, the integrated intensity of the wavelength range of 310 nm is reduced to 1/1 〇 or less, and more effective to the wavelength of 320 to 3 can be released. The wavelength of ultraviolet rays up to 50 nm. In the fifth The illuminating spectrum waveforms of the conventional example 1, the comparative example 6, and the examples 4 to 7 are displayed in the middle. Further, in the following Table 2, the conventional example, the comparative example -20-201123258, and the fluorescent wavelength 311 of the embodiment are shown. The integration of 强度 强度 320 320 320 値 値 値 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表The spectrum of each of the lamps is the measured enthalpy of the integrated intensity. The right side is the relative time when the integral range of the wavelength range is set to 100 - 21 - 201123258 [s] Good or not: IXX oo &lt;S&gt; o Relative to the wavelength range B (nm > 321~350 I_1〇〇1 ΙΛ CO ΙΛ &lt;N (O CO KO 311~320 1_100) CO CD inch CD 300~310 1_ι〇〇Ι inch lO in (〇a&gt; Spreading wavelength range in m> 丨321 ~350 | 1 584.31 1 249.61 1 277.61 I 311.31 I 315.51 I 360.21 I 367.81 311~320 1 244.71 inch ΙΛ ΙΛ CsJ cd inch (0 00 σ&gt; 15.61 300 ~310 1_8mI inch CQ BU CO (D CO CO ιο 0□ Moir Gd: 0.05 . Ce:1 Gd: 0.1 Ce: 1 Gd: 0.2. Ce: 1 Gd: 0.3 . Ce 1 Gd: 0.5 . Ce: 1 Phosphor composition (La.Ce) POd YP〇4: Ce (Y〇.9S. G d〇.〇 g) P〇4: Ce 0) 〇a O o &lt;» 0) 〇a CD Q0 (D o 己 a _^P 〇ΓΚ &lt;YD.5.Gd0.5) PO4:Ce Conventional Example 1 1 Comparative Example 5 I Comparative Example 6 Example 4 Example 5 Example 6 Example 7 -22- 201123258 In addition, in the sixth figure, the vertical axis is set as the relative 値, and the horizontal axis is set as the 姊 concentration, Representing each of the comparative examples and the examples of Table 1 previously displayed The relative enthalpy of the integrated intensity. The curve (A) indicates the effective wavelength range, and the curve (B) indicates the damage wavelength range. As can be seen from the figure, as the molar number of 釓 increases, the light output in the effective wavelength range However, the relative enthalpy of the simultaneous damage wavelength range also increases as the light output in the effective wavelength range increases. Therefore, in terms of the amount of erbium added, 〇.;[莫耳〜〇·5 The range of the molar is a practical range, and it is particularly preferable that the enthalpy is 0.3 mol. From the above results, it was confirmed that any of the examples 4 to 7 can give the intensity of the damage wavelength range of the conventional example 1. The decrease is 丨〇 below, and the intensity of the effective wavelength range can be further increased. Therefore, in the above formula (3), it is known that if X 値 is in the range of 0·1 to 0.5, the luminescence in the damage wavelength range is small and effective. [Embodiment 3] Next, a description will be given of Embodiment 3 of the present invention. The fluorescent lamp of the present embodiment uses magnesium anthracene aluminate (La_Mg-Al-0: Ce). Fluorescent body is used as the fluorescent lamp shown in Fig. 2 Phosphor layer 12. The phosphor layer 12 is a fluorescent body represented by the following formula (5). In particular, the molar ratio (x) of cerium (Ce) is in the range of 〇.07 to 0.12. Formula (5): (La Bu x ' CeOMgAluChd, 〇.〇7$ X 〇12) -23- 201123258 The above-mentioned formula (5), Ce, which belongs to the active metal element, is ideally all as a trivalent cation. presence. By setting the molar ratio of ruthenium to the range of χ = 0·07 to 0.12, in the phosphor of the endowment-active magnesium aluminate lanthanum (La-Mg-Al-0:Ce) system, When the liquid crystal of the photoreactive substance is sealed in the manufacturing process of the liquid crystal panel inside, the ultraviolet light in the effective region can be increased. The present embodiment will be further described in detail below by way of examples. In the following description, an invisible light lamp using an endogenous active yttrium phosphate phosphor is referred to as a conventional example lamp. The molar number of cerium (Ce) in the endogenous active phosphoric acid phosphor (general formula: LaP04: Ce) was 0.05 mol. (Examples 8 to 1 1) In the examples 8 to 11, the X 値 in the above formula (5) was prepared so as to be 0.07, 0.09, 0_1, and 0.12 to produce a phosphor. The number of moles of ruthenium in each of the examples was 0.07 moles, 0.09 moles, 0.1 moles, and 0.12 moles. The lamp of Fig. 2 was constructed using the obtained phosphor, and a predetermined voltage was applied to light up to verify the emission spectrum. As a result, the absolute enthalpy of the peak intensity increases, and a good luminescence spectrum can be obtained. In the above-mentioned Examples 8 to 1 1 , the integrated intensity in the wavelength range up to the wavelength of 300 to 310 nm was reduced to 2/5 or less as compared with the configuration of the invisible light as the conventional example 1 In the manufacturing process of the liquid crystal panel in which the liquid crystal containing the photoreactive substance is enclosed, more wavelengths of ultraviolet rays particularly effective to a wavelength of from 320 - 24 to 201123258 to 350 nm can be released. The illuminating spectrum waveforms of the conventional example and the examples 8 to u are shown in Fig. 7. Further, in Table 3 below, the integrals of the spectral intensities of the lamps of the conventional examples, the phosphor compositions of the examples, the wavelengths of 300 to 310 nm, the wavelengths of 311 to 320 nm, and the wavelengths of 3 2 1 to 3 5 Onm are shown. . The left side of Table 3 is the measure of the integrated intensity. On the right side, the integrated intensity is expressed by the relative 値 when the integral 値 of each wavelength range in the lamp of Conventional Example 1 is set to 1 〇〇. -25- 201123258 [s] Good or not I 〇oo 〇 Relative 値 wavelength range (nm) 丨321 ~35〇| I__100] 〇GO ΙΛ 00 CD 丨 311 ~32〇| 1__l〇〇J o CO CO 〇CO (〇 (Si 丨300 〜31〇| 1__i〇〇J CO 00 CO CQ CD CM Measurement 値 Wavelength range (nm) 丨321 ~35〇| 1 584.21 1 435.21 I 470.21 I .4951 1 453.61 丨311 ~32〇| 1 244.71 1__7451 I__zmI I_73, 51 64.2 |300 〜31〇| [85lJ 1 30.61 I_2mI ! 26.7 22.2 Moll number|Ce:0.07 | |Ce:0.09 | [Ce:0.1 | Ce:0.12 Phosphor composition o Q. 0) 〇(〇(〇(La〇93.Ce〇.〇7)MgAli i〇i9 (La〇,9i.Ce〇.〇9)MgAln〇i9 (La〇.9.Ge(ji>MgAlii〇i9 (La〇. 8S.Ge〇.i2>MgAln〇is Conventional Example 1 Embodiment 8 Embodiment 9 Embodiment 10 Embodiment 11 -26- 201123258 In addition, in FIG. 8, the vertical axis is set as the relative 値, and the horizontal axis is set. For the concentration of ruthenium, the relative enthalpy of each integrated intensity of the comparative example and the example shown in Table 3 is indicated by coordinates. The curve (A) indicates the effective wavelength range, and the curve (B) indicates the damage wavelength range. Know In the vicinity of the molar number of 0.1, the relative enthalpy of the effective wavelength region becomes a peak, and the relative enthalpy is also 80 or more, showing good efficiency. In terms of the intensity of the damage wavelength range, the relative enthalpy is 20 to 40. However, it can be suppressed to be as low as about 20 by setting the yttrium concentration slightly to 0.1 to 0.12. From the above results, it can be confirmed that any of the examples 8 to 11 can be relatively known. The intensity of the damage wavelength range of Example 1 is reduced to 40 or less, and the intensity of the effective wavelength range can be made larger. Therefore, it is known in the above formula (3) that if the enthalpy of X is in the range of 0.1 to 0.12, the wavelength range of damage is The amount of light emission is small, and the light emission in the effective wavelength range is large. [Embodiment 4] The fluorescent lamp of the fourth embodiment mainly uses lanthanum and magnesium lanthanum aluminate (Ce-La-Mg-Ba-A1_0). The phosphor is a phosphor layer 12. The phosphor layer 12 is a phosphor represented by the following formula (6), and in particular, the molar ratio (X) of cerium (Ce) is 0.8, 镧 (La) The molar ratio is 〇.〇6 or less (but not 0). Formula (6) : (Ce. 8 ' Lax) (Mg 0.8, Bao.dAlnOw.e + h In the above formula (6), Ce and La ideals which are active metal elements

