201120073 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種改質共軛二烯系聚合物之製造方法、 改質共軛二烯系聚合物、及改質共軛二烯系聚合物組合 物0 【先前技術】 近年來,二氧化碳排出量之抑制等對環境之考慮正在成 :杜會性之要求。具體而言’對汽車之低燃費化要求逐漸 提问。考慮到此種現狀,作為汽車用輪胎、尤其是與地面 接觸之輪胎面之材料,要求開發一種轉動阻力較小之材 2。另一方面,就安全性之觀點而言,要求開發一種抗濕 滑性優異、且具有實用上充分之耐磨耗性、破壞特性之材 料。 不 作為輪胎面之補強性填充劑 7¾ 7U 1 尔 1¾用 黑、—备 化矽等。罝古从 …、—乳 乂、 /、有右使用二氧化矽,則可實現低磁滯損耗性及 性之提昇之優點。然而,相對於疏水性表面之碳 紗Γ水性表面之二氧切具有與m系橡膠之親和 性或與妷黑相比分散性較差之缺點,因此為改善分散 Γ劑ί於二氧化石夕_橡夥間形成鍵,必須另外含有石夕院偶 橡:二:年來:進行了以下嘗試:藉由於運動性較高之 _導入具有與二氧化矽之親和性或反應性之 利二二:良橡膠材中之二氧化石夕之分散性,進而藉由 石夕粒子之鍵結而封阻橡膠分子末端部,而降 150826.doc 201120073 低磁滯損耗。例如,於專利文獻1中,揭示有使具有縮水 甘油基胺基之改質劑與聚合物末端反應而獲得之改質二烯 系橡膠,於專利文獻2中,揭示有使縮水甘油氧基烷氧基 矽烷與聚合物末端反應而獲得之改質二烯系橡膠。進而, 於專利文獻3〜7中,揭示有使具有胺基之烷氧基矽烷類與 聚合物末端反應而獲得之改質二烯系橡膠、及該等與二氧 化矽之組合物。 [先前技術文獻] [專利文獻] [專利文獻1]國際公開第01/23467號小冊子 [專利文獻2]曰本專利特開平〇7_233217號公報 [專利文獻3]曰本專利特開2〇01_158834號公報 [專利文獻4]曰本專利特開2〇〇3171418號公報 [專利文獻5]國際公開第〇7/34785號小冊子 [專利文獻6]國際公開第〇8/13〇9〇號小冊子 [專利文獻7]國際公開第〇7/1142〇3號小冊子 【發明内容】 L發明所欲解決之問題] 然而,向末端導入盥-备^ ---氧化矽之反應性較高之官能基之 情形時,於混練步驟中袍#為二, /咪宁進仃與二氧化矽粒子之反應,組合 物之黏度上升’會出規d 出現以下等加工性惡化之傾向··變得難 以練’或混練後製点y 衷成片材時容易產生表面粗糙或開裂。 又’於製成硫化橡膠時, ^ ^ , . 尤八疋製成包含無機填充劑之硫 化橡膠時,要求進一缶 ,良低磁滯損耗性與抗濕滑性之平 150826.doc 201120073 衡。 本發明係雲於上述情況而實施者,其目的在於提供一種 改質共軏:烯系聚合物之製造方法、改f錄二埽系聚合 物、及改質共軛二烯系聚合物組合物,該改質共軛二烯系 聚合物於製成硫化橡膠時,低磁滞損耗性與抗濕滑性之平 衡優異,具有實用上充分之耐磨耗性或破壞強度,且加工 性亦優異。 [解決問題之技術手段] 本發明者等人為解決上述問題而進行銳意研究探討,結 果發現藉由如下之改質共軛二烯系聚合物之製造方法可解 決上述問題,該製造方法包括以下步驟:聚合步驟,其其 使用鹼金屬化合物或鹼土金屬化合物作為聚合起始劑,使 共軛二烯化合物或共軛二烯化合物與芳香族乙烯基化合物 I合或共聚合’藉此獲得具有活性末端之共輛二稀系聚合 物’及改質步驟’其使特定結構之化合物與上述共輛二稀 系聚合物之上述活性末端反應;從而完成本發明。 本發明如下所述。 [1] 一種改質共軛二烯系聚合物之製造方法,其包括以下步 聚合步驟,其使用鹼金屬化合物或鹼土金屬化合物作為 聚合起始劑,使共軛二烯化合物或共軛二烯化合物與芳香 族乙烯基化合物聚合或共聚合,藉此獲得具有活性末端之 共軛二烯系聚合物;及 s 150826.doc 201120073 改質步驟,其使改質劑與上述共軛二烯系聚合物之上述 活性末端反應,該改質劑係具有丨個以上之包含2個以上之 氮原子與烴的雜環式結構、且具有2個以上之鍵結有2個以 上之烷氧基的矽烷基之化合物。 [2] 如[1]之改質共軛二烯系聚合物之製造方法,其中上述 改質劑係下述式(1)所示之化合物: [化1] (R 0)-Si—R-—N m I R3 K (3-m)201120073 VI. [Technical Field] The present invention relates to a method for producing a modified conjugated diene polymer, a modified conjugated diene polymer, and a modified conjugated diene polymerization. Composition 0 [Prior Art] In recent years, environmental considerations such as suppression of carbon dioxide emissions are becoming a requirement for punctuality. Specifically, the question of the low fuel consumption of automobiles has gradually been asked. In view of such a situation, it is required to develop a material having a small rotational resistance as a material for a tire for an automobile, particularly a tire surface in contact with the ground. On the other hand, from the viewpoint of safety, it is required to develop a material which is excellent in wet skid resistance and has practically sufficient abrasion resistance and fracture characteristics. It is not used as a reinforcing filler for the tread surface. 73⁄4 7U 1 尔 13⁄4 with black, 备 矽, etc. From the age of ..., - milk, /, with the right to use cerium oxide, can achieve the advantages of low hysteresis loss and improved. However, the dioxotomy of the water-repellent surface of the carbon yarn with respect to the hydrophobic surface has the disadvantage of being inferior to the m-type rubber or the dispersibility compared with the ruthenium black, and therefore, in order to improve the dispersion Γ ί 二 二 二 二 二The bond between the oaks must be additionally contained in the Shixiyuan rubber. Two: Years: The following attempts were made: by virtue of the higher mobility, the introduction of affinity or reactivity with cerium oxide is good: The dispersibility of the dioxide in the rubber material, and then the end of the rubber molecule is blocked by the bonding of the Shixi particles, and the low hysteresis loss is reduced by 150826.doc 201120073. For example, Patent Document 1 discloses a modified diene rubber obtained by reacting a modifier having a glycidylamino group with a polymer terminal, and Patent Document 2 discloses that glycidyloxyalkylene is disclosed. A modified diene rubber obtained by reacting oxydecane with a polymer terminal. Further, Patent Documents 3 to 7 disclose modified diene rubber obtained by reacting an alkoxy decane having an amino group with a polymer terminal, and a combination thereof with cerium oxide. [PRIOR ART DOCUMENT] [Patent Document 1] International Publication No. 01/23467 pamphlet [Patent Document 2] Japanese Patent Laid-Open Publication No. Hei 7-233217 (Patent Document 3) Patent Application No. 2〇01_158834 [Patent Document 4] Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 7/34785 [Patent Document 5] International Publication No. 8/13〇9〇 Brochure [Patents] Document 7] International Publication No. 7/1142〇3 Booklet [Summary of the Invention] Problems to be Solved by L Invention] However, when a functional group having a high reactivity of ruthenium-prepared ruthenium oxide is introduced into the terminal At the time of the kneading step, the robe # is two, /Mi Ningjin and the cerium oxide particles react, and the viscosity of the composition rises, and the tendency of deterioration of the following processing properties such as the following may occur. After the mixing, the point y is apt to form a sheet which is prone to surface roughness or cracking. In addition, when vulcanized rubber is produced, ^^, ., when making a vulcanized rubber containing an inorganic filler, it is required to further improve the low hysteresis loss and the wet skid resistance. The present invention is directed to the above-mentioned circumstances, and an object of the present invention is to provide a modified oxime: a method for producing an olefinic polymer, a diterpene-based polymer, and a modified conjugated diene-based polymer composition. When the modified conjugated diene polymer is used as a vulcanized rubber, it has excellent balance between low hysteresis loss and wet skid resistance, and has practically sufficient abrasion resistance and fracture strength, and is excellent in workability. [Means for Solving the Problems] The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that the above problems can be solved by the following method for producing a modified conjugated diene polymer, which comprises the following steps a polymerization step of using an alkali metal compound or an alkaline earth metal compound as a polymerization initiator to combine or copolymerize a conjugated diene compound or a conjugated diene compound with an aromatic vinyl compound I, thereby obtaining an active terminal A total of two dilute polymer 'and a upgrading step' which reacts a compound of a specific structure with the above-mentioned active terminal of the above-mentioned co-diuretic polymer; thereby completing the present invention. The invention is as follows. [1] A method for producing a modified conjugated diene polymer, comprising the step of polymerizing an conjugated diene compound or a conjugated diene using an alkali metal compound or an alkaline earth metal compound as a polymerization initiator Polymerizing or copolymerizing a compound with an aromatic vinyl compound, thereby obtaining a conjugated diene polymer having an active terminal; and s 150826.doc 201120073 a upgrading step of polymerizing a modifier with the above conjugated diene The above-mentioned active terminal reaction of the substance has a heterocyclic structure containing two or more nitrogen atoms and a hydrocarbon, and two or more decanes having two or more alkoxy groups bonded thereto Base compound. [2] The method for producing a modified conjugated diene polymer according to [1], wherein the modifying agent is a compound represented by the following formula (1): [Chemical Formula 1] (R 0)-Si-R -—N m I R3 K (3-m)
(1) (式(1)中,R〜R分別獨立,表示碳數卜⑼之烧基或芳基, R5及R6分別獨立,表示碳數卜“之伸烷基,R7及R8分別獨 立,表示碳數1〜6之烴基,且鄰接之一起形成5員環以 上之環結構,爪及11分別獨立,表示2或3之整數)。 [3] 如Π]或[2]之改質共軛二烯系聚合物之製造方法其中 上述改質财之所有碎烧基均為鍵結有3個炫氧基之石夕院 基。 [4] 如[1]至[3]中任一項之改質共軛二烯系聚合物之製造方 法’其中鍵結於上述改質劑中之梦院基上的炫氧基之總莫 耳數於成為上述聚合起始劑之添加莫耳數的倍之範 圍内。 150826.doc 201120073 [5] H至[4]中項之改質共輕二稀系聚合物之製造方 法,其中上述聚合步驟為連續式。 [6] 如⑴至[5]中任—項之改f共輕二料聚合物之製造方 二’::」文質共L婦系聚合物之利用凝膠滲透層析法 ⑽〇所付㈣苯乙烯換算之數量平均分子量為,咖〜 600500〇 〇 [7] 一種改f共辆二稀系聚合物,其係藉由如[1]至[6]中任 -項之改質共軛二烯系聚合物之製造方法所獲得者。 [8] 一種改質共軛二烯系聚合物組合物,其包含·· 含有20質量份以上之如[7]之改質共軛二烯系聚合物的 橡膠成分100質量份、及 二氧化矽系無機填充劑0 5〜3〇〇質量份。 [發明之效果] 根據本發明,可提供—種改質共軛二烯系聚合物之製造 方法、改質共扼二烯系聚合物'及改質共軛二烯系聚人物 組S物,該改質共軛二烯系聚合物於製成硫化橡膠時,低 磁滯損耗性與抗濕滑性之平衡優異,具有實用上充分之= 磨耗性或破壞強度’且加工性亦優異。 【實施方式】 以下,就用以實施本發明之形態(以下,稱為「— +貫施 λ 130826.doc 201120073 形態」)加以詳細說明β以下之本實施形態係用以說明本 發明之例示,但並不表示將本發明限定於以下之内容。本 發明可於其主旨之範圍内適當地變形而實施。 本實施形態之改質共軛二烯系聚合物之製造方法包括以 下步驟: 聚合步驟,其使用鹼金屬化合物或鹼土金屬化合物作為 聚合起始劑’使共概二烯化合物或共輊二烯化合物與芳香 族乙烯基化合物聚合或共聚合,藉此獲得具有活性末端之 共輕一婦系聚合物;及 改質步驟,其使改質劑與上述共軛二烯系聚合物之上述 活性末端反應,該改質劑係具有1個以上之包含2個以上之 氮原子與烴的雜環、且具有2個以上之鍵結有2個以上之烷 氧基的矽烷基之化合物。 於本實施形態之改質共輛二烯系聚合物之聚合步驟中, 使用驗金屬化合物或驗土金屬化合物作為聚合起始劑’使 ::二稀化合物或共輛二締化合物與芳香族乙烯基化合物 聚《或共聚合,藉此獲得具右 具有,舌性末端之共軛二烯系聚合 物。 =改質共輛二烯系聚合物之共輛二烯系聚合物係單— 一軛一烯化合物之聚合物 之聚合物即共聚物、或共二’之共軛二烯化合物 合物之共聚物。 輪―歸化合物與芳香族乙烯基化 異戊一稀、2,3-二曱基 =共乾二稀化合物,為能夠聚合之單體即可,並無特 另】限疋,例如可舉出1,3. 150826*doc 201120073 丁二烯、1’3-戍二烯、3_甲基],3_戊二烯、丄3•庚二 婦、U3-己二稀等。該等之中’就工業上獲得之容易性: 觀點而言,較佳為以·丁二烯、異戊二稀。該等既可單獨 使用’亦可組合使用2種以上。 作為芳香族乙縣化合物,為能夠與共輕二婦化人物丘 聚合之單體即可,並無特別限定,例如可舉出笨乙稀1 曱基笨乙稀、α-甲基苯乙稀、乙烯基乙基苯、乙稀基二甲 笨三乙稀基萘、二苯基乙稀等。該等之中,就工業上獲得 之容易性之觀點而言,較佳為苯乙稀。該等既可單獨使 用’亦可組合使用2種以上。 於共輛二稀系聚合物為共聚物之情形時,既可為無規共 聚物,亦可為嵌段共聚物。作為無規共聚物,可舉出丁二 烯-異戊二稀無規共聚物、τ二烯·笨乙烯無規共聚物、異 戊二浠·苯乙烯無規共聚物、丁U戊二埽·苯乙稀無規 共聚物等。作為共聚物鏈中之各單體之組成分佈,可舉出 統計上接近無規之組成的完全無規共聚物'或呈錐形具有 組成之分佈的錐形無規共聚物等。共輛二稀之鍵結方式、 I7,鍵、、、α或1,2-鍵結等組成既可均勻,亦可具有分佈。 作為敢段共聚物,可舉出包含2個嵌段之2型嵌段共聚 物匕3 3個肷段之3型嵌段共聚物、包含4個嵌段之4型嵌 U物等。例如’若以8表示包含苯乙稀等芳香族乙烯 基化《物之嵌段,以Β表示包含丁二稀或異戊二稀等共軛 一烯化合物之嵌段及/或包含芳香族乙烯基化合物與共軛 一烯化〇物之共聚物的嵌段,則以S-B2型嵌段共聚物、S- 150826.doc £ 201120073 B-S3型嵌段共聚物、S-B-S-B4型嵌段共聚物等表示。 . —t 中,各嵌段之邊界無需明確地區分。於嵌段B為芳香埃 烯基化合物與共軛二烯化合物之共聚物之情形時,嵌俨B 中之芳香族乙烯基化合物既可均勻地分佈,或者亦可錐形 地分佈。又,嵌段B中亦可分別共存複數個芳香族乙烯基 化合物均勻地分佈之部分及/或錐形地分佈之部分。又 嵌段B中亦可共存複數個芳香族乙烯基化合物含量不同之 片段。共聚物中分別存在複數個嵌段s、嵌段B之情形時, 該等之分子量或組成等結構既可相同,亦可不同。 本實施形態中,藉由使具有官能基之共軛二烯系聚合物 進而於惰性溶劑中氫化,可將雙鍵之全部或一部分轉換為 飽和烴。於此情形時,耐熱性、耐候性提昇,可防止於言 溫下加工時之製品之劣化。其結果,於汽車用途等各種: 途中發揮更加優異之性能。 更具體而言,基於共軛二烯化合物之不飽和雙鍵之氫化 :(即「氫化率」)可視目的而任意地選擇,並無特別限 定。作為硫化橡膠而使用之情形時,較佳為共軛二烯部之 雙鍵殘存-部分。就此觀點而言,聚合物中之共輛二稀部 之氫化率較佳為3〜70❶/。,更佳為5〜65%,進而較佳為 10〜60%。再者’基於共軛二烯化合物與芳香族乙烯基化 合物之共聚物中之芳香族乙婦基化合物的芳㈣雙鍵之氫 化率並無特別限定,較佳為5〇%以下,更佳為30。/。以下, 進而較佳為20%以下。氫化率可藉由核磁共振裝置 測定。 150826.doc -10- 201120073 作為氫化方法,並無特別限定,可利用公知之方法 為特別適合之氫化方法,可舉出於觸媒之存在 乍 合物溶液中吹入氣體狀氮之方法而氯化之方法。作= 媒,可舉出:使貴金屬擔載於多孔質無機物質上而成=觸 ’勺系觸媒,-解錦、姑等鹽並使其與有機 應而成之觸媒,使用二茂鈦等二茂金屬之觸媒等均= 媒專。該等之中,尤其是就可選擇溫和之氣化條件之_ 二全Γ佳為二茂鈦觸媒…芳香族基之氫化可藉由使 用貝金屬之擔載觸媒而進行。 史 作為氫化觸媒之具體例’可舉出:⑴使Ni、 、 以等金屬擔載於碳、二氧化石夕、氧化紹、石夕藻 型不均勾系氯化觸媒,⑺使^、co、Fe、cr#:t= =乙酿丙_鹽等過渡金屬鹽與有機铭等還原劑之所謂齊 格勒型氯化觸媒,及(3)Ti、Rnzr等有機金屬化A 物專所謂之有機金屬錯合物等。例如,作為氯化觸媒,可 使用日本專利特公昭42·請4號公報、日本專利特公昭仏 6636號公報、日本專利特公昭队侧號公報、日本專利 特公平W7970號公報、日本專利特公平號公報、 日本專利特公平2_9()41號公報、日本專利特開平8] 092 i 9 號公報中記載之氫化觸媒。作為較佳之氫化觸媒,可舉出 二茂鈦化合物與還原性有機金屬化合物之反應混合物。 作為用作聚合起始劑之驗金屬化合物,並無特別限定, 較佳為有機鐘化合物。作為有機鐘化合物,可舉出低分子 化合物、可溶之募聚物之有機鋰化合物、於有機基與鋰之 150826.doc 201120073 鍵結方式中包含碳-鋰鍵之化合物、包含氮_鋰鍵之化合 物、包含錫-鋰鍵之化合物等。作為有機鋰化合物,例如 :舉出正丁基鋰、第二丁基鋰、第三丁基鋰、i己基鋰、 苄基鋰、苯基鋰、芪基鋰等。作為包含氮鋰鍵之化合 物可舉出一甲基醯胺鋰、二乙基醯胺鋰、二丙基醯胺 鋰一正己基醯胺鋰、二異丙基醯胺鋰、六亞甲基醯亞胺 鋰、吡咯啶鋰、哌啶鋰、五亞甲基醯亞胺鋰、咮啉鋰等。 入除上述單有機鋰化合物以外,亦可併用多官能有機鋰化 口物而進行聚合。作為多官能有機鋰化合物,例如可舉出 I4-二鋰丁烷、第二丁基鋰與二異丙烯基苯之反應物, 1’3,5-三㈣、正丁基鋰與13_τ二稀及二乙烯基苯之反應 物,正丁基鋰與聚乙炔化合物之反應物等。進而,亦可使 用美國專利第5,7〇8,〇92號說明書、英國專利第2,241,239號 說明書、美國專利第5,527,753號說明書等中揭示之有機鹼 金屬化合物。 作為有機㈣合物,就工業上獲得之容易性及聚合反應 之控制之容易性之觀點而言,較佳為正丁基鋰、第二丁基 鋰。 Α 該等有機鋰化合物既可僅使用丨種,亦可製成2種以上之 混合物而使用。 作為其他有機鹼金屬化合物,例如可舉出有機鈉化合 物、有機鉀化合物、有機铷化合物、有機鏠化合物等。具 體而言,可舉出鈉萘、斜萘等。此外,亦可舉出鐘、納及 卸等坑醇鹽、續酸鹽、碳酸鹽、酿胺等。X,亦可與其他 150826.doc • 12- 201120073 有機金屬化合物併用。 作為驗土金屬化合物’可舉出有機鎂化合物、有_化 合物、有機錫化合物等。具體而言,可舉出二丁基鎂、乙 基丁基鎮、丙基丁基鎮等亦可使用驗土金屬之燒醇 鹽、續酸鹽、碳酸鹽、酿胺等仆入 牧手化合物。該等有機鹼土金屬 化合物亦可與驗金屬化合物或其他有機金屬化合物併用。 於本實施形態中’共拖二烯系聚合物較佳為將上述驗金 屬化合物及/或驗土金屬化合物作為聚合起始劑,藉由陰 離子聚合反應而成長獲得。共概二烯系聚合物特佳為藉: =性=離子聚合之絲反應而獲得之具有活性末端之聚合 藉此’可獲得高改質率之改質共輕二稀系聚合物。作 為聚合方式,並無特別限定,可藉由批次式、或利用連接 有2個以上之反應器之連續式等聚合方式而進行。尤其是 =由聚合步驟設為連續式,可穩定地生產分子量相對: 面之聚合物,故較佳。 若聽二料合物中作為㈣而含有丙二軸、乙块類 =(7礙後述之改Μ應之虞。因此,該等雜質之含 里辰又里)之和較佳為2〇〇 ppm以下,更佳為⑽ =而較佳為一下。作為丙二婦類,例如可舉出 1,2-丁一烯等。作為乙炔類,例如 快、乙烯基乙炔等。 乙基乙 =二埽系聚合物之聚合反應較佳為於溶财進行。作 為:劑’例如可舉出飽和烴、芳香族煙等烴系溶劑。具體 而5 ’可舉出丁烷、戊烷、己烷、庚烷等脂肪族烴·環戊 μ 150826.doc 13 ι 201120073 甲苯、二甲奸I 燒等脂環族烴;笨、 认至二族烴及包含該等之混合物之煙等。供 ,,’。聚&反應前利用有機金屬化合物對作 嫌 類或乙快類加以處理,存在獲得具有高濃度之活性= t合物之傾向,存在實現更高之改質率之傾向,故較佳。 於共輕二烯系聚合物之聚合反應中’為使芳香族乙稀基 化合物與共輛二埽化合物無規地共聚合,作為用以控群 辆二稀部之微結構之乙縣化劑’或者為改善聚合速^ 等,亦可添加少量之極性化合物。 又 作為極性化合物,可使用四氫呋喃、二乙醚、二噚烷、 乙二醇二曱醚、乙二醇二丁醚、二乙二醇二甲醚、二乙二 醇二丁醚、二甲氧基笨、2,2_雙(2_四氫咬喃基)丙院等: 類,四甲基乙二胺、二苯趟二甲酸 '三甲基胺、三乙基 胺、。比啶、哺啶等三級胺化合物;第三戊醇鉀、第三丁$ 鉀、第三丁醇鈉、戊醇鈉等鹼金屬烷氧化物化合物;三苯 基膦等膦化合物等。該等極性化合物既可單獨使用丄種, 亦可組合使用2種以上。 極性化合物之使用量並無特別限定,根據目的與效果之 程度而選擇。通常相對於聚合起始劑丨莫耳較佳為 0.01〜100莫耳。此種極性化合物(乙烯基化劑)可作為聚合 物共軛一烯部分之微結構之調節劑而根據所需之乙烯基鍵 結量適量使用。較多之極性化合物同時於共軛二烯化合物 與;香知乙稀基化合物之共聚合中具有有效之無規化效 果’可用作芳香族乙烯基化合物之分佈之調整或苯乙婦嵌 -14· 150826.doc 201120073 段里之調整劑。作先枯丛±c _ Λ m規化… 合物與芳香族乙烯基化 1法’亦可使用如曰本專利特開叫 "丁〜 載於共聚合之中途間歇性地添加 I,3-丁一烯之—部分之方法。 聚合溫度只要為活性陰離子聚合等聚合反應進行之溫 度’則無特別限定’就生產性之觀點而言,較佳為(TC以 上’,充分地確㈣於聚合結束後之活財端的改質劑之 反應量之觀點而言,較佳為120。〇以下。 又就防止共軛二烯系聚合物之冷流之觀點而言,亦可 使用用以控制分支之二乙烯基苯等多官能芳香族乙烯基化 合物。 本貫施形態之共輛二稀S聚合物中之鍵結共輛二婦量並 無特別限定,較佳為50〜1〇〇質量%,更佳為6〇〜8〇質量%。 又,本實施形態之共軛二烯系聚合物中之鍵結芳香族乙烯 基量並無特別限定,較佳為〇〜5〇質量%,更佳為2〇〜4〇質 量%。若鍵結共軛二烯量及鍵結芳香族乙烯基量為上述範 圍,則可獲得低磁滯損耗性與抗濕滑性之平衡更優異、亦 滿足耐磨耗性或破壞強度之硫化橡膠^此處,鍵結芳香族 乙烯基畺可藉由苯基之紫外吸光而測定,由此亦可求得鍵 結共軛二烯量。具體而言,可藉由基於後述實施例之方法 而測定。 又,共軛二烯鍵結單元中之乙烯基鍵結量並無特別限 定,較佳為10〜75莫耳%,更佳為25〜65莫耳❶/❶。若乙稀基 鍵結量為上述範圍’則可獲得低磁滯損耗性與抗濕滑性之 150826.doc -15- 201120073 平衡更優異、亦滿足耐磨耗性或破壞強度之硫化橡膠。此 處,於改質共軛二烯系聚合物為丁二烯與苯乙烯之共聚物 之情形時,可藉由漢普頓(Hampton)之方法(R. R. Hampton, Analytical Chemistry,21,923 (1949))求得丁 二烯鍵結單元 中之乙烯基鍵結量(1,2-鍵結量)。 微結構(上述改質共軛二烯系聚合物中之各鍵結量)於上 述範圍内,進而共聚物之玻璃轉移溫度於-45~-15°C之範 圍内時,可獲得低磁滯損耗性與抗濕滑性之平衡更加優異 之硫化橡膠。關於玻璃轉移溫度,係根據IS022768 : 2006,一面於特定之溫度範圍内升溫一面記錄DSC曲線, 將DSC微分曲線之峰頂(Inflection point,拐點)設為玻璃轉 移溫度。 本實施形態之共軛二烯系聚合物為共輛二烯-芳香族乙 烯基共聚物之情形時,較佳為30個以上之芳香族乙烯基單 元連接而成之嵌段之數量較少或沒有者。具體而言,於共 聚物為丁二稀-苯乙烯共聚物之情形時,於藉由Kolthoff之 方法(I. M. KOLTHOFF,et al·,J. Polym. Sci. 1,429 (1946) 中記載之方法)將聚合物分解,分析不溶於曱醇之聚苯乙 烯量之公知之方法中,30個以上之芳香族乙烯基單元連接 而成之嵌段相對於聚合物量較佳為5質量%以下,更佳為3 質量%以下。 於如上所述之方法中,獲得具有活性末端之共軛二烯系 聚合物後,藉由進行如下改質步驟可獲得本實施形態之改 質共軛二烯系聚合物,該改質步驟係使改質劑與上述共軛 150826.doc •16- 201120073 一烯系聚合物之活性末端反應’該改質劑係具有1個以上 之包含2個以上之氮原子與經的雜環、且具有2個以上之鍵 結有2個以上之烧氧基的矽烷基之化合物。藉由使用具有j 個以上之包含2個以上之氮原子與烴的雜環、且具有2個以 上之鍵結有2個以上之烧氧基的矽燒基之化合物作為改質 劑’可於共辆一烯系聚合物末端與si之間形成鍵。 用作改質劑之上述化合物較佳為其所有矽烷基係鍵結有 3個烷氧基之矽烷基。藉由使用該化合物作為改質劑,可 使改質齊丨之反應性或與其他化合物之相互作用性更加優 異,並且可使所獲得之改質共軛二烯系聚合物之加工性更 加優異。 上述之中,較佳為作為下述式(1)所示之化合物之改質 劑。藉由下述式⑴之烧氧基石夕烧基與共輛二稀系聚合物之 活性末端高效地反應,可更有效地形成共軛二烯系聚合物 末端與S i之間之鍵。 [化2] p7 (Rl〇)~f'R~K 8^-r^s,-(〇r2)⑴ R L n K(3_n) 中,R丨〜R4分別獨立,表示碳數丨〜2〇之烷基或芳基, R及R :別獨立,表示碳數卜2〇之伸烷基,r、r8分別獨 立’表示碳^〜6之烴基’ S鄰接之2個N-起形成5員環以 上之環結構,爪及11分別獨立,表示2或3之整數) 、 作為上述式⑴所示之改質劑,例如可舉出1’4-雙[3_(三 150826.doc -17- 201120073 甲氧基矽烷基)丙基]哌嗜、1,4-雙[3-(三乙氧基矽烷基)丙 基]哌畊、1,4_雙[3-(二甲氧基甲基矽烷基)丙基]哌畊、丨,3_ 雙[3_(二甲氧基矽烧基)丙基]咪唑啶、1,3-雙[3-(三乙氧基 矽烷基)丙基]咪唑啶、13-雙[3-(二甲氧基乙基矽烷基)丙 基]米0坐咬、1,3_雙[3-(三甲氧基石夕烧基)丙基]六氫啦咬、 又[3·(二乙氧基石夕燒基)丙基]六氫嘴咬、ι,3·雙[3_(三 丁氧基石夕烷基)丙基]-1,2,3,4-四氫嘧啶等。該等之中,就 改質劑之反應性、或與二氧化矽等無機填充劑等其他化合 物之相互作用性之觀點、或所獲得之改質共軛二烯系聚合 物之加工性之觀點而言’較佳為m及η為^者。具體而言, 較佳為1,4-雙[3-(三甲氧基矽烷基)丙基]哌畊、Μ雙[3_ (二乙氧基矽烷基)丙基]哌畊、13_雙[3_(三甲氧基矽烷基) 丙基]咪唑啶、1,3·雙[3-(三乙氧基矽烷基)丙基]咪唑啶、 込3又[3-(二曱氧基石夕燒基)丙基]六氫嘧啶、雙[3_(三 乙氧基矽烷基)丙基]六氫嘧啶、13雙[3 (三丁氧基矽烷 基)丙基]-1,2,3,4-四氫嘧啶,該等之中,更佳為14雙[3_ (二曱氧基石夕院基)丙基]哌啩、^肛雙^-(三乙氧基矽烷基) 丙基]派ρ井。 上述改f劑中’只要不對改質反應等造成顯著之不良影 響’則亦可含有上述改質劑合成時之中間體或上述改質劑 之縮°物等雜質等、其他化合物。又’若於獲得本實施形 態之效果之範圍内,則亦可併用先前公知之其他改質劑。 使上述改質劑與聚合活性末端反應時之反應溫度、反應 時間等並無特別限^ ’較佳為於反應卿、以上。 150826.doc 201120073 關於上述改質劑,鍵結於化合物中之矽烷基上的烷氧基 之總莫耳數較佳為於成為聚合起始劑之添加莫耳數的 0.8〜3倍之範圍内,更佳為於成為1〜2.5倍之範圍内,進而 較佳為成為1〜2倍之範圍内。就所獲得之改質共扼二烯系 聚合物獲得充分之改質率之觀點而言,較佳為設為0.8倍 以上,就改質劑成本之觀點而言,較佳為設為3倍以下。 又,就加工性改良之觀點而言,較佳為使聚合物末端彼此 偶合而獲得分支狀聚合物成分。 就使本實施形態之效果更優異之觀點而言,較佳為以如 下方式製造改質共軛二烯系聚合物:成為含有較佳為5質 量%以上、更佳為20質量%以上、進而較佳為50質量%以 上之含有官能基成分之聚合物(藉由改質劑而改質之改質 共軛二烯系聚合物)的聚合物。作為含有官能基成分之聚 合物之定量方法,可藉由能夠分離含官能基之改質成分與 非改質成分之層析法而測定。作為使用該層析法之方法, 可舉出使用將吸附官能基成分之二氧化矽等極性物質作為 填充劑之GPC管柱,將非吸附成分之内部標準用於比較而 定量之方法。 本實施形態之改質共軛二烯系聚合物之藉由凝膠滲透層 析法(GPC)所得之聚笨乙烯換算之數量平均分子量(Μη)較 佳為 20,000〜2,000,000,更佳為 100,000〜1,000,000,進而 較佳為200,000〜600,000,進而更佳為300,000〜400,000。 藉由設為上述下限值以上之分子量,可進一步提昇製成硫 化橡膠時之強度,藉由設為上述上限值以下之分子量,可 150826.doc -19- 201120073 進-步提高加工性。又,就硫化橡膠之物性之觀點而言, 重量平均分子量(Mw)相對於數量平均分子量(Μη)之比 (Mw/Mn)較佳為丨.05〜3.〇,更佳為丨卜2 5。 關於本實施形態之改質共軛二烯系聚合物之製造方法, 於進行改質反應後,亦可視需要於m讀巾添加失活 劑或中和劑等。作為失活劑,例如可舉出水;甲醇、乙 醇、異丙醇等醇等。作為中和劑,例如可舉出硬醋酸、油 酸、特十碳酸等羧酸;無機酸之水溶液、碳酸氣體等。 又,就防止聚合後之精加工步驟令之凝夥生成之觀點、 或提昇加工時之穩定性之觀點而言,較佳為於本實施形態 之改質共軛二烯系聚合物中添加橡膠用穩定劑。橡膠用穩 定劑並無特別限定,可使用公知者,較佳為2,6二第三 基-4-羥基f苯(BHT)、正十八烷基_3(4,羥基_3,,5,二第三 丁基苯酚)丙酸、2-甲基-4,6-雙[(辛硫基)甲基]苯酚等。— 又,為改良本實施形態之改質共軛二烯系聚合物之加工 性,可視需要將填充油添加至改質共軛二烯系聚合物令。 將填充油添加至改質共軛二烯系聚合物中之方法並無特別 限定,較佳為對將填充油添加至聚合物溶液中並混合而製 成充油共聚物溶液者進行脫溶劑之方法。作為填充油,例 如可舉出芳香油、環烷油、石蠟油等。該等之中就環境 安全上之觀點、或防止溢油及濕地抓地力特性之觀點而 言’較佳為IP346法之多環芳香族(PCA)成分為3質量%以 下之芳香族油代替品。作為芳香族油代替品,可舉出(1) (In the formula (1), R to R are each independently, and represent a carbon group or an aryl group of the carbon number (9), and R5 and R6 are each independently, and represent a carbon number of "alkyl", and R7 and R8 are independent, respectively. A hydrocarbon group having 1 to 6 carbon atoms, and adjacent to each other form a ring structure of 5 or more rings, and the claws and 11 are independent, respectively, representing an integer of 2 or 3.) [3] A total of 改] or [2] The method for producing a conjugated diene polymer, wherein all of the above-mentioned calcined groups are bonded to a group of three methoxy groups. [4] As in any one of [1] to [3] The method for producing a modified conjugated diene polymer, wherein the total mole number of the methoxy group bonded to the dream base in the modifier is added to the molar amount of the polymerization initiator 150826.doc 201120073 [5] The method for producing a modified light diuretic polymer according to the item H to [4], wherein the polymerization step is continuous. [6] (1) to [5] In the middle of the term - the change of the f-light two-material polymer manufacturer's two '::" the use of the total L-woman polymer by gel permeation chromatography (10) 〇 (4) styrene-converted number average molecular weight is ,coffee~ 600500〇 7 [7] A modified di-based polymer obtained by the method for producing a modified conjugated diene polymer according to any one of [1] to [6]. [8] A modified conjugated diene polymer composition comprising: 100 parts by mass or more of a rubber component containing 20 parts by mass or more of the modified conjugated diene polymer as described in [7], and dioxide矽-based inorganic filler 0 5~3 〇〇 parts by mass. [Effects of the Invention] According to the present invention, a method for producing a modified conjugated diene polymer, a modified conjugated diene polymer, and a modified conjugated diene polymer group S can be provided. When the modified conjugated diene polymer is used as a vulcanized rubber, it has excellent balance between low hysteresis loss and wet skid resistance, and has practically sufficient abrasion resistance and fracture strength, and is excellent in workability. [Embodiment] Hereinafter, the present embodiment for describing the present invention (hereinafter referred to as "--------" However, it is not intended to limit the invention to the following. The present invention can be suitably modified and implemented within the scope of the gist of the invention. The method for producing a modified conjugated diene polymer of the present embodiment includes the following steps: a polymerization step of using an alkali metal compound or an alkaline earth metal compound as a polymerization initiator to make a co-diene compound or a conjugated diene compound Polymerizing or copolymerizing with an aromatic vinyl compound, thereby obtaining a co-lighter system polymer having an active terminal; and a upgrading step of reacting the modifying agent with the above-mentioned active terminal of the above conjugated diene polymer The modifier is a compound having one or more heterocyclic rings containing two or more nitrogen atoms and a hydrocarbon, and having two or more alkylene groups in which two or more alkoxy groups are bonded. In the polymerization step of the modified common diene polymer of the present embodiment, a metal test compound or a soil test metal compound is used as a polymerization initiator': a dilute compound or a co-battery compound and aromatic vinyl The base compound is poly- or copolymerized, whereby a conjugated diene polymer having a right-handed, lingual end is obtained. = copolymerization of a copolymer of a copolymer of a diene polymer, a polymer of a single conjugated olefin compound, or a copolymer of a conjugated diene compound of a total of two conjugated diene compounds Things. The round-back compound and the aromatic vinylated isoamyl, 2,3-didecyl=co-dry dilute compound can be a monomer capable of polymerization, and there is no particular limitation, for example, 1,3. 150826*doc 201120073 Butadiene, 1'3-decadiene, 3-methyl], 3-pentadiene, 丄3•geng Erfu, U3-hexadiene, etc. Among these, it is industrially easy to obtain: From the viewpoint, it is preferable to be butadiene or isoprene. These may be used singly or in combination of two or more. The aromatic B compound is not particularly limited as long as it can be polymerized with the common light, and examples thereof include, for example, stupid ethylene, stilbene, and α-methyl styrene. , vinyl ethyl benzene, ethylene dimethyl strepene naphthalene, diphenyl ethylene and the like. Among these, from the viewpoint of ease of industrial availability, styrene is preferred. These may be used singly or in combination of two or more. In the case where the common dibasic polymer is a copolymer, it may be a random copolymer or a block copolymer. Examples of the random copolymer include butadiene-isoprene random copolymer, tauadiene stupid ethylene random copolymer, isoprene styrene random copolymer, and butyl U pentane Benzene random copolymer and the like. The composition distribution of each monomer in the copolymer chain may, for example, be a completely random copolymer which is statistically close to a random composition or a tapered random copolymer having a distribution of a composition having a tapered shape. The composition of the common two-dense bonding method, I7, bond, α, or 1,2-bonding may be uniform or distributed. Examples of the daddy copolymer include a type 3 block copolymer comprising two block type 2 block copolymers of 33 3 groups, and a type 4 embedded body containing four blocks. For example, '8' indicates an aromatic vinylated block such as styrene, and a block containing a conjugated monoolefin compound such as butyl dipentide or isoprene, and/or aromatic vinyl group. The block of the copolymer of the base compound and the conjugated monoalkylene oxide is an S-B2 type block copolymer, S-150826.doc £201120073 B-S3 type block copolymer, SBS-B4 type block Copolymer and the like are indicated. In —t, the boundaries of the blocks do not need to be clearly distinguished. In the case where the block B is a copolymer of an aromatic alkenyl compound and a conjugated diene compound, the aromatic vinyl compound in the embedding B may be uniformly distributed or may be distributed in a conical manner. Further, in the block B, a portion in which a plurality of aromatic vinyl compounds are uniformly distributed and/or a portion in which the pyramid is distributed may be coexisted. Further, in the block B, a plurality of fragments having different contents of the aromatic vinyl compound may be coexisted. When a plurality of blocks s and blocks B are present in the copolymer, the structures such as the molecular weight or the composition may be the same or different. In the present embodiment, all or a part of the double bond can be converted into a saturated hydrocarbon by hydrogenating the conjugated diene polymer having a functional group in an inert solvent. In this case, heat resistance and weather resistance are improved, and deterioration of the product at the time of processing at a temperature can be prevented. As a result, it is used in various applications such as automobiles: it exhibits superior performance on the way. More specifically, the hydrogenation of the unsaturated double bond based on the conjugated diene compound (i.e., "hydrogenation rate") can be arbitrarily selected depending on the purpose, and is not particularly limited. When it is used as a vulcanized rubber, it is preferably a double bond remaining portion of the conjugated diene portion. From this point of view, the hydrogenation rate of the common dilute portion in the polymer is preferably from 3 to 70 Å. More preferably, it is 5 to 65%, and further preferably 10 to 60%. Further, the hydrogenation rate of the aromatic (tetra) double bond of the aromatic ethylenic compound in the copolymer of the conjugated diene compound and the aromatic vinyl compound is not particularly limited, but is preferably 5% or less, more preferably 30. /. Hereinafter, it is more preferably 20% or less. The hydrogenation rate can be measured by a nuclear magnetic resonance apparatus. 150826.doc -10- 201120073 The hydrogenation method is not particularly limited, and a known method can be used as a particularly suitable hydrogenation method, and a method of blowing gaseous nitrogen into the solution of the catalyst in the presence of a catalyst may be mentioned. The method of transformation. For the medium, it can be mentioned that the precious metal is supported on the porous inorganic substance, and the contact catalyst is used as a catalyst, and the catalyst is mixed with the organic salt. Catalysts such as titanium and other metallocenes are all media. Among these, in particular, it is possible to select a mild gasification condition. The hydrogenation of the aromatic group can be carried out by using a supported catalyst of a beryllium metal. As a specific example of the hydrogenation catalyst, (1) Ni, and other metals are supported on carbon, sulphur dioxide, sulphuric acid, and shisha algae-type chlorinated catalyst, and (7) , co, Fe, cr#: t= = so-called Ziegler-type chloride catalysts such as transition metal salts such as propyl-salt and organic reducing agents, and (3) organometallic A-forms such as Ti and Rnzr Specialized in so-called organic metal complexes. For example, as a chlorination catalyst, Japanese Patent Publication No. Sho 42. No. 4, Japanese Patent Publication No. Sho. No. 6636, Japanese Patent Special Public Promo, No. W-7970, Japanese Patent Application No. The hydrogenation catalyst described in the Japanese Patent Publication No. Hei. No. Hei. As a preferred hydrogenation catalyst, a reaction mixture of a titanocene compound and a reducing organometallic compound can be mentioned. The metal compound used as the polymerization initiator is not particularly limited, and is preferably an organic clock compound. Examples of the organic clock compound include a low molecular compound, an organic lithium compound which is a soluble polymer, a compound containing a carbon-lithium bond in an organic group and lithium, and a nitrogen-lithium bond. a compound, a compound containing a tin-lithium bond, or the like. Examples of the organolithium compound include n-butyllithium, t-butyllithium, t-butyllithium, i-hexyllithium, benzyllithium, phenyllithium, and decyllithium. Examples of the compound containing a nitrogen lithium bond include lithium monomethyl amide, lithium diethyl guanamine, lithium dipropyl guanidinium lithium, n-hexyl decyl amide, lithium diisopropyl guanamine, and hexamethylene hydrazine. Lithium imide, lithium pyrrolidine, lithium piperidine, lithium penta methylene iminoide, lithium porphyrin, and the like. In addition to the above-mentioned monoorganolithium compound, it is also possible to carry out polymerization by using a polyfunctional organolithium compound in combination. Examples of the polyfunctional organolithium compound include a reaction product of I4-dilithium butane, a second butyllithium and diisopropenylbenzene, 1'3,5-tris(tetra), n-butyllithium and 13-tau And a reaction of divinylbenzene, a reaction of n-butyllithium with a polyacetylene compound, and the like. Further, the organic alkali metal compound disclosed in the specification of U.S. Patent No. 5,7,8, No. 92, the specification of the British Patent No. 2,241,239, and the specification of U.S. Patent No. 5,527,753 can also be used. The organic (tetra) compound is preferably n-butyllithium or a second butyllithium from the viewpoint of easiness of industrial availability and ease of control of polymerization. Α These organolithium compounds may be used alone or in combination of two or more. Examples of the other organic alkali metal compound include an organic sodium compound, an organic potassium compound, an organic ruthenium compound, and an organic ruthenium compound. Specifically, sodium naphthalene, stilbene, and the like can be given. Further, pit alkoxides such as a clock, a nano, and a discharge, a caustic acid salt, a carbonate, a brewing amine, and the like can be given. X can also be used in combination with other organometallic compounds. The soil-measuring metal compound 'is an organomagnesium compound, a compound, an organotin compound, or the like. Specific examples thereof include dibutylmagnesium, ethylbutyl or propylbutyl, and the use of a calcined alkoxide, a sodium chloride, a carbonate, a captanamine, etc. . These organic alkaline earth metal compounds may also be used in combination with a metal test compound or other organometallic compound. In the present embodiment, the "co-doprene-based polymer" is preferably obtained by growing an anion polymerization reaction by using the above-mentioned metalloid compound and/or a soil-measuring metal compound as a polymerization initiator. The co-diene polymer is particularly preferably a polymer having an active terminal obtained by a reaction of a ionic polymerization filament, whereby a modified total light dibasic polymer having a high reforming ratio can be obtained. The polymerization method is not particularly limited, and it can be carried out by a batch method or a polymerization method such as a continuous method in which two or more reactors are connected. In particular, it is preferable that the polymerization step is a continuous type and the molecular weight relative to the surface polymer can be stably produced. In the case of listening to the second compound, the sum of the C-axis and the B-block = (7 hindering the change in the later description. Therefore, the sum of the impurities) is preferably 2〇〇. Below ppm, more preferably (10) = and preferably one. Examples of the propylene disaccharide include 1,2-butene and the like. As the acetylenes, for example, fast, vinyl acetylene and the like. The polymerization of ethyl bionide = diterpene polymer is preferably carried out in a solvent. The agent 'for example' may, for example, be a hydrocarbon-based solvent such as a saturated hydrocarbon or an aromatic smoke. Specifically, 5' may be an aliphatic hydrocarbon such as butane, pentane, hexane or heptane. Cyclopentane μ 150826.doc 13 ι 201120073 Cycloaliphatic hydrocarbon such as toluene or dimethyl rape I burn; stupid, recognized to two A hydrocarbon and a smoke or the like comprising the mixture. For , ,’. It is preferred to treat the susceptibility or the fast-acting compound with an organometallic compound before the poly& reaction, and there is a tendency to obtain a high concentration of the active compound, and there is a tendency to achieve a higher rate of reforming. In the polymerization reaction of a common light diene polymer, in order to randomly copolymerize an aromatic vinyl compound and a common diterpene compound, it is used as a chemical agent for controlling the microstructure of the dilute portion of the group. 'Or to improve the polymerization rate, etc., a small amount of polar compounds can also be added. Further, as the polar compound, tetrahydrofuran, diethyl ether, dioxane, ethylene glycol dioxime ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol dibutyl ether, dimethoxy group can be used. Stupid, 2, 2_ bis (2_tetrahydrocarbamate) propylamine, etc.: class, tetramethylethylenediamine, diphenyl sulfonium dicarboxylic acid 'trimethylamine, triethylamine. A tertiary amine compound such as a pyridine or a chlorinated compound; an alkali metal alkoxide compound such as potassium third potassium pentoxide, potassium hexoxide, sodium butoxide or sodium pentoxide; or a phosphine compound such as triphenylphosphine. These polar compounds may be used alone or in combination of two or more. The amount of the polar compound to be used is not particularly limited, and is selected depending on the purpose and effect. It is usually 0.01 to 100 moles per mole of the polymerization initiator. Such a polar compound (vinylating agent) can be used as a regulator of the microstructure of the conjugated olefin moiety of the polymer and can be used in an appropriate amount depending on the desired amount of vinyl bond. More polar compounds have an effective randomization effect in the copolymerization of a conjugated diene compound and a sulphur-based compound, and can be used as an adjustment of the distribution of an aromatic vinyl compound or a styrene-embedded- 14· 150826.doc Adjusting agent in paragraph 201120073. For the first dry clump ±c _ Λ m regularization ... compound and aromatic vinylation 1 method 'can also be used as the patent special opening " Ding ~ contained in the middle of the copolymerization intermittently add I, 3 - Butadiene - part of the method. The polymerization temperature is not particularly limited as long as it is a temperature at which a polymerization reaction such as living anionic polymerization is carried out. From the viewpoint of productivity, it is preferably (TC or more), and it is sufficient to confirm (4) the modifier of the living end after the end of the polymerization. From the viewpoint of the amount of the reaction, it is preferably 120 or less. Further, in view of preventing the cold flow of the conjugated diene polymer, a polyfunctional aromatic compound such as divinylbenzene for controlling branching may be used. The vinyl group compound is not particularly limited, and is preferably 50 to 1% by mass, more preferably 6 to 8 inches. Further, the amount of the bonded aromatic vinyl group in the conjugated diene polymer of the present embodiment is not particularly limited, but is preferably 5% to 5% by mass, more preferably 2 〇 to 4% by mass. When the amount of the bonded conjugated diene and the amount of the bonded aromatic vinyl group are in the above range, a vulcanized rubber which is excellent in balance between low hysteresis loss and wet skid resistance and which also satisfies wear resistance or fracture strength can be obtained. ^Here, the bonded aromatic vinyl fluorene can be UV-activated by phenyl The amount of the bonded conjugated diene can also be determined by measurement with light. Specifically, it can be measured by a method based on the examples described later. Further, the amount of vinyl bond in the conjugated diene bonding unit It is not particularly limited, and is preferably from 10 to 75 mol%, more preferably from 25 to 65 mol%/❶. If the amount of the ethylene bond is in the above range, low hysteresis loss and wet skid resistance can be obtained. 150826.doc -15- 201120073 Vulcanized rubber with better balance and also satisfying wear resistance or breaking strength. Here, in the case where the modified conjugated diene polymer is a copolymer of butadiene and styrene The amount of vinyl bond in the butadiene bonding unit can be determined by the method of Hampton (RR Hampton, Analytical Chemistry, 21, 923 (1949)) (1, 2 bonding amount) The microstructure (the amount of each bond in the modified conjugated diene polymer) is within the above range, and further, when the glass transition temperature of the copolymer is in the range of -45 to -15 ° C, low Vulcanized rubber with better balance between hysteresis loss and wet skid resistance. Regarding glass transition temperature, according to IS0227 68: 2006, the DSC curve is recorded while the temperature is raised within a specific temperature range, and the peak of the DSC differential curve (Inflection point) is set as the glass transition temperature. The conjugated diene polymer of the present embodiment is a total of vehicles. In the case of a diene-aromatic vinyl copolymer, it is preferred that the number of blocks in which 30 or more aromatic vinyl units are connected is small or absent. Specifically, the copolymer is dibutyl In the case of a styrene copolymer, the polymer is decomposed by the method described by Kolthoff (IM KOLTHOFF, et al., J. Polym. Sci. 1, 429 (1946), and analyzed to be insoluble in sterol In the known method of the polystyrene amount, the block in which 30 or more aromatic vinyl units are bonded is preferably 5% by mass or less, and more preferably 3% by mass or less based on the amount of the polymer. In the method described above, after obtaining a conjugated diene polymer having an active terminal, the modified conjugated diene polymer of the present embodiment can be obtained by the following modification step, and the upgrading step is carried out. The modifier is reacted with the active terminal of the above-mentioned conjugate 150826.doc •16-201120073 monoolefin polymer. The modifier has one or more nitrogen atoms and a heterocyclic ring containing two or more, and has Two or more compounds having a decyl group having two or more alkoxy groups bonded thereto. By using a compound having more than j or more heterocyclic rings containing two or more nitrogen atoms and a hydrocarbon, and having two or more anthracene groups having two or more alkoxy groups bonded thereto as a modifier A bond is formed between the terminal of the olefinic polymer and the si. The above compound used as a modifier is preferably a decyl group in which all of the decyl group is bonded with 3 alkoxy groups. By using the compound as a modifier, the reactivity of the modified oxime or the interaction with other compounds can be further improved, and the processability of the modified conjugated diene polymer obtained can be further improved. . Among the above, a modifier as a compound represented by the following formula (1) is preferred. The bond between the terminal of the conjugated diene polymer and the Si can be more effectively formed by efficiently reacting the alkoxylated group of the following formula (1) with the active terminal of the common dibasic polymer. [7] p7 (Rl〇)~f'R~K 8^-r^s,-(〇r2)(1) RL n K(3_n), R丨~R4 are independent, respectively, indicating carbon number 丨~2〇 Alkyl or aryl, R and R: independently, representing a carbon number of 2 伸 alkyl, r, r8 are independently 'representing a hydrocarbon group of carbon 1-6, 'S adjacent to the two N-forming 5 members The ring structure above the ring, the claws and the 11 are independent, respectively, and represent an integer of 2 or 3.) The modifier as shown in the above formula (1) is, for example, 1'4-double [3_(three 150826.doc -17- 201120073 methoxy decyl) propyl] piperazine, 1,4-bis[3-(triethoxydecyl)propyl] piperene, 1,4 bis[3-(dimethoxymethyl)矽alkyl)propyl]pitricin, hydrazine, 3_bis[3_(dimethoxyfluorenyl)propyl]imidazolidinium, 1,3-bis[3-(triethoxydecyl)propyl]imidazole Pyridine, 13-bis[3-(dimethoxyethylindenyl)propyl]m0, bite, 1,3_bis[3-(trimethoxysulphonyl)propyl]hexahydropine bite, Further [3. (diethoxy oxalate) propyl] hexammine mouth bit, ι, 3 · bis [3_(tributyloxylinyl) propyl]-1,2,3,4-tetra Hydropyrimidine and the like. Among these, the viewpoint of the reactivity of the modifier, the interaction with other compounds such as an inorganic filler such as ruthenium dioxide, or the processability of the modified conjugated diene polymer obtained For example, 'm is preferably m and η are ^. Specifically, it is preferably 1,4-bis[3-(trimethoxydecyl)propyl]piped, bismuth [3_(diethoxydecyl)propyl]pitricin, 13_double [ 3-((trimethoxydecyl)propyl]imidazolium, 1,3 bis[3-(triethoxydecyl)propyl]imidazolidinium, 込3 again [3-(dimethoxy oxalate) )propyl] hexahydropyrimidine, bis[3_(triethoxydecyl)propyl]hexahydropyrimidine, 13 bis[3(tributyloxydecyl)propyl]-1,2,3,4- Tetrahydropyrimidine, among these, more preferably 14 pairs of [3_(dioxaxolysin)propyl]piperazine, ^ an bis-(triethoxydecyl)propyl] pi well . In the above-mentioned agent, as long as it does not cause a significant adverse effect on the reforming reaction or the like, other compounds such as an intermediate such as the above-mentioned modifier or the like of the modifier may be contained. Further, if it is within the range in which the effects of the embodiment are obtained, other conventionally known modifiers may be used in combination. The reaction temperature, reaction time, and the like when the modifier is reacted with the polymerization active terminal are not particularly limited, and it is preferably in the reaction or higher. 150826.doc 201120073 With respect to the above modifier, the total number of moles of the alkoxy group bonded to the decyl group in the compound is preferably in the range of 0.8 to 3 times the number of added moles of the polymerization initiator. More preferably, it is in the range of 1 to 2.5 times, and further preferably in the range of 1 to 2 times. From the viewpoint of obtaining a sufficient reforming ratio of the modified conjugated diene-based polymer obtained, it is preferably 0.8 times or more, and from the viewpoint of the cost of the modifier, it is preferably 3 times. the following. Further, from the viewpoint of improvement in workability, it is preferred to couple the polymer terminals to each other to obtain a branched polymer component. In view of the fact that the effect of the present embodiment is more excellent, it is preferred to produce a modified conjugated diene polymer which is preferably contained in an amount of preferably 5% by mass or more, more preferably 20% by mass or more, and further A polymer of a polymer containing a functional group component (a modified conjugated diene polymer modified by a modifier) is preferably 50% by mass or more. The method for quantifying a polymer containing a functional group component can be measured by a chromatography method capable of separating a modified component containing a functional group from a non-modified component. As a method of using the chromatographic method, a GPC column using a polar substance such as ceria which adsorbs a functional group component as a filler is used, and the internal standard of the non-adsorbed component is used for comparison and quantification. The number average molecular weight (?η) of the polystyrene-equivalent converted by the gel permeation chromatography (GPC) of the modified conjugated diene polymer of the present embodiment is preferably 20,000 to 2,000,000, more preferably 100,000~ 1,000,000, further preferably 200,000 to 600,000, and more preferably 300,000 to 400,000. By setting the molecular weight of the lower limit or more, the strength at the time of producing the vulcanized rubber can be further increased, and by setting the molecular weight of the above upper limit or less, the workability can be further improved by 150826.doc -19-201120073. Further, from the viewpoint of the physical properties of the vulcanized rubber, the ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (?η) is preferably 丨.05 to 3. 〇, more preferably 2布 2 5 . In the method for producing the modified conjugated diene polymer of the present embodiment, after the modification reaction, a deactivator or a neutralizing agent may be added to the m towel as needed. Examples of the deactivating agent include water; alcohols such as methanol, ethanol, and isopropanol. The neutralizing agent may, for example, be a carboxylic acid such as hard acetic acid, oleic acid or tereic carbonic acid; an aqueous solution of a mineral acid; or a carbonic acid gas. Further, it is preferable to add rubber to the modified conjugated diene polymer of the present embodiment from the viewpoint of preventing the formation of the condensate after the polymerization, or the stability during processing. Use a stabilizer. The stabilizer for rubber is not particularly limited, and a known one may be used, and preferably 2,6-di-t-butyl-4-hydroxyf-benzene (BHT) or n-octadecyl- 3 (4, hydroxy_3, 5) , di-tert-butylphenol) propionic acid, 2-methyl-4,6-bis[(octylthio)methyl]phenol, and the like. Further, in order to improve the processability of the modified conjugated diene polymer of the present embodiment, it is necessary to add a filler oil to the modified conjugated diene polymer. The method of adding the extender oil to the modified conjugated diene polymer is not particularly limited, and it is preferred to carry out solvent removal by adding the filler oil to the polymer solution and mixing to prepare an oil-extended copolymer solution. method. Examples of the extender oil include aromatic oils, naphthenic oils, and paraffin oils. Among these, in terms of environmental safety, or prevention of oil spill and wet grip characteristics, it is preferable that the polycyclic aromatic (PCA) component of the IP346 method is 3% by mass or less of aromatic oil. Product. As an aromatic oil substitute, it can be mentioned
Kautschuk Gummi Kunststoffe 52 (12) 799 (1999)中所八之 150826.doc •20· 201120073 舰E^M/S等、及㈣等。填充油之添加量並無特別限 ::u相對於改質共輕二烯系聚合物1〇〇質量份為㈣。 貝里伤’較佳為20〜37.5質量份。 作為自聚合物溶液取得本實施形態之改f ^二稀系聚 ^物,方法,可使用公知之方法。例如可舉出:利用蒸汽 A提等將溶劑分離後,過濾分離 ’、 ^ ^ w 進而將其脫水及 乾,而取传聚合物之方法;以沖洗槽進行壤縮,進而利用 擠軋式擠出機等進行脫揮之方法; 接脫揮之方法等。用桶式乾無機等直 本態之改質共輕二稀系聚合物適合用作硫化橡 厂爪化橡膠例如可藉由如下方式獲得:將本實施形能之 系聚合物視需要與二氧化"、無機填充劑或 奴:等‘,,、機填充劑、本實施形態之改質共輕二烯系聚合物 以卜之橡膠狀聚合物、石夕烧偶合劑、橡膠用軟化劑、硫化 劑、硫化加速劑•助劑等混合,製成改質共輕二稀系聚人 :::物後,加熱並硫化。該等之中,較佳為製成包含含 有本實施形態之改質共施-嬙条助 負八挑一烯系聚合物的橡膠成分與二氧 化石夕糸無機填充劑之改質共輕二婦系聚合物組合物。藉由 使一氧化W無機填充劑分散於本實施形態之改質共輛二 :系聚合物令而製成硫化橡膠時,低磁滞損耗性與抗濕滑 之平衡優異,且具有實用上充分之耐磨耗性或破壞強 :八可賦予優異之加工性。本實施形態之改質共軛二烯系 物組合物在用於輪胎、防振橡膠等汽車零件、鞋子等 硫化橡膠用途中之情形時,亦較佳為含有二氧化石夕系無機 150826.doc -21· 201120073 填充劑作為補強性填充劑。 於共輛一烯系聚合物組合物中,可將本實施形態之改質 共輕一稀系聚合物以外之橡膠狀聚合物與本實施形態之改 貝輛一歸系聚合物組合使用。作為此種橡璆狀聚合物, 例如可舉出共概二烯系聚合物或其氫化物、共軛二烯系化 合物與乙埽基芳香族化合物之無規共聚物或其氫化物、共 軛一烯系化合物與乙烯基芳香族化合物之嵌段共聚物或其 氫化物、非二烯系聚合物、天然橡膠等。具體而言,可舉 出丁二烯橡膠或其氫化物、異戊二烯橡膠或其氫化物、苯 乙烯-丁一烯橡膠或其氫化物、苯乙烯·丁二烯嵌段共聚物 或其氫化物'苯乙烯_異戊二烯嵌段共聚物或其氫化物等 苯乙烯系彈性體、丙烯腈·丁二烯橡膠或其氫化物等。 作為非二烯系聚合物,可舉出乙烯-丙烯橡膠、乙烯-丙 烯-二烯橡膠、乙烯-丁烯-二烯橡膠、乙烯-丁烯橡膠、乙 烯-己烯橡膠、乙烯_辛烯橡膠等烯烴系彈性體,丁基橡 膠、溴化丁基橡膠、丙烯酸橡膠、氟橡膠、矽橡膠、氣化 聚乙烯橡膠、表氯醇橡膠、α、β.不飽和猜_丙稀酸酸醋-共 軛二烯共聚合橡膠、胺酯橡膠、多硫化橡膠等。 上述各種橡膠狀聚合物亦可為賦予了羥基或胺基等具有 極性之官能基之改質橡膠。又,就性能與加工特性之平衡 之觀點而言,其重量平均分子量較佳為2,⑽G〜2,卿,_, 更佳為5,000〜1,500,00(^又,亦可使用低分子量之所謂液 狀橡膠。該等橡膠狀聚合物既可單獨使用丨種,亦可組合 使用2種以上。 J 50S26.doc •22· 201120073 製成含有本實施形態乂改質共扼二烯系聚合物與上述橡 膠狀聚合物之改質共軛二烯系聚合物組合物之情形時,該 等之調配比率(質量比),餘二稀系聚合物/橡膠狀 聚合物計,較佳為20/80〜100/0,更佳為3〇/7〇〜9〇/1〇,進 而較佳為5G/50〜8〇/2〇1改質共輛二稀系聚合物/橡膠狀 聚合物之調配比率為上述範圍,則可獲得低磁滯損耗性與 抗濕滑性之平衡更優異、亦更加滿^耐磨耗性或破壞強度 之硫化橡膠。 一氧化矽系無機填充劑並無特別限定,可使用公知者, 較佳為含有Si〇2或SisAl作為結構單元之固體粒子,更佳為 以Si〇4Si3Ai作為結構單元之主成分。作為二氧化石夕系無 機填充劑’具體而言可舉出二氧切、黏土、滑石、雲 母矽藻土、矽灰石、蒙脫石、沸石、玻璃纖維等無機纖 維狀物質等ϋ可使用使表面疏水化之二氧化石夕系無 機填充劑、或二氧化矽系無機填充劑與二氧化矽系以外之 無機填充劑之混合物。該等之中,就補強性之觀點而言, 較佳為二氧化矽及玻璃纖維,更佳為二氧化矽。作為二氧 化石夕’可舉出乾式二氧化%、濕式二氧化⑦、合成石夕酸鹽 氧化矽等。該等之中’就破壞特性之改良效果及抗濕滑 性之平衡優異之觀點而言,較佳為濕式二氧化矽。 於改質共輛二烯系聚合物組合物中,就獲得實用上良好 之耐磨耗性或破壞特性之觀點而言,二氧化以無機填充 劑利用耐吸附法所求得之氣吸附比表面積較佳為 1〇〇〜遍m2/g,更佳為,25Gm2/g。又視需要,可將比 Λ 150826.doc -23· 201120073 表面積相對較小(例如,比表面積未滿2〇〇 m2/g之二氧化石夕 糸無機填充劑)與比表面積相對較大(例如,2〇〇爪、以上 之一氧化矽系無機填充劑)組合使用。藉此,可使良好之 耐磨耗性或破壞特性與低磁滯損耗性高度地平衡。 上所述改質共輛二稀系聚合物組合物中之二氧化石夕 系無機填充劑之調配量相對於含有2〇質量份以上的本實施 形態之改質共輕二烯系聚合物的橡膠成分1〇〇質量份較佳 為0.5〜300質量份,更佳為5〜2〇〇質量份,進而較佳為 = 〜!〇〇質量份。就表現無機填充劑之添加效果之觀點而 、氧化⑪系無機填充劑之調配量較佳為設為〇 $質量 份以上,另一方面’就充分地分散無機填充劑、使組合物 之加工性或機械強度成為實用上充分者之觀點而言,較佳 為設為300質量份以下。 改質共軛—烯系聚合物組合物中亦可含有碳黑。碳黑並 無特別限定,例如可使用SRF、FEF、猜、isaf、_等 各2類型之碳黑。該等之中,較佳為氮吸附比表面積為50 m’g以上、鄰苯二甲酸二丁酯_p)吸油量為肋似⑽g 以上之碳黑。 碳黑之調配量相對於含有本實施形態之改質共軛二烯系 聚合物之橡谬成分100質量份較佳為0.5〜剛質量份,更佳 為質量份,進而較佳為5,量份。就表現乾地抓 i也錢能或導電性等輪胎等用途中所要求之性能之觀點而 Ά黑之調配量較佳為設為〇 5質量份以上,就分散性 之觀點而言,較佳為設為100質量份以下。 150826.doc •24- 201120073 又,改質共軛二烯系聚合物組合物中,除二氧化矽系無 機填充劑或碳黑以外,亦可含有金屬氧化物或金屬氫氧: 物。所謂金屬氧化*,係指以化學式MxCMM表示金屬原 子,X及y分別表示卜6之整數)作為結構單元之主成分之固 體粒子,例如可使用氧化鋁、氧化鈦、氧化鎂、氧化鋅 等。又,亦彳使用金屬氧化物與金屬氧化物以外之無機填 充劑之混合物。金屬氫氧化物並無特別限定,例如;舉出 氫氧化鋁、氫氧化鎂、氫氧化錯等。 ?貝共概二烯系聚合物組合物中亦可含有钱偶合劑。 石夕烧偶合劑具有使橡膠成分與二氧化砂系無機填充劑 互作用變得緊密之功能,含有分別針對橡膠成分及二氧化 矽系無機填充劑之親和性或鍵結性之基,一般而+係4 =一分子中具有硫鍵結部分與院氧基錢基、㈣醇基: =化。物。具體而s ’可舉出雙例三乙氧基石夕_ :基卜四硫化物"、雙·[3·(三乙氧基錢基)·丙基二硫化 、雙-[2-(二乙乳基紗烧基)_乙基]_四硫化物等。 偶合狀調配量㈣於上述二氧切系無機填充劑 貝里純佳為0·1〜30質量份,更佳為0.5〜20質量份,進 :較佳為Η5質量份。若錢偶合劑之調 圍,則可使戟偶合劑之上述添加效果更加顯著。 之改良’改質共麵二埽系聚合物組合物中 亦可含有橡膠用軟化劑。作為橡膠 油、或液狀或低分子量之合成軟化劑。^乂佳為礦物 化、增容、加工性之提昇所使 :現橡膠之軟 稱為加工處理油或填充 150826.doc -25- 201120073 油之礦物油系橡膠用軟化劑為芳香族環、環烷環及石壤鏈 之混合物’石蠟鏈之碳數於總碳數中占50〇/〇以上者稱為石 螺•系’環烧環碳數為30〜45%者稱為環烷系,芳香族碳數 超過30%者稱為芳香族系。作為與本實施形態之改質共軛 二稀-芳香族乙烯基共聚物一併使用之橡膠用軟化劑,含 有適度之芳香族含量者具有共聚物之適應性較佳之傾向, 故較佳。 橡膠用軟化劑之調配量相對於含有本實施形態之改質共 軛二烯系聚合物之橡膠成分1〇〇質量份較佳為〇〜1〇〇質量 份,更佳為10〜90質量份,進而較佳為3〇〜9〇質量份。藉由 使橡膠用軟化劑之調配量相對於橡膠成分1〇〇質量份為 貝里伤以下’可抑制滲出或組合物表面之黏性。 將本實施形態之改質共軛二烯系聚合物及其他橡膠狀聚 合物、二氧化矽系無機填充劑、碳黑或其他填充劑、矽烷 偶合劑、橡膠用軟化劑#添加劑加以混合之方法並無特別 限定。例如可舉出:使用開口滾筒、班伯裏混合機、捏合 機、單螺桿擠出機、雙螺桿擠出機、多螺桿擠出機等一般 之混和機的溶融混練方法;將各成分溶解混合後,加熱除 去^劑之方法等。該等之中,就生產性、良混練性之觀點 而::較佳為利用滾筒、班伯裏混合機、捏合機、擠出機 之溶融^練法。又,可使用將改質共輕二稀系聚合物與各 種調配劑—次H練之方法、分為複數次進行混合之方 之任一者。 改質共軛二烯系聚合物組合物亦可製成利用硫化劑實施 150826.doc •26- 201120073 硫化處理之硫化組合物。作為硫化劑,例如可使用有機過 氧化物及偶氮化合物等自由基產生劑、肟化合物、亞確基 化合物、聚胺化合物、硫、硫化合物。使硫化合物中含有 一氯化硫、二氯化硫、二硫化物化合物、高分子多硫化合 物等。硫化劑之使用量通常相對於含有本實施形態之改質 共軛二烯系聚合物之橡膠成分1〇〇質量份為〇 〇1〜2〇質量 份’較佳為0.1〜15質量份。作為硫化方法,可使用先前公 知之方法,硫化溫度通常為12〇〜2〇〇°c ,較佳為 140〜180〇C。 又,進行硫化時,視需要亦可使用硫化加速劑。作為硫 化加速劑,可使用先前公知之材料,例如可舉出亞磺醯胺 系、脈系、秋蘭姆系、盤-胺系、搭-氨系、系、硫腺 系、二硫胺基甲酸酯系等之硫化加速劑…作為硫化助 劑’可使料白、硬S旨酸等。硫化加速劑之使用量通常相 對於含有本實施形態之改質共軛二烯系聚合物之橡膠成分 100質量份為G.G1〜2G質量份,較佳為(M〜15質量份。 *於改質共輛二烯系聚合物組合物中,於不損及本實施形 態之目的之範圍内,亦可使用上述以外之其他軟化劑或填 充劑,進而亦可使用耐熱穩定劑、抗靜電劑、耐候穩定 劑、抗老化劑、著色劑、潤滑劑等各種添加劑。作為其他 祕^,可使用公知之軟化劑。作為其他填充劑,具體而 s可舉出碳酸每、碳酸糕 反I鎂、硫酸鋁、硫酸鋇等。作為上述 对熱穩定劑、抗靜電劑、耐候穩定劑、抗老化劑、著色 劑、潤滑劑,可分別使用公知之材料。 150826.doc •27- 201120073 [實施例] 藉由以下之實施例更詳細地說明本實施形態,但本實施 形態並不受以下實施例之任何限定。再者試樣之分析係 藉由下述所示之方法進行。 (1) 鍵結苯乙烯量 將4樣製成氯仿溶液,藉由笨乙烯之苯基之uv 254 之吸收而測疋鍵結苯乙烯量(質量島津製作所製造: UV-2450) 〇 (2) 丁二烯部分之微結構(1,2·乙烯基鍵結量) 將忒樣製成二硫化碳溶液,使用溶液槽,於6〇〇〜1〇〇〇 cm·1之範圍内測定紅外線光譜,由特定之波數下之吸光 度,根據漢普頓之方法之算式求得丁二烯部分之微結構 (曰本分光股份有限公司製造:FT-IR230)。 (3) 孟納黏度 根據JIS K 6300,於100X:預熱i分鐘,測定4分鐘後之黏 度。 (4) 分子量及分子量分佈 使用將3根以聚本乙烯糸凝膠作為填充劑之管柱連接使 用之凝膠渗透層析儀(GPC) ’測定層析圖,藉由使用標準 聚本乙烯之权準曲線求得重量平均分子量(Mw)及數量平均 分子量(Μη),根據重量平均分子量與數量平均分子量之比 計算分子量分佈之指標(Mw/Mn)。 溶離液係使用四氫呋喃(THF)。 管柱係使用:保護管柱:Tosoh TSKguardcolumnHHR- 150826.doc •28- 201120073 Η、管柱:Tosoh TSKgel G6000HHR、TSKgel G5000HHR、 TSKgel G4000HHR。 於烘箱溫度40°C、THF流量1.0 mL/分鐘之條件下,使用 Tosoh製造之HLC8020之RI檢測器進行分子量之測定。將 ' 試樣10 mg溶解於THF 20 mL中,將該溶液200 pL注入至裝 • 置中進行測定。 (5)玻璃轉移溫度(Tg) 根據IS022768 : 2006,使用MAC Science公司製造之 DSC3200S,於氦氣50 mL/min之流通下,一面自_ 100°C起 以20°C/分鐘升溫,一面記錄DSC曲線,將DSC微分曲線之 峰頂(Inflection point)作為玻璃轉移溫度。 [實施例1] 將2座内容積為10L、内部之高度與直徑之比(L/D)為4、 底部有入口、頂部有出口、具備攪拌機及溫度調整用套管 之高壓釜串聯連接,將第一座作為聚合反應器,將第二座 作為改質反應器。 以預先去除水分等雜質之丁二烯16.0 g/分鐘、苯乙烯8.0 g/分鐘、正己烷125.6 g/分鐘之條件加以混合,進而為進行 - 雜質惰性化處理,而在即將添加至第一座反應器之前與 0.075 mmol/分鐘之正丁基鋰(處理正丁基鋰)利用靜態混合 器進行混合後,連續地供給至第一座反應器之底部,進而 以0.020 g/分鐘之速度將作為極性物質之2,2-雙(2-四氫呋 喃基)丙烷供給至第一座反應器底部,以0.150 mmol/分鐘 之速度將作為聚合起始劑之正丁基鋰供給至第一座反應器 150826.doc -29- 201120073 底部,使反應器出口之内溫為90°C,繼續聚合反應。 將第二座反應器之溫度保持於85。(:,以0.0375 mmol/分 鐘之速度自第二座反應器之底部添加作為改質劑之1,4-雙 [3-(三甲氧基矽烷基)丙基]哌嗜,實施改質(偶合)反應。 以相對於每100 g聚合物成為〇.2 g之方式以0.048 g/分鐘 (正己烷溶液)向自第二座反應器之頂部流出之聚合物溶液 中連續地添加抗氧化劑(BHT),使改質反應結束,其後去 除溶劑,獲得改質共軛二烯系聚合物。 進而以相對於每1〇〇質量份聚合物為37 5質量份之方式 向該改質共軛二烯系聚合物溶液中添加S-RAE油(JX曰礦 曰石能源股份有限公司製造NC-140)後,以桶式乾燥機去 除溶劑’獲得充油改質共軛二烯系聚合物(試樣A)。 試樣A之l〇〇°C之孟納黏度為80.0,以GPC測定之聚苯乙 稀換异之重量平均分子量為90.8萬,數量平均分子量為 39.3萬。又,充油前之樣本之測定之結果為,鍵結苯乙烯 量為33質量%,丁二烯鍵結單元中之乙烯基鍵結量(1,2-鍵 結量)為38莫耳%,以DSC測定之玻璃轉移溫度為_25°c。 [實施例2] 除將作為改質劑之1,4-雙[3-(三曱氧基矽烷基)丙基]哌畊 之添加量設為0.0563 mmol/分鐘以外,以與實施例i相同之 方式獲得充油改質共軛二烯系聚合物(試樣B)。 將試樣B之分析結果示於表1。 [實施例3] 除將改質劑由M-雙[3-(三曱氧基矽烷基)丙基]哌畊替換 150826.doc •30· 201120073 為1,4 -雙[3 -(二乙氣基碎院基)丙基]派p井以外,以與實施例 1相同之方式獲得充油改質共軛二烯系聚合物(試樣c)。 將試樣C之分析結果示於表1。 [實施例4] 除將改質劑由1,4-雙[3-(三甲氧基矽烷基)丙基]哌„井替換 為1,4-雙[3-(二曱氧基甲基石夕院基)丙基]α底畊,將添加量設 為0.0563 mmol/分鐘以外,以與實施例i相同之方式獲得充 油改質共軛二烯系聚合物(試樣D)。 將試樣D之分析結果示於表2。 [實施例5 ] 除將改質劑由1,4-雙[3-(三曱氧基矽烷基)丙基]哌畊替換 為1,3-雙[3-(三f氧基矽烷基)丙基]六氫嘧啶以外,以與實 靶例1相同之方式獲得充油改質共軛二烯系聚合物(試樣E)。 將試樣E之分析結果示於表2。 [比較例1 ] 除將改質劑由i,4 -雙[3 -(三甲氧基石夕烧基)丙基]旅喷替換 為雙[3-(二曱氧基矽烷基)丙基卜Ν·甲基胺以外以與實施 例1相同之方式獲得充油改質共輛二稀系聚合物(試樣… 將試樣F之分析結果示於表3。 [比較例2] ,將改質劑由M-雙[3_(三甲氧基石夕燒基)丙基則替換 二太广(3·二乙氧基,烧基)乙燒以外,以與實施例1相同 式獲得充油改質共軛二烯系聚合物(試樣G)e 將試樣G之分析結果示於表3。 150826.docKautschuk Gummi Kunststoffe 52 (12) 799 (1999) Eight of the eight 150826.doc •20· 201120073 Ship E^M/S, etc., and (4). The amount of the filler oil to be added is not particularly limited. The amount of the compound is from (4) to 1 part by mass of the modified copolydiene polymer. The Berry injury is preferably 20 to 37.5 parts by mass. A well-known method can be used as the method of obtaining the modified di-diuretic polymer of the present embodiment from the polymer solution. For example, a method of separating a solvent by steam A, separating and filtering ', ^ ^ w, and then dehydrating and drying the polymer, and taking the polymer; using the rinsing tank to carry out the squeezing, and then using the squeezing method The method of taking off the machine, etc. A modified total light dibasic polymer which is suitable for use as a vulcanized rubber factory can be obtained by using a barrel-type dry inorganic or the like in a straight state. For example, the polymer can be obtained by the following method: ;, inorganic filler or slave: etc.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Mixing agent, vulcanization accelerator, auxiliary agent, etc., to make a modified total light dilute group::: After the object, heat and vulcanize. Among these, it is preferred to prepare a rubber component comprising the modified co-administration-ruthenium-assisted octa-ene-based polymer of the present embodiment and a modification of the inorganic filler of the cerium oxide cerium oxide. Women's polymer composition. When the oxidized W inorganic filler is dispersed in the modified conjugated polymer of the present embodiment to form a vulcanized rubber, the balance between low hysteresis loss and wet skid resistance is excellent, and it is practically sufficient. High abrasion resistance or damage: Eight can give excellent processability. When the modified conjugated diene composition of the present embodiment is used in a vulcanized rubber application such as an automobile or a shoe such as a tire or a vibration-proof rubber, it is also preferable to contain a silica dioxide inorganic inorganic 150826.doc - 21· 201120073 Filler as a reinforcing filler. In the copolymer-based polymer composition, the rubber-like polymer other than the modified light-dense polymer of the present embodiment can be used in combination with the modified polymer of the present embodiment. Examples of such a rubbery polymer include a copolymerized diene polymer or a hydrogenated product thereof, a random copolymer of a conjugated diene compound and an ethyl fluorene aromatic compound, or a hydride thereof, or a conjugate thereof. A block copolymer of a monoolefin compound and a vinyl aromatic compound or a hydrogenated product thereof, a non-diene polymer, a natural rubber or the like. Specific examples thereof include butadiene rubber or a hydrogenated product thereof, isoprene rubber or a hydrogenated product thereof, styrene-butadiene rubber or a hydrogenated product thereof, styrene-butadiene block copolymer or A styrene-based elastomer such as a hydride styrene-isoprene block copolymer or a hydride thereof, an acrylonitrile-butadiene rubber or a hydrogenated product thereof. Examples of the non-diene polymer include ethylene-propylene rubber, ethylene-propylene-diene rubber, ethylene-butene-diene rubber, ethylene-butene rubber, ethylene-hexene rubber, and ethylene-octene rubber. Olefin-based elastomer, butyl rubber, bromobutyl rubber, acrylic rubber, fluororubber, ruthenium rubber, vaporized polyethylene rubber, epichlorohydrin rubber, α, β. unsaturated guess - acrylic acid vinegar - Conjugated diene copolymerized rubber, amine ester rubber, polysulfide rubber, and the like. Each of the above rubbery polymers may be a modified rubber to which a functional group having a polarity such as a hydroxyl group or an amine group is imparted. Further, from the viewpoint of balance between performance and processing characteristics, the weight average molecular weight thereof is preferably 2, (10) G 2 , qing, _, more preferably 5,000 to 1,500, 00 (^, and low molecular weight may also be used. The rubbery polymer may be used alone or in combination of two or more. J 50S26.doc •22· 201120073 The conjugated conjugated decadiene polymerization product of the present embodiment is prepared. In the case of the modified conjugated diene polymer composition of the above rubbery polymer, the ratio of the ratio (mass ratio) to the balance of the dibasic polymer/rubber polymer is preferably 20 /80~100/0, more preferably 3〇/7〇~9〇/1〇, and further preferably 5G/50~8〇/2〇1 modified total two-dimer polymer/rubber polymer When the blending ratio is in the above range, a vulcanized rubber which is excellent in balance between low hysteresis loss and wet skid resistance and which is more resistant to abrasion resistance or breakage strength can be obtained. The niobium oxide-based inorganic filler is not particularly limited. A known one may be used, preferably a solid particle containing Si〇2 or SisAl as a structural unit, more preferably Si〇4Si3Ai is a main component of the structural unit. Specific examples of the dioxide-based inorganic fillers include dioxane, clay, talc, mica diatomaceous earth, ash stone, montmorillonite, zeolite, and glass. As the inorganic fibrous material such as fibers, a mixture of a silica-based inorganic filler which hydrophobizes the surface, or a mixture of a cerium oxide-based inorganic filler and an inorganic filler other than cerium oxide can be used. From the viewpoint of reinforcing property, cerium oxide and glass fiber are preferred, and cerium oxide is more preferred. As the dioxide dioxide, dry-type % dioxide, wet type dioxide, and synthetic cerium salt can be cited.矽 矽 矽 。 。 。 。 。 。 。 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 湿 湿 湿 湿 湿 湿 湿 湿 湿 湿 湿 湿 湿 湿 湿 湿 湿 湿From the viewpoint of obtaining practically good abrasion resistance or destructive properties, the gas adsorption specific surface area obtained by the inorganic filler by the adsorption-resistant method is preferably 1 〇〇 to over m 2 /g, more Good, 25Gm2/g. Also as needed The specific surface area can be relatively small (for example, 2〇〇), which has a relatively small surface area (for example, a rare earth oxide inorganic filler with a specific surface area of less than 2〇〇m2/g) and a specific surface area (for example, 2〇〇). The claws and one of the above cerium oxide-based inorganic fillers are used in combination. Thereby, good abrasion resistance or failure characteristics and high hysteresis loss can be highly balanced. The amount of the sulfur dioxide-based inorganic filler in the composition is preferably 0.5 in terms of 1 part by mass of the rubber component containing 2 parts by mass or more of the modified co-light diene polymer of the present embodiment. ~ 300 parts by mass, more preferably 5 to 2 parts by mass, and further preferably = ~! 〇〇 mass parts. In view of the effect of the addition of the inorganic filler, the amount of the oxidized 11-based inorganic filler is preferably 〇$ parts by mass or more, and the inorganic filler is sufficiently dispersed to impart processability to the composition. In view of the fact that the mechanical strength is practically sufficient, it is preferably 300 parts by mass or less. The modified conjugated-olefin polymer composition may also contain carbon black. The carbon black is not particularly limited, and for example, two types of carbon blacks such as SRF, FEF, guess, isaf, and _ can be used. Among these, it is preferable that the nitrogen adsorption specific surface area is 50 m'g or more, and the dibutyl phthalate_p) oil absorption amount is carbon black having a rib ratio of (10) g or more. The amount of the carbon black to be added is preferably 0.5 parts by mass or more, more preferably 5 parts by mass, more preferably 5 parts by mass, based on 100 parts by mass of the rubber component containing the modified conjugated diene polymer of the present embodiment. Share. The blending amount is preferably 〇5 parts by mass or more from the viewpoint of performance required for use in applications such as tires, such as tires and conductive tires, and is preferably from the viewpoint of dispersibility. It is set to 100 mass parts or less. 150826.doc •24- 201120073 Further, the modified conjugated diene polymer composition may contain a metal oxide or a metal hydroxide in addition to the cerium oxide inorganic filler or carbon black. The term "metal oxide*" means a solid particle which is a main component of a structural unit, and a metal atom represented by the chemical formula MxCMM, and X and y respectively represent an integer of the formula 6, and for example, alumina, titania, magnesia, zinc oxide or the like can be used. Further, a mixture of a metal oxide and an inorganic filler other than the metal oxide is also used. The metal hydroxide is not particularly limited, and examples thereof include aluminum hydroxide, magnesium hydroxide, and hydrazine hydroxide. The co-diene polymer composition may also contain a money coupling agent. The shoal coupling agent has a function of making the rubber component and the silica sand-based inorganic filler to interact closely, and contains a base for the affinity or bonding property of the rubber component and the cerium oxide-based inorganic filler. + system 4 = one molecule has a sulfur-bonded moiety with an alkoxy group, and (iv) an alcohol group: =. Things. Specifically, s ' can be exemplified by a double case of triethoxy shi _: kib tetrasulfide ", bis [3 · (triethoxy ketone) propyl disulfide, bis-[2- (two Ethyl-based yarn-based base)_ethyl]_tetrasulfide. The blending amount (4) is preferably from 0. 1 to 30 parts by mass, more preferably from 0.5 to 20 parts by mass, based on the above-mentioned dioxic inorganic filler, preferably from 5 parts by mass. If the money coupling agent is adjusted, the above-mentioned addition effect of the hydrazine coupling agent can be made more remarkable. The modified 'modified coplanar diterpene polymer composition may also contain a softener for rubber. As a rubber oil, or a liquid or low molecular weight synthetic softener. ^乂佳 is made by the improvement of mineralization, compatibilization and processability: the softness of rubber is called processing oil or filling 150826.doc -25- 201120073 The mineral softener for rubber is the aromatic ring and ring. Mixture of alkane ring and rocky soil chain 'The carbon number of the paraffin chain accounts for 50〇/〇 in the total carbon number. It is called the stone snail system. The ring number of the ring is 30~45%. An aromatic carbon number of more than 30% is called an aromatic system. The rubber softener used in combination with the modified conjugated di-alkaline-vinyl copolymer of the present embodiment preferably has a tendency to have a copolymer having a moderate aromatic content, and is preferred. The amount of the rubber softener to be added is preferably 〇1 to 1 part by mass, more preferably 10 to 90 parts by mass, per part by mass of the rubber component containing the modified conjugated diene polymer of the present embodiment. Further, it is preferably 3 Å to 9 Å by mass. By setting the amount of the softener for rubber to 1 part by mass based on the rubber component, it is possible to suppress the bleeding or the viscosity of the surface of the composition. Method for mixing modified conjugated diene polymer of the present embodiment, other rubbery polymer, cerium oxide inorganic filler, carbon black or other filler, decane coupling agent, rubber softener # additive There is no particular limitation. For example, a melt-kneading method using a general mixer such as an open roll, a Banbury mixer, a kneader, a single-screw extruder, a twin-screw extruder, or a multi-screw extruder; After that, the method of removing the agent is heated. Among these, from the viewpoint of productivity and good mixing, it is preferable to use a melting method of a drum, a Banbury mixer, a kneader, and an extruder. Further, any one of the modified total light diuretic polymer and the various compounding agents-sub-H practice can be used and mixed into a plurality of times. The modified conjugated diene polymer composition can also be made into a vulcanization composition which is vulcanized by a vulcanizing agent. As the vulcanizing agent, for example, a radical generating agent such as an organic peroxide or an azo compound, an anthraquinone compound, an anisine compound, a polyamine compound, a sulfur or a sulfur compound can be used. The sulfur compound contains sulfur monochloride, sulfur dichloride, a disulfide compound, a polymer polysulfide, and the like. The amount of the vulcanizing agent to be used is usually 0.1 to 15 parts by mass per 1 part by mass of the rubber component containing the modified conjugated diene polymer of the present embodiment. As the vulcanization method, a previously known method can be used, and the vulcanization temperature is usually from 12 Torr to 2 Torr ° C, preferably from 140 to 180 Torr C. Further, when vulcanization is carried out, a vulcanization accelerator may be used as needed. As the vulcanization accelerator, a conventionally known material can be used, and examples thereof include a sulfoximine system, a pulse system, a thiura system, a disc-amine system, a cis-ammonia system, a system, a sulfur gland system, and a dithiol group. A vulcanization accelerator such as a formate ester or the like can be used as a vulcanization aid to make a white material or a hard acid. The amount of the vulcanization accelerator to be used is usually G.G1 to 2G parts by mass, preferably (M to 15 parts by mass) per 100 parts by mass of the rubber component containing the modified conjugated diene polymer of the present embodiment. In the modified total diene polymer composition, other softeners or fillers other than the above may be used, and heat-resistant stabilizers and antistatic agents may be used as long as the object of the embodiment is not impaired. Various additives such as weathering stabilizers, anti-aging agents, coloring agents, lubricants, etc. As other secrets, known softeners can be used. As other fillers, specific examples thereof include carbonic acid, carbonic acid, and magnesium. Aluminum sulfate, barium sulfate, etc. As the above-mentioned heat stabilizer, antistatic agent, weathering stabilizer, anti-aging agent, colorant, and lubricant, known materials can be used. 150826.doc •27- 201120073 [Examples] The present embodiment will be described in more detail by way of the following examples. However, the present embodiment is not limited to the following examples. Further, the analysis of the sample is carried out by the method described below. Amount of styrene 4 samples were made into a chloroform solution, and the amount of bonded styrene was measured by absorption of phenyl uv 254 of stupid ethylene (manufactured by Shimadzu Corporation: UV-2450) 〇(2) microstructure of butadiene portion ( 1,2·vinyl bond amount) The sample is made into a carbon disulfide solution, and the infrared spectrum is measured in a range of 6 〇〇 to 1 〇〇〇 cm·1 using a solution tank, and the absorbance at a specific wave number is According to the calculation method of Hampton's method, the microstructure of butadiene was obtained (manufactured by Sakamoto Seiki Co., Ltd.: FT-IR230). (3) Mona viscosity is based on JIS K 6300, at 100X: preheating for i minutes, The viscosity after 4 minutes was measured. (4) Molecular weight and molecular weight distribution The chromatogram was measured using a gel permeation chromatograph (GPC) using three columns of a polyethylene penta gel as a filler. The weight average molecular weight (Mw) and the number average molecular weight (?n) were determined from a weighting curve using a standard polyethylene, and the molecular weight distribution index (Mw/Mn) was calculated from the ratio of the weight average molecular weight to the number average molecular weight. Use tetrahydrofuran (THF). Use: Protection column: Tosoh TSKguardcolumnHHR- 150826.doc •28- 201120073 Η, column: Tosoh TSKgel G6000HHR, TSKgel G5000HHR, TSKgel G4000HHR. Use Tosoh at an oven temperature of 40 ° C and a THF flow rate of 1.0 mL / min. The manufactured HLC8020 RI detector was used to measure the molecular weight. 10 mg of the sample was dissolved in 20 mL of THF, and 200 pL of the solution was injected into the apparatus for measurement. (5) Glass transition temperature (Tg) According to IS022768: 2006, using DSC3200S manufactured by MAC Science, under the circulation of helium gas of 50 mL/min, the temperature was raised from _100 °C at 20 °C/min. In the DSC curve, the Inflection point of the DSC differential curve is taken as the glass transition temperature. [Example 1] Two autoclaves having an internal volume of 10 L, an internal height to diameter ratio (L/D) of 4, an inlet at the bottom, an outlet at the top, and a mixer having a stirrer and a temperature adjustment sleeve were connected in series. The first block was used as a polymerization reactor and the second block was used as a reforming reactor. Mixing with butadiene 16.0 g/min, styrene 8.0 g/min, and n-hexane 125.6 g/min to remove impurities such as moisture, and further inerting the impurities, and adding them to the first block The reactor was previously mixed with 0.075 mmol/min of n-butyllithium (treated with n-butyllithium) using a static mixer and continuously fed to the bottom of the first reactor, which was then used at a rate of 0.020 g/min. The polar substance 2,2-bis(2-tetrahydrofuryl)propane was supplied to the bottom of the first reactor, and n-butyllithium as a polymerization initiator was supplied to the first reactor 150826 at a rate of 0.150 mmol/min. .doc -29- 201120073 At the bottom, the internal temperature of the reactor outlet was 90 ° C, and the polymerization was continued. The temperature of the second reactor was maintained at 85. (:, 1,4-bis[3-(trimethoxydecyl)propyl] piperazine as a modifier was added from the bottom of the second reactor at a rate of 0.0375 mmol/min, and the modification was carried out (coupling) The reaction was continuously added to the polymer solution flowing from the top of the second reactor in a manner of 0.048 g/min (n-hexane solution) in a manner of 0.2 g per 100 g of the polymer (BHT). After the completion of the reforming reaction, the solvent is removed to obtain a modified conjugated diene polymer. Further, the modified conjugated second is added to 37 parts by mass per 1 part by mass of the polymer. After adding S-RAE oil (NC-140 manufactured by JX曰石曰石能源股份有限公司) to the olefin polymer solution, the solvent was removed by a barrel dryer to obtain an oil-filled modified conjugated diene polymer (test Sample A). The Mona viscosity of sample A at 10 °C is 80.0, and the weight average molecular weight of the polystyrene exchange measured by GPC is 908,000, and the number average molecular weight is 393,000. As a result of the measurement of the sample, the amount of bonded styrene was 33% by mass, and B in the butadiene bonding unit The amount of base bond (1,2-bond amount) was 38 mol%, and the glass transition temperature measured by DSC was _25 ° C. [Example 2] In addition to 1,4-double as a modifier An oil-extended modified conjugated diene polymer (sample B) was obtained in the same manner as in Example i except that the addition amount of 3-(tridecyloxydecyl)propyl]piper was set to 0.0563 mmol/min. The analysis results of the sample B are shown in Table 1. [Example 3] Except that the modifier was replaced by M-bis[3-(tridecyloxydecyl)propyl] piperene 150826.doc • 30 · 201120073 An oil-filled modified conjugated diene polymer was obtained in the same manner as in Example 1, except that 1,4 - bis[3 - (diethylene gas-based breaker) propyl] was used. Example c) The analysis results of the sample C are shown in Table 1. [Example 4] except that the modifier was replaced by 1,4-bis[3-(trimethoxydecyl)propyl]periole 1,4-Bis[3-(dimethoxymethylmethyl sulfanyl) propyl]α bottoming, and the addition amount was set to 0.0563 mmol/min, and oil-filled modification was obtained in the same manner as in Example i. The conjugated diene polymer (sample D). The analysis results of the sample D are shown in Table 2. Example 5] except that the modifier was replaced by 1,4-bis[3-(tridecyloxydecyl)propyl] piperazine to 1,3-bis[3-(trifoxydecyl)propane An oil-extended modified conjugated diene polymer (sample E) was obtained in the same manner as in the actual target example 1 except for the hexahydropyrimidine. The analysis results of the sample E are shown in Table 2. [Comparative Example 1] In addition to changing the modifier from i,4-bis[3-(trimethoxysulphonyl)propyl] brigade to bis[3-(dimethoxyoxyalkyl)propyldimethylamine An oil-extended modified total diuretic polymer was obtained in the same manner as in Example 1 (samples... The analysis results of the sample F are shown in Table 3. [Comparative Example 2], except that the modifier was replaced by M-bis[3_(trimethoxysulphonyl)propyl group, and the same was carried out except for the di-poly (3·diethoxy group, alkyl group). (1) An oil-extended modified conjugated diene polymer (sample G) e was obtained in the same formula. The analysis results of the sample G are shown in Table 3. 150826.doc
-31- S } 201120073 [比較例3] 將聚合起始正丁基鋰之添加量設為〇 12〇 mm〇1/分鐘,將 2,2-雙(2-四氫呋喃基)丙烷之添加量設為〇〇18 g/分鐘,將 改質劑由1,4-雙[3_(三曱氧基石夕烧基)丙基]派畊替換為丨_ · (二乙氧基矽烧基)丙基]_4_甲基哌畊,將添加量設為〇 13 〇 mmol/分鐘,除此以外,以與實施例丨相同之方式獲得充油 改質共軛二烯系聚合物(試樣H)。 將試樣Η之分析結果示於表3。 [表1] 實施例1 實施例2 實施例3 重古嫌ΝΓγϊ A B c 聚 合 條 件 J 一烯 (g/分鐘) 16.0 16.0 160 夯乙烯 (g/分鐘) 8.0 8.0 8,0 正&院- (g/分鐘) 125.6 125.6 _ 125.6 (mmol/分鐘)~ 90 0.075 90 — — 0.075~~ 90 ~~6.075~~ 聚合起始严丁基鐘 (mmol/分鐘) 0.150 0.150 〇 150 往性物頁 添加量 (g/分鐘) 0.020 0.020 〇 020 改質劑 改質劑種類*2 BTMSP BTMSP BTESP 添加量 (mmol/分鐘) 0.0375 0.0563 0.0375 鋰當量比” 1.0 1.5 1.0 分 if 值 鍵結苯乙対 ^ 昙 τττ'Ξ--- 斤重 (質量。/〇) 33 33 33 。师丞璲筠重 (mol%) 38 38 38 玻璃轉移溫度 (。〇 -25 -25 ~~ -25 重量平均分子量(Mw) (萬) 90.8 87.0 82 4 數量平均分子量(Μη) (萬) 39.3 ^39.9 37.9 Mw/Mn 2.31 2 1S ~~2Λ7 77 % $•5 phr充油後孟納黏度(ι〇〇°〇 80.0 89.7 木1 2,雙(2-四氫呋喃基)丙烷 -- 氺2 BTMSP : 1,4·雙[3-(三甲氧基矽烷基)丙基]哌畊 BTESP: 1,4-雙[3-(三乙氧基矽烷基)丙基]哌啩 *3所添加之改質劑中含有之矽烷基上鍵結之烷氧基之總量相對於 總添加量之莫耳比 ' / / * 丁基链之 150826.doc •32· 201120073 [表2] 實施例4 實施例5 紙麻 • ΓΝΟ. ------ D E J —沛 (g/分鐘) 16.0 16.0 本乙缔 ' -- (g/分鐘) 8.0 8.0 正己院 (g/分鐘) 125.6 125.6 聚 聚CT溫_度 (°C) 90 90 合 條 4 k理正丁基鐘 (mmol/分鐘) 0.075 0.075 1 〇起始止丁某叙 (mmol/分鐘) 0.150 0.150 極性物質1添加吾 (g/分鐘) 0.020 0.020 改質劑 _改質劑種類^ BDMMSP BTMSHP 添加量 (mmol/分鐘) 0.0563 0.0375 鋰當量tP3 1.0 1.0 鍵結苯乙烯量 (質量%) 33 33 乙烯基鍵結量 (mol%) 38 38 分 玻璃轉移溫度 (°C) -25 -25 析 重量平均分子量(Mw) (萬) 74.6 88.8 值 數童平均分子量(Μη) (萬) 35.2 38.2 Mw/Mn 2.12 2.32 37_5 phr充油後孟納黏度(i〇〇°C) 57.9 78.9 *1 2,2_雙(2-四氫呋喃基)丙烷 氺2 BDMMSP : l,4-雙[3-(二曱氧基甲基矽炫基)丙基]哌啩 BTMSHP : 1,3-雙[3-(三甲氧基矽烷基)丙基]六氫嘧啶 *3 =添加之改質劑中含有之石夕烷基上鍵結之烷氧基之總量相對於正丁基鋰之換 添加量之莫耳比 〜 λ. 150826.doc 33- 201120073 [表3] BTMSA :雙(3-三曱氧基矽烷基丙基)_N_甲基胺 BTESE: 1,2-雙(3-三乙氧基石夕烷基)乙烷TESMP ·‘ 1_[3-(三乙氧基石夕烷基)丙基]_4_甲基哌啫 13所添加之改質劑中含有之矽烷基上鍵結之烷氧基之總量相對於正丁 總添加五!卜 土 < 比較例1 比較例2 比較例3 試樣No. F G Η 聚 合 條 件 丁一紼 (g/分鐘) 16.0 16.0 16.0 苯乙烤 分鐘) 8.0 8.0 8.0 正己烷 ㈣分鐘) 125.6 125.6 125.6 聚合溫度 fc) 90 90 90 處理正丁基經 (mmol/分鐘) 0.075 0.075 0.075 聚合起始正丁基鋰 iVrnnnl/公锫、 0.150 0.150 0.120 極性物質1添加量 (β/分鐘) 0.020 0.020 0.018 改質劑 改質劑 BTMSA BTESE TESMP 添加量 (mmol/分鐘) 0.0375 0.0375 0.13⑻ 鋰當量 1.0 1.0 2.0 分 ik 值 鍵結苯乙^ 希量 (質量%) 33 33 33 乙締基鍵結量 (mol%) 38 38 39 玻璃轉移溫度 (。〇 -25 -25 -25 重量平均分子量(Mw)(萬) 90.1 90.1 71.7 量平均分子量(Μη)(萬) 38.4 39.7 37.2 Mw/Mn 2.35 2.27 1.93 一37_5 phr充油後孟納黏度(100°C) 75.1 74.8 54.9 = 雙(2-四氫蝴丙烧 [實施例6〜1〇、比較例4〜6] 將上述表1〜3所示之試樣(試樣A~試樣H)作為原料橡膝, 根據以下所示之調配,獲得含有各原料橡膠之橡膠組合 物。 充油改質共軛二烯系聚合物(試樣A〜H): 137.5質量份 一氧化發(Evonik Degussa 公司製造、Ultrasil VN3): 75.0質量份 碳黑(東海碳公司製造、Seast KH(N3 39)) : 5.0質量份 150826.doc • 34· 201120073 石夕院偶合劑(Evonik Degussa公司製造、Si75) : 6.0質量份 S-RAE油(JX曰礦曰石能源公司製造、J〇MO Process 1^(:140):4.5質量份 鋅白:2.5質量份 硬酯酸:1.5質量份 抗老化劑(N-異丙基-Ν'-苯基-對笨二胺):2.0質量份 硫:2.2質量份 硫化加速劑(Ν-環己基-2·苯并噻唑基亞磺醯胺):1.7質 量份 硫化加速劑(二苯基胍):2.0質量份 總計:240.9質量份 橡膠組合物係藉由下述方法進行混練。 使用具備溫度控制裝置之密閉混練機(内容量〇.3 L),作 為第一段之混練,以填充率65%、轉子轉速5〇/57 rpm之條 件將原料橡膠(試樣A〜H)、填充劑(二氧化矽、碳黑)、有 機矽烷偶合劑、加工處理油、辞白、硬酯酸加以混練。此 時,控制密閉混合機之溫度,排出溫度(調配物)為 155〜160°C,獲得橡膠組合物。 其-人作為第二段之混練,將上述所得之調配物冷卻至 5後’ W抗老化劑’為提昇二氧切之分散而再次進 行犯練於此情形時,亦藉由混合機之溫度控制而將排出 溫度(調配物)調整為155〜160。(:。 ★ V P後作為第三段之混練,利用設定為70。(:之開口滚 筒添加硫、硫化加速劑而進行混練。其後成型,於丄6代 λ 150826.doc -35- 201120073 利用硫化加壓機進行20分鐘硫化。硫化後,測定橡膠組合 物之物性。將物性測定結果示於表4、5。 橡膠組合物之物性係藉由下述方法測定。 (1) 調配物孟納黏度 使用孟納黏度計,根據jIS K630H,於13〇〇c進行i分鐘 預熱後,以每分鐘2轉之速度使轉子旋轉,測定4分鐘後之 黏度。值越小’表示加工性越優異。 (2) 拉伸強度 藉由JIS K6251之拉伸試驗法進行測定,將比較例*設為 100而指數化。 (3) 黏彈性參數 使用 Rheometric Scientific =ι 制、《ι· ^ rmtlc Α司製造之黏彈性試驗機 (ARES) ’以扭轉模態測定黏彈性灸 读评f生翏數。各測定值係將比較 例4設為100而指數化。將於代、頻率ι〇 Hz '扭曲ι%之條 件下所測定之t-作為濕地抓地力性能之指標。值越大, 表示濕地抓地力性能越好。又,a 又將於5(TC、頻率1〇 Hz、 扭曲3%之條件下所測定之⑽作為省燃費特性之指標。值 越小,表示省燃費性能越好。 (4)耐磨耗性 使用阿克隆磨耗試驗機(安田接_也丨-31-S } 201120073 [Comparative Example 3] The addition amount of n-butyl lithium to be polymerized was set to 〇12〇mm〇1/min, and the amount of 2,2-bis(2-tetrahydrofuryl)propane was set. For 〇〇18 g/min, the modifier was replaced by 1,4-bis[3_(trioxanyloxy)propyl] to 丨_ · (diethoxy fluorenyl) propyl An oil-extended modified conjugated diene polymer (sample H) was obtained in the same manner as in Example 除 except that the amount of the mixture was changed to 〇13 〇mmol/min. The analysis results of the sample were shown in Table 3. [Table 1] Example 1 Example 2 Example 3 Reagents ΝΓγϊ AB c Polymerization conditions J-ene (g/min) 16.0 16.0 160 Ethylene (g/min) 8.0 8.0 8,0 正&院- ( g/min) 125.6 125.6 _ 125.6 (mmol/min)~ 90 0.075 90 — — 0.075~~ 90 ~~6.075~~ Initial polymerization of butyl butyl (mmol/min) 0.150 0.150 〇150 Addition to the sex page (g /min) 0.020 0.020 〇020 Modifier modifier type*2 BTMSP BTMSP BTESP Addition amount (mmol/min) 0.0375 0.0563 0.0375 Lithium equivalent ratio 1.0 1.5 1.0 Minute if value bonding phenethyl hydrazine ^ 昙τττ'Ξ- -- Weight (mass. / 〇) 33 33 33. Teacher weight (mol%) 38 38 38 Glass transfer temperature (. 〇-25 -25 ~~ -25 Weight average molecular weight (Mw) (million) 90.8 87.0 82 4 number average molecular weight (Μη) (million) 39.3 ^39.9 37.9 Mw/Mn 2.31 2 1S ~~2Λ7 77 % $•5 phr after oil filling with Mona viscosity (ι〇〇°〇80.0 89.7 wood 1 2, double (2-tetrahydrofuranyl)propane-- 氺2 BTMSP : 1,4·bis[3-(trimethoxydecyl)propyl] piperene BTESP: 1,4-double [3-(triple-three) The total amount of alkoxy groups bonded to the decyl group contained in the modifying agent added to the oxyalkylalkyl)propyl]piperazine*3 is relative to the total addition amount of the molar ratio ' / / * butyl chain 150826. Doc •32· 201120073 [Table 2] Example 4 Example 5 Paper Hemp • ΓΝΟ. ------ DEJ — Pei (g/min) 16.0 16.0 Benyi' -- (g/min) 8.0 8.0 Hospital (g/min) 125.6 125.6 Polymerization CT temperature _degree (°C) 90 90 Strip 4k butyl butyl clock (mmol/min) 0.075 0.075 1 〇 Start stop Ding Mou (mmol / min) 0.150 0.150 Polar substance 1 added I (g/min) 0.020 0.020 Modifier _ Modifier type ^ BDMMSP BTMSHP Addition amount (mmol/min) 0.0563 0.0375 Lithium equivalent tP3 1.0 1.0 Bonded styrene amount (% by mass) 33 33 Ethylene Base bond amount (mol%) 38 38 parts Glass transition temperature (°C) -25 -25 Analytical weight average molecular weight (Mw) (million) 74.6 88.8 Value number average molecular weight (Μη) (million) 35.2 38.2 Mw/Mn 2.12 2.32 37_5 phr after oil filling with Mona viscosity (i〇〇°C) 57.9 78.9 *1 2,2_bis(2-tetrahydrofuryl)propane 氺2 BDMMSP : l, 4-bis[3-(dimethoxymethylxanthyl)propyl]piperazine BTMSHP : 1,3-bis[3-(trimethoxydecyl)propyl]hexahydropyrimidine*3 = added The molar ratio of the total amount of alkoxy groups bonded to the ruthenium alkyl group in the modifier is λ. 150826.doc 33- 201120073 [Table 3] BTMSA: double (3-tridecyloxydecylpropyl)_N_methylamine BTESE: 1,2-bis(3-triethoxyindolyl)ethane TESMP ·' 1_[3-(triethoxy shixi The total amount of alkoxy groups bonded to the alkylene group contained in the modifier added to the alkyl)propyl]_4_methylpiperidin 13 is added to the total amount of the n-butyl group in addition to n-butyl<Comparative Example 1 Example 2 Comparative Example 3 Sample No. FG 聚合 Polymerization conditions butyl hydrazine (g/min) 16.0 16.0 16.0 phenylethyl baking minutes) 8.0 8.0 8.0 n-hexane (four) minutes) 125.6 125.6 125.6 polymerization temperature fc) 90 90 90 Base (mmol/min) 0.075 0.075 0.075 Polymerization starting n-butyllithium iVrnnnl/mm, 0.150 0.150 0.120 Polar substance 1 addition amount (β/min) 0.020 0.020 0.018 Modifier modifier BTMSA BTESE TESMP Addition amount (mmol/min) 0.0375 0.0375 0.13 (8) Lithium equivalent 1.0 1.0 2.0 Minute ik Value Bonding phenethyl group ^ Quantity (% by mass) 33 33 33 Ethylene bond amount (mol%) 38 38 39 Glass transition temperature (. 〇-25 -25 -25 Weight average molecular weight (Mw) (million) 90.1 90.1 71.7 Amount of average molecular weight (Μη) (million) 38.4 39.7 37.2 Mw/Mn 2.35 2.27 1.93 A 37_5 phr oil-filled Mona viscosity (100 ° C 75.1 74.8 54.9 = bis(2-tetrahydrocyanpropane [Examples 6 to 1 〇, Comparative Examples 4 to 6] The samples (samples A to H) shown in the above Tables 1 to 3 were used as raw materials. Rubber and knee, a rubber composition containing each raw material rubber was obtained according to the following formulation. Oil-filled modified conjugated diene polymer (samples A to H): 137.5 parts by mass of oxidized hair (manufactured by Evonik Degussa Co., Ltd.) , Ultrasil VN3): 75.0 parts by mass of carbon black (manufactured by Tokai Carbon Co., Ltd., Seat KH (N3 39)): 5.0 parts by mass 150826.doc • 34· 201120073 Shi Xiyuan coupling agent (manufactured by Evonik Degussa, Si75): 6.0 quality S-RAE oil (manufactured by JX曰 Mine Waste Energy Co., Ltd., J〇MO Process 1^(:140): 4.5 parts by mass of zinc white: 2.5 parts by mass of stearic acid: 1.5 parts by mass of anti-aging agent (N-isopropyl Base-Ν'-phenyl-p-p-diamine): 2.0 parts by mass of sulfur: 2.2 parts by mass of vulcanization accelerator (Ν-cyclohexyl-2·benzothiazolylsulfinamide) : 1.7 parts by mass of vulcanization accelerator (diphenyl hydrazine): 2.0 parts by mass in total: 240.9 parts by mass of the rubber composition was kneaded by the following method. Using a closed kneading machine equipped with a temperature control device (content amount 〇. 3 L As the first stage of the kneading, the raw material rubber (samples A to H), the filler (cerium oxide, carbon black), and the organic decane coupling agent were prepared at a filling rate of 65% and a rotor rotation speed of 5 〇/57 rpm. The processing oil, the whitening, and the stearic acid are kneaded. At this time, the temperature of the closed mixer is controlled, and the discharge temperature (preparation) is 155 to 160 ° C to obtain a rubber composition. After mixing, the above-obtained formulation is cooled to 5, and the 'W anti-aging agent' is used to enhance the dispersion of the dioxo. In this case, the discharge temperature is also controlled by the temperature control of the mixer. ) Adjust to 155~160. (:. ★ After VP, as the third stage of the kneading, use the setting of 70. (: The opening roller is added with sulfur and vulcanization accelerator for kneading. After that, it is formed in 丄6 generation λ 150826 .doc -35- 201120073 Using sulfur The pressurization was carried out for 20 minutes, and the physical properties of the rubber composition were measured. The physical properties of the rubber composition were measured by the following methods. (1) Modifier viscosity by using a Monner viscometer, i minutes was preheated at 13 °c according to jIS K630H, and then the rotor was rotated at a speed of 2 revolutions per minute, and the viscosity after 4 minutes was measured. The smaller the value, the more excellent the workability. (2) Tensile strength The measurement was carried out by a tensile test method of JIS K6251, and the comparative example* was set to 100 and indexed. (3) Viscoelastic parameters The viscoelastic moxibustion was measured by torsion mode using Rheometric Scientific = ι, "Im rmtlc 黏 黏 黏 黏 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。. Each measurement value was indexed by setting Comparative Example 4 to 100. The t-measured under the condition of frequency, frequency ι Hz 'distortion i% is used as an indicator of wetland grip performance. The larger the value, the better the grip performance of the wetland. In addition, a (10) measured at 5 (TC, frequency 1 〇 Hz, distortion 3%) is used as an indicator of fuel economy characteristics. The smaller the value, the better the fuel economy performance. (4) Wear resistance Use the Akron abrasion test machine (Antian pick _ also 丨
文田精機製作所製),根據JIS K6264-2,測定荷重44.1 N、旋鍤According to JIS K6264-2, the load is 44.1 N, and the rotation is made by Manoda Seiki Co., Ltd.
灸轉1000次之磨耗量,將比 較例4設為100而指數化。指激私L 越大’表示耐磨耗性越優 異0 150826.doc -36- 201120073 [表4] 實施例6 實施例7 實施例8 實施例9 實施例10 充油苯乙烯-丁二烯共聚物 A B C D E 調配物孟納黏度 54 63 58 55 57 硫 化 橡 膠 性 拉伸強度 指數 111 111 105 104 110 耐磨耗性 指數 104 115 113 114 113 0°ctai^(應變1%) 指數 104 106 104 101 106 50°(:ίαηδ(應變 3%)指數 92 87 93 98 91 [表5] 比較例4 比較例5 比較例6 充油苯乙烯-丁二烯共聚物 F G Η 調配物孟納黏度 51 58 63 硫 化 橡 膠 物 性 拉伸強度 指數 100 111 110 耐磨耗性 指數 100 95 101 0°C tans(應變1%) 指數 100 98 108 50°Ctai^(應變3%)指數 100 116 96 如表4、5所示,確認實施例6〜10之改質共軛二烯系聚合 物組合物與比較例4及5之組合物相比,高溫之tan5較低, 磁滞損耗較少,實現輪胎之低轉動阻力,並且低溫之tan3 較高,抗濕滑性優異。進而,確認耐磨耗性及拉伸強度亦 良好。又,與比較例6進行比較之情形時,確認調配物孟 納黏度較低,加工性與硫化橡膠之物性之平衡優異。 [實施例11] 使用内容積為10 L、具備攪拌機及套管之可控制溫度之 高壓爸作為反應器,將預先去除雜質之丁二烯777 g、苯 乙烯273 g、環己烷4800 g、作為極性物質之2,2-雙(2-四氫 呋喃基)丙烷1.30 g放入反應器中,將反應器内溫保持於 37°C。將含有正丁基鋰15.1 mmol之環己烷溶液供給至反The amount of abrasion of the moxibustion was changed to 1000 times, and the comparative example 4 was set to 100 and indexed. The larger the finger width L is, the more excellent the abrasion resistance is. 0 150826.doc -36- 201120073 [Table 4] Example 6 Example 7 Example 8 Example 9 Example 10 Oil-filled styrene-butadiene copolymerization ABCDE Formulation Mona viscosity 54 63 58 55 57 Vulcanized rubber tensile strength index 111 111 105 104 110 Abrasion resistance index 104 115 113 114 113 0°ctai^ (strain 1%) Index 104 106 104 101 106 50° (: ίαηδ (strain 3%) index 92 87 93 98 91 [Table 5] Comparative Example 4 Comparative Example 5 Comparative Example 6 Oil-filled styrene-butadiene copolymer FG Η Formulation Mengna viscosity 51 58 63 Vulcanized rubber physical property Tensile strength index 100 111 110 Wear resistance index 100 95 101 0°C tans (strain 1%) Index 100 98 108 50°Ctai^ (strain 3%) index 100 116 96 As shown in Tables 4 and 5, confirm implementation The modified conjugated diene polymer compositions of Examples 6 to 10 have lower tan5 at a higher temperature and less hysteresis loss than the compositions of Comparative Examples 4 and 5, achieving low rotational resistance of the tire, and low temperature. Tan3 is high and has excellent wet skid resistance. Further, it is confirmed that the wear resistance and tensile strength are also Further, in the case of comparison with Comparative Example 6, it was confirmed that the viscosity of the blended material was low, and the balance between the workability and the physical properties of the vulcanized rubber was excellent. [Example 11] The inner volume was 10 L, and the mixer and the sleeve were provided. The high-pressure dad, which can control the temperature, is used as a reactor to remove impurities such as 777 g of butadiene, 273 g of styrene, 4800 g of cyclohexane, and 2,2-bis(2-tetrahydrofuryl)propane as a polar substance. g was placed in the reactor, and the internal temperature of the reactor was maintained at 37 ° C. A solution of 15.1 mmol of n-butyllithium in cyclohexane was supplied to the reaction.
S 150826.doc -37· 201120073 應器中作為聚合起始劑。聚合反應開始後,反應器内之溫 度由於聚合引起之發熱而開始上升,最終之反應器内之溫 度達到70°C。聚合反應結束後’向反應器中添加〖,4-雙[3_ (二曱氧基石夕院基)丙基]α辰p井3.39 mmol,於69°C實施5分鐘 改質反應。此時,所添加之改質劑中之矽烷基上鍵結之甲 氧基之總量相對於正丁基鐘添加量之莫耳比為丨3 5。向該 聚合物溶液中添加抗氧化劑(ΒΗΤ)2· 1 g後,藉由蒸汽汽提 去除溶劑,利用乾燥機實施乾燥處理,獲得含有改質成分 之苯乙烯-丁二烯共聚物(試樣D。 刀析(試樣I)之結果為,鍵結笨乙烯量為26質量%,鍵結 丁二烯量為74%。 聚合物之孟納黏度為60。 由使用紅外分光光度計之測定結果,根據漢普頓法進行 计算所求得之丁二烯部分之微結構之乙烯基鍵結量(丨,2-鍵 結量)為5 6 %。 玻璃轉移溫度為-23°C。S 150826.doc -37· 201120073 In the reactor as a polymerization initiator. After the start of the polymerization, the temperature in the reactor began to rise due to the heat generated by the polymerization, and the temperature in the final reactor reached 70 °C. After completion of the polymerization reaction, 3.39 mmol of 4-, 4-bis[3-(dioxaxoxin)propyl]α Chen p well was added to the reactor, and the modification reaction was carried out at 69 ° C for 5 minutes. At this time, the molar ratio of the total amount of the methoxy group bonded to the decyl group in the added modifier to the amount of the n-butyl group added was 丨3 5 . After adding 2·1 g of an antioxidant (ΒΗΤ) to the polymer solution, the solvent was removed by steam stripping, and drying was performed by a dryer to obtain a styrene-butadiene copolymer containing a modified component (sample D. The result of knife analysis (sample I) was that the amount of ethylene in the bond was 26% by mass, and the amount of bonded butadiene was 74%. The viscosity of the polymer had a viscosity of 60. It was determined by using an infrared spectrophotometer. As a result, the amount of vinyl bond (丨, 2-bond amount) of the microstructure of the butadiene portion determined by the calculation by the Hampton method was 56%. The glass transition temperature was -23 °C.
37.2萬’數量平均分子量(Mn)為31 ",17。 [比較例7]The 372,000' number average molecular weight (Mn) is 31 ", 17. [Comparative Example 7]
43它。將含有正丁基鋰6.52 裔甲’將反應器内溫保持於 mm〇1之環己烷溶液供給至反 150826.doc -38· 201120073 應器中作為聚合起始劑。聚合反應開始後,反應器内之溫 度由於聚合引起之發熱而開始上升,最終之反應器内之溫 度達到71°C。 聚合反應結束後’向反應器中添加1-[3-(三乙氧基矽烷 基)丙基]-4-f基哌畊4.35 mmol,於70°C實施5分鐘改質反 應。向該聚合物溶液中添加抗氧化劑(ΒΗΤ)2·ι g後,藉由 蒸K K提去除溶劑’利用乾燥機實施乾燥處理,獲得含有 改質成分之笨乙烯-丁二烯共聚物(試樣j)。 分析(試樣J)之結果為,鍵結苯乙烯量為26質量%,鍵結 丁 —稀夏為74%。 聚合物之孟納黏度為58。 由使用紅外分光光度計之測定結果,根據漢普頓法進行 計算所求得之丁二烯部分之微結構之乙烯基鍵結量(丨,2•鍵 結量)為56%。 玻璃轉移溫度為-23。(:。 以GPC測定之聚苯乙烯換算之重量平均分子量(Mw)為 36.8萬,數量平均分子量(Mn)為28丨萬,1^^/]^[11為丨31。 [實施例12、比較例8] 將實施例11及比較例7中所得之試樣(試樣〖及作為原料 橡膠,根據以下所示之調配,獲得含有各原料橡膠之橡膠 組合物。 改質共軛二烯系聚合物(試樣hj) ·· 1〇〇 〇質量份 二氧化矽(Evonik Degussa公司製造、Ultrasil VN3): 25.0質量份 150826.doc •39· 201120073 碳黑(東海碳公司製造、Seast ΚΗ(Ν3 39)) : 20.0質量份 矽烷偶合劑(Evonik Degussa公司製造、Si75) : 2.0質量份 S-RAE油(JX日礦日石能源公司製造、JOMO Process NC140) : 5·0 質量份 鋅白:3.0質量份 硬酯酸:2.0質量份 抗老化劑(Ν-異丙基-Ν'-苯基-對苯二胺):1.0質量份 硫:1.9質量份 硫化加速劑(Ν-環己基-2-苯并噻唑基亞磺醯胺):1.0質 量份 硫化加速劑(二苯基胍):1.5質量份 總計:162.4質量份 橡膠組合物係藉由與實施例6〜10、比較例4〜6同樣之方 法進行混練。橡膠組合物之物性藉由與實施例6〜10、比較 例4〜6同樣之方法進行測定。將物性測定結果示於表6。關 於結果係以指數值表示者,將比較例8設為「100」。 [表6] 實施例12 比較例8 苯乙烯-丁二烯共聚物 I J 調配物孟納黏度 64 71 硫 化 橡 膠 物 性 拉伸強度 指數 99 100 耐磨耗性 指數 101 100 0°C tan5(應變1%) 指數 103 100 50°Ctan5(應變3%)指數 96 100 如表6所示,確認實施例12之改質共軛二烯系聚合物組 合物與比較例8之組合物相比,高溫之tan5較低,磁滯損 150826.doc -40· 201120073 耗較少’實現輪胎之低轉動阻力’並且低溫之tanS較高, 抗濕滑性優異。又’確認調配物孟納黏度較低,加工性與 硫化橡膠之物性之平衡優異。進而,確認耐磨耗性及拉伸 強度亦良好。 由以上内容確認,本實施例之改質共軛二烯系聚合物在 製成硫化橡膠時,低磁滞損耗性與抗濕滑性之平衡優異, 具有實用上充分之耐磨耗性或破壞強度,且加工性亦優 異。 本申請㈣基於膽年叫们日向日本專利局提出申請 之曰本專利出願(特願2_·23〇4ΐ2)者,其内容作為參照而 併入本文中。 [產業上之利用可能性] π根據本發明之改質隸二烯系聚合物之製造方法, 付製f硫化橡膠時低磁滯損耗性與抗濕滑性之平衡優異、 用上充分之耐磨耗性或破壞特性、且加工性亦優異 質共軛二烯系聚合物,可較好地用作輪胎面 工業用品等各種構件之材料。 150826.doc43 it. A cyclohexane solution containing n-butyllithium 6.52 amide to maintain the internal temperature of the reactor at mm 〇 1 was supplied to the reverse 150826.doc -38·201120073 as a polymerization initiator. After the start of the polymerization, the temperature in the reactor began to rise due to the heat generated by the polymerization, and the temperature in the final reactor reached 71 °C. After the completion of the polymerization reaction, 4.35 mmol of 1-[3-(triethoxydecyl)propyl]-4-f-base was added to the reactor, and the modification reaction was carried out at 70 ° C for 5 minutes. After adding an antioxidant (ΒΗΤ) 2·1 g to the polymer solution, the solvent was removed by steaming KK', and drying treatment was performed by a dryer to obtain a stupid ethylene-butadiene copolymer containing a modified component (sample j). As a result of the analysis (Sample J), the amount of bonded styrene was 26% by mass, and the bond was butyl - 74% in dilute summer. The polymer has a Mona viscosity of 58. From the measurement results using an infrared spectrophotometer, the amount of vinyl bond (丨, 2• bond amount) of the microstructure of the butadiene portion determined by the Hampton method was 56%. The glass transition temperature is -23. (: The weight average molecular weight (Mw) in terms of polystyrene measured by GPC is 368,000, and the number average molecular weight (Mn) is 280,000, and 1^^/]^[11 is 丨31. [Example 12, Comparative Example 8 The sample obtained in Example 11 and Comparative Example 7 (the sample and the raw material rubber were blended as described below to obtain a rubber composition containing each raw material rubber. Modified conjugated diene system) Polymer (sample hj) ···································· 39)) : 20.0 parts by mass of decane coupling agent (manufactured by Evonik Degussa Co., Ltd., Si75): 2.0 parts by mass of S-RAE oil (manufactured by JX Nippon Mining & Energy Co., Ltd., JOMO Process NC140): 5.0 parts by mass zinc white: 3.0 Parts by mass stearic acid: 2.0 parts by mass of anti-aging agent (Ν-isopropyl-Ν'-phenyl-p-phenylenediamine): 1.0 part by mass of sulfur: 1.9 parts by mass of vulcanization accelerator (Ν-cyclohexyl-2- Benzothiazolylsulfinamide): 1.0 part by mass of vulcanization accelerator (diphenylphosphonium): 1.5 parts by mass 162.4 parts by mass of the rubber composition was kneaded by the same method as in Examples 6 to 10 and Comparative Examples 4 to 6. The physical properties of the rubber composition were carried out in the same manner as in Examples 6 to 10 and Comparative Examples 4 to 6. The measurement results of the physical properties are shown in Table 6. The results are shown by an index value, and Comparative Example 8 is set to "100". [Table 6] Example 12 Comparative Example 8 Styrene-butadiene copolymer IJ formulation Material Mona viscosity 64 71 vulcanized rubber physical tensile strength index 99 100 wear resistance index 101 100 0 ° C tan5 (strain 1%) index 103 100 50 ° Ctan5 (strain 3%) index 96 100 as shown in Table 6, It was confirmed that the modified conjugated diene polymer composition of Example 12 had a lower tan5 at a higher temperature than the composition of Comparative Example 8, and the magnetic hysteresis was 150826.doc -40·201120073, which was less expensive. The rotation resistance is high and the tanS at low temperature is high, and the wet skid resistance is excellent. Further, it is confirmed that the viscosity of the blended material is low, and the balance between the workability and the physical properties of the vulcanized rubber is excellent. Further, it is confirmed that the wear resistance and the tensile strength are also good. Confirmed by the above content, this implementation When the modified conjugated diene polymer is made into a vulcanized rubber, it has excellent balance between low hysteresis loss and wet skid resistance, and has practically sufficient wear resistance or fracture strength, and is excellent in workability. The application (4) is based on the patent application of the Japanese Patent Office (Japanese Patent Application) (Japanese Patent Application No. 2_23〇4ΐ2), the contents of which are incorporated herein by reference. [Industrial Applicability] π According to the method for producing a modified diene-based polymer of the present invention, the balance between low hysteresis loss and wet skid resistance is excellent when f-vulcanized rubber is prepared, and sufficient wear resistance is used. A conjugated diene-based polymer which is excellent in workability and processability, and which is excellent in workability, can be preferably used as a material for various members such as a tread industrial product. 150826.doc