TW201118917A - Excimer lamp - Google Patents

Excimer lamp Download PDF

Info

Publication number
TW201118917A
TW201118917A TW99100700A TW99100700A TW201118917A TW 201118917 A TW201118917 A TW 201118917A TW 99100700 A TW99100700 A TW 99100700A TW 99100700 A TW99100700 A TW 99100700A TW 201118917 A TW201118917 A TW 201118917A
Authority
TW
Taiwan
Prior art keywords
tube
electrode
outer tube
excimer lamp
film
Prior art date
Application number
TW99100700A
Other languages
Chinese (zh)
Other versions
TWI427670B (en
Inventor
Shinichiro Nozaki
Yukihiro Morimoto
Original Assignee
Ushio Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Electric Inc filed Critical Ushio Electric Inc
Publication of TW201118917A publication Critical patent/TW201118917A/en
Application granted granted Critical
Publication of TWI427670B publication Critical patent/TWI427670B/en

Links

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

An excimer lamp is provided to suppress the deterioration of a discharge container by forming a protection layer to absorb or reflect ultraviolet light on the outer tube of the discharge container. A discharge container(11) includes an outer tube(12) and an inner tube(13) arranged on the same axis and forms the discharge space by sealing xenon gas. One electrode(14) is arranged on the outer surface of the outer tube. Other electrode(15) is arranged on the inner surface of the inner tube. One electrode covers half of the outer surface of the outer tube in a cross section vertical to a tube axis of the excimer lamp. A layer to absorb or reflect ultraviolet light of 150 nm or less is formed on the inner surface of the outer tube.

Description

201118917 六、發明說明: 【發明所屬之技術領域】 本發明是關於照射真空紫外光的準分子燈。 【先前技術】 眾知有表示於第4圖的構造的準分子燈。 此準分子燈是放電容器具備外側管與內側管’具備此 些配置成大約同軸而在端部被接合的所謂雙重管構造者’ 而具有圓筒狀的放電空間。 在此外側管的外周面側(放電空間的外側)配置有一 方的電極,而在內側管的內周面側(放電空間的外側)配 置有另一方的電極,在放電容器的內部作爲準分子放電氣 體封入有如10〜8 OkPa氙氣體所構成。 在上述一方與另一方的電極,藉由施加高頻高電壓’ 介裝構成放電容器(管)的石英玻璃的壁而形成著放電。 如上所述地,將放電空間形成圓筒狀地形成的放電空 間的理由,是爲了儘量將放電間隙作成一定,以確保穩定 的照度分布。 此種準分子燈是被使用於基板的洗淨,改質等的表面 處理,惟最近爲了提昇工件的生產率,而且期盼減少燈的 更換頻度,提昇開工率而在生產線整體上降低成本。 然而,在上述準分子燈中,構成放電容器的石英玻璃 藉由紫外光會劣化,而降低主要波長1 72nm的光的穿透率 -5- 201118917 又’在依紫外光所致的劣化進行時,則在放電容器的 裂縫而使得燈成爲無法點燈,而且裂縫擴至放電容器整體 ,而有容器的破片掉落的情形。 如此’針對於由來於紫外線失真的問題也檢討過去, 例如在專利文獻1,揭示著在放電容器的冷卻部,特別容 易有紫外線失真之故,因而對應於藉由放電容器的冷卻手 段被冷卻的部位’將紫外線反射膜及/或紫外線吸收膜形 成於放射空間側表面上的準分子燈。 如專利文獻1所示地,在準分子燈的放電空間內,放 射除了波長172nm以外也放射著140〜190nm範圍的紫外 線’構成放電容器的石英玻璃的空間側表面,不斷地照射 著此種紫外光。紫外光給予石英玻璃的損傷是波長愈短會 愈大’考慮放電容器形狀,使用狀態,殘留於玻璃的熱失 真等,尤其是從此種紫外光來保護容易破損部分,就可防 止放電容器的破損,可將燈作成長壽命化》 專利文獻1:日本特開2002-093377號公報 【發明內容】 然而,在專利文獻1所述的技術保護著冷卻部,而即 使在該部分延遲著破損就可延長壽命,而在其他部位未被 保護之故,因而藉由有紫外線失真,使得主要波長l72nm 的紫外光的穿透率變差,而產生降低照度。 於是,本案發明是在於提供一種抑制放電容器而可實 現壽命長,而且取出光的效率優異又照度降低少的準分子 -6- 201118917 ' 燈,作爲目的。 爲了實現上述準分子燈,本發明是一種準 配置於同軸上的外側管與內側管,具備形成準 放電用氣體而形成圓筒狀放電空間的放電容器 配置於上述外側管的外周面上的一方的電 _ 於上述內側管的內周面上的另一方的電極所成 ,其特徵爲:上述一另的電極是垂直於上述準 軸的斷面覆蓋上述外側管的外周面上的一半以 定領域非形成部分, 在上述外側管的內周面上,超越覆蓋上述 配置領域的方式形成有對於波長1 5 0nm以下的 吸收或反射特性的膜。 又,在內側管的外周面上,超越覆蓋上述 極配置領域的方式形成有對於波長150nm以下 有吸收或反射特性的膜,爲其特徵者。 上述膜是由二氧化矽,氧化鋁,氧化鈦及 的群所選擇的至少一種較佳。 _ 依照本發明的準分子燈,針對於放電容器 露於放電的部分藉由形成對於波長150nm以下 反射特性的保護膜,不必照射氙共鳴線的波長 外光,可抑制由來於失真發生於紫外線使得放 的情形,長期間地可抑制放電容器的破損,成 命長的準分子.燈。 還有,藉由在內側管的放電空間側表面的 分子燈具備 分子分子的 ,及 極,及配置 的準分子燈 分子燈的管 上且具備一 一方的電極 紫外光具有 另一方的電 的紫外光具 氧化釔所成 的外側管曝 具有吸收或 147nm的紫 電容器劣化 爲可作成壽 該管的外周 201118917 面上也設置上述保護膜,可抑制在內側管有紫外線失真的 情形,又可實現進一步的長壽命化。 又,藉由作爲可使用二氧化矽,氧化鋁,氧化鈦及氧 化釔所成的群所選擇的至少一種所構成,確實地可防止波 長1 50nm的紫外光入射於放電容器的情形。 【實施方式】 以下,針對於本發明參照圖式加以詳細地說明。 第1圖是表示本發明的放電容器的一實施形態的構成 的槪略的說明用斷面圖。 此放電容器1 〇是例如石英玻璃所成,具有圓筒狀外 側管1 2,及在此外側管1 2內沿著其管所配置的具有比該 外側管1 2的內徑還要小的外徑的例如石英玻璃所成的圓 筒狀內側管1 3,具備外側管1 2與內側管1 3在兩端部中熔 融接合所成的雙重管構造的放電容器11。 構成放電容器1 1的內側管1 3,是具有例如兩端部朝 徑方向外方擴展延伸地彎曲所形成的屈曲部分者,該內側 管13的屈曲部分與外側管12接合而藉由該屈曲部分13A 構成端壁’藉此’氣密地被閉塞的環狀放電空間S形成於 外側管1 2的內周面與內側管1 3的外周面之間。 在構成放電容器11的外側管12,藉由嵌入有密接於 其外周面以銘板等經壓製加工所構成的斷面槪略C狀的金 屬板,設有一方的電極(以下,稱爲「外側電極」)14。 又,在內側管1 3密接於其內周面,設有例如鋁所成的管 -8 - 201118917 子狀或在斷面具有一部分缺口的槪略C形狀(水槽狀)的 金屬板所成的另一方的電極(以下,稱爲「內側電極J ) 1 5。此些外側電極1 4及內側電極丨5,是被連接於如高頻 電源所成的電源裝置19。 在放電空間S內’塡充有藉由在外側電極〗4與內側 電極1 5之間所產生的準分子放電形成準分子分子的例如 氙氣體等的放電用氣體。 又在第2圖中’符號18是將氣體封入於放電容器之 際所使用的排氣管的剩餘部。 在此放電容器的內部的所定領域,形成有對於波長 1 50nm以下的光具有吸收特性及/或反射特性的下述構成 的保護膜20。 保護膜是介質所構成,作爲材質較佳爲二氧化砂( Si〇2 ),氧化鋁(Al2〇3 ),氧化鈦(Ti02 ),氧化釔( Y2〇3 )等的粉末,此種介質的粉末是以堆積於外側管的內 周面上的狀態配置所成者。此種介質的粉末是單獨使用, 或是以適當地組合混合地使用也可以。又,上述物質中二 氧化矽粒子是對於波長1 5 Onm以下的光藉由依吸收特性所 致的作用來保護放電容器,而氧化鋁粒子是對於波長 1 5 Onm以下的光雖以吸收特性爲主惟些微地具備反射特性 ,而藉由吸收與反射的雙方特性來保護放電容器。 混合二氧化矽粒子與氧化鋁粒子予以使用的情形,列 舉一例子,二氧化砂粒子是粒徑0 · 4 μ m ~ 1 . 5 μ m,中心直 徑:0.7 μηι,氧化銘粒子是〇_2 μηι~0·5 μιη,中心直徑: -9 - 201118917 0.3 μιη,而氧化鋁粒子的含有量調配成爲l〇質量%。 最終性的膜厚是1 μηι以上,例如在1〜5 0 μπι的範圍 可適當地選擇。又,保護膜是有1 μιη以上就可保護石英 玻璃之故,因而形成於對於波長172nm的紫外線不需要穿 透性的部分,則在可保持的範圍內可將膜厚構成較厚。 形成有上述保護膜20的領域,是在放電容器π中對 應於配置有電極14、15的部分的部位,其中容易有紫外 線失真的部分,如本發明的準分子燈地,具備外側管12 與內側管1 3,在將光穿透窗形成於外側管1 2的一部分的 準分子燈中,在外側管1 2上配置有外側電極1 4的部分及 內側管13的全周部分。然而,在內側管13的內表面因動 作中的溫度高,而紫外線失真比外側管1 2不容產生之故 ,因而不需要。因此,在外側管的內表面放電空間側表面 ,對應於電極的部分成爲必需。 在未配置有外側電極1 4的部分,氙共鳴線的波長 1 4 7nm的紫外光及電漿無法到達之故,因而形成紫外線失 真。因此,未形成上述保護膜20也可將波長172nm的穿 透率維持在高狀態。 此種膜是在製作燈的階段就形成。 在此,針對於其製法加以說明。 1.首先,調配膜構成用的粉末。在調配具有所定平 均粒徑及中心粒徑的二氧化矽粉末與氧化鋁粉末的混合粉 末,配合硝化纖維素,乙酸丁酯液與以重量比1 : 4的比 率混合的黏合液,經充分攪拌來製作氧化鋁粉末-二氧化 -10- 201118917 矽粉末被分散的漿料。 2. 將此漿料塗佈於發光管構成用的玻璃管的內 〇 塗上方法並未特別加以限定,惟可採用流下法, 法,浸漬法等。又,依流下法以外的方法所致的情形 不需要膜的部位施以遮蔽較佳。 3. 乾燥漿料之後,使得保護膜穩定予以固裝的 使用電爐來進行燒成。 燒成溫度是在1 1 〇〇°C保持大約1小時。藉由此燒 程結合著粒子彼此間.而且熔合於玻璃管,成爲玻璃層 力地黏合於基材。 此種保護是必須形成於至少形成有放電電漿的( 管內周面)部分,超越外側電極(一方的電極)的部 電極的側端部而形成至非電極形成側爲期盼的形態。 參照第1圖及第3圖的斷面圖,針對於較佳形態 地加以說明。將連結內側管I 3的放電空間S側表面 側電極1 4的端的假想線d與外側管1 2的放電空間S 面交叉之點作爲A,保護膜20的端部B’將被封入於 容器1 1內的Xe封入壓力(室溫)作爲P ( kPa)時 面圖上的AB的距離AB爲以以下(式1 )所求出的 上較佳。 (式 1 ) L = 542 /P2 [mm] 表面 抽上 ,在 方式 成工 強有 外側 分與 具體 與外 側表 放電 ,斷 L以 -11 - 201118917 (又,準分子燈的氙氣體的封入壓力是1 〇~80kPa,實 用上在0.5〜5.5mm的範圍內適當地加以設定就可以。 成爲紫外線失真的原因的波長147nm的光’是Xe共 鳴線之故,因而被吸收於非激勵Xe原子。因此,147nm 光與強度是依存於燈中的Xe原子數。Xe原子數是溫度爲 一定時,則以壓力表記也有可能之故,因而壓力高則 147nm強度變低,若壓力低則147nm強度變高。因此,波 長147nm光到達至距離L是可藉由Xe封入壓力P來決定 〇 在上述式(1 )中,在將壓力予以平方著乘以542的 理由,是依據 J. C. MOLINO GARCIA, J. Quant. Spectrosc. Radiant. Transfer, Vol. 57, No. 4,Xe 原子的 147nm的吸收係數κ ( πΓ1 )是在常溫下,以 (式 2 ) K = 0.08 5 ( 1 0Ρ ) 2 可表示。將初期的光強度作爲Ιο,而將被吸收經衰減後的 光強度作爲I,則光的衰減是以 (式 3) I/Io = exp ( -KL ) 表示之故’因而將式2代入於式3加以整理,則光衰減成 1/100的距離,是可以以上述式丨表示。 依照具有以上的保護膜的本案發明的準分子燈,在光 -12- 201118917 穿透窗部(電極非形成部,未形成有電極之故,因而成爲 在燈動作中’不會曝露在電漿的構造,而且波長丨4 7nm的 光無法到達之故,因而降低穿透率或導入紫外線失真較少 ’而長期地可以以高照度來照射172nm的紫外光,而且在 外側管的電極形成部的石英玻璃,形成有對於波長〗5 0nm 以下的紫外光具有吸收或反射特性之故,因而不會直接曝 露於波長1 47nm的紫外光及電漿,而可抑制玻璃的劣化進 行,成爲額外地增加一直到破損爲止的時間。 又,參照第4圖來說明其他的實施形態。第4圖是與 管軸垂直的斷面切剖準分子燈的圖式。又,在同圖中,針 對於在第1圖至第3圖所說明的構成以相同符號表示,而 省略詳細說明。 如第4圖所示地,本實施形態的準分子燈,是基本上 具備所謂在外側管1 2的內周面上的所定領域形成保護膜 20的構成,而且在內側管1 3的放電空間S側表面上的管 (1 3 )的外周面上形成對於波長1 50nm的光具備反射特性 或吸收特性的保護膜21者。如上所述地,保護膜21是作 爲材質較佳爲二氧化矽(si〇2),氧化鋁(ai2o3 ),氧 化鈦(Ti02),氧化釔(Y2〇3)等’以單一或適當的組合 來混合粉末狀態者,堆積於管的放電空間側表面上而形成 層狀者。保護膜2〗的形成領域是對應於內側電極1 5配置 部分而形成於大約全周全面。 如此實施形態地’對應於放電容器11的放電形成領 域全體形成保護膜2 0、21 ’很難有紫外線失真發生於放電 -13- 201118917 容器π,成爲可更延伸準分子燈的壽命。 以上,針對於本發明加以說明,惟當然針對於有關於 本發明的構成可適當變更可置換的構成。例如,若膜的種 類是對於150nm的光具有吸收及/或反射特性者,並不被 限定於上述者。 (實施例) 以下,說明本發明的實施例。 依照第1圖至第3圖的構成來製作準分子燈。 〈燈1 &gt; 放電容器:材質;石英玻璃、全長;1268mm 外側管;外徑40mm、厚度2mm 內側管;外徑1 8 m m、厚度1 m m 外側電極(斷面半圓狀):鋁、厚度1mm、長度; 1 2 0 5mm 內側電極(斷面C狀):鋁、厚度1 mm、長度; 1 2 0 5mm 保護膜:組成是如下所示。 二氧化矽:粒徑〇·4 μπι〜1 .5 μιη、中心直徑:0.7 μιη 氧化鋁粒子:0.2 μιη~0.5 μιη、中心直徑:0.3 μπι 氧化鋁粒子的含有量是1〇質量%、燒成溫度:1100°C 膜厚:30 μιη (平均) 上述膜是使用稱爲流下法的塗佈方法’將粒子混合溶 -14&quot; 201118917 劑而形成溶液,藉由其溶液流進放電容器的內面,附著溶 液。之後,進行乾燥燒成。若膜厚爲1 m m以上,則吸收 及反射150nm的光,而對於147nm的光可加以保護。在 本實施例中使用3 0 μπι的膜。依照此實施例的膜,二氧化 矽粒子成爲主要成分之故,因而吸收波長147nm的共鳴線 ,對於放電容器成爲可進行保護。 依照下述表1,變更膜的形成領域及Xe封入壓力而 進行製作燈1至燈3 » 又,上述實施例與燈的基本上構造作成同樣,而製作 保護膜的形成領域較小或未具有保護膜的參照例燈4至燈 6。針對於此些燈4至燈6的Xe封入壓力及保護膜的構成 ,整理表示於下述表1。 以各燈的額定電壓,額定頻率點亮燈1至燈6,進行 比較直到破.損爲止的時間。將此結果表示於下述表1。 由此結果可明白,將覆蓋外側管的外周面上的一半以 上的外側電極的配置領域予以超越覆蓋的方式,具有對於 波長1 50rnn以下的紫外光具有吸收或反射特性的保護膜, 來比較未具有膜者,或是膜未超越電極配置領域所形成者 ,而可達成長壽命化。又,形成有膜的領域(AB的長度 ),爲在與燈的氙的封入壓力P的關係,形成在比藉由 L = 5 42/P2所算出的大小還要大的廣範圍,也可將使用壽命 延長至1 0 0 0小時以上。 -15- 201118917 〔表1〕 No. Xe壓力 (kPa) L=542/P2 (mm) 膜的延長距離 AB(mm) 直到破損爲止的時間 ㈨ 燈1 (實施例1) 53 0.2 1 3700 燈2 (實施例2) 13 3.2 4 3600 燈3 (實施例3) 13 3.2 2 2400 燈4 (參照例1) 53 0.2 -1 2100 燈5 (參照例2) 53 0.2 0 2100 燈6 (參照例3) 53 0.2 沒有膜 2200 【圖式簡單說明】 第1圖是對於管軸朝垂直方向切剖說明本發明的實施 形態的準分子燈的斷面圖。 第2圖是朝管軸方向切剖說明本發明的實施形態的準 分子燈的斷面圖。 第3圖是擴大表示在第1圖中以圓圍繞的部分的主要 部分說明圖。 第4圖是對於管軸朝垂直方向切剖說明本發明的其他 實施形態的準分子燈的斷面圖。 第5圖是對於管軸朝垂直方向切剖說明習知技術的準 分子燈的斷面圖。 【主要元件符號說明】 -16- 201118917 1 1 :放電容器 1 2 :外側管 1 3 :內側管 1 3 A :屈曲部分 1 4 : 一方的電極(外側電極). 1 5 :另一方的電極(內側電極) 1 8 :排氣管剩餘部 19 :電源裝置 20 :保護膜 S :放電空間 -17-201118917 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an excimer lamp that illuminates vacuum ultraviolet light. [Prior Art] An excimer lamp having the structure shown in Fig. 4 is known. This excimer lamp is a discharge vessel having an outer tube and an inner tube ‘having a so-called double tube structure arranging such that it is disposed coaxially at the end portion, and has a cylindrical discharge space. One electrode is disposed on the outer peripheral surface side (outside of the discharge space) of the outer tube, and the other electrode is disposed on the inner peripheral surface side (outside of the discharge space) of the inner tube, and is used as an excimer inside the discharge vessel. The discharge gas is sealed with a gas such as 10 to 8 OkPa. The discharge is formed by applying a high-frequency high voltage to the electrode of the other electrode to form the wall of the quartz glass constituting the discharge vessel (tube). As described above, the reason why the discharge space is formed into a cylindrical discharge space is to make the discharge gap constant as much as possible to ensure a stable illuminance distribution. Such an excimer lamp is used for surface cleaning such as cleaning and upgrading of a substrate. Recently, in order to improve the productivity of the workpiece, it is expected to reduce the frequency of lamp replacement and increase the operating rate, thereby reducing the cost of the entire production line. However, in the above excimer lamp, the quartz glass constituting the discharge vessel is degraded by ultraviolet light, and the transmittance of light having a main wavelength of 1 72 nm is lowered - 5, 2011,189, 17, and 'during deterioration by ultraviolet light Then, the crack in the discharge vessel makes the lamp impossible to light, and the crack spreads to the entire discharge vessel, and the fragment of the container falls. In this way, the problem of ultraviolet distortion is also reviewed. For example, Patent Document 1 discloses that the cooling portion of the discharge vessel is particularly susceptible to ultraviolet distortion, and thus is cooled corresponding to the cooling means by the discharge vessel. The portion 'excimer light having the ultraviolet reflecting film and/or the ultraviolet absorbing film formed on the side surface of the radiation space. As shown in Patent Document 1, in the discharge space of the excimer lamp, ultraviolet rays in the range of 140 to 190 nm are emitted in addition to the wavelength of 172 nm, and the space side surface of the quartz glass constituting the discharge vessel is continuously irradiated with such ultraviolet light. Light. The damage caused by ultraviolet light to quartz glass is that the shorter the wavelength, the larger the size of the capacitor, the state of use, the thermal distortion of the glass, etc., especially from the ultraviolet light to protect the easily damaged part, the damage of the discharge vessel can be prevented. However, the technique described in Patent Document 1 protects the cooling portion, and even if the portion is delayed in damage, the present invention can be used for the purpose of the present invention. The life is extended, and the other parts are not protected, so that the ultraviolet light is distorted, so that the transmittance of ultraviolet light having a dominant wavelength of l72 nm is deteriorated, and the illuminance is lowered. Accordingly, the present invention has been made in an effort to provide an excimer -6-201118917' lamp which is excellent in the efficiency of light extraction and which has a low illuminance reduction, which is advantageous in suppressing the discharge vessel. In order to realize the above-described excimer lamp, the present invention is an outer tube and an inner tube which are arranged in a coaxial manner, and a discharge vessel having a discharge space for forming a quasi-discharge gas to form a cylindrical discharge space is disposed on an outer peripheral surface of the outer tube The electric_ is formed by the other electrode on the inner peripheral surface of the inner tube, wherein the other electrode is perpendicular to the quasi-axis and covers half of the outer peripheral surface of the outer tube. In the non-formed portion of the field, a film having an absorption or reflection property for a wavelength of 150 nm or less is formed on the inner peripheral surface of the outer tube beyond the above-described arrangement. Further, on the outer peripheral surface of the inner tube, a film having absorption or reflection characteristics for a wavelength of 150 nm or less is formed over the surface covering the above-described electrode arrangement. The film is preferably at least one selected from the group consisting of cerium oxide, aluminum oxide, and titanium oxide. _ The excimer lamp according to the present invention, for the portion of the discharge vessel exposed to the discharge, by forming a protective film for the reflection characteristic of a wavelength of 150 nm or less, without irradiating the wavelength external light of the 氙 resonance line, suppressing the occurrence of distortion caused by the ultraviolet ray In the case of release, the breakage of the discharge vessel can be suppressed for a long period of time, and the excimer lamp is a long life. Further, the molecular lamp on the discharge space side surface of the inner tube is provided with molecular molecules, and the electrode, and the tube of the excimer lamp molecular lamp disposed, and one of the electrodes has ultraviolet light and the other is electrically charged. The outer tube exposed to ultraviolet light with yttrium oxide has an absorption or the 147nm purple capacitor is degraded to be used for the life of the tube. The outer surface of the tube is also provided on the surface of the tube. The protective film is also provided on the surface of the tube, which can suppress the ultraviolet distortion in the inner tube. Further long life. Further, it is constituted by at least one selected from the group consisting of cerium oxide, aluminum oxide, titanium oxide and cerium oxide, and it is possible to surely prevent ultraviolet light having a wavelength of 150 nm from entering the discharge vessel. [Embodiment] Hereinafter, the present invention will be described in detail with reference to the drawings. Fig. 1 is a cross-sectional view showing a schematic configuration of an embodiment of a discharge vessel of the present invention. The discharge vessel 1 is made of, for example, quartz glass, having a cylindrical outer tube 12, and disposed within the outer tube 12 along its tube having a smaller inner diameter than the outer tube 12 The cylindrical inner tube 13 made of, for example, quartz glass having an outer diameter includes a discharge tube 11 having a double tube structure in which the outer tube 1 2 and the inner tube 13 are fusion-bonded at both end portions. The inner tube 13 constituting the discharge vessel 1 1 is a bent portion formed by, for example, bending the both end portions outwardly in the radial direction, and the bent portion of the inner tube 13 is joined to the outer tube 12 by the buckling. The portion 13A is formed between the inner circumferential surface of the outer tube 12 and the outer circumferential surface of the inner tube 13 by the annular discharge space S which constitutes the end wall 'by the airtightly closed. In the outer tube 12 constituting the discharge vessel 11, a metal plate having a substantially C-shaped cross section formed by press-molding the outer peripheral surface thereof with a name plate or the like is provided, and one electrode is provided (hereinafter referred to as "outer side". Electrode") 14. Further, the inner tube 13 is in close contact with the inner peripheral surface thereof, and is formed of, for example, a tube -8 - 201118917 sub-shaped aluminum or a c-shaped C-shaped (sink-shaped) metal plate having a partial notch in the cross section. The other electrode (hereinafter referred to as "inner electrode J" 15). The outer electrode 14 and the inner electrode 5 are connected to a power supply device 19 such as a high-frequency power source. The discharge gas is a discharge gas such as helium gas which forms an excimer molecule by excimer discharge generated between the outer electrode 4 and the inner electrode 15. In Fig. 2, the symbol 18 is to enclose the gas. The remaining portion of the exhaust pipe used in the discharge vessel. The protective film 20 having the following configuration having absorption characteristics and/or reflection characteristics for light having a wavelength of 150 nm or less is formed in a predetermined field inside the discharge vessel. The protective film is made of a medium, and the material is preferably a powder of silica sand (Si〇2), alumina (Al2〇3), titanium oxide (Ti02), yttrium oxide (Y2〇3), or the like. The powder is deposited on the inner peripheral surface of the outer tube The powder of such a medium may be used singly or in combination with a suitable combination. Further, the cerium oxide particles in the above-mentioned materials are absorbing properties by light having a wavelength of 15 Å or less or less. The effect is to protect the discharge vessel, and the alumina particles have a reflection characteristic mainly for the absorption of light having a wavelength of 15 5 Onm or less, and protect the discharge vessel by both characteristics of absorption and reflection. In the case where cerium oxide particles and alumina particles are used, an example is given. The silica sand particles have a particle diameter of 0 · 4 μ m ~ 1.5 μm, the center diameter is 0.7 μηι, and the oxidized Ming particles are 〇_2 μηι~ 0·5 μιη, center diameter: -9 - 201118917 0.3 μιη, and the content of alumina particles is adjusted to be 100% by mass. The final film thickness is 1 μηι or more, for example, in the range of 1 to 50 μm In addition, the protective film protects the quartz glass by having a thickness of 1 μm or more, and thus is formed in a range that can be maintained in a portion that does not require penetration of ultraviolet rays having a wavelength of 172 nm. The film thickness can be made thicker. The field in which the protective film 20 is formed is a portion corresponding to a portion where the electrodes 14, 15 are disposed in the discharge vessel π, and a portion which is susceptible to ultraviolet distortion, such as the excimer of the present invention. In the lamp ground, the outer tube 12 and the inner tube 13 are provided, and in the excimer lamp in which the light transmission window is formed in a part of the outer tube 12, the outer tube 1 4 and the inner tube are disposed on the outer tube 1 2 . The entire circumference of the inner tube 13 is, however, because the temperature in the inner surface of the inner tube 13 is high, and the ultraviolet distortion is less likely to occur than the outer tube 12, and thus is not required. Therefore, on the inner surface of the outer tube, the discharge space side The surface, the portion corresponding to the electrode becomes necessary. In the portion where the outer electrode 14 is not disposed, the ultraviolet light and the plasma having a wavelength of 147 nm of the resonance line cannot be reached, thereby forming ultraviolet distortion. Therefore, the penetration rate at a wavelength of 172 nm can be maintained at a high state without forming the protective film 20 described above. This film is formed at the stage of lamp fabrication. Here, the method of its production will be described. 1. First, a powder for constituting a film is prepared. A mixed powder of cerium oxide powder and alumina powder having a predetermined average particle diameter and a central particle diameter is blended, and nitrocellulose is mixed with a butyl acetate solution and a binder mixed at a ratio of 1:4 by weight, and thoroughly stirred. To make alumina powder - dioxide -10 201118917 矽 powder is dispersed slurry. 2. The method of applying the slurry to the inner tube of the glass tube for constituting the arc tube is not particularly limited, and a downflow method, a dipping method, or the like can be employed. Further, in the case of a method other than the flow method, it is preferable that the portion where the film is not required is shielded. 3. After drying the slurry, the protective film is stabilized and fixed by using an electric furnace for firing. The firing temperature is maintained at 1 1 〇〇 ° C for about 1 hour. By this burning process, the particles are bonded to each other and fused to the glass tube, and the glass layer is strongly bonded to the substrate. Such a protection is required to be formed in a portion (at the inner circumferential surface of the tube) in which at least the discharge plasma is formed, and to form a side end portion of the electrode of the outer electrode (one electrode) to form a non-electrode formation side. Referring to the cross-sectional views of Figs. 1 and 3, a preferred embodiment will be described. The point at which the imaginary line d connecting the end of the discharge space S side surface side electrode 14 of the inner tube I 3 intersects the discharge space S surface of the outer tube 1 2 is taken as A, and the end portion B' of the protective film 20 is sealed in the container. The Xe sealing pressure (room temperature) in 1 1 is preferably the upper distance AB of AB on the surface chart in the case of P (kPa), which is determined by the following (Formula 1). (Formula 1) L = 542 /P2 [mm] The surface is pumped, in the way the work is strong, there is a lateral split and the specific discharge with the outer surface, broken L to -11 - 201118917 (again, the encapsulation pressure of the helium gas of the excimer lamp It is 1 〇~80 kPa, and it can be suitably set in the range of 0.5-5.5 mm. The light of the wavelength of 147 nm which is a cause of ultraviolet distortion is a Xe resonance line, and is absorbed by the non-excited Xe atom. Therefore, the light and intensity at 147 nm depend on the number of Xe atoms in the lamp. When the number of Xe atoms is constant, it is possible to use a pressure gauge. Therefore, the high pressure is 147 nm, and the strength is low. If the pressure is low, the intensity is 147 nm. Therefore, the wavelength 147 nm light reaches the distance L which can be determined by Xe encapsulation pressure P. In the above formula (1), the square of the pressure is multiplied by 542, which is based on JC MOLINO GARCIA, J. Quant. Spectrosc. Radiant. Transfer, Vol. 57, No. 4, The absorption coefficient κ ( π Γ 1 ) of the Xe atom at 147 nm is expressed at (normal temperature) K = 0.08 5 ( 1 0 Ρ ) 2 at room temperature. The initial light intensity will be sucked as Ιο After the attenuated light intensity is taken as I, the attenuation of light is expressed by (Expression 3) I/Io = exp (-KL). Thus, by substituting Equation 2 into Equation 3, the light is attenuated to 1/100. The distance of the excimer lamp according to the present invention having the above protective film is such that it penetrates the window portion (the electrode non-formed portion, the electrode is not formed, and thus the electrode is formed in the light -12-201118917). In the lamp operation, 'the structure of the plasma is not exposed, and the light with a wavelength of 丨47 nm cannot be reached, thus reducing the transmittance or introducing less ultraviolet distortion. The long-term ultraviolet light of 172 nm can be irradiated with high illumination. Light, and the quartz glass in the electrode forming portion of the outer tube is formed to have absorption or reflection characteristics for ultraviolet light having a wavelength of 750 nm or less, and thus is not directly exposed to ultraviolet light and plasma having a wavelength of 47 nm. The deterioration of the glass can be suppressed, and the time until the damage is increased. Further, another embodiment will be described with reference to Fig. 4. Fig. 4 is a view of the cross-section excimer lamp perpendicular to the tube axis. .also, In the same drawing, the configurations described in the first to third embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted. As shown in Fig. 4, the excimer lamp of the present embodiment basically has a so-called The protective film 20 is formed in a predetermined area on the inner peripheral surface of the outer tube 12, and light on the outer peripheral surface of the tube (13) on the surface of the discharge space S side of the inner tube 13 is formed for light having a wavelength of 150 nm. A protective film 21 having a reflection property or an absorption property. As described above, the protective film 21 is preferably made of ceria (si〇2), alumina (ai2o3), titanium oxide (Ti02), yttrium oxide (Y2〇3), etc. as a material, in a single or appropriate combination. When the state of the powder is mixed, it is deposited on the side surface of the discharge space of the tube to form a layer. The formation area of the protective film 2 is formed to be approximately the entire circumference corresponding to the arrangement portion of the inner electrode 15 . In this embodiment, the protective film 20, 21 is formed corresponding to the entire discharge forming region of the discharge vessel 11. It is difficult for ultraviolet rays to occur in the discharge π13-201118917 container π, and the life of the excimer lamp can be further extended. As described above, the present invention has been described, but it is a matter of course that the configuration of the present invention can be appropriately changed and replaced. For example, if the type of the film has absorption and/or reflection characteristics for light of 150 nm, it is not limited to the above. (Embodiment) Hereinafter, an embodiment of the present invention will be described. An excimer lamp was fabricated in accordance with the configurations of Figs. 1 to 3. <lamp 1 &gt; discharge capacitor: material; quartz glass, full length; 1268mm outer tube; outer diameter 40mm, thickness 2mm inner tube; outer diameter 18 mm, thickness 1 mm outer electrode (section semicircular): aluminum, thickness 1mm Length; 1 2 0 5mm Inner electrode (section C): Aluminum, thickness 1 mm, length; 1 2 0 5mm Protective film: The composition is as follows. Cerium oxide: particle size 〇·4 μπι~1 .5 μιη, center diameter: 0.7 μιη alumina particles: 0.2 μιη to 0.5 μιη, center diameter: 0.3 μπι The content of alumina particles is 1% by mass, firing Temperature: 1100 ° C Film thickness: 30 μm (average) The above film is formed by a coating method called a down-flow method, in which a mixture of particles is dissolved to form a solution, and a solution thereof flows into the inner surface of the discharge vessel. , attach the solution. Thereafter, it is dried and fired. When the film thickness is 1 m or more, light of 150 nm is absorbed and reflected, and light of 147 nm can be protected. A film of 30 μm was used in this embodiment. According to the film of this embodiment, the cerium oxide particles are the main component, and thus the resonance line having a wavelength of 147 nm is absorbed, and the discharge vessel can be protected. According to the following Table 1, the formation of the film and the Xe sealing pressure are changed to produce the lamp 1 to the lamp 3 » Further, the above embodiment is identical to the basic structure of the lamp, and the field of formation of the protective film is small or not Reference examples of the protective film are lamps 4 to 6. The Xe sealing pressure and the configuration of the protective film for the lamps 4 to 6 are shown in Table 1 below. The lamp 1 to the lamp 6 are lit at the rated voltage and the rated frequency of each lamp, and the time until the breakage is broken is performed. This result is shown in Table 1 below. As a result, it is understood that the arrangement field of the outer electrode covering half or more of the outer peripheral surface of the outer tube is over-covered, and has a protective film having absorption or reflection characteristics for ultraviolet light having a wavelength of 1 50 rnn or less. If the film is formed, or the film is not formed beyond the electrode configuration field, the life can be extended. Further, the field in which the film is formed (the length of AB) is formed in a wide range larger than the size calculated by L = 5 42 / P2 in relation to the sealing pressure P of the lamp. Extend the service life to more than 1,000 hours. -15- 201118917 [Table 1] No. Xe pressure (kPa) L=542/P2 (mm) Length of film extension AB (mm) Time until damage (9) Lamp 1 (Example 1) 53 0.2 1 3700 Lamp 2 (Embodiment 2) 13 3.2 4 3600 Lamp 3 (Example 3) 13 3.2 2 2400 Lamp 4 (Reference Example 1) 53 0.2 -1 2100 Lamp 5 (Reference Example 2) 53 0.2 0 2100 Lamp 6 (Reference Example 3) 53 0.2 No film 2200 [Simplified description of the drawings] Fig. 1 is a cross-sectional view showing an excimer lamp according to an embodiment of the present invention, in which a tube axis is cut in a vertical direction. Fig. 2 is a cross-sectional view showing the quasi-molecular lamp of the embodiment of the present invention taken along the direction of the tube axis. Fig. 3 is an enlarged explanatory view showing a main portion of a portion surrounded by a circle in Fig. 1. Fig. 4 is a cross-sectional view showing the excimer lamp according to another embodiment of the present invention, in which the tube axis is cut in the vertical direction. Fig. 5 is a cross-sectional view showing a quasi-molecular lamp of the prior art in which the tube axis is cut in the vertical direction. [Description of main component symbols] -16- 201118917 1 1 : Discharge capacitor 1 2 : Outer tube 1 3 : Inner tube 1 3 A : Flexion part 1 4 : One electrode (outer electrode). 1 5 : The other electrode ( Inner electrode) 1 8 : Exhaust pipe remaining portion 19: Power supply device 20: Protective film S: Discharge space -17-

Claims (1)

201118917 七、申請專利範圍: 1. 一種準分子燈, 具備配置於同軸上的外側管與內側管,具備封入有氙 氣體而形成圓筒狀放電空間的放電容器,及 配置於上述外側管的外周面上的一方的電極,及配置 於上述內側管的內周面上的另一方的電極所成的準分子燈 ,其特徵爲: 上述一方的電極是垂直於上述準分子燈的管軸的斷面 覆蓋上述外側管的外周面上的一半以上且具備一定領域非 形成部分, 在上述外側管的內周面上,超越覆蓋上述一方的電極 配置領域的方式形成有對於波長150nm以下的紫外光具有 吸收或反射特性的膜。 2. 如申請專利範圍第1項所述的準分子燈,其中, 在上述內側管的外周面上,超越覆蓋上述另一方的電 極配置領域的方式形成有對於波長150nm以下的紫外光具 有吸收或反射特性的膜。 3 ·如申請專利範圍第1項或第2項所述的準分子燈 ,其中, 上述膜是由二氧化矽,氧化鋁,氧化鈦及氧化釔所成 的群所選擇的至少一種。 -18-201118917 VII. Patent application scope: 1. An excimer lamp having an outer tube and an inner tube disposed on a coaxial line, a discharge vessel sealed with a helium gas to form a cylindrical discharge space, and a peripheral portion disposed on the outer tube An excimer lamp formed by one of the electrodes on the surface and the other electrode disposed on the inner peripheral surface of the inner tube, wherein the one electrode is perpendicular to the tube axis of the excimer lamp The surface of the outer tube on the outer peripheral surface of the outer tube is provided with a non-formed portion of a predetermined area, and the inner peripheral surface of the outer tube has an ultraviolet light having a wavelength of 150 nm or less over the surface of the electrode arrangement. A film that absorbs or reflects characteristics. 2. The excimer lamp according to the first aspect of the invention, wherein the outer peripheral surface of the inner tube has an absorption of ultraviolet light having a wavelength of 150 nm or less, over the surface of the other electrode arrangement. A film with reflective properties. The excimer lamp according to the first or second aspect of the invention, wherein the film is at least one selected from the group consisting of cerium oxide, aluminum oxide, titanium oxide and cerium oxide. -18-
TW99100700A 2009-03-16 2010-01-12 Excimer lamp TWI427670B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063144A JP5223741B2 (en) 2009-03-16 2009-03-16 Excimer lamp

Publications (2)

Publication Number Publication Date
TW201118917A true TW201118917A (en) 2011-06-01
TWI427670B TWI427670B (en) 2014-02-21

Family

ID=42744143

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99100700A TWI427670B (en) 2009-03-16 2010-01-12 Excimer lamp

Country Status (4)

Country Link
JP (1) JP5223741B2 (en)
KR (1) KR101348482B1 (en)
CN (1) CN101840838B (en)
TW (1) TWI427670B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5397455B2 (en) * 2011-11-22 2014-01-22 ウシオ電機株式会社 Noble gas fluorescent lamp
JP6202332B2 (en) * 2013-03-28 2017-09-27 株式会社Gsユアサ UV lamp
CN107428088B (en) * 2015-03-19 2020-07-14 优志旺电机株式会社 Method for joining resin pipes
JP7107108B2 (en) * 2018-08-31 2022-07-27 東芝ライテック株式会社 UV irradiation unit, UV irradiation device and barrier discharge lamp
JP7185521B2 (en) * 2018-12-26 2022-12-07 株式会社オーク製作所 discharge lamp
TWI757575B (en) * 2019-01-23 2022-03-11 崇翌科技股份有限公司 Excimer lamp and manufacturing method thereof
CN111508816B (en) * 2019-01-30 2023-06-06 崇翌科技股份有限公司 Excimer lamp and method for manufacturing excimer lamp
KR102229631B1 (en) * 2019-05-13 2021-03-18 주식회사 원익큐엔씨 Uv lamp for implant surface treatment
TWI747073B (en) * 2019-11-01 2021-11-21 崇翌科技股份有限公司 Excimer lamp
CN115916692A (en) * 2020-08-20 2023-04-04 株式会社岛津制作所 Inspection apparatus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3087566B2 (en) * 1994-03-30 2000-09-11 ウシオ電機株式会社 Dielectric barrier discharge fluorescent lamp
JP3133265B2 (en) * 1997-02-07 2001-02-05 スタンレー電気株式会社 Fluorescent lamp
JP3580233B2 (en) * 2000-09-19 2004-10-20 ウシオ電機株式会社 Dielectric barrier discharge lamp device
JP4461707B2 (en) * 2003-05-06 2010-05-12 ウシオ電機株式会社 Excimer lamp
JP4396415B2 (en) * 2004-06-24 2010-01-13 ウシオ電機株式会社 Light irradiation device
JP4305298B2 (en) * 2004-06-28 2009-07-29 ウシオ電機株式会社 Excimer lamp
US7687997B2 (en) * 2004-07-09 2010-03-30 Koninklijke Philips Electronics N.V. UVC/VUV dielectric barrier discharge lamp with reflector
JP2006269189A (en) * 2005-03-23 2006-10-05 Md Komu:Kk Long excimer lamp unit
TWM289462U (en) * 2005-06-10 2006-04-11 Fu-Kuo Huang After glow lighting film having UV filtering and explosion-proof
JP4749797B2 (en) * 2005-08-10 2011-08-17 株式会社オーク製作所 Excimer lamp
TWI322999B (en) * 2006-06-30 2010-04-01 Suk Yue Ka A cold electron ultraviolet lamp
TWI402882B (en) * 2007-03-14 2013-07-21 Jenn Wei Mii Light illuminating element

Also Published As

Publication number Publication date
JP2010218833A (en) 2010-09-30
KR20100105364A (en) 2010-09-29
CN101840838A (en) 2010-09-22
CN101840838B (en) 2014-03-12
KR101348482B1 (en) 2014-01-06
TWI427670B (en) 2014-02-21
JP5223741B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
TW201118917A (en) Excimer lamp
JP2011245479A (en) Ultraviolet irradiation apparatus, ultraviolet irradiation method, and method for manufacturing of ultraviolet irradiation apparatus
TWI549157B (en) Fluorescent light
JP5663836B2 (en) Fluorescent lamp
TW583709B (en) ARC discharge lamp glass faceplate and method therefore
US7772749B2 (en) Wavelength filtering coating for high temperature lamps
WO2012026247A1 (en) Fluorescent lamp
CN103137422A (en) Rare gas fluorescent lamp
JP5784138B2 (en) Glass articles for lamp assembly
CN103065924A (en) Light irradiation device, light irradiation method and metal halide lamp
TW201034047A (en) Noble gas fluorescent lamp
JP2000067813A (en) Fluorescent lamp and light source using it
JP2000100384A (en) Fluorescent lamp and light source device
CN1894765A (en) Low-pressure mercury vapor discharge lamp
KR20060073953A (en) Electric lamp comprising aluminum oxide and cerium oxide
JP2000100383A (en) Fluorescent lamp and light source device using the same
JPH08129987A (en) Fluorescent lamp and its manufacture
TW201306089A (en) Fluorescent lamp
JP2009054592A (en) Fluorescent lamp
JP2000100381A (en) Fluorescent lamp and light source device
JP2000100382A (en) Fluorescent lamp and light source device using the same
JPS63291339A (en) Manufacture of fluorescent lamp
JP2000100380A (en) Fluorescent lamp and light source device
JP2009231026A (en) High-pressure discharge lamp and luminaire
JP2011210438A (en) Metal halide lamp