TW201118161A - Method for operating a coke oven arrangement - Google Patents

Method for operating a coke oven arrangement Download PDF

Info

Publication number
TW201118161A
TW201118161A TW099132072A TW99132072A TW201118161A TW 201118161 A TW201118161 A TW 201118161A TW 099132072 A TW099132072 A TW 099132072A TW 99132072 A TW99132072 A TW 99132072A TW 201118161 A TW201118161 A TW 201118161A
Authority
TW
Taiwan
Prior art keywords
gas
coke oven
fuel
synthesis gas
produced
Prior art date
Application number
TW099132072A
Other languages
Chinese (zh)
Inventor
Johannes Menzel
Original Assignee
Uhde Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uhde Gmbh filed Critical Uhde Gmbh
Publication of TW201118161A publication Critical patent/TW201118161A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B21/00Heating of coke ovens with combustible gases
    • C10B21/02Heating of coke ovens with combustible gases with lean gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1618Modification of synthesis gas composition, e.g. to meet some criteria
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/165Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Industrial Gases (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

The invention pertains to a method for operating a coke furnace arrangement, wherein the coke oven gas accumulated during the coking process is utilized as a working gas. According to the invention, a synthesis gas produced from fossil fuel, preferably coal, by means of a gasification process is supplied as fuel gas in order to provide at least part of the thermal energy required for the coking process.

Description

201118161 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種用於操作煉焦爐裝置之方法,其中在 煉焦製程期間所積累的煉焦爐氣係用作工作氣體。 【先前技術】 , s實際應用巾,在;t束焦製程期間所積累的煉焦爐氣通常 被燃燒且因此僅在能量上加以應用,但是煉焦爐氣含有大 量有價值的組份,氫氣及甲烧。此應用發展滞後的主要原 因係煉焦爐氣不再作為加熱氣體且缺少的加熱能量須另外 提供。 DE 34 244 24 A1揭示-種方法,其中在煉焦製程期間所 積累的煉焦爐氣係以工作氣體之形式被使用。在此情況 中’提取氫氣並調整適當的h2_c〇比率以隨後藉由曱烷化 產生合成天然氣。由於在此使用期間煉焦爐氣不再用於產 生煉焦製程所需的熱能,故建議使用高爐氣或甲烧作為在 煉…、爐、、且之爐f下方燃燒的替代氣體。若有鋼鐵廠或煤礦 f鄰煉焦爐設備,則可以考慮使用高爐氣或甲烧且證實此 f善代氣體之使用是經濟的。如上所述,由於此等要求在 實IV、應用中鮮少被滿足,故煉焦爐氣通常僅用於加熱之目 的。 y攸Μ 35 1 5 250 A1及DE 38 05 387 A1中得知利用煉焦 爐=的其他方法。在此等方法中,各自建議將具有高氮氣 3里的煉焦爐氣與具有高一氧化石炭含量的高爐氣混合。已 方法要求可彳在開始時須繁複地清潔的足夠數量之高 150377.doc 201118161 爐氣。 【發明内容】 本發明係基於實現在操作煉焦爐裝置期間所積累的煉焦 爐氣之靈活及局效使用之目標。 … 此目標係財發明之目的達成,即—種用於操作且有上 述特性之煉焦爐裝置之方法,其中該方法之特點為藉由氣 化製程而從化石燃料中產生的合成氣體係供應為燃料氣以 提供煉焦製程所需之熱能之至少部分。由於使用化石燃料 產生合成氣體,故達成操作煉焦爐裝置之方法之高卢靈舌 性。雖然購買化石燃料及執行氣化製程以產生合^體係 -額外投資及製程成本相關聯’但是由於回收煉焦爐氣中 所3的有饧值組份,故達成經濟的優點。特定言之,若將 煤炭用作化石燃料’因為煤炭與適用於執行氣化製程的其 他化石燃料(例如天然氣)相比較便宜且無論如何是現成可 用於執行練焦製程,則此…此,本發明二= 於其他生產場所(諸如煤礦或高爐)而使用。然而,若附近 有高爐設備’%亦可能熱利用高爐中所產生的合成氣體的 另一部分。 【實施方式】 根據本發明,建議提取煉焦製程期間在煉焦爐氣中所積 累的孔體組分’諸如氫氣及/或甲烷並將此等氣體組分用 作終端產品或將氣體組分轉化為具有更高價值的產品,其 :用於煉焦製程及(亦可能)高爐製程的能量的缺少量係用 藉由氣化而從化石燃料中產生的合成氣體取代。在將所產 150377.doc 201118161 ^粗合成氣體用作燃料氣以提供煉焦製程所需之熱能之 部分’尤其用於在煉焦爐組之爐E下方燃燒前,通常僅須 將其去硫。作為燃料氣的合成氣體無需(尤其是)亦包含移 除二氧化碳之繁複加工。 ( 根據本’X明’ k化石燃料中所產生的合成氣體可專門用 乍:L、料氣以產生熱能。然而根據本發明之一較佳實施例, 所產生的合成氣體的數量超過根據本發明替代所使用之練 焦爐氣所需的數量。舉例而言,可能將所產生的合成氣體 之第崢刀作為燃料氣並將所產生的合成氣體之另一部分 用於額外轉化及隨後利用。 在本發明方法中’開始時將諸如焦油、萘、芳香烴 (BTX組份)、硫及氨從與最先進技術中已知的習知煉焦製 程類似的煉焦製程期間所積累的煉焦爐氣中移除。根據本 餐明之-較佳實施例’將因此經清潔的煉焦爐氣壓縮以提 取氫氣及/或烴。舉例而言,& 了提取氫氣,可能在一psA 系統中執行變壓吸附(PSA),其中在pSA系统的加壓側提 取高純度形式的氫氣。可在一習知pSA系統或一真空psA 系統(VPAS系統)中執行變壓吸附。 ' 纟PSA系統的輕賴得富含甲炫的氣體並將其與其餘 、 氣體組分尤其是一氧化碳(CO)、二氧化碳(c〇2)、氮氣、 乙块及殘留氫氣分開。舉例而言,可藉由低溫蒸顧實現氮 氣、氧化碳及殘留氫氣的移除,其中須先使用適當方 法,諸如,例如胺洗滌及/或分子篩乾燥移除二氧化碳及 水洛氣。如此回收作為工作氣體的烴組份可供應至天然氣 I50377.doc 201118161 網路及/或保留用於另一合成。 . 如上所述,從煉焦氣中回收的氣體組分可用作終端產品 或轉化為具有更高價值的產&,其中在化石燃料氣化期= 所產生之合成氣體之一部分亦可用於另—合成及轉化。下 文描述有利的視需要的應用。 所提取的氫氣通常可用作鄰近的化學廠諸如舉例而言精 煉廠之氫化氮氣。根據一較佳實施例,建議對所產生的氫 氣及由於化石燃料氣化而產生之合成氣體之一部分進行— 額外轉化,其中該氫氣係與該合成氣體中的一氧化碳的— 部分轉化成具有更高價值的產品。舉例而言,可進行甲醇 的合成以及藉由MTG方法(甲醇至汽油)進行進一步的燃料 生產、根據Fischer-Tropsch方法進行柴油合成或甚至氨的 合成。201118161 VI. Description of the Invention: [Technical Field] The present invention relates to a method for operating a coke oven apparatus in which a coke oven gas system accumulated during a coking process is used as a working gas. [Prior Art], s practical application towel, the coke oven gas accumulated during the t beam coke process is usually burned and therefore applied only in energy, but the coke oven gas contains a lot of valuable components, hydrogen and burn. The main reason for the lag in the development of this application is that the coke oven gas is no longer used as a heating gas and the lack of heating energy has to be provided separately. DE 34 244 24 A1 discloses a process in which the coke oven gas accumulated during the coking process is used in the form of a working gas. In this case, 'hydrogen is extracted and the appropriate h2_c〇 ratio is adjusted to subsequently produce synthetic natural gas by decaneization. Since coke oven gas is no longer used to generate the heat energy required for the coking process during this use, it is recommended to use blast furnace gas or methane as an alternative gas to be burned under the furnace, furnace, and furnace f. If there is a steel plant or coal mine f-coking furnace equipment, you can consider using blast furnace gas or smoldering and confirm that the use of this f-generation gas is economical. As noted above, coke oven gas is typically only used for heating purposes as these requirements are rarely met in real IV applications. Other methods using coke oven = are known from y 攸Μ 35 1 5 250 A1 and DE 38 05 387 A1. In these processes, it is proposed to mix a coke oven gas having a high nitrogen gas 3 with a blast furnace gas having a high carbon monoxide gas content. The method has been required to be able to clean up a sufficient amount of high temperature at the beginning of the 150377.doc 201118161 furnace gas. SUMMARY OF THE INVENTION The present invention is based on the goal of achieving flexible and efficient use of coke oven gas accumulated during operation of a coke oven unit. This object is achieved by the object of the invention, that is, a method for operating a coke oven device having the above characteristics, wherein the method is characterized in that a synthesis gas system produced from fossil fuel by a gasification process is supplied as The fuel gas provides at least a portion of the thermal energy required for the coking process. Since the synthesis gas is produced using fossil fuel, the Gaolu Ling tongue of the method of operating the coke oven device is achieved. Although the purchase of fossil fuels and the implementation of gasification processes to produce a combined system - additional investment and process costs are associated with 'but there is a depreciating component of the coke oven gas 3 to achieve economic advantages. In particular, if coal is used as a fossil fuel, 'because coal is cheaper than other fossil fuels (such as natural gas) that are suitable for performing gasification processes and anyway is readily available to perform the coke process, then this... Invention 2 = Use in other production sites such as coal mines or blast furnaces. However, if there is a blast furnace equipment nearby, it is also possible to thermally utilize another part of the synthesis gas produced in the blast furnace. [Embodiment] According to the present invention, it is proposed to extract a pore component such as hydrogen and/or methane accumulated in a coke oven gas during a coking process and use these gas components as end products or convert gas components into A product of higher value: the lack of energy for the coking process and (and possibly) the blast furnace process is replaced by a synthesis gas produced from fossil fuel by gasification. The portion of the heat produced by the use of the crude synthesis gas used to provide the coking process is particularly useful for desulfurization prior to combustion under furnace E of the coke oven group. The synthesis gas as a fuel gas does not need to (especially) contain complicated processing for removing carbon dioxide. (The synthesis gas produced in the 'X Ming' k fossil fuel can be specifically used for: L, feed gas to generate thermal energy. However, according to a preferred embodiment of the present invention, the amount of synthesis gas produced exceeds The invention replaces the amount of coke oven gas required for use. For example, the first knives of the produced synthesis gas may be used as fuel gas and another portion of the produced synthesis gas may be used for additional conversion and subsequent utilization. In the process of the invention, 'starting with coke oven gas accumulated during coking processes such as tar, naphthalene, aromatic hydrocarbons (BTX components), sulfur and ammonia from conventional coking processes known in the most advanced technology. Removal. The cleaned coke oven gas is thus compressed according to the preferred embodiment of the present invention to extract hydrogen and/or hydrocarbons. For example, & extracting hydrogen, it is possible to perform pressure swing adsorption in a psA system (PSA), in which high purity form of hydrogen is extracted on the pressurized side of the pSA system. Pressure swing adsorption can be performed in a conventional pSA system or a vacuum psA system (VPAS system). ' 纟 PSA system is lightly rich Containing a gas containing methyl sulphide and separating it from the rest, gas components, especially carbon monoxide (CO), carbon dioxide (c〇2), nitrogen, block B, and residual hydrogen. For example, nitrogen can be achieved by low-temperature distillation. Removal of carbon oxides and residual hydrogen, wherein carbon dioxide and water gas must be removed by a suitable method such as, for example, amine washing and/or molecular sieve drying. The hydrocarbon component recovered as a working gas can be supplied to natural gas I50377.doc 201118161 Network and / or reserved for another synthesis. As mentioned above, the gas components recovered from coking gas can be used as end products or converted to higher value production &, where fossil fuel gasification Period = part of the synthesis gas produced can also be used for further synthesis and conversion. The advantageous applications as described below are described below. The extracted hydrogen is typically used as a hydrogenated nitrogen gas in an adjacent chemical plant such as, for example, a refinery. In a preferred embodiment, it is proposed to perform an additional conversion on the generated hydrogen and a portion of the synthesis gas produced by the gasification of the fossil fuel, wherein the hydrogen system Partial conversion with carbon monoxide in the synthesis gas to a higher value product. For example, methanol synthesis and further fuel production by the MTG process (methanol to gasoline) can be carried out according to the Fischer-Tropsch method. Synthesis of diesel or even ammonia.

若將所提取的氫氣及從化石燃料中獲得且實質含有一氧 化碳的合成氣體m合成,料㈣地藉由相應之流 入控制而在寬範圍内自由調整特定氫氣/一氧化碳比例。L 特疋S之,為了額外地提高整個方法的氣體產率,可能 對所產生的合成氣體的—部分進行c◦轉化。為達此目b 的,可添加水蒸氣進行C0轉化,其中在經轉化的合成氣 體脫硫後至少部分移除二氧化碳,其中接著對剩餘氣流進 行變麗吸附以移除氫氣,且其中耗盡氫氣且在此製程期間 積累的廢氣係用作煉焦製程的燃料氣。此進行熱利用的廢 氣通常代表提供熱能所需的總燃料氣之—部分。 亦可將從化石燃料中獲得的合成氣體結合一種組合氣體 150377.doc 201118161 及'蒸汽渦輪機設備(GUD製程)用於發電。 根據本發明’藉由燃料氣形式之合成氣體提供鍊焦製程 所,的熱能之-部分’該燃料氣形式之合成氣體係藉由氣 ^程,較佳藉由煤炭氣化而從化石燃料中獲得。剩餘氣 :及在隨後各種製程階段中所積累的廢氣亦可用於燃燒以 知·供熱能之另一部分。转金丄 刀特疋s之,較佳使用之PSA系統之 廢氣通常仍具有高含量之可燃組份,該可燃組份可藉由辦 燒而進行熱利用。此外,亦可混合具有更高發熱量之高品 質燃料諸如舉例而言天然氣。可能需要此混合以調整所要 的渥貝指數⑽bbe index)或補償尚未被額外燃料氣滿足的 能量需求。 150377.docIf the extracted hydrogen and the synthesis gas m obtained from the fossil fuel and substantially containing carbon monoxide are synthesized, the specific hydrogen/carbon monoxide ratio can be freely adjusted over a wide range by the corresponding inflow control. In order to additionally increase the gas yield of the entire process, it is possible to carry out a c◦ conversion of a part of the produced synthesis gas. To achieve this purpose, water vapor may be added for C0 conversion, wherein at least a portion of the carbon dioxide is removed after desulfurization of the converted synthesis gas, wherein the remaining gas stream is then subjected to gonna adsorption to remove hydrogen, and wherein hydrogen is depleted. And the exhaust gas accumulated during this process is used as the fuel gas of the coking process. This waste gas for thermal utilization typically represents a portion of the total fuel gas required to provide thermal energy. It is also possible to combine the synthesis gas obtained from fossil fuels with a combined gas 150377.doc 201118161 and 'steam turbine equipment (GUD process) for power generation. According to the present invention, a portion of the heat of the fuel gas is provided by a synthesis gas in the form of a fuel gas. The synthesis gas system in the form of a fuel gas is preferably used in a fossil fuel by gasification, preferably by coal gasification. obtain. The remaining gas: and the exhaust gas accumulated in the subsequent various process stages can also be used for combustion to know another part of the heating energy. In particular, the exhaust gas of the preferred PSA system still has a high content of combustible components which can be thermally utilized by burning. In addition, it is also possible to mix high quality fuels having higher calorific value such as, for example, natural gas. This blend may be required to adjust the desired bbe index (10) or to compensate for the energy demand that has not been met by the additional fuel gas. 150377.doc

Claims (1)

201118161 七、申請專利範圍: 1. -種用於操作煉焦爐裝置之方法,纟中在煉焦製程期間 所積累的煉焦爐氣係用作工作氣體,該方法特徵為藉由 氣化製程而從化石燃料中產生的合成氣體係供應為燃料 氣以提供煉焦製程所需之熱能之至少部分。 广 2. 如請求項1之方法,其特徵為將煤炭用作化石燃料。 3. :請求項1或2之方法,其特徵為在從煉焦爐氣中提取氫 乳前將煉焦爐氣壓縮並去硫且隨後將烴與其餘氣體組分 4. 如請求項!或2之方法,其特徵為藉由變壓吸附將氫氣從 煉焦爐氣中提取出來,其中隨後藉由低溫蒸餾提取烴。 5. 如:求項1或2之方法,其特徵為將該所產生的合成氣體 之第部分用作燃料氣且將該所產生的合成氣體之 部分與從煉焦爐氣中所提取的氯氣用於另一合成。 6. 如明求項1或2之方法’其特徵為將該所產生的合成氣體 之第—部分用作燃料氣且對該所產生的合成氣體之另一 部分進行CO轉化。 員6之方法,其特徵為添加水蒸氣進行該c〇轉 化其中在該經轉化的合成氣體脫硫後至少部分移除二 ^化娀’其中隨後對剩餘氣流進行變壓吸附以移除氫 其中耗盡氫氣且在此製程期間積累的廢氣係用作 琛焦製程的燃料氣。 :項1或2之方法’其特徵為將該所產生的合成氣體 卩刀用作燃料氣且在-組合氣體及蒸汽渦輪機設 150377.doc 201118161 備中將該所產生的合成氣體之另—部分用於發電。 · 9. 10. 如。月求項1或2之方法’其特徵為除合成氣體外供應另一 加熱氣體以提供煉焦製程所需之執 如請求項丨或2之方法,罝“'、此 之另一邱八扯廄S a ” 徵為將該所產生的合成氣體 4分供應至1爐W行熱利用。 150377.doc 201118161 四、指定代表圖: (一) 本案指定代表圖為:(無) (二) 本代表圖之元件符號簡單說明: 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無) 150377.doc201118161 VII. Patent application scope: 1. A method for operating a coke oven device, in which a coke oven gas system accumulated during a coking process is used as a working gas, and the method is characterized by a gasification process from a fossil The syngas system produced in the fuel is supplied as fuel gas to provide at least a portion of the thermal energy required for the coking process. Wide 2. The method of claim 1, characterized in that coal is used as fossil fuel. 3. The method of claim 1 or 2, characterized in that the coke oven gas is compressed and desulfurized before the hydrogen emulsion is extracted from the coke oven gas and then the hydrocarbon is combined with the remaining gas components. 4. The method is characterized in that hydrogen is extracted from the coke oven gas by pressure swing adsorption, wherein the hydrocarbon is subsequently extracted by cryogenic distillation. 5. The method of claim 1 or 2, characterized in that the first portion of the produced synthesis gas is used as a fuel gas and the portion of the produced synthesis gas is extracted from the chlorine gas extracted from the coke oven gas. In another synthesis. 6. The method of claim 1 or 2 wherein the first portion of the produced synthesis gas is used as a fuel gas and another portion of the produced synthesis gas is subjected to CO conversion. The method of claim 6, characterized in that the addition of water vapor is carried out to carry out the conversion, wherein at least a portion of the ruthenium is removed after desulfurization of the converted synthesis gas, wherein the remaining gas stream is subsequently subjected to pressure swing adsorption to remove hydrogen. The exhaust gas that is depleted of hydrogen and accumulated during this process is used as the fuel gas for the coke process. The method of item 1 or 2, characterized in that the produced synthesis gas boring tool is used as a fuel gas and the other part of the synthesis gas produced is used in the combination gas and steam turbine installation 150377.doc 201118161 For power generation. · 9. 10. For example. The method of claim 1 or 2 is characterized in that another heating gas is supplied in addition to the synthesis gas to provide the method of requesting the item or the 2 required for the coking process, 罝 "', another one of the other The S a ” sign is to supply the generated synthesis gas 4 points to 1 furnace W for heat utilization. 150377.doc 201118161 IV. Designated representative map: (1) The representative representative of the case is: (none) (2) The symbol of the symbol of the representative figure is simple: 5. If there is a chemical formula in this case, please reveal the best indication of the characteristics of the invention. Chemical formula: (none) 150377.doc
TW099132072A 2009-09-22 2010-09-21 Method for operating a coke oven arrangement TW201118161A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009042520A DE102009042520A1 (en) 2009-09-22 2009-09-22 Method for operating a coke oven arrangement

Publications (1)

Publication Number Publication Date
TW201118161A true TW201118161A (en) 2011-06-01

Family

ID=43027473

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099132072A TW201118161A (en) 2009-09-22 2010-09-21 Method for operating a coke oven arrangement

Country Status (12)

Country Link
US (1) US20120217148A1 (en)
EP (1) EP2480631A1 (en)
JP (1) JP2013505342A (en)
KR (1) KR20120074294A (en)
CN (1) CN102639675A (en)
AU (1) AU2010297521A1 (en)
CA (1) CA2774898A1 (en)
DE (1) DE102009042520A1 (en)
IN (1) IN2012DN03166A (en)
RU (1) RU2533149C2 (en)
TW (1) TW201118161A (en)
WO (1) WO2011035993A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2531573A4 (en) * 2010-02-05 2013-07-31 Texas A & M Univ Sys Devices and methods for a pyrolysis and gasification system for biomass feedstock

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR350020A (en) * 1904-06-25 1905-08-24 Paul Leon Hulin Recovery of coal gas in the manufacture of metallurgical coke
US1375477A (en) * 1919-08-25 1921-04-19 Koppers Co Inc Ammonia and tar recovery process
US1838294A (en) * 1926-06-12 1931-12-29 Koppers Co Inc Coke oven battery
SU23906A1 (en) * 1927-08-27 1931-10-31 Коппе и Ко Эванс Regenerative coke oven
DE2659782B2 (en) * 1976-12-31 1979-06-21 Didier Engineering Gmbh, 4300 Essen Process for the further processing of coke oven gas
DE2733785A1 (en) * 1977-07-27 1979-02-08 Didier Eng PROCESS FOR PROCESSING COOKING GAS
DE3308304A1 (en) * 1983-03-09 1984-09-13 Didier Engineering Gmbh, 4300 Essen Process for the production of substitute natural gas
DE3308305A1 (en) * 1983-03-09 1984-09-13 Didier Engineering Gmbh, 4300 Essen Process for producing hydrogen
DE3424424A1 (en) 1984-07-03 1986-01-16 Didier Engineering Gmbh, 4300 Essen Process for utilising coke oven gas
DE3515250A1 (en) 1985-04-27 1986-10-30 Hoesch Ag, 4600 Dortmund METHOD FOR PRODUCING CHEMICAL RAW MATERIALS FROM COOKING OVEN GAS AND CABINET GASES
DE3805397A1 (en) 1988-02-20 1989-08-24 Ruhrkohle Ag Process for producing fuel methanol (motor fuel) from coke oven gas and metallurgical plant gas
US5423891A (en) * 1993-05-06 1995-06-13 Taylor; Robert A. Method for direct gasification of solid waste materials
JP4224240B2 (en) * 2002-02-07 2009-02-12 株式会社荏原製作所 Liquid fuel synthesis system
JP4337354B2 (en) * 2003-01-23 2009-09-30 Jfeスチール株式会社 How to use by-product gas at steelworks
BRPI0410313A (en) * 2003-05-15 2006-05-23 Hylsa Sa Method and apparatus for the improved use of primary energy sources in integrated steel mills
US20060027043A1 (en) * 2004-08-03 2006-02-09 Hylsa S.A. De C.V. Method and apparatus for producing clean reducing gases from coke oven gas
CA2607205A1 (en) * 2005-06-15 2006-12-21 Questair Technologies Inc. Adsorptive bulk separation for upgrading gas streams
US20070072949A1 (en) * 2005-09-28 2007-03-29 General Electric Company Methods and apparatus for hydrogen gas production
CN1974732A (en) * 2006-12-13 2007-06-06 太原理工大学 Process of preparing synthesized gas with gasified gas and pyrolyzed gas
DE102007042502B4 (en) * 2007-09-07 2012-12-06 Uhde Gmbh Device for supplying combustion air or coke-influencing gases to the upper part of coke ovens
DE102008012735B4 (en) * 2008-03-05 2013-05-08 Thyssenkrupp Uhde Gmbh Method and device for separating foreign gases from a reducing useful gas by steam-driven pressure swing adsorption
CN101343580A (en) * 2008-08-22 2009-01-14 四川天一科技股份有限公司 Method for preparing methanol synthesis gas with oven gas and blast furnace gas
US8287696B2 (en) * 2008-09-05 2012-10-16 Purdue Research Foundation Multipurpose coke plant for synthetic fuel production
CN101538483B (en) * 2009-04-03 2013-04-17 中国科学院山西煤炭化学研究所 Poly-generation technique for using coal gas and coke oven gas as raw materials
DE102009022509B4 (en) * 2009-05-25 2015-03-12 Thyssenkrupp Industrial Solutions Ag Process for the production of synthesis gas
DE102010013279B3 (en) * 2010-03-29 2011-07-28 Uhde GmbH, 44141 Process and apparatus for processing a carbon dioxide rich sour gas in a Claus process

Also Published As

Publication number Publication date
RU2012116149A (en) 2013-10-27
JP2013505342A (en) 2013-02-14
KR20120074294A (en) 2012-07-05
CA2774898A1 (en) 2011-03-31
RU2533149C2 (en) 2014-11-20
AU2010297521A1 (en) 2012-05-03
CN102639675A (en) 2012-08-15
EP2480631A1 (en) 2012-08-01
IN2012DN03166A (en) 2015-09-18
DE102009042520A1 (en) 2011-03-24
US20120217148A1 (en) 2012-08-30
WO2011035993A1 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
CN101434879B (en) Method for preparing methyl alcohol synthesis gas and compressed natural gas from coke oven gas and coal
CN102256894B (en) Method and device for producing raw synthesis gas
US20080098654A1 (en) Synthetic fuel production methods and apparatuses
CN106316786B (en) Method for preparing ethanol by extracting hydrogen from coke oven gas
CZ2004440A3 (en) Method for controlling temperature of combustion turbine inlet fuel in order to achieve maximum power output
KR20160030559A (en) Methanation method and power plant comprising co_2 methanation of power plant flue gas
CN103242134A (en) Pyrolysis gasification and purification method of household garbage
CN102965131B (en) Efficient and clean utilization technology for highly volatile young coal
JP2007254270A (en) Method of treating gaseous mixture comprising hydrogen and carbon dioxide
NO330123B1 (en) Low CO2 plant for oil sand extraction
JP2015522674A (en) Fischer-Tropsch synthesis and exhaust gas utilization method
CN102642810A (en) Combined process for preparing Fischer-Tropsch synthetic oil raw material gas by utilizing coke-oven gas
CN102712469B (en) Method for operating an IGCC power plant process having integrated CO2 separation
JP4030846B2 (en) Methanol production method and apparatus
KR101929066B1 (en) Process for making synthetic natural gas
WO2015180752A1 (en) Hydrocarbon-production-apparatus and method for producing hydrocarbons with renewable electric energy
JP6173333B2 (en) Biomethane production method
CN105001899A (en) Method for preparing clean coal-based synthetic wax
CN110628477B (en) Method for preparing natural gas, fuel oil and aromatic hydrocarbon by multi-layer hydrogenation of coal in pressurized moving bed
CN102320568A (en) Method and device for preparing synthetic gas or hydrogen with BGL pressuring slag gasification and pure oxygen non-catalytic partial oxidation
TW201118161A (en) Method for operating a coke oven arrangement
CN112126469B (en) IGCC combined cycle power generation method for co-producing fuel oil and natural gas
CN106829861A (en) A kind of method that waste coke-stove gas self-heating partial oxidation produces synthesis gas
CN110628478B (en) Method for preparing natural gas and co-producing fuel aromatic hydrocarbon by using pressurized moving bed coal
RU41307U1 (en) INSTALLATION OF GASES OF VARIOUS HEAT CAPACITY FROM OIL RESIDUES