S -27- 201123258 上係全部作爲3價的陽離子而存在。相對於將該铈的莫耳 比設爲0.8,將鑭(La)的莫耳比設定在〇〜〇.〇6範圍,藉此 可在將含有光反應性物質的液晶封入在內部的液晶面板的 製造工程使有效區域的紫外光增大。 以下藉由實施例,更進一步詳加說明本實施形態。 其中,在本實施形態之說明中,由於螢光體的母結晶 與實施形態1之螢光體相同,因此關於比較例,係援用前 述比較例1〜比較例4的內容,並且關於La的濃度爲〇 的情形,由於與之前在實施形態1中所說明的實施例3的 螢光體相同,因此援用實施例3的內容加以說明。 (實施例12〜16) 以實施例12〜16而言,將上述式(6)中的La濃度X 的値以成爲 0.01、0.02、0.04、0.06、0.10的方式進行調 製而製造出螢光體。其中各實施例的姉濃度爲0.8莫耳。 使用所得的螢光體而構成第2圖的燈,施加預定的電 壓而亮燈而對發光頻譜進行驗證。結果,峰値強度的絕對 値增加,可得良好的發光頻譜。在該等實施例1 2〜1 6中 ,與作爲習知例1之不可見光的構成相比較,一面使至波 長3 00〜310ηιη爲止之波長範圍的積分強度減低至1/1〇以 下爲止,一面在將含有光反應性物質的液晶封入在內部的 液晶面板的製造工程中,可放出更多尤其有效之至波長 32 0〜3 50nm爲止的紫外線的波長。 在第9圖中彙整顯示習知例1、比較例1〜4、實施例 -28- 201123258 3、12〜16的發光頻譜波形。此外,在下述表4顯示習知 例、比較例、實施例之螢光體組成、及波長3 00〜3 10nm 範圍、波長31 1〜3 20nm、波長321〜3 5 0nm之個別的各燈 的頻譜強度的積分値。 表4中,左側的「測定値」欄係在距離發光管爲 25mm的位置藉由分光器所測定出的頻譜的該積分強度的 實測値。右側係以將習知例1之燈中的各波長範圍的積分 値設爲1 〇〇時的相對値來表示該積分強度。 [表4]S -27- 201123258 All of the upper systems exist as trivalent cations. The liquid crystal panel in which the liquid crystal containing the photoreactive substance is sealed is set by setting the molar ratio of lanthanum (La) to 0.8 in the range of 〇~〇.〇6 with respect to the molar ratio of the ruthenium. The manufacturing process increases the UV light in the active area. Hereinafter, the present embodiment will be further described in detail by way of examples. In the description of the present embodiment, since the mother crystal of the phosphor is the same as the phosphor of the first embodiment, the contents of the above Comparative Examples 1 to 4 are used for the comparative example, and the concentration of La is used. The case of 〇 is the same as that of the phosphor of the third embodiment described in the first embodiment, and therefore, the contents of the third embodiment will be described. (Examples 12 to 16) In the examples 12 to 16, the fluorene of the La concentration X in the above formula (6) was prepared so as to be 0.01, 0.02, 0.04, 0.06, and 0.10 to produce a phosphor. . The enthalpy concentration of each of the examples was 0.8 moles. The lamp of Fig. 2 was constructed using the obtained phosphor, and a predetermined voltage was applied to light up to verify the emission spectrum. As a result, the absolute enthalpy of the peak intensity increases, and a good luminescence spectrum can be obtained. In the above-mentioned Examples 1 to 2, the integrated intensity in the wavelength range up to the wavelength of 300 to 310 nm was reduced to 1/1 〇 or less as compared with the configuration of the invisible light as the conventional example 1, In the manufacturing process of a liquid crystal panel in which a liquid crystal containing a photoreactive substance is sealed, a wavelength of ultraviolet rays particularly high to a wavelength of 32 0 to 3 50 nm can be released. The illuminating spectrum waveforms of the conventional example 1, the comparative examples 1 to 4, and the examples -28 to 201123258 3, 12 to 16 are shown in Fig. 9. Further, in each of the lamps of the conventional examples, the comparative examples, the examples, and the respective wavelengths of the wavelengths of 300 to 3 10 nm, the wavelengths of 31 1 to 3 20 nm, and the wavelengths of 321 to 350 nm are shown in Table 4 below. The integral of the spectral intensity. In Table 4, the "measurement 値" column on the left side is the measured enthalpy of the integrated intensity of the spectrum measured by the spectroscope at a position 25 mm from the arc tube. On the right side, the integrated intensity is expressed by the relative enthalpy when the integral 値 of each wavelength range in the lamp of the conventional example 1 is set to 1 〇〇. [Table 4]

螢光體組成 莫聰 測定値 J 坪値 良否 渖長 盛圃 册SdL·】 amo 31Ί—350 300^310 311〜320 321^350 習知例1 (UCe)P〇4 85 245 584 100 100 100 丨一 比较例1 CeMgAluOte C©:1 1 8 16Θ 2 3 32 X 比較例2 Ce(Ms〇 ss.6a〇 m^WnOis Ce:1.Ba.O05 3 15 238 3 6 41 X 比較例3 Ce( Μβ〇 9.03(1.1 )Ali 1019 C6:1.Ba0.1 3 13 216 3 5 37 X 比較例4 Ce〇 «(Mfio.a.Bao i)AIh〇|Bib Ce :0.5.Ba.0 1 9 45 455 11 18 78 X 實施例3 Ce〇 ^ Ce:0.8.B8:01 6 35 567 7 14 97 Ο 讎例12 (0©n fi.Leotn^Mso.B.BaaiiAlnOia.ds Ce:0.8,La 0.01 A 22 409 A 9 70 Ο 贲施例13 (C*fl g.BSm &gt; Al” B 43 Ce.08,U9〇.02 3 18 400' 4 8 i 68 Ο Η施例14 (〇€·〇 OiXMso e.63m)AI|i〇ta ββ Ce.08,U0.04 ! i 7 307' _1_ 3 53 0 贲施例15 (〇如》,Ls〇 oe)(Mg〇 8.Ββ〇 i)Aln〇 ιβ ββ Ce.08.U0.06 4 293 2 eo 0 實施例16 (Ce〇.a.Le〇i〇XM3〇 β,6θ〇ι)ΑΗι〇ιβ ?s Ce.0.8.La.0.10 0 2 215 0 1 37 X 此外,在第1 〇圖中,將縱軸設爲相對値,將橫軸設 爲鑭(La)的濃度,以座標表示之前顯示之表4的實施例3 及實施例1 2〜1 6的各個積分強度的相對値。曲線(甲)係表 示有效波長範圍、曲線(乙)係表示損傷波長範圍。由該圖 可知’損傷波長範圍係在相對値中在1 0的附近作推移, 但是在鑭的濃度爲〇〜0.06莫耳的範圍內,相對300〜 3 10nm之積分値的3 20〜3 5 0nm的積分値係與實施例3者 同等或小於其,而且3 2 1〜3 5 Onm的積分強度相對於習知 例的3 2 1〜3 5 Onm的積分強度爲大約5 0%以上。 -29- 201123258 由以上結果可知,實施例1 2〜1 5的任一者均可將相 對習知例1的損傷波長範圍的強度減低至1 0以下,而可 將有效波長範圍的強度形成爲50以上。因此,在上述式 (6)中,若X的値在0 &lt; 0.06的範圍內時,損傷波長範 圍中的發光較少,可加大有效波長範圍中的發光。 如以上說明所示,在將含有光反應性物質的液晶封入 在內部的液晶面板的製造工程中,使用含有將鋁酸鎂鋇、 磷酸$L ·纟乙及銘酸鎂·鑭之任一者作爲母結晶,且藉由 Ce3 +所賦活的螢光體的螢光體來構成螢光燈,藉此可提供 一種在光反應性物質的反應使有效波長範圍的光增大,對 液晶造成損傷的波長範圍的光的放射較少的螢光燈。 【圖式簡單說明】 第1圖係顯示搭載有本發明之螢光燈之紫外線照射裝 置的說明圖。 第2圖係顯示本發明之第1實施形態之螢光燈之說明 圖。 第3圖係顯示第1實施形態、習知例、比較例之各螢 光燈之波長250〜450nm的頻譜的圖。 第4圖係顯示第1實施形態之螢光燈之損傷波長區域 及有效波長區域之光的積算強度的相對値、及鈽濃度的關 係圖。 第5圖係顯示第2實施形態、習知例、比較例之各螢 光燈之波長2 5 0〜4 5 Onm的頻譜的圖。 -30- 201123258 第6圖係顯示第2實施形態之螢光燈之損傷波長區域 及有效波長區域之光的積算強度的相對値、及釓濃度的關 係圖。 第7圖係顯示第3實施形態、習知例、比較例之各螢 光燈之波長250〜450 nm的頻譜的圖。 第8圖係顯示第3實施形態之螢光燈之損傷波長區域 及有效波長區域之光的積算強度的相對値、及铈濃度的關 係圖。 第9圖係顯示第4實施形態、習知例、比較例◦各螢 光燈之波長2 50〜450ηιη的頻譜的圖。 第1 0圖係顯示第4實施形態之螢光燈之損傷波長區 域及有效波長區域之光的積算強度的相對値、及鑭濃度的 關係圖。 第1 1圖係說明將含有光反應性物質的液晶封入在內 部的液晶面板的製造工程的圖。 第1 2圖係說明將含有光反應性物質的液晶封入在內 部的液晶面板的製造工程的圖。 【主要元件符號說明】 1 〇 :螢光燈 1 1 :氣密容器 12 :螢光體層 1 3、1 4 :電極 1 5、1 6 :引線 -31 - 201123258 20 : 2 1: 30 : 3 1: 32 : 33 : 34 : 90 : 91 : 92 : 93 : 94 : 100 S : 光照射部 反射鏡 液晶面板 光透過性基板 密封劑 含有光反應性物質的液晶 施加電壓的機構 面板 光透過性基板 電極 單體 液晶分子 :紫外線照射裝置 工作台 -32-Fluorescence composition Mo Cong measurement 値J Ping 値良渖渖长盛圃SdL·] amo 31Ί—350 300^310 311~320 321^350 Conventional Example 1 (UCe)P〇4 85 245 584 100 100 100 丨A comparative example 1 CeMgAluOte C©: 1 1 8 16Θ 2 3 32 X Comparative Example 2 Ce(Ms〇ss.6a〇m^WnOis Ce: 1.Ba.O05 3 15 238 3 6 41 X Comparative Example 3 Ce(Μβ 〇9.03(1.1)Ali 1019 C6:1.Ba0.1 3 13 216 3 5 37 X Comparative Example 4 Ce〇«(Mfio.a.Bao i)AIh〇|Bib Ce :0.5.Ba.0 1 9 45 455 11 18 78 X Example 3 Ce〇^ Ce: 0.8.B8:01 6 35 567 7 14 97 雠 Example 12 (0©n fi.Leotn^Mso.B.BaaiiAlnOia.ds Ce:0.8,La 0.01 A 22 409 A 9 70 贲 例 Example 13 (C*fl g.BSm &gt; Al) B 43 Ce.08, U9〇.02 3 18 400' 4 8 i 68 Η Example 14 (〇€·〇OiXMso e .63m)AI|i〇ta ββ Ce.08,U0.04 ! i 7 307' _1_ 3 53 0 Example 15 (eg, Ls〇oe) (Mg〇8.Ββ〇i)Aln〇ιβ Ββ Ce.08.U0.06 4 293 2 eo 0 Example 16 (Ce〇.a.Le〇i〇XM3〇β,6θ〇ι)ΑΗι〇ιβ ?s Ce.0.8.La.0.10 0 2 215 0 1 37 X In addition, in the first diagram, the vertical axis is set to relative 値, The horizontal axis is set to the concentration of 镧 (La), and the relative enthalpy of each integrated intensity of Example 3 and Examples 1 2 to 16 shown in Table 4 is indicated by coordinates. The curve (A) indicates the effective wavelength range and curve. (B) shows the wavelength range of damage. It can be seen from the figure that the damage wavelength range is shifted in the vicinity of 10 in the relative enthalpy, but in the range of 镧~0.06 mol, the relative concentration is 300~3 10 nm. The integral coefficient of 3 20 to 3 50 nm of the integral 値 is equal to or smaller than that of the third embodiment, and the integral intensity of 3 2 1 to 3 5 Onm is integrated with the integral of 3 2 1 to 3 5 Onm of the conventional example. The intensity is about 50% or more. -29-201123258 It can be seen from the above results that any of the examples 1 to 2 can reduce the intensity of the damage wavelength range of the conventional example 1 to 10 or less, and the intensity of the effective wavelength range can be formed as above 50. Therefore, in the above formula (6), when the enthalpy of X is in the range of 0 &lt; 0.06, the amount of light emission in the damage wavelength range is small, and the light emission in the effective wavelength range can be increased. As described above, in the manufacturing process of a liquid crystal panel in which a liquid crystal containing a photoreactive substance is sealed, any one containing magnesium lanthanum aluminate, phosphoric acid, L, yttrium, and magnesium sulphate is used. A fluorescent lamp is formed as a mother crystal and a phosphor of a phosphor activated by Ce3 + , thereby providing a reaction in a photoreactive substance to increase light in an effective wavelength range and causing damage to the liquid crystal. The wavelength range of light emits less fluorescent light. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an explanatory view showing an ultraviolet irradiation apparatus equipped with a fluorescent lamp of the present invention. Fig. 2 is an explanatory view showing a fluorescent lamp according to a first embodiment of the present invention. Fig. 3 is a view showing the frequency spectrum of the wavelength of 250 to 450 nm of each of the fluorescent lamps of the first embodiment, the conventional example, and the comparative example. Fig. 4 is a graph showing the relative enthalpy and the enthalpy concentration of the integrated light intensity in the damage wavelength region and the effective wavelength region of the fluorescent lamp of the first embodiment. Fig. 5 is a view showing the frequency spectrum of the wavelength of 250 to 4 5 Onm of each of the fluorescent lamps of the second embodiment, the conventional example, and the comparative example. -30-201123258 Fig. 6 is a graph showing the relative enthalpy and the enthalpy concentration of the integrated light intensity in the damage wavelength region and the effective wavelength region of the fluorescent lamp of the second embodiment. Fig. 7 is a view showing the frequency spectrum of the wavelength of 250 to 450 nm of each of the fluorescent lamps of the third embodiment, the conventional example, and the comparative example. Fig. 8 is a graph showing the relative enthalpy and the enthalpy concentration of the integrated light intensity in the damage wavelength region and the effective wavelength region of the fluorescent lamp of the third embodiment. Fig. 9 is a view showing the frequency spectrum of the wavelength 2 50 to 450 ηηη of each of the fluorescent lamps of the fourth embodiment, the conventional example, and the comparative example. Fig. 10 is a graph showing the relationship between the relative enthalpy and the enthalpy concentration of the integrated light intensity in the damage wavelength region and the effective wavelength region of the fluorescent lamp of the fourth embodiment. Fig. 1 is a view showing a manufacturing process of a liquid crystal panel in which a liquid crystal containing a photoreactive substance is sealed inside. Fig. 1 is a view showing a manufacturing process of a liquid crystal panel in which a liquid crystal containing a photoreactive substance is sealed inside. [Description of main component symbols] 1 〇: Fluorescent lamp 1 1 : Hermetic container 12 : Phosphor layer 1 3, 1 4 : Electrode 1 5, 1 6 : Lead-31 - 201123258 20 : 2 1: 30 : 3 1 : 32 : 33 : 34 : 90 : 91 : 92 : 93 : 94 : 100 S : Light-irradiating part mirror liquid crystal panel light-transmitting substrate sealant: mechanism panel light-transmitting substrate electrode containing liquid crystal application voltage of photoreactive substance Monomer liquid crystal molecules: UV irradiation device workbench -32-

Claims (1)

201123258 七、申請專利範圍: 1. 一種螢光燈,係在含有光反應性物質的液晶面板的 製造工程中所使用的螢光燈,其特徵爲: 在形成於發光管內部的螢光體層係含有將鋁酸鎂鋇、 磷酸釓•釔及鋁酸鎂•鑭之任一者作爲母結晶而藉由Ce3&lt; 予以賦活的螢光體。 2 .如申請專利範圍第1項之螢光燈,其中,前述螢光 體係含有:一般式以下式表示的鈽賦活鋁酸鎂鋇: Cex(Mgi.y.z &gt; B ay. 2 ) A11 1 Ο 1 9 - (3 (1 - X) +2 z) / 2 (其中,0.6 S x $ 0.8)。 3 ·如申請專利範圍第1項之螢光燈,其中,前述螢光 體係含有:一般式以下式表示的姉賦活磷酸釓.釔: (Yi-X,Gdx)P〇4: Ce (其中,0.1 S x S 0.5)。 4 ·如申請專利範圍第1項之螢光燈,其中,前述螢光 體係含有:一般式以下式表示的姉賦活鋁酸鎂.鑭: (^^i-x * Cex) M g A11 i O 19 (其中,0.07 $ x g 〇. 1 2)。 5 .如申請專利範圍第1項之螢光燈,其中,前述螢光 體係含有:一般式以下式表示的姉及鑭賦活鋁酸鎂鋇: (Ce〇.s ’ Lax)(Mg0.8,Ba〇.丨)A1 丨丨 〇186 + 3x (其中,0 &lt; x $ 0.06)。 -33-201123258 VII. Patent application scope: 1. A fluorescent lamp used in a manufacturing process of a liquid crystal panel containing a photoreactive substance, which is characterized in that: a phosphor layer formed inside the arc tube A phosphor containing a magnesium aluminate strontium, strontium phosphate strontium, and magnesium aluminate strontium as a mother crystal and activated by Ce3&lt; 2. The fluorescent lamp of claim 1, wherein the fluorescent system comprises: an endowed living magnesium aluminate represented by the following formula: Cex (Mgi.yz &gt; B ay. 2 ) A11 1 Ο 1 9 - (3 (1 - X) +2 z) / 2 (where 0.6 S x $ 0.8). 3. The fluorescent lamp of claim 1, wherein the fluorescent system comprises: an endowment active phosphoric acid represented by the following formula: (Yi-X, Gdx) P〇4: Ce (where 0.1 S x S 0.5). 4. The fluorescent lamp of claim 1, wherein the fluorescent system comprises: an endowed living magnesium aluminate represented by the following formula: (^^ix * Cex) M g A11 i O 19 ( Among them, 0.07 $ xg 〇. 1 2). 5. The fluorescent lamp of claim 1, wherein the fluorescent system comprises: cerium and anthracene active magnesium aluminate represented by the following formula: (Ce〇.s ' Lax) (Mg 0.8, Ba〇.丨)A1 丨丨〇186 + 3x (where 0 &lt; x $ 0.06). -33-
TW99132396A 2009-12-16 2010-09-24 Fluorescent light TWI470667B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009284906 2009-12-16
JP2010159394A JP5370299B2 (en) 2009-12-16 2010-07-14 Fluorescent lamp

Publications (2)

Publication Number Publication Date
TW201123258A true TW201123258A (en) 2011-07-01
TWI470667B TWI470667B (en) 2015-01-21

Family

ID=44461015

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99132396A TWI470667B (en) 2009-12-16 2010-09-24 Fluorescent light

Country Status (2)

Country Link
JP (2) JP5370299B2 (en)
TW (1) TWI470667B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5857863B2 (en) * 2011-09-22 2016-02-10 東芝ライテック株式会社 UV irradiation equipment
JP2019164309A (en) 2018-03-20 2019-09-26 東芝ライテック株式会社 Device for producing liquid crystal panel
JP7188221B2 (en) 2019-03-25 2022-12-13 東芝ライテック株式会社 Liquid crystal panel manufacturing equipment
JP7234730B2 (en) * 2019-03-25 2023-03-08 東芝ライテック株式会社 Discharge lamp and liquid crystal panel manufacturing equipment

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248895A (en) * 1991-01-25 1992-09-04 Matsushita Electron Corp Aluminate fluorescent material and fluorescent lamp produced by using the same
JPH04255789A (en) * 1991-02-07 1992-09-10 Matsushita Electron Corp Fluorescent substance of aluminate and fluorescent lamp using the same
US5667724A (en) * 1996-05-13 1997-09-16 Motorola Phosphor and method of making same
JPH11144688A (en) * 1997-11-10 1999-05-28 Nec Home Electron Ltd Rare gas discharge lamp
DE10133411A1 (en) * 2001-07-13 2003-01-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Use of aluminate luminescent material for exciting with vacuum ultra violet radiation
JP2003109541A (en) * 2001-09-27 2003-04-11 Harison Toshiba Lighting Corp Ultraviolet fluorescent lamp
TWI227506B (en) * 2002-07-16 2005-02-01 Toshiba Lighting & Technology Bulb-shaped fluorescent lamp and lighting device
JP2006525404A (en) * 2003-05-06 2006-11-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Fluorescent lamp with UVB phosphor
CN1961056A (en) * 2004-05-27 2007-05-09 皇家飞利浦电子股份有限公司 Low-pressure mercury vapor discharge lamp comprising UV-A phosphor
DE602005011614D1 (en) * 2004-06-14 2009-01-22 Philips Intellectual Property LOW PRESSURE GAS DISCHARGE LAMP WITH A UV-B FLUORATE
KR20060003164A (en) * 2004-07-05 2006-01-10 삼성전자주식회사 Flat fluorescent lamp
JP4077448B2 (en) * 2004-07-30 2008-04-16 松下電器産業株式会社 Fluorescent lamp, illumination device, and method of manufacturing fluorescent lamp
US7238302B2 (en) * 2004-12-28 2007-07-03 Osram Sylvania Inc. Single-component, UV-emitting phosphor
JP4400469B2 (en) * 2005-02-02 2010-01-20 ウシオ電機株式会社 Noble gas fluorescent lamp
FR2890232A1 (en) * 2005-08-23 2007-03-02 Saint Gobain COPLANAR DISCHARGE PLANE LAMP AND USES THEREFOR
WO2007116331A1 (en) * 2006-04-11 2007-10-18 Philips Intellectual Property & Standards Gmbh Discharge lamp comprising uv-phosphor
JP2008076849A (en) * 2006-09-22 2008-04-03 Hitachi Displays Ltd Liquid crystal display device and its manufacturing method
JP2008300219A (en) * 2007-05-31 2008-12-11 Harison Toshiba Lighting Corp Discharge lamp lighting device
JP2009059645A (en) * 2007-09-03 2009-03-19 Harison Toshiba Lighting Corp Discharge lamp lighting device
US20090079324A1 (en) * 2007-09-20 2009-03-26 Istvan Deme Fluorescent lamp

Also Published As

Publication number Publication date
TWI470667B (en) 2015-01-21
JP2014044953A (en) 2014-03-13
JP2011146363A (en) 2011-07-28
JP5370299B2 (en) 2013-12-18
JP5630546B2 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5316317B2 (en) Manufacturing method of liquid crystal panel
TW201126234A (en) Manufacturing device for liquid crystal display panel
US20010043294A1 (en) Liquid crystal color display screen comprising a phosphor layer
TW201123258A (en) Fluorescent lamp.
CN105511153A (en) Display substrate, display panel and display device
JP4363467B2 (en) Phosphor, fluorescent lamp using the same, and display device and illumination device using the fluorescent lamp
JP2011133889A (en) Method of manufacturing liquid crystal display
CN1342915A (en) Back-light liquid crystal display screen
EP2365388B1 (en) Liquid crystal display device and electronic device having the same
JP4930542B2 (en) Manufacturing method of liquid crystal panel
JP2011076033A (en) Light irradiation device
KR101380492B1 (en) Fluorescent lamp
KR101464027B1 (en) Apparatus and method for manufacturing liquid crystal panel
US20100225851A1 (en) Liquid crystal display device
CN114527591B (en) Preparation method of liquid crystal display panel and liquid crystal display panel
JP7234730B2 (en) Discharge lamp and liquid crystal panel manufacturing equipment
KR100806850B1 (en) Flat panel fluorescent lamp and manufacturing method thereof
KR101198238B1 (en) Flat fluorescent lamp
TW201034047A (en) Noble gas fluorescent lamp
JPH01230091A (en) Color display device
KR100289539B1 (en) Active light emission type liquid crystal display
KR102075066B1 (en) Liquid crystal display device
TW200835973A (en) Liquid crystal display apparatus and light emitting unit
KR20080037461A (en) Fluorescent substance for lamp and manufacturing method thereof and liquid crystal display with lamp comprising the same
TW201135796A (en) Electric discharge lamp

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees