JPH0436636A - Flow cell device - Google Patents

Flow cell device

Info

Publication number
JPH0436636A
JPH0436636A JP2143458A JP14345890A JPH0436636A JP H0436636 A JPH0436636 A JP H0436636A JP 2143458 A JP2143458 A JP 2143458A JP 14345890 A JP14345890 A JP 14345890A JP H0436636 A JPH0436636 A JP H0436636A
Authority
JP
Japan
Prior art keywords
liquid
sample
flow cell
flow
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2143458A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Azumaya
良行 東家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2143458A priority Critical patent/JPH0436636A/en
Publication of JPH0436636A publication Critical patent/JPH0436636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To take a measurement with high efficiency without any possibility of contamination by providing a sheath liquid tube which sucks waste liquid, varies the resistance of a conduit, and guides liquid into a chamber and a sample liquid tube which has one end in sample liquid and the other end connected to the chamber. CONSTITUTION:When a liquid feeding mechanism 27 is put in operation to guide sheath liquid Sh and sample liquid Sa to the flow cell chamber 3, the liquid Sh flows at the periphery of the liquid Sa in the chamber and a sheath flow is formed in a flow cell 4; and the flow velocity is varied by varying the flow rate of the mechanism 27, the pressure in the chamber 3 is negative, and the flow diameter is controlled by a conduit resistor 24. Then a measurement is taken in the flow cell 4 with laser light, a sample container 1 is removed after the measurement, and a cleaning mechanism 28 is arranged at the place of a sample tube 20; and a valve 23 is closed and a cleaning liquid supply mechanism 25 is driven to clean the device. One sample tube is provided, so there is little contamination and high-efficiency measurement is performed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フローサイトメトリ等の検体検査装置用フロ
ーセル装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a flow cell device for a sample testing device such as a flow cytometer.

[従来の技術] フローサイトメトリとは、高速で流れる細胞浮遊溶液、
即ちサンプル液に例えばレーザー光を照射し、その散乱
光・蛍光による光電信号を検出し、細胞の性質・構造を
解明する装置であり、細胞化学、免疫学、血液学、腫瘍
学、遺伝学等の分野で使用されている。
[Conventional technology] Flow cytometry is a method using a cell suspension solution that flows at high speed.
In other words, it is a device that irradiates a sample liquid with, for example, a laser beam, detects a photoelectric signal from the scattered light and fluorescence, and elucidates the properties and structure of cells, and is used in cytochemistry, immunology, hematology, oncology, genetics, etc. used in the field of

このフローサイトメトリ等に用いられる従来の粒子解析
装置では、フローセルの中央部の例えば200μm×2
00μmの微小な四角形断面を有する流通部内を、シー
ス液に包まれて通過する血球細胞などの被検粒子に光ビ
ームを照射し、その結果として生ずる前方及び側方散乱
光により、被検粒子の形状・大きさ・屈折率等の粒子的
性質を得ることが可能である。また、蛍光剤により染色
され得る被検粒子に対しては、照射光とほぼ直角方向の
側方散乱光から被検粒子の蛍光を検出することにより、
被検粒子を解析するための重要な情報を求めることがで
きる。
In conventional particle analysis devices used for flow cytometry, etc., the central part of the flow cell is, for example, 200 μm x 2
A light beam is irradiated onto test particles such as blood cells wrapped in sheath fluid and passing through a flow section with a minute rectangular cross section of 00 μm, and the resulting forward and side scattered light is used to detect the test particles. It is possible to obtain particle properties such as shape, size, and refractive index. In addition, for test particles that can be dyed with a fluorescent agent, by detecting the fluorescence of the test particles from side scattered light in a direction approximately perpendicular to the irradiation light,
Important information for analyzing test particles can be obtained.

第4図はフローサイトメトリ等の検体検査用フローセル
装置の第1の従来例であり、抗原抗体反応や蛍光試薬に
よる染色などの処理を受けたサンプル液Saはサンプル
液容器lに入れられ1、また蒸留水や生理食塩水等のシ
ース液shはシース液容器2に入れられている。サンプ
ル液容器1内及びシース液容器2内はそれぞれ図示しな
い加圧機構により加圧されている。そして、シースフロ
ー原理によりフローセルチャンバ3内でサンプル液Sa
がシース液shに包まれて細い流れに収斂され、フロー
セル4内の流通部の中央部を通過する。このとき、サン
プル液Sa中の被検粒子は分離され、1粒或いは1塊ず
つ順次に流れる。この被検粒子の流れに対して、レーザ
ー光源5から出射されたレーザー光が、シリンドリカル
レンズ6a、6bによって収斂されて照射され、被検粒
子からは散乱光や蛍光の光信号が生ずる。前方散乱光は
集光レンズ7で集束されて検出器8で検出され、また側
方散乱光や蛍光は図示しない側方の集光レンズで集束さ
れて検出器で検出される。そして、これらの検出された
信号はコンピュータで演算され各種の解析が行われる。
FIG. 4 shows a first conventional example of a flow cell device for specimen testing such as flow cytometry, in which a sample liquid Sa that has undergone treatments such as antigen-antibody reaction and staining with a fluorescent reagent is placed in a sample liquid container l; Further, a sheath liquid sh such as distilled water or physiological saline is placed in a sheath liquid container 2. The inside of the sample liquid container 1 and the inside of the sheath liquid container 2 are each pressurized by a pressurizing mechanism (not shown). Then, the sample liquid Sa is
is wrapped in the sheath liquid sh and converged into a thin flow, which passes through the center of the flow section in the flow cell 4. At this time, the test particles in the sample liquid Sa are separated and sequentially flow one particle or one lump at a time. Laser light emitted from the laser light source 5 is converged and irradiated by the cylindrical lenses 6a and 6b onto the flow of the test particles, and the test particles generate optical signals of scattered light and fluorescence. Forward scattered light is focused by a condensing lens 7 and detected by a detector 8, and side scattered light and fluorescence are focused by a side condensing lens (not shown) and detected by a detector. Then, these detected signals are calculated by a computer and various analyzes are performed.

第5図は第2の従来例を示し、サンプル液容器l内のサ
ンプル液Saはサンプルシリンダ9により験引され、三
方ロバルブlOを経てサンプル溜め11に一旦溜められ
てから、次にサンプルシリンダ9で押し出されフローセ
ルチャンバ3へと送られる。一方、シース液shはシー
スシリンダ12によりシース液容器2から三方ロバルブ
13を経て一旦吸引された後にフローセルチャンバ3へ
と送られる。
FIG. 5 shows a second conventional example, in which the sample liquid Sa in the sample liquid container l is subtracted by the sample cylinder 9, passed through the three-way valve lO, and once stored in the sample reservoir 11, and then transferred to the sample cylinder 9. is pushed out and sent to the flow cell chamber 3. On the other hand, the sheath liquid sh is once sucked from the sheath liquid container 2 by the sheath cylinder 12 via the three-way valve 13 and then sent to the flow cell chamber 3.

[発明が解決しようとする課題1 しかしながら、上述の第1の従来例では加圧のためのコ
ンプレッサやレギュレータなどが必要であり、装置が大
きくなってしまう。また、サンプル液容器l内を加圧す
るため、サンプル液容器1は気密に保持しなければなら
ず、サンプル液容器1の交換は容易ではなく、自動的に
多検体を測定するには不向きである。
[Problem to be Solved by the Invention 1] However, the first conventional example described above requires a compressor, a regulator, etc. for pressurization, and the device becomes large. In addition, since the inside of the sample liquid container 1 is pressurized, the sample liquid container 1 must be kept airtight, and it is not easy to replace the sample liquid container 1, making it unsuitable for automatically measuring multiple samples. .

また、第2の従来例では、サンプル液Saは吸引され三
方ロバルブ10を通り、−旦すンプル溜め11に溜めら
れてから、フローセルチャンバ3へと送られるため時間
的に不利であり、次のサンプル液Saを流す時に前回の
測定サンプルの残液が混入してしまう、所謂コンタミネ
ーションの可能性も大きい。また、サンプル液Saの吸
引量は成る程度一定であるので、サンプル液Saの濃度
によっては希望する測定個数に満たなかったり、逆にサ
ンプル液Saの殆どが無駄になることがある。
In addition, in the second conventional example, the sample liquid Sa is sucked, passes through the three-way valve 10, is stored in the sample reservoir 11, and is then sent to the flow cell chamber 3, which is disadvantageous in terms of time. There is also a large possibility of so-called contamination, in which residual liquid from the previous measurement sample gets mixed in when the sample liquid Sa is poured. Further, since the amount of sample liquid Sa to be aspirated is fairly constant, depending on the concentration of sample liquid Sa, the desired number of samples to be measured may not be reached, or conversely, most of sample liquid Sa may be wasted.

本発明の目的は、コンタミネーションの虞れがなく能率
の良い測定が可能なフローセル装置を提供することにあ
る。
An object of the present invention is to provide a flow cell device that can perform efficient measurements without the risk of contamination.

[課題を解決するための手段] 上述の目的を達成するために、本発明に係るフローセル
装置においては、フローセルチャンバ内にシース液とサ
ンプル液を供給し、サンプル液の周囲にシース液を流し
てシースフローを形成するフローセル装置において、廃
液を吸引する送液手段と、管路の途中に管路抵抗を変え
るための抵抗手段を設け前記フローセルチャンバ内にシ
ース液を導くシース液管と、一端をサンプル液中に浸漬
し他端を前記フローセルチャンバに接続したサンプル液
管とを有することを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, in the flow cell device according to the present invention, a sheath liquid and a sample liquid are supplied into a flow cell chamber, and the sheath liquid is caused to flow around the sample liquid. In a flow cell device that forms a sheath flow, a sheath liquid pipe is provided with a liquid feeding means for sucking waste liquid and a resistance means for changing the resistance of the pipe line in the middle of the pipe line, and one end of the sheath liquid pipe is provided to guide the sheath liquid into the flow cell chamber. The sample liquid tube is immersed in the sample liquid and has its other end connected to the flow cell chamber.

[作用] 上述の構成を有するフローセル装置は、フロセルの下流
に送液手段を設けることにより、サンプル液を無駄にす
ることなく連続的な測定を可能とする。
[Operation] The flow cell device having the above-described configuration enables continuous measurement without wasting sample liquid by providing a liquid feeding means downstream of the flow cell.

[実施例] 本発明を第1図〜第3図に図示の実施例に基づいて詳細
に説明する。
[Example] The present invention will be explained in detail based on the example illustrated in FIGS. 1 to 3.

第1図は本発明の実施例を示し、第4図、第5図と同一
の符号は同一の部材を表している。フローセルチャンバ
3には、サンプル液容器l内のサンプル液Saを供給す
るサンプルチューブ20と、シース液容器2内のシース
液shを供給するシースチューブ21、及びサンプルチ
ューブ20内を洗浄するための洗浄液Scを供給する洗
浄チューブ22が接続されている。シースチューブ21
の途中にはバルブ23、可変の管路抵抗器24が接続さ
れてξす、洗浄チューブ22にはフローセルチャンバ3
に洗浄液Scを供給するための洗浄液供給機構25が接
続されている。フローセル4の下流側には廃液チューブ
26が接続されており、この廃液チューブ26は廃液を
吸引する送液機構27に接続されている。なお、28は
サンプルチューブ20のサンプル吸引部の外側を洗浄す
る洗浄液Scを供給するための洗浄機構である。
FIG. 1 shows an embodiment of the present invention, and the same reference numerals as in FIGS. 4 and 5 represent the same members. The flow cell chamber 3 includes a sample tube 20 for supplying the sample liquid Sa in the sample liquid container l, a sheath tube 21 for supplying the sheath liquid sh in the sheath liquid container 2, and a cleaning liquid for cleaning the inside of the sample tube 20. A cleaning tube 22 that supplies Sc is connected. sheath tube 21
A valve 23 and a variable line resistor 24 are connected to the middle of the cleaning tube 22, and a flow cell chamber 3 is connected to the cleaning tube 22.
A cleaning liquid supply mechanism 25 for supplying cleaning liquid Sc is connected to the cleaning liquid Sc. A waste liquid tube 26 is connected to the downstream side of the flow cell 4, and this waste liquid tube 26 is connected to a liquid sending mechanism 27 that sucks the waste liquid. Note that 28 is a cleaning mechanism for supplying a cleaning liquid Sc for cleaning the outside of the sample suction part of the sample tube 20.

サンプル液Saが入ったサンプル液容器1は、サンプル
チューブ20のサンプル吸引部がサンプル液りa内に浸
漬するよう置かれている。また、シースチューブ21の
一端はシース液容器2内のシース液sh内に浸漬されて
いる。いま、送液機構27を作動させるとシース液sh
及びサンプル液Saは吸引され、フローセルチャンバ3
へと導かれる。送液機構27としては、容器内部を真空
にすることにより廃液を吸引するようなものも考えられ
るが、廃液の流量を制御できる容積型ポンプの方が好ま
しいが、モータ駆動のシリンダなども考えられる。
The sample liquid container 1 containing the sample liquid Sa is placed so that the sample suction part of the sample tube 20 is immersed in the sample liquid a. Further, one end of the sheath tube 21 is immersed in the sheath liquid sh in the sheath liquid container 2. Now, when the liquid feeding mechanism 27 is activated, the sheath liquid sh
and the sample liquid Sa are sucked into the flow cell chamber 3.
be led to. As the liquid feeding mechanism 27, a mechanism that suctions the waste liquid by creating a vacuum inside the container can be considered, but a positive displacement pump that can control the flow rate of the waste liquid is preferable, but a motor-driven cylinder can also be considered. .

第2図に示すようにフローセルチャンバ3内では、サン
プル液Saの周囲をシース液shが流れ、フローセル4
内でシースフローが形成されている。
As shown in FIG. 2, in the flow cell chamber 3, the sheath liquid sh flows around the sample liquid Sa, and the flow cell 4
A sheath flow is formed within.

流れの速度は送液機構27の流量を変えることにより変
えられる。フローセルチャンバ3内は負圧になっており
、シース液shの流れが支配的であり、そのため管路抵
抗器24の抵抗を少し大きくするとフローセルチャンバ
3内は更に負圧になり、その結果、サンプル液Saの流
量が増えシースフローの流径が太くなる。逆に、管路抵
抗器24の抵抗を少し小さくすると流径は細くなり、管
路抵抗器24は流径を制御することになる。
The speed of the flow can be changed by changing the flow rate of the liquid feeding mechanism 27. The inside of the flow cell chamber 3 is under negative pressure, and the flow of the sheath liquid sh is dominant. Therefore, if the resistance of the conduit resistor 24 is slightly increased, the inside of the flow cell chamber 3 becomes even more negative pressure, and as a result, the sample The flow rate of liquid Sa increases and the diameter of the sheath flow increases. Conversely, if the resistance of the conduit resistor 24 is slightly reduced, the flow diameter becomes narrower, and the conduit resistor 24 controls the flow diameter.

管路抵抗器24としては、第3図に電気回路で等測的に
示すように内部に切換バルブと幾種類かの分岐路を持ち
、バルブによってシース液shの分岐路を切り換えるこ
とにより管路抵抗を変えるものが考えられる。管路抵抗
をシースフロー形成時の大きさとすると、送液機構27
を始動した際にサンプル液Saは吸引されるが、直ちに
はフローセルチャンバ3内に達しないので、始動時は管
路抵抗器24の管路抵抗はシースフロー形成時の太きさ
よりも十分大きくするように切換えられており、サンプ
ル液Saがフローセルチャンバ3内へ達した後に、所望
の流径に見当った抵抗値に切換えられる。
The conduit resistor 24 has an internal switching valve and several types of branch paths, as shown isometrically in the electric circuit in FIG. One possibility is to change the resistance. If the pipe resistance is the magnitude at the time of sheath flow formation, the liquid feeding mechanism 27
When the sample liquid Sa is started, it is sucked in, but it does not reach the inside of the flow cell chamber 3 immediately. Therefore, at the time of starting, the pipe resistance of the pipe resistor 24 should be sufficiently larger than the thickness at the time of forming the sheath flow. After the sample liquid Sa reaches the inside of the flow cell chamber 3, the resistance value is changed to match the desired flow diameter.

フローセル4内ではレーザー光による測定が行われ、測
定が終わるとサンプル液容器1を取り除き、サンプルチ
ューブ20の個所に洗浄機構28を持つでくる。次に、
バルブ23を閉じると同時に、洗浄液供給機構25を駆
動し送液機構27よりも多い流量で洗浄液Scをフロー
セルチャンバ3に送る。すると、洗浄液供給機構25か
らの洗浄液Scはフローセルチャンバ3、フローセル4
、廃液チューブ26を経由して流れ、洗浄と同時にサン
プルチューブ20内を逆流し洗浄を行う。このとき、同
時に洗浄機構28によりサンプルチx −ブ20のサン
プル吸引部の外側を洗浄する。この洗浄によってサンプ
ルチューブ20内に残ったサンプル液Saは捨てられる
が、例えば内径0.5mm、長さ15mmのサンプルチ
ューブを使用すると、その廃棄量は約3u!2と少ない
Inside the flow cell 4, measurement is performed using a laser beam, and when the measurement is finished, the sample liquid container 1 is removed and a cleaning mechanism 28 is placed in place of the sample tube 20. next,
At the same time as closing the valve 23, the cleaning liquid supply mechanism 25 is driven to send the cleaning liquid Sc to the flow cell chamber 3 at a flow rate higher than that of the liquid feeding mechanism 27. Then, the cleaning liquid Sc from the cleaning liquid supply mechanism 25 is supplied to the flow cell chamber 3 and the flow cell 4.
, flows through the waste liquid tube 26, and at the same time as cleaning, backflows inside the sample tube 20 to perform cleaning. At this time, the cleaning mechanism 28 simultaneously cleans the outside of the sample suction section of the sample tube 20. By this washing, the sample liquid Sa remaining in the sample tube 20 is discarded, but if a sample tube with an inner diameter of 0.5 mm and a length of 15 mm is used, the amount of waste is approximately 3 u! As few as 2.

[発明の効果] 以上説明したように本発明に係るフローセル装置は、f
i+装置の構成が簡単である、(2)サンプル液を短時
間でフローセルまで導ける、(3)サンプルチューブが
1本の管であるのでコンタミネーションの心配が殆どな
い、(4)測定を任意の時間内で終えることができサン
プル液を無駄にしない、(5)自動的に多検体を処理す
る装置に応用できるなどの効果がある。
[Effect of the invention] As explained above, the flow cell device according to the present invention has f
The configuration of the i+ device is simple, (2) the sample liquid can be guided to the flow cell in a short time, (3) there is almost no concern about contamination because the sample tube is a single tube, and (4) measurements can be performed at any time. It has the following advantages: it can be completed within a certain amount of time, no sample liquid is wasted, and (5) it can be applied to devices that automatically process multiple samples.

【図面の簡単な説明】[Brief explanation of the drawing]

図面第1図〜第3図は本発明に係るフローセル装置の実
施例を示し、第1図は構成図、第2図はフローセルチャ
ンバの断面図、第3図は管路抵抗器の等測面であり、第
4図は第1の従来例の構成図、第5図は第2の従来例の
構成図である。 符号1はサンプル液容器、2はシース液容器、3はフロ
ーセルチャンバ、4はフローセル、20はサンプルチュ
ーブ、21はシースチューブ、23はバルブ、24は管
路抵抗器、22は洗浄チューブ、25は洗浄液供給機構
、26は廃液チューブ、 27は送液機構、 28は洗浄機構、 a はサンプル液、 shはシ ス液。 Scは洗浄液であ る。
Drawings 1 to 3 show an embodiment of the flow cell device according to the present invention, in which Fig. 1 is a configuration diagram, Fig. 2 is a sectional view of the flow cell chamber, and Fig. 3 is an isometric surface of a conduit resistor. FIG. 4 is a block diagram of the first conventional example, and FIG. 5 is a block diagram of the second conventional example. 1 is a sample liquid container, 2 is a sheath liquid container, 3 is a flow cell chamber, 4 is a flow cell, 20 is a sample tube, 21 is a sheath tube, 23 is a valve, 24 is a line resistor, 22 is a cleaning tube, 25 is a 26 is a cleaning liquid supply mechanism, 26 is a waste liquid tube, 27 is a liquid sending mechanism, 28 is a cleaning mechanism, a is a sample liquid, and sh is a cis liquid. Sc is a cleaning liquid.

Claims (1)

【特許請求の範囲】[Claims] 1、フローセルチャンバ内にシース液とサンプル液を供
給し、サンプル液の周囲にシース液を流してシースフロ
ーを形成するフローセル装置において、廃液を吸引する
送液手段と、管路の途中に管路抵抗を変えるための抵抗
手段を設け前記フローセルチャンバ内にシース液を導く
シース液管と、一端をサンプル液中に浸漬し他端を前記
フローセルチャンバに接続したサンプル液管とを有する
ことを特徴とするフローセル装置。
1. In a flow cell device that supplies a sheath liquid and a sample liquid into a flow cell chamber and flows the sheath liquid around the sample liquid to form a sheath flow, there is a liquid feeding means for sucking the waste liquid, and a pipe line in the middle of the pipe line. It is characterized by having a sheath liquid tube that is provided with resistance means for changing the resistance and guides the sheath liquid into the flow cell chamber, and a sample liquid tube whose one end is immersed in the sample liquid and the other end is connected to the flow cell chamber. flow cell device.
JP2143458A 1990-06-01 1990-06-01 Flow cell device Pending JPH0436636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2143458A JPH0436636A (en) 1990-06-01 1990-06-01 Flow cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2143458A JPH0436636A (en) 1990-06-01 1990-06-01 Flow cell device

Publications (1)

Publication Number Publication Date
JPH0436636A true JPH0436636A (en) 1992-02-06

Family

ID=15339175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2143458A Pending JPH0436636A (en) 1990-06-01 1990-06-01 Flow cell device

Country Status (1)

Country Link
JP (1) JPH0436636A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0602416A1 (en) * 1992-12-14 1994-06-22 Becton, Dickinson and Company Method for control of flow cytometer having vacuum driven flow
WO1999046047A2 (en) * 1998-03-10 1999-09-16 Large Scale Proteomics Corporation Detection and characterization of microorganisms
WO2009119592A1 (en) 2008-03-25 2009-10-01 旭化成ケミカルズ株式会社 Elastomer composition and storage cover for airbag system
WO2009128397A1 (en) 2008-04-14 2009-10-22 旭化成ケミカルズ株式会社 Adhesive composition
WO2010067564A1 (en) 2008-12-10 2010-06-17 旭化成ケミカルズ株式会社 Thermoplastic elastomer composition
WO2010073589A1 (en) 2008-12-22 2010-07-01 旭化成ケミカルズ株式会社 Crosslinkable and foamable composition, crosslinked foamed object, and shoe midsole comprising same
WO2011040312A1 (en) 2009-10-02 2011-04-07 旭化成ケミカルズ株式会社 Production method for modified conjugated diene polymer, modified conjugated diene polymer, and modified conjugated diene polymer composition
WO2011111696A1 (en) 2010-03-08 2011-09-15 旭化成ケミカルズ株式会社 Foam composition, method for producing same, and foam
CN104769414A (en) * 2012-09-06 2015-07-08 古河电气工业株式会社 Device for identifying and dispensing samples and method for identifying and dispensing samples
EP4265646A1 (en) 2022-04-18 2023-10-25 Japan Elastomer Co., Ltd. Crumb of block copolymer or hydrogenated product thereof and aspahlt composition

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0602416A1 (en) * 1992-12-14 1994-06-22 Becton, Dickinson and Company Method for control of flow cytometer having vacuum driven flow
US5395588A (en) * 1992-12-14 1995-03-07 Becton Dickinson And Company Control of flow cytometer having vacuum fluidics
WO1999046047A2 (en) * 1998-03-10 1999-09-16 Large Scale Proteomics Corporation Detection and characterization of microorganisms
WO1999046047A3 (en) * 1998-03-10 1999-12-02 Biosource Proteomics Inc Detection and characterization of microorganisms
US6254834B1 (en) 1998-03-10 2001-07-03 Large Scale Proteomics Corp. Detection and characterization of microorganisms
US6340570B1 (en) 1998-03-10 2002-01-22 Large Scale Proteomics Corp. Detection and characterization of microorganisms
US6346421B1 (en) 1998-03-10 2002-02-12 Large Scale Proteomics Corp. Methods for concentrating and detecting microorganisms using centrifuge tubes
US6479239B1 (en) 1998-03-10 2002-11-12 Large Scale Biology Corporation Detection and characterization of microorganisms
US6911312B2 (en) 1998-03-10 2005-06-28 Large Scale Proteomics Corporation Detection and characterization of microorganisms
US7070739B1 (en) 1998-03-10 2006-07-04 Large Scale Proteomics Corporation Detection and characterization of microorganisms
WO2009119592A1 (en) 2008-03-25 2009-10-01 旭化成ケミカルズ株式会社 Elastomer composition and storage cover for airbag system
WO2009128397A1 (en) 2008-04-14 2009-10-22 旭化成ケミカルズ株式会社 Adhesive composition
WO2010067564A1 (en) 2008-12-10 2010-06-17 旭化成ケミカルズ株式会社 Thermoplastic elastomer composition
WO2010073589A1 (en) 2008-12-22 2010-07-01 旭化成ケミカルズ株式会社 Crosslinkable and foamable composition, crosslinked foamed object, and shoe midsole comprising same
WO2011040312A1 (en) 2009-10-02 2011-04-07 旭化成ケミカルズ株式会社 Production method for modified conjugated diene polymer, modified conjugated diene polymer, and modified conjugated diene polymer composition
WO2011111696A1 (en) 2010-03-08 2011-09-15 旭化成ケミカルズ株式会社 Foam composition, method for producing same, and foam
CN104769414A (en) * 2012-09-06 2015-07-08 古河电气工业株式会社 Device for identifying and dispensing samples and method for identifying and dispensing samples
EP4265646A1 (en) 2022-04-18 2023-10-25 Japan Elastomer Co., Ltd. Crumb of block copolymer or hydrogenated product thereof and aspahlt composition

Similar Documents

Publication Publication Date Title
JP2808321B2 (en) Cell analysis method and device
US5182617A (en) Sample supply device and sample inspection apparatus using the device
EP0360487B1 (en) Method and apparatus for analysis of particles contained in a liquid sample
EP0528877B1 (en) Apparatus and method for analyzing particles suspended in a liquid
JP2972367B2 (en) Cell analyzer
JPH047468B2 (en)
US5134445A (en) Sample inspecting method and apparatus
US9581584B2 (en) Apparatus for measuring blood cells and immunity from whole blood
JPH01318941A (en) Reversion preventor
US3345910A (en) Colorimeter flow cell
CN103926188A (en) Disposable Chip-type Flow Cell And Flow Cytometer Using Same
CN102519919A (en) Methods of separating, identifying and dispensing specimen and device therefor, and analyzing device method
SE531041C2 (en) Platelet count
JPH07507877A (en) Measuring chamber for flow cytometer
JPH0436636A (en) Flow cell device
JP2000214070A (en) Sheath flow cell and hemanalyzer using the same
JPH06194299A (en) Flow cell apparatus
CN107727557A (en) A kind of particle analyzer and its liquid-way system and detection control method
JP2007114026A (en) Standard substance for particle analyzer
JPH07218423A (en) Instrument for optically measuring liquid
US3511573A (en) Flow cell structure for particle counting having improved wash
JPH02213745A (en) Device for inspecting sample
JP2796352B2 (en) Particle counting device
JPH02213746A (en) Device for inspecting sample
JPS6244647A (en) Flow cell for measuring particle characteristic