TW201113481A - Burner monitor and control - Google Patents

Burner monitor and control Download PDF

Info

Publication number
TW201113481A
TW201113481A TW099128016A TW99128016A TW201113481A TW 201113481 A TW201113481 A TW 201113481A TW 099128016 A TW099128016 A TW 099128016A TW 99128016 A TW99128016 A TW 99128016A TW 201113481 A TW201113481 A TW 201113481A
Authority
TW
Taiwan
Prior art keywords
burner
furnace
detector
concentration
light
Prior art date
Application number
TW099128016A
Other languages
Chinese (zh)
Inventor
Michael C Tanca
Original Assignee
Alstom Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology Co Ltd filed Critical Alstom Technology Co Ltd
Publication of TW201113481A publication Critical patent/TW201113481A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

A monitoring and control apparatus (220) adapted to monitor the combustion of each individual burner (224) in a furnace (1). It includes at least one laser (221) for providing a beam (223) through a flame of a burner (224) in a furnace (1), and at least one detector (222) for detecting the beams (223) after they pass through/near the flame. The monitored signal is passed to an electronics unit (215) that calculates optimum conditions for this burner (224). The electronics unit (215) then causes control unit (214) to adjust the fuel, primary air and secondary air feeds each individual burner (224) to result in a more efficient system that reduces the amount of emissions released.

Description

201113481 六、發明說明: 【發明所屬之技術領域】 本申請案有關與本申請案同日申請的相同發明者201113481 VI. Description of the invention: [Technical field to which the invention pertains] This application relates to the same inventor who applied on the same day as the present application.

Michael Tanca之題為「〇PTIcaL FLUE GAS MONITOR AND CONTROL」的同在申請中美國專利申請案。本申請 案在本文中以引用方式全文併入上文提及的申請案。 本發明係關於燃煤燃燒系統,且更特定言之本發明係關 於一種用於準確估計燃煤燃燒系統的系統性能之燃燒監測 系統。 【先前技術】 在各種燃煤燃燒系統中,一燃燒系統内的燃燒係由位於 熔爐後面的一測量器件監測。通常,此係一氧感測器。此 測量器件提供用於控制燃燒系統内的燃燒之回饋信號。儘 管此等系統對於控制熔爐中的集料燃燒工作良好,但此等 系統並未回應於監測及控制在燃燒腔室内的不同燃燒器處 之燃燒。因此,一些燃燒器可在一最佳水準下工作,而一 個或多個燃燒器執行不力。此可引起低於最佳性能。有利 的是識別未操作良好之一特定燃燒器或燃燒腔室内的位 置,且僅調整屬於此位 置之器件。 額外測置器件提供額外性能,然而,在一燃燒腔室内具 有大里測量器件係不切實際的。困難的是量測一個別燃燒 器的性能。 另外,拙劣控制可能由測量器件的拙劣敏感性引起。有 利的是具有更多準確測量器件。 149845.doc 201113481 因此’需要的是用於貫穿與一鍋爐燃燒系統相關聯的— 取樣區域準確測量個別燃燒器之方法及裝置。較佳地,剛 量提供用於改良控制,因此得到改良效率。 【發明内容】 本文描述一種用於調整一切線式燃燒熔爐(1)之個別燃 燒器(224)的操作之燃燒器效率系統(200)。 該系統包含經調適以接收一光束(223)並提供對應於所 接收的該光束(223)之一電信號的一偵測器(222)。 該系統包含經定位以建立該光束(223)的一光源(221), 談光束穿過一取樣區域(8)並橫越恰在自一個別燃燒器 (224)發射的一火焰上方之一執跡(42)且照射在該偵測器 (223)上。 一電子器件單元(2 14)係經調適以接收由該偵測器(222) 建立的該信號並識別該光源(221)與偵測器(222)之間的材 料之至少一物理性質。該電子器件單元(214)建立指示該個 別燃燒器應經調整以最佳化此個別燃燒器(224)的操作之參 數之一調整信號。 一些可經調整之該等參數係進入該熔爐的次級空氣 流率、進入該熔爐(1)的初級空氣流率及進入該熔爐(1)的 燃料流率。 本發明亦可體現為一種用於監測來自一熔爐(1)之廢氣 中的至少一成分之性質之裝置(200),該裝置具有一光監測 系統(220),該系統包括經調適以提供穿過大體上由一熔爐 (1)之一單一燃燒器(224)產生的廢氣之一光束(223)的至少 149845.doc 201113481 一光源(221)。 該裝置包含經調適以偵測該光束(223)並提供一經監測 信號至一電子器件單元(21 5)的至少一偵測器(222)。該電 子器件單元(215)經組態以估計該取樣區域内的至少一成分 之性質並建立一調整信號以調整該熔爐(1)的操作。 本發明可進一步體現為一種用於調整一切線式燃燒熔爐 (1)之個別燃燒器(224)的操作之方法。步驟包含建立一光 束(223),其穿過一取樣區域(8)並橫越自一個別燃燒器 (224)發射的一火焰之一軌跡(42)且照射在一 貞測器(223) 上。 該光束(223)係在該偵測器處感測以建立對應於所接收 的該光束(223)之一電信號。 該取樣區域(8)内的材料之至少一物理性質係自該建立 的電信號識別。 該等經識別物理性質係相較於一預定所需水準。 一組燃燒器參數之調整係由比較而計算,此可導致該經 識別物理性質調整朝向該預定所需水準。 。亥個別燃燒器的§亥等燃燒器參數係根據經計算調整而調 整以最佳化該個別燃燒器(224)的操作。 【實施方式】 作為本發明之標的特別係在說明書結論處的申請專利範 圍中指出及明顯主張。透過結合隨附圖式取得的下文詳細 描述將顯而易見本發明之先前及其他特徵及優點。 本文揭不一種用於提供用於準確監測燃燒工況、來自一 149845.doc 201113481 燃燒系統之廢氣成分及基於監測而控制該燃燒系統之方法 及裝置。在本文提供的各種非限制實施例中,該燃燒系統 係一燃固體燃料、氣體或液體燃料燃燒系統。該燃燒系統 可係一組合熔爐及鍋爐或蒸氣產生器。然而,熟習此項技 術者將認識到提供的該等實施例僅係繪示性的且並未限制 本發明。 °亥荨方法及裝置使用光偵測系統。如本文所提供,該等 光發^號及偵測系統係簡單地稱為一「監測系統」。一般 而言’該監測系統包含用於執行各種相關功能之各種組 件。S亥等組件可包含複數個雷射、複數個感測器、一控制 單兀、電腦組件、軟體(即儲存於機器可讀媒體上的機器 可執行指令)、發信號裝置、馬達操作控制、至少一電源 供應器及其他此等組件。該監測系統提供用於至少一氣體 成分相對於一取樣區域之複數次測量。該複數次測量尤其 提供用於該取樣區域内諸如相對於一燃燒器(即一喷嘴)的 其他成分之測量。該等測量可藉由使用雷射技術在多個位 置執行’因此提供燃料燃燒之一局部化、更回應測量。當 然’該監測系統亦可視為一控制系統。更特定言之,來自 該監測系統之測量資料可用於控制該燃燒系統之諸態樣。 相應地,因至少此原因,該監測系統可被認作一控制系統 或至少作為一控制系統之一部分。 現轉向圖1,顯示有一先前技術熔爐丨之一側視圖。該熔 爐1包含一監測系統120。在此初步實例中,該監測系統 120包含可能係雷射之複數個光源121。該等光源Η〗提供 149845.doc 201113481 由相對應複數個偵測器122偵測之光束123。該等偵測器 122係耦合至一電子器件單元ι15以提供用於所接收的光信 號之特徵化。該電子器件單元115提供用於該等光源121與 該相對應4貞測器1 22之間之該取樣區域8之物理態樣之估 計。此等物理態樣可包含其他成分之組合及豐度。該等估 計可使用如此項技術中已知的技術執行。 轉向圖2,顯示一先前技術監測系統丨2〇之進一步態樣。 在此貫例中,該監測系統12〇具有複數個光源i 2丨及複數個 偵測器122。該等光源121形成光束123之一柵格。該等光 束123係由該等偵測器122偵測。該等光束丄23係以一柵格 圖案與如圖所示的交叉光束對齊。該等燃燒器124之每一 者在燃料供給、初級空氣供給及次級空氣供給(分別為圖! 之105、106、107)的下游並提供燃料與空氣之一混合物至 該燃燒腔室(圖1之2)。 用語「取樣區域」8指示一燃燒腔室2由該監測系統12〇 監測之部分。 圖2中顯示的該先前技術配置顯示複數個壁安裝的燃燒 器24,其提供如所描繪的一栅格配置中之燃燒。類似地, 複數個雷射121及偵測器122係以一類似方式配置。由於各 個喷嘴24的該等火焰重疊,故該偵測器系統12〇不可偵測 每一個別燃燒器24的機能。因此,任何調整必須在該整體 系統上作出,影響所有燃燒器24。無監測及調整個別燃燒 器24的能力。 "° 圖3描繪根據本發明之一熔爐丨之一實施例之一截面示意 149845.doc 201113481 ' 圖。該熔爐1包含複數個監測系統220,相對於先前技術每 一監測系統用於監測一個別燃燒器224。 該熔爐亦包含複數個控制單元224,相對於先前技術該 等控制單元控制每一個別燃燒器224之該次級空氣供給207 及視情況該燃料供給205及該初級空氣供給206。 各個監測系統200包含可係一雷射之至少一光源22 1。該 等光源221提供由相對應複數個偵測器222偵測之光束 223。各個光束穿過由一執跡(圖4之42)指示的一單一燃燒 器火焰或恰在一火焰上方以最小化光散射。請注意光束 223以在此正視圖中難以描繪之一傾斜角度穿過該燃燒器 火焰。 固體煤粒子自該等燃燒器224吹出並在該燃燒腔室内迅 速燃燒為氣體。此等煤粒子散射並弱化該光束223,引起 由該偵測器222接收的不足強度。在此情況下,該光束223 及债測器222必須恰位於該火焰軌跡u上方,此處該等煤 粒子不再存在。此提供一足夠光束223,其現可在其在點 45處交又火焰軌跡42之後在該偵測器222處被偵測。在此 情況下’該光束在該火焰上方。 請注意該光束223可藉由調整光源221及偵測器222可調 • 整使得光束223穿過取樣區域8並在點45處穿過火焰軌跡 42 °火焰轨跡42可穿過自該燃燒器224發射的該火焰或可 猶在此火焰上方通過使得大部分的該等固體煤粒子係在此 位置處燒掉。 任何該偵測器222及光源22 1對之該等位置可互換以容許 149845.doc 201113481 其等位於光束223之任一端上。 各個债測器222係搞合至其相對應電子器件單元215以提 供用於各個燃燒器224之所接收光信號之特徵化。各個電 :器件單元川提制於估計”光源功與仙對應偵測 器222之間的該取樣區域8之物理態樣。此等物理態樣可包 含氣體成分之組合或豐度。該等估計可使用信號衰減、信 號吸收 ' 波長變換之螢光及其他形式、散射及其他此等技 術而執行。 即使此處僅顯示一單一燃燒器224、光源22丨及偵測器 222,但應瞭解在該熔爐丨之各種位準處可存在多個燃燒器 224、光源22 1及偵測器222 ^此等亦可經配置相對於一水 平及/或垂直軸線傾斜,且該等燃燒器無需成組配置。 圖4顯不經調適為具有位於該燃燒腔室2周邊處的該複數 個燃燒器224之一切線式燃燒溶爐!的本發明之一實施例。 各個燃燒器224係經定向朝向一假想圓之一周邊,其中一 旦燃燒開始之後將發生一火球9。此設計導致建立具有一 圓形迴旋圓案之一火球9,如對於切線式燃燒熔爐係典型 的。 對於一至少一燃燒器224 ’該光源222係經定向使得光源 的光束223在一點45處橫越一單一火焰軌跡42 »該雷光束 223係由一偵測器223監測以量測在各種波長下的吸收及透 射。此容許在來自一單一燃燒器224的該火焰之該交叉點 45處的各種氣體物質及溫度之一分析。 該火焰轨跡42橫越該光束223之該點45應對於所有燃燒 149845.doc •10- 201113481 器224係相等的以用於準確可比較測量。 藉由在該等燃燒器224之每一者處提供此一設置,一燃 燒監測系統220可經構建。 對於所有燃燒器224而言所監測的點45距該燃燒器224距 離相同。由於該火焰轨跡42係由另一橫向燃燒器224在一 給定位準下未間斷或污染’此幾何提供各個燃燒器224作 用之獨立測量。不存在來自各個讀取之自其他燃燒器火焰 之外部測量。此提供每一個別燃燒器224之一更準確測 量。 在此實例中’光束223可位於該等燃燒器224的位準處或 稍高於或低於該燃燒器224以由光源221給出氣體物質測量 之最強辨別。 如上文所指示,該等光源22 1、偵測器222及光束223可 經調整以最佳化讀取。其等亦可向上傾斜或向下傾斜,或 具有用於修改其等角度之可調整構件。 本發明提供用於氣體物質(諸如c〇、c〇2及存在於該燃 燒腔室2中的一未燃燒燃料〇2)之測量及評估。視情況,本 發明亦可偵測許多其他實體,諸如s〇2、s〇3、n〇2、n〇3 及Hg。 現參考圖3及圖4兩者,接著來自各個偵測器222之該經 監測信號可回饋至該電子器件單元215以計算最佳燃料、 初級氣流及次級氣流。此係饋送至各個燃燒器224之該控 制單元214以控制該燃料流2〇5、初級空氣供給及次級 空氣供給207。此等可使用共同器件(諸如空氣緩衝器、間 149845.doc 201113481 及其他流控制)而調節。 為了解釋便利,該監測系統220可認作產生「測量資 料」、「監測資料」、「特徵化資料」及類似物。該監測系統 220與该控制單元214之組合得到一監測及控制系統2〇〇。 因此,已描述該監測及控制系統200之態樣,熟習此項 技術者將認識到本發明中的有利特徵包含(但不限於):直 接使用該燃燒器位準上方的一雷射柵格以量測切線式燃燒 熔爐配置及壁燃燒熔爐配置兩者之氣體物質;切線式燃燒 熔爐之一替代柵格設計,其可在各個燃燒器位準處或在各 個燃燒器位準上方使用並在該火焰令的一給定位置處量測 氣體物質以控制局部燃燒器化學計量;使用雷射栅格透過 在燃燒器之間偏置之氣流測量控制該熔爐内的局部化燃燒 作為燃燒之一次級控制之能力;使用在熔爐出口處的雷射 以控制至該等燃燒器之空氣供給之鍋爐燃燒初級控制;在 廢棄出口處量測氣體物質之一改良非柵格設計;使用雷射 :格測量之下游污染控制系統之控制;對於個別燃燒器化 學計量控制,在該燃燒器區域中或周圍使用局部化雷射氣 體物質測量以控制該等燃燒及燃料空氣減震器;使用具有 雷射氣體物質測量作為一輸入之一經協調控制系統之; 斤有 銷爐及環境控制之控制;可回饋至該控制系統以用於在一 電廠性能及經濟性基礎上之燃燒器控制及/或污染控制。 省等光源可係在對於偵測該等廢氣中的所需成分有用之 帶中傳輸光之任何雷射。此可包含所有類型氣體及物質 之雷射。偵測技術可基於信號頻率或信號波長以及信號衰 I49845.doc •12- 201113481 減之調變。—般而言,該監測系統220之諸實施例包含藉 由照亮該雷光束穿過一氣體樣本及量測所吸收的雷射光之 量而量測氣體濃度之裝置。然而,該光源及偵測器波長可 經調諧以偵測在各種波長下的吸收。此等性質給予雷射偵 測器包含選擇性及敏感性之性質之一良好組合。 雷射監測之優點包含特徵化該等氣體成分之一能力。亦 即,一可調諧雷射大體上在電磁光譜之近紅外(NIR)區域 内發射光。很多該等助燃氣體在NIR中吸收光,並可由許 多個別「吸收線」特徵化。一可調諧雷射可經調諧以選擇 一目標氣體之一單一吸收線,其並未與來自任何其他氣體 之吸收線重疊。因此,相對於氣體之取樣可考慮選擇雷射 氣體感測。熟習此項技術者已知各種其他技術優點。此 外’可調諧雷射係相對廉價的。相應地,該監測系統220 係成本有效的並易於維護。 例示性可調s皆雷射係由Aegis Semiconductors, Inc. 〇f Woburn, Massachusetts產生。在2005年2月10日公開之題為 「Very Low Cost Narrow Band Infrared Sensor」的美國專 利第US/2005/0030628 A1號中揭示一熱可調諧濾光器之— 非限制實例,該案之揭示内容以引用方式全文併入本文 中。此申請案提供一光感測器用於在包含用於產生光之一 射極之一樣本區域内偵測一化學用品並用於導引該光穿過 該樣本區域。該感測器亦包含一偵測器,其用於在該光穿 過該樣本區域之後接收該光並用於產生對應於該偵測器所 接收之該光之一信號。該感測器進一步包含安置於該射極 149845.doc -13· 201113481 與該偵測器之間的一熱-光濾波器。該濾光器具有用於選 擇性地過濾來自該射極之該光之一可調諧通帶。該濾光器 之該通帶可藉由改變該濾光器的溫度而調諧。該感測器亦 包含用於控制該濾光器之該通帶並用於接收來自該偵測器 之邊價測信號之一控制器。該控制器調變該濾光器之該通 帶並分析該彳貞測信號以測定是否存在該化學用品之一吸收 熟習此項技術者將認識到前文僅係該雷射22 1之一實施 例,且可實踐各種其他實施例。相應地,應認識到用語 光學」參照對於本文的教示的實踐有用之電磁輻射之任 何波長。一般而言,該電磁輻射可包含習知被認為係微 波、紅外線、可視線、紫外線、χ射線及伽馬射線之至少 者之波長或波長帶。然而,實務上,經選擇用於一光 信號之該波長或波長帶大體上係經分類為紅外線、可視 線、系外線或其等子類之至少一者。 此外,吾人應認識到該雷射221大體上由輻射之受激發 射提供光放大。亦即…典型雷射在具有—良好界定的波 長之-窄低發散單色光束中發射光 '然而,諸如限制對於 本文的教示的實踐並非必需。簡言之,可使用展現用於估 計測量資料之充分性質之任何光束。充分性的測定可基方 各種因素’包含該設計者、使用者、擁有者及其他人二 點。相應地’該雷射21無需精確展現雷射行為,如習知片 界定》 該監測系統220可作為現有燃燒系統之—改進之一部分 149845.doc -14· 201113481 而提供。舉例而言,該監測系統220可安裝至現有組件上 並與現有控制器整合。相應地,使用本文的教示之一系統 亦可包含電腦軟體(即儲存於機器可讀媒體上的機器可讀 指令)。該軟體可作為現有控制器軟體(及/或韌體)之一補 充而使用或作為一獨立封裝使用。 此外,一成套工具可經提供並當對於成功安裝及操作需 要時I έ所有其他必需組件。其他組件之實例包含(但不 :於)電繞線、電源供應器 '馬達及/或手動操作閥、電腦 w面、使用者顯示器、综合電路、綜合外殼、繼電器、變 壓器及其他此等組件。 相應地’提供—燃燒系統,其在該鋼爐出口處包含至少 基於田射的偵測器以量測該等氣體物質,諸如氧氣。兩 系統在兩位置之目的尤其係使用在該鍋爐出口處的該雷射 控制至《亥鍋爐之该總體氣流及藉使用經安裝接近於各個燃 燒器的該等雷射提供該等鍋爐燃燒器之一局部控制。 ▲軟體可用於本發明之各種部分之作用及操作。舉例而 °電子器件單圖3、圖4之2 b)及圖1、圖3之控制單元 °使用此軟體。此軟體可結合一電腦可讀媒體提供、可包 3任何類型媒體,諸如舉例而言磁性儲存、光儲存、磁光 儲存、ROM、RAM、CD疆、快閃記憶體或當執行時導 致電細實施該方法並操作本發明之裝置之現已知或未知 的任何其他電腦可讀媒體。此等指令可提供用於設備操 ::控制、資料獲取與分析及一使用認為相關的其他功 149845.doc -15- 201113481 儘管已參考例示性實施例描述本發明,但熟習此項技術 者應瞭解各種變化可作^均等物可錢本發明的元件而 不背離本發明之範圍。另外,很多修改可經作出以調適一 特別情形或材料為本發明之教示而不背離本發明的基本範 圍。因此,意欲的是當預期用私杳― 頂期用於貫仃本發明之最佳模式時 本發明並不限於揭示的該特別實施例,但本發明將包含屬 於附隨中請專利範圍之範圍内的所有實施例。 【圖式簡單說明】 圖1描繪一先前技術熔爐之一截面示意圖; 圖2描繪先前技術燃燒監測系統之一平面圖; 圖3描繪根據本發明之一 — 服々貫施例之一截面示意 圖; 圖4描繪根據本發明之-燃燒監測系統之一實施例之 【主要元件符號說明】 2 燃燒腔室 8 取樣區域 9 火球 42 火焰轨跡 45 點 105 燃料供給 106 初級空氣供給 107 次級空氣供給 115 電子器件單元 149845.doc • 16 - 201113481 120 監測系統 121 光源 122 偵測器 123 光束 124 燃燒器 200 監測及控制系統 205 燃料供給 206 初級空氣供給 207 次級空氣供給 214 控制單元 215 電子器件單元 220 光監測系統 221 光源 222 偵測器 223 光束 224 燃燒器 149845.doc - 17-U.S. Patent Application for the same application by Michael Tanca entitled "〇 PTIcaL FLUE GAS MONITOR AND CONTROL". The present application is hereby incorporated by reference in its entirety in its entirety in its entirety herein in its entirety. The present invention relates to a coal fired combustion system and, more particularly, to a combustion monitoring system for accurately estimating the performance of a system of a coal fired combustion system. [Prior Art] In various coal-fired combustion systems, the combustion system in a combustion system is monitored by a measuring device located behind the furnace. Usually, this is an oxygen sensor. This measuring device provides a feedback signal for controlling combustion within the combustion system. Although such systems work well to control aggregate combustion in the furnace, such systems do not respond to monitoring and controlling combustion at different burners within the combustion chamber. Therefore, some burners can operate at an optimum level and one or more burners perform poorly. This can cause suboptimal performance. It is advantageous to identify a location in a particular burner or combustion chamber that is not operating well and to only adjust the devices belonging to this location. Additional sensing devices provide additional performance, however, it is impractical to have a large measuring device in a combustion chamber. The difficulty is measuring the performance of a different burner. In addition, poor control may be caused by poor sensitivity of the measuring device. It is beneficial to have more accurate measuring devices. 149845.doc 201113481 Therefore, what is needed is a method and apparatus for accurately measuring individual burners throughout a sampling area associated with a boiler combustion system. Preferably, the rigid amount is provided for improved control, thus resulting in improved efficiency. SUMMARY OF THE INVENTION A burner efficiency system (200) for adjusting the operation of individual combustors (224) of all line combustion furnaces (1) is described herein. The system includes a detector (222) adapted to receive a beam (223) and provide an electrical signal corresponding to one of the received beams (223). The system includes a light source (221) positioned to establish the beam (223), the light beam passing through a sampling region (8) and traversing one of the flames just above a flame emitted from a different burner (224) The trace (42) is illuminated on the detector (223). An electronics unit (2 14) is adapted to receive the signal established by the detector (222) and to identify at least one physical property of the material between the source (221) and the detector (222). The electronics unit (214) establishes an adjustment signal indicating that the individual burners should be adjusted to optimize the operation of the individual burners (224). Some of these parameters that can be adjusted are the secondary air flow rate into the furnace, the primary air flow rate into the furnace (1), and the fuel flow rate into the furnace (1). The invention may also be embodied as a device (200) for monitoring the properties of at least one component of an exhaust from a furnace (1) having a light monitoring system (220), the system including adapted to provide wear At least 149845.doc 201113481 a light source (221) of a beam of light (223) substantially produced by a single burner (224) of a furnace (1). The apparatus includes at least one detector (222) adapted to detect the beam (223) and provide a monitored signal to an electronics unit (21 5). The electronic device unit (215) is configured to estimate the nature of at least one component within the sampling region and establish an adjustment signal to adjust the operation of the furnace (1). The invention may be further embodied as a method for adjusting the operation of individual burners (224) of all line combustion furnaces (1). The step includes establishing a beam (223) that passes through a sampling region (8) and traverses a trajectory (42) of a flame emitted from a different burner (224) and illuminates a detector (223) . The beam (223) is sensed at the detector to establish an electrical signal corresponding to one of the received beams (223). At least one physical property of the material within the sampling region (8) is identified from the established electrical signal. The identified physical properties are compared to a predetermined desired level. The adjustment of a set of burner parameters is calculated by comparison, which may result in the identified physical property being adjusted toward the predetermined desired level. . The burner parameters of the individual burners are adjusted according to the calculated adjustments to optimize the operation of the individual burners (224). [Embodiment] The subject matter of the present invention is particularly pointed out and apparently claimed in the patent application scope of the specification. The foregoing and other features and advantages of the invention are apparent from the aspects of the description A method and apparatus for providing an exhaust gas composition for accurately monitoring combustion conditions, a combustion system from a 149845.doc 201113481, and controlling the combustion system based on monitoring is disclosed herein. In various non-limiting embodiments provided herein, the combustion system is a solid fuel, gas or liquid fuel combustion system. The combustion system can be a combined furnace and boiler or steam generator. However, it will be appreciated by those skilled in the art that these embodiments are provided by way of illustration and not limitation. The method and device use a light detection system. As provided herein, such optical signals and detection systems are simply referred to as a "monitoring system." In general, the monitoring system includes various components for performing various related functions. Components such as S Hai may include a plurality of lasers, a plurality of sensors, a control unit, a computer component, a software (ie, machine executable instructions stored on a machine readable medium), a signaling device, a motor operation control, At least one power supply and other such components. The monitoring system provides a plurality of measurements for at least one gas component relative to a sampling region. The plurality of measurements provide, inter alia, measurements for other components in the sampling area, such as relative to a burner (i.e., a nozzle). These measurements can be performed at multiple locations using laser technology' thus providing a localized, more responsive measurement of fuel combustion. Of course, the monitoring system can also be considered as a control system. More specifically, measurement data from the monitoring system can be used to control aspects of the combustion system. Accordingly, for at least this reason, the monitoring system can be considered a control system or at least as part of a control system. Turning now to Figure 1, a side view of a prior art furnace crucible is shown. The furnace 1 includes a monitoring system 120. In this preliminary example, the monitoring system 120 includes a plurality of light sources 121 that may be lasers. The light source 提供 provides 149845.doc 201113481 The light beam 123 detected by the corresponding plurality of detectors 122. The detectors 122 are coupled to an electronics unit ι 15 to provide for characterization of the received optical signals. The electronics unit 115 provides an estimate of the physical aspect of the sampling region 8 between the source 121 and the corresponding detector 12. These physical aspects may include combinations and abundances of other ingredients. Such estimates can be performed using techniques known in the art. Turning to Figure 2, a further aspect of a prior art monitoring system is shown. In this example, the monitoring system 12A has a plurality of light sources i 2 丨 and a plurality of detectors 122. The light sources 121 form a grid of light beams 123. The beams 123 are detected by the detectors 122. The beams 23 are aligned in a grid pattern with the intersecting beams as shown. Each of the burners 124 is downstream of the fuel supply, primary air supply, and secondary air supply (105, 106, 107, respectively) and provides a mixture of fuel and air to the combustion chamber (Fig. 1 of 2). The term "sampling area" 8 indicates the portion of a combustion chamber 2 that is monitored by the monitoring system 12A. This prior art configuration shown in Figure 2 shows a plurality of wall mounted burners 24 that provide combustion in a grid configuration as depicted. Similarly, a plurality of lasers 121 and detectors 122 are configured in a similar manner. Since the flames of the respective nozzles 24 overlap, the detector system 12 does not detect the function of each individual burner 24. Therefore, any adjustments must be made on the overall system affecting all of the burners 24. There is no ability to monitor and adjust individual burners 24. "° Figure 3 depicts a cross-sectional illustration of one of the embodiments of a furnace crucible according to the present invention 149845.doc 201113481'. The furnace 1 includes a plurality of monitoring systems 220 for monitoring one of the burners 224 with respect to the prior art. The furnace also includes a plurality of control units 224 that control the secondary air supply 207 and, optionally, the fuel supply 205 and the primary air supply 206 for each individual burner 224 relative to prior art control units. Each monitoring system 200 includes at least one light source 22 1 that can be lasered. The light sources 221 provide light beams 223 that are detected by a corresponding plurality of detectors 222. Each beam passes through a single burner flame indicated by a trace (42 of Figure 4) or just above a flame to minimize light scattering. Note that the beam 223 passes through the burner flame at an oblique angle that is difficult to depict in this front view. Solid coal particles are blown from the burners 224 and rapidly combusted into gas within the combustion chamber. These coal particles scatter and weaken the beam 223, causing insufficient intensity received by the detector 222. In this case, the beam 223 and the debt detector 222 must be located just above the flame trajectory u where the coal particles are no longer present. This provides a sufficient beam 223 that can now be detected at the detector 222 after it has passed the flame trajectory 42 at point 45. In this case the beam is above the flame. Please note that the beam 223 can be adjusted by adjusting the light source 221 and the detector 222 so that the beam 223 passes through the sampling area 8 and passes through the flame trajectory at point 45. The flame trajectory 42 can pass through the burner. The flame emitted by 224 may be passed over the flame such that a substantial portion of the solid coal particles are burned at this location. Any of the detectors 222 and light source 22 1 are interchangeable to allow 149845.doc 201113481 to be located at either end of the beam 223. Each of the debt detectors 222 is coupled to its corresponding electronics unit 215 to provide characterization of the received optical signals for each of the burners 224. Each of the electrical components is evaluated to estimate the physical state of the sampling region 8 between the source and the corresponding detector 222. These physical aspects may include combinations or abundances of gas components. It can be performed using signal attenuation, signal absorption 'wavelength-shifted fluorescence and other forms, scattering, and other such techniques. Even though only a single burner 224, source 22, and detector 222 are shown here, it should be understood that There may be multiple burners 224, light source 22 1 and detector 222 at various levels of the furnace crucible. These may also be configured to be tilted relative to a horizontal and/or vertical axis, and the burners need not be grouped. Figure 4 shows an embodiment of the invention that is not adapted to have all of the linear burners of the plurality of burners 224 located at the periphery of the combustion chamber 2. Each burner 224 is oriented toward one A periphery of one of the imaginary circles, in which a fireball 9 will occur once combustion begins. This design results in the creation of a fireball 9 having a circular roundabout, as is typical for tangentially fired furnaces. For at least one combustion 224 'The light source 222 is oriented such that the light beam 223 of the light source traverses a single flame trajectory 42 at a point 45. The light beam 223 is monitored by a detector 223 to measure absorption and transmission at various wavelengths. One of the various gaseous species and temperatures at the intersection 45 of the flame from a single burner 224 is allowed to analyze. The flame trajectory 42 traverses the point 45 of the beam 223 for all combustion 149845.doc • 10 - 201113481 224 are equal for accurate comparable measurements. By providing this arrangement at each of the burners 224, a combustion monitoring system 220 can be constructed. For all burners 224 The monitored point 45 is the same distance from the burner 224. Since the flame trajectory 42 is independently interrupted or contaminated by another lateral burner 224, this geometry provides independent measurements of the individual burners 224. There are external measurements from each of the other burner flames. This provides a more accurate measurement of each of the individual burners 224. In this example, the beam 223 can be located at the level of the burners 224. Slightly above or below the burner 224 to give the strongest discrimination of the gas species measurement by the source 221. As indicated above, the source 22 1 , detector 222 and beam 223 can be adjusted to optimize reading They may also be tilted upwards or downwards, or have adjustable members for modifying their equal angles. The present invention provides for gaseous materials such as c〇, c〇2 and present in the combustion chamber 2. Measurement and evaluation of an unburned fuel 〇 2). The present invention may also detect many other entities, such as s〇2, s〇3, n〇2, n〇3, and Hg, as appropriate. Reference is now made to Figures 3 and 4, then the monitored signal from each detector 222 can be fed back to the electronics unit 215 to calculate the optimal fuel, primary airflow, and secondary airflow. This is fed to the control unit 214 of each combustor 224 to control the fuel flow 2〇5, the primary air supply, and the secondary air supply 207. These can be adjusted using common devices such as air buffers, 149845.doc 201113481 and other flow controls. For ease of explanation, the monitoring system 220 can be considered to generate "measurement data", "monitoring data", "characterized data" and the like. The combination of the monitoring system 220 and the control unit 214 results in a monitoring and control system. Thus, the aspects of the monitoring and control system 200 have been described, and those skilled in the art will recognize that advantageous features of the present invention include, but are not limited to, direct use of a laser grid above the burner level. Measuring the gaseous material of both the tangential combustion furnace configuration and the wall combustion furnace configuration; one of the tangential combustion furnaces instead of the grid design, which can be used at each burner level or above each burner level and The gas is measured at a given location to control the local burner stoichiometry; the use of a laser grid to control the localized combustion within the furnace as a secondary control of combustion through the flow measurement biased between the burners Capacity; use of a laser at the exit of the furnace to control the primary combustion control of the boiler to the air supply to the burners; one of the gaseous materials at the exit of the waste to improve the non-grid design; use of the laser: Control of downstream pollution control systems; for individual burner stoichiometry, localized laser gas species measurements in or around the burner zone Controlling such combustion and fuel air dampers; using a coordinated measurement system with one of the inputs of a laser gas substance; a control of the pin furnace and environmental control; feedback to the control system for use in a power plant Burner control and/or pollution control based on performance and economy. Light sources such as provinces can be any laser that transmits light in a strip useful for detecting desired components in such exhaust gases. This can include lasers of all types of gases and substances. Detection techniques can be based on signal frequency or signal wavelength and signal attenuation. I49845.doc •12- 201113481 Reduced modulation. In general, embodiments of the monitoring system 220 include means for measuring the concentration of the gas by illuminating the beam of light through a gas sample and measuring the amount of laser light absorbed. However, the source and detector wavelengths can be tuned to detect absorption at various wavelengths. These properties give the laser detector a good combination of one of the properties of selectivity and sensitivity. The advantages of laser monitoring include the ability to characterize one of these gas components. That is, a tunable laser emits light substantially in the near infrared (NIR) region of the electromagnetic spectrum. Many of these combustion gases absorb light in the NIR and can be characterized by a number of individual "absorption lines." A tunable laser can be tuned to select a single absorption line of a target gas that does not overlap the absorption line from any other gas. Therefore, laser gas sensing can be considered in relation to sampling of gas. Various other technical advantages are known to those skilled in the art. In addition, the tunable laser system is relatively inexpensive. Accordingly, the monitoring system 220 is cost effective and easy to maintain. Exemplary adjustable s are lasers produced by Aegis Semiconductors, Inc. 〇f Woburn, Massachusetts. A non-limiting example of a thermally tunable filter is disclosed in U.S. Patent No. US-A/2005/0030,628, the entire disclosure of which is incorporated herein to The content is hereby incorporated by reference in its entirety. This application provides a light sensor for detecting a chemical article in a region of a sample containing one of the emitters for generating light and for directing the light through the sample region. The sensor also includes a detector for receiving the light after the light passes through the sample region and for generating a signal corresponding to the light received by the detector. The sensor further includes a thermal-optical filter disposed between the emitter 149845.doc -13·201113481 and the detector. The filter has a tunable passband for selectively filtering the light from the emitter. The pass band of the filter can be tuned by changing the temperature of the filter. The sensor also includes a controller for controlling the passband of the filter and for receiving a side price measurement signal from the detector. The controller modulates the passband of the filter and analyzes the signal to determine if one of the chemicals is present. Those skilled in the art will recognize that the foregoing is merely one embodiment of the laser 22 1 And various other embodiments may be practiced. Accordingly, it should be recognized that the term "optical" refers to any wavelength of electromagnetic radiation useful for the practice of the teachings herein. In general, the electromagnetic radiation may comprise wavelengths or wavelength bands that are conventionally considered to be at least those of microwaves, infrared rays, visible rays, ultraviolet rays, xenon rays, and gamma rays. However, in practice, the wavelength or wavelength band selected for an optical signal is generally classified as at least one of infrared, visible, out-of-line, or the like. Moreover, it should be recognized that the laser 221 is generally provided with optical amplification by excitation of the radiation. That is, a typical laser emits light in a narrow low divergence monochromatic beam having a well-defined wavelength. However, limitations such as limitations are not necessary for the teachings herein. In short, any beam that exhibits sufficient properties for estimating the measured data can be used. The determination of sufficiency can be based on various factors 'including the designer, the user, the owner and others. Accordingly, the laser 21 does not need to accurately exhibit laser behavior, as is known in the art. The monitoring system 220 can be provided as part of the improvement of the existing combustion system 149845.doc -14·201113481. For example, the monitoring system 220 can be mounted to existing components and integrated with existing controllers. Accordingly, a system using the teachings herein may also include computer software (i.e., machine readable instructions stored on a machine readable medium). The software can be used as one of the existing controller software (and/or firmware) or as a stand-alone package. In addition, a kit can be provided and all other required components are required for successful installation and operation. Examples of other components include (but not) electrical windings, power supplies 'motors and/or manually operated valves, computer w-faces, user displays, integrated circuits, integrated housings, relays, transformers, and the like. Accordingly, a combustion system is provided that includes at least a field-based detector at the exit of the steel furnace to measure the gaseous species, such as oxygen. The purpose of the two systems in two locations is, in particular, the use of the laser control at the exit of the boiler to provide the overall flow of the boiler and the use of such lasers mounted adjacent to the respective burners to provide the boiler burners. A partial control. ▲Software can be used for the function and operation of various parts of the invention. For example, the electronic device single figure 3, the figure 4 of 2 b) and the control unit of Fig. 1, Fig. 3 use this software. The software can be provided in conjunction with a computer readable medium, and can include any type of media, such as, for example, magnetic storage, optical storage, magneto-optical storage, ROM, RAM, CD, flash memory, or when executed. Any other computer readable medium known or unknown to implement the method and operate the apparatus of the present invention. Such instructions may be provided for device operation:: control, data acquisition and analysis, and other uses deemed relevant. 149845.doc -15-201113481 Although the invention has been described with reference to the exemplary embodiments, those skilled in the art should It is understood that various changes may be made to the elements of the invention without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the scope of the invention. Therefore, it is intended that the present invention not be limited to the particular embodiment disclosed herein, but the invention is intended to cover the scope of the appended claims. All embodiments within. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 depicts a schematic cross-sectional view of a prior art furnace; Figure 2 depicts a plan view of a prior art combustion monitoring system; Figure 3 depicts a cross-sectional view of one of the embodiments of the present invention; 4 depicting an embodiment of a combustion monitoring system according to the present invention [main element symbol description] 2 combustion chamber 8 sampling area 9 fireball 42 flame trajectory 45 point 105 fuel supply 106 primary air supply 107 secondary air supply 115 electron Device Unit 149845.doc • 16 - 201113481 120 Monitoring System 121 Light Source 122 Detector 123 Beam 124 Burner 200 Monitoring and Control System 205 Fuel Supply 206 Primary Air Supply 207 Secondary Air Supply 214 Control Unit 215 Electronics Unit 220 Light Monitoring System 221 Light Source 222 Detector 223 Beam 224 Burner 149845.doc - 17-

Claims (1)

201113481 七、申請專利範圍: 1. 一種用於調整一切線式燃燒熔爐(1)之個別燃燒器(224) 的操作之燃燒器效率系統(200),其包括: 一偵測器(222),其經調適以接收一光束(223)並提供 對應於所接收的該光束(223)之一電信號; —光源(221),其經定位以建立一光束(223),該光束 穿過一取樣區域(8)並橫越自一個別燃燒器(224)發射的 一單一火焰之一軌跡(42)且照射在該偵測器(223)上; 一電子器件單元(214),其經調適以接收由該偵測器 (222)建立的該信號並識別該光源(221)與偵測器(222)之 間的材料之至少一物理性質且建立指示該個別燃燒器應 經調整以最佳化此個別燃燒器(22句的操作之參數之一調 整信號。 2. 如請求項1之燃燒器效率系統(2〇〇),其中該等參數係選 自下列組成之群: 進入該熔爐(1)之一次級空氣流率, 進入該熔爐(1)之一初級空氣流率,及 進入該熔爐(1)之一燃料流率。 3 ·如請求項1之燃燒器效率系統(2〇〇),其進一步包括: -人級空氣供給(2〇7),其用於提供額外助燃空氣至該 熔爐(1); 一控制單元(214) ’其耦合至該電子器件單元(215), 並耦合至該次級空氣供給,該控制單元(214)經調適以基 於由°亥電子器件單元(2 1 5)提供的該調整信號調整提供至 149845.doc 201113481 該燃燒器(224)的空氣量。 4.如請求項3之燃燒器效率系統(2〇〇),其進一步包括: 鮎料供給(105) ’其耦合至該控制單元(214),該燃 料供給經調適以提供固體燃料粒子至該熔爐 初級空氣供給(206),其耦合至該控制單元(214), 該初級空氣供給經調適以提供空氣以帶走固體燃料粒子 並攜帶其等至該熔爐(1)内;且 其中該控制單元係經進一步調適以調節該燃料供給 (205)及初級空氣供給(2〇6)以基於自電子器件單元(2工5) 接收的該調整信號調整提供至熔爐(1)的燃料粒子及初級 空氣量。 5. 士 α求項1之燃燒器效率系統(2〇〇),其中該光源(Μ〗)係 一雷射,且該偵測器(222)係經調適以感測雷射光。 6. 如請求項1之燃燒器效率系統(2〇〇),其中識別的該物理 性質包括下列組成之群之一者: 皿度、氧氣(〇2)濃度、一氧化碳(c〇)濃度、二氧化碳 (C〇2)濃度、水蒸氣濃度、二氧化硫(s〇2)濃度、三氧化 硫(s〇3)濃度、二氧化氮(N〇2)濃度、三氧化氮(N〇3)濃 度水 (Hg)濃度、未燃碳氫化合物濃度及未燃燃料濃 度。 7. 如請求項1之燃燒器效率系統(2〇〇),其中該光束(223)在 一父又點(45)處橫越該火焰軌跡(42)。 8. 如請求項1之燃燒器效率系統(2〇〇),其中對於所有燃燒 器(224)自該交叉點(45)至該點相對應燃燒器(224)的距離 149845.doc 201113481 係相同的。 9. 如請求項1之燃燒器效率系統(200),其中在熔爐i之多個 位準上存在複數個燃燒器(224),且存在複數個光源 (221) ’各個光源經定位以建立一光束(223)橫越自一單 一燃燒器(224)發射的一火焰之一轨跡(42)且照射在一偵 ' 測器(223)上。 10. —種用於監測來自一熔爐(1)之廢氣中的至少一成分之性 質之裝置(200) ’該裝置包括: 光監測系統(220) ’其包括至少一光源(221),該至 ’光源(221)經調適以提供穿過大體上由一熔爐(1)之 一單一燃燒器(224)產生的廢氣之一光束(223),及 至少一偵測器(222),其經調適以偵測該光束(223)並 提供一經監測信號至一電子器件單元(2丨5), '亥電子器件單(2丨5),其經組態以估計該取樣區域内 的至少一成分之性質並建立一調整信號以調整該熔爐(1) 的操作。 U_ 士清求項1G之裝置(扇),其中該至少-雷射(121)包括 一半導體可調諧光雷射。 士月求項10之裝置(200),其中該成分包括CO、co2、 ^ 2 s〇3、NOx、〇2、Hg及未燃燃料之至少一者。 月求項10之裝置(扇)’其中該性質包括該成分之存 數量、费度及濃度及任何此等性質之變化率之至少 一者。 长項10之裂置(200) ’其進一步包括經調適以接收該 I49845.doc 201113481 調整彳έ號並控制該熔爐(1)的一控制單元(2 14)。 15·如請求項14之裝置(2〇〇) ’其中該控制單元(214)係經組 態以控制至該熔爐之一燃料供給(2〇5)、一初級空氣 供給(206)及一次級空氣供給(207)的至少一者之一流 量0 16.如明求項1〇之裝置(2〇〇),其包括用於提供複數個光束 (223)之複數個雷射(22丨)及用於偵測該複數個光束(223 ) 之複數個偵測器(222)。 月长項10之裝置(2〇〇),其中該複數個雷射(221)及該 複數個Υ貞測器(222)係經配置用於監測—切線式燃燒炼爐 ⑴。 18.如.月求項10之裝置(2〇〇),#中該電子器件單元(川)包 括储存於機器可讀媒體上的機器可執行指令,該等指令 包括用於以下用途之指令: 估汁該至少一成分之一性質; 自及估4性質測定__調整信號以導致該估計性質更接 近於一預定值;及 提供一調整信號至該控制單元(214)。 19.如請求項18之裝置(200) 號之指令。 其進一步包括用於調變該光信 §亥等光束(223)穿過該燃 2〇·如請求項10之裝置(2〇〇),其中 燒系統(1)之兩個或三個維度。 21. 一種用於調整—切線式燃燒溶爐(1)之個 的操作之方法,其包括下列步驟: 別燃燒器(224) 149845.doc 201113481 建立一光束(223),其穿過一取樣區域(8)並橫越自— 個別燃燒器(224)發射的一火焰之一軌跡(42)並照射在一 偵測器(223)上; 在該偵測器處感測該光束(223); 建立對應於該經感測光束(223)之一電信號; 自該建立的電信號識別該取樣區域(8)内的材料之至少 一物理性質; 比較該等經識別物理性質與一預定所需位準; 計算一組燃燒器參數之調整,此可導致該經識別物理 性質調整朝向該預定所需位準; 根據該等計算的調整,調整該個別燃燒器之該等燃燒 器參數以最佳化該個別燃燒器(224)的操作。 22.如請求項21之方法,其中該識別及該調整之至少—者係 在一即時基礎上執行。 149845.doc201113481 VII. Patent Application Range: 1. A burner efficiency system (200) for adjusting the operation of individual burners (224) of all line combustion furnaces (1), comprising: a detector (222), It is adapted to receive a beam (223) and provide an electrical signal corresponding to one of the received beams (223); a light source (221) positioned to establish a beam (223) that passes through a sample a region (8) and traversing a track (42) of a single flame emitted from a different burner (224) and illuminating the detector (223); an electronics unit (214) adapted to Receiving the signal established by the detector (222) and identifying at least one physical property of the material between the light source (221) and the detector (222) and establishing that the individual burner should be adjusted for optimization This individual burner (one of the parameters of the 22-step operation adjusts the signal. 2. The burner efficiency system (2〇〇) of claim 1 wherein the parameters are selected from the group consisting of: entering the furnace (1 a secondary air flow rate, entering the beginning of one of the furnaces (1) Air flow rate, and fuel flow rate into one of the furnaces (1). 3. The burner efficiency system (2〇〇) of claim 1, further comprising: - a human-grade air supply (2〇7), For providing additional combustion air to the furnace (1); a control unit (214) 'coupled to the electronics unit (215) and coupled to the secondary air supply, the control unit (214) adapted to be based The adjustment signal provided by the °H electronics unit (2 15) adjusts the amount of air supplied to the burner (224) at 149845.doc 201113481. 4. The burner efficiency system (2〇〇) of claim 3, It further includes: a feed supply (105) 'which is coupled to the control unit (214), the fuel supply being adapted to provide solid fuel particles to the furnace primary air supply (206) coupled to the control unit (214) The primary air supply is adapted to provide air to carry away the solid fuel particles and carry them into the furnace (1); and wherein the control unit is further adapted to regulate the fuel supply (205) and the primary air supply ( 2〇6) The adjustment signal received from the electronics unit (2) 5 adjusts the amount of fuel particles and primary air supplied to the furnace (1). 5. The burner efficiency system (2〇〇) of Item 1 The light source (Μ) is a laser, and the detector (222) is adapted to sense the laser light. 6. The burner efficiency system (2〇〇) of claim 1, wherein the physical property is identified Includes one of the following groups: dish, oxygen (〇2) concentration, carbon monoxide (c〇) concentration, carbon dioxide (C〇2) concentration, water vapor concentration, sulfur dioxide (s〇2) concentration, sulfur trioxide ( S〇3) Concentration, concentration of nitrogen dioxide (N〇2), concentration of nitrogen (N〇3) water (Hg), unburned hydrocarbon concentration, and unburned fuel concentration. 7. The burner efficiency system (2) of claim 1, wherein the beam (223) traverses the flame trajectory (42) at a parent point (45). 8. The burner efficiency system (2〇〇) of claim 1, wherein the distance 149845.doc 201113481 is the same for all burners (224) from the intersection (45) to the corresponding burner (224) at that point of. 9. The burner efficiency system (200) of claim 1, wherein a plurality of burners (224) are present at a plurality of levels of the furnace i, and a plurality of light sources (221) are present - each light source is positioned to establish a The beam (223) traverses a trajectory (42) of a flame emitted from a single burner (224) and illuminates a detector (223). 10. A device (200) for monitoring the properties of at least one component of an exhaust gas from a furnace (1) 'The device comprises: a light monitoring system (220) 'which includes at least one light source (221), to The light source (221) is adapted to provide a beam of light (223) that passes through a single burner (224) that is substantially produced by a single furnace (224), and at least one detector (222) that is adapted To detect the beam (223) and provide a monitored signal to an electronic device unit (2丨5), 'Hui Electronics Device Unit (2丨5) configured to estimate at least one component of the sampling region Nature and establish an adjustment signal to adjust the operation of the furnace (1). U_Shen Qing 1G device (fan), wherein the at least-laser (121) comprises a semiconductor tunable light laser. The apparatus (200) of claim 10, wherein the component comprises at least one of CO, co2, ^2 s〇3, NOx, helium 2, Hg, and unburned fuel. The device (fan) of the monthly claim 10 wherein the property includes at least one of the amount, the fee and the concentration of the component, and the rate of change of any of these properties. The split 10 (200)' of the long term 10 further includes a control unit (2 14) adapted to receive the I49845.doc 201113481 adjustment nickname and control the furnace (1). 15. The device of claim 14 (2) wherein the control unit (214) is configured to control a fuel supply (2〇5) to the furnace, a primary air supply (206), and a primary stage a flow rate of at least one of the air supply (207). 16. A device (2) according to the invention, comprising a plurality of lasers (22 丨) for providing a plurality of light beams (223) and A plurality of detectors (222) for detecting the plurality of beams (223). The device of month 10 (2〇〇), wherein the plurality of lasers (221) and the plurality of detectors (222) are configured for monitoring-tangential combustion furnaces (1). 18. The device of claim 10, wherein the electronic device unit comprises machine executable instructions stored on a machine readable medium, the instructions comprising instructions for: Estimating the property of one of the at least one component; determining and adjusting the signal to cause the estimated property to be closer to a predetermined value; and providing an adjustment signal to the control unit (214). 19. The instruction of device (200) of claim 18. It further includes means (2) for modulating the light beam (223) of the optical signal through the burner, such as the device (2) of claim 10, wherein two or three dimensions of the system (1) are fired. 21. A method for adjusting the operation of a tangential combustion furnace (1) comprising the steps of: a burner (224) 149845.doc 201113481 establishing a beam (223) that passes through a sampling area (8) and traversing one of the flames (42) emitted by the individual burners (224) and illuminating a detector (223); sensing the beam (223) at the detector; Establishing an electrical signal corresponding to the sensed beam (223); identifying at least one physical property of the material within the sampling region (8) from the established electrical signal; comparing the identified physical properties to a predetermined desired Leveling; calculating an adjustment of a set of burner parameters, which may result in the identified physical property being adjusted toward the predetermined desired level; adjusting the burner parameters of the individual burners to optimize according to the calculated adjustments The operation of the individual burners (224). 22. The method of claim 21, wherein the identifying and at least the adjusting are performed on an instant basis. 149845.doc
TW099128016A 2009-08-21 2010-08-20 Burner monitor and control TW201113481A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/545,122 US20110045420A1 (en) 2009-08-21 2009-08-21 Burner monitor and control

Publications (1)

Publication Number Publication Date
TW201113481A true TW201113481A (en) 2011-04-16

Family

ID=43468333

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099128016A TW201113481A (en) 2009-08-21 2010-08-20 Burner monitor and control

Country Status (8)

Country Link
US (1) US20110045420A1 (en)
EP (1) EP2467645A2 (en)
KR (1) KR20120058552A (en)
CN (1) CN102667344A (en)
CA (1) CA2771507A1 (en)
IN (1) IN2012DN02376A (en)
TW (1) TW201113481A (en)
WO (1) WO2011022157A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI689696B (en) * 2019-07-24 2020-04-01 中國鋼鐵股份有限公司 Burner monitoring method and burner monitoring system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2839265B1 (en) * 2012-04-19 2017-07-26 Zolo Technologies, Inc. In-furnace retro-reflectors with steerable tunable diode laser absorption spectrometer
US9696030B2 (en) 2013-01-28 2017-07-04 General Electric Technology Gmbh Oxy-combustion coupled firing and recirculation system
MX370221B (en) 2014-05-02 2019-12-05 Air Prod & Chem Burner with monitoring.
US10046421B2 (en) 2014-06-11 2018-08-14 Andersen Industries, Inc. Welding apparatus
CN105627355B (en) * 2014-11-28 2018-03-23 国家电网公司 Power boiler burning fault diagnosis method and system
JP6263492B2 (en) * 2015-03-19 2018-01-17 三菱日立パワーシステムズ株式会社 Boiler and boiler combustion control method
JP2016186464A (en) * 2015-03-27 2016-10-27 三菱重工業株式会社 Gas analyser, combustion facility control system, control support system and gas analysis method
CN106017725B (en) * 2016-05-26 2019-07-09 中国人民解放军战略支援部队航天工程大学 A kind of measuring device suitable for Combustion Flow Field gas 2-d reconstruction
IT201600118672A1 (en) * 2016-11-23 2018-05-23 Esa S P A INDIVIDUAL BURNER REGULATION SYSTEM
US20180180280A1 (en) * 2016-12-27 2018-06-28 General Electric Technology Gmbh System and method for combustion system control
JP6599307B2 (en) * 2016-12-28 2019-10-30 三菱日立パワーシステムズ株式会社 Combustion device and boiler equipped with the same
DE102017007799A1 (en) * 2017-08-17 2019-02-21 Linde Aktiengesellschaft Furnace plant and method for operating a furnace

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4368031A (en) * 1980-07-14 1983-01-11 Combustion Engineering, Inc. Stationary flame scanner for tilting burner
US4657872A (en) * 1984-11-13 1987-04-14 Cornell Research Foundation, Inc. Laser-enhanced flame ionization detection
US4639717A (en) * 1985-07-15 1987-01-27 Electronics Corporation Of America Method and apparatus for monitoring flame condition
JPS63217130A (en) * 1987-03-03 1988-09-09 Ishikawajima Harima Heavy Ind Co Ltd Automatic combustion regulator
EP0550700B1 (en) * 1990-10-05 1998-07-22 Massachusetts Institute Of Technology Combustion system for reduction of nitrogen oxides
US5020454A (en) * 1990-10-31 1991-06-04 Combustion Engineering, Inc. Clustered concentric tangential firing system
US5368471A (en) * 1991-11-20 1994-11-29 The Babcock & Wilcox Company Method and apparatus for use in monitoring and controlling a black liquor recovery furnace
US5252060A (en) * 1992-03-27 1993-10-12 Mckinnon J Thomas Infrared laser fault detection method for hazardous waste incineration
EP0766080A1 (en) * 1995-09-29 1997-04-02 FINMECCANICA S.p.A. AZIENDA ANSALDO System and method for monitoring combustion and pollutants by means of laser diodes
US5697306A (en) * 1997-01-28 1997-12-16 The Babcock & Wilcox Company Low NOx short flame burner with control of primary air/fuel ratio for NOx reduction
US6468069B2 (en) * 1999-10-25 2002-10-22 Jerome H. Lemelson Automatically optimized combustion control
US20020158202A1 (en) * 2001-01-08 2002-10-31 Webber Michael E. Laser-based sensor for measuring combustion parameters
US6775645B2 (en) * 2001-11-14 2004-08-10 Electric Power Research Institute, Inc. Application of symbol sequence analysis and temporal irreversibility to monitoring and controlling boiler flames
US7353140B2 (en) * 2001-11-14 2008-04-01 Electric Power Research Institute, Inc. Methods for monitoring and controlling boiler flames
ES2671574T3 (en) * 2003-03-31 2018-06-07 John Zink Company, Llc Method and apparatus for monitoring and combustion control
WO2004113887A2 (en) 2003-06-20 2004-12-29 Aegis Semiconductor, Inc. Thermo-optic filter and infrared sensor using said filter.
WO2007062257A2 (en) * 2005-11-28 2007-05-31 Lew Holdings, Lls Trajectory gasifier burners
DE102006036563A1 (en) * 2006-08-04 2008-02-07 Siemens Building Technologies Hvac Products Gmbh Monitoring combustion processes in one location by fast oxygen sensor
WO2009052157A1 (en) * 2007-10-16 2009-04-23 Zolo Technologies, Inc. Translational laser absorption spectroscopy apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI689696B (en) * 2019-07-24 2020-04-01 中國鋼鐵股份有限公司 Burner monitoring method and burner monitoring system

Also Published As

Publication number Publication date
EP2467645A2 (en) 2012-06-27
CA2771507A1 (en) 2011-02-24
US20110045420A1 (en) 2011-02-24
WO2011022157A3 (en) 2011-04-14
CN102667344A (en) 2012-09-12
KR20120058552A (en) 2012-06-07
WO2011022157A2 (en) 2011-02-24
IN2012DN02376A (en) 2015-08-21

Similar Documents

Publication Publication Date Title
TW201113481A (en) Burner monitor and control
CA2771509C (en) Optical flue gas monitor and control
KR910006273B1 (en) Furnace system
Ebert et al. Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant
US12025309B2 (en) Method for operating a premix gas burner, a premix gas burner and a boiler
KR101996410B1 (en) Method and system for gas measurements in a combustion chamber
JP5455528B2 (en) Combustion control device
Hees et al. Experimental investigation into the influence of the oxygen concentration on a pulverized coal swirl flame in oxy-fuel atmosphere
JP5996762B1 (en) Waste combustion control method and combustion control apparatus to which the method is applied
JP4347237B2 (en) Fuel ratio measuring apparatus and method
JP5453607B2 (en) Light scattering dust concentration meter
CN101128698A (en) Method for increasing the package throughput in rotary kiln plants
JPS6036825A (en) Control method for combustion flame and device thereof
JP6473367B2 (en) Gas analysis system
JP2014016313A (en) Laser type gas analyzer
JPH08166127A (en) Method and apparatus for jodging burning condition and boiler furnace combustion unit
JP2016075519A (en) Concentration evaluating device and method, powder supplying system and method, and pulverized coal boiler
JP2022079171A (en) Air ratio estimation system, air ratio estimation method and program