TW201115017A - Fluid engine with enhanced efficiency - Google Patents

Fluid engine with enhanced efficiency Download PDF

Info

Publication number
TW201115017A
TW201115017A TW98135772A TW98135772A TW201115017A TW 201115017 A TW201115017 A TW 201115017A TW 98135772 A TW98135772 A TW 98135772A TW 98135772 A TW98135772 A TW 98135772A TW 201115017 A TW201115017 A TW 201115017A
Authority
TW
Taiwan
Prior art keywords
fluid
engine
blade
blades
torque
Prior art date
Application number
TW98135772A
Other languages
Chinese (zh)
Inventor
Guy Silver
Juinerong Wu
Original Assignee
Guy Silver
Juinerong Wu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guy Silver, Juinerong Wu filed Critical Guy Silver
Priority to TW98135772A priority Critical patent/TW201115017A/en
Publication of TW201115017A publication Critical patent/TW201115017A/en

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

An engine provides torque by transmitting power in a fluid using optimally positioned lift-to-drag ratio blades with air-foil shape sections. The fluid may be liquid or gas. Various considerations of engine configuration, fluid density, fluid pressure and fluid temperature are design parameters that can be tuned to achieve high performance. The fluid flow created can be used to drive rotary motion of an output axle, for example.

Description

201115017 六、發明說明: 【發明所屬^技4椅領成;j 相關申請案之交又參考 本申請案係有關於在2004年1〇月12曰提出申請,關連 的代理人案號為M-15504 US’標題為,,使用史特靈發動機原 理產生電力及機械動力的方法及系統(Method and System for Generation of Electrical and Mechanical Power)”的同在 申請中專利申請案(”同在申請中專利申請案”),序號為 10/963,274。該同在申請中專利申請案於此係以全文引用方 式併入本案以為參考資料。 發明領域 本發明係有關於能量轉換裝置。特別地,本發明係有 關於有效率地將機械能經由流體運動傳動成有用的功的發 動機。 發明背景 一熱機之作動係藉由致使流體在不同溫度區之間流動 的熱能轉換成有用的功。一典细的熱機使用熱能驅動一組 活塞之協調及往復的運動或是一組渦輪葉片之旋轉運動。 該等活塞或葉片之運動驅動機械或發電機。 於先前技術中,用於該熱機作動的移動部件係圍住在 一外殼中,並機械地(例如,藉由一轴)耦合至外部部件,用 以驅動外部機械。 於一流體(例如,空氣)中,翼及翼剖面(wing and airfoil) 201115017 於其之移動中利用其之形狀獲得空氣動力學方面的優點。 由複數之來源,包括線上UIUC翼剖面資料庫(UIUC airfoil database)以及複數之更為現代的翼剖面,取得適用的複數 之翼及翼剖面設計。 國家航空諮詢委員會(NACA)設計並測試複數之翼形 設計以及以一組系統化表格發表該等結果。於今日對於複 數之應用而言,該等結果係仍為有效的,能夠用於設計翼 形。該等表格根據該翼剖面對於流經其之該流體之攻角, 提供針對翼剖面的升力及阻力係數。使用該等係數,能夠 利用以下方程式計算升力及阻力: 1) 升力= 2) 阻力= 其中C,係為該升力係數,q係為該阻力係數,p係為該 流體之密度,F係為該翼剖面相對於該流體的速度,以及/ 係為該翼剖面之面積。該升力對阻力的比值(L/D比值)係用 以比較一翼剖面或葉片設計之效率。 該升力對阻力的比值(L/D比值)係使用作為測量在具 有特定流體特性於一特定攻角下該翼剖面或葉片設計之升 力產生的效率。 用以驅動一泵所需的最小輸入動力Pin,其中具有一排 放流量Q,流體壓力Ppres,以及一理論壓力頭係由Pin = QPpres =Q p gHT所給定。可使用尤拉满輪機關係式用以確定由一 201115017 組轉動葉片所產生的壓力頭;該壓力頭係由以下方程式給 定: ^ _ w2F2 coscr2 - w/丨 cosor! 11 γ 一 ' 1 1 ~' 【發明内容】 發明概要 根據本發明之一具體實施例,一發動機藉由於一流體 中使用最佳地配置的升阻比(lift-to-drag ratio)之氣動葉片 (aerodynamic blade)而傳送動力,用以產生一扭矩。該流體 可為液體或氣體。發動機構形之不同的考量,葉片位置、 葉片形狀、葉片之升阻比、葉片角度、流體密度、流體壓 力、流體路徑、流體運動及流體速度係為設計參數,能夠 經調整用以獲得高的效能。例如,該產生的流體流動能夠 用以驅動一輸出轴之轉動。 一經考量以下該詳細說明,結合該等伴隨的圖式將對 本發明有較佳的瞭解。 圖式簡單說明 第1 a圖顯示根據本發明之一具體實施例的流體發動機 100的一橫截面。 第lb圖係為流體發動機100的一橫截面,將上部分104 與下部分120分開用以顯示流體結構102及徑向葉片106。 第lc圖顯示根據本發明之一具體實施例的流體發動機 150的一橫截面。 第Id圖係為一透視圖顯示第1圖之無外殼110的流體發 201115017 動機10 0的該等移動部件。 第2圖係為一透視圖顯示第lc圖之無外殼160的流體發 動機150。 第3 a圖顯示本發明之一具體實施例的流體發動機3 0 0 的一透視圖。 第3 b圖顯示本發明之一具體實施例的流體發動機3 0 0 的一第二視圖。 第4圖顯示本發明之一具體實施例的流體發動機400的 一透視圖。 第5圖顯示流體發動機500的一透視圖,其中併入第4圖 之流體轉動式發動機400。 第6a圖顯示葉片601a、601b、601c以及601d之定向, 其係經軸向地佈置用以相關於一中心點產生扭矩。 第6b圖顯示葉片611a及611b,其係徑向地佈置用以相 關於一中心點產生扭矩。 第7 a圖顯示根據本發明之一具體實施例之適合用於一 流體發動機的螺旋葉片766a及766b。 第7b圖顯示根據本發明之一具體實施例之適合用於一 流體發動機的螺旋葉片組7〇8。 第7 c圖顯示根據本發明之一具體實施例之適合用於一 流體發動機的螺旋葉片767a及767b。 第8a圖顯示根據本發明之一具體實施例之流體發動機 800的一橫截面視圖。 第8b圖顯示流體發動機8〇〇之螺旋葉片802a的的一橫 201115017 截面視圖。 第8c圖顯示流體發動機800之流體結構820。 為有助於該等圖式之間交叉參考,相同的元件係指定 相同的元件符號。 I:實施方式3 較佳實施例之詳細說明 流體發動機係為一裝置,其將流體能量轉換成機械能 量。本發明之流體發動機之作動係藉由在一氣動葉片上使 用一升力增益,源自於抵抗該工作流體移動通過該葉片的 一阻力,用以產生供該流體發動機所用的扭矩。該葉片上 的該升力係由源自於該阻力的該流體的該能量損失所產 生。該升力產生一扭矩使該流體發動機之該等可移動部件 開始運轉,從而使該流體發動機作動。具有一升阻比(L/D 比)為10的一氣動葉片,意指該升力係為該阻力的10倍。根 據本發明,在流體發動機内部流動的該流體可為一或更多 的氣體或是一或更多的液體。 第la圖顯示根據本發明之一具體實施例的流體發動機 100的一橫截面。如第1圖中所示,發動機1〇〇包括外殼110, 其包括上部分104及下部分120。一流體典型地係經密封於 外殼110内部,用於將動力自輸入軸101傳送至位於流體發 動機100内部的該流體,依序地,針對流體發動機100内部 配置的葉片產生升力,用以產生扭矩。由此扭矩所引起的 運動提供輸出動力至輸出軸113。流體結構102包括輸入軸 101及徑向葉片組106。輸入軸101係經外部驅動用以轉動徑 201115017 向葉片組106,其增加該流體轉動速度及該外殼110内部壓 力。提供空間103用以圍住適當的軸承,有助於流體結構102 的轉動。分離器結構111係為一環狀結構其上配置有軸向葉 片108。由於該流體之運動所引起在軸向葉片上的升力,對 於流體發動機100提供扭矩輸出。分離器結構111可為一環 形的翼形葉片(air-foil blade)。於此具體實施例中,分離器 結構111係為内部中空(空間107)用以減輕重量,並提供用於 放置控制元件的空間。軸向葉片108較佳地係為氣動葉片, 對於發動機效率而言具有較佳地遠大於1的升阻比。轴向葉 片108係沿著分離器結構1U之外部分配置,並且每一葉片 經定向使由該流體流動所產生的扭矩最大化,用以驅動輸 出轴113。 該等徑向葉片106產生一離心力其徑向地驅動流體,以 致在每一軸向葉片1〇8上於一最佳,,攻角,,下產生一流動,提 供顯著的扭矩量用以轉動分離器結構1丨i。如於第丨圖中所 示,分離器結構111於結構上藉由支撐元件112支撐至支撐 底座刚。切総⑽可用以㈣卫作㈣㈣。支^ 件112可搭配葉片(具有翼剖面形狀斷面),用以產生扭矩。 可任擇地’可提供另-組葉片以代替切元件112用以提供 附加的扭矩。分離器m之運動係藉由切元件112傳動’,、 用以驅動支樓底座1〇9以及輸出㈣3之轉動,其係附數至 支撑底座·。軸承m確保在輸㈣113轉動下的軸向稱定 性。於一具體實施例中’軸向葉片⑽係在結構上附裝至外 殼m之料㈣,並消除麻u[於作業期間,該 201115017 流體流動橫過軸向“⑽心產生—扭矩,致使外殼ιι〇 於預疋方向上轉動。發動機1〇〇之轉動可用以經由與該外 殼作外㈣合m齒輪結構驅動機械。 於作業期間’流體結構102提供足夠的流體壓力,用以 補償因於流體循環巾阻力及摩擦力的流體壓力損失。退出 流體結構102的流體可具有一轉動速度(亦即,角速度及從 此產生的角動量)等於或大於軸向葉片1〇8之該轉動速度, 使流體發動機100之效率達到最大稃度。位於輸出軸113處 的輸出扭矩係為由軸向葉片1〇8所產生的該等扭矩之總 和。能夠藉由將軸向葉片1〇8定向以致該流體流動以一較佳 的攻角作用在每一葉片上而增加發動機效率,俾使利用其 之升阻比使所產生的扭矩達到最大。 流體結構102,其包括葉片1〇6及一輸入轴101 ’係配置 在上部分104中’係經設計用以機械地並徑向地向外驅動該 工作流體朝向周圍的流體空間131。視葉片組106之該構形 與流體發動機100之該等應用而定,流體結構102可使用作 為一動葉輪、一泵、一壓縮機、一風扇或是一鼓風機。於 一具體實施例中,流體結構102可具有可調整葉片構形,以 致葉片組106對該工作流體提供能量用以在流體發動機10〇 内部流動。於發動機1 〇 〇中所獲得之力可藉由調整由流體結 構102所抽吸的流體總量而得以控制。 根據本發明,於該流體中所產生的力隨著使用的流體 密度增加。因此,一較高的流體密度(例如,一液體)導致-« 較低的流體速度需求用以產生一已知的輸出動力。由於根 201115017 據在流體密度與流體速度之間的折衷的壓力設計期間’該 輸出動力需求一考量。由於摩擦的流體壓力損失,其係隨 著流體速度與流體黏性而增加,以及當於一氣體與一液體 之間選擇時,亦應考量外殼需求。 第lb圖係為流體發動機100的’一橫戴面,將上部分104 與下部分120分開用以顯示流體結構102及徑向葉片106。 第1 c圖顯示根據本發明之一具體實施例的流體發動機 150的一橫截面。流體發動機150之外殼160包括上部分164 及下部分170。一流體典型地密封在外殼160内部’用於自 輸入軸1131傳達動力用以利用位在發動機150内部的葉片 組203移動流體,以致流體驅動轴向葉片108、葉片組166a 及166b用以針對輸出軸101產生扭矩。流體結構109包括輸 入軸113及葉片組203。輸入軸113係經外部驅動用以轉動葉 片組203 ’增加外殼160内部該流體轉動速度及該壓力二 者。葉片組203之該轉動產生一轉動的流體流動,驅動該流 體通過中心流體空間130至上部分164,並且其通過周圍流 體空間131返回至下部分170並接著返回至中心流體空間 130。 於第lc圖中,所示流體發動機15〇,例如,僅不具有徑 向葉片106,但以葉片組166替代(其包括位於該上部分164 中的葉片組166a以及位於該下部分丨7〇中的葉片組丨66b)作 1於此例子中,與流體發動機100不同,妯m 拎屮u, =外貪軸。巧例子中,軸^ 出轴。 說=為ϊίΐί ’,構係,接至該輸流體施办 一轉動力’其係視為一”流體結構。’, 10 201115017 為支撐元件,將分離器111牢固至該上部分164及下部分 170。分離器結構111係為一環狀結構,其上配置具有軸向 葉片108、葉片組166a及166b。分離器結構η 1可為軸岗葉 片108之一部分。此外’分離器111亦係為可任擇的。可針 對附加的扭矩提供一或更多附加的葉片環(例如,葉片 171)。於葉片組166中可使用反動性葉片用以產生扭矩。葉 片組166a或166b可具有螺旋狀葉片。軸向葉片1〇8、葉片組 166a及166b較佳地係為氣動葉片,其較佳地具有大於1的升 阻比。葉片組166a及166b可經配置作為流體發動機150所用 的支撐元件。葉片組166a及166b係與輸出軸1〇1耦合。葉片 組166a及166b可為反動性型式葉片。於一具體實施例中’ 軸向葉片108、葉片組166a及166b的其中之一者係在結構上 附裝至外殼160之内壁並去除一軸承103。於作業期間’該 工作流體流動橫過軸向葉片108,用以產生一扭矩致使外殼 160於一預定方向上轉動。發動機160之轉動可用以經由外 部地柄合至該外殼的一軸或是一齒輪結構而驅動機械。 於一具體實施例中,葉片組166a、166b及軸向葉片108 推動輸出軸1〇1轉動,用以傳達流體發動機150之機械動力 輸出。輸出軸101優先地於一方向上轉動。軸向葉片108、 葉片組166a及166b由於藉由流體結構109所產生的流體流 動壓力而轉動。根據另一具體實施例,流體發動機150内部 的葉片轉動並於該工作流體中產生渦流’以致該流體以環 繞一軸的轉動方式流動。該工作流體之速度使該等葉片運 動,因而產生有用之功。該輸出轴101之轉動所產生的扭矩 201115017 可用以驅動機械。 第Id圖係為一透視圖顯示第la圖之無外殼110的流體 發動機100的該等移動部件。 第2圖係為一透視圖顯示第lc圖之無外殼160的流體發 動機150。如第2圖中所示,於外殼110内配置二組葉片166a 及166b,於周圍處配置一組軸向葉片108,以及葉片組203 配置位在流體結構109上。較佳地,軸向葉片108係為具有 大於1的升阻比之氣動葉片,以及葉片組166a及166b係為反 動式或是氣動葉片。 於流體發動機150中,流體結構109在與三組葉片(亦 即,葉片166a及166b以及轴向葉片108)之任一者中之該速 度無關的一速度下轉動。輸入軸113配置通過葉片組203。 當葉片組203藉由流體發動機150之動力輸出而加以驅動 時,可使用齒輪設定葉片組203的轉速與流體發動機150的 輸出轉速係處於一特定比值下。藉由適當地設定齒輪比, 葉片組203能夠偶爾產生足夠動力用以作動流體發動機 150。然而,當葉片組203係經外部驅動時,並不需要齒輪, 因此,流體結構109的轉速係藉由該外部傳動器或發動機之 轉速加以設定。於一具體實施例中,視葉片組之該構形與 流體發動機之該等應用而定,流體結構109可使用作為一 泵 '一推進器、一壓縮機、一風扇或是一鼓風機。 於一具體實施例中,可將一流體結構(例如,流體結構 102或109)配置在流體發動機内的任何位置處,用以產生一 所需的流體流動。可提供一以上的流體結構或是葉片組, 12 201115017 用以驅動該流體在葉#上作功。該流體結構可包括 多機構’料當*存在機械輸人動力㈣驅動該流體 時’該等^自錢體路_即物,賴_折叠= ㈣或以著特11G之該㈣對準),俾以減小流^能量 損失。於-具體實施例中,位於該流體結構内部的該等= 片可使用作為-擴散器’用以無轉動地將該轉動的‘體轉 換成-高壓流體,以致該流體結構不需連續地由一 械動力來源提供動力。 位於該流體結構中的葉片可由一螺旋彈簧提供動力, 用以轉動該流體。於-具體實施例中,由—流體發動機之 該輸出軸所產生的一扭矩,能夠往回傳動至該輸入軸用以 提供該流體結構動力。葉產生扭矩能觸錢體通道。 每一葉片可經調整用以控制由該葉片所產生的該扭矩。藉 由控制該攻角或是使該葉片傾斜而進行調整作業。流體發 動機100或150可經構形為旋轉式流體發動機。第3a圖顯示 本發明之一具體實施例的流體發動機3〇〇的一透視圖。如第 3a圖中,流體轉動式發動機3〇〇包括外殼3〇6,其圍起流體 室307。流體室307開啟至四延伸室301-304 ’其分別地由上 部分301u、302u' 303u及304u以及下部分301b、302b、303b 及304b所組成。流體室307内部可配置上述說明的該等流體 發動機(例如,流體發動機100或150)之該等流體結構的任一 者。於第3a圖中,所示該流體結構109包括葉片組203及輸 入軸113。流體結構109產生一流體循環,其係自流體室307 流動至延伸室301-304之上部分301u、302u、303u及304u, 13 201115017 並經由延伸室301-304之下部分301b、302b、303b及304b返 回至室307。於作業期間’延伸室3(n_3〇4係經圍起的。每 一延伸室内部係為氣動葉片305’其係經適當地定向用以使 用該流體流動產生扭矩,致使延伸室301_3〇4之轉動並驅動 輸出軸101。第3b圖顯示本發明之一具體實施例的流體轉動 式發動機300的一第二視圖。如第3b圖中顯示,氣動葉片305 係於上部分301u、302u、303u及304u中經定向,以及於下 部分301b、302b、303b及304b中經定向,用以容許在輸出 車由101上藉由延伸室301 -304產生一扭矩。流體發動機3〇〇係 針對高扭矩、慢轉動設計,用以降低離心力對該返回流體 的影響。根據本發明,視葉片組之該構形與流體發動機之 該等應用而定’流體結構109可由一果、一推進器、一動葉 輪'一壓縮機'一風扇或是一鼓風機所提供。 第4圖顯示本發明之一具體實施例的流體轉動式發動 機400的一透視圖。流體轉動式發動機4〇〇包括外殼4〇4,其 係由臂件4041及404r以及中心部分404c所組成,並係構成連 續的流體室403。流體轉動式發動機400係為一開啟式系 統,其利用由輸出軸113或臂件4041或是臂件404r之轉動的 離心力開始流體(氣體或液體)循環。該離心力將流體吸引進 入中心部分404c。於作業期間,流體流入中心部分4〇4c並 藉由該離心力向外地朝向室403之臂件4041及404r移動,以 及於噴嘴401a及401b處退出。於流體室403中配置升阻比氣 動葉片305,其經定向用以自該流體流動產生扭矩,用以驅 動附裝至該中心部分404c的一旋轉式機構(因而於輸出轴 14 201115017 113處產生輸出動力)。藉由流體經由喷嘴4〇la及401b退出 而產生杻矩(亦即,當該流體離開噴嘴401a及401b時藉由作 用在噴嘴401a及401b上的一反應力)。流體轉動式發動機 400可經構形為具有密封流體室的一閉合系統,中心部分 404c可向下地配置用以將流體向上吸引進入中心部分 404c。 第5圖顯示本發明之一具體實施例之流體轉動式發動 機500的一透視圖。流體轉動式發動機5〇〇係為一開放式系 統。如於第5圖中所示,流體轉動式發動機500於該系統中 提供扭矩,用以驅動輸出軸101及103。流體轉動式發動機 500包括一上部分502a及下部分502b。下部分502b可由一開 放式系統型式的流體發動機提供,諸如第4圖之流體轉動式 發動機400。由通過位於流體轉動式發動機500之該下部分 502b中的該噴嘴401a及401b自流體室403退出的該流體,係 經引導用以驅動位於上部分5〇2a中的軸向葉片5〇1,提供附 加的扭矩用以驅動輸出軸101。軸1〇1及軸113係於相反的方 向上轉動。流體轉動式發動機500可經構形為具有密封流體 室的一閉合式系統。氣態流體可經加壓。 第6a圖顯示轴向地佈置並經定向用以產生扭矩的氣動 葉片。如於第6a圖中’葉片組601,具有葉片601a、601b、 601c及601d,係經配置用以自如由流體流動6〇4a、604b、 604e及604d所示一軸向地流動的流體在軸605上產生一扭 矩。葉片601a、601b、601c及601d係經配置用以分別地產 生升力602a、602b、602c及602d,其令每一升力係經引導 15 201115017 將所產生的該扭矩達到最大程度(亦即,與轉動軸垂直)。由 於該流體流動橫過氣動葉片組601所產生的阻力603a ' 603b、603c及603d,係為該等流體力產生藉由氣動葉片組 601所產生的該扭矩。每一葉片與該流體流動(亦即,葉片 601a與流體流動604a)之間的角速度差,確定每一葉片之該 攻角。葉片601a、601b、601c及601d係經配置以致其之攻 角係大於或等於零。例如,於葉片601a處,其具有其之升 力602a(LF)位於距軸6〇5之半徑606a(R)處,阻力603a(DF) 以及具有一LD之升阻比,由葉片601a所產生的該杻矩可大 約為LF*R = DF*LD*R。因此,當LD係大於1時,葉片601a 使用大於該流體力(阻力603a)的一力量產生一扭矩。同樣 地,葉片601b、601c及601d分別使用大於該流體力的一力 量產生一扭矩。 第6b圖顯示徑向地佈置用以產生扭矩的氣動葉片。於 第6b圖中,葉片611a及611b係經配置用以環繞轉動軸620產 生一扭矩,如由流體流動614a及614b所示地自一流體徑向 地向外流動。葉片611a及611b係經配置用以分別地產生升 力612a及612b,並且分別地產生阻力613a及613b。如同上 述該等轴向配置的葉片,假若葉片61 la及611b具有大於1的 一升阻比’則葉片611a及611b能夠使用大於該流體力的一 力量產生扭矩。當流體徑向向外地流動時,該流體已由於 角動量守恆而降低角速度。此之流體角速度的改變可影響 由沿著該徑向定向的該等葉片,諸如葉片611a及61 lb所產 生的該等升力及阻力。使一流體在該中心處的角速度大於 16 201115017 一徑向定向葉片之前緣,諸如葉片611a&611b之前緣615a 及615b的角速度,可減小該等影響。使用具有高弧形的翼 剖面斷面或是使用複數組之較短葉片的葉片,亦可減小該 等影響。 根據本發明,具有升阻比大於1的一葉片,能夠在一流 體流動橫過該葉片時產生大於一阻力的一升力。該葉片能 夠配置在一圍起的發動機内,用以產生一力量其大於針對 產生扭矩將該流體移動橫過該葉片所需的該力量。 根據另一具體實施例’藉由修改流體發動機150之該等 結構而提供流體發動機700。具體地’藉由以螺旋葉片766a 及766b取代流體發動機150之葉片組166a,以螺旋葉片組 708取代流體發動機15〇之軸向葉片1〇8,以及以螺旋葉片 767a及767b取代流體發動機150之葉片組166b而構成流體 發動機700。螺旋葉片766a及766b係於第7a圖中顯示。同樣 地’螺旋葉片組708及螺旋葉片767a及767b係分別地於第7b 圖及第7c圖中顯示。如第lc圖中所示,流體發動機7〇〇具有 一轉動的流體流動’流體結構109包括葉片組203及輸入軸 113。輸入軸113係經構形用以轉動葉片組2〇3,驅動流體在 如同該等螺旋葉片之該彎曲方向的該相對方向上移動。於 一具體實施例中,葉片組203具有氣動葉片,其係為可調整 的以致葉片組203使用作為推進器。因此,該流體與葉片組 203中該等葉片之間該相對角速度上的差異,確定流體壓力 增加。 當螺旋流體發動機7〇〇開始運轉時,輸入軸113轉動葉 17 201115017 片組203強制流體向上移動通過中心流體空間13 〇進入上部 分164。位於上部分164中的葉片766a及766b強制該流體在 輸入軸113轉動時於相反方向轉動。轉動的流體自上部分 164流動至周圍空間131 ’於該處轴向葉片丨〇8,如第7b圖中 所示,致使流體螺旋狀地向下流動進入下部分17〇。位於下 部分170中的葉片767a及767b在該流體向内地移動至中心 流體空間130時,增加該流體角速度。於第7a、7b及7c圖中 葉片766a、766b、708、767a及767b ’其係經設計由藉該螺 旋流體流動所產生的該升力在輸出軸1〇1上產生扭矩,分別 地於與該流體相同的轉動方向上轉動。當該流體持續以上 述方式循環時,該流體角速度增加,包括位於中心空間13〇 内之該流體角速度’因此介於該流體與葉片組2〇3之間該相 對角速度亦增加。只要該流體與葉片組203之間具有足夠的 相對角速度差’用以增加流體壓力以維持流體循環,葉片 組203之該角速度能夠降低。當該流體達到一特定的角速度 時’隨著葉片組203已產生一足夠的流體壓力增加用以維持 流體循環,使葉片組203靜止(亦即,輸入軸113未轉動)。 根據本發明之另一具體實施例,如第8a圖中所示,流 體發動機800係為一圓形管’包括管外殼go]圍住一工作流 體、流體結構820及包括螺旋葉片802a及802b的螺旋狀葉片 組802。管外殼801係經由支撐元件812搞合至輸出軸811。 流體結構8 2 0強制工作流體進入沿著管外殼8 〇丨之該内壁的 螺旋流徑810。螺旋狀葉片組802產生扭矩用以轉動管外殼 801,藉由諸如由沿著螺旋流徑810流動的工作流體所產生 18 201115017 的升力803a及803b的葉片升力驅動輸出軸811。由第8b圖, 其中顯示螺旋葉片802a,流體流動810a自前緣805a流動橫 過螺旋葉片802a,螺旋狀地橫過螺旋葉片802a直至抵達後 緣806a為止。由螺旋葉片802a所產生的升力係隨著沿著橫 過螺旋葉片8 02 a之該工作流體路徑之阻力8 04 a而位在指向 進入頁面的該方向上。螺旋狀葉片組802中葉片802a及802b 係經設計具有大於1的一升阻比。 於第8c圖中,流體結構820包括軸向葉片組822其係附 裝至輸入軸821,以及不動的推進器823其係附裝至管外殼 801之内壁。在輸入流體流動810b進入流體結構820後,輸 入轴821提供軸向葉片組822動力,用以增加輸入流體流動 810b之轉速。工作流體離開軸向葉片組822流經不動的推進 器823,其使用該工作流體角速度用以增加該工作流體壓 力,俾以保持工作流體環繞内部外殼801的循環。輸出流體 流動810c在流經不動的推進器823後離開流體結構820。 於一具體實施例中,進行調整葉片參數,使能夠調整 攻角、表面積,並以足以讓L/D比或是由該葉片所產生的升 力最大化的一範圍加以調整。產生扭矩的葉片可相關於該 流體流向、流體速度及流體運動而為傾斜、加以調整,使 所產生扭矩最大化。可調整葉片而具有水平移動、上或下 以及旋轉。可藉由改變該翼形參考面積、攻角而使流體發 動機的推力輸出最大化。 於本發明之一具體實施例中,產生扭矩的葉片係耦合 至一流體發動機之外殼的内壁,該流體發動機之該外殼轉 19 201115017 動。如以上所說明,流體發動機100及流體發動機15〇可為 旋轉式發動機。該等旋轉式發動機之該旋轉運動可用以產 生推力或扭矩。產生扭矩之葉片可配置位在能夠達到產生 扭矩的任何位置處。於另一具體實施例中,位在—流體發 動機之該外殼内部的該等葉片可構成連續的或是不連續 的’圍起的或是未圍起的通道供工作流體流動橫過。於每 一通道中可使用用於驅動流體的一流體結構。 工作流體在一最佳的攻角以及高升阻比下流動橫過該 專葉片’使由該等葉片產生的扭矩達到最大程度。輸出用 以運轉流體發動機的動力總量係為該流體結構之該向外流 與該向内流之間的流體角速度差。 圖式中所示之葉片係經配置用以充分地說明本發明。 該等圖式顯示具有零攻角的氣動葉片並且其他的葉片係為 平直的。葉片的幾何形狀及位置係取決於複數之發動機設 計參數,包括該流體流動路徑、流體運動、流體速度及葉 片之攻角,用以產生最大的升阻比。 於本申請案中’翼、具翼剖面狀斷面的葉片以及翼剖 面意指具有氣動效應之物件。具有氣動效應的任一物件可 適用於實踐本發明。根據本發明,位在一流體發動機内部 的工作流體可藉由一流體結構(具有一軸及一組葉片的一 結構)移動,視該葉片組之該構形與流體發動機之該等應用 而定,流體結構可使用作為一動葉輪、一泵、一壓縮機、 一風扇或是一鼓風機。該—流體結構之一些實例係為流體 發動機100之流體結構102,流體發動機150之流體結構109 20 201115017 以及流體發動機300之流體結構109。於一具體實施例中, 一流體結構之葉片組可配置在周圍流體空間131中。 根據本發明,產生扭矩的葉片與移動流體的葉片可耦 合至該相同軸。根據本發明,產生扭矩的葉片與移動流體 的葉片可耦合至或是配置在一流體發動機之相同的内部結 構上。 於一具體實施例中,使用氣體作為工作流體用以使流 體發動機内部循環。流體發動機内部的流體循環能夠藉由 熱能提供動力。藉由於一或更多區域加熱以及於一或更多 區域冷卻,流體發動機可將熱能轉換成轉動的機械能。該 流體發動機因此可維持一溫度差用以保持流動循環。 根據本發明之另一具體實施例,藉由於該等流體發動 機内部以二區域利用一溫差以熱能提供動力的熱機(heat engine),如前所述使用氣動葉片亦為有利的。位於熱機内 部二區域之間的溫差,係用以保持發動機内流體循環。由 一熱機所產生的扭矩,能夠藉由該工作流體流動橫過在構 形上與本發明之流體發動機相似的一或更多氣動葉片組而 產生。 使用熱能提供動力的熱機1000,其係藉由修改流體發 動機100之結構所建構而成。流體發動機100之流體結構 1〇2(包括輸入軸101及徑向葉片106)係由位於上部分104中 的一或更多加熱區域以及位於下部分120中的一或更多冷 卻區域取代、位於上部分104中的徑向氣動葉片106以及於 下部分120中的一組相似氣動葉片,可經配置用以產生扭 21 201115017 矩。分離器iu係使用作為介於位於上部分1〇4中的加熱區 域與位於下邹分120中的冷卻區域之間的一絕緣體。位於上 4刀104内部的工作流體向外地朝向周圍流體空間131移 動,並接著自周圍流體空間131經由下部分12〇移動至中心 μ體空間13〇 ’用以形成流體流動之循環。藉由工作流體流 動橫過轴向葉片108、徑向氣動葉片1〇6、支樓元件112(可 為具氣動效應的葉片)以及任何經構形有助於產生扭矩的 亂動葉片而產生扭矩。 於一具體實施例中’熱機1000於上部分104中具有一流 體循環,其係向内地朝向中心流體空間13〇移動,經由中心 流體空間130移動至下部分120 ’並自下部分丨2〇經由周圍流 體空間131移動至上部分104。就熱機1 〇〇〇而言,動力葉片 可配置在任何適當位置處用以產生扭矩。於一具體實施例 中’由於軸向葉片108及徑向氣動葉片1〇6之轉動,熱機1〇〇〇 具有工作流體自上部分104經由周圍流體空間131轉動至下 部分120,並且自下部分120經由中心流體空間13〇轉動至上 部分104。自上部分104轉動地流體流動至下部分丨2〇,產生 一向下的牵引環繞著自下部分120轉動地流體流動至上部 分104所產生一向上的牽引。轉動地流體流動可引起一螺旋 式流體流動。 於一具體實施例中,藉由熱能提供動力的熱機1500, 可經藉由修改流體發動機150,藉由以上部分丨64中一或更 多的加熱區域以及位於下部分170中的一或更多冷卻區域 取代流體結構109所建構而成。轴向氣動葉片可經定向位於 22 201115017 中心流體空間130,徑向氣動葉片166a及166b可經配置分開 地位於上部分164及下部分170中用以產生扭矩。 於一具體實施例中,藉由熱能提供動力的熱機3000町 藉由以位於延伸室301、302、303及304之周圍部分中的加 熱機構取代流體發動機300之流體結構1〇9(包括輸入軸113 及葉片組203),以及於流體室307之一下部分中提供冷卻機 構所建構而成。熱機3000中的溫度差致使流體藉由因該熱 機3000之轉動所產生的離心力而自流體室3〇7之一下部分 向外地朝向下部分301b、302b、303b及304b流動。接著流 體利用因該熱機3000之轉動所產生的離心力而流向上部分 301u、302u、303u及3(Mu。該流體於延伸室 301、302、303 及304之周圍部分中膨脹,並行進經由上部分3〇lu、3〇2u、 3〇3u及3〇4u返回至流體室307。當流體流動橫過並轉動熱機 3000時’氣動葉片3〇5產生扭矩。 可將加熱及冷卻元件嵌入於位於外殼内部的氣動葉 片、支撐元件、分離器或結構中,用以改變流體的速度與 流體的密度使用於產生扭矩的升力最大化。就氣動葉片而 έ ’流體容積控制機構可用以改變流體速度。 以上的詳細說明係提供用以闡明本發明之特定的具體 實施例’並不意欲用以限定本發明。能夠作不同的變化及 修改係涵蓋於本發明之範疇内。本發明係於該等附加的申 凊專利範圍中提出。 齪圖式簡·^明】 第la圖顯示根據本發明之一具體實施例的流體發動機 23 201115017 100的一橫截面。 第lb圖係為流體發動機100的一橫戴面,將上部分104 與下部分120分開用以顯示流體結構102及徑向葉片106。 第lc圖顯示根據本發明之一具體實施例的流體發動機 150的一橫截面。 第Id圖係為一透視圖顯示第1圖之無外殼110的流體發 動機100的該等移動部件。 第2圖係為一透視圖顯示第lc圖之無外殼160的流體發 動機150。 第3a圖顯示本發明之一具體實施例的流體發動機300 的一透視圖。 第3b圖顯示本發明之一具體實施例的流體發動機300 的一第二視圖。 第4圖顯示本發明之一具體實施例的流體發動機4 〇 〇的 一透視圖。 第5圖顯示流體發動機500的一透視圖,其中併入第4圖 之流體轉動式發動機400。 第6a圖顯示葉片601a ' 601b、601c以及601d之定向’ 其係經轴向地佈置用以相關於一中心點產生扭矩。 第6b圖顯示葉片611a及611b,其係徑向地佈置用以相 關於一中心點產生扭矩。 第7a圖顯示根據本發明之一具體實施例之適合用於一 流體發動機的螺旋葉片766a及766b。 第7b圖顯示根據本發明之一具體實施例之適合用於一 24 201115017 流體發動機的螺旋葉片組708。 第7 c圖顯示根據本發明之一具體實施例之適合用於一 流體發動機的螺旋葉片767a及767b。 第8a圖顯示根據本發明之一具體實施例之流體發動機 800的一橫截面視圖。 第8b圖顯示流體發動機800之螺旋葉片802a的的一橫 截面視圖。 第8c圖顯示流體發動機800之流體結構820。 【主要元件符號說明】 100…流體發動機 130···中心流體空間 101·.·輸入轴/輸出車由 131…周圍流體空間 102…流體結構 150…流體發動機 103···空間/轴承 160…外殼 104…上部分 164…上部分 106…徑向葉片組 166,166a,166b …葉片組 107··.空間 170…下部分 108…轴向葉片 171…葉片 109···支撐底座/流體結構 203…葉片組 110…外殼 300…流體發動機 111···分離器結構 301-304…延伸室 112···支撐元件 301u,302u,303u,304u..·上部分 113…輸入軸/輸出軸 301b,302b,303b,304b...下部分 114…轴承 305…氣動葉片 120···下部分 306…外殼 25 201115017 307…流體室 708…螺旋葉片組 400…流體轉動式發動機 766a,766b…螺旋葉片 401a.401b…喷嘴 767a,767b…螺旋葉片 403…流體室 708…螺旋葉片組 404…外殼 800…流體發動機 404c…中心部分 801…管外殼 4041,404r…臂件 802…螺旋狀葉片組 500…流體轉動式發動機 802a,802b.··螺旋葉片 501···軸向葉片 803a,803b··.升力 502a…上部分 804a...阻力 502b…下部分 805a…前緣 601,601 a,601 b,601 c,601 d…葉片 806a…後緣 602a,602b,602c,602d...升力 810…螺旋流徑 603a,603b,603c,603d.··阻力 810a…流體流動 604a,604b,604c,604d· · ·流體流動 810 b…輸入流體流動 605…轴 810c…輸出流體流動 606a…半徑 81l···輸出軸 611a,611b…葉片 812…支撐元件 612a,612b…升力 820…流體結構 613a,613b···阻力 821…輸入軸 614a, 614b…流體流動 822…軸向葉片組 615a,615b…前緣 823…推進器 620…轉動轴 700…流體發動機 1000,1500,3000 …熱機 26201115017 VI. Description of the invention:  [Inventions belong to ^ technology 4 chair collar; j Refer to the relevant application for reference. This application is related to the application in the 12th month of 2004. The related agent's case number is M-15504 US' titled, , The same application patent application ("the same patent application in the application"), using the method and system for generation of electrical and mechanical power) The serial number is 10/963. 274. The patent application filed in the same application is incorporated herein by reference in its entirety for reference.  FIELD OF THE INVENTION The present invention relates to energy conversion devices. In particular, The present invention relates to an engine for efficiently transferring mechanical energy into useful work via fluid motion.  BACKGROUND OF THE INVENTION A thermal machine is operative to convert thermal energy flowing between different temperature zones into useful work. A fine heat engine uses thermal energy to drive the coordinated and reciprocating motion of a set of pistons or the rotational motion of a set of turbine blades.  The movement of the pistons or blades drives a machine or generator.  In the prior art, The moving parts for the operation of the heat engine are enclosed in a casing, And mechanically (for example, Coupled to an external component by a shaft) Used to drive external machinery.  In a fluid (for example, in the air, Wing and airfoil 201115017 uses its shape to obtain aerodynamic advantages in its movement.  From the source of the plural, Including the online UIUC airfoil database and the more modern wing profiles. Obtain the applicable complex wing and wing profile design.  The National Aeronautics Advisory Committee (NACA) designs and tests the complex wing design and publishes the results in a systematic set of tables. For today's applications of complex numbers, These results are still valid, Can be used to design the wing shape. The tables are based on the angle of attack of the wing through which the fluid flows.  Provides lift and drag coefficients for the wing profile. Using these coefficients, The lift and resistance can be calculated using the following equation:  1) Lift = 2) Resistance = where C, Is the lift coefficient, q is the drag coefficient, p is the density of the fluid, F is the velocity of the wing profile relative to the fluid, And / is the area of the wing profile. The lift-to-resistance ratio (L/D ratio) is used to compare the efficiency of a wing profile or blade design.  The lift-to-resistance ratio (L/D ratio) is used to measure the efficiency produced by the lift of the wing profile or blade design with a particular fluid characteristic at a particular angle of attack.  The minimum input power Pin required to drive a pump, Which has a discharge flow Q, Fluid pressure Ppres, And a theoretical pressure head is given by Pin = QPpres = Q p gHT. The full load turbine relationship can be used to determine the pressure head produced by a 201115017 set of rotating blades; This pressure head is given by the following equation:  ^ _ w2F2 coscr2 - w/丨 cosor!  11 γ - ' 1 1 ~ ' [Abstract] Summary of the Invention According to an embodiment of the present invention, An engine transmits power by using an aerodynamic blade that is optimally configured with a lift-to-drag ratio in a fluid, Used to generate a torque. The fluid can be a liquid or a gas. Different considerations of engine configuration, Blade position,  Blade shape, Blade lift-to-drag ratio, Blade angle, Fluid density, Fluid pressure, Fluid path, Fluid motion and fluid velocity are design parameters. Can be adjusted for high performance. E.g, The resulting fluid flow can be used to drive the rotation of an output shaft.  Once you have considered the following detailed instructions, A better understanding of the present invention will be obtained in conjunction with the accompanying drawings.  BRIEF DESCRIPTION OF THE DRAWINGS Figure 1a shows a cross section of a fluid engine 100 in accordance with an embodiment of the present invention.  Figure lb is a cross section of the fluid engine 100, The upper portion 104 is separated from the lower portion 120 to display the fluid structure 102 and the radial vanes 106.  Figure lc shows a cross section of a fluid engine 150 in accordance with an embodiment of the present invention.  The first Id diagram is a perspective view showing the fluids of the outer casing 110 of Fig. 1 which are the moving parts of the engine 110.  Figure 2 is a perspective view showing the fluid engine 150 without the outer casing 160 of the lc.  Figure 3a shows a perspective view of a fluid engine 300 of one embodiment of the present invention.  Figure 3b shows a second view of a fluid engine 300 in accordance with one embodiment of the present invention.  Figure 4 shows a perspective view of a fluid engine 400 in accordance with one embodiment of the present invention.  Figure 5 shows a perspective view of the fluid engine 500, The fluid rotary engine 400 incorporated in Fig. 4 is incorporated therein.  Figure 6a shows the blade 601a, 601b, Orientation of 601c and 601d,  It is axially arranged to generate torque in relation to a center point.  Figure 6b shows the blades 611a and 611b, It is arranged radially to generate torque with respect to a center point.  Figure 7a shows spiral blades 766a and 766b suitable for use in a fluid engine in accordance with an embodiment of the present invention.  Figure 7b shows a spiral blade set 7〇8 suitable for use in a fluid engine in accordance with an embodiment of the present invention.  Figure 7c shows spiral blades 767a and 767b suitable for use in a fluid engine in accordance with an embodiment of the present invention.  Figure 8a shows a cross-sectional view of a fluid engine 800 in accordance with an embodiment of the present invention.  Figure 8b shows a cross-sectional view of a cross-section 201115017 of the helical blade 802a of the fluid engine.  Figure 8c shows the fluid structure 820 of the fluid engine 800.  To facilitate cross-referencing between these patterns, The same components are assigned the same component symbols.  I: Embodiment 3 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A fluid engine is a device. It converts fluid energy into mechanical energy. The fluid engine of the present invention operates by using a lift gain on a pneumatic blade. Derived from resistance to movement of the working fluid through the blade, Used to generate the torque used by the fluid engine. This lift on the blade is caused by this energy loss of the fluid originating from the resistance. The lift generates a torque that causes the movable components of the fluid engine to start operating. Thereby the fluid engine is actuated. a pneumatic blade with a one-liter resistance ratio (L/D ratio) of 10, This means that the lift is 10 times the resistance. According to the present invention, The fluid flowing inside the fluid engine may be one or more gases or one or more liquids.  Figure la shows a cross section of a fluid engine 100 in accordance with an embodiment of the present invention. As shown in Figure 1, The engine 1 includes a housing 110,  It includes an upper portion 104 and a lower portion 120. A fluid is typically sealed inside the outer casing 110. Used to transfer power from the input shaft 101 to the fluid located inside the fluid engine 100, Sequentially, Lifting forces are generated for the blades disposed inside the fluid engine 100, Used to generate torque. The motion caused by this torque provides output power to the output shaft 113. The fluid structure 102 includes an input shaft 101 and a radial blade set 106. The input shaft 101 is externally driven to rotate the diameter 201115017 to the blade group 106, It increases the rotational speed of the fluid and the internal pressure of the outer casing 110. Providing a space 103 for enclosing the appropriate bearing, It facilitates the rotation of the fluid structure 102. The separator structure 111 is an annular structure having axial vanes 108 disposed thereon. The lift on the axial vanes due to the movement of the fluid, A torque output is provided for fluid engine 100. The separator structure 111 can be a ring-shaped air-foil blade. In this particular embodiment, The separator structure 111 is internally hollow (space 107) for weight reduction. It also provides space for placing control elements. The axial vanes 108 are preferably pneumatic vanes.  For engine efficiency, there is preferably a lift-to-drag ratio that is much greater than one. The axial vane 108 is disposed along a portion of the separator structure 1U, And each blade is oriented to maximize the torque produced by the fluid flow, It is used to drive the output shaft 113.  The radial vanes 106 generate a centrifugal force that drives the fluid radially, So that it is optimal on each axial blade 1〇8, , Angle of attack, , Produce a flow, A significant amount of torque is provided to rotate the separator structure 1丨i. As shown in the figure, The separator structure 111 is structurally supported by the support member 112 to the support base. Cut (10) can be used to (4) Wei (4) (4). The support member 112 can be matched with a blade (having a cross-sectional shape of the wing). Used to generate torque.  Alternatively, another set of blades may be provided in place of the cutting element 112 to provide additional torque. The movement of the separator m is driven by the cutting element 112, ,  Used to drive the rotation of the base 1〇9 and the output (4) 3, It is attached to the support base. The bearing m ensures axial stiffness under the rotation of the (four) 113. In one embodiment, the 'axial blade (10) is structurally attached to the material of the outer casing m (four), And eliminate the numb u [during the operation, The 201115017 fluid flows across the axis "(10) heart generation - torque, Causes the housing to rotate in the forward direction. The rotation of the engine 1 can be used to drive the machine via an outer (four) m gear structure with the outer casing.  The fluid structure 102 provides sufficient fluid pressure during operation, Used to compensate for fluid pressure loss due to resistance and friction of the fluid circulation towel. The fluid exiting the fluid structure 102 can have a rotational speed (i.e., The angular velocity and the angular momentum generated therefrom are equal to or greater than the rotational speed of the axial blade 1〇8,  The efficiency of the fluid engine 100 is maximized. The output torque at the output shaft 113 is the sum of the torques produced by the axial blades 1〇8. Engine efficiency can be increased by orienting the axial vanes 1〇8 such that the fluid flow acts on each vane at a preferred angle of attack, 利用 Use its lift-to-drag ratio to maximize the torque produced.  Fluid structure 102, It includes a blade 1〇6 and an input shaft 101' disposed in the upper portion 104 that are designed to mechanically and radially outwardly drive the working fluid toward the surrounding fluid space 131. Depending on the configuration of the blade assembly 106 and the application of the fluid engine 100, The fluid structure 102 can be used as a moving impeller, a pump, a compressor, A fan or a blower. In a specific embodiment, The fluid structure 102 can have an adjustable blade configuration, The blade set 106 provides energy to the working fluid for flow within the fluid engine 10〇. The force obtained in the engine 1 〇 can be controlled by adjusting the amount of fluid pumped by the fluid structure 102.  According to the present invention, The force generated in the fluid increases with the density of the fluid used. therefore, a higher fluid density (for example, A liquid) results in a lower fluid velocity requirement to produce a known output power. Since the root 201115017 is designed according to the compromise between the fluid density and the fluid velocity, the output power demand is considered. Due to frictional fluid pressure loss, It increases with fluid velocity and fluid viscosity. And when choosing between a gas and a liquid, Housing requirements should also be considered.  Figure lb is a 'cross-face' of the fluid engine 100, The upper portion 104 is separated from the lower portion 120 to display the fluid structure 102 and the radial vanes 106.  Figure 1c shows a cross section of a fluid engine 150 in accordance with an embodiment of the present invention. The outer casing 160 of the fluid engine 150 includes an upper portion 164 and a lower portion 170. A fluid is typically sealed inside the outer casing 160' for communicating power from the input shaft 1131 for moving fluid with a blade set 203 positioned inside the engine 150, So that the fluid drives the axial vanes 108, Blade sets 166a and 166b are used to generate torque for output shaft 101. The fluid structure 109 includes an input shaft 113 and a blade set 203. The input shaft 113 is externally driven to rotate the blade set 203' to increase the rotational speed of the fluid inside the outer casing 160 and the pressure. This rotation of the blade set 203 produces a rotating fluid flow, Driving the fluid through the central fluid space 130 to the upper portion 164, And it returns to the lower portion 170 through the surrounding fluid space 131 and then returns to the central fluid space 130.  In the figure lc, The fluid engine shown is 15 turns, E.g, There are only radial blades 106, However, instead of the blade set 166 (which includes the blade set 166a located in the upper portion 164 and the blade set 丨 66b located in the lower portion 〇7〇), in this example, Unlike fluid engine 100, 妯m 拎屮u,  = outside the greedy axis. In the case of skill, Axis ^ Output shaft.  Say = ϊίΐί ’, Structure, A rotational force is applied to the fluid to be considered a "fluid structure." ’,  10 201115017 is the supporting component, The separator 111 is secured to the upper portion 164 and the lower portion 170. The separator structure 111 is a ring structure. Having an axial vane 108 thereon, Blade sets 166a and 166b. The separator structure η 1 may be part of the shaft vane 108. Further, the separator 111 is also optional. One or more additional blade rings may be provided for additional torque (eg, Blade 171). A reaction blade can be used in the blade set 166 to generate torque. The blade set 166a or 166b can have helical blades. Axial blade 1〇8, The blade sets 166a and 166b are preferably pneumatic blades. It preferably has a lift-to-drag ratio greater than one. Blade sets 166a and 166b can be configured as support elements for fluid engine 150. The blade sets 166a and 166b are coupled to the output shaft 1〇1. The blade sets 166a and 166b can be reactionary type blades. In a specific embodiment, the axial blade 108, One of the blade sets 166a and 166b is structurally attached to the inner wall of the outer casing 160 and removes a bearing 103. The working fluid flows across the axial vanes 108 during operation, The use of a torque to cause the outer casing 160 to rotate in a predetermined direction. Rotation of the engine 160 can be used to drive the machine via an external shank to a shaft or a gear structure of the housing.  In a specific embodiment, Blade set 166a, 166b and the axial vane 108 push the output shaft 1〇1 to rotate, Used to communicate the mechanical power output of the fluid engine 150. The output shaft 101 is preferentially rotated in one direction. Axial blade 108,  The blade sets 166a and 166b are rotated by the fluid flow pressure generated by the fluid structure 109. According to another specific embodiment, The blades inside the fluid engine 150 rotate and generate eddy currents in the working fluid so that the fluid flows in a rotational manner about one axis. The speed of the working fluid causes the blades to move, This produces useful work. The torque generated by the rotation of the output shaft 101 201115017 can be used to drive the machine.  The first Id diagram is a perspective view showing the moving parts of the fluid engine 100 without the outer casing 110 of the first embodiment.  Figure 2 is a perspective view showing the fluid engine 150 without the outer casing 160 of the lc. As shown in Figure 2, Two sets of blades 166a and 166b are disposed in the outer casing 110, Configuring a set of axial vanes 108 at the periphery, And the blade set 203 is disposed on the fluid structure 109. Preferably, The axial vanes 108 are pneumatic vanes having a lift-to-drag ratio greater than one. And the blade sets 166a and 166b are either inverted or pneumatic blades.  In the fluid engine 150, The fluid structure 109 is in contact with three sets of blades (ie, The blades 166a and 166b and the axial blades 108 are rotated at a speed independent of the speed. The input shaft 113 is disposed through the blade set 203.  When the blade set 203 is driven by the power output of the fluid engine 150, The speed at which the gear set blade set 203 can be used is at a particular ratio to the output speed of the fluid engine 150. By setting the gear ratio appropriately,  The blade set 203 can occasionally generate sufficient power to actuate the fluid engine 150. however, When the blade group 203 is externally driven, No gears are needed,  therefore, The rotational speed of the fluid structure 109 is set by the rotational speed of the external actuator or engine. In a specific embodiment, Depending on the configuration of the blade set and such applications of the fluid engine, The fluid structure 109 can be used as a pump 'a propeller, a compressor, A fan or a blower.  In a specific embodiment, a fluid structure can be used (for example, The fluid structure 102 or 109) is disposed at any location within the fluid engine, Used to create a desired fluid flow. More than one fluid structure or blade set can be provided.  12 201115017 Used to drive the fluid to work on the leaf #. The fluid structure may comprise a multi-mechanism material when the mechanical input power is present (4) when the fluid is driven. Lai_Fold = (four) or with the special 11G (four) alignment), 俾 to reduce the flow energy loss. In a specific embodiment, The slabs located inside the fluid structure can be used as a diffuser for non-rotating the rotating 'body' to a high pressure fluid, The fluid structure does not need to be continuously powered by an urgical source.  The vanes located in the fluid structure can be powered by a coil spring.  Used to rotate the fluid. In a specific embodiment, a torque produced by the output shaft of the fluid engine, The input shaft can be driven back to provide the fluid structure power. The leaves produce torque that can touch the body channel.  Each blade can be adjusted to control the torque produced by the blade. The adjustment operation is performed by controlling the angle of attack or tilting the blade. The fluid engine 100 or 150 can be configured as a rotary fluid engine. Figure 3a shows a perspective view of a fluid engine 3 of one embodiment of the present invention. As shown in Figure 3a, The fluid rotary engine 3〇〇 includes a housing 3〇6, It encloses the fluid chamber 307. The fluid chamber 307 opens to the four extension chambers 301-304' which are respectively from the upper portion 301u, 302u' 303u and 304u and the lower part 301b, 302b, Composition of 303b and 304b. The fluid chambers 307 can be internally configured with the fluid engines described above (e.g., Any of these fluid structures of fluid engine 100 or 150). In Figure 3a, The fluid structure 109 is shown to include a blade set 203 and an input shaft 113. The fluid structure 109 produces a fluid circulation, It flows from the fluid chamber 307 to the upper portion 301u of the extension chamber 301-304, 302u, 303u and 304u,  13 201115017 and via the lower part 301b of the extension room 301-304, 302b, 303b and 304b return to chamber 307. During the operation, the extension chamber 3 (n_3〇4 is enclosed). Each of the extension chambers is a pneumatic vane 305' that is suitably oriented to generate torque using the fluid flow, The rotation of the extension chamber 301_3〇4 is caused to drive the output shaft 101. Figure 3b shows a second view of a fluid rotary engine 300 in accordance with one embodiment of the present invention. As shown in Figure 3b, The air vane 305 is attached to the upper portion 301u, 302u, 303u and 304u are oriented, And in the next part 301b, 302b, Directed in 303b and 304b, It is used to allow a torque to be generated on the output vehicle 101 by the extension chambers 301-304. Fluid engine 3 针对 for high torque, Slow rotation design, Used to reduce the effect of centrifugal force on the return fluid. According to the present invention, Depending on the configuration of the blade set and such applications of the fluid engine, the fluid structure 109 may be a propeller, A moving wheel 'a compressor' is provided by a fan or a blower.  Figure 4 shows a perspective view of a fluid rotary engine 400 in accordance with one embodiment of the present invention. The fluid rotary engine 4〇〇 includes a housing 4〇4, It is composed of arm members 4041 and 404r and a central portion 404c. It also constitutes a continuous fluid chamber 403. The fluid rotary engine 400 is an open system. It starts the circulation of the fluid (gas or liquid) by the centrifugal force of the rotation of the output shaft 113 or the arm member 4041 or the arm member 404r. This centrifugal force draws fluid into the central portion 404c. During the operation, The fluid flows into the central portion 4〇4c and is moved outward toward the arms 4041 and 404r of the chamber 403 by the centrifugal force. And exit at the nozzles 401a and 401b. A lift-to-drag ratio air-moving vane 305 is disposed in the fluid chamber 403, It is oriented to generate torque from the fluid flow, A rotary mechanism attached to the central portion 404c (and thus an output power at the output shaft 14 201115017 113) is driven. The moment is generated by the fluid exiting through the nozzles 4a and 401b (i.e., A reactive force acting on the nozzles 401a and 401b when the fluid exits the nozzles 401a and 401b). The fluid rotary engine 400 can be configured as a closed system having a sealed fluid chamber. The central portion 404c can be configured downwardly to draw fluid upward into the central portion 404c.  Figure 5 shows a perspective view of a fluid rotary engine 500 in accordance with one embodiment of the present invention. The fluid rotary engine 5 is an open system. As shown in Figure 5, The fluid rotary engine 500 provides torque in the system, Used to drive the output shafts 101 and 103. The fluid rotary engine 500 includes an upper portion 502a and a lower portion 502b. The lower portion 502b can be provided by an open system type fluid engine. A fluid rotary engine 400 such as that shown in FIG. The fluid exiting from the fluid chamber 403 by the nozzles 401a and 401b located in the lower portion 502b of the fluid rotary engine 500, Guided to drive the axial vanes 5〇1 located in the upper portion 5〇2a, Additional torque is provided to drive the output shaft 101. The shaft 1〇1 and the shaft 113 are rotated in opposite directions. Fluid rotary engine 500 can be configured as a closed system having a sealed fluid chamber. The gaseous fluid can be pressurized.  Figure 6a shows a pneumatic blade arranged axially and oriented to generate torque. As in Figure 6a, the blade set 601, With blades 601a, 601b,  601c and 601d, Is configured to flow freely from the fluid 6〇4a, 604b,  An axially flowing fluid, shown at 604e and 604d, produces a torque on the shaft 605. Blade 601a, 601b, 601c and 601d are configured to generate lift 602a, respectively. 602b, 602c and 602d, It causes each lift to be guided by 15 201115017 to maximize the torque generated (ie, Vertical to the axis of rotation). The resistance 603a ' 603b generated by the fluid flow across the aerodynamic blade set 601, 603c and 603d, This torque is generated by the aerodynamic blade set 601 for these fluid forces. Each blade and the fluid flow (ie, The angular velocity difference between the blade 601a and the fluid flow 604a), Determine the angle of attack for each blade. Blade 601a, 601b, 601c and 601d are configured such that their angle of attack is greater than or equal to zero. E.g, At the blade 601a, It has its lift 602a (LF) located at a radius 606a(R) from the axis 6〇5. Resistance 603a (DF) and an LD rise-ratio ratio, The moment generated by the blade 601a can be approximately LF*R = DF*LD*R. therefore, When the LD system is greater than 1, The blade 601a generates a torque using a force greater than the fluid force (resistance 603a). Similarly, Blade 601b, 601c and 601d respectively generate a torque using a force greater than the fluid force.  Figure 6b shows a pneumatic blade arranged radially to generate torque. In Figure 6b, The vanes 611a and 611b are configured to generate a torque about the rotating shaft 620. Radially outward from a fluid as indicated by fluid flows 614a and 614b. The blades 611a and 611b are configured to generate lifts 612a and 612b, respectively. And the resistances 613a and 613b are generated separately. Like the blades of the axial configuration described above, If the blades 61 la and 611b have a one-liter resistance ratio greater than 1, the blades 611a and 611b can generate torque using a force greater than the fluid force. When the fluid flows radially outward, The fluid has reduced angular velocity due to conservation of angular momentum. This change in the angular velocity of the fluid can affect the blades oriented along the radial direction, Such lifts and drags are produced by blades 611a and 61 lb. The angular velocity of a fluid at the center is greater than 16 201115017, the leading edge of a radially oriented blade, Such as blades 611a & The angular velocity of the front edges 615a and 615b of 611b, This effect can be reduced. Use a blade with a high arc profile or a blade with a shorter array of multiple blades, It can also reduce these effects.  According to the present invention, a blade having a lift-to-drag ratio greater than 1, A lift force greater than a resistance can be produced as the first-class body flows across the blade. The blade can be placed in an enclosed engine. Used to generate a force that is greater than the force required to move the fluid across the blade for generating torque.  Fluid engine 700 is provided in accordance with another embodiment by modifying the structure of fluid engine 150. Specifically, by replacing the blade set 166a of the fluid engine 150 with the helical blades 766a and 766b, Replace the axial blade 1〇8 of the fluid engine 15〇 with the spiral blade set 708, The fluid engine 700 is constructed by replacing the blade group 166b of the fluid engine 150 with the spiral blades 767a and 767b. Spiral blades 766a and 766b are shown in Figure 7a. Similarly, the spiral blade group 708 and the spiral blades 767a and 767b are shown in Figs. 7b and 7c, respectively. As shown in Figure lc, The fluid engine 7 has a rotating fluid flow 'fluid structure 109' including a blade set 203 and an input shaft 113. The input shaft 113 is configured to rotate the blade set 2〇3, The driving fluid moves in the opposite direction as the bending direction of the spiral blades. In a specific embodiment, The blade set 203 has a pneumatic blade, It is adjustable so that the blade set 203 is used as a pusher. therefore, The difference in relative angular velocity between the fluid and the blades in the blade set 203, Determine the fluid pressure increase.  When the spiral fluid engine starts operating, The input shaft 113 rotates the blade 17 201115017 The slice group 203 forces the fluid to move upward through the central fluid space 13 〇 into the upper portion 164. The vanes 766a and 766b located in the upper portion 164 force the fluid to rotate in the opposite direction as the input shaft 113 rotates. The rotating fluid flows from the upper portion 164 to the surrounding space 131' where it is axially bladed, As shown in Figure 7b, The fluid is caused to spiral downwardly into the lower portion 17〇. The vanes 767a and 767b located in the lower portion 170 move inwardly to the central fluid space 130 as the fluid moves. Increase the angular velocity of the fluid. At 7a, In Figures 7b and 7c, the blade 766a, 766b, 708, 767a and 767b' are designed to generate torque on the output shaft 1〇1 by the lift generated by the flow of the spiral fluid. Rotate in the same direction of rotation as the fluid, respectively. When the fluid continues to circulate in the manner described above, The fluid angular velocity increases, This angular velocity of the fluid is included in the center space 13 ’ so that the angular velocity also increases between the fluid and the blade group 2〇3. As long as there is sufficient relative angular velocity difference between the fluid and the blade set 203 to increase fluid pressure to maintain fluid circulation, This angular velocity of the blade set 203 can be reduced. When the fluid reaches a particular angular velocity, as the blade set 203 has produced a sufficient fluid pressure increase to maintain fluid circulation, Keeping the blade set 203 stationary (ie, The input shaft 113 is not rotated).  According to another embodiment of the invention, As shown in Figure 8a, The fluid engine 800 is a circular tube 'including a tube casing go' surrounding a working fluid, Fluid structure 820 and helical blade set 802 including helical blades 802a and 802b. The tube housing 801 is engaged to the output shaft 811 via the support member 812.  The fluid structure 8020 forces the working fluid to enter a spiral flow path 810 along the inner wall of the tube casing 8. The helical blade set 802 generates torque for rotating the tube housing 801, Output shaft 811 is driven by blade lift of lifts 803a and 803b, such as produced by a working fluid flowing along spiral flow path 810. By Figure 8b,  Wherein the spiral blade 802a is displayed, Fluid flow 810a flows from leading edge 805a across spiral blade 802a, It spirals across the spiral vane 802a until it reaches the trailing edge 806a. The lift generated by the helical blade 802a is in this direction pointing into the page as it follows the resistance 804a of the working fluid path across the helical blade 082a. The blades 802a and 802b in the helical blade set 802 are designed to have a one-liter resistance ratio greater than one.  In Figure 8c, The fluid structure 820 includes an axial blade set 822 that is attached to the input shaft 821, And the stationary pusher 823 is attached to the inner wall of the tube outer casing 801. After the input fluid flow 810b enters the fluid structure 820, The input shaft 821 provides axial blade set 822 power, Used to increase the rotational speed of the input fluid flow 810b. The working fluid exits the axial vane set 822 and flows through the stationary propeller 823. It uses the working fluid angular velocity to increase the working fluid pressure, 俾 to keep the circulation of the working fluid around the inner casing 801. The output fluid flow 810c exits the fluid structure 820 after flowing through the stationary pusher 823.  In a specific embodiment, Adjust the blade parameters, Enable adjustment of the angle of attack, Surface area, It is adjusted with a range sufficient to maximize the L/D ratio or the lift generated by the blade. The blade that produces the torque can be related to the flow direction of the fluid, Fluid velocity and fluid motion are tilted, Adjust it, Maximize the torque produced. Adjustable blades for horizontal movement, Up or down and rotate. By changing the wing reference area, The angle of attack maximizes the thrust output of the fluid engine.  In a specific embodiment of the invention, The torque generating blade is coupled to the inner wall of the outer casing of a fluid engine. The outer casing of the fluid engine is turned 19 201115017. As explained above, The fluid engine 100 and the fluid engine 15A may be rotary engines. This rotational motion of the rotary engines can be used to generate thrust or torque. The torque generating vanes are configurable at any position where torque can be generated. In another specific embodiment, The vanes located within the outer casing of the fluid engine may form a continuous or discontinuous 'enclosed or unenclosed passageway for the working fluid to flow across. A fluid structure for driving the fluid can be used in each channel.  The working fluid flows across the special blade at an optimum angle of attack and a high lift-to-drag ratio to maximize the torque generated by the blades. The total amount of power output to operate the fluid engine is the difference in angular velocity of the fluid between the outward flow and the inward flow of the fluid structure.  The blades shown in the drawings are configured to fully illustrate the invention.  These figures show aerodynamic blades with zero angle of attack and the other blades are straight. The geometry and position of the blade depends on the complex engine design parameters. Including the fluid flow path, Fluid motion, Fluid velocity and angle of attack of the blade, Used to produce the maximum lift-to-drag ratio.  In this application, 'wing, A blade having a wing-shaped cross section and a wing section mean an object having aerodynamic effect. Any article having aerodynamic effects may be suitable for use in practicing the invention. According to the present invention, The working fluid located inside a fluid engine can be moved by a fluid structure (a structure having a shaft and a set of blades). Depending on the configuration of the blade set and such applications of the fluid engine, The fluid structure can be used as a moving impeller, a pump, a compressor,  A fan or a blower. Some examples of the fluid structure are fluid structures 102 of fluid engine 100, Fluid structure 109 20 201115017 of fluid engine 150 and fluid structure 109 of fluid engine 300. In a specific embodiment,  A set of blades of a fluid structure can be disposed in the surrounding fluid space 131.  According to the present invention, The blades that generate torque and the blades that move fluid can be coupled to the same shaft. According to the present invention, The torque generating blades and the moving fluid blades may be coupled to or disposed on the same internal structure of a fluid engine.  In a specific embodiment, Gas is used as the working fluid to circulate the inside of the fluid engine. The fluid circulation inside the fluid engine can be powered by thermal energy. By heating in one or more areas and cooling in one or more areas, Fluid engines convert thermal energy into rotational mechanical energy. The fluid engine thus maintains a temperature differential to maintain flow cycling.  According to another embodiment of the invention, By means of a heat engine powered by thermal energy in the interior of the fluid engine with a temperature difference between the two regions, It is also advantageous to use pneumatic blades as previously described. The temperature difference between the two areas inside the heat engine, It is used to maintain fluid circulation in the engine. The torque produced by a heat engine, It can be created by the flow of the working fluid across one or more sets of pneumatic blades that are similar in configuration to the fluid engine of the present invention.  a heat engine 1000 powered by thermal energy, It is constructed by modifying the structure of the fluid engine 100. The fluid structure 1 2 of the fluid engine 100 (including the input shaft 101 and the radial vanes 106) is replaced by one or more heating zones located in the upper section 104 and one or more cooling zones located in the lower section 120, A radial aerodynamic blade 106 located in the upper portion 104 and a set of similar aerodynamic blades in the lower portion 120, Can be configured to generate a twist 21 201115017 moment. The separator iu is used as an insulator between the heating zone located in the upper portion 1〇4 and the cooling zone located in the lower portion 120. The working fluid located inside the upper 4 knife 104 moves outward toward the surrounding fluid space 131, It is then moved from the surrounding fluid space 131 via the lower portion 12〇 to the central μ body space 13〇' to form a circulation of fluid flow. Flowing through the axial vanes 108 by the working fluid, Radial pneumatic blades 1〇6, The branch member 112 (which may be a vane with aerodynamic effect) and any turbulent blades configured to contribute torque to generate torque.  In a specific embodiment, the heat engine 1000 has a first-class body loop in the upper portion 104. It moves inward toward the central fluid space 13〇, Moving to the lower portion 120' via the central fluid space 130 and moving to the upper portion 104 from the lower portion 丨2〇 via the surrounding fluid space 131. As far as the heat engine 1 is concerned, The power blades can be configured at any suitable location to generate torque. In a specific embodiment, due to the rotation of the axial vanes 108 and the radial aerodynamic blades 1〇6, The heat engine 1 has a working fluid that is rotated from the upper portion 104 to the lower portion 120 via the surrounding fluid space 131, And the lower portion 120 is rotated to the upper portion 104 via the central fluid space 13A. The fluid from the upper portion 104 is rotatively flowed to the lower portion 丨2〇, A downward traction is generated to cause an upward traction of fluid flow from the lower portion 120 to the upper portion 104. Rotating fluid flow can cause a helical fluid flow.  In a specific embodiment, a heat engine 1500 powered by thermal energy,  By modifying the fluid engine 150, The fluid structure 109 is constructed by replacing one or more heating zones in the upper portion 64 and one or more cooling regions in the lower portion 170. The axial aerodynamic vanes may be oriented at 22 201115017 central fluid space 130, Radial pneumatic blades 166a and 166b can be configured to be separately located in upper portion 164 and lower portion 170 for generating torque.  In a specific embodiment, The heat engine 3000 powered by thermal energy is located in the extension chamber 301, 302, The heating mechanism in the peripheral portion of 303 and 304 replaces the fluid structure 1〇9 of the fluid engine 300 (including the input shaft 113 and the blade group 203), And a cooling mechanism is provided in a lower portion of the fluid chamber 307. The temperature difference in the heat engine 3000 causes the fluid to move outward from the lower portion of the fluid chamber 3〇7 toward the lower portion 301b by the centrifugal force generated by the rotation of the heat engine 3000, 302b, 303b and 304b flow. Then, the fluid flows to the upper portion 301u by the centrifugal force generated by the rotation of the heat engine 3000, 302u, 303u and 3 (Mu. The fluid is in the extension chamber 301 302, Expansion in the surrounding parts of 303 and 304, And travel through the upper part 3〇lu, 3〇2u,  3〇3u and 3〇4u are returned to the fluid chamber 307. The aerodynamic blade 3〇5 produces torque as the fluid flows across and rotates the heat engine 3000.  The heating and cooling elements can be embedded in the pneumatic blades located inside the housing, Supporting element, In a separator or structure, The speed at which the fluid is used and the density of the fluid are used to maximize the lift that produces the torque. In the case of pneumatic blades, the fluid volume control mechanism can be used to vary the fluid velocity.  The above detailed description is provided to illustrate the specific embodiments of the invention, and is not intended to limit the invention. It is within the scope of the invention to make various changes and modifications. The present invention is set forth in the scope of such additional patents.  BRIEF DESCRIPTION OF THE DRAWINGS Figure la shows a cross section of a fluid engine 23 201115017 100 in accordance with an embodiment of the present invention.  Figure lb is a cross-face of the fluid engine 100, The upper portion 104 is separated from the lower portion 120 to display the fluid structure 102 and the radial vanes 106.  Figure lc shows a cross section of a fluid engine 150 in accordance with an embodiment of the present invention.  The first Id diagram is a perspective view showing the moving parts of the fluid engine 100 without the outer casing 110 of Fig. 1.  Figure 2 is a perspective view showing the fluid engine 150 without the outer casing 160 of the lc.  Figure 3a shows a perspective view of a fluid engine 300 in accordance with one embodiment of the present invention.  Figure 3b shows a second view of a fluid engine 300 in accordance with one embodiment of the present invention.  Figure 4 shows a perspective view of a fluid engine 4 〇 of one embodiment of the present invention.  Figure 5 shows a perspective view of the fluid engine 500, The fluid rotary engine 400 incorporated in Fig. 4 is incorporated therein.  Figure 6a shows the blade 601a '601b, The orientations 601c and 601d are axially arranged to generate torque in relation to a center point.  Figure 6b shows the blades 611a and 611b, It is arranged radially to generate torque with respect to a center point.  Figure 7a shows spiral blades 766a and 766b suitable for use in a fluid engine in accordance with an embodiment of the present invention.  Figure 7b shows a spiral blade set 708 suitable for use in a 24 201115017 fluid engine in accordance with an embodiment of the present invention.  Figure 7c shows spiral blades 767a and 767b suitable for use in a fluid engine in accordance with an embodiment of the present invention.  Figure 8a shows a cross-sectional view of a fluid engine 800 in accordance with an embodiment of the present invention.  Figure 8b shows a cross-sectional view of the helical blade 802a of the fluid engine 800.  Figure 8c shows the fluid structure 820 of the fluid engine 800.  [Main component symbol description] 100... Fluid engine 130···Center fluid space 101·. Input shaft/output vehicle by 131... surrounding fluid space 102... fluid structure 150... fluid engine 103···space/bearing 160... outer casing 104... upper portion 164... upper portion 106... radial blade set 166, 166a, 166b ... blade Group 107··. Space 170...lower portion 108...axial blade 171...blade 109··support base/fluid structure 203...blade group 110...housing 300...fluid engine 111···separator structure 301-304...extension chamber 112··· Supporting elements 301u, 302u, 303u, 304u. . · Upper part 113... Input shaft / output shaft 301b, 302b, 303b, 304b. . . Lower part 114...bearing 305...aerodynamic blade 120···lower part 306...outer casing 25 201115017 307...fluid chamber 708...spiral blade set 400...fluid rotary engine 766a,766b...spiral blade 401a. 401b...nozzle 767a,767b...spiral blade 403...fluid chamber 708...spiral blade set 404...housing 800...fluid engine 404c...center portion 801...tube housing 4041,404r...arm member 802...spiral blade set 500...fluid rotary Engine 802a, 802b. ··Spiral blade 501···Axial blade 803a, 803b··. Lift 502a... upper part 804a. . . Resistance 502b...lower part 805a...leading edge 601,601 a,601 b,601 c,601 d...blade 806a... trailing edge 602a, 602b, 602c, 602d. . . Lift 810... spiral flow path 603a, 603b, 603c, 603d. • Resistance 810a... Fluid flow 604a, 604b, 604c, 604d · · Fluid flow 810 b... Input fluid flow 605... Shaft 810c... Output fluid flow 606a... Radius 81l··· Output shaft 611a, 611b... Blade 812... Support Element 612a, 612b... Lift 820... Fluid structure 613a, 613b... Resistance 821... Input shaft 614a, 614b... Fluid flow 822... Axial blade set 615a, 615b... Leading edge 823... Propeller 620... Rotary shaft 700... Fluid Engine 1000, 1500, 3000 ... heat engine 26

Claims (1)

2〇1115〇17 七、申請專利範圍: h ~種發動機,其包含: 一外殼,包括一内部空間其劃分成相互連接的一第 一部分及一第二部分; 一工作流體,其填注該内部空間,於作業期間在該 第一部分與該第二部分之間流動,以及 一或更多翼剖面,配置位在該内部空間内位於該流 體流動之循環路徑上。 2.如申請專利範圍第1項之發動機,其中,於作業期間, 在該第-部分與該第二部分之間產生—溫差,以致該工 作流體在該第一部分與該第二部分之間流動。 女申响專利範圍第2項之發動機,其中該溫差係用以於 該内部空間中獲得一流體流速。 4.如申請專利範圍第1項之發動機,其中,於作業期間, 一推進器驅動介於該第一部分與該第二部分之間之該 工作流體。 5·如申請專利範圍第1項之發動機,其令該翼剖面係相對 於s亥流體流動定位用以產生扭矩。 )·=申請專利範圍第i項之發動機,其中—流體結構驅動 ,’丨於該第-部分與該第二部分之間之該王作流體。 .如申請專利範圍第6項之發動機,其中該流體結構係藉 由—動力源而驅動。 •,申請專利範圍第6項之發動機,其中該流體結構包含 夕數葉片’其經定位用以增加該流體流動中的流體壓 27 201115017 力。 9.如申請專利範圍第8項之發動機,其中該等葉片包含反 動式葉片(reaction blade)。 10·如申請專利範圍第8項之發動機,其令該等葉片包含氣 動葉片。 ’ U_如申請專利範項之發動機,其中該第—部分與該 第二部分係藉由-中心部分及-周圍部分加以連接。 12·如申請專利範圍第η項之發動機’其中該等翼剖面係配 置位在該周圍部分處。 13=申請專利範圍第丨項之發動機,其中該等翼剖面係經 定位用以在一預定方向上產生一升力。 14. 如申請專利範圍第13項之發動機,其中該預定方向係由 該升力產生轉動的一方向。 15. 如申請專利範圍第i項之發動機,其中該翼剖面包含多 數轴向葉片。 16. 如申請專利範圍第1項之發動機,其進一步包含將該等 翼剖面牢固至該外殼之支撐結構。 17·如申請專利範圍第16項之發動機,其中該等翼剖面進一 步包含多數軸向葉片。 18.如申請專利範圍第i項之發動機,其中該等翼剖面之一 部分構成支撐結構。 19·如申請專利範圍第i項之發動機,其中該等翼剖面包含 多數徑向葉片。 21·如申請專利範圍第i項之發動機,其中該等翼剖面係配 28 201115017 置位在該外殼之内壁上,以致該升力使該外殼轉動。 22. 如申請專利範圍第11項之發動機,其中該周圍部分開啟 進入複數之延伸室,其中該等翼剖面之一部分係配置在 該等延伸室中用以提供扭矩。 23. 如申請專利範圍第24項之發動機,其中該每一延伸室包 括一噴嘴,該工作流體經由該喷嘴離開該延伸室。 24. 如申請專利範圍第22項之發動機,其中涵蓋配置在該等 延伸室中的該等翼剖面之該部分的該流體流動產生驅 動該外殼之轉動的扭矩,用以驅動一輸出軸。 25. 如申請專利範圍第23項之發動機,其中離開該延伸室的 該工作流體係經引導朝向配置位在一可轉動結構上的 一組物件,以致流動涵蓋該組物件之該工作流體對該發 動機提供扭矩。 26. 如申請專利範圍第11項之發動機,其中每一延伸室具有 進入該周圍部分之一第一開口及一第二開口,且其中該 流體自該周圍部分經由該第一開口流動進入該延伸 室,以及自該延伸室經由該第二開口流動進入該周圍部 分。 27. 如申請專利範圍第26項之發動機,其中該流體在每一延 伸室與該周圍部分之間循環。 28. 如申請專利範圍第22項之發動機,其中於該延伸室中藉 由翼剖面所提供的該扭矩使該外殼轉動,用以驅動一輸 出軸。 29. 如申請專利範圍第1項之發動機,其中一翼剖面之升阻 29 201115017 比係大於1。 30. 如申請專利範圍第1項之發動機,其中相對於該工作流 體流動的一翼剖面之一攻角係可調整的。 31. 如申請專利範圍第30項之發動機,其中該攻角係可調整 成用以獲得一較佳的扭矩。 32. 如申請專利範圍第1項之發動機,其中一翼剖面之一攻 角係可調整的。 33. 如申請專利範圍第1項之發動機,其中該等翼剖面包含 多數螺旋葉片。 34. 如申請專利範圍第1項之發動機,其中該外殼包含一可 環繞一軸轉動之管狀部分。 35. 如申請專利範圍第1項之發動機,其中該工作流體包含 一氣體。 36. 如申請專利範圍第35項之發動機,其中該氣體係經加 壓。 302〇1115〇17 VII. Patent application scope: h~ kind of engine, comprising: a casing comprising an inner space divided into a first part and a second part connected to each other; a working fluid filling the interior Space, flowing between the first portion and the second portion during operation, and one or more wing profiles in which the configuration is located on the circulation path of the fluid flow. 2. The engine of claim 1, wherein during operation, a temperature difference is generated between the first portion and the second portion such that the working fluid flows between the first portion and the second portion . The invention claims the engine of the second aspect of the patent, wherein the temperature difference is used to obtain a fluid flow rate in the internal space. 4. The engine of claim 1, wherein during operation, a propeller drives the working fluid between the first portion and the second portion. 5. The engine of claim 1 wherein the wing profile is positioned relative to the fluid flow for generating a torque. The engine of claim i, wherein the fluid structure drives the king fluid between the first portion and the second portion. An engine as claimed in claim 6 wherein the fluid structure is driven by a power source. • The engine of claim 6 wherein the fluid structure comprises a plurality of blades that are positioned to increase fluid pressure in the fluid flow. 9. The engine of claim 8 wherein the blades comprise a reaction blade. 10. An engine as claimed in claim 8 wherein the blades comprise pneumatic blades. U. The engine of the patent application, wherein the first portion and the second portion are connected by a central portion and a peripheral portion. 12. The engine of claim n, wherein the wing profiles are located at the peripheral portion. 13 = The engine of claim 3, wherein the wing profiles are positioned to generate a lift in a predetermined direction. 14. The engine of claim 13, wherein the predetermined direction is a direction in which the lift produces a rotation. 15. The engine of claim i, wherein the wing section comprises a plurality of axial vanes. 16. The engine of claim 1, further comprising a support structure that secures the isvel profile to the outer casing. 17. The engine of claim 16 wherein the wing profiles further comprise a plurality of axial vanes. 18. The engine of claim i, wherein one of the wing profiles forms a support structure. 19. The engine of claim i, wherein the wing profiles comprise a plurality of radial vanes. 21. The engine of claim i, wherein the wing profile 28 9815017 is positioned on an inner wall of the outer casing such that the lift causes the outer casing to rotate. 22. The engine of claim 11, wherein the peripheral portion opens into a plurality of extension chambers, wherein a portion of the wing profiles are disposed in the extension chambers for providing torque. 23. The engine of claim 24, wherein each of the extension chambers includes a nozzle through which the working fluid exits the extension chamber. 24. The engine of claim 22, wherein the fluid flow of the portion of the wing profiles disposed in the extension chambers produces a torque that drives rotation of the housing for driving an output shaft. 25. The engine of claim 23, wherein the workflow system exiting the extension chamber is directed toward a set of articles disposed on a rotatable structure such that the flow of the working fluid covering the set of objects is The engine provides torque. 26. The engine of claim 11, wherein each extension chamber has a first opening and a second opening into the surrounding portion, and wherein the fluid flows from the surrounding portion through the first opening into the extension And flowing from the extension chamber into the surrounding portion via the second opening. 27. The engine of claim 26, wherein the fluid circulates between each of the extension chambers and the surrounding portion. 28. The engine of claim 22, wherein the torque provided by the wing profile in the extension chamber rotates the housing for driving an output shaft. 29. For an engine of the scope of claim 1, the lift resistance of one of the wings is 29 201115017. 30. The engine of claim 1, wherein the angle of attack of one of the wing profiles relative to the flow of the working fluid is adjustable. 31. The engine of claim 30, wherein the angle of attack is adjustable to obtain a preferred torque. 32. For an engine of the scope of claim 1, the angle of attack of one of the wing profiles is adjustable. 33. The engine of claim 1, wherein the wing profiles comprise a plurality of helical blades. 34. The engine of claim 1, wherein the outer casing comprises a tubular portion rotatable about an axis. 35. The engine of claim 1, wherein the working fluid comprises a gas. 36. The engine of claim 35, wherein the gas system is pressurized. 30
TW98135772A 2009-10-22 2009-10-22 Fluid engine with enhanced efficiency TW201115017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98135772A TW201115017A (en) 2009-10-22 2009-10-22 Fluid engine with enhanced efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98135772A TW201115017A (en) 2009-10-22 2009-10-22 Fluid engine with enhanced efficiency

Publications (1)

Publication Number Publication Date
TW201115017A true TW201115017A (en) 2011-05-01

Family

ID=44934262

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98135772A TW201115017A (en) 2009-10-22 2009-10-22 Fluid engine with enhanced efficiency

Country Status (1)

Country Link
TW (1) TW201115017A (en)

Similar Documents

Publication Publication Date Title
US10288083B2 (en) Pitch range for a variable pitch fan
JP5334990B2 (en) Gas turbine engine
US7587899B2 (en) Shape memory alloy actuated adaptive exhaust nozzle for jet engine
EP1557552A1 (en) Gas turbine engine and method for assembling and operating such a gas turbine engine
US9115697B2 (en) Fluid interacting device
EP0909880A2 (en) Turbine vane actuation system
US20160138416A1 (en) Variable fan nozzle using shape memory material
AU2008234369A1 (en) Multistage wind turbine with variable blade displacement
US4874287A (en) Variable-geometry turbocompressor
EP3190263B1 (en) Thermally driven spring valve for turbine gas path parts
AU2009294843A1 (en) Fluid engine with enhanced efficiency
TW201115017A (en) Fluid engine with enhanced efficiency
JP2017150477A (en) Accelerator insert for gas turbine engine airfoil
TW201114651A (en) Thrust engine
JP2014047783A (en) System and method to control variable stator vanes in gas turbine engine
US20100071345A1 (en) Thrust Engine
CN112253266A (en) Bladeless turbine and automatic adjusting method for disc body distance thereof
KR101057125B1 (en) Flap control unit
US11802525B2 (en) Outlet guide vane
US11428210B1 (en) Ducted counter-rotating wind turbine
JP6453407B2 (en) Gas turbine rotor and gas turbine
KR101902653B1 (en) Structure for a exhaust diffuser of gas turbine
JPH10205491A (en) Three-stage moving blade variable pitch type axial flow fan
WO2017189566A2 (en) Twin spool industrial gas turbine engine with variable inlet guide vanes
WO2003008801A1 (en) Two-dimensional blade lift turbine system