TW201122401A - Heat spreader with single layer of diamond particles and diamond particle and method associated therewith. - Google Patents
Heat spreader with single layer of diamond particles and diamond particle and method associated therewith. Download PDFInfo
- Publication number
- TW201122401A TW201122401A TW98143576A TW98143576A TW201122401A TW 201122401 A TW201122401 A TW 201122401A TW 98143576 A TW98143576 A TW 98143576A TW 98143576 A TW98143576 A TW 98143576A TW 201122401 A TW201122401 A TW 201122401A
- Authority
- TW
- Taiwan
- Prior art keywords
- diamond particles
- heat
- diamond
- single layer
- soaking plate
- Prior art date
Links
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
201122401 六、發明說明: 【發明所屬之技術領域】 本發明是關於一種含碳之複合裝置以及透過傳導與吸 收一熱源的熱而散熱的方法。因此,本發明涉及化學了物 理、半導體科技以及材料科學等領域。 【先前技術】 半導體工業的發展追隨著英特爾的共同創始人哥登摩 爾(Gordon M〇0re)於1965年所提出的摩爾定律的趨勢。 該趨勢指出,積體電路(lc)或是一般的半導體晶片,其效 月b母十八個月便成長一倍。 伴隨此進展,產生了各種設計上的挑戰。其中一項常 被忽略的挑戰便是勒;轨簡_§自。、s & , 戰便疋散热問碭。通常,此散熱方面的設計會 被忽略,或者是到了元件要生產前才增加該設計。根據熱 力學第二定律’在一封閉系統中’作越多功則會獲得越多 熵(Entr〇Py)。伴隨著中央處理器(CPU)功率的增加,其產 生更夕的電子流會產生更多的熱。因此’ A了避免電路短 路或是燒毀,必須移除因熵的增加所產生的熱。一些令央201122401 VI. Description of the Invention: [Technical Field] The present invention relates to a carbon-containing composite device and a method of dissipating heat by transmitting and absorbing heat from a heat source. Accordingly, the present invention relates to the fields of chemistry, semiconductor technology, and materials science. [Prior Art] The development of the semiconductor industry follows the trend of Moore's Law proposed by Intel co-founder Gordon M〇0re in 1965. This trend indicates that the integrated circuit (lc) or a general semiconductor chip doubles in its eighteen months. Along with this progress, various design challenges have arisen. One of the often overlooked challenges is Le; , s & Often, this heat dissipation design is ignored or the design is added until the component is produced. The more entropy (Entr〇Py) is obtained according to the second law of thermodynamics 'in a closed system'. As the power of the central processing unit (CPU) increases, it produces more heat by generating a stream of electrons. Therefore, to avoid short circuits or burns, the heat generated by the increase in entropy must be removed. Some orders
處理器現有的技術其功率約A 干巧马70瓦以上。例如一以〇 J 3 微米科技所製造的中央處理岑 ^ 來祖器,其耗電功率可超過100瓦。 j的散熱方法,如使用金屬散熱鰭片丨卟 ra lators,例如銘或是鋼等金屬)和纟蒸式熱管(water evaporation pipes)將無法對 散熱。 于下*代的處理器進行充分的 近來’陶瓷均熱板(例 氮化铭)以及金屬複合均熱 板(例如碳化矽/鋁)已 S.1 用於應付不斷增加的熱。然而, 3 201122401 這些材料的熱傳導率並不大於銅的熱傳導率,目此 此 材料對於半導體的散熱能力有限。 般的半導體晶片包含緊密堆疊之金屬導體(例如 鋁銅)以及陶究絕緣體(例如氧、氛)。金屬的熱膨服 率一瓜疋陶瓷熱膨脹率的5_1〇倍。當晶片加熱超過攝氏肋 度時’金屬與陶究之間的熱膨脹率差異會造成微小裂縫。 反覆的溫度升降循環致使晶片的損害惡化。結果,半導體 的效能會下降。此外,當晶片溫度超過攝氏9G度以上時, 晶片内半導體部分會成為導體,因而導致晶片的功能失 效。此外,電路可能損毀而半導體無法再使用(如轉為「燒 毀」)。因此,為了維持半導體的效能,其溫度必須保^ 在低於一臨界值(例如攝氏9〇度)。 傳統的散熱方法是令一金屬熱沉(Heat Sjnk)接觸該半 導體。—般的熱沉是以數片散熱鳍片(Fins)的鋁材所製造 而成的。該數片散熱鳍片上附加有一風扇。晶片所產生的 熱會流向1呂基座,並且會傳輸到散熱錯片,接著透過循 環的空氣對流將熱自散㈣片處帶走。熱沉因此經常被設 計為具有高熱容量而作為熱的儲存器,以移除熱源的熱。 或者可使用熱管(heat pipe)連接於該熱沉與一冷卻 器(radiator)之間’該冷卻器是與該熱沉相分離。該熱管是 在封有水蒸氣的真空管。熱管内的水分在熱沉處蒸發,且 在冷卻器處凝固。凝固的水分會透過熱管内的多孔媒介(例 如銅粉)所產生的毛細現象而回流到熱沉處。因此,可藉 由蒸發的水分帶 <一半導體晶片j^熱,並且可透過在冷 卻器處的凝固水分移除熱。 201122401 雖然熱管以及熱板可極有效率地移除熱’複雜的真空 官内腔以及精密的毛細管系統阻止此熱管式散熱設計在尺 寸上縮小到直接對一半導體元件進行散熱。結果,該熱管 式散熱方法通常限制在對較大型的熱源進行熱傳導,例如 一熱沉。因此•如何透過熱傳導方式來移除一電子元件上 的熱,是現今工業中仍然持續研究的議題。 目前已發現能有望作為均熱板的另一項選擇是富含鑽 石的材料。鑽石相較其他任何材料能更快速地帶走熱。鑽 石在室溫下的熱傳導率(大約2000瓦/公尺.絕對溫度 (W/mK))是銅熱傳導率(大約4〇〇w/mK)的五倍之高, 並且是鋁熱傳導率(大約250W/mK)的八倍之高,銅和鋁 是目前最常使用的具高熱傳導率的金屬熱導體。此外,鑽 石的熱擴散率(Thermal DiffUsivity) ( 12_7平方公分/秒 (厂/叫)是銅熱擴散率(1 17或是銅熱擴散 埶(〇_971 ―)的11倍。鑽石迅速帶走熱而不儲存 …、的能力使鑽石成為理想的均熱板。相較於熱沉,均轨板 運作時能快速地將熱傳導離開錢而不儲存熱。表一顯干 種不同材料相較於鑽石的熱性質(在絕對溫度_ μ ~熱傳導1 ~~ (W/mK) 比熱 (J /c m 3 K \ 一_銅 401 __ 3.44 2.44 _______ 鋁 237 ~ —__^ 138 ~ 2.57 — 金 317 2.49 — ___銀 429 95 化鎢 — 2.47 2.95 熱膨脹率The processor's existing technology has a power of about A. More than 70 watts of horses. For example, a central processing unit manufactured by 〇 J 3 micron technology can consume more than 100 watts of power. The heat dissipation method of j, such as the use of metal fins, such as metal such as metal or steel, and water evaporation pipes, will not be able to dissipate heat. The next generation of processors is fully equipped with 'ceramic soaking plates' (such as Niobium) and metal composite soaking plates (such as tantalum carbide/aluminum) that have been used to cope with increasing heat. However, 3 201122401 The thermal conductivity of these materials is not greater than the thermal conductivity of copper, which is expected to have limited heat dissipation for semiconductors. A typical semiconductor wafer contains closely packed metal conductors (such as aluminum copper) and ceramic insulators (such as oxygen, atmosphere). The thermal expansion rate of metal is 5_1〇 times the thermal expansion rate of a melon ceramic. When the wafer is heated above the Celsius rib, the difference in thermal expansion between the metal and the ceramic causes micro cracks. The repeated temperature rise and fall cycles cause damage to the wafer to deteriorate. As a result, the performance of semiconductors will decrease. Further, when the wafer temperature exceeds 9 G Celsius or more, the semiconductor portion in the wafer becomes a conductor, thereby causing the function of the wafer to fail. In addition, the circuit may be damaged and the semiconductor can no longer be used (eg, converted to "burnout"). Therefore, in order to maintain the performance of the semiconductor, its temperature must be kept below a critical value (for example, 9 degrees Celsius). The traditional method of heat dissipation is to have a metal heat sink (Heat Sjnk) in contact with the semiconductor. The general heat sink is made of aluminum fins (Fins). A fan is attached to the plurality of fins. The heat generated by the wafer will flow to the 1 radio pedestal and will be transferred to the heat sinking chip, which will then carry away the heat scatter (4) through the circulating air convection. The heat sink is therefore often designed to have a high heat capacity as a hot reservoir to remove heat from the heat source. Alternatively, a heat pipe may be used to connect between the heat sink and a radiator. The cooler is separated from the heat sink. The heat pipe is a vacuum tube sealed with water vapor. The moisture in the heat pipe evaporates at the heat sink and solidifies at the cooler. The solidified water is returned to the heat sink through the capillary phenomenon generated by the porous medium (for example, copper powder) in the heat pipe. Therefore, it is possible to remove heat by evaporating the moisture band <a semiconductor wafer, and to remove heat through the solidified moisture at the cooler. 201122401 Although heat pipes and hot plates can remove heat's complex vacuum chambers and precision capillary systems prevent this heat pipe heat sink from shrinking in size to directly dissipate heat from a semiconductor component. As a result, the heat pipe heat dissipation method is generally limited to heat conduction to a larger heat source, such as a heat sink. Therefore, how to remove heat from an electronic component through heat conduction is an issue that is still being studied in the industry today. Another option that has been found to be expected as a soaking plate is the material rich in diamonds. Diamonds take heat more quickly than any other material. The thermal conductivity of a diamond at room temperature (approximately 2000 watts/meter. absolute temperature (W/mK)) is five times higher than the thermal conductivity of copper (approximately 4 〇〇 w/mK) and is the thermal conductivity of aluminum (approximately Eight times higher than 250W/mK), copper and aluminum are the most commonly used metal thermal conductors with high thermal conductivity. In addition, the thermal DiffUsivity of diamonds (12_7 cm2/s (factory/call) is 11 times the copper thermal diffusivity (1 17 or copper thermal diffusion 埶 (〇_971 ―). The diamond quickly took away The ability to heat without storing... makes diamonds an ideal soaking plate. Compared to heat sinks, the rails can quickly transfer heat away from the heat without storing heat. Table 1 shows the difference between dry and different materials. The thermal properties of diamonds (in absolute temperature _ μ ~ heat conduction 1 ~ ~ (W / mK) specific heat (J / cm 3 K \ a _ copper 401 __ 3.44 2.44 _______ aluminum 237 ~ -__^ 138 ~ 2.57 - gold 317 2.49 - ___Silver 429 95 Tungsten - 2.47 2.95 Thermal expansion rate
(PPm/K 16.4 24.5 — 47.5 ~~Ϊ4.5 — 18.7 ~~577 201122401 矽 148 鑽石 (丨丨a等級} ~~^300— 2.6 T78 1.4 此外,鑽石的熱膨脹係數是所有 „x, 穷柯科中最低的。鑽石 的低熱膨脹率使得鑽石可更容易 導體相結合。由於此特性,可::石、:低熱膨脹率的料 ㈣了將鑽石與半導體之間結合介 面的壓力減至最少。 近二來,鑽石均熱板被用於對高功率雷射二極體進行 政熱’例如被使用於雷射二極體以增進光纖中的光能。然 而’大面積的鑽石非當昂眚. *叩貝,因此,過去在商業上並不使 用鑽石來對中央處理器進行散埶。 定 j驭…马了讓鑽石能作為一均 …板’將鑽石表面進行拋光,使其能夠緊密的接觸半導體 晶此外’其可金屬化(例如透過欽/叙/銀)以供鑽 石此以硬焊方式附加到一傳統金屬熱沉上。 目前許多鑽石均熱板是由化學氣相沉積法(Chemical Vapor Depos山on,CVD)形成的鑽石薄膜所製造。舉例而 言匕學氣相沉積鑽石薄膜的原料,其售價高於1〇美 平方么/刀’拋光過與金屬化的鑽石薄膜售價則是前述 價格的兩倍。此高價狀況使得鑽石均熱板無法被廣泛使 用,除了某些只需要小面積散熱或是沒有其他更好的均轨 板可供替代的應用(例如高功率雷射二極體)。除了昂貴’:、 化學氣相沉積鑽石薄膜只能以極為緩慢的速率生長(例如 每小時增長數微米);因此,這些鑽石薄膜鮮少超過一毫 米的厚度(一般約在〇 3到〇 5毫米)。然而,若是晶片 的政熱區域大(例如中央處理器),則須用較厚 (例如3毫米)為佳。 & 201122401 除了以化學氣相沉積方法製造的鑽石產品,已有人嘗 試使用一整塊的微粒鑽石或是「聚晶鑽石(polycrysta丨丨丨·ηβ(PPm/K 16.4 24.5 — 47.5 ~~Ϊ4.5 — 18.7 ~~577 201122401 矽148 Diamond (丨丨a grade} ~~^300— 2.6 T78 1.4 In addition, the coefficient of thermal expansion of diamonds is all „x, poor Keke The lowest of the diamonds. The low thermal expansion of the diamond makes it easier for the diamond to combine. Because of this characteristic, it can be: stone, low thermal expansion material (4) to minimize the pressure of the interface between the diamond and the semiconductor. Second, diamond soaking plates are used to heat the high-power laser diodes, for example, used in laser diodes to enhance the light energy in the fiber. However, 'large-area diamonds are not expensive. * Mussels, therefore, in the past, it was not commercially used to use diamonds to disperse the central processing unit. The j...there was the diamond that allowed the diamond to be polished as a uniform board to make it close to the surface. In addition, the semiconductor crystal can be metallized (for example, through Qin/Silver/Silver) for diamonds to be brazed to a conventional metal heat sink. Many diamond soaking plates are currently chemical vapor deposition (Chemical Vapor). Depos Mountain on, CVD) Made of stone film. For example, the raw material of the vapor deposited diamond film is more than 1 US square. The price of the polished and metallized diamond film is twice the price. The high price condition makes the diamond soaking plate unusable, except for some applications that require only a small area of heat dissipation or no other better rails (such as high power laser diodes). In addition to expensive ': Chemical vapor deposited diamond films can only grow at very slow rates (e.g., a few microns per hour); therefore, these diamond films rarely exceed a thickness of one millimeter (typically about 〇3 to 〇5 mm). If the wafer has a large political area (such as a central processing unit), it should be thicker (for example, 3 mm). & 201122401 In addition to the diamond products manufactured by chemical vapor deposition, one has tried to use a whole piece. Particulate diamond or "polycrystalline diamond (polycrysta丨丨丨·ηβ)
Diamond)」來形成均熱板。這些裝置的例子揭露於美國第 6,390,181號專利案以及美國公開第2〇〇2/〇〇23733號專 利申請案之中,這些專利文件整合於本文中以作為參考。 一般而言,是透過在高壓高溫(HPHT)條件下,使用鈷作為 燒結添加物來燒結鑽石粒子,以形成pCD產品(或是緻 捃產品)。或者,可使用矽或是矽合金來將鑽石顆粒固結 在一起,如美國第4,124,401與4,534,773號專利案所揭 露。一般燒結程序中所使用的鑽石顆粒的尺寸是在微米的 大小範圍中。因此,PCD緻密物一般具有大量的顆粒邊界, 且各個顆粒上包覆有一低導熱性的第二相物質。由於此種 PCD緻密物的物理比熱在傳送或導熱上受限,因此作為均 熱板時效能不彰。 因此,目前仍在持續地研究與發展能夠有效對一熱源 進行導熱散熱且具有成本效益的系統與裝置。 【發明内容】 因此,本發明提供一種均熱板,其可使用於以吸取或 是傳導熱的方式來帶走一熱源的熱。在一方面,一均熱板 包含複數鑽石顆粒,該複數鑽石顆粒配置為—單層結構, 且以一金屬塊體包覆該單層結構。該鑽石顆粒單層結構的 厚度可為單一顆粒的厚度。金屬塊體可有效黏結鑽石顆 粒,除了單層結構中的鑽石顆粒之外,該金屬塊體可大致 上不包含非鑽石顆粒。在均熱板的另一變化例之中,一鑽 石顆粒單層結構可具有一單層厚度’且其中各鑽石顆粒直⑸ 7 201122401 接物理性地接觸另一鑽石顆粒。 共同固結於均熱板的至少一側上 一金屬塊體可將 鑽石顆粒 前述金屬塊體為單一金屬材料 刖述金屬塊體包含有多於一箱 > 種以上的金屬材料 刖述金屬塊體包含多層不同的金屬材料。 前述金屬塊體包含一金屬合金。 金 前述金屬塊體包含一成分,該成分是選自紹 、銀以及其合金的其中一種。 、碎、銅 前述金屬塊體包含鋁。 刖述金屬塊體包含一紹鎖合金。 前述鋁的至少一部分有陽極化處理。 前述金屬塊體包含矽。 前述金屬龍基本上由㉟或切所組成。 1述金屬塊體包含一紹以及矽的混合物或是合金。 刖述鑽石顆粒為高等級的鑽石顆粒。 前述鑽石顆粒是大致上具有均勻一致的尺寸或是外 形。 則述鑽石顆粒是立方體型的方晶鑽石。 前述由鑽石顆粒組成的單層結構中以放電等離子燒結 去燒結金屬材料,該燒結製程是在低於大約攝氏1200度 的溫度下進行。 則述鑽石顆粒透過熱處理、電漿處理以及化學溶劑處 理的其中一種處理程序進行表面改質。 前述鑽石顆粒的網目尺寸是約從20到1 〇〇。 前述鑽石顆粒的網目尺寸是約從3〇到50。 8 201122401 前述由鑽石顆粒組成的單層結構是較靠近金屬塊體的 一側並且較遠離金屬塊體的另一相對側。 前述由於鑽石顆粒組成的單層結構的填充效率是約大 於 50%。 前述由於鑽石顆粒組成的單層結構的填充效率是約大 於 80%。 前述均熱板的厚度是單一鑽石顆粒厚度的大約U到 30倍。 前述由鑽石顆粒組成的單層結構中炼渗有金屬材料。 前述溶滲程序是在低於大約攝氏麵度的溫度下進 行。 前述熔滲程序是在真空條件下進行。 =述熔滲程序是在低於1QQa氣壓的壓力下進行。 前述具有單層鑽石顆粒的均熱板,其進-步包含有一 附加在均熱板一表面上的聚晶鑽石層。 前述鑽石顆粒經過-熱壓程序處理,該熱壓程序的塵 力為從⑽MPa到5.5Gpa,溫度為從攝氏7〇〇到1〇〇〇度。 絡 法 中 構 前述鑽石顆粒電鑛有一電鑛層,該電鍍層是選自欽、 錄、鋼、鎢、釩、鈮、鍅、銷以及其合金的其中一種。 ^樣地,本發明提供一種以均熱板轉移熱源的熱的方 ,、包含:將-熱源的熱能吸附到一均熱板的鑽石層之 ^前述的實施例,該均熱板可包含一鑽石顆粒單層結 ^度為單-顆粒的厚度。熱源的熱能可傳導到一大 上l覆且將鑽石顆粒固結在— 起的金屬塊體。再者,除 構之中的鑽石顆粒之外,該金屬塊體可大致上不 201122401 包含鑽石顆粒。 其進一步包含將 其中進一步將熱 前述以均熱板轉移熱源的熱的方法 熱旎由該金屬塊體傳輸到一額外的材料 前述以均熱板轉移熱源的熱的方法 能傳輸到一熱沉或是一熱管。 前述均熱板是附加到該熱源上。 前述均熱板硬焊或是焊接到該埶源上 :述:熱板包含一金屬材料,該金屬材料選自、 銅、金、銀以及其合金的其令一種。 &在此先以較寬廣方式描述本發明各項特徵’以使讀者 後本發明的詳細描述。本發明其餘特徵將透過 Γ本發明詳細說明與所㈣h專利制,或者透過 貫施本發明來清楚呈現。 【實施方式】 在揭露與描述本發明前,應當理解的是,本發明並非 限制在之後所揭露的特定的構造、製程步驟或是材料,而 是可擴大到被那些相關領域中熟習技藝者所了解的均等 物。也應了解的是,在此所使用的專門用語僅被用於敎迷 特定的實施例,而非意圖造成限制。 必須注意的是,除非文章中特定指出其他涵義,說明 ,以及附加的申請專利範圍中所使用的冠詞「一」*「該」 是已3 了複數的用法。因此,舉例而纟’「一鑽石顆粒」 匕3 了 j固或更多這樣的顆粒,「一具縫隙的材料」包含 了個或更多延樣的材料,且,「該顆粒」包含了 — 更多這樣的該。 201122401 定義 在=述與„月求本發明時,會根據下列提 用下列專門用語。 j疋我米使 文中所使用的「顆私| 顆粒(Part丨cle)」與「粗粒(· 詞可交替使用, vy ;」寺用 中k些用岡與鑽石顆粒連結時, 鑽石的微粒型態。這此 疋?日 k二顆粒或是粒子可具有不同的形狀, 例如圓形、橢圓形、方 万心以及自形(Euhedral)等等。在一 特定方面’ 「顆粒可自冬 θ 匕3或疋基本上由任何形狀的聚晶 鑽石所組成,例如立方形曰 〜的聚日日鑽石。如本發明所屬技術 領域已知的「網目(Mesh)」—詞,是指每單位面積的孔洞 數目,例如美規網目(u.s.Meshes)。除非有特別指明,否 則文令所提到的網目尺寸皆是指美規網目尺寸。此外,因 為各個顆粒均是在於一特定的「網目尺寸」内,且實際上 會在小巾田度的尺寸筋圍內& y- ^ 摩巳固内進仃變動,因此網目尺寸通常被 理解為一整群顆粒的平均網目尺寸, [S1 文中所使用&大致上」一詞是指一作用、特徵、性 質、狀態、結構、物品或結果之完全或近乎完全的範圍或 :程度。舉例而言’ 一物體「大致上」被包覆,其意指被 完全地包覆,或者被幾乎完全地包覆。其確切可與絕對完 全相比所允許之偏差程度,係可在某些例子中取決於說明 書特定内文。然而’-般而言’接近完全時所得到的結果 將如同在絕對且徹底完全時得到的全部結果一般。當「大 致上」被使用於描述完全或近乎完全地缺乏一作用、特徵' 性質、狀態、結構、物品或結果時,該使用方式亦是如前 述方式而同等地應用的。舉例而言,一「大致上不包含」 11 201122401 顆粒的組成物,是可完全缺乏顆粒, 粒而到達如同其完全缺乏顆粒的程声。一 π全缺乏顆 吳 5 ,口面 「 致上不包含」原料或元素的複合物所 ^要一大 量測的’該複合物實際上仍可包含 f疋.,.、法被 吃‘原料志且- 文中所使用的「均熱板」—詞,是 \疋素。 傳導熱的方式來轉移帶走-熱源的θ 擴散或是 品。均熱板不同於熱沉,熱沉是作為一 σ 1 τ e A w „ ,. _ ,、、、的材料或是複合產 熱容器,直到另 一機構將熱沉上的熱轉移離開,而 …、坂不儲存特定量的 熱’僅僅將一熱源的熱轉移離開。 文中所使用的「熱源」一詞,是指— a 具有尚於預期的 特定量熱能或是熱的裝置或是物體。熱源可包含一裝置, 該運作時會產生熱作為副產品的裝置;且熱源可包物 體,該物體連接到一熱轉移器,且被熱轉移器自另一熱源 所轉移來的熱加熱到超出預期的溫度。 文中所使用的「化學鍵」以及「化學鍵結」等用詞, 其可相互父替使用,且是指一在兩原子之間施加一吸引力 的分子鍵’該吸引力強到足以創造一位於原子間介面處的 二元實體化合物。 文中所使用的「炫滲(infiltrating)」一詞,是指一材料 被加熱到其溫度達到熔點且接著如同液體般流動通過顆粒 之間的孔洞的狀態。 文中所使用的「燒結」一詞,是指兩個或更多的獨立 顆粒形成一連續的固態塊體。燒結的程序涉及將顆粒固定 為一體並且至少部分地消除顆粒之間的孔洞。燒結鑽石顆 粒一般而s需要超南壓以及加入碳溶劑以作為燒結辅助 12 201122401 物。 文中所使用的「固結(Cementing)」以及「被固結 (Cemented)」等用詞,是指一種非燒結狀態,其中顆粒被 周圍包覆的材料物理性地固定在一起,該包覆的材料可為 金屬材料。該「金屬的」一詞是指金屬以及非金屬 (Metalloids)。金屬可包含在過渡金屬中所能找到的一般被 認為是金屬的化合物、鹼金屬以及鹼土金屬。金屬的範例 包括:銀、金、銅、鋁以及鐵。非金屬特別包括矽、硼、 鍺、銻、砷以及碲。金屬材料亦包含合金或是包含有金屬 材料的混合物。前述合金與混合物可進一步包含添加物。 在本發明之中,碳化物形成元素以及碳潤濕劑可包含合金 或是混合物,但並非僅僅是金屬成分。碳化物形成元=的 範例包括銳、釔、鈦、錯、铪、釩、鈮、鉻、鉬、錳、鈕、 鎢以及鉻。 入丫巧r便用的1等 較 - π〜州租的寻級。 S1 尚等級表是鑽石有較少的瑕疵以及内含物。由於製造程 序的因素,人造鑽石相較天然鑽石更可能包含内含物。鑽 石所含的瑕疵以及内含物越少,則其導熱性越佳,且更能 夠為本發明所利用。此外,具有瑕疵與内含物的鑽石在某 些製造條件下更容易損壞。選擇具有較高等級的鑽石是指 刻意選擇具有較佳品質的鑽石顆粒,所謂的品質是指尺 :暂價格和/或形狀。較高等級的鑽石代表其相較最低;得 ::鑽:更至少好上一個等級以上,且通常代表其好上 ;個等級以上。當以相同鑽石顆粒尺寸為基準時,鑽 石顆粒等級的增加通常代表其價格的增加。高等級或是更 13 201122401 尚專級的鑽石顆粒包含有Diamond Innovations公司的 MBS_96〇鑽石產品、E|ement Six公司的SDB1100鑽石 產品、以及lljin Diamond公司的丨SD17〇〇鑽石產品。 文中所使用的複數元件,會列於一通用清單中以增進 便利性。然而,須分別將這些清單中的各部分個別地被視 為分離且獨特的部分。因此,不應單單只因為一清單内同 群、.且内的複數部分沒有相反的特性,就將清單中其中一 獨立部分解釋為與同一清單中的任何其他部分實質上相 同。 濃度、數量、顆粒尺寸、體積以及其他數值資料可以 一範圍形式表達或呈現。應了解的是,此範圍形式僅僅為 了方便與簡潔而使用,因此該範圍形式應該被彈性地解釋 為不僅包含了被清楚描述以作範圍限制的數值,亦包含在 該範圍中的所有獨立數值以及子範圍,猶如清楚地引述各 獨立數值以及子範圍一般。 舉例而言,「大約1到大約5」的數值範圍應被解釋 為不僅僅包含所清楚描述的數值範圍,亦應進一步解釋為 包含在該數值範圍中的獨立數值以及子範圍。因此,此數 值範圍内包含諸如2,3,以及4等獨立數值,包含諸如l 3,2-4…_5以及“,以及5等子範圍。此相同的法則 適用於僅引述單一數值作為下限或是上限的範圍。此外, 此解釋方式適用於任何幅度的範圍以及任何所述的特性。 本發明 -具有由鑽石顆粒組成的單層結構的均熱板能夠提供 一熱管理上的經濟性與有效率的機制。在該均熱板之中,' 201122401 :玄配::具有單一顆粒厚度的單層結構中的複數鑽石顆粒 疋相§ a易且實用❼均熱板設計,此均熱板設計與—熱源 連接夺極有熱官理效率。該鑽石顆粒可透過一金屬塊體 而固疋在前述單層結構之中,其中該金屬塊體將顆粒共同 疑固為ft。在於這些實施例之中,該金屬塊體在該單層 冓之卜的。P为大致上不具有其他鑽石顆粒。此外,鑽石 顆粒可電錢有—電鍵層,該電鑛層是選自鈥、絡、鎳、銅' 鶴、飢m翻以及其合金的其中一種,藉此,可增 加鑽石顆粒與金屬塊體之間的鍵結強度。此外,該鑽石顆 粒透過熱處理、電漿處理以及化學溶劑處理的其中一種處 理程序進行表面改質,藉此增強鑽石顆粒與金屬塊體之間 的結合強度。 根據文中呈現的實施例,本發明提供了適用於各種均 熱板、熱管理系統、均熱板的製造方法以及熱源的熱轉移 方法等等的細節内容。因此’文中對於一特定實施例的討 論會關聯以及支持文中的其他相關實施例。 在本發明一實施例中,金屬塊體是以單一金屬材料製 造。已知金屬一詞是包含金屬以及非金屬(例如矽、硼、 錯、銻、钟以及碲);在另外一實施例中,該金屬塊體是 具有多於一種以上的金屬材料。當金屬塊體包含多於一種 以上的材料時,這些金屬材料以任何結構呈現,例如合金、 混合物、相分離的多層結構或者是其它的空間配置等等。 在一特定實施例之中’該均熱板包含有鋁。在 另一實施 例之中,該金屬塊體包含矽。在又一實施例之中,該金屬 塊體可包含鋁以及矽,例如包含兩者的合金以及 ’取疋混 15 201122401 合物。應當根據特別的考量來選擇所欲使用於金屬塊體中 的材料Φ所欲達成的應用,來決定選擇更具電絕緣性的 金屬^料或是選擇更具導電性的金屬材料。關於選擇材料 的考f亦包括延展性、價格、與所欲使用的熱源、製程之 間存在的潛在活性、以及與所使用的其他材料(包括任何 型態的黏著劑)之間的相容性。 為了增加該均熱板的熱傳導率,必須使用較高等級的 鑽石。右疋鑽石含有内含物或是其他型態的缺陷,則鑽石 粗粒的熱傳導率未必會高於銅等金屬材料。具有較好品質 的鑽石顆粒相較具有較差品質的鑽石顆粒能夠更快速的傳 輪熱。因此,使用較高等級的鑽石顆粒能增加均熱板的整 體熱傳導率。具有規則形狀的鑽石亦能夠增加均熱板的熱 傳2率。因此,在某些設計製作已包含形狀規則的鑽石即 可合乎所求。鑽石顆粒可進行配置以增進熱傳導以及熱傳 輸為了增進熱傳導與熱傳輸,一鑽石顆粒可直接地物理 !生接觸3 -鑽石肖/粒。此帛直接地物理性接觸{鑽石對鑽 石的接觸。在-實施例中,一層結構中的大致上所有鑽石 ♦可為鑽石對鑽石的接觸。因此,均熱板中大致上所有 的鑽石顆粒可直接地物理性接觸至少一個其他的鑽石顆 :在又實施例之中,大致上所有的鑽石可接觸一個或 少個鑽石顆粒,其接觸的程度達到形成一連續鑽石粒子路 f以供熱所流通。換言之’所有的鑽石顆粒實質上接觸所 提供的鑽石顆粒的本體或是組成物。在另一實施例之中, 可將鑽石顆粒配置或是鋪排為一個二維圖形。在一範例之 中鑽石顆粒可為大致上彼此等距相間隔。在又一實施例 16 201122401 之中’所鋪排的鑽石顆粒可為鑽 對鑽石接觸。該德 粒可配置為具有相同或是相似 幻万向,透過此種配置可 一步加強上述實施例,且因此増 進 ^ , ·,,、得導率。在此實施例 之中,可鋪排鑽石顆粒以將鑽石顆 斑v;石顆粒間的縫隙減至最小。 舉例而言,大致上所有的鑽石顆粒 一主二貝祖了自該均熱板上暴露出 表面。或者,該鑽石顆粒可具有— ^ 十面,其中所有的鑽 石顆粒的各個表面均對齊該平 躍石顆粒具有相同尺寸 時,各鑽石顆粒可以其表面對齊 月网個干面,例如對齊該單 一鑽石層的頂面與底面。在某肚實 —貫施例之中,此單鑽石層 結構可部分暴露於均熱板之外,. 及耆可大致上被一非鑽石 材料所包覆,例如被金屬塊體所包覆,或者可被一金屬塊 體與碳材料組成物所包覆,例如被金屬塊體與聚晶鑽石的 ㈣物所包覆》«材料成本、加工成本、以及所預期使 用的均熱板,可限制由鑽石顆粒組成的單層結構的尺寸小 於該均熱板的尺寸來增進效益。舉例而言,鑽石顆粒可成 形在一單層結構中而接近均熱板的一表面,但是並不完全 延伸到該熱沉的邊緣。Diamond) to form a soaking plate. Examples of such devices are disclosed in U.S. Patent No. 6,390,181 and U.S. Patent Application Serial No. 2/23,233, the entire disclosure of each of which is incorporated herein by reference. In general, diamond particles are sintered by using cobalt as a sintering additive under high pressure and high temperature (HPHT) conditions to form a pCD product (or a bismuth product). Alternatively, the ruthenium or ruthenium alloy may be used to consolidate the diamond particles together as disclosed in U.S. Patent Nos. 4,124,401 and 4,534,773. The size of the diamond particles used in the general sintering procedure is in the size range of micrometers. Therefore, PCD compacts generally have a large number of particle boundaries, and each particle is coated with a second phase material of low thermal conductivity. Since the physical specific heat of such a PCD compact is limited in transmission or heat conduction, it is ineffective as a heat equalizing plate. Therefore, it is still continuously researching and developing cost-effective systems and devices that can effectively conduct heat dissipation from a heat source. SUMMARY OF THE INVENTION Accordingly, the present invention provides a soaking plate that can be used to remove heat from a heat source in a manner that draws or conducts heat. In one aspect, a soaking plate comprises a plurality of diamond particles configured to have a single layer structure and to coat the single layer structure with a metal block. The thickness of the diamond particle single layer structure can be the thickness of a single particle. The metal block effectively bonds the diamond particles, and the metal block may contain substantially no non-diamond particles in addition to the diamond particles in the single layer structure. In another variation of the soaking plate, a diamond particle monolayer structure can have a single layer thickness' and wherein each diamond particle is in direct contact with another diamond particle (5) 7 201122401. Cooperating on at least one side of the heat equalizing plate to form a metal block, the diamond metal particles can be a single metal material, and the metal block body comprises more than one box of > more than one metal material The body contains multiple layers of different metallic materials. The aforementioned metal block contains a metal alloy. Gold The aforementioned metal block contains a component selected from the group consisting of sulphur, silver, and alloys thereof. , broken, copper The aforementioned metal block contains aluminum. The metal block contains a seal alloy. At least a portion of the foregoing aluminum is anodized. The aforementioned metal block contains ruthenium. The aforementioned metal dragon basically consists of 35 or cut. The metal block comprises a mixture or alloy of bismuth and bismuth. The diamond particles are high-grade diamond particles. The aforementioned diamond particles are substantially uniform in size or shape. The diamond particles are cube-shaped cubic diamonds. The foregoing single layer structure composed of diamond particles is sintered by spark plasma sintering to perform the sintering process at a temperature of less than about 1200 degrees Celsius. The diamond particles are surface modified by one of a heat treatment, a plasma treatment, and a chemical solvent treatment. The aforementioned diamond particles have a mesh size of from about 20 to about 1 Torr. The aforementioned diamond particles have a mesh size of from about 3 Å to about 50 Å. 8 201122401 The aforementioned single layer structure consisting of diamond particles is closer to one side of the metal block and further away from the other opposite side of the metal block. The aforementioned filling efficiency of a single layer structure composed of diamond particles is about 50%. The aforementioned filling efficiency of a single layer structure composed of diamond particles is about 80%. The thickness of the aforementioned soaking plate is about U to 30 times the thickness of a single diamond particle. The aforementioned single layer structure composed of diamond particles is infiltrated with a metal material. The aforementioned infiltration procedure is carried out at temperatures below about the Celsius. The aforementioned infiltration procedure is carried out under vacuum conditions. = The infiltration procedure is carried out at a pressure below 1QQa. The foregoing soaking plate having a single layer of diamond particles further comprises a polycrystalline diamond layer attached to a surface of the soaking plate. The aforementioned diamond particles are subjected to a hot pressing procedure, and the hot pressing procedure has a dust force of from (10) MPa to 5.5 GPa and a temperature of from 7 Torr to 1 Torr. The above-mentioned diamond particle electric ore has an electric ore layer selected from the group consisting of Qin, Lu, steel, tungsten, vanadium, niobium, tantalum, pin and alloys thereof. The present invention provides a method for transferring heat of a heat source by a heat equalizing plate, comprising: the foregoing embodiment of adsorbing heat energy of a heat source to a diamond layer of a heat equalizing plate, the heat equalizing plate may comprise a The diamond particle single layer junction is a single-particle thickness. The heat of the heat source can be conducted to a large block of metal that has been bonded to the diamond particles. Furthermore, in addition to the diamond particles in the structure, the metal block may contain substantially no diamond particles in 201122401. It further comprises a method of transferring heat from the metal block to an additional material in which the heat of the heat transfer from the heat transfer plate is further transferred from the metal block to the heat transfer method to transfer the heat source to the heat sink or It is a heat pipe. The aforementioned soaking plate is attached to the heat source. The soaking plate is brazed or welded to the source: The hot plate comprises a metal material selected from the group consisting of copper, gold, silver and alloys thereof. The features of the present invention are described in the broader aspects of the invention, and are described herein. The remaining features of the present invention will become apparent from the Detailed Description of the Invention and the <RTIgt; [Embodiment] Before the present invention is disclosed and described, it is understood that the invention is not limited to the specific structures, process steps or materials disclosed hereinafter, but may be extended to those skilled in the relevant art. Understand the equivalent. It should also be understood that the specific terminology used herein is for the purpose of the particular embodiments It must be noted that the articles "a" and "the" are used in the plural unless the context clearly indicates other meanings, descriptions, and additional patent applications. Therefore, for example, 纟 '"a diamond granule" 匕3 has a solid or more such particles, "a material with a gap" contains one or more extended materials, and "the granule" contains - More of this. 201122401 Definitions When describing the invention, the following specific terms are used according to the following: j疋 I use the words "Part 丨cle" and "Coarse grain" in the text. Alternate use, vy;" The temple uses a combination of diamonds and diamond particles, the particle shape of the diamond. This can be different from the shape of the particles, such as round, oval, square Wanxin and self-formed (Euhedral), etc. In a particular aspect, 'particles can be composed of any shape of polycrystalline diamond from winter θ 匕 3 or 疋, such as a cubic 曰 ~ of a poly day diamond. The term "mesh" as used in the art to which the invention pertains refers to the number of holes per unit area, such as usMeshes. Unless otherwise specified, the mesh sizes mentioned in the text are It refers to the size of the US standard mesh. In addition, because each particle is in a specific "mesh size", and actually will be within the size of the small towel field & y- ^ , so the mesh size is usually understood The average mesh size of a whole group of particles, [the term & substantially as used herein refers to the complete or near-complete range or degree of an action, feature, property, state, structure, article or result. "An object "substantially" is covered, meaning that it is completely covered, or is almost completely covered. The exact degree of deviation that can be allowed compared to absolute completeness, in some cases Depending on the specific text of the specification. However, the results obtained in the 'normally' approach to completeness will be as general as the results obtained in absolute and complete completeness. When "substantially" is used to describe the complete or near complete lack. In the case of an action, a feature, a property, a state, a structure, an article, or a result, the mode of use is equally applied as described above. For example, a "substantially not included" 11 201122401 particle composition is Completely lacking particles, granules and reaching the sound of the complete lack of particles. One π is completely lacking Wu 5, and the complex of the raw materials or elements of the mouth is not included. A large amount of 'the complex can still contain f疋.,., the law is eaten' raw materials and - the "soaked plate" used in the text - the word is the halogen. The way to conduct heat Transfer away - the θ diffusion of the heat source or the product. The soaking plate is different from the heat sink, and the heat sink is used as a material of σ 1 τ e A w „ , . _ , , , or a composite heat generating container until another An institution transfers heat from the heat sink, and ... does not store a certain amount of heat' merely transfers heat from a heat source. The term "heat source" as used herein means that - a has an expected A specific amount of thermal energy or a hot device or object. The heat source may include a device that generates heat as a by-product device; and the heat source may include an object that is connected to a heat transfer device and is heated by the heat transfer device. The heat transferred by another heat source is heated to a temperature that exceeds the expected temperature. The terms "chemical bond" and "chemical bond" used in the text can be used interchangeably with each other, and refer to the application of an attractive molecular bond between two atoms. The attraction is strong enough to create an atom. A binary entity compound at the interface. As used herein, the term "infiltrating" refers to a state in which a material is heated to its temperature to the melting point and then flows as a liquid through the pores between the particles. As used herein, the term "sintering" means that two or more separate particles form a continuous solid block. The sintering procedure involves securing the particles together and at least partially eliminating the voids between the particles. Sintered diamond particles generally require s super-Southern pressure and carbon solvent to be added as a sintering aid 12 201122401. As used herein, the terms "Cementing" and "Cemented" refer to a non-sintered state in which the particles are physically held together by the surrounding coated material. The material can be a metallic material. The term "metal" refers to metals as well as non-metals (Metalloids). The metal may comprise a compound which is generally considered to be a metal, an alkali metal and an alkaline earth metal which can be found in the transition metal. Examples of metals include: silver, gold, copper, aluminum, and iron. Non-metals include, in particular, bismuth, boron, antimony, bismuth, arsenic and antimony. The metal material also contains an alloy or a mixture containing a metal material. The foregoing alloys and mixtures may further comprise additives. In the present invention, the carbide forming element and the carbon wetting agent may comprise an alloy or a mixture, but not only a metal component. Examples of carbide forming elements include sharp, tantalum, titanium, hafnium, niobium, vanadium, niobium, chromium, molybdenum, manganese, niobium, tungsten, and chromium. 1 is equal to the use of 丫 r r - π ~ state rent homing. The S1 grade chart is that diamonds have fewer defects and inclusions. Due to manufacturing factors, synthetic diamonds are more likely to contain inclusions than natural diamonds. The less ruthenium and inclusions contained in the diamond, the better its thermal conductivity and more useful for the present invention. In addition, diamonds with niobium and inclusions are more susceptible to damage under certain manufacturing conditions. Choosing a diamond with a higher rating means deliberately selecting diamond particles with better quality. The so-called quality is the ruler: temporary price and / or shape. Higher grade diamonds represent the lowest level; get: :: drills are at least better than the previous level, and usually represent better than above; When based on the same diamond particle size, an increase in the grade of the diamond particle usually represents an increase in its price. High grade or more 13 201122401 The premium grade diamond granules include Diamond Innovations' MBS_96〇 diamond product, E|ement Six's SDB1100 diamond product, and lljin Diamond's 丨SD17〇〇 diamond product. The plural components used in this document are listed in a general list for added convenience. However, each of these lists must be individually considered as a separate and distinct part. Therefore, one of the independent parts of the list should not be interpreted to be substantially the same as any other part of the same list, simply because the same group in a list has no opposite characteristics. Concentrations, amounts, particle sizes, volumes, and other numerical data can be expressed or presented in a range. It should be understood that the scope of the present invention is to be construed as being limited to the scope of the The sub-range is as if the individual values and sub-ranges are generally quoted. For example, a range of values from "about 1 to about 5" is to be construed as not limited to the range of values that are clearly recited. Therefore, this numerical range includes independent values such as 2, 3, and 4, including such as l 3, 2-4..._5 and ", and 5 sub-ranges. This same rule applies to quote only a single value as a lower limit or In addition, this interpretation applies to any range of amplitudes and any of the described characteristics. The present invention - a soaking plate having a single layer structure composed of diamond particles can provide a thermal management economy and The mechanism of efficiency. Among the soaking plates, '201122401: Xuanqi:: a plurality of diamond particles in a single-layer structure with a single particle thickness. a a easy and practical ❼ uniform hot plate design, this hot plate design The connection with the heat source is highly efficient. The diamond particles can be solidified in the aforementioned single layer structure through a metal block, wherein the metal block together is suspected to be ft. In these embodiments The metal block is in the single layer. P is substantially free of other diamond particles. In addition, the diamond particles can be electrically charged with an electric bond layer selected from the group consisting of ruthenium, rhodium, and nickel. Copper' crane, hunger And one of the alloys thereof, thereby increasing the bonding strength between the diamond particles and the metal block. Further, the diamond particles are surface-modified by one of a heat treatment, a plasma treatment, and a chemical solvent treatment. Thereby, the bonding strength between the diamond particles and the metal block is enhanced. According to the embodiments presented herein, the present invention provides a heat transfer method suitable for various heat equalizing plates, a thermal management system, a heat equalizing plate, and a heat transfer method of a heat source. The details of the disclosure are therefore in the context of the discussion of a particular embodiment and the other related embodiments in the text. In one embodiment of the invention, the metal block is made of a single metal material. Containing metals as well as non-metals (eg, bismuth, boron, erbium, lanthanum, lanthanum, and lanthanum); in another embodiment, the metal block has more than one metal material. When the metal block contains more than one or more Materials, these metallic materials are presented in any structure, such as alloys, mixtures, phase-separated multilayer structures or Its spatial configuration, etc. In a particular embodiment, the heat spreader plate comprises aluminum. In another embodiment, the metal block comprises tantalum. In yet another embodiment, the metal block It may contain aluminum as well as tantalum, for example, an alloy containing both, and a mixture of '2011 and 201122401. The application to be used in the metal block should be selected according to special considerations to determine the choice. Electrically insulating metal materials or metal materials with more conductivity. The choice of materials also includes ductility, price, potential heat source, potential activity between processes, and Compatibility between other materials used, including any type of adhesive. In order to increase the thermal conductivity of the soaked plate, higher grade diamonds must be used. Right diamonds contain inclusions or other types. The defect, the thermal conductivity of the diamond coarse particles may not be higher than the metal materials such as copper. Diamond particles with better quality are able to transfer heat more quickly than diamond particles with poor quality. Therefore, the use of higher grade diamond particles can increase the overall thermal conductivity of the soaking plate. Diamonds with a regular shape can also increase the heat transfer rate of the soaking plate. Therefore, in some designs, diamonds that already contain shape rules are desirable. Diamond particles can be configured to enhance heat transfer and heat transfer. To enhance heat transfer and heat transfer, a diamond particle can be directly physics-contacted with diamonds. This 帛 is directly in physical contact with { diamond to diamond contact. In an embodiment, substantially all of the diamonds in a layer of structure ♦ may be diamond-to-diamond contact. Thus, substantially all of the diamond particles in the soaking plate may be in direct physical contact with at least one other diamond: in yet another embodiment, substantially all of the diamond may be in contact with one or less diamond particles, the extent of contact A continuous diamond particle path f is formed to circulate for heat supply. In other words, 'all diamond particles are in substantial contact with the body or composition of the diamond particles provided. In another embodiment, the diamond particles can be configured or laid out into a two-dimensional pattern. In one example, the diamond particles can be substantially equidistant from one another. In yet another embodiment 16 201122401, the diamond particles laid out may be diamond-to-diamond contacts. The particles can be configured to have the same or similar phantom directions, and the above embodiment can be enhanced in one step, and thus the φ, 、, 、, 、 、 、 、 、 、 、. In this embodiment, diamond particles may be laid to minimize the diamond plaque v; the gap between the stone particles. For example, substantially all of the diamond particles, a primary bismuth, have exposed the surface from the soaking plate. Alternatively, the diamond particles may have a tens of faces, wherein each of the diamond particles has its own surface aligned with the same size, and each of the diamond particles may have its surface aligned with a dry surface of the moonnet, such as aligning the single diamond. The top and bottom of the layer. In a certain embodiment, the single diamond layer structure may be partially exposed to the heat equalizing plate, and the crucible may be substantially covered by a non-diamond material, such as a metal block. Or it may be covered by a metal block and a carbon material composition, for example, covered by a metal block and a polycrystalline diamond. The material cost, processing cost, and the soaking plate expected to be used may be limited. The size of the single layer structure composed of diamond particles is smaller than the size of the heat equalizing plate to enhance the efficiency. For example, the diamond particles can be formed in a single layer structure adjacent one surface of the heat equalizing plate, but do not extend completely to the edge of the heat sink.
ϊ SI 尺寸亦會影響鑽石顆粒傳輸熱的能力。較大的鑽石顆 粒相較於較小的鑽石顆粒具有較佳的效能。同樣地,尺寸 均勾一致的鑽石顆粒能增加由鑽石顆粒組成的單層結構的 熱傳輸能力。就其本身而言,本發明的一實施例預期鑽石 顆粒的尺寸是均勻一致。雖然鑽石顆粒的尺寸可為任何尺 寸’在本發明一實施例之中’鑽石顆粒的網目尺寸範圍從 大約10到大約100。在另一實施例之中,鑽石顆粒的網目 尺寸可為從大約2 0到大約1 ο 〇,且可為從大約3 〇到大約 17 201122401 5 〇 J Jl 宜 ith* jz. . 示二万面’可專門使用網目尺寸為30/40的鑽石顆 粒,在另一- -ι- 万面,可專門使用網目尺寸為40/50的鑽石顆 ’、在一特定實施例之令,可使用更粗糙的鑽石顆粒,例 如那些大於60網目或者大於8〇網目的鑽石顆粒。 雖然本發明預期該由鑽石顆粒組成的單層結構可位於 ^屬塊體的中心’其中-種結構中,該由鑽石顆粒組成的 單層.纟。構可較靠近該金屬塊體的一側。此設計可供鑽石顆 粒層所靠近的金屬塊體一側被設置於接近該熱源。因此, °亥均熱板上最接近一熱源的區域相較遠離該熱源的區域, 可具有較高的熱傳導性。 在另外一實施例之中,該由鑽石顆粒組成的單層結構 可被固結於該金屬塊體的至少一侧。因此,該由鑽石顆粒 、'且成的單層結構可透過該金屬塊體而被共同固定在該均熱 板之中,但可至少一部分暴露在其一表面之外。在此實施 例之中,可以一非鑽石材料的薄層或是薄膜鑲貼於鑽石顆 粒之上。該非鑽石材料可為具有較佳熱擴散性,以便能輔 助均勻熱器的熱傳導作用。此外,該鑲貼的材料可用於將 °亥均熱板抓附或是固定到一熱源上。在一方面,一薄金屬 層,例如具有約從50到200奈米厚度的薄金屬層,透過 將6亥均熱板固定到一熱源並且以最少的金屬材料隔離熱源 與鑽石顆粒,可幫助該均熱板緊密接觸該熱源。熔融的金 j層,例如鋁以及/或是矽,可熔滲且固結最初被有機黏 著劑所固定的由鑽石顆粒組成的單層結構。接著把該有機 黏著劑燒成碳以形成一碳構成的鑲貼層。此外,另一塗佈 在鑽石顆粒暴露表面上的碳材料的範例是類鑽碳。此類鑽 18 201122401 碳可被塗佈在該鑽石顆粒上而形成一相對薄層,例如約從 400到700奈米的厚度。類鑽碳可具有一相對高的熱傳導 率因而能加強均熱板整體的熱傳導率。 在一方面’該金屬塊體可包含基本上由鋁、石夕、銅、 金、銀以及其合金或是混合物所組成。在一詳細方面該 金屬塊體可包含鋁或是矽。在進一步方面,該金屬塊體可 基本上由鋁所組成。在另一方面,該金屬塊體可基本上由 矽所組成。此外,該金屬塊體可僅僅使用鋁鎂合金或是使 用銘鎂合金與其他材料的複合物。 在進一步方面,當金屬塊包含或是基本上由鋁所組成 時,一部分的鋁可進行陽極化處理。可在鋁的一個或是多 個表面上進行陽極化處理。在一實施例之中,透過鋁固結 -鑽石顆粒層的均熱板可具有—錢表面。該陽極化處理 表面可平行該由鑽石顆粒組成的單層結構,亦可進一步位 於该均熱板欲相對一熱源的一部分上。在一特定實施例之 中,該陽極化表面可設置在該鑽石顆粒層與熱源之間。在 更特疋的實施例之中,該陽極化處理表面可置放於直接 物理性地與熱源接觸,更甚者,該陽極化處理表面可物理 性附加以及/或是化學性結合到該熱源。 在該單層結構中更高的鑽石顆粒密度能增進該均熱板 專輸…的此力。當該單層結構是具有單一鑽石顆粒厚度 夺相較其他於均熱板之令使用鑽石顆粒的一般方法,可 2增進填充效率。填充效率的好壞是部份依賴均熱板的 k凊況(例如所使用的材料、溫度、時間以及壓力)。 [S.1 實施例之中,該填充效率可高於大約50%。在另一實 19 201122401 把例之中,該填充效率可高於大約8〇%,且甚至可高於 90% »在又-實施例之中’該填充效率可高於大約。 在鑽石顆粒的低壓炫渗之中(―般炫滲使用低壓),該填 充效率可為從大約5G到大約7Q%或是更高。可藉由選擇 更大的鑽石顆粒以及具有肖勾一彡的尺寸與 粒來增進填充效率。 顆 在又另一實施例令’使用具有均勻一致外形的鑽石顆 粒能增加填充效率。尤其,料:也可以使用其它形狀的鑽 石顆粒,大致上呈立方體的鑽石顆粒是商業上最常能獲得 的。該立方體鑽石可以邊對邊方式填充於一單層結構中。 若鑽石顆粒均朝朝向同一方向而非隨機地朝任意方向,則 可增進最後複合物的熱性質。 在設計本發明均熱板時要考量的其中一個因素是鑽石 顆粒之間介面的熱性質以及以及金屬材料與鑽石顆粒之間 介面的熱特性。介面之間的孔洞如同熱的障礙物,換言之 通常是指接觸熱阻。理想上,整個單層結構中,鑽石顆粒 的側面會與其他鑽石顆粒的側面確實的接觸。 Ε.1 在某些實施例之中,該由鑽石顆粒組成的單層結構可 由金屬塊所固結。在某些方面,可透過以金屬材料進行熔 滲來達成前述的固結程序。可依照所用來進行熔滲的金屬 材料的種類來決定適當的熔滲溫度。雖然可在各種不同溫 度下執行熔滲,在一實施例之中,可在約低於攝氏η 〇◦〇 度的溫度下進行熔滲。熔滲的壓力亦可改變◊前述壓力可 為一相對系統壓力的低壓。該低壓的範例可為低於大約彳00 大氣壓、低於大約50大氣壓、低於大約10大氣壓、以及 20 201122401 低於大約5大氣壓。在一實施例之中,可在真空裝置中進 行熔滲。除了前述熔滲程序,亦由鑽石顆粒組成的單層結 構中可以放電等離子燒結法(Spa「k p|asma SjnWjng,Spy 燒結金屬材料,該燒結製程是在低於大約攝氏1200度的 孤度下進行。亦可經由熱壓程序(H〇t passing),控制壓力 為100 MPa到5.5 GPa ’溫度為攝氏700度到11〇〇度, 可有效的使鑽石顆粒和金屬基質結合固結。 本發明包含將一熱源的熱轉移離開的裝置、系統以及 方法。在一方面,一熱管理系統可包含一均熱板。此熱管 理系統可包含一接觸均熱板的熱源。該均熱板可具有二相 對側。冑靠近該熱源的一側可相較另一側具有較低的熱膨 脹係數以及較高的熱傳導率。該均熱板中的單一固結之鑽 石顆粒層能影響該熱膨脹係數以及熱傳導率等特性。特別 地’該均熱板具有該鑽石肖粒層的一側是具有低熱膨脹率 以及高熱傳導率。 透過增加一聚晶鑽石(P〇丨ycrysta|Nne Diam〇nd,PCD) 層,可使付靠近均熱板一側的鑽石層的熱性質更為突出。 此聚晶鑽石層可附加於該均熱板上,且可設置在該均熱板 與熱源之間。此外’在某些實施例之中,一聚晶鑽石層可 直接接觸該由鑽石顆粒組成的單層結構。舉例而言,在均 熱板的鑽石顆粒層暴露於該均熱板表面上的例子^,可在 該鑽石顆粒層上直接附加一聚晶鑽石層。 本發明所製造的均熱板可根據*同的使^具有不同 的結構。上述均熱板可拋光且可基於所應用的熱源的需求 而製訂外形Μ目對於以化學氣相程序所製造的均熱板 ^ [ Si 21 201122401ϊ SI size also affects the ability of diamond particles to transfer heat. Larger diamond particles have better performance than smaller diamond particles. Similarly, diamond particles of the same size can increase the heat transfer capacity of a single layer structure composed of diamond particles. For its part, an embodiment of the invention contemplates that the size of the diamond particles is uniform. While the size of the diamond particles can be any size' in an embodiment of the invention, the diamond particles have a mesh size ranging from about 10 to about 100. In another embodiment, the diamond particles may have a mesh size of from about 20 to about 1 ο 〇, and may be from about 3 〇 to about 17 201122401 5 〇 J Jl yi* jz. 'Special use of diamond granules with a mesh size of 30/40, on the other - - ι- 10,000 sided, special use of diamonds with a mesh size of 40/50', in a particular embodiment, can be used more coarsely Diamond particles, such as those larger than 60 mesh or larger than 8 mesh mesh. Although the present invention contemplates that the single layer structure consisting of diamond particles can be located in the center of the ^ block, the single layer consists of diamond particles. The structure can be closer to the side of the metal block. This design allows the side of the metal block adjacent to the diamond particle layer to be placed close to the heat source. Therefore, the region closest to a heat source on the H-heat plate can have higher thermal conductivity than the region farther away from the heat source. In another embodiment, the single layer structure comprised of diamond particles can be affixed to at least one side of the metal block. Therefore, the diamond particles, 'and a single layer structure, can be fixed together in the heat equalizing plate through the metal block, but at least a portion thereof may be exposed outside a surface thereof. In this embodiment, a thin layer of non-diamond material or a film may be applied to the diamond particles. The non-diamond material may have a better thermal diffusivity to aid in the heat transfer of the homogenizer. In addition, the affixed material can be used to grasp or secure the hood heat sink to a heat source. In one aspect, a thin metal layer, such as a thin metal layer having a thickness of from about 50 to 200 nanometers, can be assisted by securing a 6-well heat plate to a heat source and isolating the heat source and diamond particles with a minimum of metal material. The soaking plate is in close contact with the heat source. The molten gold layer, such as aluminum and/or tantalum, can infiltrate and consolidate a single layer structure of diamond particles that is initially fixed by the organic binder. The organic adhesive is then fired into carbon to form an inlaid layer of carbon. In addition, another example of a carbon material coated on the exposed surface of the diamond particles is diamond-like carbon. Such a drill 18 201122401 carbon can be coated onto the diamond particles to form a relatively thin layer, such as a thickness of from about 400 to 700 nanometers. The diamond-like carbon can have a relatively high thermal conductivity and thus enhance the overall thermal conductivity of the soaking plate. In one aspect, the metal block can comprise substantially consisting of aluminum, stellite, copper, gold, silver, and alloys or mixtures thereof. In a detailed aspect, the metal block may comprise aluminum or tantalum. In a further aspect, the metal block can consist essentially of aluminum. In another aspect, the metal block can consist essentially of tantalum. In addition, the metal block may use only an aluminum-magnesium alloy or a composite of a magnesium alloy and other materials. In a further aspect, when the metal block comprises or consists essentially of aluminum, a portion of the aluminum can be anodized. Anodizing can be carried out on one or more surfaces of the aluminum. In one embodiment, the soaking plate through the aluminum consolidated-diamond particle layer may have a money surface. The anodized surface may be parallel to the single layer structure consisting of diamond particles, or may be further located on a portion of the heat equalizing plate relative to a heat source. In a particular embodiment, the anodized surface can be disposed between the diamond particle layer and a heat source. In a more specific embodiment, the anodized surface can be placed in direct physical contact with a heat source, and moreover, the anodized surface can be physically attached and/or chemically bonded to the heat source. . The higher diamond particle density in the single layer structure enhances the force of the soaking plate. When the single layer structure is a general method of using a single diamond particle thickness to capture diamond particles compared to other soaking plates, the filling efficiency can be improved. The efficiency of the filling is partly dependent on the k-state of the soaking plate (eg material used, temperature, time and pressure). [S.1 In the embodiment, the filling efficiency may be higher than about 50%. In another example, the filling efficiency may be higher than about 8%, and may even be higher than 90%. » In the embodiment - the filling efficiency may be higher than about. In the low pressure smear of diamond particles ("low bleed", the filling efficiency can range from about 5G to about 7Q% or higher. Filling efficiency can be improved by choosing larger diamond particles and the size and size of the grain. In yet another embodiment, the use of diamond particles having a uniform shape increases the filling efficiency. In particular, it is contemplated that other shapes of diamond particles may be used, and the substantially cubic diamond particles are most commercially available. The cube diamond can be filled in a single layer structure in an edge-to-edge manner. If the diamond particles are all oriented in the same direction rather than randomly in any direction, the thermal properties of the final composite can be enhanced. One of the factors to be considered in designing the soaking plate of the present invention is the thermal properties of the interface between the diamond particles and the thermal properties of the interface between the metal material and the diamond particles. The holes between the interfaces are like hot obstacles, in other words, the contact thermal resistance. Ideally, the entire side of the monolayer structure will have a positive contact with the sides of the other diamond particles. Ε.1 In some embodiments, the single layer structure consisting of diamond particles can be consolidated by a metal block. In some aspects, the aforementioned consolidation procedure can be achieved by infiltration with a metallic material. The appropriate infiltration temperature can be determined in accordance with the type of metal material used to infiltrate. Although infiltration can be performed at various temperatures, in one embodiment, infiltration can be carried out at temperatures below about η deg. The infiltration pressure can also be varied. The aforementioned pressure can be a low pressure relative to the system pressure. An example of such a low pressure may be less than about 00 atmospheres, less than about 50 atmospheres, less than about 10 atmospheres, and 20 201122401 less than about 5 atmospheres. In one embodiment, infiltration can be performed in a vacuum apparatus. In addition to the aforementioned infiltration procedure, a single layer structure consisting of diamond particles can be subjected to a discharge plasma sintering method (Spa "kp|asma SjnWjng, Spy sintered metal material, which is performed at a degree of latitude below about 1200 ° C. The pressure can be controlled from 100 MPa to 5.5 GPa through a hot pressing procedure (H〇t passing), and the temperature is between 700 and 11 degrees Celsius, which effectively combines the diamond particles with the metal matrix. A device, system, and method for transferring heat from a heat source. In one aspect, a thermal management system can include a soaking plate. The thermal management system can include a heat source that contacts the soaking plate. The soaking plate can have two On the opposite side, the side close to the heat source has a lower coefficient of thermal expansion and a higher thermal conductivity than the other side. The single consolidated diamond particle layer in the soaking plate can affect the coefficient of thermal expansion and thermal conductivity. In particular, the side of the soaking plate having the diamond grain layer has a low coefficient of thermal expansion and a high thermal conductivity. By adding a polycrystalline diamond (P〇丨ycrysta|Nne D The iam〇nd, PCD) layer can make the thermal properties of the diamond layer near the side of the heat equalizing plate more prominent. The polycrystalline diamond layer can be attached to the soaking plate and can be disposed on the soaking plate and Between the heat sources. Further, in some embodiments, a polycrystalline diamond layer may be in direct contact with the single layer structure consisting of diamond particles. For example, a diamond particle layer on a soaking plate is exposed to the soaking plate. On the surface, a polycrystalline diamond layer may be directly attached to the diamond particle layer. The soaking plate manufactured by the present invention may have a different structure according to the same. The above-mentioned soaking plate may be polished and may be based on Appropriate attention to the demand for the applied heat source for the soaking plate manufactured by the chemical vapor phase process ^ [ Si 21 201122401
(例如中央處理器(CPU))。 开/成均熱板,則基於設計與熱傳輸原理來設置均 尺寸。最常作於 大約〇·ι毫米到達大約1 赛度可為鑽石層厚度的大約π 形成為一圓形或是橢圓形碟狀 矩形以或是其他形狀的薄片。 的緊密程度。此外 的尺寸,以致於能夠覆蓋大量 形狀’端看所欲對應的應用。 熱的電子類或是其他類的元件 該均熱板可直接緊密接觸元件,且甚至可以 ’或是均熱板外形可塑造成以大面積直接接 熱板的位置。言! 形成包覆熱源, 觸熱源。或者,該均熱板可透過-熱管或是其他熱轉移裝 置的連接而與熱源相互分離。 除了文中所述的均熱板,本發明亦包含一冷卻單元以 如第一 A圖所示,根據文中所 用於將熱轉移離開一熱源。 讨淪的原理所形成的一均熱板12,其可設置於與一熱源熱 接觸’該熱源可為一中央處理器14以及一熱沉1 6。該均 熱板將中央處理器所產生的熱傳輸到熱沉。該熱沉的材料 以及結構可為本發明所屬技術領域具有通常知識者已知的 各種材料與結構。舉例而言,鋁以及銅為已知的熱沉材料, 且如第一 A圖所示,熱沉可包含數片散熱鰭片18。當透過 均熱板來快速且有效地轉移中央處理器的熱,熱沉可吸收 熱’且散熱鰭片幫助將熱逸散於週圍環境之中。可依據所 22 201122401 要達成的特定結果而採用各種不同的熱沉、熱源以及均熱 板之間的接觸結構。舉例而言,上述均熱板等元件可配置 為彼此相冑,亦可相互結合或是耦合。在許多情況之中, 將均熱板附加至該熱源上是有益的。可以硬焊、焊接 (曰Soldering)、化學結合、膠合等方式或是任何其他化學或 是機械附加裝置來進行前述附加程序。硬焊法可相較其他 附加材料有較佳的熱傳導效率,且因此可增加均熱板的效 率。 奋雖然S亥熱沉16如圖所示般具有數片散熱鰭片,惟應 田了解本發B月能利用任何發明所屬技術領域具有通常知識 者已知的熱沉。美國第6,538,892號專利案中已有討論已 $的熱/儿|巳例,該專利案整合於本文中以作為參考。在本 發明-方面,該熱沉包含一熱管,該熱管具有一内部工作 流體:美國第6,517,221號專利案中已有討論熱管熱沉範 例,该專利案整合於本文中以作為參考❶ 如第- B圖所示,在本發明一方面,該均熱板12可 為至少一部分嵌入於該熱沉以及或是該熱源< 中。以此方 式,不僅可以將熱透過均熱板底部轉移到該熱;冗,亦可將 熱至少-部分透過均熱板側面轉移到該熱沉。在嵌入熱沉 之後,該均熱板可以麼迫緊配方法(c〇mpress|〇n呵固定 在熱沉之中。以此方式,不需要結合材料或是硬浮材料存 在於均熱板與熱沉之間’結合或是硬焊材料會如同障礙物 般阻礙從均熱板到熱沉的熱傳輸。 —雖然均熱板可以本發明所屬技術領域者以各種機制固 定在熱沉,在-方面該均熱板以熱誘導屋縮方法❿咖聊 23 201122401(eg central processing unit (CPU)). The on/off heat plate is set to the average size based on the design and heat transfer principle. The most common is about 〇·ι mm reaching about 1 The degree of the diamond layer is about π formed into a circular or elliptical dish-like rectangle or other shaped sheet. The degree of closeness. In addition, the size is such that it can cover a large number of shapes to the desired application. Hot electronic or other components The soaking plate can be in direct contact with the component, and even the shape of the soaking plate can be shaped to directly connect the hot plate to a large area.言! Form a coated heat source, a heat source. Alternatively, the soaking plate may be separated from the heat source by a connection to a heat pipe or other heat transfer device. In addition to the soaking plates described herein, the present invention also includes a cooling unit, as shown in Figure A, for transferring heat away from a heat source in accordance with the teachings herein. A soaking plate 12 formed by the principle of discussion may be disposed in thermal contact with a heat source. The heat source may be a central processor 14 and a heat sink 16. The heat spreader transfers heat generated by the central processor to the heat sink. The materials and structures of the heat sink can be of various materials and structures known to those of ordinary skill in the art to which the present invention pertains. For example, aluminum and copper are known heat sink materials, and as shown in Figure A, the heat sink can include a plurality of heat sink fins 18. When the heat transfer of the central processor is quickly and efficiently transmitted through the heat spreader, the heat sink absorbs heat and the heat sink fins help to dissipate heat into the surrounding environment. A variety of different heat sinks, heat sources, and contact structures between the soaking plates can be used depending on the specific results to be achieved by 22 201122401. For example, the above-mentioned elements such as the heat equalizing plate may be disposed to be opposite to each other, or may be coupled or coupled to each other. In many cases, it may be beneficial to attach a soaking plate to the heat source. The foregoing additional procedures may be performed by brazing, soldering, chemical bonding, gluing, or any other chemical or mechanical attachment. The brazing method has better heat transfer efficiency than other additional materials, and thus can increase the efficiency of the soaking plate. Although the Shai heat sink 16 has several fins as shown in the figure, it is understood that the B-month can utilize any heat sink known to those skilled in the art. A heat/child example has been discussed in U.S. Patent No. 6,538,892, the disclosure of which is incorporated herein by reference. In the aspect of the invention, the heat sink comprises a heat pipe having an internal working fluid: an example of a heat pipe heat sink is discussed in U.S. Patent No. 6,517,221, the disclosure of which is incorporated herein by reference. As shown in FIG. B, in one aspect of the invention, the heat equalizing plate 12 may be at least partially embedded in the heat sink and or the heat source < In this way, not only can the heat be transferred to the heat through the bottom of the heat equalizing plate; redundancy can also be transferred at least partially through the side of the heat equalizing plate to the heat sink. After the heat sink is embedded, the soaking plate can be tightly fitted (c〇mpress|〇n is fixed in the heat sink. In this way, no bonding material or hard floating material is present on the soaking plate and The combination or heat-welding material between the heat sinks will block the heat transfer from the soaking plate to the heat sink like an obstacle. - Although the heat-sinking plate can be fixed to the heat sink by various mechanisms in the technical field of the present invention, In terms of the hot plate, the hot-induced house contraction method is used for chat 23 201122401
Induced Compression Fit)固定在該熱沉之中。在此實施 例之中,該熱沉可加熱到一溫度來膨脹熱沉上的一開口。 "玄均熱板可接著安裝於該膨脹的開口,且熱沉接著進行冷 卻在對具有相對高的熱膨脹係數的熱沉進行冷卻後,熱 沉會圍著均熱板進行收縮且誘導壓縮作用以將均熱板嵌入 固定在熱’,儿之中而無須任何介於兩者之間的結合材料。亦 可使用機械摩擦方法來將均熱板固定在熱沉之中。 士第〇圖所不,在本發明之一方面,該熱沉可包含 熱s 22 ’该熱管22具有一内部工作流體(圖中未示)。 亥内。卩工作流體可為本發明所屬技術領域具有通常知識者 ^知的任何内部工作流體,且在一方面其為水或是水蒸 ^边熱官可大致上為密封狀態以將該工作流體維持於熱 管内部熱板可設置為#近歸,且在—方面該均熱 板可更焊到該熱管上。在第__ c圖的實施例之中,該均熱 板貫穿熱B的外壁以使得均熱板底部直接接觸該工作流 各更焊處26所不,藉此可輔助維持熱管的密閉狀態。 句…板疋直接接觸該工作流體時,工作流體可更 有效率地將熱轉移離開均埶 例之中n流體的實施 ❹乍机體(本貫施例為水,圖中未示)接觸均 ,,,、板且备吸收來自於均叙柘沾细 % « . I,,'板的熱時,工作流體進行蒸發。 拎f,.、亂接者在熱管底部凝 3, . 1錢、,。形成液體,在此之後,由於毛 、-見象’該液體會回流24於铪杜 桩荽工株力 於銜接均熱板的熱管外壁處’ 接者工作流體會再度蒸發並 壁是以具有高熱傳導 複地循環。由於熱官的外 AL β* «λ 材料所製造,因此熱可由孰管 外壁逸散到周圍空氣之中。 …&Induced Compression Fit) is fixed in the heat sink. In this embodiment, the heat sink can be heated to a temperature to expand an opening in the heat sink. " Xuanji hot plate can then be installed in the expanded opening, and the heat sink is then cooled. After cooling the heat sink with a relatively high coefficient of thermal expansion, the heat sink will shrink around the soaking plate and induce compression. The heat sink is embedded in the heat and does not require any bonding material between the two. A mechanical friction method can also be used to secure the soaking plate in the heat sink. In one aspect of the invention, the heat sink can include heat s 22 '. The heat pipe 22 has an internal working fluid (not shown). Hai. The working fluid may be any internal working fluid known to those of ordinary skill in the art to which the present invention pertains, and in one aspect it may be substantially water or water vaporized to maintain the working fluid in a sealed state. The heat pipe inside the heat pipe can be set to #近归, and in the aspect, the heat spreader plate can be welded to the heat pipe. In the embodiment of the __c diagram, the heat equalizing plate penetrates the outer wall of the heat B such that the bottom of the heat equalizing plate directly contacts the respective welds 26 of the working flow, thereby assisting in maintaining the sealed state of the heat pipe. In the case where the plate is in direct contact with the working fluid, the working fluid can more efficiently transfer the heat away from the n-fluid in the uniform case (the water in the present embodiment is not shown). ,,,, and the absorption of the plate from the average of the 柘 柘 柘 « « « « « « « « « « « « « « « « « « 工作 工作 工作拎f,., the messenger condensed at the bottom of the heat pipe 3, . 1 money,,. Forming a liquid, after which, due to the hair, it is seen that the liquid will recirculate 24 at the outer wall of the heat pipe that joins the soaking plate. The working fluid will re-evaporate and the wall will be high. Heat conduction is repeated in the earth. Due to the external AL β* «λ material produced by the thermal officer, heat can escape from the outer wall of the manifold to the surrounding air. ...&
S.I 24 201122401 由於先前的使用、尺寸、材料、成本以及其他考量, 其可在該金屬塊體上設置有益的類鑽碳。類鑽碳之型熊可 為一單層結構而以物理性以及/或是化學性地附加方=至 該金屬塊體的一側或是多側或是表面±。相較於該㈣塊 體的表面,該類鑽碳可更有效率地將來自於均熱板的鄉 散到空氣中n使用至少—_碳層可特別有益^ 少熱沉的結構。在一實施例之十,該由鑽石顆粒組成的單 層結構可位於該金屬塊體上較靠近該熱源處,且一類鑽碳 層可位於該金屬塊體上相對該熱源處。在此結構中,熱能 可由熱源處流動通過鑽石顆粒(可能在通過鑽石顆粒:: 先行通過一特定量的金屬塊體),通過金屬塊體的一部分剛 且接著由類鑽碳層處逸散入周圍環境之中,例如逸散入空 氣之中。雖然使用類鑽碳可能提供更多的益處給不具熱2 的結構,但類鑽碳層仍可使用於具有熱沉的實施例。類鑽 碳層亦可設置在金屬㈣上並藉於該熱源與由鑽石顆粒組 成的單層結構之間。 根據本發明,一均熱板製造方法可包含將複數鑽石顆 粒配置為一單層結構,該單層結構具有單一鑽石顆粒的厚 度。此單層結構具有一個鑽石顆粒的厚度。在該單層結構 中’鑽石顆粒以上下堆疊方式配置時,甚至是兩個較小的 鑽石顆粒相互㈣且整體堆疊高纟等於-由較大鑽石顆粒 所’’且成的單層結構的南度時,該具有堆疊式鑽石顆粒的單 層結構仍視為單層而非複數層。該單層結構由一金屬塊體 所包覆。除了單層結構中的鑽石顆粒之外,該金屬塊體可 大致上不包含鑽石顆粒。 m 25 201122401 第二圖顯示本發明一實施例,其中該均熱板30接觸 該熱源36。圖中所示的熱源36具有一平坦表面能夠較容 易地與一大致上平坦的均熱板作熱接觸。如圖所示,該均 熱板30包含一由鑽石顆粒32組成的單層結構。該由鑽石 顆粒組成的單層結構被一金屬塊體34所包覆,該金屬塊 體作用為固結鑽石顆粒。 請參照第七圖,為了增加鑽石顆粒32d的填充效率, 鑽石顆粒32d可為立方體型之方晶鑽石,如第七圖所示。 同樣地’一將熱轉自一熱源轉移離開的方法可包含: 將一熱源的熱能吸取到一均熱板之中,其中該熱源以及均 熱板相互熱接觸。更詳細而言,熱能可被吸取到一均熱板 的鑽石層之中,且接著被傳導到一金屬塊體中。此外,可 將熱沉附加到一熱沉或是熱管上。此附加程序可供熱能由 該均熱板(例如金屬塊體的部分)轉移到該熱沉或是熱管 上。 可使用填充技術來增進填充效率以及由鑽石顆粒組成 的早層結構的熱傳輸特性。此技術一般可包含機械配置以 及/或疋擾動(Agitation,例如震動)。如以下範例所示, 可透過-黏性層《是黏著層5戈薄膜黏取一層鑽石顆粒而形 成一具有自由鑽石顆粒的塊體,藉此形成一由鑽石顆粒組 成的早層結構》隨後可自該塊體移除黏性層以完成一由鑽 石顆粒組成的單層結構。 該由鑽石顆粒組成的單層結構被一金屬塊體所包覆。 此包覆程序可包含將-填隙材料(丨nte「smja| Mateh叫設置 在至少一部分鑽石顆粒之間。該填隙材料可被導入其他製 26 201122401 程之甲,熔滲於由鑽石顆粒組成的層結構之中,並且接著 進行電沉積。可透過電沉積程序在水溶液之中將填隙材料 (例如銀、銅以及鎳)導入鑽石顆粒層之中。在此程序之 中大致上不在沉積金屬與鑽石之間產生任何化學鍵、纟士。‘S.I 24 201122401 Due to previous use, size, materials, cost, and other considerations, it is possible to provide beneficial diamond-like carbon on the metal block. A diamond-like bear can be physically and/or chemically attached to a single layer structure to one or more sides or surfaces of the metal block. Compared to the surface of the (four) block, the diamond-like carbon can more efficiently disperse the heat from the soaking plate into the air. n The use of at least a carbon layer can be particularly beneficial to the structure of the heat sink. In a tenth embodiment, the single layer structure consisting of diamond particles can be located on the metal block closer to the heat source, and a type of drilled carbon layer can be located on the metal block relative to the heat source. In this configuration, thermal energy can flow from the heat source through the diamond particles (possibly through the diamond particles: first through a specific amount of metal blocks), through a portion of the metal block and then escape from the diamond-like carbon layer In the surrounding environment, for example, escape into the air. While the use of diamond-like carbon may provide additional benefits to structures that do not have a heat 2, the diamond-like carbon layer can still be used in embodiments with heat sinks. The diamond-like carbon layer may also be disposed on the metal (four) and between the heat source and the single layer structure composed of the diamond particles. In accordance with the present invention, a method of making a soaked plate can include arranging a plurality of diamond particles into a single layer structure having a thickness of a single diamond particle. This single layer structure has a thickness of one diamond particle. In the single-layer structure, when the diamond particles are stacked in a stacking manner, even two smaller diamond particles are mutually mutually (four) and the overall stack height is equal to - the south of the single-layer structure formed by the larger diamond particles In this case, the single layer structure with stacked diamond particles is still considered a single layer rather than a plurality of layers. The single layer structure is covered by a metal block. In addition to the diamond particles in the single layer structure, the metal block may substantially contain no diamond particles. m 25 201122401 The second figure shows an embodiment of the invention in which the heat equalizing plate 30 contacts the heat source 36. The heat source 36 shown in the Figure has a flat surface that is relatively easily in thermal contact with a substantially flat heat spreader. As shown, the heat equalizing plate 30 comprises a single layer structure comprised of diamond particles 32. The single layer structure consisting of diamond particles is covered by a metal block 34 which acts to consolidate the diamond particles. Referring to the seventh figure, in order to increase the filling efficiency of the diamond particles 32d, the diamond particles 32d may be cubic cube-shaped diamonds, as shown in the seventh figure. Similarly, a method of transferring heat away from a heat source can include: drawing thermal energy from a heat source into a soaking plate, wherein the heat source and the heat equalizing plate are in thermal contact with each other. In more detail, thermal energy can be drawn into the diamond layer of a soaking plate and then conducted into a metal block. In addition, the heat sink can be attached to a heat sink or heat pipe. This additional procedure allows thermal energy to be transferred from the soaking plate (e.g., a portion of the metal block) to the heat sink or heat pipe. Filling techniques can be used to improve the packing efficiency and the heat transfer characteristics of the early layer structure composed of diamond particles. This technique can generally involve mechanical configuration and/or agitation (e.g., vibration). As shown in the following example, the permeable-adhesive layer "is a layer of diamond particles adhered to the adhesive film to form a block of free diamond particles, thereby forming an early layer structure composed of diamond particles". The viscous layer is removed from the block to complete a single layer structure consisting of diamond particles. The single layer structure composed of diamond particles is covered by a metal block. The coating procedure may comprise a sinter-fill material (丨nte "smja| Mateh" is placed between at least a portion of the diamond particles. The interstitial material can be introduced into other layers of the process, infiltrated into layers consisting of diamond particles. In the structure, and then electrodeposition. Interstitial materials (such as silver, copper, and nickel) can be introduced into the diamond particle layer in an aqueous solution by an electrodeposition process. In this process, the deposited metal and diamond are not substantially deposited. Generate any chemical bonds between the gentlemen.'
' ° 月1J 述所提供的金屬通常置放於一酸性溶液之令,且可為本發 明所屬技術領域具有通常知識者使用。亦可加入許多元素 以減少溶液的表面張力,或者增加溶液對於孔洞的滲透 性。 ” 關於熔滲,應當考量該製程會如何不當影響鑽石顆 粒,本發明的配置使得鑽石相較其他均熱板的結構更為堅 固。由於單一層結構的配置,在於製程條件中熔滲鑽石顆 粒僅需要少許時間,因此減少了鑽石顆粒暴露於具有潛在 傷害性的條件的時間。此外,使用整體有較高品質的鑽石 顆粒意味著鑽石顆粒較不會被此侵略性的製程所損害,也 因此更是比較不會發生逆相變。另一考量是必須小心選用 填隙材料以避免熔滲溫度或是燒結溫度過高而損壞鑽石。 因此,在本發明一方面,該填隙材料可為一能夠在低於大 約攝氏1⑽度以下溶融或是燒結的合金。當高於此溫度 寺應縮短此製程時間以避免過度損毁鑽石顆粒。鑽石顆 :内的金屬内含物會自其内部產生裂痕,而造成鑽石顆粒 貝鲛。人造鑽石大多會包含-金屬催化劑(例如鐵、鈷、 錦或是其合金)以作為内含物。這些金屬内含物具有高熱 /脹係數’且其可讓鑽石顆粒逆相變回石墨碳。因此,在 高溫下,鑽叾τ因金屬内含物的不同熱廢^帛而產生裂 縫’或者由鑽石逆相變回碳。然而’可透過在高壓下在鑽 27 201122401 石的穩定區域内對鑽石進行熔滲來大致上消除逆相變的問 題,例如在大於大約50億帕(5GPa)的高壓下。 為了將鑽石的品質下降程度減到最小,寧可在低於攝 氏1100度下或是在高壓下鑽石的穩定區域内進行溶渗。 上述鐵、錦以及姑的某些合金以及銅、鋁以及銀的大多數 合金能夠在此範圍内熔融。在一填隙材料的熔滲期間,熱 金屬不可避免的會引起鑽石品質的小許下降。然而,可透 過減少熔滲的時間以及慎選填隙材料等方式將品質下降的 問題最小化》 雖然在高溫高壓條件下鑽石可能會損毀或是逆相變回 碳,在一實施例之中,可在一少於大約攝氏1000度的溫 度下進行熔滲《同樣地,可在真空或是還原(Reducing)條 件下進行熔滲。使用一真空氣氛或是還原氣氛,例如氫氣, 亦可避免炫融金屬材料的氧化。氧化亦會減少一金屬材料 的熱傳導率,i因此氧化是不利均熱板的。在一方面,該 由鑽石顆粒組成的單層結構可形成在一金屬基材或是薄膜 上,且接著可以一金屬材料熔滲入鑽石顆粒中。此熔滲可 結合該金屬基材或是薄膜,目而形成一固態的均熱板β該 金屬基材以及金屬炼渗材料可為相同或是相異材料。前述 例子如第三圖所示。兩分離的金屬材料層38,4Q包覆該由 鑽石顆粒32a所組成的單層結構。該均熱板3Qa熱接觸於 —熱源36a°特別地’該金屬材料層40與熱源、36a相互 接觸。如第三圖所*的實_,鑽石顆粒大致上被其中-金屬材料給包覆。或者,鑽石顆粒可被多於一個以上的金 屬材料所包覆。此外’第三圖顯示了如前所述之具有不同 28 201122401 尺寸的鑽石㈣。該單層、結構是具有一個鑽石顆粒的厚 度,此結構不同於以多個鑽石顆粒堆疊出整個厚度的鑽石 複合層。 第四圖顯示-均熱板30b,其具有一縮短的鑽石顆粒 層32b。該鑽石顆粒層32b並未完全延伸到整個均熱板的 長度。反之,其尺寸上限制在近似熱源36b的尺寸。由於 均熱板中的鑽石顆《本愈來愈昂#,前述結構是非常經 濟的做法。此實施例包含金屬材料42,其令均熱板延展為 塊狀。該金屬材料42可與包覆錯石顆粒層的金屬材料馳 相同,亦可完全不同。 在-方面’可製造一均熱板’其包含一由鑽石顆粒組 成的早層結構,其中該由鑽石顆粒組成的單層結構是沿著 均熱板的-表面。該鑽石顆粒可固結,且該均熱板包含一 :屬材料,因此創造了均熱板由一側(鑽石顆粒層)到另 了相對侧(金屬材料)賴傳導率差異。在鑽石表面或是 尖端暴露的表面處可接觸一熱源。此外,可在該 粒組成的單層結構上附加一聚晶鑽石層。 μ · 製造2内容已呈現本發明均熱板、熱管理系统、均熱板 較本發明Γ及均熱板使用方法°傳統使用鑽石的均熱板相 鑽石物:為昂貴且效率較差。以化學氣相沉積法製造的 含鑽石:鑽石層非常耗時以及耗費成本。或者,有些 以複二 是採用鑽石顆粒。然❿,這些鑽石顆粒是 物二ϋ方式呈現’使用大量的鑽石顆粒分布在該複合 h Μ設計是以增加的體積容量來增加熱傳導率。 田…、吏用大量的鑽石時,是採用較低等級的鑽石來降低 S1 29 201122401 整體成本。此外,在一實施例之中,該鑽石顆粒層是策略 性地運用最需要它的部位,即是熱源上最熱點的位置處。 使用限量策略性地放置的較高品質的鑽石最終可大大地減 少均熱板的成本並且讓均熱板能夠具有相同或是更高的熱 能轉移能力。 此外’本文中所提到的均熱板可相較先前設計具有更 高的填充效率且更容易製造。直觀地,以單層結構方式填 充鑽石顆粒相較以三維形式配置鑽石顆粒來的更為容易。 要將鑽石顆粒填充到達三維體積的三分之二是極為困難的 事。反之,該單層結構設計可採用不同的顆粒方式填充甚 至採用不同的顆粒方向,藉此可增加均熱板的熱傳導率。 該單鑽石層的固結與製程需要較少的熔滲時間,且可在低 溫以及/或是低壓下執行有效率的熔滲,因此相較傳統鑽 石複合均熱板而言較不會在製程中損壞鑽石顆粒。由於不 會在製程中損壞或是損傷鑽石顆粒,因此不會降低鑽石顆 粒的熱傳導率,對傳統製程而言鑽石顆粒熱傳導率下降是 常有的事。 f Si 本設計的另一優點是可令均熱板與熱源之間有較佳的 熱連接性。在以鑽石層更靠近熱源的實施例之中,均熱板 的熱膨脹係數經特別設計而適用連接熱源以及熱沉。其熱 膨脹係數在有鐵石的-側較低,即是較靠近熱源的一側的 熱膨脹係數較⑯,反《,在靠近熱沉或是熱管4的熱膨服 係數較高。此為-可供長時間連接的理想結構。當熱膨服 率不相符時,由於熱的變化所導致的反覆膨脹與收縮會使 連接處破裂與損毀。任何介於熱源與均熱板之間的破裂或 30 201122401 是孔洞均會大大地減少系統的效率。在均熱板與一熱沉或 是熱管相連接的—側亦是適用同樣的原理。一般鑽石複合 物,在其二連接處是具有一均勻一致或是至少相似的执膨 脹係數。X中所呈現的均熱板,有效率地橋接熱膨服係數 的梯度,並且能提供耐用與耐久的連接結構。 ★下列範例呈現本發明各種不同的均熱板製造方法。這 些範例僅供說明用,而非用於限制本發明。 範例 範例一均熱板製造方法 在丙酮之中透過超音波震動對通過3〇/4〇美國網目尺 寸(Element Six SDB1100)的鑽石顆粒進行徹底清潔。以 一 100微米厚的還原銅薄膜設置在一鋼製托盤上。以_ μ 微米厚的雙面黏著層附著到該銅薄膜上。將鑽石顆粒散佈 到黏著層頂面,且以超音波震動方式擾動鑽石顆粒以增加 填充效率。翻轉該托盤以去除未黏附於該黏著層的鑽石顆 粒。一旦去除鬆弛的鑽石顆粒,該托盤則再次翻轉到原先 狀態。將一 2毫米厚的純鋁板放置到鑽石顆粒的頂端。前 述配置如第五a圖所示,其中具有黏著層46的銅層包括 一由鑽石顆粒48所組成的單層結構,該單層結構被一鋁 板50所覆蓋。將該托盤放置到一真空熔爐之中加熱達到 攝氏680度。鋁材料熔滲入鑽石顆粒間的間隙之中。對嗲 托盤進行冷卻。冷卻後,鋁固結鑽石顆粒,且堅固地結八 該銅薄膜。均熱板的成品如第五b圖,其與第三圖相似。 範例二複數均熱板製造方法 本範例接續範例一的製程’惟在導入鑽石顆粒之前, 31 201122401 先將複數銅片放到黏著層上。可調整銅片配置狀態產生2〇 平方毫米暴露於外的黏著層。 一旦拖盤進行冷卻,則將鋁的頂面磨成光滑狀,將該 板材沿著該作為分隔用的銅片的中線進行線切割(wj=The metal provided by '°月1J is usually placed in an acidic solution and can be used by those of ordinary skill in the art to which the present invention pertains. Many elements can also be added to reduce the surface tension of the solution or to increase the permeability of the solution to the pores. With regard to infiltration, it should be considered how the process would improperly affect the diamond particles. The configuration of the present invention makes the diamond more robust than the structure of other soaking plates. Due to the configuration of the single layer structure, the infiltration of diamond particles only in the process conditions It takes a little time, thus reducing the time it takes for the diamond particles to be exposed to potentially harmful conditions. In addition, the use of higher quality diamond particles as a whole means that the diamond particles are less damaged by this aggressive process and therefore more It is relatively less that the reverse phase change will occur. Another consideration is that the interstitial material must be carefully selected to avoid the infiltration temperature or the sintering temperature being too high to damage the diamond. Therefore, in one aspect of the invention, the interstitial material can be capable of An alloy that melts or sinters below about 1 (10) degrees Celsius. When it is above this temperature, the process should be shortened to avoid excessive damage to the diamond particles. The diamond metal: the internal metal content will crack from the inside. Causes diamond granules. Most synthetic diamonds contain -metal catalysts (such as iron, cobalt, bromine or alloys). Inclusions. These metal inclusions have a high heat/expansion coefficient' and allow the diamond particles to reverse phase back to graphite carbon. Therefore, at high temperatures, the drill enthalpy is produced by different thermal wastes of the metal inclusions. The crack 'either reverses from the diamond back to carbon. However, the problem of reverse phase transformation can be substantially eliminated by infiltrating the diamond in the stable region of the drill 27 201122401 stone under high pressure, for example, at more than about 5 billion kPa ( 5GPa) Under high pressure. In order to minimize the degradation of diamond quality, it is preferred to infiltrate at a temperature below 1100 ° C or in a stable area of diamond under high pressure. Some of the above-mentioned iron, brocade and some alloys Most alloys of copper, aluminum and silver can melt in this range. During the infiltration of the interstitial material, the hot metal inevitably causes a small decrease in the quality of the diamond. However, it can reduce the infiltration time and Minimizing the problem of quality degradation by carefully selecting the interstitial material, etc. Although the diamond may be damaged or reversed back to carbon under high temperature and high pressure conditions, in one embodiment, it may be less than about Infiltration is carried out at a temperature of 1000 ° C. Similarly, infiltration can be carried out under vacuum or reducing conditions. The oxidation of the molten metal material can also be avoided by using a vacuum atmosphere or a reducing atmosphere such as hydrogen. Oxidation also reduces the thermal conductivity of a metal material, so oxidation is a disadvantageous soaking plate. In one aspect, the single layer structure composed of diamond particles can be formed on a metal substrate or film, and then one can The metal material is infiltrated into the diamond particles. The infiltration can be combined with the metal substrate or the film to form a solid soaking plate β. The metal substrate and the metal infiltrating material can be the same or different materials. An example is shown in the third figure. Two separate layers of metal material 38, 4Q enclose the single layer structure consisting of diamond particles 32a. The heat equalizing plate 3Qa is in thermal contact with the heat source 36a°, in particular 'the metal material layer 40 is in contact with the heat source and 36a. As shown in the third figure, the diamond particles are substantially covered by the -metal material. Alternatively, the diamond particles may be coated with more than one metal material. In addition, the third figure shows diamonds (four) with different sizes of 2011 201141 as described above. The single layer, structure has a thickness of one diamond particle that is different from a diamond composite layer in which a plurality of diamond particles are stacked to the entire thickness. The fourth figure shows a soaking plate 30b having a shortened diamond particle layer 32b. The diamond particle layer 32b does not extend completely to the length of the entire heat equalizing plate. On the contrary, it is limited in size to approximate the size of the heat source 36b. Due to the diamonds in the soaking plate, the above structure is very economical. This embodiment includes a metallic material 42 that extends the soaking plate into a block shape. The metal material 42 may be the same as or entirely different from the metal material coated with the layer of the fine stone particles. In the aspect of the invention, a soaking plate can be fabricated which comprises an early layer structure consisting of diamond particles, wherein the single layer structure consisting of diamond particles is along the surface of the soaking plate. The diamond particles can be consolidated, and the soaking plate comprises a genus material, thus creating a difference in conductivity of the soaking plate from one side (diamond particle layer) to the other opposite side (metal material). A heat source can be contacted at the surface of the diamond or at the exposed surface of the tip. Further, a polycrystalline diamond layer may be attached to the single layer structure composed of the particles. μ · Manufacturing 2 content has presented the soaking plate, thermal management system, and soaking plate of the present invention. Compared with the method of the present invention and the use of the soaking plate, the soaking plate of the conventionally used diamonds is expensive and inefficient. Diamond-containing: Diamond layer made by chemical vapor deposition is time consuming and costly. Or, some of them use diamond particles. Then, these diamond particles are presented in a two-dimensional manner. The use of a large number of diamond particles distributed in the composite h Μ design is to increase the thermal conductivity by increasing the volumetric capacity. Tian... When using a large number of diamonds, lower grade diamonds are used to reduce the overall cost of S1 29 201122401. Moreover, in one embodiment, the diamond particle layer is strategically utilized where it is most needed, i.e., at the hottest spot on the heat source. The use of a limited number of strategically placed higher quality diamonds ultimately reduces the cost of the soaking plate and allows the soaking plate to have the same or higher thermal transfer capability. Furthermore, the soaking plates mentioned herein can have higher filling efficiencies and are easier to manufacture than previous designs. Intuitively, it is easier to fill diamond particles in a single layer structure than to arrange diamond particles in three dimensions. It is extremely difficult to fill the diamond particles to two-thirds of the three-dimensional volume. Conversely, the single-layer structure can be filled with different particle sizes or even with different particle directions, thereby increasing the thermal conductivity of the soaking plate. The consolidation and processing of the single diamond layer requires less infiltration time and can perform efficient infiltration at low temperatures and/or low pressures, so that it is less in process than conventional diamond composite heat spreaders. Damaged diamond particles. Since the diamond particles are not damaged or damaged during the process, the thermal conductivity of the diamond particles is not lowered, and it is not uncommon for the conventional process to reduce the thermal conductivity of the diamond particles. Another advantage of this design is that it provides better thermal connectivity between the soaking plate and the heat source. In the embodiment in which the diamond layer is closer to the heat source, the coefficient of thermal expansion of the soaking plate is specifically designed to be suitable for connecting the heat source and the heat sink. The coefficient of thermal expansion is lower on the side with the iron, that is, the thermal expansion coefficient of the side closer to the heat source is 16. In contrast, the coefficient of thermal expansion near the heat sink or the heat pipe 4 is higher. This is the ideal structure for long-term connections. When the thermal expansion rate does not match, the repeated expansion and contraction due to the change in heat will cause the joint to rupture and damage. Any crack between the heat source and the soaking plate or 30 201122401 is a hole that will greatly reduce the efficiency of the system. The same principle applies to the side where the soaking plate is connected to a heat sink or heat pipe. A typical diamond composite has a uniform or at least similar expansion coefficient at its two junctions. The soaking plate presented in X effectively bridges the gradient of the coefficient of thermal expansion and provides a durable and durable joint structure. ★ The following examples present various different soaking plate manufacturing methods of the present invention. These examples are for illustrative purposes only and are not intended to limit the invention. Example Example 1 Homogenization Plate Manufacturing Method Diamond particles passing through 3〇/4〇 US mesh size (Element Six SDB1100) were thoroughly cleaned in acetone by ultrasonic vibration. A 100 micron thick reduced copper film was placed on a steel tray. A double-sided adhesive layer of _ μ μm thickness was attached to the copper film. The diamond particles are spread to the top of the adhesive layer and the diamond particles are disturbed by ultrasonic vibration to increase the filling efficiency. The tray is turned over to remove diamond particles that are not adhered to the adhesive layer. Once the loose diamond particles are removed, the tray is flipped again to its original state. Place a 2 mm thick pure aluminum plate on top of the diamond particles. The foregoing configuration is as shown in Fig. 5a, in which the copper layer having the adhesive layer 46 includes a single layer structure composed of diamond particles 48 covered by an aluminum plate 50. The tray was placed in a vacuum furnace and heated to 680 degrees Celsius. The aluminum material penetrates into the gap between the diamond particles. Cool the tray. After cooling, the aluminum solidifies the diamond particles and firmly bonds the copper film. The finished product of the soaking plate is shown in Figure 5b, which is similar to the third figure. Example 2 Manufacturing method of complex soaking plate This example is followed by the process of Example 1. Before the introduction of diamond particles, 31 201122401 first put a plurality of copper pieces on the adhesive layer. The adjustable copper configuration results in an exposed layer of 2 mm square millimeters exposed. Once the tray is cooled, the top surface of the aluminum is ground to a smooth shape, and the sheet is cut along the center line of the copper sheet for separation (wj=
Electrical Discharge Machining,Wire-EDM )〇 透過前述 切割形成複數大約40毫米的均熱板。每塊均熱板大概包 含1600個晶體(大概4克拉(Carats),成本在美金80分), 各晶體平坦穩固地嵌入於銅薄膜上。第六圖顯示本範例— 具有複數均熱板56的示範性板體52,該板體尚未進行切 割。銅片54 (被鋁所覆蓋)對各個均熱板56進行區隔, 各均熱板56具有單一鑽石層。 此均熱板可直接焊接到一電腦晶片以及/或是焊接到 —熱沉或一熱管。該鑽石層的熱傳導率是大約1〇〇〇瓦/ 米•度(W/mK) ’大約高於銅熱傳導率的2.5倍以上,如此 高熱傳導率可有效地即時移除電腦晶片上的熱點。該熱由 鑽石顆粒的另一側傳遞到鋁塊體中,且進一步傳輸到所連 接的熱沉或是熱管上。 範例三 含矽的均熱板 本範例步驟幾乎如範例一所述,惟在鋁中設置有炫融 的矽,且在攝氏1450度下進行熔滲。其最終產品相對導 電性的銅而言是一電絕緣體。此外’其複合物的熱膨脹率 小於範例一的熱膨脹率。 若是在熔滲物與銅薄膜之間發生過度的擴散現象,貝,丨 會降低熱傳導率。此外,該銅薄膜會因此溶解。在此例子 之中,可在該銅薄膜上塗佈一層更耐火的金屬而成為一化 32 201122401 學阻障物。舉例而言’可在該銅薄膜上濺錢一層鎢。鶴的 熱傳導率不低,且非常的薄(例如數奈米厚),因此可忽 略其熱阻力。 ' 範例四含矽的均熱板 在具有邊框的鋁板上以震動方式將通過3〇/4〇美國網 目尺寸(Element Six SDB11 〇〇)的鑽石顆粒填充為一整齊 的単層結構。在填充好的鑽石層頂面放置有一矽晶圓 (Wafer)。將該托盤放置到一真空爐且加熱到攝氏度 達20分鐘。矽熔融且填滿鑽石顆粒之間的孔洞。該鋁板 進行冷卻。對冷卻的鋁板表面進行研磨以使其平坦,因而 能使其更容易附加到一熱源上。 範例五 含有石夕鋁合金的均熱—器 本範例步驟大致上如範例四所述,惟矽晶圓替換為矽 鋁合金。此外,熔滲在攝氏1 〇〇〇度下進行。 應了解的是’上述内容僅供說明本發明原理的應用。 在不違背本發明範疇及精神的前提下,本發明所屬技術領 域具有通常知識者可做出多種修改及不同的配置,且依附 在後的申請專利範圍則意圖涵蓋這些修改與不同的配置。 因此’當本發明中目前被視為是最實用且較佳之實施例的 細節已被揭露如上時,對於本發明所屬技術領域具有通常 知識者而言’可依據本文中所提出的概念與原則來作出而 不党限於多種包含了尺寸、材料、外形、形態、功能、操 作方法、組裝及使用上的改變。 【圖式簡單說明】 第一 A圖是本發明一均熱板實施例的示竜圖,其中該 〜 、 [Ώ 33 201122401 ,均熱板熱性連接-熱源以及-熱沉。 第一 Β 阁 gElectrical Discharge Machining, Wire-EDM ) 形成 Through the aforementioned cutting, a plurality of soaking plates of approximately 40 mm are formed. Each piece of hot plate contains approximately 1600 crystals (approximately 4 carats, costing 80 cents), and each crystal is flat and firmly embedded in the copper film. The sixth figure shows the present example - an exemplary plate 52 having a plurality of heat equalizing plates 56 that have not been cut. A copper sheet 54 (covered by aluminum) separates each of the heat equalizing plates 56, each of which has a single diamond layer. The heat spreader can be soldered directly to a computer chip and/or soldered to a heat sink or a heat pipe. The diamond layer has a thermal conductivity of about 1 watt/m•degree (W/mK), which is about 2.5 times higher than the thermal conductivity of copper. Such high thermal conductivity effectively removes hot spots on the computer chip. This heat is transferred from the other side of the diamond particles to the aluminum block and further to the connected heat sink or heat pipe. Example 3 Helium-containing soaking plate This example step is almost as described in the first example, except that a bright enthalpy is placed in the aluminum and infiltrated at 1450 degrees Celsius. Its final product is an electrical insulator relative to the conductive copper. Further, the thermal expansion coefficient of the composite is smaller than that of the first example. If excessive diffusion occurs between the infiltrated material and the copper film, the beryllium and tantalum will lower the thermal conductivity. In addition, the copper film is thus dissolved. In this example, a layer of more refractory metal can be applied to the copper film to become a barrier. For example, a layer of tungsten can be splashed on the copper film. The heat conductivity of the crane is not low and it is very thin (for example, a few nanometers thick), so its thermal resistance can be ignored. 'Example Four 矽-containing soaking plate The diamond particles passing through the 3〇/4〇 US mesh size (Element Six SDB11 〇〇) are vibrated into a neat layer structure on the aluminum plate with the frame. A wafer (Wafer) is placed on top of the filled diamond layer. The tray was placed in a vacuum oven and heated to Celsius for 20 minutes. The crucible melts and fills the pores between the diamond particles. The aluminum plate is cooled. The surface of the cooled aluminum plate is ground to flatten it so that it can be more easily attached to a heat source. Example 5 Homogenizer with Shixia Aluminum Alloy This example procedure is roughly as described in Example 4, except that the tantalum wafer is replaced by tantalum aluminum alloy. In addition, the infiltration is carried out at 1 degree Celsius. It should be understood that the foregoing is merely illustrative of the application of the principles of the invention. Various modifications and different configurations are possible in the technical field to which the present invention pertains without departing from the scope and spirit of the invention, and the appended claims are intended to cover such modifications and various configurations. Therefore, when the details of the presently considered to be the most practical and preferred embodiments have been disclosed above, it will be apparent to those of ordinary skill in the art to which the present invention pertains. Making a non-party limited to a variety of changes in size, material, shape, form, function, method of operation, assembly and use. BRIEF DESCRIPTION OF THE DRAWINGS The first A is a schematic view of an embodiment of a soaking plate of the present invention, wherein the ~, [Ώ 33 201122401, the heat transfer plate of the soaking plate - the heat source and the heat sink. First 阁 阁 g
圖K本發明另一均熱板實施例的示意圖,复 該均熱板熱性連接-熱源以及H 第 C圖是本發明另一均熱板實施例的示意 該均熱板熱性連接一熱源以及一熱沉。 、中 第圖是本發明另一均熱板實施例的側面剖視圖 中該均熱板相._。 J視圖其 A第一圖疋本發明另一均熱板實施例的側面剖視圖,其 中该均熱板包含兩種不同的金屬材料,且相鄰一熱源。、 A第四圖疋本發明另一均熱板實施例的侧面剖視圖,苴 中該均熱板包含一具有特定寬度的單層鑽石層。 ’、 第五A圖是本發明均熱板製造方法的一示範性初始步 驟的側面剖視圖,其對應範例一。 產α W i a圖疋本發明均熱板製造方法的—示範性均熱板 產°°的側面剖視圖,其對應範例一。 第六圖是本發明均熱板製造方法的一示範性初始步驟 的俯視立體外觀圖,其對應範例二。 第七圖是本發明另一均熱板實施例的側面剖視圖,立 Γ均熱板相鄰—熱源,其中鑽石顆粒為立方體型之方晶 鑽石。 曰目 應了解的是,上述圖式僅作為示意用途以供他人進一 :了解本發明。此外’上述圖式並非依照實際尺度而綠製, 接Ϊ其尺寸、顆粒大小以及其他方面’通常誇大繪製來清 “顯本發明。因此,可針對上述圖式所顯示的尺寸 他方面進行修改來製造本發明的均埶板。 、、 [S.] 34 201122401 【主要元件符號說明】 1 2均熱板 1 4中央處理器 16熱沉 1 8散熱鰭片 22熱管 26硬焊處 30,30a,30b 均熱板 32,32a,32b,32d 鑽石顆粒 34,34b金屬塊體 36,36a,36b 熱源 40金屬材料層 42金屬材料 46黏著層 48鑽石顆粒 5 0鋁板 35Figure K is a schematic view of another embodiment of a soaking plate of the present invention, the heat-sinking plate heat-heat source and the H-C diagram are schematic representations of another heat-sinking plate embodiment of the present invention, the heat-sinking plate is thermally coupled to a heat source and Heat sink. The middle figure is a side cross-sectional view of another embodiment of the soaking plate of the present invention. J-View A First side view of another embodiment of a soaking plate of the present invention, wherein the soaking plate comprises two different metallic materials and is adjacent to a heat source. A is a side cross-sectional view of another embodiment of a soaking plate of the present invention, wherein the soaking plate comprises a single layer of diamond having a specific width. 'A' is a side cross-sectional view of an exemplary initial step of the method for producing a soaked plate of the present invention, which corresponds to Example 1. A side cross-sectional view of an exemplary soaking plate produced by the method for producing a soaked plate of the present invention, which corresponds to the first example. Fig. 6 is a top perspective view showing an exemplary initial step of the method for manufacturing a soaked plate of the present invention, which corresponds to Example 2. Figure 7 is a side cross-sectional view showing another embodiment of the soaking plate of the present invention, the heat-generating plate being adjacent to the heat source, wherein the diamond particles are cube-shaped cubic diamonds. OBJECTS It should be understood that the above drawings are for illustrative purposes only for the purpose of further understanding of the invention. In addition, the above-mentioned schema is not green in accordance with the actual scale, and its size, particle size and other aspects are often exaggerated to clearly show the invention. Therefore, it is possible to modify the dimensions shown in the above schema. Manufacturing the uniform plate of the present invention., [S.] 34 201122401 [Description of main components] 1 2 heat spreader 1 4 central processor 16 heat sink 1 8 heat sink fin 22 heat pipe 26 brazed portion 30, 30a, 30b heat spreader 32, 32a, 32b, 32d diamond particles 34, 34b metal block 36, 36a, 36b heat source 40 metal material layer 42 metal material 46 adhesive layer 48 diamond particles 5 0 aluminum plate 35
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98143576A TWI394928B (en) | 2009-12-18 | 2009-12-18 | A hot plate with single layer diamond particles and its related methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98143576A TWI394928B (en) | 2009-12-18 | 2009-12-18 | A hot plate with single layer diamond particles and its related methods |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201122401A true TW201122401A (en) | 2011-07-01 |
TWI394928B TWI394928B (en) | 2013-05-01 |
Family
ID=45046130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98143576A TWI394928B (en) | 2009-12-18 | 2009-12-18 | A hot plate with single layer diamond particles and its related methods |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI394928B (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4425195A (en) * | 1982-11-10 | 1984-01-10 | Martin Marietta Corporation | Method of fabricating a diamond heat sink |
US5008737A (en) * | 1988-10-11 | 1991-04-16 | Amoco Corporation | Diamond composite heat sink for use with semiconductor devices |
EP0391418B2 (en) * | 1989-04-06 | 1998-09-09 | Sumitomo Electric Industries, Ltd. | A diamond for a dresser |
JP3893681B2 (en) * | 1997-08-19 | 2007-03-14 | 住友電気工業株式会社 | Semiconductor heat sink and manufacturing method thereof |
US20050189647A1 (en) * | 2002-10-11 | 2005-09-01 | Chien-Min Sung | Carbonaceous composite heat spreader and associated methods |
-
2009
- 2009-12-18 TW TW98143576A patent/TWI394928B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TWI394928B (en) | 2013-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7791188B2 (en) | Heat spreader having single layer of diamond particles and associated methods | |
US6984888B2 (en) | Carbonaceous composite heat spreader and associated methods | |
TWI307145B (en) | Carbonaceous heat spreader and associated methods | |
KR20050084845A (en) | Carbonaceous heat spreader and associated methods | |
US20080019098A1 (en) | Diamond composite heat spreader and associated methods | |
EP2213756B1 (en) | Metal-graphite composite material having high thermal conductivity and method for producing the same | |
US8531026B2 (en) | Diamond particle mololayer heat spreaders and associated methods | |
JP2011503872A (en) | Heat transfer composite, related devices and methods | |
KR20080032018A (en) | Heat transfer composite, associated device and method | |
TW200836596A (en) | Methods and devices for cooling printed circuit boards | |
KR20100134780A (en) | Porous structured thermal transfer article | |
TW200933117A (en) | Layered heat spreader and method of making the same | |
Guillemet et al. | An innovative process to fabricate copper/diamond composite films for thermal management applications | |
JP2004010978A (en) | Heat-dissipating material with high thermal conductivity and its manufacturing process | |
Rape et al. | Engineered chemistry of Cu–W composites sintered by field-assisted sintering technology for heat sink applications | |
Baig et al. | Metal matrix composite in heat sink application: Reinforcement, processing, and properties | |
TWI244370B (en) | Bonding structure of heat sink fin and heat spreader | |
CN108368418A (en) | Two-Dimensional Heat Conduction material and application thereof | |
WO2020059605A1 (en) | Semiconductor package | |
JP2005175006A (en) | Heatsink and power module | |
TW201122401A (en) | Heat spreader with single layer of diamond particles and diamond particle and method associated therewith. | |
TW201219131A (en) | comprising multiple stacked and bonded composite bodies each of which is formed by using a metal substrate to enclose a single layer of planar arrangement of diamond particles | |
TWI258333B (en) | Diamond composite heat spreader having thermal conductivity gradients and associated methods | |
CN102130077A (en) | Soaking plate with single layer of diamond particles and correlation method thereof | |
Otiaba et al. | Thermal management materials for electronic control unit: Trends, processing technology and R and D challenges |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |