WO2012026247A1 - Fluorescent lamp - Google Patents

Fluorescent lamp Download PDF

Info

Publication number
WO2012026247A1
WO2012026247A1 PCT/JP2011/066521 JP2011066521W WO2012026247A1 WO 2012026247 A1 WO2012026247 A1 WO 2012026247A1 JP 2011066521 W JP2011066521 W JP 2011066521W WO 2012026247 A1 WO2012026247 A1 WO 2012026247A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
fluorescent lamp
light
neodymium
arc tube
Prior art date
Application number
PCT/JP2011/066521
Other languages
French (fr)
Japanese (ja)
Inventor
幸治 田川
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2012026247A1 publication Critical patent/WO2012026247A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7756Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing neodynium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • H01J61/44Devices characterised by the luminescent material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel

Definitions

  • the present invention relates to a fluorescent lamp, and more particularly to a fluorescent lamp that emits vacuum ultraviolet light.
  • low-pressure mercury lamps are widely used in water treatment apparatuses that decompose organic impurities, as disclosed in Japanese Patent Application Laid-Open No. 2008-260017 (Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-260017
  • light having a wavelength of 185 nm, which is vacuum ultraviolet light is particularly effective among ultraviolet rays emitted from a low-pressure mercury lamp, as described in the literature 1. It has been.
  • FIG. 6 shows the energy ratio for each emission wavelength of the low-pressure mercury lamp, and the energy of other wavelengths is shown as a relative value when the energy of light having a maximum peak wavelength of 254 nm is taken as 100%. .
  • the emission of light with a wavelength of 185 nm in the low-pressure mercury lamp is as low as about 10% or less in view of the total emission intensity.
  • the low-pressure mercury lamp has a problem that the light emission efficiency at a wavelength of 185 nm is very low with respect to the input power, and the power use efficiency is poor.
  • the light emitted from the low-pressure mercury lamp has a low luminous efficiency at a wavelength of 185 nm, and an efficient water treatment cannot be performed with respect to the input power. Under such circumstances, a light source that efficiently emits light having a wavelength of 185 nm has been desired.
  • the problem to be solved by the present invention is, in view of the above-mentioned problems of the prior art, formed by a luminous tube made of quartz glass and containing a discharge gas containing xenon inside, and in the length direction of the luminous tube,
  • a fluorescent lamp comprising a pair of electrodes opposed via a dielectric and a phosphor layer formed on the inner surface of the arc tube, light having a wavelength of 185 nm can be efficiently generated and irradiated It is intended to provide a structure that has little thermal effect on the body and stable radiation characteristics.
  • the fluorescent lamp according to the present invention is characterized in that the phosphor layer formed on the inner surface of the arc tube contains LaPO 4 phosphor activated with neodymium.
  • the neodymium-activated LaPO 4 phosphor has a neodymium concentration in the range of 1 to 3%.
  • a protective layer is provided on the surface of the external electrode disposed outside the arc tube of the pair of electrodes.
  • the phosphor layer contains the neodymium-activated LaPO 4 phosphor
  • vacuum ultraviolet light having a peak near the wavelength of 185 nm can be efficiently emitted.
  • the electric power input to the lamp can be converted into vacuum ultraviolet light with very high efficiency.
  • the cooling facility can be reduced in size.
  • Sectional drawing of the fluorescent lamp of this invention The expanded sectional view of the B section of FIG. Sectional drawing of the fluorescent lamp which shows other embodiment of this invention.
  • the figure which shows an example of the emission spectrum of the fluorescent lamp of this invention. 6 is a graph showing the relationship between the Nd concentration (x) of the (La 1-x , Nd x ) PO 4 phosphor and the emission intensity.
  • FIG. 1 is a cross-sectional view of a fluorescent lamp of the present invention, (A) is an axial cross-sectional view, and (B) is an AA cross-sectional view thereof.
  • the fluorescent lamp 1 has a pair of external electrodes 3, 4 arranged on the outer peripheral surface of an arc tube 2 made of quartz glass.
  • the external electrodes 3 and 4 have a substantially strip shape extending in the tube axis direction.
  • a conductive material such as a silver paste mixed with silver (Ag) and frit glass or a gold paste mixed with gold (Au) and frit glass. It is formed from a film.
  • the arc tube 2 is made of synthetic quartz glass that is highly transmissive to vacuum ultraviolet light having a wavelength of 185 nm. Furthermore, in order to improve the ultraviolet illuminance maintenance rate, it is preferable to use a synthetic quartz glass having a high OH group content. For example, F310 made by Shin-Etsu quartz can be used.
  • the arc tube 2 is filled with a rare gas as a discharge gas. The rare gas may be either xenon alone or a mixed gas of xenon and another rare gas.
  • a glass layer 5 is formed on the inner surface of the arc tube 2 so as to spread almost all over, and is laminated on the inner surface of the glass layer 5.
  • the phosphor layer 6 is formed.
  • the glass layer 5 is for adhering the phosphor layer 6 to the quartz glass constituting the arc tube 2, and preferably has a softening point as a firing temperature of the phosphor (400 to 900). ° C) range.
  • soft glass or hard glass is preferable, and hard glass having good thermal shock resistance is preferable.
  • borosilicate glass Si—B—O glass, softening point: about 800 ° C.
  • aluminosilicate glass Si—Al—O glass, softening point: about 900 ° C.
  • a glass to which an alkaline earth oxide, an alkali oxide, or a metal oxide is added based on any of these compositions is preferable.
  • the glass layer 5 is interposed between the phosphor layer 6 and the arc tube 2, thereby reducing the firing temperature of the phosphor. It is possible to set it low, and there is an effect that the phosphor layer 6 can be stably held. In addition, a reduction in transmittance due to the glass layer 5 can be suppressed, and a desired ultraviolet light can be efficiently emitted.
  • the phosphor constituting the phosphor layer 6 is irradiated with vacuum ultraviolet light such as 172 nm emitted by excimer emission of xenon gas in the arc tube, and is excited by this to have an emission peak at a wavelength of 185 nm.
  • vacuum ultraviolet light such as 172 nm emitted by excimer emission of xenon gas in the arc tube
  • fluorescent lamps are as follows.
  • the total length of the arc tube about 300 to 2000 mm, and the wall thickness of the tube: 0.5 to 2 mm.
  • the average thickness of the phosphor layer is 10 to 20 ⁇ m, and the thickness of the glass layer made of the low softening point glass formed between the phosphor layer and the arc tube is 1 to 30 ⁇ m.
  • FIG. 3 is a cross-sectional view of a fluorescent lamp according to another embodiment of the present invention.
  • An ultraviolet reflecting film 10 is formed on the inner surface of the arc tube 2, and an aperture 11 is formed by cutting out a part of the circumference of the arc tube 2.
  • the glass layer 5 and the phosphor layer 6 are formed on the ultraviolet reflecting film 10.
  • a laminate is formed.
  • the ultraviolet reflective film 10 includes calcium pyrophosphate (Ca 2 P 2 O 7 ), calcium phosphate (Ca 3 (PO 4 ) 2 ), magnesium pyrophosphate (Mg 2 P 2 O 7 ), and Ba—Na—Si—O. , SiO 2 , or Al 2 O 3 , and the total amount of these is preferably included in the film in a range exceeding 50%.
  • the ultraviolet rays generated in the arc tube 2 are reflected by the ultraviolet reflecting film 10 in the arc tube and pass through the phosphor layer 6 and the glass layer 5 in the aperture 11 portion in this order to emit light. Radiated with directivity to the outside of the tube 2.
  • the arc tube 2 is made of synthetic quartz glass that transmits vacuum ultraviolet light.
  • the inner surface of the synthetic quartz glass arc tube 2 is coated with a low melting point glass powder to form a glass layer 5 to improve adhesion to the phosphor layer 6.
  • the phosphor was mixed with butyl acetate containing nitrocellulose to prepare a phosphor slurry, which was applied to the inner surface of the arc tube.
  • external electrodes 3 and 4 were formed on the outer surface of the arc tube 2 by screen printing and baking a paste material in which gold or silver and frit glass were mixed.
  • a paste of Si—B—O glass powder on these electrodes 3 and 4 was printed by screen printing and fired.
  • the glass layer thus formed on the electrode functions as protective films 7 and 8 on the electrode surface.
  • the glass material used here preferably has an expansion coefficient of 30 ⁇ 10 ⁇ 7 (1 / K) or less.
  • the arc tube 2 was filled with Xe gas at 21.3 kPa (160 Torr).
  • FIG. 5 shows the relationship between the neodymium concentration and the radiation intensity at a wavelength of 185 nm.
  • a lamp using a phosphor having a neodymium concentration of 1.5 mol% showed the maximum intensity, this was set to 100%, and the other intensity was shown as a relative value.
  • the range in which the neodymium concentration is 1 to 3 mol% is generally in the range of 70% or more, which is a practical range.
  • the phosphor layer includes the LaPO 4 phosphor activated with neodymium, so that vacuum ultraviolet light having a peak near the wavelength of 185 nm is efficiently used. Can be emitted.

Abstract

[Problem] To provide a structure, whereby vacuum-ultraviolet light of wavelength 185 nm is emitted efficiently, for a fluorescent lamp that emits ultraviolet light and is provided with: a light-emitting tube, comprising quartz glass, inside which a xenon-containing discharge gas is sealed; a pair of electrodes that are formed in the length direction of the light-emitting tube and face each other with a dielectric interposed therebetween; and a phosphor layer formed on the inside surface of the light-emitting tube. [Solution] The present invention is characterized in that: the phosphor layer formed on the inside surface of the light-emitting tube contains a neodymium-activated LaPO4 phosphor; and the neodymium concentration in said neodymium-activated LaPO4 phosphor is in the range 1-3 mol%.

Description

蛍光ランプFluorescent lamp
 この発明は蛍光ランプに関するものであり、特に、真空紫外光を放射する蛍光ランプに係わるものである。 The present invention relates to a fluorescent lamp, and more particularly to a fluorescent lamp that emits vacuum ultraviolet light.
 従来、有機質不純物の分解を行う水処理装置には、特開2008-260017号公報(特許文献1)に開示されているように、低圧水銀ランプが広く利用されている。
 ところで、このような水処理においては、同文献1にも記載されているように、低圧水銀ランプから放射される紫外線のうち、特に真空紫外光である波長185nmの光が有効であることも知られている。
Conventionally, low-pressure mercury lamps are widely used in water treatment apparatuses that decompose organic impurities, as disclosed in Japanese Patent Application Laid-Open No. 2008-260017 (Patent Document 1).
By the way, in such water treatment, it is also known that light having a wavelength of 185 nm, which is vacuum ultraviolet light, is particularly effective among ultraviolet rays emitted from a low-pressure mercury lamp, as described in the literature 1. It has been.
 ところが、この低圧水銀ランプにおいては、水銀の発光を利用しているために、波長254nmを中心波長とする光が発生しているので、波長185nmの真空紫外光は相対的にその発光効率が非常に低い。
 図6に該低圧水銀ランプの発光波長ごとのエネルギー比が示されており、最大ピークを有する波長254nmの光のエネルギーを100%としたときの他の波長のエネルギーが相対値で示されている。
 これによれば、低圧水銀ランプにおける波長185nmの光の放射は、その全発光強度から考えると、おおむね10%以下という低いものである。すなわち、低圧水銀ランプは投入電力に対して波長185nmの発光効率が極めて低く、電力の使用効率が悪いといった問題がある。
 このように、低圧水銀ランプから放射される光では波長185nmの発光効率が低く、投入電力に対して効率の良い水処理ができていなかった。このような背景のもと、波長185nmの光を効率よく放射する光源が望まれていた。
However, in this low-pressure mercury lamp, since light of mercury is used, light having a wavelength of 254 nm as a central wavelength is generated. Therefore, vacuum ultraviolet light having a wavelength of 185 nm has a relatively high luminous efficiency. Very low.
FIG. 6 shows the energy ratio for each emission wavelength of the low-pressure mercury lamp, and the energy of other wavelengths is shown as a relative value when the energy of light having a maximum peak wavelength of 254 nm is taken as 100%. .
According to this, the emission of light with a wavelength of 185 nm in the low-pressure mercury lamp is as low as about 10% or less in view of the total emission intensity. That is, the low-pressure mercury lamp has a problem that the light emission efficiency at a wavelength of 185 nm is very low with respect to the input power, and the power use efficiency is poor.
As described above, the light emitted from the low-pressure mercury lamp has a low luminous efficiency at a wavelength of 185 nm, and an efficient water treatment cannot be performed with respect to the input power. Under such circumstances, a light source that efficiently emits light having a wavelength of 185 nm has been desired.
 また、低圧水銀ランプでは、点灯時に水銀が充分に蒸発する必要があり、当然のこととしてその特性は水銀の蒸発の状態に依存するものである。ランプを使用する周囲温度条件によっては立ち上がりが遅く発光特性が安定しないことがあり、また、高入力のランプでは発熱が大きくなってしまう。上述した水処理装置に高入力のランプを適用すると、ランプの最適水銀蒸気圧を上回ることによる185nmの発光効率の低下を回避するため、冷却設備が必要で装置が大型化するという問題がある。 Also, in a low-pressure mercury lamp, it is necessary for the mercury to evaporate sufficiently at the time of lighting, and as a matter of course, its characteristics depend on the state of mercury evaporation. Depending on the ambient temperature conditions in which the lamp is used, the rise may be slow and the light emission characteristics may not be stable, and a high input lamp may generate a large amount of heat. When a high-input lamp is applied to the water treatment apparatus described above, there is a problem that a cooling facility is required and the apparatus is enlarged in order to avoid a decrease in luminous efficiency of 185 nm due to exceeding the optimum mercury vapor pressure of the lamp.
特開2008-260017号公報JP 2008-260017 A
 この発明が解決しようとする課題は、上記従来技術の問題点に鑑みて、石英ガラスからなり内部にキセノンを含む放電ガスが封入された発光管と、該発光管の長さ方向に形成され、誘電体を介して対向する一対の電極と、前記発光管の内面に形成された蛍光体層とを備えてなる蛍光ランプにおいて、波長185nmの光を効率良く発生することができ、且つ、被照射体に対して熱影響が少なく、放射特性が安定な構造を提供しようとするものである。 The problem to be solved by the present invention is, in view of the above-mentioned problems of the prior art, formed by a luminous tube made of quartz glass and containing a discharge gas containing xenon inside, and in the length direction of the luminous tube, In a fluorescent lamp comprising a pair of electrodes opposed via a dielectric and a phosphor layer formed on the inner surface of the arc tube, light having a wavelength of 185 nm can be efficiently generated and irradiated It is intended to provide a structure that has little thermal effect on the body and stable radiation characteristics.
 上記課題を解決するために、この発明に係る蛍光ランプは、前記発光管内面に形成した蛍光体層が、ネオジウムで付活されたLaPO蛍光体を含むことを特徴とする。
 また、前記ネオジウム付活LaPO蛍光体におけるネオジウム濃度が1~3%の範囲であることを特徴とする。
 更には、前記一対の電極のうち発光管の外側に配置された外部電極の表面上に保護層を備えていることを特徴とする。
In order to solve the above-mentioned problems, the fluorescent lamp according to the present invention is characterized in that the phosphor layer formed on the inner surface of the arc tube contains LaPO 4 phosphor activated with neodymium.
The neodymium-activated LaPO 4 phosphor has a neodymium concentration in the range of 1 to 3%.
Furthermore, a protective layer is provided on the surface of the external electrode disposed outside the arc tube of the pair of electrodes.
 この発明の蛍光ランプによれば、蛍光体層にネオジウム付活LaPO蛍光体を含むので、波長185nm付近にピークを有する真空紫外光を効率的に放射することができる。
 特に、前記ネオジウム付活LaPO蛍光体におけるネオジウム濃度を1~3%の範囲とすることにより、ランプに投入された電力を非常に高い効率で真空紫外光に変換することができる。
 また、低圧水銀ランプのように、ランプへの入力を高入力化してもランプの185nm付近の発光効率が低下するといった問題も生じることがなく、冷却設備が小型化できるという利点もある。
According to the fluorescent lamp of the present invention, since the phosphor layer contains the neodymium-activated LaPO 4 phosphor, vacuum ultraviolet light having a peak near the wavelength of 185 nm can be efficiently emitted.
In particular, by setting the neodymium concentration in the neodymium-activated LaPO 4 phosphor in the range of 1 to 3%, the electric power input to the lamp can be converted into vacuum ultraviolet light with very high efficiency.
In addition, unlike the low-pressure mercury lamp, even if the input to the lamp is increased, there is no problem that the luminous efficiency in the vicinity of 185 nm of the lamp is reduced, and there is an advantage that the cooling facility can be reduced in size.
本発明の蛍光ランプの断面図。Sectional drawing of the fluorescent lamp of this invention. 図1のB部の拡大断面図。The expanded sectional view of the B section of FIG. 本発明の他の実施形態を示す蛍光ランプの断面図。Sectional drawing of the fluorescent lamp which shows other embodiment of this invention. 本発明の蛍光ランプの発光スペクトルの一例を示す図。The figure which shows an example of the emission spectrum of the fluorescent lamp of this invention. (La1-x,Nd)PO蛍光体のNd濃度(x)と発光強度の      関係を示すグラフである。6 is a graph showing the relationship between the Nd concentration (x) of the (La 1-x , Nd x ) PO 4 phosphor and the emission intensity. 従来の低圧水銀ランプの放射波長ごとの光出力を相対値で示す図。The figure which shows the optical output for every radiation wavelength of the conventional low pressure mercury lamp by a relative value.
 図1は、本発明の蛍光ランプの断面図であり、(A)は軸方向断面図、(B)はそのA-A断面図である。
 図において、蛍光ランプ1は、石英ガラスからなる発光管2の外周面上に一対の外部電極3、4が対向配置されている。この外部電極3、4は管軸方向に伸びる概略帯状の形状をなし、例えば、銀(Ag)とフリットガラスを混合した銀ペーストや、金(Au)とフリットガラスを混合した金ペーストなどの導電膜より形成されている。
 前記外部電極3、4上にはガラス層からなる保護膜7、8が被覆さていて、該外部電極3、4にはそれぞれリード線W1、W2が接続されており、これらが高周波電圧を発生する電源9に接続されている。
 前記発光管2は、波長185nm域の真空紫外光に対して透過性の高い合成石英ガラスからなる。更に、紫外線照度維持率を良好にするため、OH基含有量の高い合成石英ガラスを使うことが好ましく、例えば、信越石英製F310が使用可能である。
 そして、該発光管2内には放電ガスとして希ガスが封入されるが、希ガスとしては、キセノンのみ、或いは、キセノンと他の希ガスの混合ガスのいずれであってもよい。
FIG. 1 is a cross-sectional view of a fluorescent lamp of the present invention, (A) is an axial cross-sectional view, and (B) is an AA cross-sectional view thereof.
In the figure, the fluorescent lamp 1 has a pair of external electrodes 3, 4 arranged on the outer peripheral surface of an arc tube 2 made of quartz glass. The external electrodes 3 and 4 have a substantially strip shape extending in the tube axis direction. For example, a conductive material such as a silver paste mixed with silver (Ag) and frit glass or a gold paste mixed with gold (Au) and frit glass. It is formed from a film.
Protective films 7 and 8 made of a glass layer are coated on the external electrodes 3 and 4, and lead wires W1 and W2 are connected to the external electrodes 3 and 4, respectively, which generate a high-frequency voltage. Connected to a power source 9.
The arc tube 2 is made of synthetic quartz glass that is highly transmissive to vacuum ultraviolet light having a wavelength of 185 nm. Furthermore, in order to improve the ultraviolet illuminance maintenance rate, it is preferable to use a synthetic quartz glass having a high OH group content. For example, F310 made by Shin-Etsu quartz can be used.
The arc tube 2 is filled with a rare gas as a discharge gas. The rare gas may be either xenon alone or a mixed gas of xenon and another rare gas.
 図1(B)および図2に詳細が示されているように、発光管2の内面にはガラス層5がほぼ全域に広がるように形成されていて、このガラス層5の内表面上に積層されるように蛍光体層6が形成されている。なお、後述するように、発光管とガラス層の間に、一部を除いて紫外線反射膜を形成することも可能である。
 前記ガラス層5は、発光管2を構成する石英ガラスに対して蛍光体層6を付着させるためのものであり、そのガラスの特性として好ましくは、軟化点が蛍光体の焼成温度(400~900℃)範囲にあるものである。
 例えば、軟質ガラスや硬質ガラスであり、好ましくは、耐熱衝撃性の良好な硬質ガラスである。具体的な材質としては、硬質ガラスの場合、ホウケイ酸ガラス(Si-B-O系ガラス、軟化点:約800℃)、アルミノケイ酸ガラス(Si-Al-O系ガラス、軟化点:約900℃)、または、これらいずれかの組成を元にアルカリ土類酸化物やアルカリ酸化物、金属酸化物を添加したガラスが好ましい。
As shown in detail in FIG. 1B and FIG. 2, a glass layer 5 is formed on the inner surface of the arc tube 2 so as to spread almost all over, and is laminated on the inner surface of the glass layer 5. Thus, the phosphor layer 6 is formed. As will be described later, it is also possible to form an ultraviolet reflective film between the arc tube and the glass layer except for a part.
The glass layer 5 is for adhering the phosphor layer 6 to the quartz glass constituting the arc tube 2, and preferably has a softening point as a firing temperature of the phosphor (400 to 900). ° C) range.
For example, soft glass or hard glass is preferable, and hard glass having good thermal shock resistance is preferable. Specifically, in the case of hard glass, borosilicate glass (Si—B—O glass, softening point: about 800 ° C.), aluminosilicate glass (Si—Al—O glass, softening point: about 900 ° C.) ), Or a glass to which an alkaline earth oxide, an alkali oxide, or a metal oxide is added based on any of these compositions is preferable.
 このようなガラス層5に関しては、特開2010-56007号公報に記載されているように、蛍光体層6と発光管2の間にガラス層5を介在させることにより、蛍光体の焼成温度を低く設定することが可能で、蛍光体層6を安定的に保持することができるという作用効果を奏するものである。しかも、ガラス層5による透過率の低下を抑えられ、所期の紫外光を効率よく放射することができるランプとなる。 With respect to such a glass layer 5, as described in JP 2010-56007 A, the glass layer 5 is interposed between the phosphor layer 6 and the arc tube 2, thereby reducing the firing temperature of the phosphor. It is possible to set it low, and there is an effect that the phosphor layer 6 can be stably held. In addition, a reduction in transmittance due to the glass layer 5 can be suppressed, and a desired ultraviolet light can be efficiently emitted.
 蛍光体層6を構成する蛍光体は、発光管内のキセノンガスのエキシマ発光により放射された172nm等の真空紫外光が照射され、これにより励起されて、波長185nmに発光ピークを有するものであって、下記の一般式で表されるネオジウムで付活されたLaPO蛍光体である。
   (La1-x,Nd)PO
 上記蛍光体を用いることにより、波長185nmの発光特性を最大とし、効率が極めて良好な蛍光ランプを提供することができる。
The phosphor constituting the phosphor layer 6 is irradiated with vacuum ultraviolet light such as 172 nm emitted by excimer emission of xenon gas in the arc tube, and is excited by this to have an emission peak at a wavelength of 185 nm. A LaPO 4 phosphor activated by neodymium represented by the following general formula.
(La 1-x , Nd x ) PO 4
By using the phosphor described above, it is possible to provide a fluorescent lamp that maximizes the light emission characteristics at a wavelength of 185 nm and has extremely good efficiency.
 このような蛍光ランプについて具体的な数値例を挙げると、次の通りである。
 発光管の全長:約300~2000mm、管の肉厚:0.5~2mmである。また、蛍光体層の平均厚さ:10~20μmであり、蛍光体層と発光管の間に形成された低軟化点ガラスからなるガラス層の厚さ:1~30μmである。
Specific numerical examples of such fluorescent lamps are as follows.
The total length of the arc tube: about 300 to 2000 mm, and the wall thickness of the tube: 0.5 to 2 mm. The average thickness of the phosphor layer is 10 to 20 μm, and the thickness of the glass layer made of the low softening point glass formed between the phosphor layer and the arc tube is 1 to 30 μm.
 図3は、本発明の他の実施形態に係る、蛍光ランプの断面図である。発光管2の内面に紫外線反射膜10を形成し、その円周状の一部を切り欠いてアパーチャ11を形成して、該紫外線反射膜10の上に前記ガラス層5と蛍光体層6を積層形成したものである。
 前記紫外線反射膜10は、ピロリン酸カルシウム(Ca)、リン酸カルシウム(Ca(PO)、ピロリン酸マグネシウム(Mg)、及び、Ba-Na-Si-O、SiO、Alのいずれかを含むものであり、これらの総量が膜の中に50%を超える範囲で含まれていることが望ましい。
 この実施形態によれば、発光管2内で生成された紫外線は、該発光管内で紫外線反射膜10によって反射されつつ、アパーチャ11部分の蛍光体層6、ガラス層5をこの順に透過して発光管2の外部に指向性をもって放射される。
FIG. 3 is a cross-sectional view of a fluorescent lamp according to another embodiment of the present invention. An ultraviolet reflecting film 10 is formed on the inner surface of the arc tube 2, and an aperture 11 is formed by cutting out a part of the circumference of the arc tube 2. The glass layer 5 and the phosphor layer 6 are formed on the ultraviolet reflecting film 10. A laminate is formed.
The ultraviolet reflective film 10 includes calcium pyrophosphate (Ca 2 P 2 O 7 ), calcium phosphate (Ca 3 (PO 4 ) 2 ), magnesium pyrophosphate (Mg 2 P 2 O 7 ), and Ba—Na—Si—O. , SiO 2 , or Al 2 O 3 , and the total amount of these is preferably included in the film in a range exceeding 50%.
According to this embodiment, the ultraviolet rays generated in the arc tube 2 are reflected by the ultraviolet reflecting film 10 in the arc tube and pass through the phosphor layer 6 and the glass layer 5 in the aperture 11 portion in this order to emit light. Radiated with directivity to the outside of the tube 2.
 以下、本発明の具体例を説明する。
1.蛍光体の製法
 まず、ネオジウム付活LaPO蛍光体を作製するにあたり、原材料としてLa,HPO,Ndの粉末を用いた。
 この具体例では、一般式を(La1-x,Nd)PO で表したときに、 
x=0.01~0.11の組成比となるように調製を行なった。設定した化学両論比となるよう原料粉末を秤量し混合し、焼成を行った。焼成条件は、大気中(または、若干還元性ガスを混入しても良い)で1200~1400℃で、約2h程度であった。焼成後は、粉砕を行い平均粒子径で約3~5μmになるように分級を行った。
Hereinafter, specific examples of the present invention will be described.
1. First, in producing a neodymium-activated LaPO 4 phosphor, powders of La 2 O 3 , H 2 PO 4 , and Nd 2 O 3 were used as raw materials.
In this specific example, when the general formula is represented by (La 1-x , Nd x ) PO 4 ,
Preparation was performed so that the composition ratio was x = 0.01 to 0.11. The raw material powders were weighed and mixed so as to have a set stoichiometric ratio, and then fired. The firing conditions were 1200 to 1400 ° C. and about 2 hours in the atmosphere (or a slightly reducing gas may be mixed). After firing, pulverization was performed and classification was performed so that the average particle size was about 3 to 5 μm.
2.蛍光ランプの作製
 図1に示す構成に基づいて外部電極型の希ガス蛍光ランプ1を製作した。発光管2は真空紫外光を透過する合成石英ガラスからなる。この合成石英ガラス製の発光管2の内表面には、低融点ガラスの粉末を被覆してガラス層5を形成し、蛍光体層6との付着性を改善している。蛍光体の塗布時には、該蛍光体をニトロセルロース入りの酢酸ブチルと混合して、蛍光体スラリーを作製し、上記の発光管内面に塗布した。
 続いて、発光管2の外表面上に金、または、銀とフリットガラスを混合したペースト材をスクリーン印刷し、焼成することで外部電極3、4を形成した。更に、これらの電極3、4の上にSi-B-Oのガラス粉末をペースト状にしたものをスクリーン印刷で印刷して焼成した。こうして電極上に形成したガラス層は、電極表面の保護膜7、8として機能する。ここで用いるガラス材は膨張係数が、30×10-7(1/K)以下のものが好ましい。また、発光管2にはXeガスを21.3kPa(160Torr)封入した。
2. Production of Fluorescent Lamp An external electrode type rare gas fluorescent lamp 1 was produced based on the configuration shown in FIG. The arc tube 2 is made of synthetic quartz glass that transmits vacuum ultraviolet light. The inner surface of the synthetic quartz glass arc tube 2 is coated with a low melting point glass powder to form a glass layer 5 to improve adhesion to the phosphor layer 6. At the time of applying the phosphor, the phosphor was mixed with butyl acetate containing nitrocellulose to prepare a phosphor slurry, which was applied to the inner surface of the arc tube.
Subsequently, external electrodes 3 and 4 were formed on the outer surface of the arc tube 2 by screen printing and baking a paste material in which gold or silver and frit glass were mixed. Further, a paste of Si—B—O glass powder on these electrodes 3 and 4 was printed by screen printing and fired. The glass layer thus formed on the electrode functions as protective films 7 and 8 on the electrode surface. The glass material used here preferably has an expansion coefficient of 30 × 10 −7 (1 / K) or less. The arc tube 2 was filled with Xe gas at 21.3 kPa (160 Torr).
3.点灯実験
 以上のように作製した蛍光体の組成が異なる蛍光ランプ1を、点灯電源9に接続し、V0-p=1700Vの矩形波を印加して点灯させ、放射される光の分光スペクトル測定を行った。測定には、分光器(ウシオ電機製、USR40およびVUV分光器)を用いた。
 図4に、ネオジウムのモル濃度x=0.02(2モル%)の分光分布図を示す。
3. Lighting experiment The fluorescent lamps 1 having different phosphor compositions prepared as described above are connected to the lighting power source 9 and applied with a rectangular wave of V 0-p = 1700 V, and the spectrum is measured for the emitted light. Went. For the measurement, a spectrometer (USR40 and VUV spectrometer manufactured by USHIO INC.) Was used.
FIG. 4 shows a spectral distribution diagram of the neodymium molar concentration x = 0.02 (2 mol%).
 また、図5にネオジウム濃度と波長185nmの放射強度の関係を示す。なお、同図では、ネオジウム濃度が1.5モル%の蛍光体を用いたランプが、最大強度を示したため、これを100%とし、他の強度を相対値で示している。
 同図に示すように、ネオジウム濃度が1~3モル%の範囲が、おおむね70%以上の範囲にあり実用的な範囲とわかった。
FIG. 5 shows the relationship between the neodymium concentration and the radiation intensity at a wavelength of 185 nm. In the figure, since a lamp using a phosphor having a neodymium concentration of 1.5 mol% showed the maximum intensity, this was set to 100%, and the other intensity was shown as a relative value.
As shown in the figure, the range in which the neodymium concentration is 1 to 3 mol% is generally in the range of 70% or more, which is a practical range.
 以上説明したように、本発明に係る蛍光ランプによれば、蛍光体層がネオジウムで付活されたLaPO蛍光体を含むものとしたことにより、波長185nm付近にピークを有する真空紫外光を効率的に放射することができるものである。 As described above, according to the fluorescent lamp according to the present invention, the phosphor layer includes the LaPO 4 phosphor activated with neodymium, so that vacuum ultraviolet light having a peak near the wavelength of 185 nm is efficiently used. Can be emitted.
 1     蛍光ランプ
 2     発光管
 3、4   電極
 5     ガラス層
 6     蛍光体層
 7、8   電極保護膜
 10    紫外線反射膜
 11    アパーチャ
 
 
 
DESCRIPTION OF SYMBOLS 1 Fluorescent lamp 2 Arc tube 3, 4 Electrode 5 Glass layer 6 Phosphor layer 7, 8 Electrode protective film 10 Ultraviolet reflective film 11 Aperture

Claims (3)

  1.  石英ガラスからなり内部にキセノンを含む放電ガスが封入された発光管と、該発光管の長さ方向に形成され、誘電体を介して対向する一対の電極と、前記発光管の内面に形成された蛍光体層とを備えてなる蛍光ランプにおいて、
     前記蛍光体層は、ネオジウムで付活されたLaPO蛍光体を含むことを特徴とする蛍光ランプ。
    An arc tube made of quartz glass and containing a discharge gas containing xenon inside, a pair of electrodes formed in the length direction of the arc tube and facing each other through a dielectric, and formed on the inner surface of the arc tube A fluorescent lamp comprising a phosphor layer,
    The phosphor layer fluorescent lamp which comprises a LaPO 4 phosphors activated with neodymium.
  2.  前記ネオジウム付活LaPO蛍光体におけるネオジウム濃度は1~3モル%の範囲であることを特徴とする請求項1に記載の蛍光ランプ。 2. The fluorescent lamp according to claim 1, wherein the neodymium-activated LaPO 4 phosphor has a neodymium concentration in the range of 1 to 3 mol%.
  3.  前記一対の電極のうち発光管の外側に配置された外部電極の表面上に保護膜を備えていることを特徴とする請求項1または2に記載の蛍光ランプ。
     
     
     
    The fluorescent lamp according to claim 1, wherein a protective film is provided on a surface of an external electrode disposed outside the arc tube of the pair of electrodes.


PCT/JP2011/066521 2010-08-24 2011-07-21 Fluorescent lamp WO2012026247A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010186899A JP2012048831A (en) 2010-08-24 2010-08-24 Fluorescent lamp
JP2010-186899 2010-08-24

Publications (1)

Publication Number Publication Date
WO2012026247A1 true WO2012026247A1 (en) 2012-03-01

Family

ID=45723256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066521 WO2012026247A1 (en) 2010-08-24 2011-07-21 Fluorescent lamp

Country Status (3)

Country Link
JP (1) JP2012048831A (en)
TW (1) TW201225152A (en)
WO (1) WO2012026247A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018167167A (en) * 2017-03-29 2018-11-01 ウシオ電機株式会社 Water treatment apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5700060B2 (en) 2013-03-14 2015-04-15 ウシオ電機株式会社 Light source device
JPWO2017082380A1 (en) * 2015-11-13 2017-11-16 ウシオ電機株式会社 Deodorizing method and deodorizing apparatus
WO2018235723A1 (en) * 2017-06-20 2018-12-27 大電株式会社 Ultraviolet-emitting phosphor, light-emitting element, and light-emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216704A (en) * 2000-11-16 2002-08-02 Nec Lighting Ltd Rare gas discharge lamp
JP2005519438A (en) * 2002-03-04 2005-06-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Ultraviolet radiation generator
WO2006104081A1 (en) * 2005-03-29 2006-10-05 Nemoto & Co., Ltd. Infra-red light emitting fluorescent substance
JP2007514736A (en) * 2003-12-17 2007-06-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Radiation therapy and medical imaging using UV-emitting nanoparticles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216704A (en) * 2000-11-16 2002-08-02 Nec Lighting Ltd Rare gas discharge lamp
JP2005519438A (en) * 2002-03-04 2005-06-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Ultraviolet radiation generator
JP2007514736A (en) * 2003-12-17 2007-06-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Radiation therapy and medical imaging using UV-emitting nanoparticles
WO2006104081A1 (en) * 2005-03-29 2006-10-05 Nemoto & Co., Ltd. Infra-red light emitting fluorescent substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018167167A (en) * 2017-03-29 2018-11-01 ウシオ電機株式会社 Water treatment apparatus

Also Published As

Publication number Publication date
JP2012048831A (en) 2012-03-08
TW201225152A (en) 2012-06-16

Similar Documents

Publication Publication Date Title
KR20110097645A (en) Fluorescent lamp
TWI514438B (en) A fluorescent lamp for emitting ultraviolet light and a method for manufacturing the same
WO2012026247A1 (en) Fluorescent lamp
JP5581635B2 (en) Fluorescent lamp
JP5663836B2 (en) Fluorescent lamp
JP5397455B2 (en) Noble gas fluorescent lamp
TWI493596B (en) Fluorescent light
JP3678203B2 (en) Glass composition, protective layer composition, binder composition, glass tube for fluorescent lamp, fluorescent lamp, outer tube for high-intensity discharge lamp, and high-intensity discharge lamp
KR100944287B1 (en) Fluorescent lamp and method of manufacturing the same
JP5515142B2 (en) Phosphor and fluorescent lamp
JP5515141B2 (en) Phosphor and fluorescent lamp
JP3768976B2 (en) Fluorescent lamp
JP2001015068A (en) Ultraviolet-ray emitting fluorescent lamp
JP2012064381A (en) Fluorescent lamp
JP5213027B2 (en) Fluorescent lamp
JP2002083569A (en) Fluorescent lamp and high-intensity discharge lamp
JP2003288860A (en) Binder composite for lamp, fluorescent lamp, and high luminance discharge lamp
JP2011071027A (en) Fluorescent lamp and method for manufacturing the same
JP2010238573A (en) Fluorescent lamp
WO2007125471A2 (en) Low-pressure discharge lamp
JP2000133204A (en) Fluorescent lamp and light source device
JP2011044421A (en) Ultraviolet discharge lamp
JP2009224134A (en) Glass bulb for fluorescent lamp, and fluorescent lamp
JP2006054204A (en) Fluorescent lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819715

Country of ref document: EP

Kind code of ref document: A1