TWI258333B - Diamond composite heat spreader having thermal conductivity gradients and associated methods - Google Patents

Diamond composite heat spreader having thermal conductivity gradients and associated methods Download PDF

Info

Publication number
TWI258333B
TWI258333B TW93117360A TW93117360A TWI258333B TW I258333 B TWI258333 B TW I258333B TW 93117360 A TW93117360 A TW 93117360A TW 93117360 A TW93117360 A TW 93117360A TW I258333 B TWI258333 B TW I258333B
Authority
TW
Taiwan
Prior art keywords
diamond
heat
particles
heat sink
region
Prior art date
Application number
TW93117360A
Other languages
Chinese (zh)
Other versions
TW200601942A (en
Inventor
Chien-Min Sung
Original Assignee
Chien-Min Sung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chien-Min Sung filed Critical Chien-Min Sung
Priority to TW93117360A priority Critical patent/TWI258333B/en
Publication of TW200601942A publication Critical patent/TW200601942A/en
Application granted granted Critical
Publication of TWI258333B publication Critical patent/TWI258333B/en

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A diamond composite heat spreader having a variable thermal conductivity gradient can improve control of heat transfer based on a specific application. A diamond-containing region of the heat spreader can contain diamond particles such that the diamond concentration and/or the diamond particle size a varied to produce a desired thermal conductivity gradient. Regions proximate to a heat source can have a higher thermal conductivity than regions further away from the heat source. Thin diamond films can also be used in conjunction with the particulate diamond in order to provide a region of maximum thermal conductivity adjacent a heat source. By providing a variable thermal conductivity gradient, more expensive materials such as diamond film and larger diamond particles can be selectively used in regions closer to a heat source, while allowing for cheaper smaller diamond particles and materials to be used farther away from the heat source where thermal conductivity can be lower without sacrificing overall performance.

Description

1258333 玖、發明說明: 【發明所屬之技術領域】 本發明係關於一種含石炭複合物裝置與系統,其可被用 於自熱源傳導或吸收熱能,相對地,本發明含括之領域有 化學、物理、半導體技術與材料科學。 【先前技術】 半導體的產品,包括如中央處理器(CPU,central processing unit)、雷射二極體(Laser Diode )、發光 二極體(Light Emitting Diode )、微波發生源( Microwave Generator)等的晶片,其功率越來越高,而 且其線路也越來越密’曰曰曰片上產生的能量密度現已超過煮 飯的電爐。隨著晶片功率的提高及其内線路的密集廢熱 也越來越多’而且也越來越難以排除,以致晶片的溫度: 漸超過容許的上限而有燒毀之虞。 除廢熱,但更高功率的CPU,其熱點將更大而 ;避η生’若仍以銅片散熱則密集的線路被燒毁已 ,更重要的,廢熱儘快排除,不僅散熱片的熱傳導率要 ^重要:是它的熱擴散率要高,可以儘快的將熱傳導 集之處才不會過熱。“即時排除,晶片的線路 現今的散熱片製作技 片中為-種新的開發方向,=的成伤包含在散, 可達鋼的五倍,是’、在於純鑽石的熱傳導』 疋放熱取快的材料;而鑽石熱擴散率更石 1258333 達銅的十倍以± ’因此以鑽石做為散熱片不僅可降低晶片 的平均溫度,更可在較短的時間内減低晶片的「溫度梯度 」’因而可有效的消除「熱點」來保護晶片使其不致過熱 〇 、、然而,鑽石雖為最好的散熱片,但因其成本高昂,難 以成為普及的在鑽石散熱片的製作技術中,一 般分為化學氣相沉積法(CVD ,chemical vap〇r deposUion)製成之鑽石薄膜、天然鑽石與高壓成型之鑽 石。除了成本高昂之外’化學氣相沈積的多晶鑽石薄膜面 積,大’但其厚度有限(如0.5mm),因此不能有效的將 熱:導出;高壓製的鑽石乃至天然鑽石又嫌太丨不足以 覆蓋大型CPU的整個晶片’所以純鑽石做為散熱片並不切 實際。 【發明内容】 有鑑於上述鑽石散熱片的缺點,本發明人特別精心研 究出-種具有熱傳導梯度之鑽石複合物散熱片及其製法, 以期減輕或解決上述之缺點。 相對應地,本發明提供一種複合式散熱片,其可用於 自-熱源引出並傳導熱能,纟一方面,—種鑽石複合物散 熱片其具有變化性的熱傳導係數,用以改進熱量流過散熱 片的控制,散熱片上的含鐵區域中會包含有鑽石顆粒,藉 由鑽石濃度與(或)鑽石顆粒變化以在散熱片上產生一預^ 的熱傳導性梯度’其中,靠近一熱源的區域會較其它較遠 區域具有較高的熱傳導性。 1258333 、藉由k供一變化性的熱傳梯度,更多如鑽石膜或鑽石 、米刀佈在集的複合材料等昂貴材料,可以被選擇性地使 用在罪近熱源的區域,同時,也允許較便宜的材料和鑽石 顆粒分佈疏鬆的複合材料使用在離熱源較遠、熱傳導性可 乂車乂低的區域,而不須使用遍佈鑽石之散熱片。 ,在本务明中的另一方面,薄鑽石膜同樣可以被用在微 球狀鑽石連接處’以提供連接—熱源的區域具有最大的熱 傳導係數。 ^在本^明中更為詳細地是,該熱傳導性梯度可以在實 、由鑽石和/辰度變化來決定,因此該變化可以為連續 性的或階梯式的。相似祕太 曰 / 祁似地在其它方面,濃度上變化可以 提仏系列具有變化性平均自由熱傳路徑跨過鑽石材料 、品或口亥平均自由熱傳路可強烈地被延著熱傳導性梯度 的鑽石顆粒大小與體積濃度變化所影響。 藉由散熱片上不同區域鐵石濃度不同及鑽石濃度樣 度的改變’符合相對應的熱能溫度梯度的改變,使散熱片 的效能維持,同時能右对μ ,,、 』守此有效即省鑽石的使用成本。 【實施方式】 X + 在本發明說明之前,必須瞭解的是本發明並不受限於 文中所揭示的任何牿宕夕处4致 .. 、 …構、製程步驟或材質,並同時 對等推及任何相關領域之孰朵 #^忒項技藝者所能思及者,下 列之術語僅供說明’並不造成任何限制。 定義 在本發明的描述盥主银φ _ y, 一主張中,下列使用之術語定義如下 1258333 當描述含碳材料的連結時,“顆粒,,和,,砂礫,,可替換性 地使用以說明此類材料的微粒狀型態,此中顆粒或砂礫具 有不同的型狀,包含有圓形、橢圓形、方形、自形的 (eUhedral)等等與特定的筛孔尺寸,如同業界所熟知γ筛 孔係為每單位面基上所具有的孔洞數4@ 了有肖別指定 以外,本發明中的篩孔尺寸皆為美國規格,進一步地,曰= 孔尺寸通常被理解為指定被收集顆粒的平均篩孔尺寸,因 為母一個顆粒在一特定的篩孔尺寸下,合一 曰匁一又寸上小分 散的尺寸變化。 其中,所使用的,,實質上,,或,,實質上地”,主要係提及 一特定目的、操作、結構上的機能性衆 或此陈運成,如同該等目的 或結構已被確實獲得。因此,合础顆4 ^ ^ 3石反顆粒近似於實質上與其 匕顆粒相接,或幾乎近似,或實際 貝丨不上相接。同樣的考量之 下:广炭顆粒實質上為等顆粒操作,或所獲得的結構具有 同等尺寸,甚至於稍微的尺寸變化。 其中,所使用的,,散熱器”,Α、 、, 一係^ 一種可分散或傳導 熱能並自一熱源轉移走熱能的材料 π针放熱斋與熱沉不同的 地方在於熱沉被用於熱能的儲存, , 直到其可以被其它機制 轉移走熱能,反之,一散熱器僅合轤 月& 1罜曰轉移走熱能而不儲存熱 其中’所提及之熱源’’其係# g . 係扎一具有熱能量或大;{ 預期值熱度的裝置或物體,熱源可 5 K j以包含操作產生熱能j 田1J產品的裝置,和由其它熱源傳莫 1寻^過來而變熱至一高於予 1258333 期溫度的物體。 其中,所提及之,,含碳的,,,苴 之任何物質,碳原… 要以碳原子構成 ,,比、&、7 β 、 、夕认化的結構型態或,,同素显形物 皆破涵蓋,包括右羋而认, 』U物 的…構。二的、曲狀的、目面體的、和四面體 、。構%同熟悉該項技藝者所習知的 、〜結構決疋特地定的材質,如石 鑽石和純鑽石,在另一方而4入 鑽奴、無疋形 面,该έ碳材質可以為鑽石。 具中’所使用的,,反麻 換使Us 應金屬,,兩者可以互 ^及—種元素,特別是金屬元素,其可以以化 =應或化學鍵結形成_碳化物連結於碳元 :素:如但不受限於下列之過渡元素:鈦、鉻;包含有: 牛 鍅、·;和非過渡元素和其它材質,如鋁。進一 步地’某些非金屬元素如…黃銅化合金(― aii〇y)中可被包含為一種反應元素。 其中,所使用的“潤濕”係指將熔融狀態的金屬流過 至少一部份含碳顆粒之表面,潤濕通常至少一部份是因為 熔融狀態的金屬的表面張力所造成’ i可藉由添家某些金 屬至炫融的金屬中幫助潤濕,在某方面,、潤濕可以幫助含 碳顆粒與熔融金屬之間界面上化學鍵的形成。 其中,所使用的“化學鍵,,與“化學鍵結,,可以互換 ,係指一分子鍵在原子之間發揮吸引力,力量強至足以在 原子間的界面上產生一個二元固態化合物,本發明中之化 學鍵為典型之鑽石超磨蝕性顆粒的碳化物,或立方硼氮化 物或硼化物。 1258333 其中,所使用的”焊料合金”和,,焊料化合金,,,兩者可 以互換使用,當提及一種合金包含有一有效量之反應元素 ,以允許合金與超磨蝕性顆粒之間化學鍵之形成,該合金 可以為含有反應元素溶質之金屬载體溶媒,該金屬載體溶 媒可以為固態或液態之溶液。此外,“被焊接(brazed) 可以被用來指出焊料與超磨I虫性顆粒之間化學鍵的形成 其中,所使用的“燒結”係指將兩個以上或更多的粒 子結合在一起,以形成一連續性固狀塊體,該燒結的程序 包含有將粒子之間的g隙排除以合併粒子,I结的狀況可 以發生在金屬或者是如鑽石的含碳顆粒’金屬粒子的燒結 可以—材料之組成物不同發生在各種溫度之下,鑽石2子 的燒結一般須要超高壓與碳溶劑的存在以作為助劑,如下 之=細討論,燒結助劑通常使用以在燒結程序中幫助燒結 ’常會有部份殘留在最終產物中。 二其中,所使用的“平均自由熱傳路徑,,係指一路徑可 讓熱在不須要跨過固體-固體界面之情形下轉移。進Γ步 平句自由熱傳路徑一般對應於區域或似鑽碳區域中鑽 石顆粒的平均粒徑,或延著熱傳梯度方向的厚度。因此, :平均自由熱傳路徑㈣於—穿過實f上連續性鑽石的路 2所以該路徑對關於固體—固體界面的熱接觸阻力為不 叉影響的。雖然平均自由熱傳路徑—般對應於連續性鑽石 ’但埋臧在鑽石巾的各種雜f會降低平均自由熱傳路徑, 也因此總體之熱傳係數亦下降。 1258333 其中,所使用的“熱能流出區” 對俏埶值禕鉍人 係‘一在設計上為相 I鑽區域,該熱能流出區並不須要對應一 相對低狐的區域’例如’熱能將會優最埶: 路、,泉傳¥ ’ ^ ’在某些實施例中,平均自由熱傳特合 具有相對性低熱傳係、數,也就是高熱阻。 、 9 ”中所使用的“熱傳導梯度,,係指熱傳係 函數橫跨過散熱器於二产向# φ 置 上 度向里中的改變,該熱傳導梯度可 以為位置的連續性式非、击綠以,土 I㈣ 、—連、,,只性㈡數,因此在熱傳係數上逐 漸交化和逐步改變被包含在熱傳導梯度中。 濃度、總量、顆粒大小、體 積和其匕數子上的資料 可以被顯示在區域砉王目μ π ^ 、 “ Μ現上’可以被理解的是,該區域表現 僅用於方便簡述,因此豆者所 L•此其只貝上包含有不止是區域範 中所明確指出之數俏,n ^ X , 同時也包含個別的數值或包含於區 域之中的副區域,同如每-數值或副區域皆被明確指出一 般0 牛例來π 數值範圍如“約1微米至約5微米(工 應、被解料包含有不只是明確地指出其數值為約 1微米至約5微米’同時包含有個別數值與在此區間内的 田J區或因此,包含在此數值範圍内的個別數值為2、3 、4,而副區域為卜3 ; 2-4、3-5等等。 發明詳述 種具有變化性熱傳導梯度之鑽石複合物散熱片,其 月b在散熱器上促進熱轉移的控制,靠近熱源的最近區域具 有較lx其它退離熱源區域為高的熱傳導係數,一微粒狀鑽 1258333 石區域可以配合不同顆粒大小的鑽石,或者體積濃度以影 響熱傳係數,薄的鑽石膜同樣可以被用在微粒狀鑽石連接 處,以&供連接熱源區域具有最大的熱傳導係數,藉由提 供一種變化性的熱傳導梯度,該散熱器的熱能傳導可以被 特別設計使用時的溫度量變曲線,該微粒狀鑽石區域可以 如同下面所討論而具有廣泛的變化方式。 微粒狀鑽石區域 本發明中包含有裳置、系統、和自熱源轉移熱能的方1258333 发明, DESCRIPTION OF THE INVENTION: FIELD OF THE INVENTION The present invention relates to a carbon-carbon-containing composite device and system that can be used to conduct or absorb thermal energy from a heat source, and in contrast, the field of the invention includes chemistry, Physics, semiconductor technology and materials science. [Prior Art] Semiconductor products, such as a central processing unit (CPU), a laser diode (Lighter Diode), a light emitting diode (Diode Emature Diode), a microwave generating source (Microwave Generator), etc. The wafer, its power is getting higher and higher, and its wiring is getting denser. The energy density generated on the wafer is now higher than that of the electric stove for cooking rice. As the power of the wafer increases and the intensive waste heat of the internal wiring increases, it is becoming more and more difficult to eliminate, so that the temperature of the wafer: gradually exceeds the allowable upper limit and there is a burnout. In addition to waste heat, but the higher power CPU, its hot spot will be bigger; avoid η raw 'If the copper wire is still used to dissipate the dense line, and more importantly, the waste heat is eliminated as soon as possible, not only the heat transfer rate of the heat sink It is important to: It has a high thermal diffusivity, and it can not heat up as soon as possible. "Immediately rule out, the current line of wafers in the current heat sink production technology is a new development direction, = the damage is included in the dispersion, up to five times the steel, is ', in the heat conduction of pure diamonds』 Fast material; while the diamond has a thermal diffusivity of 1258333, which is ten times that of copper. Therefore, using diamond as a heat sink not only reduces the average temperature of the wafer, but also reduces the "temperature gradient" of the wafer in a shorter period of time. 'Therefore, it can effectively eliminate the "hot spots" to protect the wafer from overheating. However, although diamond is the best heat sink, it is difficult to become popular in the production technology of diamond heat sinks because of its high cost. It is divided into diamond film made of chemical vapor deposition (CVD, chemical vap〇r deposUion), natural diamond and high pressure molded diamond. In addition to the high cost, 'chemical vapor deposited polycrystalline diamond film area, large' but its thickness is limited (such as 0.5mm), so it can not effectively heat: export; high-pressure diamonds and even natural diamonds are too inadequate To cover the entire wafer of large CPUs', it is not practical to use pure diamonds as heat sinks. SUMMARY OF THE INVENTION In view of the above disadvantages of the diamond heat sink, the inventors have particularly studied a diamond composite heat sink having a heat transfer gradient and a method for manufacturing the same, with a view to alleviating or solving the above disadvantages. Correspondingly, the present invention provides a composite heat sink which can be used to extract and conduct heat energy from a heat source. On the one hand, a diamond composite heat sink has a variable heat transfer coefficient for improving heat flow through heat dissipation. The control of the sheet, the iron-containing area on the heat sink will contain diamond particles, which will change the diamond concentration and/or the diamond particles to produce a pre-heating gradient on the heat sink, where the area close to a heat source will be Other farther regions have higher thermal conductivity. 1258333, by k for a variability of heat transfer gradient, more expensive materials such as diamond film or diamond, rice knife cloth in the composite material, can be selectively used in the area of sin near heat source, at the same time, Allows less expensive materials and loosely distributed composites of diamond particles to be used in areas that are farther away from heat sources and have lower thermal conductivity, without the need for fins that are spread over diamonds. In another aspect of the present invention, a thin diamond film can also be used at the microsphere-like diamond joint to provide a connection-heat source region with maximum heat transfer coefficient. In more detail, the thermal conductivity gradient can be determined by the diamond and/or the change in the thickness, so the change can be continuous or stepped. Similar to the secret 曰 / 祁 在 其它 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 祁 仏 仏 仏 仏 仏 仏 仏 仏 仏 仏 仏The diamond particle size is affected by changes in volume concentration. The difference in the concentration of the stone and the change in the concentration of the diamond in the different areas on the heat sink 'conforms to the corresponding change in the temperature gradient of the heat energy, so that the efficiency of the heat sink is maintained, and the right side can be right, μ,, 』 The cost. [Embodiment] X + Before the description of the present invention, it must be understood that the present invention is not limited to any of the various aspects disclosed in the text, the structure, the process steps or the materials, and at the same time And in any related field, the following terms are for illustrative purposes only and do not impose any restrictions. Definitions In the description of the present invention, the main silver φ _ y, in one claim, the following terms are used as defined below. 1258333 When describing the bonding of carbonaceous materials, "particles, and, and, grit, can be used interchangeably to illustrate A particulate form of such material, in which the particles or grit have different shapes, including round, elliptical, square, self-shaped (eUhedral), etc. and specific mesh sizes, as is well known in the industry. The sieve hole system has the number of holes per unit base surface 4@. In addition to the designation, the mesh size in the present invention is all in the US specification. Further, the 曰 = hole size is generally understood as the designated collected particles. The average mesh size, because a parent particle is a small size change in size at a particular mesh size, wherein, used, substantially, or, substantially ", mainly refers to a specific purpose, operation, structural function of the public or this Chen Yuncheng, as such purposes or structures have been obtained. Therefore, the base 4 ^ ^ 3 stone antiparticles are approximately similar to their tantalum particles, or nearly similar, or the actual shellfish do not meet. The same considerations: the charcoal particles are essentially equal particle operations, or the resulting structure has the same size, even a slight dimensional change. Among them, the used, the radiator ", Α, ,, a system ^ a material that can disperse or conduct heat and transfer heat from a heat source π pin heat sink is different from the heat sink in that the heat sink is used for heat energy The storage, until it can be transferred by other mechanisms to remove heat, on the other hand, a radiator only merges with the moon & 1罜曰 transfer heat without storing heat where the 'heat source mentioned' is its line #g. A device or object with thermal energy or large; {expected value heat, the heat source can be 5 K j to contain the device that operates to generate heat energy, and the heat source is heated to a high level by other heat sources. An object of temperature 1258333. Among them, any substance containing carbon, carbon, or carbon, is composed of carbon atoms, ratio, &, 7 β, The structural type or, the homomorphic manifests are all covered, including the right 芈, the U structure of the U. The second, the curved, the eye, and the tetrahedron. The material that the craftsman knows, the structure is determined, such as stone drill And pure diamonds, on the other side, 4 into the slave, innocent face, the carbon material can be diamond. With the 'used, the anti-hemp change makes Us should be metal, and the two can be mutually-- Elements, especially metal elements, which can be formed by chemical conversion or chemical bonding. Carbides are bonded to carbon atoms: primes such as, but not limited to, transitional elements: titanium, chromium; containing: calves, And non-transition elements and other materials, such as aluminum. Further 'some non-metallic elements such as ... brassite alloy (― aii〇y) can be included as a reactive element. Among them, the use of "wetting" Means that the molten metal flows through the surface of at least a portion of the carbonaceous particles, and the wetting is usually at least partly due to the surface tension of the molten metal. The metal helps to wet, in some respects, wetting can help the formation of chemical bonds at the interface between the carbon-containing particles and the molten metal. Among them, the "chemical bond," and "chemical bond, can be interchanged, refer to a molecular bond plays between atoms Gravity, strong enough to produce a binary solid compound at the interface between atoms. The chemical bond in the present invention is a typical diamond superabrasive grain carbide, or cubic boron nitride or boride. 1258333 "Solder alloys" and, solder alloys, and the like, may be used interchangeably when referring to an alloy comprising an effective amount of a reactive element to allow formation of a chemical bond between the alloy and the superabrasive particles. It is a metal carrier solvent containing a reaction element solute, which may be a solid or liquid solution. Further, "brazed" may be used to indicate the formation of a chemical bond between the solder and the superabrasive I. By "sintering" is meant the joining of two or more particles together to form a continuous solid block comprising a step of separating the g-gap between the particles to incorporate the particles. The condition of the I junction can occur in a metal or a carbonaceous particle such as a diamond. The sintering of the metal particles can occur differently from the composition of the material. Under various temperatures, the sintering of diamond 2 generally requires the presence of ultra-high pressure and carbon solvent as an auxiliary. As discussed below, sintering aids are usually used to aid sintering during the sintering process. In the product. Second, the "average free heat transfer path" used refers to a path that allows heat to be transferred without crossing the solid-solid interface. The free heat transfer path of the step is generally corresponding to the area or The average particle size of the diamond particles in the carbon-drilled region, or the thickness in the direction of the heat transfer gradient. Therefore, the average free heat transfer path (4) is to pass through the road 2 of the continuous diamond on the real f, so the path is about the solid - The thermal contact resistance of the solid interface is unaffected. Although the average free heat transfer path generally corresponds to the continuous diamond 'but the various impurities in the diamond towel reduce the average free heat transfer path, so the overall heat transfer The coefficient is also reduced. 1258333 Wherein, the "thermal energy outflow zone" used is a phase I designation, which is designed to be a phase I drill zone, and the thermal energy outflow zone does not need to correspond to a relatively low fox zone' 'Thermal energy will be superior: road, spring pass ¥ ' ^ ' In some embodiments, the average free heat transfer has a relative low heat transfer system, number, that is, high thermal resistance. of" Conduction gradient, which refers to the change of the heat transfer function across the radiator in the second direction to the direction of the φφ, which can be the continuity of the position, the green, the soil I (four), Even, (2) numbers, so the gradual cross-linking and gradual change in the heat transfer coefficient are included in the heat transfer gradient. The concentration, total amount, particle size, volume, and data on the number of turns can be displayed in the region.砉王目μ π ^ , " Μ 上 上 ' can be understood that the performance of the region is only for the convenience of brief description, so the bean 所 • 此 此 此 只 只 只 只 只 只 只 只 只 只 只 只 只 只 只 只 只 只 只 只 只 只 只 只 只 只The number is pretty, n ^ X, and also contains individual values or sub-regions contained in the region, as well as every-value or sub-region is clearly indicated. Generally 0 cattle to π value range such as "about 1 micron to about 5 micrometers (the work, the material to be dissolved contains not only the value of about 1 micrometer to about 5 micrometers explicitly stated) but also contains individual values and fields in this range, or therefore, included in this range of values. Individual values are 2, 3, 4, and The area is Bu 3; 2-4, 3-5, etc. The invention details a diamond composite heat sink with a variability heat conduction gradient, the month b of which promotes the control of heat transfer on the heat sink, and the nearest region near the heat source has It has a higher heat transfer coefficient than other areas of the lx heat removal source. A particulate diamond 1258333 stone area can match diamonds of different particle sizes, or volume concentration to affect the heat transfer coefficient. Thin diamond film can also be used in the connection of granular diamonds. Wherein, the heat source region is connected to the heat source region to have the largest heat transfer coefficient, and by providing a variable heat conduction gradient, the heat conduction of the heat sink can be specially designed to use a temperature variation curve, and the particulate diamond region can be like the following There are a wide range of variations discussed. Particulate diamond regions The present invention includes skirts, systems, and self-heating sources that transfer thermal energy.

法’本發明中的散熱器―般包含有—系列的含碳顆粒緊連 排接,該含碳顆粒可以使用間隙材料填補,或用直接燒結 或炼合含碳顆粒以成塊狀。 “ 面,一般製作散熱器的程序包括有開始在一The heat sink of the present invention generally comprises a series of carbonaceous particles which are closely packed, and the carbonaceous particles may be filled with a gap material or may be formed by directly sintering or kneading carbonaceous particles. "Face, the general procedure for making a radiator includes starting with a

當的模具中堆疊—系列的含碳顆粒成為高含碳顆粒容積 遙擇性地,第—系列的含碳顆粒每一粒能具有相同的篩 ^寸n-大的顆粒尺寸分佈同樣可被使用以增加 =!、度:特定的顆粒尺寸可以由18筛目(lnm) 師目〇 . 5 n m )和4 〇 0篩目(3 7 n m )之間 源的= Γ可以選擇性的使用在靠近〗 在離教#便宜的材料和小鑽石顆粒使戶 '、、、源“、熱傳導性可以較低的區域 佈鑽石之散熱片,當顆粒的尺寸為變動性時/ 增的s ^丄t ^文勒性知’一般可以矣 道的疋較大的粒子可以提供一具有 ’近似於固體含碳材料,例如純鑽石。’…特性的路徑 堆叠的顆粒實際上會相接觸,在一堆疊群中每一顆粒 12 1258333 至少會和一個以上的顆初^拉 旳顆粒相接觸,本發明的另一方面, 粒間的接觸可以提供實質上針對於散熱器中的所有含碳顆 拉的-有效路控,自熱源的熱轉移經由基本上顆粒對㈣ 的接觸的幫助而完成,顆粒可以被堆疊以填充大部份的空 間並使顆粒間的空間最小化。 二 在一方面,顆粒堆疊包含蔣 *且匕S將不冋大小的含碳顆粒疊成 一效狀態以完成上述的功能,例如,較大的顆粒先堆最 於一μ具中’該含碳顆粒的堆疊可以固定或壓緊,也就= 說,以-震動器擾動模具。一系列較小的含碳顆粒再加入 以:=大含碳顆粒之間的空隙。取決於較小尺寸 ’車父小顆粒須要被多方面導入以填補大部份的空隙,該較 小顆粒的尺寸可為變化性的,其能增加堆疊效益的业型範 =較大顆粒直徑的1/3至1/2(),較佳的範圍為工 ^至二/10’最好的範圍為1/7。使用有效的堆疊 狀悲’體積堆疊效益將大於"3,必要之下,可操作數 種車^小均勾顆粒的增加來進一步增加堆疊效益。然而㈣ 效益將會隨著填充的難度增加而遞… 的體積容量約為50—80%之^本發明中堆疊顆粒 不同的選擇性實施例中,不同大小的含碳顆粒在早於 導:間隙材料前先行混合再堆疊’這樣可以堆疊效益增加 ,。而’會造成-些較大顆粒之間無法緊密接觸而有孰傳 ==,因此’熱能必須跨過為數較多、會增加散熱 為熱阻的界面邊界。 致 另一個選擇性實施例中,鑽石的體積可以以使用一 13 1258333 :::大:于含碳顆粒來增加,特別是,實質上呈立方體 I粒較易構得’該種立方體之鑽石顆粒可以邊對邊堆疊以 生一層或多層,讓堆疊的鑽石體積含量高達9 〇%。^ “安排f不重要,顆粒可以堆疊成有秩序的排狀、柱狀 」排柱又!日狀。在此項實施例中,鑽石顆粒的排列產生 貫質上顆粒之間較小的空隙而不須要燒結,此外, 顆f的排列方向—致也會讓最後組成的熱性質改良,下列 將4 ’間隙材料與進行如上述之鑽石顆粒堆疊的製程。 :發明之—方面’可以使用間隙材料以將含碳顆粒黏 成塊,然而,由於如前所述顆粒的堆疊早於導入間隙 材枓,所以原本的顆粒對顆粒的狀態維持,且堆疊的效兴 遠超過混合含碳顆粒與間隙材料後熱壓成塊所產生的效: ,在後面的例子中,含碳顆粒之在裝置中的容量會少於丄 /2體積,當間隙材料填補入鑽石顆粒之間,目而將每一 顆粒之間70全分離’在此情形下’熱能必須跨過非常膚的 非含碳材質區域。 、因此,如前所述含碳顆粒鑽石顆粒的堆疊早於導入間 隙材料’設計-含碳材質散熱器的因子在含碳顆粒之間界 面與非含碳顆粒和含碳顆粒間界面的熱傳特性,空隙與單 ’、’屯的物理性接觸於界面之間為一種熱阻礙,也就是熱接觸 阻力。雖然顆粒表面大面積的緊密接觸能增進界面間的熱 2質’其效果仍低於純連續性含碳材質因此,界面之間 貫質的填補比起單純的物理性接觸效果為佳。 相對應地,間隙材料須具有特定性質,其一方面在高 14 1258333 /皿下可以作為碳燒結助劑 N a和含奴顆粒熔合一 面’間隙材料可以和堆疊的 另一方 的鑽石顆粒化學性社人。 間隙材料的選擇必須依據間隙材料本身:口 2件;;ΪΓ低熱傳係數材料的鑽石散熱器會成為1艮 制兀件削減鑽石的熱傳導性,因此—間隙材 熱傳係數、低熱容、與能和堆疊 、要有咼 以俏、隹敍彳自j & 且、錶石顆粒化學性結合, 以促進熱傳導跨過界面。較A面積的鑽石對鑽石 可以增散熱器的熱傳導性。 同k 〃用於結合或燒結含碳顆粒的間隙材料可以不同的 她加,方法包含有滲透、燒結、 弋 ,^ j儿積。滲透為當材料 :、至、熔點以上時將其流入顆粒之間;燒結為有效 相鄰粒子的表面邊㈣化,並和間隙材料燒結成_體:1 此積為將-金屬材質在_溶液中加熱到溶點之上並在— 流下沉積至含碳顆粒的表面。 电 間隙材料的類型包含有液態金屬和澆鑄陶瓷當化學 性結合含碳顆粒以產生散熱器時,間隙材料應具有至少2 種的活性元素,以將碳反應為碳化物,碳化形成物的存在 幫助鑽石的濕潤並使得間隙材料受到毛細作用力吸引至空 隙間。當燒結含碳顆粒鑽石顆粒以產生散熱器時,間隙i 料應作為燒結助劑以增加碳燒結的程度,並不須要礙化形 成物,而是須要碳溶劑。 間隙滲透合金可以作為滲透劑以將含碳顆粒結合成一 塊體’-般來說未有化學性結合的材料,僅將含碳顆粒物 理性固著並會造成熱傳阻礙,但銅材料不在此限制中。 15 1258333 進一步的考量中,當含碳顆粒為鑽石時,間隙材料須 考慮其滲透或燒結溫度低於丄i 〇 〇。。以避免傷害鑽石, 合成的鑽石通常會含有金屬結晶,如鐵、鈷、鎳或其合金 j為内含物,在高溫下,該内含物會高度膨脹並能讓鑽石 變回石墨碳,但其可以用大於5 GPa的超高壓來避免。 一間隙材料可以包含一鑽石或碳的黃銅焊料作為金屬滲 透β丨或I 3碎合金以作為陶兗滲透劑,滲透劑可以“潤座 反以毛細作用力吸引至堆疊的含碳顆粒空隙間,一般 的石反潤座劑包含有銘、錄、鐵、鐘和鉻。當間隙材料中應參 含有碳化形成物以增加顆粒間界面的熱性質時,此種碳化 形成物包含有元素銳(Sc)、镱(γ)、鈦(η)、鍅(Zr)、铪 (Hf)、鈒⑺、铌(Nb)、鉻(Cr)、_ (M〇)、般⑽)、趣 (Ta)、鎢(W)、鍩(Tc)、矽(Si)、蝴⑻、銘⑷)與其合 金。 間隙或潤濕材料可包含有銀、銅、鋁、矽、鐵、始、 短嫣,或其合金或混合物,鑽石或碳的黃銅焊料所包含 得甜化形成物為鈦、錯或鉻。陶兗渗透劑的石夕合金為包含春 鎳、鈦或鉻。例如:鎳-鉻合金如BNi2 ( N卜Cr —β )或 (Ni-Cr-B)為好滲透劑,其它的有效滲透劑包含有( Al-Si) > (Cu-Sn-Ti) . (Ag-Cu-Ti) ^ ( Cu~Mn-Si ) 、(Cu-Μη-Zr)和(Cu-Ni-Zr-Ti)。大多數的含碳間隙 材料包含有活性成份(如鉻、鈦等)並不能形成碳化物以 連結碳,而易容易被氧化。因此,間隙材料的導入須要在 真空或惰性環境下。 16 1258333 間隙材料可以不同的方式導入含 其中-種為水溶液中的電沉積 ①:边的間隙之間’ 屬多半存在於酸性溶液中,並為:羽鋼、錄)’其中金 本發明中含碳散熱器中所含的含^知的沉積技術。 於5 0%以上(相較於散熱器體積,體積:量大 的滲:_積含量為5%,該非碳透可二炭性 銘、銀寺,另-方面,含碳顆粒之體積… 為銅、 %以上’或至少大於9〇%以上。… >大於8〇When the mold is stacked - the series of carbon-containing particles become the high-carbon particle volume, the first series of carbon-containing particles can have the same sieve size. The n-large particle size distribution can also be used. To increase =!, degree: the specific particle size can be seen by the 18 mesh (lnm) teacher. 5 nm ) and 4 〇 0 mesh (37 nm) between the source = Γ can be selectively used in close proximity 〗 In the less expensive materials and small diamond particles to make the household ',,, source, and heat transfer can be lower in the area of the heat sink, when the size of the particles is variability / increase s ^ 丄 t ^ Wenler knows that 'larger particles that can be ramped up can provide a path with particles that are 'approximate to solid carbonaceous materials, such as pure diamonds.'... The particles actually stack in contact, in a stack Each particle 12 1258333 is in contact with at least one of the primary particles, and in another aspect of the invention, the interparticle contact can provide an effective path for virtually all carbonaceous particles in the heat sink. Control, heat transfer from a heat source via a substantially particle pair (4) With the help of the contact, the particles can be stacked to fill most of the space and minimize the space between the particles. Second, in one aspect, the particle stack contains Jiang* and the 匕S will not be the size of the carbon-containing particles The effect state is completed to complete the above functions. For example, the larger particles are piled up in the most μ. The stack of carbon particles can be fixed or compacted, that is, the vibrator is used to disturb the mold. The smaller carbonaceous particles are then added to: = voids between the large carbonaceous particles. Depending on the smaller size, the small particles of the car must be introduced in many ways to fill most of the voids. For variability, it can increase the stacking efficiency of the industry model = 1/3 to 1/2 () of the larger particle diameter, and the preferred range is from ^^2/10'. The best range is 1/7. The use of effective stacking sorrow 'volume stacking benefits will be greater than &3; if necessary, the increase in the number of vehicles can be increased to increase the stacking benefit. However, (b) the benefits will increase with the difficulty of filling And the volume capacity of the hand is about 50-80%. In alternative embodiments in which the stacked particles are different, different sizes of carbon-containing particles are mixed and stacked before the material: the gap material, so that the stacking efficiency is increased, and 'will cause - some of the larger particles are not in close contact There is a rumor ==, so 'thermal energy must cross the interface boundary, which will increase the heat dissipation as thermal resistance. To another alternative embodiment, the volume of the diamond can be used to a 13 1258333 ::: Adding to carbonaceous particles, in particular, it is easier to construct a cubic I grain. 'The diamond particles of this cube can be stacked side by side to produce one or more layers, so that the volume of the stacked diamonds is as high as 9 〇%. "Arrangement f is not important, the particles can be stacked into an orderly row, columnar" column! Day shape. In this embodiment, the arrangement of the diamond particles produces a smaller gap between the particles without the need for sintering, and in addition, the direction of arrangement of the particles f will also improve the thermal properties of the final composition, the following will be 4' The gap material is processed with a diamond particle stack as described above. : Inventive-aspect' can use a gap material to bond the carbon-containing particles into a block. However, since the stack of particles is earlier than the introduction of the gap material as described above, the original particle-to-particle state is maintained, and the stacking effect is maintained. Xingyuan exceeds the effect of hot-pressing agglomerates after mixing carbonaceous particles and interstitial materials: In the latter case, the capacity of the carbon-containing particles in the device will be less than 丄/2 volume, when the gap material fills the diamond Between the particles, the goal is to completely separate 70 between each particle 'in this case' the thermal energy must cross the non-carbonaceous material area of the very skin. Therefore, as described above, the stack of carbon-containing particles of diamond particles is earlier than the introduction of the gap material 'design - the carbon-containing heat sink factor. The heat transfer between the interface between the carbon-containing particles and the interface between the non-carbon particles and the carbon-containing particles. The characteristic, the physical contact between the void and the single ', '屯 is a thermal barrier between the interfaces, that is, the thermal contact resistance. Although the close contact of a large area of the particle surface enhances the thermal mass between the interfaces, the effect is still lower than that of the pure continuous carbonaceous material. Therefore, the interstitial filling between the interfaces is better than the simple physical contact effect. Correspondingly, the gap material must have a specific property, which on the one hand can be used as a carbon sintering aid N a at the height of 14 1258333 / dish, and the side of the fused particle can be combined with the gap material and the other side of the diamond particle chemical society people. The choice of gap material must be based on the gap material itself: 2 pieces of the mouth; the diamond heat sink with low heat transfer coefficient material will become the 1艮 element to reduce the thermal conductivity of the diamond, so the heat transfer coefficient, low heat capacity, and energy of the gap material And stacking, there must be a slap in the face, and the stone particles are chemically combined to promote heat conduction across the interface. Diamonds with A area can increase the thermal conductivity of the radiator. The gap material used to bond or sinter the carbonaceous particles may be different, and the method includes infiltration, sintering, enthalpy, and enthalpy. Permeation is when the material is: to, above the melting point, it flows into the particles; sintering is the surface of the effective adjacent particles (four), and the gap material is sintered into a body: 1 This product is a metal-based solution The medium is heated above the melting point and deposited under a stream to the surface of the carbonaceous particles. The type of gap material consists of liquid metal and cast ceramic. When chemically combining carbon-containing particles to produce a heat sink, the gap material should have at least 2 active elements to react carbon into carbides, and the presence of carbonized formation helps. The wetting of the diamond causes the interstitial material to be attracted to the interstices by capillary forces. When sintering carbonaceous particles of diamond particles to produce a heat sink, the gap i should act as a sintering aid to increase the degree of carbon sintering without affecting the formation, but requiring a carbon solvent. The gap-permeating alloy can act as a penetrating agent to combine carbon-containing particles into a single body, which is generally not chemically bonded, and only the carbon-containing particles are physically fixed and cause heat transfer inhibition, but the copper material is not limited thereby. in. 15 1258333 In further considerations, when the carbonaceous particles are diamonds, the gap material must be considered to have a permeation or sintering temperature lower than 丄i 〇 〇. . To avoid damage to diamonds, synthetic diamonds usually contain metal crystals such as iron, cobalt, nickel or alloys j. The inclusions are highly swellable at high temperatures and can return diamonds to graphite carbon, but It can be avoided with an ultra high pressure of more than 5 GPa. A gap material may comprise a diamond or carbon brass solder as a metal infiltrated β丨 or I 3 broken alloy as a ceramic permeable penetrant, and the penetrant may be “lubricated to attract capillary forces to the stacked carbonaceous particles. The general stone anti-static agent contains inscriptions, records, irons, bells and chromium. When the gap material contains carbonized formations to increase the thermal properties of the interparticle interface, the carbonized formation contains elemental sharps (Sc ), 镱 (γ), titanium (η), 鍅 (Zr), 铪 (Hf), 鈒 (7), 铌 (Nb), chromium (Cr), _ (M〇), general (10)), interesting (Ta), Tungsten (W), tantalum (Tc), bismuth (Si), butterfly (8), Ming (4)) and its alloy. The gap or wetting material may contain silver, copper, aluminum, niobium, iron, beginning, short crucible, or alloy thereof. Or the mixture, the diamond or carbon brass solder contains the sweetening composition as titanium, erbium or chromium. The ceramsite alloy is composed of spring nickel, titanium or chromium. For example: nickel-chromium alloy such as BNi2 ( NbCr—β) or (Ni-Cr-B) is a good penetrant, and other effective penetrants contain (Al-Si) > (Cu-Sn-Ti) . (Ag-Cu-Ti) ^ ( Cu~Mn-S i), (Cu-Μη-Zr) and (Cu-Ni-Zr-Ti). Most carbon-containing gap materials contain active ingredients (such as chromium, titanium, etc.) and cannot form carbides to bond carbon. It is easy to be oxidized. Therefore, the introduction of the gap material needs to be under vacuum or inert environment. 16 1258333 The gap material can be introduced in different ways. Among them, the electrodeposition in the aqueous solution is 1: between the gaps of the edge. In the solution, and is: Han Steel, recorded) 'The gold deposition method contained in the carbon-containing heat sink of the present invention. More than 50% (compared to the volume of the radiator, volume: large amount Permeation: _ product content is 5%, the non-carbon permeability can be two carbon-character, silver temple, another-side, the volume of carbon-containing particles... is copper, more than % or at least greater than 9〇%.... > greater than 8 〇

:碳顆粒可以包含鑽石顆粒,鑽石顆粒之體積含量大 I物的;二:ί ’在渗透劑方面,其包含約至少為碳化形 成物的2%重量比,或^體積含量大於5%以上。The carbon particles may comprise diamond particles, the volume of the diamond particles being large; and in the case of a penetrant, it comprises at least 2% by weight of the carbonized form, or more than 5% by volume.

〇發::之散熱器可包含有含碳顆粒和一非含碳 劑,该摩透劑與含碳顆粒之間可為銅、銘、或銀。在高壓 下的操作,非含碳滲透劑提高散熱器的熱散容積,同時辦 加含碳顆粒的堆疊密度,舉例來說,含碳顆粒為鑽石顆: 日守,在,高壓下鑽石顆粒會在接處點上部份㈣,而讓鑽 石的堆豐密度增加,而熔化的銅、鋁、或銀會被注入鑽石 顆粒中,鑽石濃度的體積含量為大於g 〇 %以上。 田鑽石顆粒為高濃度且銅、鋁、或銀填充鑽石顆粒之 ^政熱杰具有咼度的熱傳導性,相較純銅的散熱器有1 5 — 3倍的熱傳導性,此外,銅、鋁、或銀等材料相較 之下為#乂便且的材料,可以節省成本,其中,銅更具有低 溫與低壓的操作特性。 習用部份鑽石複合散熱器為在鑽石顆粒外,形成碳化 17 1258333 物或其形成材料’相反地,纟發明之鑽石顆粒與銅、鋁、 或銀種可以使用其原本未處理狀態,此點可以免除在 摩透前塗佈鑽石顆粒的程序,此外,彳以使用相對較粗的 顆粒’如5 0微米’甚至於3 ◦ 〇微米,以減少會阻擾执 流的顆粒邊界。 、 另-種提供間隙材料的方法為燒結填充於含碳顆粒間 隙之間的固體粉末,具有多種方法但不受限於如下之方法 ’如熱壓合、減壓燒結、真空燒結、微波燒結等。埶壓人 為常見方法,但由於微波燒結僅影響燒結材料而不影塑到 碳,當含碳顆粒為鑽石顆粒時較不會造成鑽石的衰退; 燒結用的間隙材料可以在堆 觉跑1 #隹$日守加入,其顆粒大小以 可填充於含碳顆粒之間為佳, 刀口八70成後進订燒結可以增 進顆粒對難間的接觸,但會造成孔隙降㈣傳導性。 第三種提供間隙材料的方法為以溶化材料對鑽石顆粒 進行爷透,如銘、石夕、Β ν i笠 ,_ y 2寻,如電沉積法並不能產生 化學性連結但將含碳顆粒包覆住,n I &amp; 设1土 間隙材枓亚不能固定住 顆粒’因為燒結過成中的查么士 的連、^為物理性的,因此滲透劑中 須包含有活性元素以和碳反岸 汉應以妷化物的方式程成化學鍵 、、、口,5亥石反化形成物的存在 〜 手也使付〉夢透劑潤濕顆粒表面 同&amp;’使摩透劑受到丰 “ 、’、作用力吸引至較内空隙間。 當使用鑽石顆粒時,Λ &gt; t 马了(V低鑽石的衰退,滲透過程 的溫度須低於1 1 〇 〇 t痞古 、 U ;呵壓,以避免傷害鑽石,某此 鐵、録、錄合金,和大多皇 v、 數的銅、鋁、銀合金符合上述的 要求’在間隙材料的滲透或 過轾中,加熱後的金屬不 18 1258333 可避免地會造成 、阳问⑻ 鑽石的哀退,此點可由所短反庫睥P卩命液 廷間隙材料來彌補…於h 汉應扦間與慎 擇,界面間的炉仆 ”、可以形成碳化矽為—較佳選 純石夕的熔解”V夕和熔溶的矽會保護鑽石預防其衰退, !〇、◦::下:為有1,^^ 下具有良好的滲透效果。 入含:Γ材料可以用渗透、燒結、和電沉積方法導 y 、間隙之間,當低壓操作時,間隙材料僅緊埴 =並連結顆粒,當高壓操作時,有兩種基本狀::緊; :π::τ會和碳之間形成化學鍵結以增加界 、ν ,同時含碳顆粒會崩解以減少部份空隙, 為若間隙材料為碳溶劑如鐵、始或鎳及肖種 粒合悻紝士 , \都叹八口金日寸,含碳顆 曰\、、、口成一連續性含碳塊體, 熱傳路徑即為連顆粒燒結成塊時, 含碳界面。連的碳路徑,而*具有物理性界面與非 銅為種理想的鑽石散熱器間隙材料,然而,豆 碳溶劑同日年+ I$為 4也不為石墨轉成鑽石的催化劑,更不為超高壓 的燒結助劑’ ϋ此若使用銅作為間隙材料,其可 &quot; :、、、。法-成’但電沉積過於緩慢且難以填補到緻密的 二’、i❿燒結S ’會不可避免地產生孔陽:,兩種方法讓 鑽石堆疊效益相對降低(約Θ 0 %體積容量)。 、 、雖然銅不為燒結助劑’超高壓碳銅混合物的強化可以 ,迫含碳顆粒靠緊以提高石炭含量至7 〇 %到9 ◦%,壓力 約為4GPa到6GPa。為了讓碳的含量提高至7 〇%以上而 不形成碳對碳的架橋,多餘的銅必須由—沉降材料移除, 19 1258333 該沉降材料呈古夕 其材質為陶竟性Γ末:同:會在銅的溶解高溫下軟化, 銘⑷2〇3)二末如奴化石夕、氮化石夕(SlN4)、和氧化 ^ ^ λ 種為多孔性材質,如碳化鎢或氧化鍅, ,但盆1只化例—中所示’此外,雖然銅不能潤濕鑽石 孔隙二,充鑽石顆粒間的孔隙’方法適當下可以不產生 孔隙,當銅冷細口士 #人 ,_ $,其會適度地收縮壓緊鑽石顆粒以降低 熱接觸阻力。 間隙材料同時可Α _ 、、f1A、# A yv 種/、有低體積容量碳潤濕劑的碳 /間濕滲透合金,蕻ώ 一 &quot;棱供一種咼熱傳導性的滲透劑來降低 界面’例如高哉傳 …、寻^性i屬如銀、銅和鋁,可以和 一碳化形成物如鈦混成合金。 二^ 有好傳導性與鑽石潤濕性質的滲透合金, =:!:?擇為相對性的最低炫點,此可以避免程序中 〜取低炼點須低於1 1 〇 〇 °c,甚至可 低於900t。 良好的碳形成元辛且右古 、有网熱傳導性,如銀、銅和鋁, 滲透合金中可以包含的 0/ ^ ^ ^ 的上述奴形成兀素至少為1%至10 %之重$比,或至小7 乂主^ 1 %之散熱器重量比。 滲透合金可包合細—人 、’° 、 a金,鋼—錳合金可為銅-錳( 30/〇)-鎳(5%)合金,A炫 wop 約為8 5 0 °C ’遠低於習用之 io、、、口度,另一種為鋼 銘鍅(9/〇)和銅-鍅(1%),中由 於錄並不具有良好的傳導 ra 妁得¥性’因此含量為相對低量,一般 而言,使用碳化物形成金屬 金屬此i日進銅與鑽石的鍵鈥而 大多數的碳化形成物為埶 建、、σ… …、、、巴、、彖性,因此,碳化物與鑽石鍵 20 1258333 結的程度增加相對於熱阻的成長。 由於本發明中使用有好傳導性、 、 點的滲透合金,操作溫度降低連帶使抒:二濕性質與低溶 熱器形成之厚度遠較習用的製法:差力降低’讓散 mm ’甚至於2mm,具 二:厚度約大於1 單位時間内傳導出大量的熱能,有較::度的散熱器能在 穷早乂好的冷卻效益。 〈現有散熱器'的配合〉The heat sink: the heat sink may comprise carbonaceous particles and a non-carbonaceous agent, and the friction agent and the carbonaceous particles may be copper, inscription, or silver. Under high pressure operation, the non-carbonaceous penetrant increases the heat dissipation volume of the heat sink, and at the same time, the stacking density of the carbonaceous particles is added. For example, the carbonaceous particles are diamond particles: the day, the high pressure, the diamond particles will At the junction point (4), the diamond's bulk density is increased, and the molten copper, aluminum, or silver is injected into the diamond particles, and the volume concentration of the diamond is greater than g 〇%. Tian Diamond granules are high-concentration and copper, aluminum, or silver-filled diamond granules have a thermal conductivity of 咼, which is 15 to 3 times better than pure copper radiators. In addition, copper, aluminum, Compared with materials such as silver, it is a material that can save costs. Among them, copper has low-temperature and low-pressure operation characteristics. Conventional diamond composite heat sinks form carbonized 17 1258333 or formed materials outside the diamond particles. In contrast, the invented diamond particles and copper, aluminum, or silver can be used in their original untreated state. The procedure for coating diamond particles prior to rubbing is dispensed with. In addition, helium is used to use relatively coarse particles 'such as 50 microns' or even 3 〇 〇 microns to reduce particle boundaries that can interfere with the flow. The other method for providing the gap material is to sinter the solid powder filled between the gaps of the carbonaceous particles, and has various methods but is not limited to the following methods such as hot pressing, vacuum sintering, vacuum sintering, microwave sintering, etc. . Rolling people is a common method, but since microwave sintering only affects the sintered material and does not affect the carbon, when the carbon-containing particles are diamond particles, it will not cause the diamond to decline; the gap material for sintering can run in the pile 1#隹$ 守守 joined, its particle size can be filled between the carbon-containing particles is better, the knife edge 80% after the order sintering can improve the contact of the particles to the difficult, but will cause pore drop (four) conductivity. The third method for providing the gap material is to pass the diamond particles to the molten material, such as Ming, Shi Xi, Β ν i笠, _ y 2 search, such as electrodeposition, and can not produce chemical bonds but will contain carbon particles. Wrapped, n I & 1 soil gap material can not fix the particles 'because the sintering of the foundry of the joints, ^ is physical, so the penetrant must contain active elements to react with carbon The bank should be formed into a chemical bond, a mouth, and a five-stone reversal formation in the form of a sulphide. The hand also makes the surface of the granules wet with the surface of the granules. ', the force is attracted to the inner space. When using diamond particles, Λ &gt; t horse (V low diamond decline, the temperature of the infiltration process must be lower than 1 1 〇〇t痞 ancient, U; pressure, In order to avoid damage to diamonds, some iron, recording, recording alloys, and most of the v, the number of copper, aluminum, silver alloy meet the above requirements 'in the penetration or over-interference of the gap material, the heated metal is not 18 1258333 Avoiding the ground will cause, Yang asks (8) the retreat of the diamond, this can be Short anti-Cao P 卩 液 廷 廷 间隙 间隙 间隙 ... 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于The dissolved strontium will protect the diamond from its decline, 〇, ◦:: 下: has a good penetration effect under 1,^^. Inclusion: Γ material can be guided by osmosis, sintering, and electrodeposition methods, gap Between the low pressure operation, the gap material is only close to 埴 = and join the particles. When operating at high pressure, there are two basic forms: tight; : π:: τ forms a chemical bond with carbon to increase the bound, ν At the same time, the carbonaceous particles will disintegrate to reduce some of the voids. If the gap material is a carbon solvent such as iron, the first or the nickel, and the singular grain of the gentleman, \ sigh eight gold days, containing carbon 曰 \, , the mouth into a continuous carbon-containing block, the heat transfer path is the carbon particle interface when the particles are sintered into a block, the carbon path, and the physical interface and non-copper is the ideal diamond radiator gap material However, the carbon solvent of the same day + I$ of 4 is not a catalyst for the conversion of graphite into diamonds, but not High-pressure sintering aids ϋ If copper is used as a gap material, it can be &quot; :, , , , - - - but the electrodeposition is too slow and difficult to fill to the dense two ', i ❿ sintering S ' will inevitably Produce Kong Yang: The two methods make the diamond stacking efficiency relatively lower (about % 0 % volumetric capacity). , Although copper is not a sintering aid, the strengthening of the ultra-high pressure carbon-copper mixture can force the carbon particles to be tightened to improve The charcoal content is from 7 〇% to 9 ◦%, and the pressure is about 4 GPa to 6 GPa. In order to increase the carbon content above 7 〇% without forming a carbon-to-carbon bridge, the excess copper must be removed by the sedimentation material, 19 1258333 The sedimentation material is ancient and its material is ceramic and sturdy: the same: it will soften under the high temperature of dissolution of copper, Ming (4) 2 〇 3) second end such as 奴 化 夕 、, 氮化 夕 ( (SlN4), and oxidation ^ ^ λ species are porous materials, such as tungsten carbide or yttrium oxide, but the pot 1 is only shown in the example - in addition, although copper can not wet the pores of the diamond, the pores between the diamond particles can not be produced properly. Pore, when copper cold fine mouth #人,_ $, which moderately shrinks the compacted diamond particles to reduce thermal contact resistance. The gap material can also be _ _ , , f1A , # A yv species / carbon / interwetting alloy with low volume capacity carbon wetting agent, 蕻ώ & 棱 棱 供 供 供 供 供 供 供 供 ' ' ' ' ' ' ' ' ' ' For example, 哉 哉 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 2^ Infiltrated alloy with good conductivity and diamond wetting properties, =:!:? Select the lowest level of relative brightness, which can avoid the process of low-refining points must be lower than 1 1 〇〇 °c, or even Can be less than 900t. Good carbon formation Yuanxin and right ancient, network thermal conductivity, such as silver, copper and aluminum, the 0/^^^ of the above-mentioned slave forming alizanes contained in the infiltrated alloy is at least 1% to 10% by weight , or to a small 7 乂 main ^ 1% radiator weight ratio. The infiltrated alloy can be coated with fine-human, '°, a gold, steel-manganese alloy can be copper-manganese (30/〇)-nickel (5%) alloy, A dazzle wop is about 850 °C 'far low In the conventional use of io,, and mouth, the other is steel Ming 鍅 (9 / 〇) and copper - 鍅 (1%), because the record does not have a good conductivity ra 妁 性 性 ' ' so the content is relatively low In general, the use of carbides to form metallic metals is the bond between copper and diamonds, and most of the carbonized formations are 埶, σ, ..., 、, 巴, 彖, therefore, carbides and diamonds. The degree of junction 20 1258333 increases with respect to the growth of thermal resistance. Since the inductive alloy with good conductivity and point is used in the present invention, the operating temperature is lowered to bring the thickness of the crucible: the second wet property and the low heat dissolver to be much smaller than the conventional method: the difference in the force is reduced. 2mm, with two: the thickness is greater than about 1 unit time to conduct a large amount of heat energy, there is a better cooling efficiency than the :: degree radiator. <Future of existing radiators>

本發明中之散熱器基於使用目的 ^ 物質可以被製作成各種型狀配合熱源::㈣广 用的散熱器其厚度約為〇 ·工 ’又電裔用品則 n ^ ^ m m到1 m m,其形狀可j 0形、橢圓形片狀或四邊形如正 晶圓等。熱源可為電氣或其它生熱^料4其它形狀戈The heat sink of the present invention can be made into various types of heat sources based on the purpose of use: (4) The widely used heat sink has a thickness of about 〇·工' and the electrician supplies are n ^ ^ mm to 1 mm, The shape may be a j-shaped shape, an elliptical plate shape or a quadrilateral shape such as a positive wafer. The heat source can be electrical or other heat generating material 4 other shapes

_本么月中包S有-自熱源轉移走熱能的冷卻單元,如 第一圖所示,—如前面原理所製之散熱器(12),苴同 _ 一如cPu的熱源(14)和,(16):、該 政熱s ( 1 2 )將c P U產生的熱能源傳導至熱沉(工6 ),熱沉裳置為習知之結構,可以為紹或銅製,如第1 圖所示,其結構中包含有冷卻1 8 )以將熱能散去 如同第一b圖所示,該散熱器(1 2 )至少一部份埋 在熱源(1 4 )和熱沉(! 6 )巾,如此熱能不止由從散 熱w底4政至熱7儿中,而且亦從散熱器側邊散出,散熱器 的連結方式可為在部份埋入熱沉(1 6 )後再與其焊接在 21 1258333 一起,或壓迫結合,其中, 材質對熱傳效應造成障礙。 Μ壓迫結合方式不會產生焊接 如同第一 C圖所示,該熱 (24)的散熱管(22), 蒸氣,該散熱器可鄰接或焊接 熱器穿過散熱管璧讓其底部直 和散熱管以焊接連結,如2 6 沉包含有一具有一内部流體 該内部流體為習知的水或水 於该散熱管,如圖所示,散 接與内部流體接觸,散熱器 所標示以維持散熱管的穩固_This month, the package S has a cooling unit that transfers heat from the heat source, as shown in the first figure—the heat sink (12) made by the previous principle, the same as the heat source (14) of cPu and (16): The political heat s (1 2) transmits the heat energy generated by c PU to the heat sink (Work 6), and the heat sink is set to a conventional structure, which can be made of Shao or copper, as shown in Figure 1. Show that the structure includes cooling 18) to dissipate the heat energy as shown in the first b diagram, the heat sink (12) is at least partially buried in the heat source (14) and the heat sink (! 6) towel Such heat is not only from the heat sink, but also from the side of the heat sink. The heat sink can be connected by soldering it after partially embedding the heat sink (16). 21 1258333 Together, or oppressive combination, where the material creates an obstacle to the heat transfer effect. The Μ compression combination method does not produce welding as shown in Figure C, the heat (24) of the heat pipe (22), the vapor, the heat sink can be contiguous or welded to the heat pipe through the heat pipe 璧 let the bottom straight and heat The tube is joined by welding, such as 2 6 sink containing an internal fluid having a known fluid or water in the heat pipe, as shown, the contact is in contact with the internal fluid, and the heat sink is marked to maintain the heat pipe Stable

&lt; m得ψ性梂度&gt; 定梯 導性 濃度、 南相對 的顆粒 時,鑽 須跨過 阻力增 穿過鑽 性的區 阻力最 熱能湧 區域設&lt; m 梂 梂 & & 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定 定

本發明中的鑽石複合散埶κ 耿熱片可以包含一含有特 之含鑽材質,該熱傳梯度可 J以多種形成方法,熱傳 特定材質和熱傳路徑的函數 、 ^歎’因此當材質組成改變 導性也會改變,大多數的轡 幻又因皆有影響如鑽石體積 平均自由熱傳路徑和雜質。通當 逍吊鑽石體積濃度的提 增加整體的熱傳導性,但相同鑽石體積濃度下不同 大小會有不同的熱傳導性,特別是在平均粒徑增加 石顆粒間與和非含碳材質間 刊貝间的邊界也增加,造成入 為數多的固態一固態邊界, ^ 為邊界的增多使得熱傳 加。平均自由熱傳路禋為 仅為不包含固態-固態邊界僅 石顆粒之熱傳途徑的平均距離。在-須要高孰傳導 域’鑽石顆粒大小須加大或是使賴態鑽石膜。 典型地,熱傳導為多 万向性,但會偏好埶傳導 小的路徑以自表面散出,含 …、 各纘材質可在靠近埶源的 入區設計成具有較高的熱傳導 ·、、』 寻¥丨生,亚在运離熱源的 22 1258333 計成具有較低的熱傳導性。 本發明中含鑽材料可以為鑽石複合材料,同時,其它已知 的含有鑽石成份的鑽石散熱器也可以被使用,熱傳梯度的 設計為橫跨過整個散熱器,其中溫度量變曲線和熱傳導性 上不連續或突然的改變須被最小化,如第二至六圖所示, 可以理論上選擇熱傳梯度的態樣以平衡產品成本。熱傳梯 度可以影響溫度梯度,當降低整體的溫度梯度時,理想的 熱傳導量變曲線會減小熱阻。這樣一來,雖然散熱器可以 快速散熱,但同時可以將儲熱熱容最大化。 在設計各種含鑽材料時,熱傳梯度可以自熱能湧入區 至熱能流出區遞減,熱傳梯度的變化為約丄% 一 8 〇 %, 較佳的為1 0%— 6 0%。 請參考第二圖,一鑽石複合物散熱器(3 0 ),其具 有遍佈整個放熱器的含鑽區《,熱能消人區(3 接近熱源(3 4 ),而埶能流出Ε ? β 土 Μ …此/瓜出&amp; ( 3 6 )最遠離熱源( 3 4)。 社一些貫施例中 、 、不又〜々肢償嚴庋的變 而决疋’鑽石體積濃度的變化自熱能湧入區 區連續性遞減,該濃度變化由…月匕机出 辰度艾化由一糸列不同鑽石顆粒濃度的 不連績區域所構成,如第二?丄 ^ ^ /、圖,區域的數量依散熱器 的自又计而定,部份實施例 产。η祥α ^ £域可以轉向以控制熱傳梯 度。问樣地,熱傳導性、鑽石澧 丸 又人鑽石顆粒的變化可以 為延著含鑽材料的幅射狀、水平向形成。 又化了以 部份實施例中,熱傳梯度可以由實施例中具有變化性 23 1258333 +句自由熱傳路徑的區域 徑可以藉由改變延著敎傳梯卢八/化性平均自由熱傳路 完成,因此每一區:: 佈的平均鑽石顆粒粒徑來 能、、*入「沾+ #平均鑽石粒徑皆較相鄰且靠近埶 月b湧入區的鄰區為小。 菲3 散熱器可以被設計成為接 面上所顯示的為二維方向,但事實同時、,雖然圖 構,因此熱傳梯度可以在三維 二、、:可以為二維結 。 、向上凋節整個熱傳導性 鑽石ΓΓ所示,一鑽石膜(38)形成在相鄰之微粒 =,鑽石…由化學氣相渗透法(chem 0Γ 叫沉積至微粒鑽石區的表面或者是 =學乳相沉積法或其它方法來形成,材質如 益 U鑽'類鑽碳或其它’化學氣相滲透法常用在多孔㈣ ^其會在靠近微粒鑽石區的表面處之鑽石顆粒間的空隙 形成有鑽石’因此該鑽石膜與微粒鑽石區的表面為一體 性連結,藉此可降低鑽石膜與微粒鑽石區之間邊界的純 2力,進一步地,組成物的逐步改變讓熱傳梯度在邊界 得變化也較為溫和。 選擇性地,鑽石膜與微粒鑽石區為分離性的結合,如 焊接至微粒鑽石區的表面,例如第四圖,其中鑽石膜(3 8 )係透過一焊接層(4 2 )焊接至微粒鑽石區(4 〇 ) ,雖然較之化學氣相滲透法會產生不連續的熱傳變化,但 焊接料仍能填補微粒鑽石區的空隙,選擇具有高熱傳導性 的焊接料,或將其形成為數微米厚的薄膜以降低熱阻,可 24 1258333 用之材質為銀—銅一鈦合金,金,金 使用鑽石 純鑽的良好熱 本昂貴且耗時 厚度約為〇 · m 至 0 · 7 m 雖然可以略為 如C P u的電 使用鑽石膜的 4 0 0 W/m 膜作為連結的一 傳導性(純鑽為 ,因此以降低厚 1 m m 至 1 m m m ;最適厚度約 降低,但仍能有 氣設備,因為其 實施例中,熱能 K,熱能流出區 〇 W / m K,典 項優點 2 4 0 度來解 ,較佳 為0 · 效傳導 南溫為 湧入區 的熱傳 型為5 為该鑽石膜具有接進 〇 W/m κ ),但成 決此些問題,其適合 的厚度約為〇.3m 5 m m。以此方法, 熱能’其特別適用於 暫日守且波動性地。在 的熱傳導性最高為2 導性約為2 0 〇 W/〇 OW/mK至 1 〇 山關於第五圖所示,該散熱器(3 〇 c )包含有一非含 厌區塊(4 4 ),特別是一含鑽材質(4 0 a )可以被嵌 入非3衩區塊(4 4 )中,該非含碳區塊為具高熱傳導性 如銅、無氧高傳導性銅(oxygeri free high c〇nductivity 〇FHC)、銀、銘、金及上述金屬之合金,第六圖中顯示一 非各奴區塊(44)中具有一接受部以容置含鑽材質(4 0 b ) 〇 'The diamond composite 埶 埶 耿 hot sheet of the present invention may comprise a special diamond-containing material, and the heat transfer gradient may be a function of a plurality of forming methods for heat transfer of a specific material and a heat transfer path. The compositional change conductivity will also change, and most of the illusions have an effect such as the diamond volume average free heat transfer path and impurities. The volumetric concentration of the diamonds is increased to increase the overall thermal conductivity, but different sizes of the same diamond volume concentration will have different thermal conductivity, especially between the average particle size increase between the stone particles and the non-carbon material. The boundary also increases, causing a large number of solid-solid boundaries, and the increase in the boundary causes heat to pass. The average free heat transfer path is the average distance only for heat transfer paths that do not contain solid-solid boundary only stone particles. In the case of - high sorghum transmission domain, the size of the diamond particles must be increased or the diameter of the diamond film. Typically, heat conduction is multi-universal, but it prefers a small conduction path to dissipate from the surface, including..., each material can be designed to have higher heat conduction in the vicinity of the source, and ¥丨生, Asia's 22 1258333 from the heat source is calculated to have lower thermal conductivity. In the present invention, the diamond-containing material may be a diamond composite material, and other known diamond-containing diamond heat sinks may also be used, and the heat transfer gradient is designed to span the entire heat sink, wherein the temperature variation curve and the thermal conductivity are used. Discontinuous or sudden changes must be minimized. As shown in Figures 2 to 6, the thermal transfer gradient can be theoretically chosen to balance product cost. The heat transfer gradient can affect the temperature gradient. When the overall temperature gradient is lowered, the ideal heat transfer curve reduces the thermal resistance. In this way, although the heat sink can dissipate heat quickly, it can also maximize the heat storage capacity. When designing various diamond-containing materials, the heat transfer gradient can be reduced from the heat energy inflow region to the heat energy outflow region, and the heat transfer gradient changes by about 一% to 8%, preferably 10% to 60%. Please refer to the second figure, a diamond composite radiator (30), which has a drilled area throughout the radiator, "heat energy elimination zone (3 close to the heat source (3 4), and the enthalpy can flow out Ε ? Μ 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 最 最 最 最 最 最 最 最The continuity of the ingress zone is decreasing. The concentration change consists of a period of time. The Aihua consists of a non-successful area of different diamond particle concentrations, such as the second? ^ ^ /, map, the number of areas depends on heat dissipation. The device is self-determined, some of the examples are produced. The η祥α ^ £ domain can be turned to control the heat transfer gradient. In question, the thermal conductivity, the diamond shot and the diamond particles can be changed to include the drill. The radiation and horizontal directions of the material are formed. In some embodiments, the heat transfer gradient can be changed by the variation of the region 23 1258333 + sentence free heat transfer path in the embodiment can be changed by the rumor Talu Lu/Chemical average free heat transfer is completed, so each zone:: Cloth The average diamond particle size can be, * into the "dip + # average diamond particle size are relatively adjacent and close to the neighboring area of the lunar b into the area is small. Philippine 3 radiator can be designed to be the junction The two-dimensional direction is shown, but in fact, although the structure is constructed, the heat transfer gradient can be in the three-dimensional two, and can be a two-dimensional knot. The upward heat-exposed whole heat-conducting diamond ΓΓ, a diamond film (38) ) formed in adjacent particles =, diamonds ... formed by chemical vapor infiltration (chem 0 沉积 deposition to the surface of the diamond diamond area or = milk phase deposition or other methods, materials such as Yi U drill 'drill Carbon or other 'chemical vapor phase infiltration methods are commonly used in porous (four) ^ which will form a diamond in the gap between the diamond particles at the surface close to the particle diamond area. Therefore, the diamond film is integrated with the surface of the particle diamond area. This reduces the pure force of the boundary between the diamond film and the diamond diamond zone. Further, the gradual change of the composition makes the heat transfer gradient change moderately at the boundary. Selectively, the diamond film and the particle diamond zone are separated. Knot For example, welding to the surface of the diamond diamond zone, for example, the fourth figure, wherein the diamond film (38) is welded to the particle diamond zone (4 〇) through a solder layer (4 2 ), although compared to the chemical vapor phase infiltration method. Will produce discontinuous heat transfer changes, but the weld material can still fill the voids in the diamond diamond area, select the weld material with high thermal conductivity, or form it into a film of several micrometers thick to reduce the thermal resistance. The material used in 24 1258333 is Silver-copper-titanium alloy, gold, gold. The good heat of using diamond pure diamond is expensive and time-consuming thickness is about 〇·m to 0 · 7 m. Although it can be slightly used as CP u, the diamond film is used for 400 W/ The m film acts as a conductive connection (purely drilled, so to reduce the thickness by 1 mm to 1 mmm; the optimum thickness is reduced, but there is still gas equipment, because in its embodiment, thermal energy K, thermal energy outflow zone 〇 W / m K, the merits of the classics are 2,40 degrees, preferably 0. The effect of the south temperature is the heat transfer type of the inflow zone is 5, the diamond film has the connection 〇W/m κ ), but this is the case. For these problems, the suitable thickness is about 〇.3m 5 mm. In this way, thermal energy is particularly suitable for temporary and volatility. The thermal conductivity at the highest is 2 conductivity is about 20 〇W / 〇 OW / mK to 1 〇 Mountain As shown in the fifth figure, the heat sink (3 〇c ) contains a non-anaerobic block (4 4 ) In particular, a diamond-containing material (40 a) can be embedded in a non-3 衩 block (4 4 ), which has high thermal conductivity such as copper, anaerobic high conductivity copper (oxygeri free high c 〇nductivity 〇FHC), silver, Ming, gold and alloys of the above metals, the sixth figure shows that a non-nano block (44) has a receiving part for accommodating the material containing diamond (4 0 b ) 〇 '

下表二列出各種材質的熱能特性 熱傳導性 (W/mK) 熱擴散性 (cm2/sec) 熱容 (J/KgK) 密度 (g/cm3) Γ &quot;2400 12.7 540 3.52 800 4.29 486 4.00 ~4δδ ~ 1.16 385 8.96 6.0 11 1.4 0.39 -導 性為熱擴散性 、熱容與密度的計算產物 25 1258333 其中,DiaCu (購自Kinik公司)為本發明中的一種 實施例,其具有勻相組成與遍佈的熱傳導性,其中鑽銅比 率約為9,由於結晶缺陷與雜質使其有效率約為3 · 7, 燒結石不像金屬,鑽石傳熱係透過晶袼震動而不是電子運 動。鑽石晶袼的不完美和缺陷會阻斷晶格震動,因此雖然 理論數據很高,但實際量出的鑽時散熱片的熱傳導性僅為 銅的兩倍。 除了上述的討論熱膨脹性也為材質選擇的考量,如第 七圖所不,數種材質的熱膨脹係數對應於熱傳係數的關係 ,其中二角區域為最大鑽石複合物與含鑽石材質所座落的 區間’較佳地,任何材料如間隙材料、焊料或相鄰區域, 應具有接近於鑽石#質的熱膨脹係數,㉟大的熱膨服差異 έ仏成錶石材夤的疲勞與壓力,關於學術用語,,石墨(〇,, 代表graphene平面垂直於,,c,,的結晶軸,而,,石墨//c,,代 表graphene平面平行於”c,,的結晶軸,此為石墨在各向異 性的自然特性’此外,在對應使用含石夕的裝置時,石夕的熱 膨脹係數同時也被考量。 姓人a鑽材質可以被+同方式形《,上述關於勻相組成的 、、口 口方法同樣可以用在具有不同鑽石體積濃度與顆粒尺寸 ,化的含鑽材料上,例如一系列的鑽石顆粒可以堆疊成特 定圖樣以形成微粒鑽石區,其可在模具中分批將鑽石由大 至小或由小至大分層堆疊,或者在相鄰兩層中填充間隙材 料。 适擇〖生κ %例中,每一層的可以有不同的平均鑽 26 Ϊ258333Table 2 below lists the thermal properties of various materials. Thermal conductivity (W/mK) Thermal diffusivity (cm2/sec) Heat capacity (J/KgK) Density (g/cm3) Γ &quot;2400 12.7 540 3.52 800 4.29 486 4.00 ~ 4δδ ~ 1.16 385 8.96 6.0 11 1.4 0.39 - Conductivity is a calculated product of thermal diffusivity, heat capacity and density 25 1258333 wherein DiaCu (available from Kinik Corporation) is an embodiment of the present invention having a homogeneous phase composition and The thermal conductivity throughout, in which the ratio of drilled copper is about 9, due to crystal defects and impurities, the efficiency is about 3 · 7, the sintered stone is not like metal, the diamond heat transfer through the crystal vibration rather than the electron movement. The imperfections and defects of the diamond crystals block the lattice vibration, so although the theoretical data is very high, the actual measured heat dissipation of the heat sink is only twice that of copper. In addition to the above discussion, thermal expansion is also a consideration for material selection. As shown in the seventh figure, the thermal expansion coefficients of several materials correspond to the relationship of heat transfer coefficient, where the two corner regions are the largest diamond composite and diamond-containing material. Interval 'preferably, any material such as gap material, solder or adjacent areas should have a coefficient of thermal expansion close to that of diamond #, and the difference of 35 large thermal expansions will become the fatigue and pressure of the stone. The term, graphite (〇, represents the plane of the graphene perpendicular to, c,, the crystal axis, and, graphite / / c,, represents the plane of the graphene parallel to the crystal axis of "c,", which is the graphite in each direction The natural characteristics of the opposite sex' In addition, the thermal expansion coefficient of Shi Xi is also considered in the corresponding use of the device containing Shi Xi. The surname a diamond material can be formed in the same way as the above, the above-mentioned composition of the homogeneous phase, the mouth The method can also be applied to diamond-containing materials having different diamond volume concentrations and particle sizes, for example, a series of diamond particles can be stacked into a specific pattern to form a particulate diamond region. It can stack diamonds from large to small or from small to large in batches in a mold, or fill gap materials in two adjacent layers. Suitable for κ%, for each layer, there can be different average drills. 26 Ϊ258333

’因此其熱傳導性比低壓性 外’本發明採用遠比p C D 傳導性的鋼取代P C D的鈷 南兩倍。 的鑽石複合物散熱器為高。此 更粗的鑽石顆粒,而且以高熱 ’所以熱傳導率會比p ◦ D為 夕晶鑽石常用於機械性的用途,如切割工具、鑽頭、 d線塊等’在散熱中使用多晶鑽石其機械物理性質綠彰 不重要’堆疊效益及熱能特性才是主要考量,因此其設巧 有別於傳統研磨上的應用,特別是顆粒尺寸與其配合使用 之滲透劑與燒結助劑才為重要。Therefore, the thermal conductivity is lower than that of the low pressure. The present invention uses twice as much cobalt as the P C D instead of the steel of p C D conductivity. The diamond composite radiator is high. This thicker diamond granule, and with high heat 'so the thermal conductivity will be more than mechanical properties for p ◦ D for sapphire diamonds, such as cutting tools, drill bits, d-line blocks, etc. 'Use polycrystalline diamonds in heat dissipation machinery Physical properties are not important. 'Stacking efficiency and thermal energy characteristics are the main considerations, so it is different from traditional grinding applications, especially the particle size and the penetrating agent and sintering aid used together.

為了增加熱傳效益’鑽石顆粒的邊界須最小化,此與 傳先u須要將邊界最大化為相衝突,冑用大顆粒之鑽 石顆粒不僅降低邊界’同時增加堆疊效益,更進一步增加 熱傳導性,因此本發明之標準可用於所有鑽石與鑽石‘合 物之散熱器。 實施例二: 在一鋁製熱沉裝置的平面基板上形成有一直徑約 mm的圓形接孔,該熱沉裝置具有用風扇散熱的散熱 2 0 鰭片In order to increase the heat transfer efficiency, the boundary of the diamond particles must be minimized, and this must be maximized to conflict with the premise. The use of large particles of diamond particles not only reduces the boundary, but also increases the stacking efficiency and further increases the thermal conductivity. Therefore, the standard of the present invention can be applied to all diamond and diamond's radiators. Embodiment 2: a circular hole having a diameter of about mm is formed on a planar substrate of an aluminum heat sink device, and the heat sink device has heat dissipation by a fan. 2 0 fin

’該接孔塗佈-導熱膏並在靠近中,。處形成有__氣孔熱 沉裳置加熱至約2 0 以張開接孔,之後將—同樣直徑 約2 0 mm的鑽石複合物散熱器插入接孔中,氣孔可以讓 過多的導熱膏流出,以確保兩者之間並沒有任何的空氣存 在。冷卻後即可以#散熱穩固地固接在熱沉裝置上,散 熱器的頂面磨去收縮後的殘礫,,該散熱器並與一晶片或一 c P u接觸 以將熱能藉由散熱器的底部及側邊導引至熱 28 1258333 沉裝置。 . 复農例三: : 。鑽石顆粒為美規篩目5 〇 / 6 Q以酸清洗,並放入— 圓柱狀的组杯,一無氧高傳導性鋼碟放置於鑽石顆粒的丁頁 面,樣本在2 0 Q 0噸的立方壓力機六面頂中施壓約5 · 5 G Pa,其使用六個鐵砧靠近以加壓,由一電流通過石墨 管以提供加熱,至丄丄5 0。(:以上,銅被炼化渗透穿過$ 石顆粒,在冷卻與洩壓後,樣本被研磨以去除鈕杯與鑽鋼 複合體之表面與底面,最後完成的碟體為5〇8mm直_ 徑與2·7mm厚,其鑽石體積含量約為9〇%,並具有 純銅熱傳導性的1 · 5 — 2 · 5倍。 實施例四: 本散熱器與實施例三中製法相同,但滲透的銅内含有 約1 %重量比鍅以增加對鑽石的親合力使銅鑽熔液可以潤 濕鑽石。 實施例五i 本散熱裔與實施例三中製法相同,除了使用銅一銀合 金來增加材料的熱傳導性。 實施例六 將 石墨的薄卷(購自Graftech International Ltd,商品名為GRAF〇IL)放置於一鋁容器中,並以3〇/ 29 1258333 —等目的錶石顆粒覆盍,使用一平板將鑽石顆粒壓入石 墨溥卷中,銀一銅一錫—鈦的薄卷平鋪於鑽石/石墨組成 :頂面’最後放入真空燒爐中以9 5 〇t:加熱丄5分鐘, 完成一鋁一鑽石一石墨的複合物,該複合物的熱傳導率與 純銅相當’但其熱膨脹係數只有銅的1/3而6,與許多' 的半導體(如G a N) #近,因此可與半導體結合成為散 攻例七: 將5 〇/ 6 0筛目的鑽石顆粒(約為5 〇 〇微米)混 合銅系的焊料粉末(約2 0微米)以達成5 〇%體積效益 β’、混合物在石屢模具中以4〇MPa ( 4 0 0大氣壓)加 壓’亚以7 5 0。。加熱1 〇分鐘,最後完成的鑽石金屬複 合碟為3 〇mm直徑與3mm厚。 免施例八: 將3 0 /4 〇篩目的鑽石顆粒混合鋁粉放入The via coating - thermal paste is in the middle. The __ venting heat sink is formed to be heated to about 20 to open the hole, and then the diamond composite heat sink having the same diameter of about 20 mm is inserted into the hole, and the vent hole allows excess heat conductive paste to flow out. To ensure that there is no air between the two. After cooling, the heat sink can be firmly fixed on the heat sink device, and the top surface of the heat sink is grounded to shrink the residual gravel, and the heat sink is in contact with a wafer or a C P u to heat the heat through the heat sink. The bottom and sides are guided to the heat 28 1258333 sinking device. Re-cultivation example three: : . The diamond particles are cleaned with acid for 5 〇 / 6 Q and placed in a cylindrical cup. An anaerobic high-conductivity steel disc is placed on the Ding page of the diamond particles. The sample is at 20 Q 0 tons. The cubic press has a pressure of about 5 · 5 G Pa in the six-sided top, which uses six anvils close to pressurize and a current through the graphite tube to provide heating to 丄丄50. (: Above, copper is refining and permeating through the stone particles. After cooling and pressure relief, the sample is ground to remove the surface and bottom surface of the button cup and the drill steel composite, and the finished dish is 5〇8mm straight _ The diameter is 2. 7 mm thick, and the diamond volume content is about 9〇%, and has a thermal conductivity of pure copper of 1.5 to 2.5 times. Embodiment 4: The heat sink is the same as the method of the third embodiment, but infiltrated The copper contains about 1% by weight 鍅 to increase the affinity for the diamond so that the copper melt can wet the diamond. Example 5 i The heat sink is the same as in the third embodiment except that a copper-silver alloy is used to increase the material. Thermal Conductivity. Example 6 A thin roll of graphite (available from Graftech International Ltd, trade name GRAF〇IL) was placed in an aluminum container and covered with a 3 Å / 29 1258333 - equivalent stone. A flat plate presses the diamond particles into the graphite crucible, and the thin rolls of silver-copper-tin-titanium are laid flat on the diamond/graphite composition: the top surface is finally placed in a vacuum furnace at 9 5 〇t: heated for 5 minutes. , completing a composite of aluminum, diamond and graphite, the composite The thermal conductivity is comparable to that of pure copper, but its thermal expansion coefficient is only 1/3 of that of copper and 6 and is close to many 'semiconductors (such as G a N) #, so it can be combined with semiconductors to become a scattering attack. Example 7: 5 〇 / 60 The mesh of diamond particles (about 5 〇〇 microns) is mixed with copper-based solder powder (about 20 μm) to achieve a volumetric benefit of 5 〇%, and the mixture is 4 〇 MPa (400 rpm) in Shijiu Mould. Pressurize 'Asian to 750.. Heat for 1 〇 minutes, the final finished diamond metal composite disc is 3 〇mm diameter and 3mm thick. Free Example 8: Place 3 0 / 4 〇 mesh diamond particles mixed with aluminum powder Enter

中,樣本以真空燒爐在丄〇 分鐘讓铭溶化,冷卻後形成 ~~ 5 torr 下以 7 5 〇 一鑽石一铭複合物。 一鋁托盤 °C加熱5 實施例九 將3 0 / 4 〇餘曰μ μIn the middle, the sample is melted in a vacuum furnace for a minute, and after cooling, it forms a ~5 torr 7 7 5 〇 diamond-ming compound. One aluminum tray °C heating 5 Example 9 3 0 / 4 〇 曰 μ μ μ

υ師目的鑽石顆粒放入一石墨模呈中,並 以約 3 2 5 餘 a /'I 曰之 NICR0BRAZLM 粉末(購 g Wa11The diamond particles of the division are placed in a graphite mold and are about 3 2 5 a / 'I NI NICR0BRAZLM powder (purchasing g Wa11

Colmonoy)覆蓋,樣太 知本u真空燒爐在1 0 — 5 t〇rr下以工〇 30 1258333 1 0 °C加熱i 2 顆粒之間形成_ 刀在里讓鎳一路合金炫化 鑽石金屬複合物。 以滲透進入鑽石 實施| 以二1(40筛目的鑽石顆粒放入-石墨模具中,並 以石夕甜0的^覆蓋,樣本以真空燒爐在 以1 4 7 0 t加埶9分浐咳访卜儿 rr下 之門m 以滲透進入鑽石顆粒 之間n鑽石與碎或碳切的複合物。Colmonoy) covered, the sample is too knowledgeable. This u vacuum furnace is heated at 10 to 5 t〇rr with work 〇 30 1258333 1 0 °C to form i 2 particles to form _ knife in the nickel alloy alloy diamond metal compound Things. Infiltrated into the diamond implementation | Take two 1 (40 mesh diamond particles into a graphite mold, and cover with Shi Xitian 0, the sample is vacuumed in a furnace at 1 4 7 0 t plus 9 minutes cough Visit the door of the br under the m to penetrate into the diamond particles between the n diamond and the broken or carbon cut complex.

實施例+ —: 將3 0 / 4 0篩目的鑽石顆粒放入一石墨模具中並擾 動,之後放入2 2 0/ 2 3 0筛目的鑽石顆粒並擾動直到 小顆粒的鑽石填補大顆粒鑽石之間的空隙,堆疊後的鑽石 以3 2 5筛目的¥Γ_ΒΜΖΜ—γ 覆盍,樣本以真空燒爐在1 0- 5t〇r:r下以1 〇 1 〇〇c加 熱1 2分鐘讓鎳一鉻合金溶化’以滲透進入鑽石顆粒之間 形成一鑽石金屬複合物。 實施例十二: 將3 0 / 4 0篩目的鑽石顆粒堆疊在一陰極周圍,並 浸入一含有銅離子的酸浴中’在電流通過後,銅會逐漸沉 積在鑽石顆粒的孔隙中’最後形成一鑽石銅複合物。 31 1258333 實施例十三: 將2 0 / 2 5肖目近似立方體的鑽石顆粒(sda —1 〇〇s 由De Beers公司製作),邊靠邊地對齊於一鋁板上以形 成約4 0,m平方的單|,將一〇 · 7mm厚度的矽晶圓 ,放於單層之表面,樣本以真空燒爐在丄〇_5 t〇rr下以 1 4 5 0 C加熱1 5分鐘讓矽熔化,以滲透進入鑽石顆粒 之間,在冷卻後,該複合物經由機械研磨以去除多餘的矽 ,取後形成一厚約〇 · 8 m m的鑽石複合散熱片,其包含 有9 0 %體積濃度含量,本實施例中使用立方體鑽石顆粒 可以方便其堆疊。 實施例+四: 將4 0 / 5 0篩目的鑽石顆粒與矽和鈦的粉末混合, 整個混合物放入石墨模具之後整個放入一鈦的加熱管,之 後放在一葉蠟石(pyr〇phyllite)塊體上,該塊體置於一 種立方壓力機中並施麼5 . 5GPa,並以電流通過鈦管 來加熱,當矽熔化會溶解鈦並滲透進入鑽石顆粒之間,讓 鑽石顆粒與石夕溶液助劑燒結在—#,在冷卻與減壓後,該 複合物由塊體上移走,最後形成一厚約3 mm、直徑為2Example + —: The 30 0 / 40 0 mesh diamond particles were placed in a graphite mold and disturbed, then the 2 2 0 / 2 30 mesh diamond particles were placed and disturbed until the small particles of diamonds filled the large diamonds. Between the gaps, the stacked diamonds are covered with 325 mesh Γ ΒΜΖΜ ΒΜΖΜ γ 盍, and the sample is heated in a vacuum oven at 1 0 - 5 t 〇 r: r for 1 2 minutes for 1 2 minutes to allow nickel The chromium alloy dissolves to form a diamond metal complex between the diamond particles. Example 12: A 30/40 mesh diamond particle is stacked around a cathode and immersed in an acid bath containing copper ions. After the current is passed, copper will gradually deposit in the pores of the diamond particles. A diamond copper composite. 31 1258333 Example 13: A diamond particle (sda - 1 〇〇s made by De Beers) of 2 0 / 2 5 eyes is approximately aligned on an aluminum plate to form about 40 square meters. Single |, a 〇 7 mm thick 矽 wafer, placed on the surface of a single layer, the sample is heated in a vacuum furnace at 丄〇 5 5 〇 rr at 1 4 5 0 C for 15 minutes to allow the crucible to melt, Infiltrated into the diamond particles, after cooling, the composite is mechanically ground to remove excess ruthenium, and a diamond composite heat sink having a thickness of about 〇·8 mm is formed, which contains a volume concentration of 90%. The use of cubic diamond particles in this embodiment facilitates stacking. Example +4: The 4 0 / 50 mesh diamond particles were mixed with the powder of strontium and titanium, and the whole mixture was placed in a graphite mold and then placed in a heating tube of titanium, followed by a pyrophyllite (pyr〇 phyllite). On the block, the block is placed in a cubic press and applied with 5. 5 GPa and heated by a current through a titanium tube. When the crucible melts, it dissolves the titanium and penetrates into the diamond particles, allowing the diamond particles and the stone eve. The solution aid is sintered at -#. After cooling and decompression, the composite is removed from the block, and finally a thickness of about 3 mm and a diameter of 2 are formed.

Omm的鑽石複合散熱片,纟包含有9 2%體積濃度含量 ,該鑽石複合物以鑽石砂輪研磨,並經過量剩後其熱傳導 性為銅的兩倍。 實施包土·· 32 1258333 將厚約Ο · 5 m m、直俨為ς ^ 古广炎Q 直仫為5 mm的鑽石膜放置在一 直佐為2 0 mm的耐火金屬杯體,以2 石顆粒鋪約1 mm厚㈣目的鑽 予又在鑽石朕的頂面和周圍形成 ,將5 〇/6 0篩目的鑽石顆钴 运 一 “ ^ 、石顆拉舖約1 mm厚度,形成第 一層在乐一層上,最後將8 〇/ 的Ί ^ υ υ師目的鑽石顆粒鋪 、、、、lmm厚度在第二層頂面形成第一 ^ ^ ^ ^… 小珉弟二層,整個系統以熔化 、…氧咼傳導性銅在真空下滲透, 劫-曰+ 凡成後的鑽石複合物散 熱為具有熱傳導梯度。Omm's diamond composite heat sink, which contains 92% by volume, is diamond-grinded with a diamond wheel and has twice the thermal conductivity of copper. Implementation of Baotu····································································································· A 1 mm thick (four) purpose drill is formed on the top and the periphery of the diamond crucible. The 5 〇/60 0 mesh diamond cobalt is transported by a ^ ^, and the stone is spread about 1 mm thick to form the first layer. On the first floor, the 8 〇 / Ί ^ υ υ 目的 钻石 钻石 钻石 钻石 钻石 钻石 、 、 、 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石 钻石...Oxygen-conducting copper penetrates under vacuum, and the diamond composite after the robber-曰+ heat dissipation has a heat transfer gradient.

例十六: 本散熱器與實施例十 鑽石顆粒先預先覆蓋一層 合0 四中製法相同,然而,鑽石膜與 1 # m的鈦以改進鋼滲透劑的結 本散熱器與實施例十四中製法相同,然而,不包含鑽 石膜。將鑽石複合物放入化學氣相滲透系統,再形成一層 2 ,1mm的鑽石膜於第一層上,之後散熱器的周圍再抵 罪形成一無氧高傳導性的銅環,以製成具有變化 度的散熱器。 …、傳梯 本备明之特點為在接觸晶片處可改用鑽石膜或鑽石片 在政熱片末端的較大體積處則以更多的銅取代鑽石。 =兩種改進方法可同時使用或分別使用,端視晶片散熱的 而求與價袼競爭的情況而定。另一方面,由於鑽石具有所 33 I258333 有晶體材料最低的平均熱膨脹係數,戶鑽銅體複合㈣ 的熱膨脹率也比金屬小很多。因此以鑽銅體和半導體的晶 :結合時’其界面的應力較低,這樣晶片就不易剝離或撕 衣,這是本發明中使用鑽銅體之散熱片的另一優點。 综上所述,可以得之本發明之具有鑽石濃度梯度之散 片不僅可以在使用上具有良好的散熱效益及耐用性, 史可以在製作上節省成本,為一藉古 个局種问效能且兼具經濟效益 、貫用發明,特此具文提出發明專利申請。 【圖式簡單說明】 ° (一)圖式部分 第一 a圖係為符合本發明之一散 和-熱沉之熱傳導概要圖。 政…片“例與-熱源 弟:b圖係為符合本發明之另一散熱片實施例與—埶 原和一熱沉之熱傳導概要圖。 …、 第:c圖係為符合本發明之又一散熱片實施例與—執 原和一熱沉之熱傳導概要圖。 …、 圖。第二圖係為本發明中一靠接熱源之散熱片的側邊剖面 片二圖係為本發明中一含有鑽石膜且靠接熱源之散埶 々的側邊剖面圖。 人… 熱片I:係為本發明中另一含有鑽石膜且靠接熱源之散 …、月的側邊剖面圖。 月又 係為本發明中又一散熱片實施例之側邊 、包含有—非碳性材質包圍在含鑽區域四周。 34 1258333 第六圖係為本發明中再一散熱片實施例之側邊剖面圖 ,其包含有一非碳性材質包圍在含鑽區域四周。 第七圖係為多種材料的熱膨脹係數對應熱傳導性的圖 表。 (二)元件代表符號 (1 0 )散熱器 (1 4 ) c P U熱源 (1 6 )熱沉 (1 8 )鰭片 (2 2 )散熱管 (2 4 )内部流體 (2 6 )焊接點 ® (3 0 a — d )鑽石複合物散熱器 (3 2 a — b )熱能湧入區 (3 4 )熱源 (3 6 )熱能流出區 (3 8 )鑽石膜 (4 0 a — b )微粒鑽石區 (4 2 )焊接層 (4 4 )非含碳區塊 35Example 16: The heat sink and the tenth embodiment of the diamond particles are pre-coated with a layer of 0 in the same manner as in the middle, however, the diamond film and 1 #m of titanium to improve the steel penetrant of the heat sink and the fourteenth embodiment The method is the same, however, does not contain a diamond film. The diamond composite is placed in a chemical vapor infiltration system, and a 2,1 mm diamond film is formed on the first layer, and then the periphery of the heat sink is sinned to form an oxygen-free high-conductivity copper ring to make a change. Degree of radiator. ..., the ladder is characterized by the use of diamond film or diamond chip at the contact wafer. The larger volume at the end of the political heat film replaces the diamond with more copper. = Two improved methods can be used simultaneously or separately, depending on the heat dissipation of the chip and the price competition. On the other hand, since the diamond has the lowest average thermal expansion coefficient of the crystal material of 33 I258333, the thermal expansion rate of the copper composite (4) is also much smaller than that of the metal. Therefore, when the copper body and the semiconductor crystal are bonded, the stress at the interface is low, so that the wafer is not easily peeled off or peeled off, which is another advantage of using the heat sink of the copper body in the present invention. In summary, the diffused film with the diamond concentration gradient of the present invention can not only have good heat dissipation efficiency and durability in use, but also can save cost in production, and it can be used for efficiency. With both economic benefits and consistent inventions, it is hereby filed to file an invention patent application. [Simple description of the diagram] ° (1) Schematic part The first a diagram is a schematic diagram of heat conduction in accordance with one of the present invention and the heat sink. The "film" is an example of another heat sink embodiment in accordance with the present invention and a heat transfer diagram of a heat sink and a heat sink. ..., the figure c is in accordance with the present invention. A heat sink embodiment and a heat transfer schematic diagram of a heat sink and a heat sink. The second figure is a side section of the heat sink of the present invention. A side cross-sectional view of a dilute film containing a diamond film and abutting a heat source. A hot piece I: is a side cross-sectional view of another month of the present invention containing a diamond film and abutting a heat source. The side of the further heat sink embodiment of the present invention comprises a non-carbon material surrounded by the drilled area. 34 1258333 The sixth figure is a side cross-sectional view of another heat sink embodiment of the present invention. It consists of a non-carbon material surrounded by the drilled area. The seventh figure is a graph of the thermal expansion coefficient of various materials corresponding to thermal conductivity. (2) Component symbol (1 0) Heat sink (1 4 ) c PU heat source (1 6) Heat sink (1 8 ) fin (2 2 ) heat pipe (2 4 ) internal flow Body (2 6 ) Soldering Point ® (30 a-d) Diamond Composite Radiator (3 2 a — b ) Thermal Inrush Zone (3 4 ) Heat Source (3 6 ) Thermal Energy Outflow Zone (3 8 ) Diamond Film ( 4 0 a — b ) particulate diamond zone (4 2 ) weld layer (4 4 ) non-carbonaceous block 35

Claims (1)

Ϊ258333 I_____ 年i月(匆修(更)正替換頁 拾、申請專利範圍: 〜 一 1 · 一種鑽石複合物散熱片,其包含·· 具有變化性熱傳梯度之含鑽材質,該熱傳梯度在含 才才所 , 貝 熱此湧入區到一熱能流出區而遞減,且由鑽 石體積濃度的變化而決定。 2 ·如申請專利範圍第1項中所述之鑽石複合物散熱 其中’该鑽石體積濃度的變化係由熱能湧入區到熱能 &lt;出區而連續性遞減。 3 ·如申請專利範圍第1項中所述之鑽石複合物散熱 片’其中,該鑽石體積濃度的變化係為一系列不連續區域 ό〆 ΤΤ&gt; π &gt;成’每一區域都有鑽石顆粒的不同濃度。 4 ·如申請專利範圍第1項中所述之鑽石複合物散熱 片 其中該含鑽材質進一步包含有一系列的區域,區域中 並包含該熱能湧入區和熱能流出區,每一區中的鑽石濃度 白車父相鄰且靠近熱能湧入區的鄰區為小。 5 ·如申請專利範圍第1項中所述之鑽石複合物散熱 片’其中,鑽石的體積濃度變化之範圍為3 0 %到9 5 %。 6 ·如申請專利範圍第1項中所述之鑽石複合物散熱 片,其中,熱傳導梯度由一系列具有變化性且跨過含鑽材 貝的平均自由熱傳路徑所決定。 7 ·如申請專利範圍第6項所述之鑽石複合物散熱 片’其中,該變化性的平均自由熱傳路徑係由延著熱傳梯 度上的平均鑽石顆粒大小而決定。 8 ·如申請專利範圍第7項所述之鑽石複合物散熱 36 τ ^ ^ Ο Ο ο ί&quot;^———————~·~™^&quot;^&quot;%^',,ν,^ I i料义月/3崎(更)正替換5 i 一一'^** 片’其中’該含鑽材質進一步包含有/系列的區域,區域 中並包δ δ玄熱月b湧入區和熱能流出區,母一區中的鑽石濃 度皆較相鄰且靠近熱能湧入區的鄰區為小。 9 ·如申請專利範圍第1項所述之鑽石複合物散熱 片,其中,該熱能湧入區包含鑽石膜。 1 0 ·如申請專利範圍第9項所述之鑽石複合物散熱 ”中’熱能 &gt;勇入區的厚度為〇 · 1 m m至1 1T1 m。 1 1 ·如申請專利範圍第1 0項所述之鑽石複合物散 尤、片,其中,熱能湧入區的厚度為〇 · 3 m m至〇 · m。 m 片,=2 ·如申請專利範圍第9項所述之鑽石複合物散$ 中’該含鑽材質進-步包含-微粒鑽石區域於^ °亥谧粒鑽石區域包含有一系列的鑽石顆粒。 熱片丄如申請專利範圍第12項所述之鑽石複合物* 顆Ϊ258333 I_____ i month (hurry repair (more) is replacing the page pick, patent application scope: ~ a 1 · A diamond composite heat sink, which contains · a diamond-containing material with a variability heat transfer gradient, the heat transfer gradient In the talented field, the heat inflow from the zone to the thermal energy outflow zone is decremented and determined by the change in the volume concentration of the diamond. 2 · The diamond composite as described in claim 1 of the patent scope dissipates heat. The change in the volume concentration of the diamond is continuously reduced from the influx of the heat energy to the heat energy. 3 · The diamond composite heat sink as described in claim 1 of the patent, wherein the volume concentration of the diamond is changed. For a series of discontinuous regions ό〆ΤΤ&gt; π &gt; into 'each region has different concentrations of diamond particles. 4 · Diamond composite heat sink as described in claim 1 of the patent, wherein the diamond-containing material further The utility model comprises a series of regions, wherein the heat influx zone and the heat energy outflow zone are included, and the diamond concentration in each zone is small and adjacent to the heat energy inflow zone is small. The diamond composite heat sink described in the first aspect of the patent range wherein the volume concentration of the diamond varies from 30% to 95%. 6 · The diamond composite heat dissipation as described in claim 1 a sheet, wherein the heat transfer gradient is determined by a series of variability and an average free heat transfer path across the diamond-containing shell. 7 - The diamond composite heat sink of claim 6 wherein the change The average free heat transfer path is determined by the average diamond particle size on the heat transfer gradient. 8 · The diamond composite heat dissipation as described in claim 7 is τ ^ ^ Ο Ο ο ί&quot;^— ——————~·~TM^&quot;^&quot;%^',,ν,^ I iYiyue/3Saki (more) is replacing 5 i one by one ^^** piece 'where' The diamond-containing material further includes a/series region, and the region contains a δ δ 玄 hot month b inflow region and a thermal energy effluent region, and the diamond concentration in the parent region is adjacent to the neighboring region near the thermal energy inflow region. 9. The diamond composite heat sink according to claim 1, wherein the heat influx zone Included in the diamond film. 1 0 · The heat dissipation of the diamond composite as described in item 9 of the patent application section 'Thermal energy> The thickness of the Yongjin area is 〇·1 mm to 1 1T1 m. 1 1 ·If the patent application scope The diamond composite according to item 10, wherein the thickness of the heat inflow region is 〇·3 mm to 〇·m. m piece, =2 · The diamond compound according to claim 9 Dispersion $ in the 'Drilling material into the step-containing-particle diamond area in the ^ ° 谧 谧 钻石 diamond area contains a series of diamond particles. Hot film, such as the diamond compound described in item 12 of the patent application* 苴 /、,該一系列的鑽石顆粒每一顆會與至少 '、匕鑽石顆粒相接觸。苴 /,, the series of diamond particles will each contact at least ', 匕 diamond particles. 熱片中請專利範圍第1 3項所述之鑽石複合* 燒結在:::每-顆鑽石顆粒與至少-顆的其它鑽石瑕 熱二5中如申請專利範圍第&quot;項所述之鑽石複合物 其中,微粒鑽石區域中進—牛 °物 熱片,:中申睛專利範圍第15項所述之鑽石複、 θ其中’間隙材質係選自下列η ^物 鋁及其合金。 j f /且包含有:銅、銀 37 1258333In the hot film, please refer to the diamond compound* sintered in the patent scope of item 13: in::: each diamond particle and at least one other diamond heat 2 in the patent as claimed in the scope of &quot; In the composite, in the micro-diamond area, the diamond-like heat sheet, the diamond complex described in Item 15 of the patent application scope, θ, wherein the gap material is selected from the following η aluminum and its alloy. j f / and contains: copper, silver 37 1258333 1 7 ·如申請專利範圍第1 3項所述之鑽石複合物散 熱片’其中,熱能湧入區係直接形成於微粒鑽石區域上。 1 8 ·如申請專利範圍第1 3項所述之鑽石複合物散 熱片’其中,熱能湧入區係直接焊接微粒鑽石區域上。1 7 The diamond composite heat sink of claim 13 wherein the thermal influx is formed directly on the particulate diamond region. 1 8 The diamond composite heat sink of claim 13 wherein the thermal influx is directly welded to the particulate diamond region. 1 9 ·如申請專利範圍第1項所述之鑽石複合物散熱 片’其中’該含鑽材質係抵觸結合於一非含碳塊體中。 2 0 ·如申請專利範圍第1 9項所述之鑽石複合物散 熱片,其中,該非含碳塊體為銅。 d 1 ·如申請專利範圍第1項所述之鑽石複合物散熱 片’其中’該含鑽材質係焊結於一非含碳塊體中。 2 2 ·如申請專利範圍第丄項所述之鑽石複合物散熱 门其中’该散熱器包含有一系列的熱能湧入區域。 2 3 .如申請專利範圍第丄項所述之鑽石複合物散熱 片/、中。玄政熱益包含有一系列的熱能流出區域。2 4 如申請專利範圍第i項所述之鑽石複合物散熱片,其中, 该熱旎湧入區域之熱傳導性為2 4 0 〇 w / 山Γν ,丢玄泰^合t 流出區域之熱傳導性為6 Ο 0 w/m κ 〇 、、bThe diamond composite heat sink of the invention of claim 1, wherein the diamond-containing material is in contact with a non-carbon-containing block. The diamond composite heat sink of claim 19, wherein the non-carbonaceous block is copper. d 1 · The diamond composite heat sink of claim 1 wherein the diamond-containing material is welded to a non-carbonaceous block. 2 2 · A diamond composite heat-dissipating door as described in the scope of claim 2 wherein the heat sink comprises a series of thermal energy influx areas. 2 3. The diamond composite heat sink/, as described in the scope of the patent application. Xuanzheng Thermal Benefits includes a series of thermal energy outflow areas. 2 4 The diamond composite heat sink according to claim i, wherein the thermal conductivity of the enthalpy inflow region is 2400 〇w / Γν, and the thermal conductivity of the 玄 泰 ^ ^ 6 Ο 0 w/m κ 〇, , b 乙ΰ •一種製造散熱器的方法, 決定散熱器體積; 基於熱源特性來設計散熱器, 與 其包括下列步驟: 使其具有一熱量變曲ΰ ΰ • A method of making a heat sink that determines the volume of the heat sink; designing the heat sink based on the characteristics of the heat source, and including the following steps: 放熱為、體積形成熱傳梯度的含鑕 可達成該熱量變曲線,其中,形成含鑽 有堆4: 一糸列的鑽石顆粒在一預定的路 ,該熱傳梯度 的步驟中包含 ,其特徵在於 38The heat-reducing curve can be achieved by forming a heat-transfer gradient containing enthalpy, wherein the formation of diamond-containing particles having a stack of 4: a stack is included in a predetermined path, and the heat transfer gradient is included in the step 38 月ί多日修(更)正替換0 1258333 變化鑽石顆粒的大小來形成微粒鑽石區域 =6 ’如申請專利範圍第2 5項所述之方法,其中, L m的鑽;5顆粒之步驟為··先在_模具中放一 層之鑽石顆粒,接著再堆疊一或 層的鑽石顆粒皆I有&quot; s 顆粒,而每- 〃、有&amp;其底τ —層為小的平均鑽石顆粒大 yj\ 〇 2 7 .如申請專利範圍第2 5項所述之方法 , 堆疊-具有第—平均 '、 再以較小的鑽石顆粒埴…—糸列鑽石顆粒’之後 以# &amp;一斤一 4 ” ' ^ 、弟系列鑽石顆粒間的空隙, 形成一弟一微粒鑽石區域。 2 8 ·如申請專利範圍第2 7項所述之方法,立中, 堆豐進一步包含有鋪設一 弟一尔歹〃錶石顆粒於第一微粒鑽 。…之後再以較小的鑽石顆粒填補於第二争列鑽石顆 粒間的空隙,a祀士 # ^ m ^ m '、 化成一弟二微粒鑽石區域。 .2 9 ·如申請專利範圍第2 5項所述之方法,其中, 進^包3有形成一鑽石膜鄰接於微粒鑽石區域。 3 0 .如申請專利範圍第2 9項所述之方法,, 該鑽石膜的形成方法係由 /、 鑽石區域的表面。 卞秦“法直接形成於微粒 3 1 ·如中請專利範圍第2 9項所述之方法,, 該鑽石膜的形成方法係 ,、τ 干接法直接、、,口 δ於微粒鑽石區域 的表面。 3 2 .如申請專利範圍第2 5項所述之方法,直中, 該微粒鑽石區域抵觸接合於-非含碳塊體。 、 39 1258333 丨靡^爾%费使㈣: ----------------------..·.·------------------------------------„ —...............— ·' .' 3 3 ·如申請專利範圍第3 2項所述之方法,其中, 該非含碳塊體含有銅。 3 4 ·如申請專利範圍第2 5項所述之方法,其中, 方法中包含將該微粒鑽石區域以一非含碳材質滲透。 3 5 ·如申請專利範圍第2 5項所述之方法,其中, 方法中包含將燒結該微粒鑽石區域。 3 6 ·如申請專利範圍第2 5項所述之方法,其中, 堆疊時每一鑽石顆粒會與至少一顆的其它鑽石顆粒相接 觸。 3 7 ·如申請專利範圍第2 5項所述之方法,其中, 預期的熱源為C P U。The month of the month is more than 0 1258333 to change the size of the diamond particles to form a particle diamond area = 6 ' as described in claim 25, wherein the L m drill; the 5 particle step is ··········································································································· Yj\ 〇2 7. As described in the patent application, item 25, stacking - having the first - average ', then with smaller diamond particles 糸 ... - 钻石 钻石 diamond particles ' after # &amp; 4 ” ' ^ , the gap between the diamond particles of the brother series, forming a younger-particle diamond area. 2 8 · As described in the patent scope of item 27, Lizhong, Hefeng further includes laying a brother and a The sapphire particles are drilled in the first particle. After that, the smaller diamond particles are filled in the gap between the second contiguous diamond particles, a gentleman # ^ m ^ m ', into a two-part diamond region. .2 9 · If the method described in claim 25, In the case of the package 3, a diamond film is formed adjacent to the particle diamond region. The method of forming the diamond film is based on the surface of the diamond region, as described in claim 29, 。. The "Qin" method is directly formed on the microparticles 3 1 · The method described in the ninth item of the patent scope, the method for forming the diamond film, the τ dry connection method directly, and the mouth δ is on the surface of the microparticle diamond region . 3 2. The method of claim 25, wherein the particulate diamond region is in contact with the non-carbonaceous block. , 39 1258333 丨靡^尔%费使(四): ----------------------..·.·----------- ------------------------- „ —............... — ·' .' 3 3 · The method of claim 3, wherein the non-carbon-containing block contains copper. The method of claim 25, wherein the method comprises The method of claim 25, wherein the method comprises sintering the particulate diamond region. 3 6 · The method of claim 25 Wherein, each of the diamond particles is brought into contact with at least one of the other diamond particles when stacked. 3 7. The method of claim 25, wherein the intended heat source is a CPU. 4040
TW93117360A 2004-06-16 2004-06-16 Diamond composite heat spreader having thermal conductivity gradients and associated methods TWI258333B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93117360A TWI258333B (en) 2004-06-16 2004-06-16 Diamond composite heat spreader having thermal conductivity gradients and associated methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93117360A TWI258333B (en) 2004-06-16 2004-06-16 Diamond composite heat spreader having thermal conductivity gradients and associated methods

Publications (2)

Publication Number Publication Date
TW200601942A TW200601942A (en) 2006-01-01
TWI258333B true TWI258333B (en) 2006-07-11

Family

ID=37765234

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93117360A TWI258333B (en) 2004-06-16 2004-06-16 Diamond composite heat spreader having thermal conductivity gradients and associated methods

Country Status (1)

Country Link
TW (1) TWI258333B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8288655B2 (en) 2008-08-29 2012-10-16 Industrial Technology Research Institute Circuit board structure and manufacturing method thereof
CN105755308A (en) * 2016-04-13 2016-07-13 东莞市联洲知识产权运营管理有限公司 Novel high-thermal-conductivity diamond/aluminum composite material and preparation method thereof
CN105922675A (en) * 2016-04-25 2016-09-07 东莞市联洲知识产权运营管理有限公司 Aluminum-based diamond insulated gate bipolar transistor (IGBT) heat-radiating substrate material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8288655B2 (en) 2008-08-29 2012-10-16 Industrial Technology Research Institute Circuit board structure and manufacturing method thereof
CN105755308A (en) * 2016-04-13 2016-07-13 东莞市联洲知识产权运营管理有限公司 Novel high-thermal-conductivity diamond/aluminum composite material and preparation method thereof
CN105922675A (en) * 2016-04-25 2016-09-07 东莞市联洲知识产权运营管理有限公司 Aluminum-based diamond insulated gate bipolar transistor (IGBT) heat-radiating substrate material and preparation method thereof
CN105922675B (en) * 2016-04-25 2018-06-12 东莞市联洲知识产权运营管理有限公司 A kind of aluminium base diamond IGBT heat-radiating substrate materials and preparation method thereof

Also Published As

Publication number Publication date
TW200601942A (en) 2006-01-01

Similar Documents

Publication Publication Date Title
TWI307145B (en) Carbonaceous heat spreader and associated methods
US6984888B2 (en) Carbonaceous composite heat spreader and associated methods
US7384821B2 (en) Diamond composite heat spreader having thermal conductivity gradients and associated methods
US7791188B2 (en) Heat spreader having single layer of diamond particles and associated methods
US20080019098A1 (en) Diamond composite heat spreader and associated methods
US8531026B2 (en) Diamond particle mololayer heat spreaders and associated methods
CN105112754B (en) Three-dimensional network diamond framework strengthens metal-base composites and preparation method
US20070295496A1 (en) Diamond Composite Heat Spreader
US20020023733A1 (en) High-pressure high-temperature polycrystalline diamond heat spreader
JP2004525050A (en) Thermal conductive material
TW201113494A (en) Heat dissipation structure and manufacturing method thereof
CN103966533A (en) Diamond heat-conducting composite material and preparation method thereof
TWI258333B (en) Diamond composite heat spreader having thermal conductivity gradients and associated methods
CN102465213A (en) High heat conduction diamond heat sink material and preparation method thereof
TW201219131A (en) comprising multiple stacked and bonded composite bodies each of which is formed by using a metal substrate to enclose a single layer of planar arrangement of diamond particles
CN113614266B (en) Composite material
CN100375275C (en) Diamond composite material radiating fin with heat transfer gradient and its producing method
JP4968636B2 (en) Method for producing high-density solidified article with controlled continuous phase and dispersed phase
TWI394928B (en) A hot plate with single layer diamond particles and its related methods
TW201714823A (en) Ultra high diamond boundary enhanced polycrystalline diamond compact

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees