TW201114651A - Thrust engine - Google Patents

Thrust engine Download PDF

Info

Publication number
TW201114651A
TW201114651A TW98135770A TW98135770A TW201114651A TW 201114651 A TW201114651 A TW 201114651A TW 98135770 A TW98135770 A TW 98135770A TW 98135770 A TW98135770 A TW 98135770A TW 201114651 A TW201114651 A TW 201114651A
Authority
TW
Taiwan
Prior art keywords
fluid
engine
wing
thrust
wings
Prior art date
Application number
TW98135770A
Other languages
Chinese (zh)
Inventor
Guy Silver
Juinerong Wu
Original Assignee
Guy Silver
Juinerong Wu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guy Silver, Juinerong Wu filed Critical Guy Silver
Priority to TW98135770A priority Critical patent/TW201114651A/en
Publication of TW201114651A publication Critical patent/TW201114651A/en

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

According to the present invention, a blade with lift-to-drag ratio greater than one can generate a lift force greater than the drag force on the blade when a fluid flows across the blade. The blade can be positioned within an enclosed engine to produce a force greater than the force required to move the fluid across the blade, thereby creating a thrust for the enclosed engine. The direction and the magnitude of the thrust may be controlled by controlling the direction of fluid flow. According to the present invention, fluid flowing inside a thrust engine may be gaseous or liquid. A thrust engine of the present invention uses one or more wings in a configurable environment to create a directional force. Thrust engines according to the present invention can be configured by varying fluid parameters, such as density or velocity, the wing parameters (such as wing geometry, lift coefficient or plane surface area of the wing), the number and the locations of wings, how the fluid receives energy, fluid motion, fixed or movable wings and the fluid path.

Description

201114651 六、發明說明: c 明戶斤屬支冬好冷貝】 發明領域 本發明係有關於針對推力發動機的設計及使用,該發 動機應用一或多個物件(例如,翼、翼剖面或葉片)與一室或 一外殼内部的一移動流體(亦即,液體或氣體)接觸之空氣動 力學的原理。。 t 才支系好]| 發明背景 一飛機推力發動機於一預定方向上提供一高速氣流用 以產生力量。推力發動機之實例包括燃氣渦輪發動機(gas turbine engine)以及燃氣涡紫發動機(gas turb〇pr0p engine)。藉由在高速下驅動一推進器或是一組葉片轉動, 能夠以機械方式產生推力。今日所有的推力發動機產生高 速氣流,需要安全措施用以防止在其之作業期間對人體或 是位於周遭環境中的物件造成傷害。201114651 VI. Description of the invention: c. The invention relates to the design and use of a thrust engine that applies one or more objects (eg, wings, wing profiles or blades). The aerodynamic principle of contact with a moving fluid (i.e., liquid or gas) inside a chamber or an outer casing. . BACKGROUND OF THE INVENTION An aircraft thrust engine provides a high velocity airflow in a predetermined direction for generating force. Examples of thrust engines include a gas turbine engine and a gas turbine engine. The thrust can be generated mechanically by driving a propeller or a set of blades at high speed. All of today's thrust engines produce high-speed airflow and require safety measures to prevent damage to objects in the human body or in the surrounding environment during their operation.

由複數之來源,包括線上UIUC翼剖面資料庫(UIUC airf〇11 databaSe)、國家航空諮詢委員會(NACA)以及複數之 更為現代的翼剖面’取得適㈣複數之翼及翼剖面設計。 於1920年代及193G钱卿,NACA設計㈣試複數之翼設 計’以及針對料翼設相—圖㈣方輕表躲描述結 果。於今日對於複數之應用而言,該等結果係仍為有效的, 月匕夠用於•翼。該等圖表根據該翼剖面對於流經其之該 流體之攻角,提供針對翼剖面的升力及阻力係數。使用該 201114651 等係數,能夠以下方程式計算升力及阻力··Appropriate (four) complex wing and wing profile designs are obtained from a number of sources, including the online UIUC wing profile database (UIUC airf〇11 databaSe), the National Aeronautics Advisory Committee (NACA), and a number of more modern wing profiles. In the 1920s and 193G Qian Qing, NACA designed (4) the test of the complex wing design and the design of the wing-figure (four) to hide the description results. For today's applications of plurals, these results are still valid, and the moon is sufficient for the wing. The graphs provide lift and drag coefficients for the wing profile based on the angle of attack of the wing profile for the fluid flowing therethrough. Using the coefficient such as 201114651, the following equations can be used to calculate lift and resistance.

υ升力: =^CtpV2A 2)阻力= \cdpV2A 其中Q係為該升力係數, 、,衣〜 係為该阻力係數,/?係為該 以及d係為 4之被度’ W為該翼相對於該流體的速度, 該翼剖面之表面積。 :升阻比(L/D比)係使㈣為測量該翼剖面或葉片設 计之升力產生的空氣動力學的品質及效率。在-已知的速 又及攻角下翼職生的升力,可為切該阻力之ι〇 的1-2次方。因此’為了獲得-確定的升力,可施以一顯著 地較小的力量用以將該翼推進通過空氣。就實務上飛機而 吕’升阻比可約自4:1變化上至…或是更高。具有複數方 法用以確定該升力。 一-熱機係有關於—裝置其將熱能轉換成機械能。一熱 機藉^將在具有不同溫度的該熱機之二部分之間流動的該 流體能轉換成機械功率而作動。該二部分之間的溫差越 大,則該熱機之效率越高。位於該熱機内部的二區域之間 的/Λ差’係用以維持該發動機内流體循環。 一動葉輪係為一管或是導管内部的一旋轉輪(r〇t〇r),增 加"U·體之壓力及流動。一動葉輪典型地係為一離心泵的一 轉動’’且件,其將能量由驅動該果的一馬達轉移至經抽吸的 該流體。動葉輪將該流體自該轉動中心向外地加速。當該 201114651 流體之該向外移動係由該泵外殼所侷限時,藉由該動葉輪 所達到之速度轉移成壓力。動葉輪通常為短圓柱狀具有一 開啟入口(稱為一眼)用以接受進入的流體,以及輪葉用以徑 向地推動該流體。 一推進器本質上係為一風扇之型式,藉由將轉動轉換 成推力而傳達功率,用以經由一質量介質,諸如水或空氣 推動一運輸工具(例如,飛機、船或是潛艇)。推進器藉由相 關於一中心軸轉動二或多個扭曲葉片,以一與轉動一螺釘 穿過一固體相似的方式而作動。一推進器之該等葉片充當 為轉動翼1,並藉由介於該翼剖面狀葉片之該前及後表面之 間產生壓差,以及藉由將空氣質量向後地加速而產收一力量。 為產生推力用以推動通過該流體(亦即,克服與升力結 合的阻力)需要能量。不同物件能夠飛行的程度隨著其之發 動機效率及將升力轉換成向前推力的程度而變化。 【發明内容】 根據本發明之一具體實施例,一推力發動機於一可構 形的環境中使用一或多個翼用以產生一導向力(directional force)。該推力發動機能夠藉由變化流體參數,諸如密度或 速度、該等翼參數(諸如該翼之翼幾何形狀、升力係數或平 面面積)、翼之數目及位置、該流體如何接收能量、流體運 動、固定或是可移動翼以及流體路徑而加以構形。 本發明之一推力發動機可用以推進一汽車或是另外的 運輸工具。例如,本發明亦能夠結合提供一熱能來源的任 事實上,推進器之該等葉片係為翼或翼剖面。 201114651 何應用。 一經考量以下該詳細說明,結合該等伴隨的圖式將對 本發明有較佳的瞭解。 圖式簡單說明 第1圖顯示本發明之一具體實施例的推力發動機100的 一橫截面視圖,其具有二固定翼。 第2圖顯示沿著第1圖之線A-A’所取的推力發動機100 的一橫向斷面視圖。 第3圖顯示推力發動機300,其係為本發明之一可任擇 的具體實施例,其中外殼103提供流體結構107,位在中心 部分104d中,搭配徑向地流動橫過翼101及102的流體。 第4a圖顯示一可調整環狀翼400,其適用於推力發動機 100及推力發動機300。 第4b圖顯示用以在環狀翼400中調整一攻角的該等控 制元件。 第4c圖顯示可調整的翼剖面葉片450。 第5圖顯示本發明之一具體實施例具有螺旋葉片的推 力發動機500的一橫截面視圖。 第6a圖顯示沿著第5圖之線A-A’所取的推力發動機500 的一橫向斷面視圖。 第6b圖顯示第5圖中推力發動機500的一可調整葉片。 第7a圖顯示本發明之另一具體實施例之推力發動機 第7 b圖顯示本發明之另一具體實施例之推力發動機 700。 750。 750。201114651 第8圖顯示本發明之一具體實施例之一環狀管800,其 具有葉片經由位在外殼801内部的流體而轉動。 I:實施方式3 較佳實施例之詳細說明 當一流體流動通過一物件時,在該物件之相對表面上 流體之合成速度差於該物件的主體上產生一升力。該升力 可用以提供作為一推力發動機之一輸出。該推力發動機内 部的該升力之向量和,提供該推力發動機的輸出。 一推力發動機係有關於一裝置,將流體能或是熱能轉 換成一力量。根據本發明,一推力發動機藉由將由於因流 體流動橫過一氣動葉片所造成的阻力的能量損失,轉換葉 片上的一升力而作動,用以產生供推力發動機所用的一推 力。一氣動葉片的特徵在於一升阻比(L/D比)。該升阻比決 定由該氣動葉片產生的該推力。根據本發明,當流體流動 橫過該葉片時,具有升阻比大於1的一葉片能夠產生一升 力,大於該葉片上的該阻力。該葉片能夠配置在一封閉的 發動機内部,用以產生一力量大於移動該流體橫過該葉片 所需的該力量,從而產生一推力供該封閉式發動機所用。 藉由控制流體流動之方向,可對該推力之方向與大小加以 控制。根據本發明,推力發動機内部流動的流體可為氣體 或液體。 本發明之一推力發動機於一可構形的環境中使用一或 多個翼,用以產生一導向力。本發明之推力發動機能夠藉 201114651 由憂化流體參數而加以構形,諸如密度或速度,該等翼來 數(諸如翼幾何形狀,翼之升力係數或是平面表面積),翼之 數目及位置,流體如何接收能量,流體運動,固定式戈曰 可移動式翼以及該流體路徑。 本發明之一推力發動機可用以推進任何物件,諸如* 車或是任何運輸工具,並可與需要一發動機的任何應用= 口。於一些具體實施例中,可提供一熱能的來源用以對 該推力發動機提供動力。 為簡化此詳細說明及該等圖式,所參考的一翼剖面(而 非一葉片或是特定的翼幾何形狀)係同樣地適用於具有氣 動效應的其他結構,諸如翼、氣動葉片以及翼剖面。為此^ ' '糸為表面用以通過該空氣或是另外氣態介質產生 供一物件所用的升力。該翼典型地具有—翼剖面之形狀。 * 一固體物件移動通過一流體時,產生一升 地,當一物株 相冋 件具有一流體流動移動通過其時,產生一升力。 本發明提供推力發動機其係在—熱差動或—壓力差動下作 動用以將熱能或是流體動能轉換成推力。本發明之該推 A發動機使用—封閉循環用以在陸地上、水上、水下、空 氣中或是太空中移動物件。 二 、泵或熱1可用以讓一發動機内部的流體運動或是用以 '曰μ體循峪。本發明之藉由熱量提供流體能量的推力發 動機’可利用何的熱能來源作動,包括太陽能、電能、 化石,疋其他總料。本發明之〆推力發動機係在該發動機 之-部分間產生—足夠的溫度差而作動。藉由本發明之一 8 201114651 推力發動機產生的推力,提供基於該發動機之該定向及該 内部構形(例如,作為葉片參數及流體參數)的一導向力。 第1圖顯示本發明之一具體實施例的推力發動機1〇〇。 第2圖顯示沿著第1圖之線A-A,所取的推力發動機100的一 橫向斷面視圖。如第1圖中所示,翼101及102係懸掛在外殼 103内部,外殼係由一環狀分隔部分105劃分成上部分104a 及104b。(所提及該等表示法“上(upper)”及“下(lower)”係僅 提供用以於此詳細說明中有助於說明;外殼103可定向於任 一方向上)環狀分隔部分105可為具有氣動效應的一翼或是 一物件。環狀分隔部分105提供分隔並於一優選方向上產生 升力。 推力發動機100之該流體流動可為藉由重力自行啟動 並使熱流體上升。一流體入口閥可用以加壓流體,用以啟 動該發動機並控制該發動機内部的壓力。介於上部分104a 與下部分l〇4b之間該流體循環通過周圍部分1〇如及中心部 分104d。中心部分104d可為_煙_狀空間,用以增加流體 流動。翼101及102係藉由支揮結構i〇6a、1〇的、i〇6c及106d 相對於外殼103而固定在其之位置。支撐結構1〇如、1〇讣、 106c及106d可用以將熱能轉移至該發動機或是自該發動機 轉移開。支樓結構亦可在升力產生方面具有-氣動效應。 如第2圖中所不’翼101當由頂部(或底部)觀視時係為環 狀,容許越在周圍部分⑽與巾^部分购之間流動。 所提供的翼K)2可具有與翼⑼不同的形狀及尺寸。 根據-具體實施例,上部分1〇如係維持較下部分獅 201114651 處溫度為低的一溫度,從而提供一流體循環。該流體於下 部分104b中徑向地向外流動,通過周圍流體空間104c而進 入上部分104a,徑向地向内流向中心流體空間104d並經由 中心流體空間104d返回下部分104b。可在外殼103内部配置 多重加熱區域與冷卻區域,用以使工作流體流動最佳化。 涵蓋每一翼(以及在每一翼下面)的流體流動之該方向 與速度係藉由翼101之幾何形狀而確定。如以上所述,當流 體流動涵蓋翼101及102以及在其下面流動時,由翼101及 102產生的升力及阻力提供一推力。該推力(thrust or thrust force)之大小係視翼101及102之尺寸以及其之各別的升力 係數與阻力係數而定。於一具體實施例中,可將加熱或是 冷卻元件嵌入於翼101及102的内部,用以加熱及冷卻該流 體,並用以在上部分104a與下部分104b之間產升溫差。於 一具體實施例中,一加熱元件或一冷卻元件或是二者可内 嵌於翼101及102内,用以改變環繞翼101及102的該流體流 動之速度。將加熱來源置於需高壓的位置處,以及將冷卻 來源置於需低壓的位置處。 於一具體實施例中,金屬係為一優選的材料用以提供 翼101及102以及外殼103得到有效率的加熱及冷卻。一般 地,針對本發明之一推力發動機而言,具有一較高升阻比 的一翼係視為更具效率-亦即,針對一給定的輸入功率量而 言產生一較大的推力。其他的因素亦會影響該升阻比之選 擇(例如,功率消耗)。 位於外殼103内部的該工作流體可為一氣體或是一液 10 201114651 體。如有需要,可將一氣態工作流體加壓。一氣態工作流 體的優點在於部分104a與104b之間相同的溫差可具有一較 為寬廣的流體密度範圍。一較高密度的加壓氣體可於本發 明之一推力發動機中提供一較大的推力。一加壓的氣態工 作流體亦防止在該等翼處所發生的流體分離問題。根據本 發明,由於能夠藉由調整該壓力而改變氣體密度,所以於 該推力發動機之作業期間,藉由改變該工作流體壓力可控 制該產生的推力。 位於一推力發動機内部的翼可平行地配置或是分層配 置,用以於一優選的方向上增強該推力。可構形一推力發 動機,其具有至少二流體其之流體參數不同(例如,流體密 度及速度)。於一具體實施例中,具有螺旋通道或是一螺旋 狀外殼的一推力發動機,具有流體流動其係在上部分104a 與下部分104b之間轉動通過周圍流體空間104c及中心流體 空間104d。於另一具體實施例中,該流體於上部分104a中 徑向地向外流動,經由周圍流體空間104c進入下部分 104b,徑向地向内流向中心流體空間104d並經由中心流體 空間104d返回上部分104a。根據一具體實施例,相對於下 部分104b處之溫度,上部分104a係維持在一較高的溫度。 可在該中心流體空間104d中配置一單向閥,容許流體在上 部分104a與下部分104b之間流動。 可配置一機構用以導引流體流動。流體流動一經啟 動,介於下部分104b與上部分104a之間的溫度梯度能夠維 持該流體流動方向。可使用一推進器於一優選方向上開始 11 201114651 流體流動,該推進器可外部地提供動力或是由配置在分離 器或是分隔部分105中的一機構提供動力。可任擇地,可在 外殼103之壁上提供一閥系統,用以提供空氣自外部流動通 過外殼103並再次排放至外部。 於作業期間,介於上與下部分l〇4a及104b之間該溫 差,決定流體流動之速度。該推力係與橫過該等翼之流體 流動之速度的平方成比例。於該升力的方向上,該推力等 於翼阻力乘上該升阻比。當該流體流動橫過該等翼時源自 於該流體的能量損失,係歸因於涵蓋該等翼之表面的阻力 與摩擦力。 可使用中心流體空間104d及周圍流體空間104c用以提 供加熱及冷卻而維持該溫差,取代上部分104a及下部分 104b。於此構形中,視推力發動機的定向而定,該推力發 動機可或非為自行啟動。於一具體實施例中,使用中心部 分104d及周圍部分104c維持該溫差。同時,特別是針對具 有長流體路徑的較大型推力發動機,該推力發動機外殼内 多於二部分可用以加熱及冷卻該工作流體。於一具體實施 例中,該推力發動機外殼内三或更多個部分係用以加熱及 冷卻該工作流體。 第3圖顯示推力發動機300,其係為本發明之一可任擇 的具體實施例,其中外殼103配置流體結構107,具有一組 葉片108及一軸109,並係位在中心部分104d中,搭配徑向 地流動橫過翼101及102的流體。流體結構107使用機械力推 動流體循環。視葉片組108之構形以及該發動機之應用而 12 201114651 定,流體結卿7可使用作為_栗、_動葉輪、—推進器、 一壓縮機、一風扇或是一鼓風機。於一具體實施例中,流 體結構107可具有可調整葉片構形’以致葉片組1〇8提供能 量供流體流動或是有助於該升力。於推力發動機3〇〇中所獲 得該推力,能夠藉由調整由流體結構1〇7所抽吸的流體量= 加以控制。於一具體實施例中,葉片組1〇8可具有翼剖面狀 斷面產生-合成氣動力,其能夠分解成沿著該葉片轉動轴 所指向的一力量。流體結構107可使用作為一推進器。環狀 部分105可為流體結構1〇7之該葉片組1〇8的一部分,容許環 狀部分與軸109轉動。 當於推力發動機100中,於推力發動機3〇〇中所獲得該 推力視翼ιοί及102之位置與尺寸,外殼1〇3之該等尺寸及形 狀以及針對翼101及1〇2及外殼1〇3所選擇的材料而定。一般 地,能夠控制該合成升力的任何材料可用於翼1〇1及1〇2, 包括任何金屬、塑膠或複合材料。外殼1〇3可由能夠控制流 體壓力並能夠讓流體流動涵蓋翼1〇1及1〇2之該等摩擦力所 產生的熱量散逸的任何材料所構成。 推力發動機300所用的工作流體可為氣體或液體。當使 用一氣體作為該工作流體時,將該氣體加壓可增加該推 力°具有一較小動黏度(黏度/密度)的工作流體可增加該推 力發動機效率。然而,與推力發動機1〇〇不同,推力發動機 3〇〇藉由流體結構1〇7所產生的該流體流動而起動。只要在 流體結構107處的流體壓力,大於因沿著該流體路徑之該阻 力與摩擦力引起的壓力降,流體速度即增加。流體結構107 13 201114651 可位在上部分104a、下部分l〇4b或是周圍流體空間1 〇4c 中’或是在推力發動機300内該流體結構1〇7能夠產生一所 需的流體流動的其他位置處。於一具體實施例中,可應用 由熱量差所提供動力的一推力發動機以及一壓縮機(推進 器)。推力發動機100可使用一壓縮機型式的流體結構配置 位在中心流體空間104d中,用以壓縮流體並增加流體速度。 流體結構107可搭配一組以上的葉片組,用以驅動流體 在翼上作功。當未提供機械輸入功率用以驅動該流體結構 1〇7時,流體結構107可具有機構容許葉片環繞軸1〇9折疊, 或是與外殼103之該内壁對準。於一具體實施例中,流體結 構107内部的該等葉片可使用作為擴散器,未轉動地將轉動 的流體轉換成一高壓流體,以致流體結構1〇7不需連續地由 一外部機械功率來源提供動力。流體結構1〇7中之葉片可由 一螺旋彈簧提供動力。翼產生升力可構成流體通道。 翼為可調整的,用以控制藉由該翼所產生的該升力。 可經由控制該攻角或是藉由使該等翼傾斜而實施調整作 業。於一些具體實施例中,位於每一翼處該”攻角,,可經控 制,用以達到在該翼處承受該所需的推力。與一固定翼不 同,於作業期間,一型式之可調整翼能夠改變攻角至該工 作流體流動方向。當該一可調整翼變化其之攻角時,該翼 之表面積亦可改變。針對該一翼,可使用複數之部分重疊部 分維持一連續的翼表面。於一具體實施例中,可調整該葉片 之δ玄作業攻角,用以得到該產生之升力的最佳經濟利益。 第4a圖顯示一可調整環狀翼4〇〇。第扑圖顯示用以在環 14 201114651 狀翼400中調整一作業攻角的一控制機構。如第4b圖中所 示,部分401及402係藉由調整桿4〇3及樞軸桿406而耦合至 葉片支撐件405。可使用液壓或是業界中所熟知的另一方法 完成桿導件404内調整桿403之移動。藉由在樞軸桿4〇6上樞 轉葉片部分401及402,調整桿403之該移動控制葉片部分 401及402之攻角。桿導件404係為彎曲的,用以符合葉片部 分401及402當其環繞著樞軸桿4〇6樞轉時其之流動路徑。調 整桿403可同時地移動葉片部分401及402,或是,如所需地 獨立地移動葉片部分401及402。 第4c圖顯示-可調整的氣動葉片45心於第如圖中部 分451係藉由調整桿453及枢軸桿456_合至葉片支撐部 分(未顯示)。可使用液壓或是業界中所熟知的另—方法完成 桿導件45怕調整桿453之移動。藉由在樞轉视上枢㈣ 片部分45卜難桿453之帅動控制葉片$卩分451之攻角。 桿導件454係騎曲的,“符合葉片部分451當其環繞著 樞軸桿456樞轉時其之流動路徑。 當該攻角確定在每-翼處承受的升力與阻力時,由本 發明之推力發動機所產生的總推力,可藉㈣整每一翼處 之攻角而加關整。該-方法具有該等優點:⑻能夠快速 且精確地改變該升力;(b)可調整該升力用以產生-向前及 相反的方向;以及⑷藉由將翼1Q1及1Q2分割成複數部分而 可提供大ΐ之翼,每-部分提供_不同的攻角 控制該力之二方向以及因而產生之推力的大小 ’從而容許 。由於該阻 力隨著攻㈣化,所以亦改變於發動機彳㈣㈣該流體壓 15 201114651 力損失。因此,該熱量差、該推進器速度或是該流體結構 可經調整,用以補償該等流體壓力改變。可提供一發動機 控制裝置用以調整該攻角與該流體流動速度二者。於每一 翼處亦可提供感應器,測量該流體流動速度。 於一些具體實施例中,可提供二以上之翼。使二以上 之翼具有一小型化設計,用以符合該等所需的推力需求。 視該等系統推力需求而定,每一翼係為一可調整翼或是一 固定翼。於一具體實施例中,翼101及102在其之相對於外 殼103的位置上,藉由支撐結構106a、106b、106c及106d係 為可移動的。根據本發明,翼101及102相對於外殼103中流 體流動,於其之角度上係為可調整的。為產生升力,翼101 及102可安置在該推力發動機之該外殼内部的任何位置 處。藉由控制於一特定區域處的一流體容積流率,可改變 流體速度。藉由變化環繞翼101及102之流體流動量,可產 生可觀的升力。亦可使用加熱或冷卻用以改變流體速度或 流體密度。 根據本發明,推力發動機300能夠支持一環形及一轉動 的流體流動。流體結構107之葉片組108可經設計用以於外 殼103内轉動流體,產生轉動的流體流動。葉片組108可沿 著徑向方向,在需要該轉動的流體流動之位置處軸向地配 置。翼101及102可經構形用以由流動橫過該等翼的轉動流 體產生升力。藉由轉動該流體,能夠增加該橫過翼101及102 之流體路徑,因而在翼101及102上產生該升力。於一具體 實施例中,推力發動機300具有流體結構107,其經構形用 16 201114651 以在下部分104b中向外地轉動流體。 Θ机體轉動地通過周 圍流體空間104c進入上部分104a,轅 轉動地向内流向中心流 體空間104d並轉動地經過中心流體* 隨工間l〇4d返回下部分 祕。於—具體實施例中,推力發動機3。。具有流體結構 1〇7,其經構形用以在上部分购中向外地轉動流體,藉由 轉動通過周圍流體空間104c進入下部八 丨刀l〇4b,轉動地向内 流向中心流體空間H)砸轉動地經過中心流體空間1〇術 回上部分104a。 根據另-具體實施例,第5圖顯示於上部分5〇如與下部 分504b一者中具有螺$疋壁的推力發動機5〇〇,該螺旋壁構成 螺旋通道供該工作流體流動。該合成流體相關於一軸轉 動。該等螺旋壁可附裝至内部外殼503以及環狀分隔部分 505。螺旋工作流體路徑增加該工作流體路徑長度,使能夠 增加與該工作流體接觸的翼表面積。每一螺旋通道具有用 以產生推力的複數之不連續翼。於螺旋壁506&及5〇牝、翼 501a及501b之間可見該一螺旋通道。如圖所示,藉由翼501a 及501b,於螺旋通道内翼可構成複數層或是構成一單一層。 第6a圖顯示通過線A-A’的推力發動機500的上部分 504a的一俯視圖,顯示該嫘旋通道以及於每一通道内翼之 一單一層。使一螺旋通道内翼之複數層能夠增加所產生的 推力。確定一螺旋通道内翼層之數目的一些因素係為該通 道高度、翼厚及工作流體流速。每一翼可附裝至該等螺旋 壁,以及能夠為一固定翼或是一可調整的翼。支揮結構515 將翼連接至周圍流體空間504c内之内部外殼壁。 17 201114651 由第6c圖能夠清楚見到螺旋翼連接至螺旋壁,其中顯 示螺旋翼501c藉由調整桿513及樞軸桿510而耦合至螺旋壁 506c及506d。調整桿513在桿導件512内藉由液壓裝置或是 業界中所熟知的另外方法驅動而移動。調整桿513之移動藉 由在樞軸桿510上樞轉葉片501c控制螺旋翼501c之一攻 角。桿導件512係經彎曲當其環繞樞軸桿510樞轉時,與螺 旋翼501c之該路徑相配合。 於第5圖中,工作流體流動具有渦度(vorticity)(亦即, 於該流體流動中形成渦流)。該工作流體流動在該等螺旋壁 及翼上施以一連續力以及分予動量。如第5圖中所示,由於 工作流體循環係為一對流的垂直循環,所以渦度幾乎可為 水平的。工作流體流動由上部分104a中的冷區域520b至下 部分104b中的熱區域520a,係為一轉動的下降氣流 (downdraft)。(於此,“熱區域”及“冷區域”僅意指分別為較 高及較低溫度區域(彼此相對地)。)同樣地,工作流體流動 由熱區域520a至冷區域520b,係為一轉動的上升氣流 (updraft)。於該發動機循環期間,持續地維持該工作流體之 動量。於每一發動機循環期間,在各別區域中該工作流體 持續地加熱、膨脹、冷卻及收縮。因此,於外殼503内提供 一完整的發動機循環以及一完全的工作流體路徑。於一發 動機循環期間,該工作流體在該等翼上施力。 如以上所述,該工作流體具有渦度並且具有一連續的 動量,起因於工作流體之加熱及冷卻,以及該等螺旋壁引 導該工作流體轉動。翼可經設計以致於該流體中轉動。螺 18 201114651 旋壁及翼可使用作為與外殼503耦合的支撐結構’或是提供 熱轉移功能。 因此,在此環境下,該發動機運行越久,則工作流體 循環越快,直至在一第一循環結束時該工作流體之速度變 成第二循環開始時該工作流體之速度為止,並且在整個第 二循環期間係為增加的。該工作流體速度係藉由動能而增 加,其接著係藉由該熱機轉換成推力功。於一發動機循環 之該膨脹期(expansion phase)及該收縮期(contraction phase) 之二期間,該工作流體速度係為增加的。 該等翼或螺旋壁之形狀有助於轉動該工作流體。推力 發動機5〇0内部該等翼亦能夠用以調整該發動機之不同部 分的溫度-亦即’變化該熱區域520a之溫度,或是變化冷區 域520b之溫度。 於熱區域520a中,該工作流體之轉動及徑向向外流 動,向上移動進入冷區域520b,於冷區域520b中,該工作 流體之轉動及徑向向内流動,以及向下移動進入熱區域 52〇a/〇著忒下降氣流之長度延伸。轉動或”扭轉(twisting),, 之速度隨著該管柱直徑減小而增加。該冷X作流體係以-旋轉下降氣流的形式更為有效地經攜帶通過該空間。該高 抓體速度~因於角動量守衡。該發動機設計係基於藉由連 續加熱及冷$卩作業祕駐作紐,以及制料翼(氣動 ' ) /工作流體(亦即,維持該工作流體中之該動量)。 與推力發動機100及300不同,藉由使該工作流體轉 動’推力料機_能夠藉由料連續翼配置在周圍部分 19 201114651 504c中產生推力。第5圖顯示位於由周圍壁5〇83及5〇81?所構 成的一周圍通道内之周圍翼組507的周圍翼5〇%,周圍壁係 附裝至内部外设503並可任擇地附裝至環狀分隔部分5〇5。 該等周圍通道引導介於上部分504a與下部分5〇仆之間該工 作流體。使用周圍壁用以構成周圍通道,容許周圍翼在該 工作流體上疋位其之攻角方面具有更大的彈性。周圍通道 亦能夠藉由δ玄專周圍翼構成,因而增加產生推力的翼之數 目。然而,該等周圍翼必須在該工作流體上具有一攻角, 用以在上部分504a與下部分5〇仆之間維持該工作流體之循 環。於一具體實施例中,推力發動機5〇〇使用周圍翼用以構 成供該工作流體所用的周圍通道,用以在上部分5〇知與下 部分504b之間流動。 推刀I勑微D叫可韁由諸如於推力發動機1〇〇中所7 温度差動而提供動力’或是藉由於推力發動機300中所; 流體結構(未㈣)而提供動力。當使[碰結構供 流體流動㈣時’能夠使用維持該工作流體之循環… 結構’包括使用一軸向或徑向轉動的葉片組的一栗“ 用-流體結構供一轉動流體流動所用時,一推進器苹] 其係在料體之減㈣上轉動,並且其使践流體』 專葉片之間的角速度差用以產生〜升力維持該轉動的、; 流動循環料更具效㈣。於―細實關中,推心 機500使用1有一荦片相沾 '如 ......的—奴體結構,其使用該流體j 葉片組之間的角速度差維持流體姆環。於作業期間,; 葉片組處該流體角速度可為足夠高的,以致該葉片組: 20 201114651 轉動(亦即,無輸入功率)以保持流體循環。 分別地,第7a及7b圖之推力發動機700與推力發動機 750,因將翼組702定向在水平及垂直位置而產生不同的方 向推力。於一具體實施例中,推力發動機700包括圓形管狀 外殼701將一工作流體以及翼組702,具有翼702a、702b、 702c及702d,圍住。該工作流體在箭頭706a及706b所示的 方向上循環通過外殼701之内部。因此,該工作流體流動係 自内部空間703a,涵蓋翼702a及702b進入内部空間703b, 接著涵蓋翼702c及702d往回進入内部空間703a。將翼組7〇2 安裝至外殼701之内壁留有空間,用以容許該工作流體流動 涵蓋翼組,因此其之前緣係與該工作流體流動成水平(見, 例如,翼702a之該前緣704a)。翼組702中的所有翼係為氣動 葉片並因而由翼組702所產生的升力係如第7a圖中所示般 大體上為垂直的。翼組702能夠讓翼配置在外殼701之内部 的任何位置處,包括内部空間703a及703b。翼組702可所有 翼皆為固定翼,所有翼皆為可調整翼或是固定及可調整翼 之一結合。 推力發動機700可藉由外殼701内一或多個的流體泵以 機械方式提供動力,或是藉由在外殼701内產生具有不同溫 度之區域以熱量提供動力。當該等工作流體流動涵蓋翼級 702中每一翼時,該工作流體因該翼之阻力與源自於外殼 701之内壁的摩擦而具有一壓力損失。此工作流體壓力損失 可致使工作流體速度降低,並能夠在翼組702中的該等翼上 產生升力方面的不平衡。用以補償此工作流體壓力損失的 21 201114651 一方式在於具有一以上之流體泵或是具有於外殼7〇1内相 互分開配置的一以上具有一溫度差動的區域。於一具體實 施例中,推力發動機700係藉由配置在内部空間703a及703b 内的一流體泵以機械方式提供動力。於一具體實施例中, 推力發動機700係藉由二流體泵,一流體泵位在内部空間 703a以及另一流體泵位在内部空間703b,以機械方式提供 動力。於一具體實施例中,推力發動機700係由熱量提供動 力,在内部空間703a與内部空間703b之間產生一溫度差 動。根據另一具體實施例,推力發動機700係由熱量提供動 力,在内部空間703a與由翼702a及702b所佔用的該内部空 間之間產生一溫度差動,以及在内部空間703b與由翼702c 及702d所佔用的内部空間之間產生一溫度差動。於一具體 實施例中,推力發動機700係藉由於翼組702内增加加熱及 冷卻元件,用以在外殼701内產生具有一溫度差動的一或多 個區域而以熱量提供動力。 用以補償由於流體壓力損失而於翼組702中出現的升 力不平衡的另一方式係在於構形外殼701,以致工作流體流 動通過的該橫截面區域,隨著流體流動涵蓋每一翼而減 小。減小該橫截面積能夠增加該工作流體速度,用以補償 因工作流體壓力損失所造成的工作流體速度減小。同時, 於翼組702中可調整翼能夠經控制,用以增加該攻角以增加 升力,補償該不平衡。於一具體實施例中,推力發動機700 沿著包含翼7〇2a及702b之該段與包含翼7〇2c及7〇2d之該段 具有一減小的橫截面積。於一具體實施例中,推力發動機 22 201114651 700具有翼組702,其具有一或多個可調整翼,係藉由基於 該工作流體壓力損失的一控制器加以調整。 當推力發動機700係藉由熱量提供動力時,確定流體流 動方向的一些因素係為該外殼701形狀、相對地高與低工作 流體溫度之區域的位置、以及外殼701内控制閥。外殼内工 作流體壓力能夠藉由改變該橫截面積用以增加(亦即,減少 該橫截面積)或是減少(亦即,增加該橫截面積)該工作流體 速度而加以控制。外殼内該工作流體處於一相對為高溫度 的一區域,能夠產生一相對為高的工作流體壓力區域,而 外殼内該工作流體處於一相對為低溫度的一區域,能夠產 生一相對為低工作流體壓力區域。由於工作流體流動由一 高壓區域至一低壓區域,所以該外殼形狀及工作流體溫度 差能夠用以於一優選方向上強制流體流動。亦可將單向閥 或閘門配置在該工作流體路徑内,用以強制流體於一優選 方向上。於一具體實施例中,推力發動機700係藉由熱量提 供動力用以於外殼701内產生具有一溫度差動的一或多個 區域,其中該工作流體係於一優選方向上藉由成形外殼701 用以具有一或多個增加及減小橫截面積,或是藉由具有相 對為高及低溫度工作流體之區域的位置,或藉由成形外殼 701以及相對為高及低溫度工作流體之區域位置二者而經 導引。 於另一具體實施例中,推力發動機750(第7b圖)係由推 力發動機700加以修改,將翼組752垂直地定向。翼組752係 經安裝至外殼701之内壁留有空間用以容許該工作流體流 23 201114651 動涵蓋翼組,以致其之前緣754a係為與該工作流體流動垂 直。於翼組752中的所有翼係為氣動翼,因此由翼組7〇2所 產生的該等升力大體上係為水平的,如第7b圖中所示。翼 組752可配置在内部外殼701内任何位置處,包括内部空間 703a及703b。翼組752可所有翼係為固定翼,所有翼係為可 調整翼或是固定及可調整翼之一結合。 第8圖顯示一環狀管800 ’其具有葉片經由位在外殼8〇ι 内部的流體而轉動。於一具體實施例中,推力發動機8〇〇包 括外殼b01圍住一工作流體,翼組8〇2其包括翼802a、802b 及802c經由支撐結構811連接至軸8i〇。外殼801具有圓形空 間812,其包含工作流體供翼組802於其中轉動。流體導引 器組803,其包括流體導引器803a及803b,係附裝至外殼801 之壁的一頂部分’經定位用以產生内部空間812a及外部空 間812b。流體導引器組803係經定向用以在與翼組802相反 的方向上轉動該工作流體。流體導引器組805係附裝至外殼 801之内壁的底部,用以提供通道供工作流體流動通過。翼 組804係配置在由流體導引器805所構成的該等通道内,以 致具有充足的空夠供工作流體於外殼8 01之該底部内壁與 翼組804之間流動。葉片組8〇6係附裝至外部空間812b中之 外殼壁。 推力發動機8〇〇藉由轉動位在外殼801外部的軸810轉 動翼組802而起動。翼組8〇2之所有翼,包括翼8〇2a、802b 及802c,係為氣動翼當其轉動通過工作流體時其之升力大 體上係引導向上。此意指翼組8〇2中使翼在該底部表面上為 24 201114651 其之高壓側以及在該頂部表面上為其之低壓側,如第8圖中 所示。因此’翼組802當其於内部空間812a内轉動時引導工 作流體向下,致使該工作流體沿著外殼801之内壁移動,通 過由流體導引器805所構成的該等通道,橫過翼組804進入 外部空間812b並接著通過流體導引器組803。翼組804由流 動橫過其之流體於與翼組802相同的方向上產生一升力。該 工作流體一經流動通過流體導引器組803,該工作流體即於 翼組802之相反方向上轉動。因此,用以在翼組802上產生 升力的該工作流體速度,係為該工作流體對翼組802的相對 速度(亦即,工作流體轉速與翼組802轉速之總和)。外殼801 上的扭矩係在該工作流體流動通過流體導引器組803時產 生,以及位於相反方向上的一扭矩係在工作流體流動通過 流體導引器組805時產生。該等扭矩間的差異在外殼801上 產生一淨扭矩。葉片組806可提供可調整的氣動葉片,其經 控制用以抵銷此淨扭矩。 —般地,如上所述,於本發明之該推力發動機中,具 有—較高升阻比的一翼係視為更具效率-亦即,針對一已知 的輸入功率量而言,該翼產生一較大的推力。與具有一較 低升阻比的一翼比較,具有一較高升阻比的一翼典型地具 有一較低的升力係數。其他的因數亦會影響升阻比之選擇 (例如,功率消散(power dissipation))。可在一推力發動機内 部配置轉動球或是轉動圓筒用以產生升力。可應用一轉動 式推力發動機,藉由使氣動葉片或是其他型式的葉片與一 推力發動機之外殼的内壁耦合用以產生扭矩。一旋轉式推 25 201114651 力發動機(spinning thrust engine)能夠產生一推力(升力)。 由於該工作流體路徑係為連續的,所以在結束每一循 環時該工作流體之内能及動能係繼續存在於下一循環中。 於推力發動機100中,該工作流體由於該熱部分中供給的熱 量獲得動能及内能。當該工作流體在整個循環期間移動 時,該工作流體因於該冷部分中消散熱量而損失内能,以 及由於在翼101及102以及其之内部表面中阻力與摩擦力所 造成的動能損失。於推力發動機300中,當該工作流體在整 個循環期間移動時,該工作流體由流體結構107獲得動能, 以及因翼101及102以及其之内部表面中阻力與摩擦力而損 失動能。於每一循環中,當藉由該工作流體所獲得的該動 能超過該動能損失時,在該循環結束時該工作流體速度係 大於在該循環開始時該工作流體速度。相反地,於每一循 環中,當由該工作流體所獲得的動能係小於該動能損失 時,在該循環結束時的該工作流體速度係小於在該循環開 始時的該工作流體速度。該推力發動機在該獲得的動能等 於該損失的動能時達到平衡。在該情況下,在該循環開始 時的該工作流體速度係等於在該循環結束時的該工作流體 速度。 於一具體實施例中,可實施調整葉片參數使能夠進行 攻角之調整,增加或減小表面積並以一範圍轉動足以使由 該翼產生的升阻比(L/D ratio)或該升力達到最大。可將產生 升力的翼傾斜,參考該流體流動方向、流體速度及流體運 動調整,使產生的升力達到最大。翼可使用一、二或三軸 26 201114651 '周玉推力發動機輸出可藉由改變該翼參考面積及作 業攻角而達到最大程度。 於本發明之-具體實施例中,產生升力的該等翼可配 置在適於產生推力的任何位置處°於另-具體實施例中, 位於-推力發動機之該外殼内部的該等翼可構成連續或 是不連續的通道供紅作流體軸。通道可為關的或是 開啟的。一流體結構(例如,流體結構1〇7)可配置在—通道 中,用以驅動流體流動’在翼上作功產生升力。 該工作流體在一最佳的攻角下流動橫過高升阻比之 翼犯夠使產生的推力最大化。用以運轉一推力發動機的 該功率輪出量,係與該錢結構q向外流與該向内流之 間該流體角速度差有關。 於圖中所示之翼與葉片係經定位用以最有效地證明本 發明之該等概念。此包括顯示具有零攻角的翼、氣動葉片 以及其他平直的葉#。葉>1幾何形狀及位置係視複數之發 動機設計參數而定,包括該流體流動路徑、流體運動、流 體速度及針對翼或葉片之攻角,如所顯示用以產生最大的 升阻比。 於本申請案中,翼、具有翼剖面狀斷面的葉片以及翼 剖面意指具有氣動效應的物件。具有氣動效應的任何物件 可適於執行本發明。翼係為一表面用以產生升力,供飛行 通過空氣或是另外的氣態介質。該翼形狀通常係為一翼剖 面。一翼可為對稱的’其中該等頂部及底部表面沿著該翼 弦線(chord line)係為相等的,或為不對稱的其中該等頂部 27 201114651 及底部表面沿著該翼弦線係為不相等的。在相同大小之正 與負攻角下,對稱翼提供相同的升力,而在相同大小之正 與負攻角下,不對稱翼提供不同的升力。於本發明之推力 發動機中,能夠使用對稱翼與不對稱翼二者。 於一具體實施例中,使用氣體作為在推力發動機内部 循環的工作流體。為維持一溫差用以保持一循環的流體流 動,將熱能轉換成推力的推力發動機,係於一或多個區域 中加熱以及於一或更多區域中冷卻下作動。 該等推力發動機之其他構形可具有複數之流體結構。 於該推力發動機内,由每一翼產生的該升力係因翼之該升 阻(L/D)比與翼中該阻力有關。當該翼之L/D比大於1時,該 翼之升力可大於該翼之阻力。升阻比大於10之翼可於市場 上取得。於一推力發動機内,在該推力發動機平衡狀況下, 該等翼可經設計用以根據該工作流體速度及密度提供一所 需的L/D比。於一具體實施例中,藉由該等翼產生之該推力 可大於該推力發動機之重量。 由於當上部分104a與下部分104b之間該溫差係較大時 該推力較大,所以可藉由調整該二部分之間該溫差而調整 該推力。推力發動機100獲得由一翼所接收之升力,該翼可 配置在外殼101内的任何位置處,只要能產生升力供外殼 101之該所需輸出力量所用。 該升力係視該流體流動之質量而定。可藉由壓縮、冷 卻或是壓力而增加流體密度。流體速度可藉由壓力,或是 藉由限制通過一特定區域的流體容積而增加。可藉由活 28 201114651 塞、葉片、燃燒、熱量或流體容積控制機構而提供流體壓 力。壓縮構件可為活塞、葉片或轉動室導致角動量差。活 塞可具有最小及最大功率狀況。 於一些具體實施例中,可應用熱交換器用以冷卻或是 預熱該流體或為冷卻及預熱該流體二者。本發明之該推力 發動機可安裝至一運輸工具,以致於一優選方向上引導該 推力,用以提供運輸工具移動。該推力發動機可直接地安 裝至該運輸工具本體,或是安裝具有一或二轉動軸,提供 於多維度(dimension)上引導該推力發動機的一方式。例 如,使具有能力改變其之翼之攻角的推力發動機安裝具有 一轉動軸,能夠於二維度(例如,向前、反向、左及右方向) 上引導推力供車或船所用。使用一推力發動機之運輸車輛 不需要用於傳輸轉動功率的部件(例如,傳動單元、齒輪以 及驅動輪列(drive train)),因為該推力發動機並未產生機械 輸出。因此,該等運輸工具係為重量輕、可靠的且不大需 要保養。再者,由於該推力發動機係為一完全地封閉系統, 所以其於内運轉較不受外在環境影響。使用本發明之該推 力發動機的車輛或是其他陸用運輸工具,對於加速度而言 於地面與輪胎之間並不需要摩擦(增加或減少),以防止運輸 工具不致於泥、雪或是其他惡劣狀況中停止。 根據本發明,使一推力發動機内部的該工作流體運動 的一流體結構(亦即,具有一軸及一組葉片的一結構),視該 組葉片之構形以及該推力發動機之應用而定,其之功能如 同一動葉輪、一推進器、一泵、一壓縮機、一風扇或是一 29 201114651 鼓風機。於一具體實施例中,一流體結構之葉片組可為徑 向或是軸向地配置。一流體結構之葉片組可安置在周圍流 體空間104c中。適合於推力發動機300、500及700中所用的 流體結構可為一軸向泵或是一徑向泵。 翼、具有翼剖面狀斷面的葉片以及翼剖面係為具有氣 動效應的物件。提供必要的氣動效應的任何物件可用以實 踐本發明。 根據本發明,可調整葉片參數用以設定一所需攻角, 表面積並以一範圍轉動足以使由該葉片產生的升阻比(L/D ratio)或該升力達到最大。可將產生推力的葉片傾斜,參考 該流體流動方向、流體速度及流體運動調整,使產生的推 力達到最大。葉片可經調整使有水平移動、上或下以及轉 動。該推力發動機的推力輸出可藉由改變該翼參考面積及 攻角而達到最大程度。能夠改變攻角的可調整翼可快速不 斷變化地調整推力發動機。根據本發明,一翼或是一氣動 葉片可包含一或多個的翼剖面(具有氣動效應的葉片)。將翼 耦合至該外殼或是分隔部分的支撐結構具有可調整的長 度,用以調整一或多個的翼。具有可調整長度的支撐結構 能夠針對一或多個翼調整攻角、定向或位置。 根據本發明,由於翼保持不動,所以於推力發動機中 並未具有由熱量提供動力之不變的移動部件。同時,根據 本發明,藉由熱量提供動力的推力發動機並不需一軸用以 驅動内部運動。 工作流體在一最佳的攻角及高升阻比下流動橫過該等 30 201114651 葉片,能夠使藉由該等葉片產生的升力最大化。用以運轉 一推力發動機的該功率輸出量,係為該流體結構之該向外 流與該向内流之間該流體角速度差。 於圖中所示之葉片係經定位用以最有效地證明本發 明。該等圖式顯示具有零攻角的氣動葉片以及其他平直的 葉片。葉片幾何形狀及位置係視複數之發動機設計參數而 定,包括該流體流動路徑、流體運動、流體速度及葉片攻 角,用以產生最大的升阻比。 產生推力的該等葉片可配置在適於產生推力的任何位 置處。於另一具體實施例中,位於一推力發動機之該外殼 内部的該等翼葉片,可構成連續或是不連續,封閉或是敞 開的通道供該工作流體流動橫過。用以驅動流體流動的一 流體結構可配置在每一通道中。 以上的詳細說明係提供用以闡明本發明之特定的具體 實施例,並不意欲用以限定本發明。能夠作不同的變化及 修改係涵蓋於本發明之範疇内。 【圖式簡單說明】 第1圖顯示本發明之一具體實施例的推力發動機100的 一橫截面視圖,其具有二固定翼。 第2圖顯示沿著第1圖之線A - A’所取的推力發動機10 0 的一橫向斷面視圖。 第3圖顯示推力發動機300,其係為本發明之一可任擇 的具體實施例,其中外殼103提供流體結構107,位在中心 部分104d中,搭配徑向地流動橫過翼101及102的流體。 31 201114651 第4a圖顯示一可調整環狀翼400,其適用於推力發動機 100及推力發動機300。 第4b圖顯示用以在環狀翼400中調整一攻角的該等控 制元件。 第4c圖顯示可調整的翼剖面葉片450。 第5圖顯示本發明之一具體實施例具有螺旋葉片的推 力發動機500的一橫截面視圖。 第6a圖顯示沿著第5圖之線A-A’所取的推力發動機500 的一橫向斷面視圖。 第6b圖顯示第5圖中推力發動機500的一可調整葉片。 第7a圖顯示本發明之另一具體實施例之推力發動機 700。 第7b圖顯示本發明之另一具體實施例之推力發動機 750。 第8圖顯示本發明之一具體實施例之一環狀管800,其 具有葉片經由位在外殼801内部的流體而轉動。 【主要元件符號說明】 100.··推力發動機 101,102..·翼 103…外殼 104a…上部分 104b…下部分 104c…周圍部分 104d…中心部分 105"·環狀分隔部分 106a, 106b,106c, 106d …支撐結構 107···流體結構 108.··葉片組 109…轴 300…推力發動機 400…可調整環狀翼 32 201114651 401,402·.·部分 403.··桿 404...桿導件 405···葉片支撐件 406…框轴桿 450···翼剖面葉片/氣動葉片 451···葉片部分 453··.調整桿 454…桿導件 456···柩轴桿 500…推力發動機 501a,501b...翼 501c…螺旋翼 503···内部外殼 504a…上部分 504b…下部分 504c…周圍流體空間 505…環狀分隔部分 506a,506b,506c,506d."螺旋壁 507".周圍翼組 507a…周圍翼 508a,508b…周圍壁 510…柩轴桿 512…桿導件 513···調整桿 515…支撐結構 520a…熱區域 520b…冷區域 700,750·.·推力發動機 701···圓形管狀外殼 702…翼組 702a,702b,702c,702d...翼 703a,703b···内部空間 704a…前緣 706a,706b···箭頭 752…翼組 754a…前緣 800···環狀管/推力發動機 801…外殼 802···翼組 802a,802b,802c …翼 803···流體導引器組 803a,803b…流體導引器 804…翼組 805···流體導引器組 806…葉片組 810."轴 811…支撐結構 812…圓形空間 812a···内部空間 812b…外部空間 33Lifting force: =^CtpV2A 2) Resistance = \cdpV2A where Q is the lift coefficient, ,, clothing is the resistance coefficient, /? is the degree and d is the degree of 4' W is the wing relative to The velocity of the fluid, the surface area of the wing profile. The lift-to-drag ratio (L/D ratio) is (4) the aerodynamic quality and efficiency produced by measuring the lift of the wing profile or blade design. At the known speed and the angle of attack, the lift of the wing is the 1-2 power of the resistance. Thus, in order to obtain a determined lift, a significantly less force can be applied to propel the wing through the air. On the actual flight, Lu's lift-to-resistance ratio can vary from 4:1 to ... or higher. There are complex methods to determine this lift. A heat engine is related to the device that converts thermal energy into mechanical energy. A heat engine operates by converting the fluid flowing between the two portions of the heat engine having different temperatures into mechanical power. The greater the temperature difference between the two parts, the higher the efficiency of the heat engine. The / Λ difference between the two zones inside the heat engine is used to maintain fluid circulation within the engine. The impeller is a tube or a rotating wheel inside the tube (r〇t〇r), which increases the pressure and flow of the body. A moving impeller is typically a rotating '' of a centrifugal pump that transfers energy from a motor that drives the fruit to the pumped fluid. The impeller accelerates the fluid outwardly from the center of rotation. When the outward movement of the 201114651 fluid is limited by the pump casing, the velocity reached by the impeller is transferred to pressure. The impeller is generally short cylindrical with an open inlet (referred to as an eye) for receiving incoming fluid, and the vanes for radially propelling the fluid. A propeller is essentially a fan type that delivers power by converting rotation into thrust for propelling a vehicle (e.g., an airplane, boat, or submarine) via a mass medium, such as water or air. The propeller is actuated in a manner similar to rotating a screw through a solid by rotating two or more twisted blades about a central axis. The vanes of a propeller act as rotor blades 1 and generate a force by creating a pressure differential between the front and rear surfaces of the profiled vanes of the wing and by accelerating the air mass rearwardly. Energy is required to generate thrust to propel through the fluid (i.e., overcome the resistance associated with lift). The extent to which different objects can fly varies with the efficiency of the engine and the extent to which the lift is converted to forward thrust. SUMMARY OF THE INVENTION In accordance with one embodiment of the present invention, a thrust engine uses one or more wings for creating a directional force in a conformable environment. The thrust engine can be varied by varying fluid parameters such as density or speed, such wing parameters (such as wing wing geometry, lift coefficient or plane area), number and position of wings, how the fluid receives energy, fluid motion, Fixed or movable wing and fluid path configured. A thrust engine of the present invention can be used to propel a car or another vehicle. For example, the invention can also be combined with the provision of a source of thermal energy, the blades of the propeller being a wing or wing profile. 201114651 What to apply. The invention will be better understood in conjunction with the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a cross-sectional view of a thrust engine 100 in accordance with an embodiment of the present invention having two fixed wings. Figure 2 shows a transverse cross-sectional view of the thrust engine 100 taken along line A-A' of Figure 1. 3 shows a thrust engine 300, which is an optional embodiment of the present invention, wherein the outer casing 103 provides a fluid structure 107 in the central portion 104d for radial flow across the wings 101 and 102. fluid. Figure 4a shows an adjustable annular wing 400 suitable for use with the thrust engine 100 and the thrust engine 300. Figure 4b shows the control elements for adjusting an angle of attack in the annular wing 400. Figure 4c shows an adjustable wing profile blade 450. Figure 5 shows a cross-sectional view of a thrust engine 500 having a helical blade in accordance with one embodiment of the present invention. Figure 6a shows a transverse cross-sectional view of the thrust engine 500 taken along line A-A' of Figure 5. Figure 6b shows an adjustable blade of the thrust engine 500 of Figure 5. Fig. 7a shows a thrust engine of another embodiment of the present invention. Fig. 7b shows a thrust engine 700 according to another embodiment of the present invention. 750. 750. 201114651 Figure 8 shows an annular tube 800 of one embodiment of the present invention having blades that are rotated by fluid positioned within the outer casing 801. I: Embodiment 3 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT When a fluid flows through an object, the speed at which the fluid is synthesized on the opposite surface of the article is less than a lift force on the body of the article. This lift can be used to provide an output as one of the thrust engines. The sum of the lifts inside the thrust engine provides the output of the thrust engine. A thrust engine has a device that converts fluid energy or heat into a force. In accordance with the present invention, a thrust engine operates by converting a lift force on the blade due to energy loss due to the flow of fluid across a pneumatic blade to create a force for the thrust engine. A pneumatic blade is characterized by a one-liter resistance ratio (L/D ratio). The lift-to-drag ratio determines the thrust generated by the aerodynamic blade. In accordance with the present invention, a blade having a lift-to-drag ratio greater than one can generate a lift force greater than the resistance on the blade as it flows across the blade. The vanes can be disposed within a closed engine to create a force greater than the force required to move the fluid across the vanes to create a thrust for the enclosed engine. The direction and magnitude of the thrust can be controlled by controlling the direction of fluid flow. According to the present invention, the fluid flowing inside the thrust engine may be a gas or a liquid. One of the thrust engines of the present invention uses one or more wings in a conformable environment for generating a guiding force. The thrust engine of the present invention can be configured by the anxiety fluid parameters by 201114651, such as density or speed, the number of wings (such as wing geometry, wing lift coefficient or plane surface area), the number and position of the wings, How the fluid receives energy, fluid motion, a stationary Gobi movable wing, and the fluid path. One of the thrust engines of the present invention can be used to propel any object, such as a *car or any vehicle, and can be used with any application requiring an engine. In some embodiments, a source of thermal energy can be provided to power the thrust engine. To simplify this detailed description and the drawings, reference to a wing profile (rather than a blade or a particular wing geometry) is equally applicable to other structures having aerodynamic effects, such as wings, aerodynamic blades, and wing profiles. To this end, the surface is used to generate lift for an object through the air or another gaseous medium. The wing typically has the shape of a wing profile. * When a solid object moves through a fluid, it produces a liter of force, which produces a lift when a fluid phase of the article moves through it. The present invention provides a thrust engine that operates under a thermal differential or a differential pressure to convert thermal energy or fluid kinetic energy into thrust. The push A engine of the present invention uses a closed loop to move objects on land, water, underwater, air, or space. Second, the pump or heat 1 can be used to move the fluid inside an engine or to 'pulse the body. The thrust engine of the present invention, which provides fluid energy by heat, can be utilized by any source of thermal energy, including solar energy, electrical energy, fossils, and other aggregates. The ram thrust engine of the present invention operates between portions of the engine - sufficient temperature differential to actuate. With the thrust generated by the thrust engine of one of the inventions 201114651, a guiding force based on the orientation of the engine and the internal configuration (e.g., as blade parameters and fluid parameters) is provided. Fig. 1 shows a thrust engine 1 according to an embodiment of the present invention. Fig. 2 is a cross-sectional view showing the thrust engine 100 taken along line A-A of Fig. 1. As shown in Fig. 1, the wings 101 and 102 are suspended inside the outer casing 103, and the outer casing is divided into upper portions 104a and 104b by an annular partition portion 105. (The above-mentioned expressions "upper" and "lower" are merely provided to aid in the description in this detailed description; the outer casing 103 may be oriented in either direction) the annular partition 105 It can be a wing or an object with aerodynamic effect. The annular dividing portion 105 provides separation and produces lift in a preferred direction. The fluid flow of the thrust engine 100 can be self-starting by gravity and raising the hot fluid. A fluid inlet valve can be used to pressurize the fluid to activate the engine and control the pressure within the engine. Between the upper portion 104a and the lower portion 10b, the fluid circulates through the surrounding portion 1 such as the central portion 104d. The central portion 104d can be a smoky-like space for increasing fluid flow. The wings 101 and 102 are fixed at their positions relative to the outer casing 103 by the support structures i〇6a, 1〇, i〇6c and 106d. Support structures 1, such as 1, 〇讣, 106c, and 106d, may be used to transfer thermal energy to or from the engine. The structure of the tower can also have an aerodynamic effect in terms of lift generation. As shown in Fig. 2, the wing 101 is looped when viewed from the top (or bottom), allowing more flow between the surrounding portion (10) and the portion of the towel. The wing K) 2 provided may have a different shape and size than the wing (9). According to a particular embodiment, the upper portion 1 is maintained at a temperature that is lower than the temperature at the lower portion of the lion 201114651 to provide a fluid circulation. The fluid flows radially outwardly in the lower portion 104b, into the upper portion 104a through the surrounding fluid space 104c, radially inwardly toward the central fluid space 104d and back to the lower portion 104b via the central fluid space 104d. Multiple heating zones and cooling zones may be disposed within the outer casing 103 to optimize working fluid flow. The direction and velocity of the fluid flow covering each wing (and under each wing) is determined by the geometry of the wings 101. As described above, the lift and resistance generated by the wings 101 and 102 provide a thrust when the fluid flow covers and flows under the wings 101 and 102. The magnitude of the thrust or thrust force is determined by the dimensions of the wings 101 and 102 and their respective lift coefficients and drag coefficients. In one embodiment, a heating or cooling element can be embedded within the wings 101 and 102 to heat and cool the fluid and to create a temperature differential between the upper portion 104a and the lower portion 104b. In one embodiment, a heating element or a cooling element or both may be embedded within the wings 101 and 102 to vary the velocity of the fluid flow around the wings 101 and 102. Place the heating source at the location where high pressure is required and place the cooling source at the location where low pressure is required. In one embodiment, the metal is a preferred material for providing efficient heating and cooling of the wings 101 and 102 and the outer casing 103. In general, for a thrust engine of the present invention, a wing system having a higher lift-to-drag ratio is considered more efficient - i.e., produces a greater thrust for a given amount of input power. Other factors will also affect the selection of the lift-to-drag ratio (for example, power consumption). The working fluid located inside the outer casing 103 can be a gas or a liquid 10 201114651 body. A gaseous working fluid can be pressurized if desired. An advantage of a gaseous working fluid is that the same temperature difference between portions 104a and 104b can have a relatively wide range of fluid densities. A higher density of pressurized gas provides a greater thrust in one of the thrust engines of the present invention. A pressurized gaseous working fluid also prevents fluid separation problems occurring at the wings. According to the present invention, since the gas density can be changed by adjusting the pressure, the generated thrust can be controlled by changing the working fluid pressure during the operation of the thrust engine. The wings located inside a thrust engine may be arranged in parallel or in a layered configuration to enhance the thrust in a preferred direction. A thrust engine can be configured that has at least two fluids with different fluid parameters (e.g., fluid density and velocity). In one embodiment, a thrust engine having a spiral passage or a helical outer casing has a fluid flow that rotates between the upper portion 104a and the lower portion 104b through the surrounding fluid space 104c and the central fluid space 104d. In another embodiment, the fluid flows radially outwardly in the upper portion 104a, into the lower portion 104b via the surrounding fluid space 104c, radially inwardly toward the central fluid space 104d and back through the central fluid space 104d. Part 104a. According to a specific embodiment, the upper portion 104a is maintained at a relatively high temperature relative to the temperature at the lower portion 104b. A one-way valve may be disposed in the central fluid space 104d to allow fluid to flow between the upper portion 104a and the lower portion 104b. A mechanism can be configured to direct fluid flow. Once the fluid flow is initiated, the temperature gradient between the lower portion 104b and the upper portion 104a maintains the fluid flow direction. A propeller can be used to initiate fluid flow in a preferred direction 11 201114651, which can be powered externally or powered by a mechanism disposed in the separator or partition 105. Optionally, a valve system can be provided on the wall of the outer casing 103 to provide air flow from the outside through the outer casing 103 and again to the exterior. During operation, the temperature difference between the upper and lower portions 10a and 104b determines the velocity of fluid flow. The thrust is proportional to the square of the velocity of the fluid flow across the wings. In the direction of the lift, the thrust is equal to the wing resistance multiplied by the lift-to-drag ratio. The energy loss from the fluid as it flows across the wings is due to the resistance and friction that covers the surfaces of the wings. The central fluid space 104d and the surrounding fluid space 104c can be used to provide heating and cooling to maintain the temperature difference, replacing the upper portion 104a and the lower portion 104b. In this configuration, depending on the orientation of the thrust engine, the thrust engine may or may not be self-starting. In one embodiment, the temperature difference is maintained using central portion 104d and surrounding portion 104c. At the same time, particularly for larger thrust engines with long fluid paths, more than two portions of the thrust engine casing can be used to heat and cool the working fluid. In one embodiment, three or more portions of the thrust engine casing are used to heat and cool the working fluid. Figure 3 shows a thrust engine 300, which is an optional embodiment of the present invention, wherein the outer casing 103 is provided with a fluid structure 107 having a plurality of blades 108 and a shaft 109 and is positioned in the central portion 104d. The fluid flowing across the wings 101 and 102 flows radially. Fluid structure 107 uses mechanical force to propel fluid circulation. Depending on the configuration of the blade set 108 and the application of the engine, the fluid junction 7 can be used as a pump, a propeller, a propeller, a compressor, a fan or a blower. In one embodiment, the fluid structure 107 can have an adjustable blade configuration such that the blade set 1 8 provides energy for fluid flow or contributes to the lift. This thrust is obtained in the thrust engine 3〇〇 and can be controlled by adjusting the amount of fluid pumped by the fluid structure 1〇7. In one embodiment, the blade set 1 〇 8 can have a wing profile-like profile-synthesis aerodynamic force that can be broken down into a force directed along the axis of rotation of the blade. The fluid structure 107 can be used as a propeller. The annular portion 105 can be part of the blade set 1 〇 8 of the fluid structure 1 , 7 allowing the ring portion to rotate with the shaft 109. In the thrust engine 100, the position and size of the thrust wing ιοί and 102 are obtained in the thrust engine 3〇〇, the size and shape of the outer casing 1〇3, and the wings 101 and 1〇2 and the outer casing 1〇 3 depending on the material selected. In general, any material capable of controlling the resultant lift can be used for the wings 1〇1 and 1〇2, including any metal, plastic or composite material. The outer casing 1〇3 may be constructed of any material capable of controlling fluid pressure and allowing fluid flow to dissipate the heat generated by the frictional forces of the wings 1〇1 and 1〇2. The working fluid used by the thrust engine 300 can be a gas or a liquid. When a gas is used as the working fluid, pressurizing the gas increases the pushing force. A working fluid having a small dynamic viscosity (viscosity/density) can increase the thrust engine efficiency. However, unlike the thrust engine 1,, the thrust engine 3 is started by the fluid flow generated by the fluid structure 1〇7. As long as the fluid pressure at the fluid structure 107 is greater than the pressure drop due to the resistance and friction along the fluid path, the fluid velocity increases. The fluid structure 107 13 201114651 can be located in the upper portion 104a, the lower portion l4b or the surrounding fluid space 1 〇 4c' or the other fluid structure 1 〇 7 in the thrust engine 300 capable of generating a desired fluid flow. Location. In one embodiment, a thrust engine powered by a heat differential and a compressor (propeller) can be utilized. The thrust engine 100 can be positioned in the central fluid space 104d using a compressor type fluid configuration to compress the fluid and increase the fluid velocity. The fluid structure 107 can be associated with more than one set of blades for driving fluid to work on the wings. When mechanical input power is not provided to drive the fluid structure 1 〇 7, the fluid structure 107 can have a mechanism to allow the blade to fold around the axis 1 〇 9 or to align with the inner wall of the outer casing 103. In one embodiment, the vanes inside the fluid structure 107 can be used as a diffuser to convert the rotating fluid into a high pressure fluid without rotation so that the fluid structure 1〇7 need not be continuously provided by an external mechanical power source. power. The vanes in the fluid structure 1〇7 can be powered by a coil spring. The wing generates lift to form a fluid passage. The wings are adjustable to control the lift generated by the wings. The adjustment can be performed by controlling the angle of attack or by tilting the wings. In some embodiments, the "angle of attack" at each wing can be controlled to achieve the required thrust at the wing. Unlike a fixed wing, one type can be adjusted during operation. The wing can change the angle of attack to the direction of flow of the working fluid. When the adjustable wing changes its angle of attack, the surface area of the wing can also be changed. For the wing, a plurality of overlapping portions can be used to maintain a continuous wing surface. In a specific embodiment, the angle of attack of the blade can be adjusted to obtain the best economic benefit of the generated lift. Figure 4a shows an adjustable annular wing 4〇〇. A control mechanism for adjusting a working angle of attack in the ring 14 201114651 wing 400. As shown in Figure 4b, portions 401 and 402 are coupled to the blade support by adjustment rods 4〇3 and pivot rods 406. 405. The movement of the adjustment rod 403 in the rod guide 404 can be accomplished using hydraulic pressure or another method well known in the art. By pivoting the blade portions 401 and 402 on the pivot rod 4〇6, the adjustment rod 403 is The movement control blade portions 401 and 402 The angle of attack. The rod guide 404 is curved to conform to the flow path of the blade portions 401 and 402 as they pivot about the pivot rod 4〇6. The adjustment rod 403 can simultaneously move the blade portion 401 and 402, or, if desired, independently move the blade portions 401 and 402. Figure 4c shows that the adjustable pneumatic blade 45 is centered on the portion 451 of the figure by means of the adjustment rod 453 and the pivot rod 456_ Blade support portion (not shown). The rod guide 45 can be used to move the adjustment rod 453 using hydraulic pressure or another method well known in the art. By pivoting the pivot (4) sheet portion 45 The swaying control blade has an angle of attack of 451. The rod guide 454 is a bicycle that "follows the flow path of the blade portion 451 as it pivots about the pivot rod 456. When the angle of attack determines the lift and resistance experienced at each wing, the total thrust generated by the thrust engine of the present invention can be adjusted by (4) the angle of attack at each wing. The method has the advantages that: (8) the lift can be changed quickly and accurately; (b) the lift can be adjusted to produce - forward and reverse directions; and (4) by dividing the wings 1Q1 and 1Q2 into complex portions. Wings of large cymbals can be provided, each section providing _ different angles of attack to control the direction of the force and thus the magnitude of the thrust generated to allow. As the resistance increases with the attack (four), it also changes to the engine 彳 (4) (four) the fluid pressure 15 201114651 force loss. Thus, the difference in heat, the speed of the propeller or the fluid structure can be adjusted to compensate for such fluid pressure changes. An engine control device can be provided for adjusting both the angle of attack and the fluid flow rate. An inductor can also be provided at each wing to measure the fluid flow rate. In some embodiments, more than two wings may be provided. The two or more wings have a miniaturized design to meet the required thrust requirements. Depending on the thrust requirements of the systems, each wing is an adjustable wing or a fixed wing. In one embodiment, the wings 101 and 102 are movable relative to the outer casing 103 by the support structures 106a, 106b, 106c and 106d. In accordance with the present invention, the wings 101 and 102 flow relative to the fluid in the outer casing 103 and are adjustable at their angles. To generate lift, the wings 101 and 102 can be placed anywhere within the outer casing of the thrust engine. The fluid velocity can be varied by controlling a fluid volumetric flow rate at a particular region. By varying the amount of fluid flow around the wings 101 and 102, considerable lift can be produced. Heating or cooling can also be used to change the fluid velocity or fluid density. In accordance with the present invention, thrust engine 300 is capable of supporting a toroidal and a rotating fluid flow. The blade set 108 of the fluid structure 107 can be designed to rotate fluid within the outer casing 103 to produce a rotating fluid flow. The blade set 108 can be axially disposed in a radial direction at a location where fluid flow is desired. The wings 101 and 102 can be configured to generate lift from a rotating fluid flowing across the wings. By rotating the fluid, the fluid path across the wings 101 and 102 can be increased, thereby creating the lift on the wings 101 and 102. In one embodiment, the thrust engine 300 has a fluid structure 107 that is configured to use 16 201114651 to rotate the fluid outwardly in the lower portion 104b. The body rotates rotatively into the upper portion 104a through the peripheral fluid space 104c, and turbulently flows inwardly toward the center fluid space 104d and rotates through the center fluid* to return to the lower portion with the working chamber l4d. In a specific embodiment, the thrust engine 3 is used. . Having a fluid structure 1〇7 configured to rotate fluid outwardly in the upper portion of the product, by rotating through the surrounding fluid space 104c into the lower squeezing blade 104a, rotating inwardly toward the central fluid space H) The cymbal is rotated back through the central fluid space 1 to return to the upper portion 104a. According to another embodiment, Fig. 5 shows a thrust engine 5'' having a snail wall in the upper portion 5, such as the lower portion 504b, which constitutes a spiral passage for the working fluid to flow. The synthetic fluid is related to a single axis rotation. The spiral walls can be attached to the inner casing 503 and the annular partition 505. The helical working fluid path increases the length of the working fluid path to enable increased wing surface area in contact with the working fluid. Each spiral channel has a plurality of discrete wings for generating thrust. The spiral passage is visible between the spiral walls 506 & 5 and the wings 501a and 501b. As shown, the wings 501a and 501b may form a plurality of layers in the spiral channel inner wing or form a single layer. Figure 6a shows a top view of the upper portion 504a of the thrust engine 500 through line A-A' showing the ballast channel and a single layer of the inner wing of each channel. The plurality of layers of the inner channel of a spiral passage can increase the thrust generated. Some factors that determine the number of airfoil layers within a spiral passage are the channel height, wing thickness, and working fluid flow rate. Each wing can be attached to the spiral walls and can be a fixed wing or an adjustable wing. The fulcrum structure 515 connects the wings to the inner casing wall within the surrounding fluid space 504c. 17 201114651 It can be clearly seen from Fig. 6c that the auger is connected to the spiral wall, wherein the helical wing 501c is coupled to the spiral walls 506c and 506d by the adjustment rod 513 and the pivot rod 510. The adjustment rod 513 is moved within the rod guide 512 by a hydraulic device or another method well known in the art. The movement of the adjustment lever 513 controls the angle of attack of the helical wing 501c by pivoting the blade 501c on the pivot rod 510. The rod guide 512 is bent to cooperate with the path of the spiral wing 501c as it pivots about the pivot rod 510. In Figure 5, the working fluid flow has vorticity (i.e., eddy currents are formed in the fluid flow). The working fluid flows a continuous force and a momentum on the spiral walls and wings. As shown in Figure 5, since the working fluid circulation is a vertical circulation of a pair of flows, the vorticity is almost horizontal. The working fluid flow is from a cold zone 520b in the upper portion 104a to a hot zone 520a in the lower portion 104b as a rotating downdraft. (Here, "hot zone" and "cold zone" only mean higher and lower temperature zones (relative to each other).) Similarly, the working fluid flows from the hot zone 520a to the cold zone 520b. Rotating updraft. The momentum of the working fluid is continuously maintained during the engine cycle. The working fluid continuously heats, expands, cools, and contracts in each zone during each engine cycle. Thus, a complete engine cycle and a complete working fluid path are provided within the outer casing 503. The working fluid exerts a force on the wings during a motor cycle. As described above, the working fluid has vorticity and has a continuous momentum resulting from heating and cooling of the working fluid, and the spiral walls direct the working fluid to rotate. The wings can be designed to rotate in the fluid. Screw 18 201114651 The wall and wings can be used as a support structure coupled to the outer casing 503 or provide a heat transfer function. Therefore, in this environment, the longer the engine is running, the faster the working fluid circulates until the speed of the working fluid becomes the speed of the working fluid at the beginning of the second cycle at the end of the first cycle, and throughout the second The cycle is increased during the cycle. The working fluid velocity is increased by kinetic energy, which is then converted to thrust work by the heat engine. The working fluid velocity is increased during the expansion phase of the engine cycle and during the second contraction phase. The shape of the wings or spiral walls helps to rotate the working fluid. The internals of the thrust engine 5〇0 can also be used to adjust the temperature of different parts of the engine - that is, to change the temperature of the hot zone 520a or to vary the temperature of the cold zone 520b. In the hot zone 520a, the working fluid rotates and flows radially outward, moving upward into the cold zone 520b. In the cold zone 520b, the working fluid rotates and flows radially inward, and moves downward into the hot zone. 52〇a/ extends along the length of the descending airflow. Rotating or "twisting", the speed increases as the diameter of the column decreases. The cold X-flow system is carried more efficiently through the space in the form of a rotating downflow. The high body speed ~ Due to the angular momentum balance, the engine design is based on continuous heating and cooling, and the production wing (pneumatic ') / working fluid (ie, maintaining the momentum in the working fluid) Unlike the thrust engines 100 and 300, by rotating the working fluid 'thruster', it is possible to generate thrust in the peripheral portion 19 201114651 504c by means of a continuous wing configuration. Figure 5 shows the positioning by the surrounding wall 5〇83 And a surrounding wing 5 of the surrounding wing group 507 in a surrounding passage formed by 5〇81?, the surrounding wall is attached to the internal peripheral 503 and optionally attached to the annular partition 5〇5. The peripheral passages direct the working fluid between the upper portion 504a and the lower portion 5. The surrounding walls are used to form the surrounding passages, allowing the surrounding wings to have a larger angle of attack on the working fluid. Flexibility. The surrounding passages can also borrow Consisting of the δ Xuan special peripheral wings, thus increasing the number of wings that generate thrust. However, the surrounding wings must have an angle of attack on the working fluid to maintain the relationship between the upper portion 504a and the lower portion 5 The circulation of the working fluid. In one embodiment, the thrust engine 5 uses a peripheral wing to form a peripheral passage for the working fluid for flow between the upper portion 5 and the lower portion 504b. I 勑 micro D can be powered by a temperature differential such as 7 in a thrust engine 1 or by the fluid structure (not (4)) in the thrust engine 300. When the fluid flows (4), it can be used to maintain the circulation of the working fluid... The structure includes a pump that uses an axially or radially rotating blade group. When a fluid-flow structure is used for a rotating fluid flow, a propeller is used. It rotates on the minus (four) of the material, and it makes the angular velocity difference between the fluids of the fluid used to generate the ~lift force to maintain the rotation; the flow circulation material is more effective (4). In the "fine", the push machine 500 uses 1 with a piece of film. . . . . . - a slave structure that maintains a fluid ring using the angular velocity difference between the fluid j blade sets. During operation, the fluid angular velocity at the blade set can be sufficiently high that the blade set: 20 201114651 rotates (ie, no input power) to maintain fluid circulation. Separately, the thrust engine 700 and the thrust engine 750 of Figures 7a and 7b generate different directional thrusts by orienting the wing sets 702 in horizontal and vertical positions. In one embodiment, the thrust engine 700 includes a circular tubular housing 701 enclosing a working fluid and wing set 702 having wings 702a, 702b, 702c, and 702d. The working fluid circulates through the interior of the outer casing 701 in the direction indicated by arrows 706a and 706b. Thus, the working fluid flow is from the interior space 703a, covering the wings 702a and 702b into the interior space 703b, and then covering the wings 702c and 702d back into the interior space 703a. Mounting the wing set 7〇2 to the inner wall of the outer casing 701 leaves room for allowing the working fluid to flow to cover the wing set such that its leading edge is level with the working fluid flow (see, for example, the leading edge of the wing 702a) 704a). All of the wing systems in wing set 702 are pneumatic blades and thus the lift generated by wing set 702 is generally vertical as shown in Figure 7a. The wing pack 702 is capable of disposing the wings at any location within the interior of the housing 701, including interior spaces 703a and 703b. The wing set 702 can have all of the wings fixed, all of which are adjustable wings or a combination of fixed and adjustable wings. The thrust engine 700 can be mechanically powered by one or more fluid pumps in the housing 701, or by generating heat in an area of the housing 701 having different temperatures. When the working fluid flows cover each of the wings of the wing stage 702, the working fluid has a pressure loss due to the resistance of the wings and the friction originating from the inner wall of the outer casing 701. This loss of working fluid pressure can cause the working fluid to decrease in velocity and can create an imbalance in lift on the wings in the wing pack 702. 21 201114651 One way is to have more than one fluid pump or to have more than one temperature differential zone in a separate configuration within the outer casing 7〇1. In one embodiment, the thrust engine 700 is mechanically powered by a fluid pump disposed within the interior spaces 703a and 703b. In one embodiment, the thrust engine 700 is mechanically powered by a two-fluid pump, one fluid pumping in the interior space 703a and another fluid pumping station in the interior space 703b. In one embodiment, the thrust engine 700 is powered by heat to create a temperature differential between the interior space 703a and the interior space 703b. According to another embodiment, the thrust engine 700 is powered by heat, creating a temperature differential between the interior space 703a and the interior space occupied by the wings 702a and 702b, and in the interior space 703b and the wing 702c and A temperature differential is generated between the internal spaces occupied by the 702d. In one embodiment, the thrust engine 700 is powered by heat by creating a heating and cooling element within the wing pack 702 for creating one or more zones having a temperature differential within the outer casing 701. Another way to compensate for the imbalance of lift occurring in the wing pack 702 due to fluid pressure loss is to configure the outer casing 701 such that the cross-sectional area through which the working fluid flows decreases as the fluid flow covers each wing. . Reducing the cross-sectional area increases the speed of the working fluid to compensate for the reduction in working fluid velocity due to pressure loss of the working fluid. At the same time, the adjustable wings in the wing group 702 can be controlled to increase the angle of attack to increase the lift and compensate for the imbalance. In one embodiment, the thrust engine 700 has a reduced cross-sectional area along the section containing the wings 7〇2a and 702b and the section containing the wings 7〇2c and 7〇2d. In one embodiment, the thrust engine 22 201114651 700 has a wing set 702 having one or more adjustable wings that are adjusted by a controller based on the pressure loss of the working fluid. When the thrust engine 700 is powered by heat, some of the factors determining the direction of fluid flow are the shape of the outer casing 701, the location of the relatively high and low working fluid temperatures, and the control valve within the outer casing 701. The working fluid pressure within the outer casing can be controlled by varying the cross-sectional area for increasing (i.e., reducing the cross-sectional area) or reducing (i.e., increasing the cross-sectional area) the working fluid velocity. The working fluid in the housing is in a relatively high temperature region capable of producing a relatively high working fluid pressure region, and the working fluid in the housing is in a relatively low temperature region capable of producing a relatively low working condition. Fluid pressure zone. Since the working fluid flows from a high pressure region to a low pressure region, the shape of the outer casing and the temperature difference of the working fluid can be used to force fluid flow in a preferred direction. A one-way valve or gate may also be disposed in the working fluid path for forcing fluid in a preferred direction. In one embodiment, the thrust engine 700 is powered by heat for generating one or more regions having a temperature differential within the housing 701, wherein the workflow system is formed in a preferred direction by the shaped housing 701 Used to have one or more regions that increase or decrease the cross-sectional area, or by a region having a relatively high and low temperature working fluid, or by forming the outer casing 701 and a relatively high and low temperature working fluid region The position is guided by both. In another embodiment, the thrust engine 750 (Fig. 7b) is modified by the thrust engine 700 to orient the wing set 752 vertically. The wing pack 752 is mounted to the inner wall of the outer casing 701 with a space to allow the working fluid flow 23 201114651 to move the wing pack such that its leading edge 754a is perpendicular to the working fluid flow. All of the wing systems in the wing group 752 are aerodynamic wings, so the lift generated by the wing sets 7〇2 is generally horizontal, as shown in Figure 7b. Wing group 752 can be disposed at any location within inner casing 701, including interior spaces 703a and 703b. Wing 752 can have all of the wings as fixed wings, all of which are adjustable wings or a combination of fixed and adjustable wings. Fig. 8 shows an annular tube 800' having blades that are rotated by fluid located inside the outer casing 8〇. In one embodiment, the thrust engine 8 includes a housing b01 that encloses a working fluid, and the wing pack 8'''''''''''''' The outer casing 801 has a circular space 812 that contains a working fluid for the wing set 802 to rotate therein. Fluid guide set 803, including fluid introducers 803a and 803b, is attached to a top portion of the wall of housing 801 for positioning internal space 812a and external space 812b. The fluid introducer set 803 is oriented to rotate the working fluid in a direction opposite the wing set 802. A fluid guide set 805 is attached to the bottom of the inner wall of the outer casing 801 for providing a passage for the working fluid to flow therethrough. The wing sets 804 are disposed within the channels formed by the fluid introducer 805 such that there is sufficient air for the working fluid to flow between the bottom inner wall of the outer casing 801 and the wing set 804. The blade set 8〇6 is attached to the outer casing wall in the outer space 812b. The thrust engine 8 is actuated by rotating the wing set 802 by a shaft 810 that is external to the outer casing 801. All of the wings of the wing set 8〇2, including the wings 8〇2a, 802b and 802c, are the aerodynamic wings that are generally guided upward when they are rotated through the working fluid. This means that the wing set 8〇2 has a wing on the bottom surface of which is the high pressure side of 24 201114651 and its low pressure side on the top surface, as shown in FIG. Thus the 'wing set 802 directs the working fluid downward as it rotates within the interior space 812a, causing the working fluid to move along the inner wall of the outer casing 801, across the wing set through the channels formed by the fluid guide 805 804 enters exterior space 812b and then passes through fluid guide set 803. Wing set 804 produces a lift in the same direction as wing set 802 by the fluid flowing therethrough. Once the working fluid has flowed through the fluid guide set 803, the working fluid is rotated in the opposite direction of the wing set 802. Accordingly, the working fluid velocity used to generate lift on the wing pack 802 is the relative velocity of the working fluid to the wing pack 802 (i.e., the sum of the working fluid speed and the wing pack 802 speed). The torque on the outer casing 801 is generated as the working fluid flows through the fluid guide set 803, and a torque in the opposite direction is generated as the working fluid flows through the fluid director set 805. The difference between these torques produces a net torque on the outer casing 801. The blade set 806 can provide an adjustable pneumatic blade that is controlled to offset this net torque. In general, as described above, in the thrust engine of the present invention, a wing having a higher lift-to-drag ratio is considered to be more efficient - that is, for a known amount of input power, the wing produces a Large thrust. A wing having a higher lift-to-drag ratio typically has a lower lift coefficient than a wing having a lower lift-to-drag ratio. Other factors also affect the choice of lift-to-drag ratio (for example, power dissipation). A rotating ball can be placed inside a thrust engine or a rotating cylinder can be used to generate lift. A rotary thrust engine can be utilized to generate torque by coupling a pneumatic blade or other type of blade to the inner wall of a casing of a thrust engine. A rotary push 25 201114651 A spinning thrust engine can generate a thrust (lift). Since the working fluid path is continuous, the internal and kinetic energy of the working fluid continues to exist in the next cycle at the end of each cycle. In the thrust engine 100, the working fluid obtains kinetic energy and internal energy due to the amount of heat supplied in the hot portion. When the working fluid moves throughout the cycle, the working fluid loses internal energy due to heat dissipation in the cold portion, and kinetic energy loss due to resistance and friction in the wings 101 and 102 and its internal surfaces. In the thrust engine 300, when the working fluid moves throughout the cycle, the working fluid is subjected to kinetic energy from the fluid structure 107, and kinetic energy is lost due to resistance and friction in the internal surfaces of the wings 101 and 102 and its interior. In each cycle, when the kinetic energy obtained by the working fluid exceeds the kinetic energy loss, the working fluid velocity at the end of the cycle is greater than the working fluid velocity at the beginning of the cycle. Conversely, in each cycle, when the kinetic energy obtained by the working fluid is less than the kinetic energy loss, the working fluid velocity at the end of the cycle is less than the working fluid velocity at the beginning of the cycle. The thrust engine is balanced when the obtained kinetic energy is equal to the lost kinetic energy. In this case, the working fluid velocity at the beginning of the cycle is equal to the working fluid velocity at the end of the cycle. In one embodiment, the adjustment of the blade parameters can be performed to enable adjustment of the angle of attack, increasing or decreasing the surface area and rotating in a range sufficient to achieve a lift-to-drag ratio (L/D ratio) or lift generated by the wing. maximum. The lift-generating wing can be tilted, with reference to the fluid flow direction, fluid velocity, and fluid motion adjustment to maximize lift generated. The wing can use one, two or three axes. 26 201114651 'Zhouyu thrust engine output can be maximized by changing the wing reference area and the working angle of attack. In a particular embodiment of the invention, the wings that generate lift may be configured at any location suitable for generating thrust. In another embodiment, the wings located within the outer casing of the thrust engine may constitute Continuous or discontinuous channels are used for red fluid axes. The channel can be off or on. A fluid structure (e.g., fluid structure 1 〇 7) can be disposed in the passage to drive fluid flow to work on the wing to generate lift. The working fluid flows across a high lift-to-drag ratio wing at an optimum angle of attack to maximize the thrust generated. The amount of power output used to operate a thrust engine is related to the difference in angular velocity of the fluid between the outward flow of the money structure q and the inward flow. The wings and blades shown in the figures are positioned to most effectively demonstrate the concepts of the present invention. This includes showing wings with zero angle of attack, aerodynamic blades, and other straight leaves #. The leaf >1 geometry and position are dependent on the engine design parameters, including the fluid flow path, fluid motion, fluid velocity, and angle of attack for the wing or blade, as shown to produce the maximum lift-to-drag ratio. In the present application, a wing, a blade having a wing-shaped cross section, and a wing profile mean an article having aerodynamic effects. Any article having a pneumatic effect may be suitable for carrying out the invention. The wing system is a surface used to generate lift for flight through air or another gaseous medium. The shape of the wing is typically a wing profile. A wing may be symmetrical 'where the top and bottom surfaces are equal along the chord line, or are asymmetrical, wherein the top 27 201114651 and the bottom surface are along the chord line Not equal. At the same positive and negative angles of attack, the symmetrical wings provide the same lift, while at the same positive and negative angles of attack, the asymmetrical wings provide different lift. In the thrust engine of the present invention, both symmetrical wings and asymmetric wings can be used. In one embodiment, a gas is used as the working fluid circulating inside the thrust engine. To maintain a temperature differential to maintain a circulating fluid flow, a thrust engine that converts thermal energy into thrust is heated in one or more zones and operated in cooling in one or more zones. Other configurations of the thrust engines may have a plurality of fluid configurations. In the thrust engine, the lift generated by each wing is related to the resistance in the wing due to the lift resistance (L/D) ratio of the wing. When the L/D ratio of the wing is greater than 1, the lift of the wing may be greater than the resistance of the wing. Wings with a lift-to-drag ratio greater than 10 are available on the market. Within a thrust engine, the wings may be designed to provide a desired L/D ratio based on the working fluid velocity and density under equilibrium conditions of the thrust engine. In one embodiment, the thrust generated by the wings may be greater than the weight of the thrust engine. Since the thrust is large when the temperature difference is large between the upper portion 104a and the lower portion 104b, the thrust can be adjusted by adjusting the temperature difference between the two portions. The thrust engine 100 obtains the lift received by a wing that can be placed anywhere within the outer casing 101 as long as it can generate lift for the desired output force of the outer casing 101. This lift depends on the quality of the fluid flow. The fluid density can be increased by compression, cooling or pressure. The fluid velocity can be increased by pressure or by limiting the volume of fluid passing through a particular area. Fluid pressure can be provided by a plug, blade, combustion, heat or fluid volume control mechanism. The compression member can be a piston, vane or rotating chamber resulting in a difference in angular momentum. The piston can have a minimum and maximum power condition. In some embodiments, a heat exchanger can be employed to cool or preheat the fluid or to both cool and preheat the fluid. The thrust engine of the present invention can be mounted to a vehicle such that the thrust is directed in a preferred direction for providing vehicle movement. The thrust engine can be mounted directly to the vehicle body or can be mounted with one or two axes of rotation to provide a means of guiding the thrust engine in multiple dimensions. For example, a thrust engine mounted with an ability to change its angle of attack has a rotating shaft that can be used to guide the thrust for use in a two-dimensional (e.g., forward, reverse, left, and right directions). A transport vehicle that uses a thrust engine does not require components for transmitting rotational power (e.g., a transmission unit, a gear, and a drive train) because the thrust engine does not produce a mechanical output. Therefore, these vehicles are lightweight, reliable and require little maintenance. Moreover, since the thrust engine is a completely closed system, its internal operation is less affected by the external environment. Vehicles or other land vehicles using the thrust engine of the present invention do not require friction (increasing or decreasing) between the ground and the tire for acceleration to prevent the vehicle from being muddy, snowy or otherwise Stopped in the situation. According to the present invention, a fluid structure (i.e., a structure having a shaft and a set of blades) for moving the working fluid inside a thrust engine depends on the configuration of the set of blades and the application of the thrust engine. The function is the same moving impeller, a propeller, a pump, a compressor, a fan or a 29 201114651 blower. In one embodiment, the blade set of a fluid structure can be radially or axially disposed. A blade set of a fluid structure can be placed in the surrounding fluid space 104c. The fluid structure suitable for use in thrust engines 300, 500 and 700 can be an axial pump or a radial pump. Wings, blades with a profiled section of the wing, and wing profiles are objects with aerodynamic effects. Any article that provides the necessary aerodynamic effects can be used to practice the invention. In accordance with the present invention, the blade parameters can be adjusted to set a desired angle of attack, and the surface area is rotated in a range sufficient to maximize the lift-to-drag ratio (L/D ratio) or lift generated by the blade. The blade that produces the thrust can be tilted, with reference to the fluid flow direction, fluid velocity, and fluid motion adjustment to maximize the generated thrust. The blades can be adjusted to move horizontally, up or down, and rotate. The thrust output of the thrust engine can be maximized by changing the wing reference area and angle of attack. Adjustable wings that change the angle of attack allow the thrust engine to be adjusted quickly and continuously. According to the invention, a wing or a pneumatic blade may comprise one or more wing profiles (blades with aerodynamic effects). The support structure that couples the wings to the outer casing or partition has an adjustable length for adjusting one or more wings. A support structure with an adjustable length can adjust the angle of attack, orientation or position for one or more wings. According to the present invention, since the wing remains stationary, there is no constant moving member that is powered by heat in the thrust engine. At the same time, according to the present invention, a thrust powered engine powered by heat does not require a shaft to drive internal motion. The working fluid flows across the 30 201114651 blades at an optimum angle of attack and a high lift-to-drag ratio to maximize the lift generated by the blades. The amount of power output used to operate a thrust engine is the difference in angular velocity of the fluid between the outward flow and the inward flow of the fluid structure. The blades shown in the figures are positioned to most effectively demonstrate the invention. These figures show aerodynamic blades with zero angle of attack and other straight blades. The blade geometry and position are determined by the complex engine design parameters, including the fluid flow path, fluid motion, fluid velocity, and blade angle of attack to produce the maximum lift-to-drag ratio. The blades that generate thrust can be placed at any location suitable for generating thrust. In another embodiment, the vanes located within the outer casing of a thrust engine may form a continuous or discontinuous, closed or open passage for the working fluid to flow across. A fluid structure for driving fluid flow can be disposed in each channel. The above detailed description is provided to illustrate the specific embodiments of the invention and is not intended to limit the invention. It is within the scope of the invention to make various changes and modifications. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows a cross-sectional view of a thrust engine 100 according to an embodiment of the present invention having two fixed wings. Figure 2 shows a transverse cross-sectional view of the thrust engine 10 taken along line A - A' of Figure 1. 3 shows a thrust engine 300, which is an optional embodiment of the present invention, wherein the outer casing 103 provides a fluid structure 107 in the central portion 104d for radial flow across the wings 101 and 102. fluid. 31 201114651 Figure 4a shows an adjustable annular wing 400 suitable for use with the thrust engine 100 and the thrust engine 300. Figure 4b shows the control elements for adjusting an angle of attack in the annular wing 400. Figure 4c shows an adjustable wing profile blade 450. Figure 5 shows a cross-sectional view of a thrust engine 500 having a helical blade in accordance with one embodiment of the present invention. Figure 6a shows a transverse cross-sectional view of the thrust engine 500 taken along line A-A' of Figure 5. Figure 6b shows an adjustable blade of the thrust engine 500 of Figure 5. Figure 7a shows a thrust engine 700 in accordance with another embodiment of the present invention. Figure 7b shows a thrust engine 750 in accordance with another embodiment of the present invention. Figure 8 shows an annular tube 800 of one embodiment of the invention having blades that are rotated by fluid positioned within the outer casing 801. [Main component symbol description] 100. ··Thrust engine 101,102. . Wing 103... outer casing 104a... upper portion 104b... lower portion 104c... peripheral portion 104d... central portion 105"·annular partition portion 106a, 106b, 106c, 106d ... support structure 107···fluid structure 108. ··blade group 109...shaft 300...thrust engine 400...adjustable ring wing 32 201114651 401,402·. · Part 403. ·· rod 404. . . Rod guide 405···blade support 406...frame shaft 450···wing profile blade/aerodynamic blade 451···blade part 453··. Adjusting rod 454... rod guide 456···柩 shaft 500... thrust engine 501a, 501b. . . Wing 501c... Helical wing 503··· Inner casing 504a... Upper part 504b... Lower part 504c... Peripheral fluid space 505... Annular partition 506a, 506b, 506c, 506d. "Spiral Wall 507". Peripheral wing group 507a... Surrounding wing 508a, 508b... Surrounding wall 510... 柩 shaft 512... rod guide 513··· adjustment rod 515... support structure 520a... hot area 520b...cold area 700,750·. · Thrust engine 701 · · · round tubular shell 702 ... wing group 702a, 702b, 702c, 702d. . . Wings 703a, 703b... internal space 704a... leading edge 706a, 706b··· arrow 752... wing group 754a... leading edge 800···ring tube/thrust engine 801... housing 802···wing group 802a, 802b , 802c ... wing 803 · · · fluid guide set 803a, 803b ... fluid guide 804 ... wing set 805 · · fluid guide set 806 ... blade set 810. "Axis 811...Support structure 812...Circular space 812a···Internal space 812b...External space 33

Claims (1)

201114651 七、申請專利範圍: l 一種發動機,其包含: 卜吸l括内部空間,其劃分成相互連接的一 第—部分及一第二部分; 一工作流體’其填注該㈣&quot;,於作業期間在該 第一部分與該第二部分之間流動,以及 -或多個翼剖面’其係附裝至該外殼並配置位在該 内部空間内位於該流體流動之循環路徑上。 士申叫專利範圍第1項之發動機,其中,於作業期間, 在該第一部分與該第二部分之間產生一溫差使得該工 作流體在該第一部分與該第二部分之間流動。 如申清專利範圍第2項之發動機,其中該溫差係可調整 成用以於該内部空間中獲得一預定的流體流速。 4_如申請專利範圍第丨項之發動機,其中,於作業期間, 一推進器驅動介於該第一部分與該第二部分之間之該 工作流體。 5·如申請專利範圍第4項之發動機,其中該推進器之轉速 係可調整成於該内部空間中獲得一預定的流體流速。 6. 如申請專利範圍第1項之發動機,其中一流體結構驅動 介於該第一部分與該第二部分之間之該工作流體。 7. 如申請專利範圍第5項之發動機’其中藉由該流體結構 抽吸的流體量係可調整成用以於該内部空間中獲得— 預定的流體流速。 8·如申請專利範圍第1項之發動機’其中該第一部分與該 34 201114651 第二部分係藉由一中心部分及—周圍部分加以連接。 .^申請專利範圍第丨項之發動機,其中該等翼剖面係經 疋位用以在一預定方向上產生—升力。 10.如申請專利範圍第9項之發動機,其中該預定方向係藉 由該外殼之一轉動軸決定。 曰 u·如申請專利範圍第1項之發動機,其中相對於該工作流 體流動的每一翼剖面之一攻角係可調整的。 12·如申請專利範圍第u項之發動機,其中該攻⑽可調整 成用以獲得一預定的升阻比。 13. 如申請專利範圍第1項之發動機,其中每一翼剖面具有 一預定的升阻比,以提供一預定的升力。 14. 如申請專利範圍第13項之發動機,其中每一翼剖面之一 攻角係可調整成用以獲得一預定的升阻比。 15. 如申請專利範圍第1項之發動機,其中該工作流體包含 —氣體。 16. 如申請專利範圍第15項之發動機,其中該氣體係經加壓。 17·如申請專利範圍第1項之發動機,其進一步包含配置位 在該外殼之壁中的一或多個閥’用以在該外殼之該内部 空間與外部之間調節流體流動。 35201114651 VII. Patent application scope: l An engine comprising: a suction inner space, which is divided into a first part and a second part connected to each other; a working fluid 'filling the (four)&quot; Flowing between the first portion and the second portion, and/or a plurality of wing profiles 'attached to the outer casing and disposed in the inner space on the circulation path of the fluid flow. The engine of claim 1, wherein during operation, a temperature difference is created between the first portion and the second portion such that the working fluid flows between the first portion and the second portion. An engine as claimed in claim 2, wherein the temperature difference is adjustable to obtain a predetermined fluid flow rate in the interior space. 4) The engine of claim 3, wherein during operation, a propeller drives the working fluid between the first portion and the second portion. 5. The engine of claim 4, wherein the speed of the propeller is adjustable to obtain a predetermined fluid flow rate in the interior space. 6. The engine of claim 1, wherein a fluid structure drives the working fluid between the first portion and the second portion. 7. The engine of claim 5, wherein the amount of fluid pumped by the fluid structure is adjustable to be obtained in the interior space - a predetermined fluid flow rate. 8. The engine of claim 1 wherein the first portion and the second portion of the 34 201114651 are connected by a central portion and a surrounding portion. The engine of claim </ RTI> wherein the wing profiles are clamped to produce a lift in a predetermined direction. 10. The engine of claim 9, wherein the predetermined direction is determined by a rotational axis of the outer casing.曰 u. The engine of claim 1, wherein the angle of attack of each of the wing profiles relative to the flow of the working fluid is adjustable. 12. The engine of claim 5, wherein the attack (10) is adjustable to obtain a predetermined lift-to-drag ratio. 13. The engine of claim 1, wherein each of the wing profiles has a predetermined lift-to-drag ratio to provide a predetermined lift. 14. The engine of claim 13, wherein an angle of attack of each of the wing profiles is adjustable to achieve a predetermined lift-to-drag ratio. 15. The engine of claim 1, wherein the working fluid comprises - a gas. 16. The engine of claim 15 wherein the gas system is pressurized. 17. The engine of claim 1, further comprising one or more valves disposed in the wall of the outer casing for regulating fluid flow between the interior and exterior of the outer casing. 35
TW98135770A 2009-10-22 2009-10-22 Thrust engine TW201114651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98135770A TW201114651A (en) 2009-10-22 2009-10-22 Thrust engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98135770A TW201114651A (en) 2009-10-22 2009-10-22 Thrust engine

Publications (1)

Publication Number Publication Date
TW201114651A true TW201114651A (en) 2011-05-01

Family

ID=44934177

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98135770A TW201114651A (en) 2009-10-22 2009-10-22 Thrust engine

Country Status (1)

Country Link
TW (1) TW201114651A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI620688B (en) * 2017-05-19 2018-04-11 林瑤章 Lightweightaircraft
TWI627104B (en) * 2017-05-31 2018-06-21 大鵬航太有限公司 Simple Pitch Control Device for Dual-Mode Aircraft with VTOL and Fixed-Wing Flight
TWI629213B (en) * 2016-08-29 2018-07-11 英華達股份有限公司 Unmanned aerial vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI629213B (en) * 2016-08-29 2018-07-11 英華達股份有限公司 Unmanned aerial vehicle
TWI620688B (en) * 2017-05-19 2018-04-11 林瑤章 Lightweightaircraft
TWI627104B (en) * 2017-05-31 2018-06-21 大鵬航太有限公司 Simple Pitch Control Device for Dual-Mode Aircraft with VTOL and Fixed-Wing Flight

Similar Documents

Publication Publication Date Title
JP6216360B2 (en) Variable shape heat exchanger
US9835050B2 (en) Aircraft propulsion assembly comprising an air flow valve with a variable flow rate
JP2011521137A (en) Low temperature difference rotary engine
CN107908816A (en) Aero-engine cooling and the integrated design method of cooling air based on hollow fan blade
KR20140040713A (en) Diffuser augmented wind turbines
KR20140040714A (en) Diffuser augmented wind turbines
TW201114651A (en) Thrust engine
US20150260155A1 (en) Wind turbine generator
CN107849922B (en) It include the aircraft that two blades to blower its middle and lower reaches blower turned have spacing in fuselage afterbody
CN206939096U (en) Ducted fan
CN102216614A (en) Thrust engine
CN117125258A (en) Auxiliary power unit system for aircraft
CN108995818A (en) Ducted fan
CN108602556B (en) System, assembly and method for mechanical thrust power conversion multiple fans
UA99522C2 (en) Device and a method for heat transfer
US20100071360A1 (en) Fluid Engine with Enhanced Efficiency
AU650984B2 (en) Power and propulsion system utilizing fluid
NL2005540C2 (en) DEVICE AND METHOD FOR EXCHANGING ENERGY WITH A FLUID.
RU2730691C1 (en) Lavrentiev gas turbine engine
US12017787B2 (en) Aircraft propeller blade radiator
US20230074603A1 (en) Aircraft propeller blade radiator
RU2457149C2 (en) Thermobalanced dirigible
US20210115891A1 (en) Turbine and method for the rotation thereof
CH260009A (en) Jet thruster for flying device.
CN115307066A (en) Negative feedback device for adjusting gas flow velocity by utilizing electromagnetism and speed adjusting method