TW201118916A - Excimer lamp - Google Patents

Excimer lamp Download PDF

Info

Publication number
TW201118916A
TW201118916A TW99100699A TW99100699A TW201118916A TW 201118916 A TW201118916 A TW 201118916A TW 99100699 A TW99100699 A TW 99100699A TW 99100699 A TW99100699 A TW 99100699A TW 201118916 A TW201118916 A TW 201118916A
Authority
TW
Taiwan
Prior art keywords
discharge
gas
iodine
excimer
concentration
Prior art date
Application number
TW99100699A
Other languages
Chinese (zh)
Other versions
TWI449082B (en
Inventor
Yukihiro Morimoto
Satoshi Matsuzawa
Original Assignee
Ushio Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Electric Inc filed Critical Ushio Electric Inc
Publication of TW201118916A publication Critical patent/TW201118916A/en
Application granted granted Critical
Publication of TWI449082B publication Critical patent/TWI449082B/en

Links

Landscapes

  • Discharge Lamp (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)

Abstract

An excimer lamp is provided to output ultraviolet light in a desired wavelength for polymerizing monomer by sealing a discharging gas including krypton, iodine, and xenon gases into a discharging vessel. Sealing units are arranged on both ends of the longitudinal direction of a discharging vessel(1). The sealing units are welded to the discharging vessel in order to prevent the leakage of a discharging gas. A pair of electrodes in a net shape is arranged on the external surface of the vessel to be opposite to each other. A discharging space(S) and a dielectric material are placed between the electrodes. An ultraviolet reflection film(7) is formed on an opposite wall with respect to the output direction side wall of light.

Description

201118916 六、發明說明: 【發明所屬之技術領域】 本發明係關於藉由使用含有氪氣、碘氣及氙氣 氣體作爲放電媒體,以效率佳地放射3 00〜3 80nm 範圍之紫外光的準分子燈。 【先前技術】 在液晶顯示器之製造工程中,已使用一種在構 之像素時使單體混入液晶,在使液晶分子呈傾斜的 使單體聚合’藉此使液晶分子的傾斜方向固定的 PSA: Polymer Sustained Alignment)。藉由針對 揭示的專利文獻1,以用以使單體聚合的光源而言 到對液晶所造成的損害較少、單體的感度、液晶用 透過率等,以對單.體照射例如波長3 00-3 80nm的紫 佳(專利文獻1的段落0 2 3 7 )。 以放射用以使單體聚合所需之波長3 00-3 80nm 光的紫外線光源而言,已知有各式各樣,但目前乃 最適於PSA用途的光源反覆硏究的階段。例如, 作爲放電媒體而主要放射波長365nm之紫外光的 、將金屬鹵化物作爲放電媒體的金屬鹵素燈等成 用途之光源的候補。 但是’水銀燈在欲裝載複數水銀燈來構成紫外 裝置時’會有紫外線照射裝置大型化的問題,此外 爲了將水銀作爲放電媒體而對環境所造成的負荷較 的放電 之波長 成液晶 狀態下 技術( PSA所 ,考慮 玻璃的 外光爲 的紫外 爲針對 將水銀 水銀燈 M PSA 線照射 ,會有 大的缺 -5- 201118916 點。金屬鹵素燈係在與投入電力相比,所放射的紫外線的 輸出較低的能量效率方面存有問題,此外無法忽視爲了將 鹵化金屬作爲放電媒體而對環境所造成的不良影響。 準分子燈在欲裝載複數準分子燈來構成紫外線照射裝 置時,可使紫外線照射裝置較爲小型化,並且與投入電力 相比,所放射的紫外線的輸出較高,故能量效率較佳,而 且由於使用氙氣、氪氣等稀有氣體作爲放電媒體,因此對 環境造成的負荷較小等在實用性方面具有較大優點,因此 有希望作爲PSA用光源加以使用。 準分子燈自以往以來主要作爲藉由對液晶基板等被處 理物的表面照射真空紫外線以進行被處理物之表面改質的 光源而加以使用,但是在PSA用途中用以使單體聚合所 需的波長3 00-3 80nm的波長範圍的紫外光的輸出並不足夠 [先前技術文獻] [專利文獻] [專利文獻1 ]日本特開2 0 0 3 - 1 4 9 6 4 7號 【發明內容】 (發明所欲解決之課題) 基於以上,本發明的目的在提供一種準分子燈,其效 率佳地放射用以使單體聚合所需的波長300-3 80nm之波長 範圍的紫外光,俾以提供最適於PSA用途的光源。 -6 - 201118916 (解決課題之手段) 爲了解決上述課題,請求項1所記載之準分子燈係具 備有:被封入有含有氪氣、碘氣及氙氣之放電氣體的放電 容器;及以夾持被形成於前述放電容器內部的放電空間而 相對向的方式作配置的一對電極的準分子燈,在前述放電 空間發生:碘的準分子1/所發出之峰値波長爲342nm附 近的發光、及氙Xe與碘I的化合物的準分子Xe〆所發出 0 之峰値波長爲3 20nm附近的發光等雙方。 請求項2所記載之準分子燈係具備有:被封入有含有 氪氣、碘氣及氙氣之放電氣體的放電容器;及以夾持被形 成於前述放電容器內部的放電空間而相對向的方式作配置 的一對電極,前述氙氣的濃度爲〇.〇5~2.〇%。 請求項3所記載之準分子燈係在請求項2所記載之準 分子燈中,前述氙氣的濃度爲0·2〜2.0%。 請求項4所記載之準分子燈係在請求項1或請求項2 Q 所記載之準分子燈中,前述放電氣體的全壓爲40〜1 33kPa (發明之效果) 藉由請求項1之發明之準分子燈’封入含有氪氣、碘 氣及氙氣的放電氣體作爲放電媒體’藉此在前述放電空間 發生:碘的準分子12^所發出之峰値波長爲342nm附近的 發光、及氙Xe與碘I的化合物的準分子ΧεΓ所發出之峰 値波長爲320nm附近的發光等雙方’因此可使在PSA用 201118916 途中使單體聚合所需之3 00~3 80nm之波長範圍的紫外光 輸出提升。 藉由請求項2之發明之準分子燈,封入含有氪氣、碘 氣及氙氣的放電氣體作爲放電媒體,氙氣的濃度被規定爲 0.05~2.0%,因此可使在PSA用途中使單體聚合所需之 3 0 0〜3 80nm之波長範圍的紫外光輸出提升。 藉由請求項3之發明之準分子燈,在請求項2之準分 子燈中,前述氙氣的濃度被規定爲0.2〜2·0%,因此可使 在PSA用途中使單體聚合所需之3 00〜3 8 0nm之波長範圍 的紫外光輸出更加提升。 藉由請求項4之發明之準分子燈,在請求項1或請求 項2所記載之準分子燈中,放電氣體的全壓被設爲 40~133kPa,因此可使在PSA用途中使單體聚合所需之 300~38〇nm之波長範圍的紫外光輸出提升。 【實施方式】 第1圖係顯示本發明之準分子燈之槪略構成的斜視圖 。第2圖係第1圖所示的A-A線剖面圖。準分子燈1 0係 具備有藉由例如石英玻璃等介電質材料,如第2圖所示’ 構成爲剖面呈方形狀的放電容器1。在放電容器1的內部 被封入有主要含有氪氣、碘氣及氙氣的放電氣體。 放電容器1係在放電容器之長邊方向之兩端附近的內 部配置密封構件2而將放電容器1與密封構件2熔接,藉 此以放電氣體不會漏出至外部的方式予以氣密式密封。此 -8- 201118916 外,在放電容器1之上下壁面3、4之各自的外表面’以 夾著形成在放電容器1內部的放電空間S及構成放電容器 1的介電質材料而相對向的方式設有網目狀的一對電極5 、6。電極5、6係以形成有預定的網目狀圖案的方式藉由 例如蒸鍍等所形成。 此外,在放電容器1的內部,在與光出射方向側的壁 面3呈相反側的壁面4形成有例如含有Si02作爲主成分 0 的紫外線反射膜7,在放電空間S內所發生的紫外線藉由 紫外線反射膜7而朝光出射方向反射,由位於光出射方向 側的壁面3射出。 如上所示之構成之準分子燈係在一對電極5、6間供 給例如1〜1 20kHz之正弦波的高頻,藉此在面向放電空間 S的內壁面發生無數針鬚般的無聲放電,藉由如上所示之 無聲放電,形成爲宛如放電空間S全體均等放電的狀態。 藉由如上所示之放電,被封入在放電容器的碘I的正 Q 離子1 +及陰離子r係如下述[化1]所示,藉由與放電氣體 所含有之碗以外的氪原子或分子Μ起反應來形成挑的準 分子I/,並且碘的準分子1/係如下述[化2]所示,反覆 進行電離的反應。 [化1] Ι + + Γ + Μ —Ι2* + Μ 201118916 [化2] Ι2* —Ι + + Γ 以上述[化1]所示形成在放電空間的碘的準分子係 放射出峰値波長爲3 42nm的碘分子發光。成爲形成碘的 準分子12*之基礎的碘離子1 +及厂係藉由發生因準安定激 發原子的能量而使碘被電離之被稱爲潘寧效應(Penning Effect)的反應而生成。 該潘寧效應係基於氪的準安定激發原子的能量比确原 子的電離能量稍微高而發生。爲供參考’準安定激發原子· 的能量係氪爲9.9〜10.5^,碘原子的電離能量爲10·4^ 。因此,若將含有氪氣與碘氣的放電氣體封入放電容器’ 則在放電空間生成較多的碘離子1 +及Γ ’而形成多數的_ 的準分子1/。 此外’被封入在放電容器的氙Xe與碑1係以下述[化 3]所示加以結合,藉此形成氙Xe與碘1的化合物的準分 子Xel*,並且氙Xe與碘I的化合物的準分子XeI*係如下 述[化4]所示反覆進行分離的反應。201118916 VI. Description of the Invention: [Technical Field] The present invention relates to an excimer that efficiently emits ultraviolet light in the range of 30,000 to 380 nm by using a gas containing helium, iodine, and helium as a discharge medium. light. [Prior Art] In the manufacturing process of a liquid crystal display, a PSA in which a monomer is mixed into a liquid crystal at the time of constituting a pixel, and a monomer is polymerized while tilting the liquid crystal molecules to thereby fix the tilt direction of the liquid crystal molecules has been used: Polymer Sustained Alignment). According to the disclosed Patent Document 1, the light source for polymerizing the monomer is less damaged by the liquid crystal, the sensitivity of the monomer, the transmittance for liquid crystal, etc., for irradiating the single body, for example, the wavelength 3 00-3 Zijia of 80 nm (paragraph 0 2 3 7 of Patent Document 1). There are various types of ultraviolet light sources that radiate light having a wavelength of from 300 to 80 nm required for polymerizing monomers, but it is currently the most suitable stage for the light source of PSA use. For example, it is a candidate for a light source that mainly emits ultraviolet light having a wavelength of 365 nm as a discharge medium and a metal halide lamp having a metal halide as a discharge medium. However, when the mercury lamp is to be loaded with a plurality of mercury lamps to form an ultraviolet device, there is a problem that the ultraviolet irradiation device is enlarged. In addition, the wavelength of the discharge caused by the use of mercury as a discharge medium to the environment is a liquid crystal state (PSA). Therefore, considering the external light of the glass, the ultraviolet light is directed to the mercury mercury lamp M PSA line, and there is a big shortage of -5,189,189. The metal halide lamp emits lower ultraviolet light than the input power. There is a problem in terms of energy efficiency, and the adverse effects on the environment in order to use a halogenated metal as a discharge medium cannot be ignored. When an excimer lamp is to be loaded with a plurality of excimer lamps to constitute an ultraviolet irradiation device, the ultraviolet irradiation device can be made. In order to miniaturize, the output of the emitted ultraviolet light is higher than that of the input power, so the energy efficiency is better, and since a rare gas such as helium or neon is used as the discharge medium, the load on the environment is small. Practicality has great advantages, so it is hopeful to use as a light source for PSA. The use of the excimer lamp has been mainly used as a light source for modifying the surface of the object to be treated by applying vacuum ultraviolet rays to the surface of the object such as a liquid crystal substrate, but it is used for polymerization of the monomer in PSA use. The output of the ultraviolet light having a wavelength range of 3 00 to 80 nm is not sufficient [Prior Art Document] [Patent Document] [Patent Document 1] Japanese Patent Laid-Open No. 2 0 0 3 - 1 4 9 6 4 7 Disclosure of the Invention (Problems to be Solved by the Invention) Based on the above, an object of the present invention is to provide an excimer lamp which efficiently emits ultraviolet light having a wavelength range of 300 to 80 nm required for polymerizing a monomer.俾 2011 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准a discharge vessel for a discharge gas; and an excimer lamp for arranging a pair of electrodes arranged to face each other in a discharge space formed inside the discharge vessel, occurring in the discharge space: iodine The excimer 1 emits a peak near the wavelength of 342 nm, and the excimer Xe of the compound of 氙Xe and iodine I emits a peak of 0 値 wavelength of about 30 nm, and the like. The excimer lamp system includes a discharge vessel in which a discharge gas containing helium, iodine gas, and xenon gas is sealed, and a pair of nozzles that are opposed to each other by sandwiching a discharge space formed inside the discharge vessel The electrode, the concentration of the helium gas is 〇.〇5~2.〇%. The excimer lamp according to claim 3 is the excimer lamp of claim 2, wherein the concentration of the helium gas is 0·2 to 2.0%. The excimer lamp according to claim 4 is the excimer lamp of claim 1 or claim 2, wherein the total pressure of the discharge gas is 40 to 1 33 kPa (effect of the invention) by claim 1 The excimer lamp of the invention 'insulates a discharge gas containing helium, iodine gas and helium gas as a discharge medium', thereby occurring in the discharge space: the luminescence of the iodine excimer 12^ is near 342 nm, and 氙Excimer ΧεΓ of compound of Xe and iodine I Issued Zhi peak wavelength of 320nm near the both light emission 'can thus polymerizing the monomer in the PSA ultraviolet light output of the desired 3 00 ~ 3 80nm wavelength range of the way of lift 201,118,916. According to the excimer lamp of the invention of claim 2, a discharge gas containing helium, iodine gas and helium gas is sealed as a discharge medium, and the concentration of helium gas is specified to be 0.05 to 2.0%, so that the monomer can be polymerized in the PSA application. The required ultraviolet light output in the wavelength range of 300 to 3 80 nm is increased. According to the excimer lamp of the invention of claim 3, in the excimer lamp of claim 2, the concentration of the helium gas is specified to be 0.2 to 2.0%, so that it is possible to polymerize the monomer in the PSA application. The ultraviolet light output in the wavelength range of 3 00 to 3 0 0 nm is further improved. According to the excimer lamp of the invention of claim 4, in the excimer lamp of claim 1 or claim 2, the total pressure of the discharge gas is set to 40 to 133 kPa, so that the monomer can be used in the PSA application. The ultraviolet light output in the wavelength range of 300 to 38 〇 nm required for polymerization is increased. [Embodiment] Fig. 1 is a perspective view showing a schematic configuration of an excimer lamp of the present invention. Fig. 2 is a cross-sectional view taken along line A-A shown in Fig. 1. The excimer lamp 10 is provided with a dielectric material such as quartz glass, and is formed as a discharge vessel 1 having a square cross section as shown in Fig. 2 . A discharge gas mainly containing helium gas, iodine gas, and helium gas is sealed inside the discharge vessel 1. In the discharge vessel 1, the sealing member 2 is disposed in the vicinity of both ends in the longitudinal direction of the discharge vessel, and the discharge vessel 1 is welded to the sealing member 2, whereby the discharge gas is hermetically sealed so that the discharge gas does not leak to the outside. -8-201118916, the respective outer surfaces 'of the lower wall faces 3, 4 on the discharge vessel 1 are opposed to each other by sandwiching the discharge space S formed inside the discharge vessel 1 and the dielectric material constituting the discharge vessel 1. The method is provided with a pair of electrodes 5 and 6 in the form of a mesh. The electrodes 5 and 6 are formed by, for example, vapor deposition so as to form a predetermined mesh pattern. Further, inside the discharge vessel 1, an ultraviolet ray reflection film 7 containing SiO 2 as a main component 0 is formed on the wall surface 4 opposite to the wall surface 3 on the light emission direction side, and ultraviolet rays generated in the discharge space S are used. The ultraviolet ray reflection film 7 is reflected in the light emission direction, and is emitted from the wall surface 3 located on the light emission direction side. The excimer lamp having the configuration shown above supplies a high frequency of, for example, a sine wave of 1 to 20 kHz between the pair of electrodes 5 and 6, whereby a plurality of needle-like silent discharges are generated on the inner wall surface facing the discharge space S. By the silent discharge as described above, a state in which the entire discharge space S is uniformly discharged is formed. By the discharge as described above, the positive Q ion +1 and the anion r of the iodine I enclosed in the discharge vessel are as shown in the following [Chemical Formula 1], and the ruthenium atom or molecule other than the bowl contained in the discharge gas The reaction is initiated to form the excimer I/ which is picked, and the excimer 1/ of the iodine is subjected to an ionization reaction as shown in the following [Chemical Formula 2].化 + + Γ + Μ - Ι 2* + Μ 201118916 [Chemical 2] Ι 2* — Ι + + Γ The excimer emission of iodine formed in the discharge space as indicated by the above [Chemical 1] It emits light for the iodine molecule of 3 42 nm. The iodide ion 1 + which is the basis of the iodine-forming excimer 12* and the plant are generated by a reaction called a Penning effect by causing the iodine to be ionized by the energy of the quasi-stable excitation atom. The Penning effect occurs based on the quasi-stable stability of the enthalpy of the enthalpy, which occurs slightly higher than the ionization energy of the positron. For reference, the energy system of the quasi-stable excitation atom is 9.9 to 10.5^, and the ionization energy of the iodine atom is 10·4^. Therefore, when a discharge gas containing helium gas and iodine gas is sealed in the discharge vessel, a large amount of iodide ions 1 + and Γ ' are generated in the discharge space to form a large number of excimers 1 of _. Further, '氙Xe enclosed in the discharge vessel and the monument 1 are combined as shown in the following [Chemical 3], whereby the excimer Xel* of the compound of 氙Xe and iodine 1 is formed, and the compound of 氙Xe and iodine I is formed. The excimer XeI* is a reaction in which separation is repeated as shown in the following [Chemical Formula 4].

[化3] 2Xe + I2->2XeI 201118916[Chemical 3] 2Xe + I2->2XeI 201118916

2 X e I —> 2 X e +12 如上述[化3 ]所示所形成之氙Xe與碘i的化合物的準 分子Xe Γ係放射峰値波長位於3 2 0 nm附近的紫外光。 亦即’在放電空間S係同時發出:由碘的準分子l2* 0 所放射之峰値波長位於342nm附近的紫外光、由氙Xe與 碘I的化合物的準分子XeT所放射之峰値波長位於320nm 附近的紫外光。 其中,爲了形成如上所述之碘的準分子1/、氙Xe與 碘I的化合物的準分子ΧεΓ,較佳爲將1〜120kHz之正弦 波高頻施加至準分子燈而以脈衝電流使其亮燈驅動。正弦 波的頻率過高時,考慮到未形成準分子放電之所謂的休止 期間會變短,由此會沒有形成碘的準分子及氙Xe與碘 Q I的化合物的準分子XeT之時間上的餘裕,峰値波長分別 位於342nm、3 20nm附近的紫外光發光強度會降低。另一 方面,正弦波的頻率過低時,考慮到由於平均單位時間的 發光次數變少,因此峰値波長分別位於3 42nm、3 20nm附 近的紫外光發光強度會降低。 碘的準分子12 ‘係與碘離子1+、厂發生衝撞的氪Kr的 原子或分子愈多則愈易於形成。氙x e與碘1的化合物的 準分子ΧεΓ係放電氣體所含碘I、氙乂6的原子或分子較 多時即易於形成。因此’當加高被封入在準分子燈的放電 -11 - 201118916 氣體的全壓時,變得易於形成碘的準分子1/及氙Xe與碘 I的化合物的準分子XeT,使峰値波長爲3 20nm附近及 342nm附近的紫外光的發光強度提升。具體而言,以將放 電氣體的全壓設爲40~133kPa爲佳。 在此,在本發明之準分子燈中,氙Xe的濃度被規定 爲0.05〜2.0%。氙Xe的濃度係以氙氣相對放電氣體之全 壓的分壓加以表示。亦即,氙氣的濃度係藉由將氙氣的分 壓除以氪氣的分壓、碘氣的分壓及氙氣的分壓的合計所得 〇 因此,無須使由碘的準分子1/所放射之峰値波長位 於3 42 nm附近的紫外光的輸出降低,即可提高由氙Xe與 碘I的化合物的準分子XeT所放射之峰値波長位於32〇nm 附近的紫外光的輸出。因此,在PSA用途中成爲所需之 3 00-3 80nm之波長範圍的紫外光的輸出會提升,因此可充 分供給用以使單體聚合所需的光能量。 以下針對爲了決定封入至本發明之準分子燈的放電氣 體所含氙氣的濃度所進行的實驗1至3加以說明。在實驗 1至3中,係使用分別按照以下實施例1至3所示規格所 製作出之第1及2圖所示構成之準分子燈。 [實施例1 ] 實驗1係使用以氙氣的濃度爲彼此不同的方式以下列 規格所製作的複數準分子燈。 •放電容器係具備有剖面呈方形狀的角筒形狀,全長 -12 - 201118916 2 0 0mm、寬幅32mm、高度14mm、放電間隙10mm、玻 璃的厚度2mm。 •電極係藉由將金進行網版印刷而形成,全長13〇mm、 寬幅32mm、厚度5μηι。 .放電氣體係含有氪氣、碘氣及氙氣,全壓爲12〇kPa。 •碘氣的濃度共通爲〇 . 1 1 %。 .氙氣的濃度在〇〜5 %的範圍內彼此不同。 •亮燈頻率爲7〇kHz。 (實驗1 ) 實驗1係使實施例1之各準分子燈分別亮燈而針對各 準分子燈調查出3 00- 3 5 0nm之波長範圍之紫外光之發光頻 譜的形狀變化。 第3圖係顯示將放電氣體所含氙Xe的濃度在〇〜5 %的 範圍內作各種變更時之準分子燈的發光頻譜。在第3圖中 〇 ,縱軸爲將Xe濃度1°/。時之波長342nm之紫外光的發光 強度設爲1時的發光強度的規格値,橫軸爲波長(nm )。 如第3圖所示,在放電氣體未含有氙Xe時(Xe : 〇% ),由氙X e與碘I的化合物的準分子X e Γ所放射之峰値 波長位於320nm附近之紫外光的發光強度較低,另一方 面,在放電氣體過剩含有氙Xe時(Xe: 5%),由碘的準 分子1/所放射之峰値波長爲342nm附近之紫外光的發光 強度會降低。 相對於此,如第3圖所示,當氙Xe的濃度爲 -13- 201118916 0.0 5 ~ 2 . 〇 %時,由碘準分子12 所放射之峰値波長爲3 4 2 n m 附近的紫外光的發光強度較高,可提高由氙Xe與碘I的 化合物的準分子x e广所放射之峰値波長位於3 2 0 n m附近 的紫外光的發光強度。 尤其,當氙Xe的濃度爲0.2〜2.0%時,可提高由氙 Xe與碘I的化合物的準分子Xe:T、碘準分子1/分別所放 射之峰値波長位於320nm、3 42nm附近之紫外光的發光強 度。 [實施例2] 實驗2係使用按每個放電氣體所含碘氣的各濃度,以 氙氣的濃度爲彼此不同的方式以下列規格所製作的複數準 分子燈。 .放電容器具備有剖面呈方形狀的角筒形狀,全長 125mm、寬幅32mm、高度14mm、放電間隙l〇mm、玻 璃的厚度2mm。 .電極係藉由將金進行網版印刷所形成,全長1 30mm、 寬幅32mm、厚度5μηι。 .放電氣體係含有氪氣、碘氣及氙氣,全壓爲120kPa。 .碘氣的濃度分別爲〇 . 〇 4 %、0.1 1 %、0 · 9 1 %。 .氙氣的濃度在〇.〇5〜5 %的範圍內彼此不同。 .亮燈頻率爲7〇kHz。 (實驗2 ) -14- 201118916 實驗2係使各準分子燈亮燈而測定出3 00-3 5 Onm之波 長範圍之紫外光的積算照度。在實驗2中,係針對碘的濃 度對氙Xe的最適濃度所造成的影響加以調查。 第4圖係顯示按每個碘的各濃度,將放電氣體所含氙 Xe的濃度在0.05~5%的範圍內作各種變更時之3 00-3 50nm 之波長範圍之紫外光的積算照度。在第4圖中,縱軸爲將 h濃度0.11%且Xe濃度1%時之波長342nm之紫外光的發 0 光強度設爲1時的規格値,橫軸爲氙Xe的濃度。縱軸的 積算照度爲將氙Xe的濃度爲1%時之3 00-3 50nm之波長 範圍之紫外光的積算照度設爲1時的規格値。 如第4圖所示,確認出:無關於碘I的濃度,當放電 氣體所含氙Xe的濃度爲5.0%時,3 00-3 5 Onm之波長範圍 之紫外光的積算照度較低,相對於此,放電氣體所含氙 Xe的濃度爲0.〇5〜2%時,3 00-3 5 Onm之波長範圍之紫外光 的積算照度較高。 Q 此外,由第4圖所示結果確認出:當放電氣體所含氙2 X e I —> 2 X e +12 The quasi-molecular Xe of the compound of 氙Xe and iodine i formed as shown in the above [Chemical Formula 3] is ultraviolet light having a radiant peak wavelength of around 320 nm. That is, 'the simultaneous emission in the S space of the discharge space: the ultraviolet light emitted by the excimer l2* 0 of iodine, the ultraviolet light near the wavelength of 342 nm, and the peak wavelength of the excimer XeT of the compound of Xe and Iodine I Ultraviolet light located near 320nm. Wherein, in order to form the excimer ΧεΓ of the compound of excimer 1/, 氙Xe and iodine I as described above, it is preferred to apply a sine wave of 1 to 120 kHz to the excimer lamp at a high frequency to cause a pulse current Lighted drive. When the frequency of the sine wave is too high, the so-called rest period in which the excimer discharge is not formed is shortened, whereby there is no margin in time for the excimer of iodine and the excimer XeT of the compound of 氙Xe and iodine QI. The intensity of ultraviolet light at a peak-to-peak wavelength of 342 nm and 3 20 nm, respectively, is lowered. On the other hand, when the frequency of the sine wave is too low, since the number of times of light emission per unit time is small, the intensity of ultraviolet light near the peak wavelengths of 3 42 nm and 3 20 nm is lowered. The more excimer 12 of iodine is the more atoms or molecules of 氪Kr that collide with iodide ion 1+ and the plant, the easier it is to form. When the excimer ΧεΓ-based discharge gas of the compound of 氙x e and iodine 1 contains a large amount of atoms or molecules of iodine I or 氙乂6, it is easy to form. Therefore, when the elevation is sealed in the total pressure of the discharge of the excimer lamp -11 - 201118916, it becomes easy to form the excimer 1/ and the excimer XeT of the compound of 氙Xe and iodine I, so that the peak wavelength The luminescence intensity of ultraviolet light near 3 20 nm and around 342 nm is improved. Specifically, it is preferable to set the total pressure of the discharge gas to 40 to 133 kPa. Here, in the excimer lamp of the present invention, the concentration of 氙Xe is specified to be 0.05 to 2.0%. The concentration of 氙Xe is expressed by the partial pressure of helium relative to the total pressure of the discharge gas. That is, the concentration of helium is obtained by dividing the partial pressure of helium by the partial pressure of helium, the partial pressure of iodine gas, and the partial pressure of helium. Therefore, it is not necessary to excite the excimer 1 of iodine. The output of ultraviolet light having a peak-to-peak wavelength of around 3 42 nm is lowered, and the output of ultraviolet light having a peak wavelength of xenon emitted by the excimer XeT of the compound of 氙Xe and iodine I is increased by 32 〇 nm. Therefore, the output of ultraviolet light in the wavelength range of 300 to 80 nm which is required in the PSA application is increased, so that the light energy required for polymerizing the monomer can be sufficiently supplied. Hereinafter, Experiments 1 to 3 for determining the concentration of helium contained in the discharge gas enclosed in the excimer lamp of the present invention will be described. In Experiments 1 to 3, excimer lamps each having the first and second drawings produced in accordance with the specifications shown in the following Examples 1 to 3 were used. [Example 1] Experiment 1 used a plurality of excimer lamps produced in the following specifications in such a manner that the concentrations of helium gas were different from each other. • The discharge vessel has a square tube shape with a square cross section, and has a total length of -12 - 201118916 2 0 0mm, a width of 32mm, a height of 14mm, a discharge gap of 10mm, and a glass thickness of 2mm. • The electrode is formed by screen printing gold, and has a total length of 13 mm, a width of 32 mm, and a thickness of 5 μm. The discharge gas system contains helium, iodine and helium, and the total pressure is 12 kPa. • The concentration of iodine gas is 〇. 1 1 %. The concentration of xenon differs from each other within a range of 〇~5 %. • The lighting frequency is 7 〇 kHz. (Experiment 1) In Experiment 1, each of the excimer lamps of Example 1 was separately lit, and the shape change of the illuminating spectrum of the ultraviolet light in the wavelength range of 300 to 350 nm was investigated for each excimer lamp. Fig. 3 is a view showing an emission spectrum of an excimer lamp in which the concentration of 氙Xe contained in the discharge gas is varied in the range of 〇~5 %. In Fig. 3, 纵 , the vertical axis is the concentration of Xe 1 ° /. The illuminating intensity of the ultraviolet light having a wavelength of 342 nm is set to the illuminance intensity 1, and the horizontal axis is the wavelength (nm). As shown in Fig. 3, when the discharge gas does not contain 氙Xe (Xe: 〇%), the excimer X e Γ of the compound of 氙X e and iodine I emits ultraviolet light having a peak wavelength of around 320 nm. On the other hand, when the discharge gas contains 氙Xe excessively (Xe: 5%), the luminescence intensity of the ultraviolet light near the peak wavelength of the iodine excimer 1/radiation of 342 nm is lowered. On the other hand, as shown in Fig. 3, when the concentration of 氙Xe is -13 - 201118916 0.0 5 ~ 2 〇%, the ultraviolet ray near the peak wavelength of 314 X nm emitted by the iodine excimer 12 The luminescence intensity is high, and the luminescence intensity of ultraviolet light having a peak wavelength 放射 emitted by the excimer xe of the compound of 氙Xe and iodine I is increased at around 320 nm. In particular, when the concentration of 氙Xe is 0.2 to 2.0%, the excimer Xe:T of the compound of 氙Xe and iodine I, and the peak wavelength of the iodine excimer 1 are respectively located at 320 nm and 3 42 nm. The luminous intensity of ultraviolet light. [Example 2] Experiment 2 used a plurality of pseudo-molecular lamps produced in the following specifications in such a manner that the respective concentrations of the iodine gas contained in each of the discharge gases were different from each other. The discharge vessel has a rectangular tube shape having a square cross section, and has a total length of 125 mm, a width of 32 mm, a height of 14 mm, a discharge gap of 10 mm, and a glass thickness of 2 mm. The electrode is formed by screen printing gold, and has a total length of 1 30 mm, a width of 32 mm, and a thickness of 5 μm. The discharge gas system contains helium, iodine and helium, and the total pressure is 120 kPa. The concentration of iodine gas is 〇 % 4 %, 0.1 1 %, 0 · 9 1 %. The concentration of helium varies from one another in the range of 〜.〇5 to 5%. The lighting frequency is 7 〇 kHz. (Experiment 2) -14- 201118916 Experiment 2 was to measure the integrated illuminance of ultraviolet light in the wavelength range of 300- 5 5 Onm by lighting each of the excimer lamps. In Experiment 2, the effect of the concentration of iodine on the optimum concentration of 氙Xe was investigated. Fig. 4 is a view showing the integrated illuminance of ultraviolet light in the wavelength range of 300 to 50 nm when the concentration of 氙Xe contained in the discharge gas is varied in the range of 0.05 to 5% for each concentration of iodine. In Fig. 4, the vertical axis represents the specification 値 when the light intensity of the ultraviolet light having a wavelength of 342 nm when the concentration of h is 0.11% and the concentration of Xe is 1% is 1, and the horizontal axis represents the concentration of 氙Xe. The integrated illuminance on the vertical axis is the specification when the integrated illuminance of the ultraviolet light in the wavelength range of 300 to 50 nm when the concentration of 氙Xe is 1% is 1. As shown in Fig. 4, it is confirmed that, regardless of the concentration of iodine I, when the concentration of 氙Xe contained in the discharge gas is 5.0%, the integrated illuminance of ultraviolet light in the wavelength range of 300-3 5 Onm is relatively low, as opposed to Here, when the concentration of 氙Xe contained in the discharge gas is 0. 〇 5 to 2%, the integrated illuminance of the ultraviolet light in the wavelength range of 300 - 5 5 Onm is high. Q In addition, it is confirmed from the results shown in Fig. 4 that when the discharge gas contains 氙

Xe的濃度爲0.2〜2%時,無關於碘I的濃度,3 00-3 50nm 之波長範圍之紫外光的積算照度會特別高。 [實施例3] 實驗3係使用按每個放電氣體的各全壓,以氙氣的濃 度爲彼此不同的方式以下列規格所製作的複數準分子燈。 •放電容器具備有剖面呈方形狀的角筒形狀,全長 1 2 5 m m、寬幅3 2 m m、高度1 4 m m、放電間隙1 0 m m、玻 -15- 201118916 璃的厚度2mm。 •電極係藉由將金進行網版印刷所形成,全長丨3 〇mm、 寬幅32mm、厚度5μιη。 •放電氣體係含有氪氣、碘氣及氙氣,全壓爲93、 1 20kPa ° •碘氣的濃度共通爲0.1 1 %。 .氙氣的濃度在0 . ο 1〜5 %的範圍內彼此不同。 •亮燈頻率爲70kHz。 (實驗3 ) 實驗3係使各準分子燈亮燈而測定出3〇〇_35〇nm之波 長範圍之紫外光的積算照度。在實驗3中,係針對放電氣 體的全壓對氙Xe的最適濃度所造成的影響加以調查。 第5圖係顯示按每個放電氣體的各全壓,將放電氣體 所含氙X e的濃度在 〇 · 0 1〜5 %的範圍內作各種變更時之 3 00-3 5 Onm之波長範圍之紫外光的積算照度。在第5圖中 ,縱軸爲將全壓120kPa、Xe濃度1%時之3 00-3 50nm之 波長範圍之紫外光的積算照度設爲1時的規格値,橫軸爲 氙的濃度。 如第5圖所示,確認出:無關於放電氣體的全壓,若 放電氣體所含氙Xe的濃度爲0.01%及5%時,3 00-3 50nm 之波長範圍之紫外光的積算照度較低,相對於此,若放電 氣體所含氙Xe的濃度爲〇·〇5〜2%時’ 3 00-3 50nm之波長 範圍之紫外光的積算照度則較高。 -16- 201118916 體所含氙 壓,300- 子燈中, 2 %的範圍 濃度及放 之紫外光 此外,由第5圖所示結果確認出,若放電負 Xe的濃度爲0.2〜2%時,無關於放電氣體的名 3 5 Onm之波長範圍之紫外光的積算照度特別高。 根據以上實驗結果確認出:在本發明之準夕 藉由將放電氣體所含氙Xe的濃度規定在0.05-內、尤佳爲0.2〜2%的範圍內,則無關於碘I & 電氣體的全壓’可提局 300-350nm之波長範虐 ^ 的發光強度。 【圖式簡單說明】 的管軸方 第1圖係顯示本發明之準分子燈之槪略構反 向剖面圖。 第2圖係第1圖所不之A - A線剖面圖。 第3圖係顯示實驗1之結果的曲線圖。 第4圖係顯示實驗2之結果的曲線圖。 Q 第5圖係顯示實驗3之結果的曲線圖。 【主要元件符號說明】 1 :放電容器 2 :密封構件 3、4 :壁面 5、6 :電極 7 :紫外線反射膜 1 0 :準分子燈 -17-When the concentration of Xe is 0.2 to 2%, the concentration of iodine I is not related, and the integrated illuminance of ultraviolet light in the wavelength range of 300 to 50 nm is particularly high. [Example 3] Experiment 3 used a plurality of excimer lamps produced in the following specifications in such a manner that the respective concentrations of helium gas were different from each other. • The discharge vessel has a square tube shape with a square cross section, with a total length of 1 2 5 m m, a width of 3 2 m m, a height of 14 m m, a discharge gap of 10 m, and a thickness of 2 mm of glass -15-201118916. • The electrode is formed by screen printing gold, with a total length of 〇3 〇mm, a width of 32 mm, and a thickness of 5 μm. • The discharge gas system contains helium, iodine and helium. The total pressure is 93, 1 20 kPa ° • The concentration of iodine gas is 0.11%. The concentration of radon is different from each other in the range of 0. ο 1 to 5 %. • The lighting frequency is 70 kHz. (Experiment 3) In Experiment 3, each excimer lamp was turned on to measure the integrated illuminance of ultraviolet light in the wavelength range of 3 〇〇 _ 35 〇 nm. In Experiment 3, the effect of the total pressure of the discharge gas on the optimum concentration of 氙Xe was investigated. Fig. 5 is a graph showing the wavelength range of 3 00-3 5 Onm when the concentration of 氙X e contained in the discharge gas is varied in the range of 〇·0 1 to 5 % for each full pressure of each discharge gas. The integrated illuminance of the ultraviolet light. In Fig. 5, the vertical axis represents the specification 値 when the integrated illuminance of the ultraviolet light in the wavelength range of 300 to 50 nm when the total pressure is 120 kPa and the Xe concentration is 1% is 1, and the horizontal axis represents the concentration of erbium. As shown in Fig. 5, it is confirmed that there is no total pressure of the discharge gas. If the concentration of 氙Xe contained in the discharge gas is 0.01% and 5%, the integrated illuminance of the ultraviolet light in the wavelength range of 300 to 50 nm is compared. In contrast, when the concentration of 氙Xe contained in the discharge gas is 〜·〇 5 to 2%, the integrated illuminance of ultraviolet light in the wavelength range of 3 00 to 3 50 nm is high. -16- 201118916 The pressure contained in the body, the concentration of 2% in the 300-sub lamp, and the ultraviolet light. In addition, it is confirmed from the results shown in Fig. 5 that if the concentration of negative Xe is 0.2 to 2% The integrated illuminance of the ultraviolet light in the wavelength range of the name of the 5 5 Onm of the discharge gas is particularly high. According to the above experimental results, it is confirmed that the concentration of 氙Xe contained in the discharge gas is set within the range of 0.05%, particularly preferably 0.2% to 2%, on the basis of the present invention, and no iodine I & The full pressure 'can mention the luminous intensity of the wavelength of 300-350nm. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing the excimer lamp of the present invention. Fig. 2 is a cross-sectional view taken along line A-A of Fig. 1. Figure 3 is a graph showing the results of Experiment 1. Figure 4 is a graph showing the results of Experiment 2. Q Figure 5 is a graph showing the results of Experiment 3. [Explanation of main component symbols] 1 : discharge vessel 2 : sealing member 3, 4 : wall surface 5, 6 : electrode 7 : ultraviolet reflection film 1 0 : excimer lamp -17-

Claims (1)

201118916 七、申請專利範圍: 1. 一種準分子燈,係具備有:被封入有含有氪氣、碘 氣及氙氣之放電氣體的放電容器;及以夾持被形成於前述 放電容器內部的放電空間而相對向的方式作配置的一對電 極的準分子燈,其特徵爲: 在前述放電空間發生:碘的準分子I 2 Φ所發出之峰値 波長爲3 42nm附近的發光、及氙Xe與碘I的化合物的準 分子ΧεΓ所發出之峰値波長爲3 20nm附近的發光等雙方 〇 2 —種準分子燈’係具備有:被封入有含有氣氣、碗 氣及氙氣之放電氣體的放電容器;及以夾持被形成於前述 放電容器內部的放電空間而相對向的方式作配置的一對電 極的準分子燈,其特徵爲: 前述氙氣的濃度爲0.05〜2.0%。 3 _如申請專利範圍第2項之準分子燈,其中,前述氙 氣的濃度爲0.2〜2.0%。 4 ·如申請專利範圍第1項或第2項之準分子燈,其中 ,前述放電氣體的全壓爲40~133kPa。 -18-201118916 VII. Patent application scope: 1. An excimer lamp, which is provided with a discharge vessel sealed with a discharge gas containing helium, iodine gas and xenon gas; and a discharge space formed by clamping inside the discharge vessel The excimer lamp of the pair of electrodes arranged in a relative manner is characterized in that: in the discharge space, the peak of the iodine excimer I 2 Φ emits light at a peak wavelength of around 3 42 nm, and 氙Xe and The excimer ΧεΓ of the compound of iodine I emits a peak wavelength of about 30 nm, and the like, and the like, the excipient lamp is provided with a discharge gas containing a gas, a gas, and a helium gas. a container; and an excimer lamp for arranging a pair of electrodes arranged to face each other in a discharge space formed inside the discharge vessel, wherein the concentration of the helium gas is 0.05 to 2.0%. 3 _ The excimer lamp of claim 2, wherein the concentration of the helium gas is 0.2 to 2.0%. 4. The excimer lamp of claim 1 or 2, wherein the total discharge pressure of the discharge gas is 40 to 133 kPa. -18-
TW099100699A 2009-03-16 2010-01-12 Excimer lamp TWI449082B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009062664A JP5304354B2 (en) 2009-03-16 2009-03-16 Excimer lamp

Publications (2)

Publication Number Publication Date
TW201118916A true TW201118916A (en) 2011-06-01
TWI449082B TWI449082B (en) 2014-08-11

Family

ID=42744144

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099100699A TWI449082B (en) 2009-03-16 2010-01-12 Excimer lamp

Country Status (4)

Country Link
JP (1) JP5304354B2 (en)
KR (1) KR101374022B1 (en)
CN (1) CN101840839B (en)
TW (1) TWI449082B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797253A (en) * 2019-10-30 2020-02-14 深圳市嘉光科技有限公司 Rectangular excimer lamp capable of emitting uniform parallel light from two sides

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031436A (en) * 1988-10-04 1991-01-08 Minoru Obara High efficiency excimer discharge lamp
EP0521553B1 (en) * 1991-07-01 1996-04-24 Koninklijke Philips Electronics N.V. High-pressure glow discharge lamp
JPH0794150A (en) * 1993-07-30 1995-04-07 Toshiba Lighting & Technol Corp Rare gas discharge lamp and display device using the lamp
CA2224699A1 (en) * 1997-12-12 1999-06-12 Resonance Ltd. Hollow electrode electrodeless lamp
TW200501194A (en) * 2003-05-19 2005-01-01 Ushio Electric Inc Excimer lamp lighting device
JP4013923B2 (en) * 2003-09-04 2007-11-28 ウシオ電機株式会社 Excimer lamp
EP1815498A2 (en) * 2004-11-19 2007-08-08 Koninklijke Philips Electronics N.V. Rapid re-strike ceramic discharge metal halide lamp
JP2006302720A (en) * 2005-04-22 2006-11-02 Hoya Candeo Optronics株式会社 Excimer lamp
JP5019156B2 (en) * 2006-08-21 2012-09-05 ウシオ電機株式会社 Excimer lamp device

Also Published As

Publication number Publication date
JP2010218804A (en) 2010-09-30
TWI449082B (en) 2014-08-11
KR101374022B1 (en) 2014-03-12
CN101840839B (en) 2014-09-17
KR20100105362A (en) 2010-09-29
JP5304354B2 (en) 2013-10-02
CN101840839A (en) 2010-09-22

Similar Documents

Publication Publication Date Title
US20160339138A1 (en) Ultraviolet irradiation apparatus
JP2011053399A (en) Method for producing liquid crystal panel, and production device therefor
KR101217329B1 (en) Method for manufacturing a double tube type fluorescent lamp and the same
TW201123261A (en) Ultraviolet lamp and ultraviolet irradiating device
JP2011150168A (en) Device of manufacturing liquid crystal panel
JP4930542B2 (en) Manufacturing method of liquid crystal panel
TW201118916A (en) Excimer lamp
JP2001185089A (en) Excimer irradiation device
JP2008052916A (en) Ultraviolet ray applicator
JP5293430B2 (en) Excimer lamp
JP2005222905A (en) Excimer lamp
JP5239954B2 (en) lamp
US20020067130A1 (en) Flat-panel, large-area, dielectric barrier discharge-driven V(UV) light source
JP5556489B2 (en) Liquid crystal panel manufacturing apparatus and manufacturing method
KR101399225B1 (en) Discharge lamp
JPH07288109A (en) Xenon radiation device and object surface quality improving device using it
Wang et al. Optimization of Xenon Gas Discharge Flat Panel Lamps
JP2004267951A (en) Cleaning device and cleaning method
JP2003223868A5 (en)
JP4528969B2 (en) Ultraviolet beam generator and phosphor characteristic evaluation system
JP2002015705A (en) Discharge luminous element
RU2120152C1 (en) Gas-discharge tube
JP2003257378A5 (en)
JP2011150791A (en) Driving method of dielectric barrier discharge lamp
JP2006032242A (en) Two-dimensional array dielectric barrier discharge device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees