JP4347237B2 - Fuel ratio measuring apparatus and method - Google Patents

Fuel ratio measuring apparatus and method Download PDF

Info

Publication number
JP4347237B2
JP4347237B2 JP2005050791A JP2005050791A JP4347237B2 JP 4347237 B2 JP4347237 B2 JP 4347237B2 JP 2005050791 A JP2005050791 A JP 2005050791A JP 2005050791 A JP2005050791 A JP 2005050791A JP 4347237 B2 JP4347237 B2 JP 4347237B2
Authority
JP
Japan
Prior art keywords
pulverized coal
light
pipe
concentration
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005050791A
Other languages
Japanese (ja)
Other versions
JP2006234634A (en
Inventor
剛俊 山浦
祥啓 出口
祥規 猪澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005050791A priority Critical patent/JP4347237B2/en
Publication of JP2006234634A publication Critical patent/JP2006234634A/en
Application granted granted Critical
Publication of JP4347237B2 publication Critical patent/JP4347237B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば、微粉炭火力プラントのボイラに供給する配管内の微粉炭の発火度合を判定して、この微粉炭の性状を計測する燃料比計測装置及び方法に関するものである。 The present invention is, for example, to determine the ignition degree of the pulverized coal in the pipe for supplying the boiler pulverized coal-fired power plant, to a fuel ratio measuring apparatus and a method for measuring the properties of the pulverized coal.

例えば、火力プラントにおいて、燃料としての微粉炭の低コスト化を図る目的で、種々の産地からの石炭が使用されて微粉炭が製造されるため、微粉炭の品質が均一化されていない。そのため、ボイラに微粉炭を供給する場合、この微粉炭の性状、つまり、燃料比を特定してボイラにおける燃焼安定性を確保する必要がある。   For example, in a thermal power plant, for the purpose of reducing the cost of pulverized coal as a fuel, pulverized coal is produced by using coal from various production areas, so the quality of the pulverized coal is not uniformized. Therefore, when supplying pulverized coal to a boiler, it is necessary to specify the properties of the pulverized coal, that is, the fuel ratio to ensure combustion stability in the boiler.

従来は、ボイラの温度や石炭を微粉炭にするミルの温度を制御して、ボイラの燃焼制御を行うようにしているが、ボイラの温度制御やミルの温度制御は過去の情報からの推察による制御であるため、ボイラに供給する直前における微粉炭の性状をリアルタイムに確認したいという要望がある。   Conventionally, boiler temperature is controlled by controlling the temperature of the boiler and the temperature of the mill that turns coal into pulverized coal. However, boiler temperature control and mill temperature control are based on past information. Because of the control, there is a desire to confirm the properties of pulverized coal immediately before being supplied to the boiler in real time.

そこで、ボイラに供給する微粉炭の燃料比をリアルタイムで検出するものとして、下記特許文献1に記載されたものがある。この特許文献1に記載された燃料比計測装置及び方法は、微粉炭を供給する配管にレーザ光を照射し、微粉炭中の固定炭素からのラマン散乱光とC−H結合からのラマン散乱光とを検出し、この検出した各散乱光に基づいて燃料比を求めるものである。   Therefore, there is one described in Patent Document 1 below that detects the fuel ratio of pulverized coal supplied to the boiler in real time. The fuel ratio measuring device and method described in Patent Document 1 irradiate a pipe for supplying pulverized coal with a laser beam, and Raman scattered light from fixed carbon in pulverized coal and Raman scattered light from C—H bonds. And the fuel ratio is obtained based on each detected scattered light.

特開2003−270150号公報JP 2003-270150 A

上述した特許文献1の燃料比計測装置及び方法では、レーザ光を用い、微粉炭からのラマン散乱光に基づいて微粉炭の燃料比を求めている。この場合、燃料(微粉炭)に対してレーザ光を照射することから、配管内の酸素濃度によっては発火の可能性があり、この点を十分に考慮する必要がある。   In the fuel ratio measuring apparatus and method of Patent Document 1 described above, the fuel ratio of pulverized coal is obtained based on Raman scattered light from pulverized coal using laser light. In this case, since the laser beam is irradiated to the fuel (pulverized coal), there is a possibility of ignition depending on the oxygen concentration in the pipe, and this point needs to be fully considered.

本発明はこのような問題を解決するものであって、安全性の向上を図った燃料比計測装置及び方法を提供することを目的とする。 The present invention has been made to solve such a problem, and an object thereof is to provide a fuel ratio measuring apparatus and method with improved safety.

上述の目的を達成するための請求項1の燃料発火判定装置は、管内を流動する燃料に向けてその流動方向に交差する光を照射する光照射手段と、該光照射手段から燃料の粒子に照射された光の散乱光を検出する光検出器と、該光検出器が検出した散乱光の強度に基づいて燃料の濃度を求める濃度検出手段と、該濃度検出手段が検出した燃料濃度に基づいて燃料の発火度合を判定する発火度合判定手段とを具えたことを特徴とするものである。   In order to achieve the above-mentioned object, a fuel ignition determination apparatus according to claim 1 is directed to a light irradiation means for irradiating light flowing in a pipe to light crossing the flow direction, and from the light irradiation means to fuel particles. A photodetector for detecting scattered light of the irradiated light; a concentration detecting means for obtaining a fuel concentration based on the intensity of the scattered light detected by the photodetector; and a fuel concentration detected by the concentration detecting means. And an ignition degree determining means for determining the degree of ignition of the fuel.

請求項2の発明の燃料発火判定装置では、前記光検出器は、前記光照射手段から微粉炭に照射された光の散乱光を前記配管の径方向に沿った分布状態として検出し、前記濃度検出手段は、前記配管の径方向に沿って分布された散乱光の強度分布に基づいて微粉炭の濃度を求めることを特徴としている。   In the fuel ignition determination apparatus according to the invention of claim 2, the light detector detects scattered light of light irradiated to the pulverized coal from the light irradiation means as a distribution state along a radial direction of the pipe, and the concentration The detection means is characterized in that the concentration of pulverized coal is obtained based on the intensity distribution of scattered light distributed along the radial direction of the pipe.

請求項3の発明の燃料発火判定方法は、管内を流動する燃料に向けてその流動方向に交差する光を照射し、燃料の粒子に照射された光の散乱光を検出し、この検出した散乱光の強度に基づいて燃料濃度を求め、この燃料濃度に基づいて燃料の発火度合を判定することを特徴とするものである。   According to a third aspect of the present invention, there is provided a fuel ignition determination method that irradiates light flowing in a pipe with light that intersects the flow direction, detects scattered light of light irradiated to fuel particles, and detects the detected scattering. The fuel concentration is obtained based on the light intensity, and the ignition degree of the fuel is determined based on the fuel concentration.

また、請求項4の発明の燃料比計測装置は、微粉炭が流動する配管に対してレーザ光を照射し、微粉炭中の固定炭素からのラマン散乱光と、C−H結合からのラマン散乱光または炭化水素の蛍光を検出し、この検出した固定炭素からのラマン散乱光とC−H結合からのラマン散乱光または炭化水素の蛍光との比率に基づいて燃料比を求める燃料比計測装置において、前記配管内を流動する微粉炭に向けてその流動方向に交差する光を照射する光照射手段と、該光照射手段から微粉炭に照射された光の散乱光を検出する光検出器と、該光検出器が検出した散乱光の強度に基づいて微粉炭の濃度を求める濃度検出手段と、該濃度検出手段が検出した微粉炭濃度に基づいて微粉炭の発火度合を判定する発火度合判定手段と、該発火度合判定手段が判定した微粉炭の発火度合に基づいて前記レーザ光の照射強度を制御する制御手段とを具えたことを特徴とするものである。   Further, the fuel ratio measuring device of the invention of claim 4 irradiates a pipe through which pulverized coal flows with laser light, Raman scattered light from fixed carbon in pulverized coal, and Raman scattering from C—H bond. In a fuel ratio measuring device that detects fluorescence of light or hydrocarbons and obtains a fuel ratio based on the ratio of detected Raman scattered light from fixed carbon to Raman scattered light from C—H bonds or hydrocarbon fluorescence A light irradiation means for irradiating light intersecting the flow direction toward the pulverized coal flowing in the pipe, and a photodetector for detecting scattered light of the light irradiated to the pulverized coal from the light irradiation means, Concentration detection means for determining the concentration of pulverized coal based on the intensity of scattered light detected by the photodetector, and an ignition degree determination means for determining the ignition degree of pulverized coal based on the pulverized coal concentration detected by the concentration detection means And the ignition degree judging means It is characterized in that and control means for controlling the irradiation intensity of the laser light based on the ignition degree of the pulverized coal.

請求項5の発明の燃料比計測装置では、前記光照射手段は、前記配管内に微粉炭の流動方向に交差する面状の光を照射可能であり、前記光検出器は、前記面状の光の散乱光を検出可能であり、前記濃度検出手段は、前記面状の散乱光の強度分布に基づいて微粉炭の濃度を求めることを特徴としている。   In the fuel ratio measuring device of the invention of claim 5, the light irradiating means can irradiate the pipe with a planar light that intersects the flow direction of the pulverized coal, and the photodetector is the planar light source. Scattered light can be detected, and the concentration detecting means obtains the concentration of pulverized coal based on the intensity distribution of the planar scattered light.

請求項6の発明の燃料比計測装置では、前記光検出器は、前記光照射手段から微粉炭に照射された光の散乱光を前記配管の径方向に沿った分布状態として検出し、前記濃度検出手段は、前記配管の径方向に沿って分布された散乱光の強度分布に基づいて微粉炭の濃度を求めることを特徴としている。   In the fuel ratio measuring device of the invention of claim 6, the light detector detects scattered light of light irradiated to the pulverized coal from the light irradiation means as a distribution state along a radial direction of the pipe, and the concentration The detection means is characterized in that the concentration of pulverized coal is obtained based on the intensity distribution of scattered light distributed along the radial direction of the pipe.

請求項7の発明の燃料比計測装置では、前記光検出器は、入力端が同心円状に配置されて外周側にある出力端が上部または下部になるように直線状に配置された複数の光ファイバ束を有し、前記光照射手段から微粉炭に照射された光の散乱光を前記光ファイバ束により前記配管の径方向に沿った分布状態として検出し、前記濃度検出手段は、前記配管の径方向に沿って分布された散乱光の強度分布に基づいて微粉炭の濃度を求めることを特徴としている。   In the fuel ratio measuring device according to the seventh aspect of the invention, the photodetector includes a plurality of light beams arranged in a straight line such that the input ends are concentrically arranged and the output end on the outer peripheral side is an upper portion or a lower portion. A fiber bundle, and detecting scattered light of light irradiated to the pulverized coal from the light irradiation means as a distribution state along a radial direction of the pipe by the optical fiber bundle, and the concentration detection means It is characterized in that the concentration of pulverized coal is obtained based on the intensity distribution of scattered light distributed along the radial direction.

請求項8の発明の燃料比計測装置では、前記光照射手段は、前記配管内の微粉炭に向けて先端ほど光密度が高くなる光を照射可能であることを特徴としている。   In the fuel ratio measuring device according to an eighth aspect of the present invention, the light irradiating means is capable of irradiating light whose light density increases toward the tip toward the pulverized coal in the pipe.

請求項9の発明の燃料比計測方法は、微粉炭が流動する配管に対してレーザ光を照射し、微粉炭中の固定炭素からのラマン散乱光とC−H結合からのラマン散乱光とを検出し、この検出した固定炭素からのラマン散乱光とC−H結合からのラマン散乱光または炭化水素の蛍光との比率に基づいて燃料比を求める燃料比計測方法において、前記配管内を流動する微粉炭に向けてその流動方向に交差する光を照射し、微粉炭に照射された光の散乱光を検出し、この検出した散乱光の強度に基づいて微粉炭の濃度を求め、この微粉炭濃度に基づいて微粉炭の発火度合を判定し、この発火度合に基づいてレーザ光の照射強度を制御することを特徴とするものである。   The fuel ratio measuring method of the invention of claim 9 irradiates a pipe through which pulverized coal flows with laser light, and detects Raman scattered light from fixed carbon in pulverized coal and Raman scattered light from C—H bonds. In the fuel ratio measuring method for detecting and detecting the fuel ratio based on the ratio of the Raman scattered light from the detected fixed carbon and the Raman scattered light from the C—H bond or the fluorescence of hydrocarbons, the fuel flows in the pipe. Irradiate light that crosses the flow direction toward the pulverized coal, detect the scattered light of the light irradiated to the pulverized coal, determine the concentration of the pulverized coal based on the intensity of the detected scattered light, this pulverized coal The ignition degree of pulverized coal is determined based on the concentration, and the irradiation intensity of the laser beam is controlled based on the ignition degree.

請求項1の発明の燃料発火判定装置によれば、管内を流動する燃料に向けて光を照射する光照射手段と、この光照射手段から燃料の粒子に照射された光の散乱光を検出する光検出器と、光検出器が検出した散乱光の強度に基づいて燃料の濃度を求める濃度検出手段と、この濃度検出手段が検出した燃料濃度に基づいて燃料の発火度合を判定する発火度合判定手段とを設けたので、簡単な構成で燃料濃度に基づいて容易に燃料の発火度合を判定することができ、安全性を向上することができる。   According to the fuel ignition determination device of the first aspect of the present invention, the light irradiation means for irradiating light toward the fuel flowing in the pipe, and the scattered light of the light irradiated to the fuel particles from the light irradiation means are detected. Light detector, concentration detection means for determining the concentration of fuel based on the intensity of scattered light detected by the light detector, and ignition degree determination for determining the degree of fuel ignition based on the fuel concentration detected by the concentration detection means Therefore, it is possible to easily determine the ignition degree of the fuel based on the fuel concentration with a simple configuration, and to improve the safety.

請求項2の発明の燃料発火判定装置によれば、光検出器は光照射手段から微粉炭に照射された光の散乱光を配管の径方向に沿った分布状態として検出し、濃度検出手段は配管の径方向に沿って分布された散乱光の強度分布に基づいて微粉炭の濃度を求めるので、配管を流動する微粉炭の発火の可能性をその径方向に沿った分布として把握することができ、微粉炭の発火度合の判定精度を向上することができる。   According to the fuel ignition determination device of the second aspect of the invention, the photodetector detects the scattered light of the light irradiated to the pulverized coal from the light irradiation means as a distribution state along the radial direction of the pipe, and the concentration detection means Since the concentration of pulverized coal is determined based on the intensity distribution of scattered light distributed along the radial direction of the pipe, the possibility of ignition of the pulverized coal flowing through the pipe can be grasped as a distribution along the radial direction. It is possible to improve the accuracy of determining the degree of ignition of pulverized coal.

請求項3の発明の燃料発火判定方法によれば、管内を流動する燃料に光を照射し、その散乱光の強度に基づいて燃料濃度を求め、この燃料濃度に基づいて燃料の発火度合を判定するようにしたので、燃料濃度に基づいて容易に燃料の発火度合を判定することができ、安全性を向上することができる。   According to the fuel ignition determination method of the invention of claim 3, the fuel flowing in the pipe is irradiated with light, the fuel concentration is determined based on the intensity of the scattered light, and the ignition degree of the fuel is determined based on the fuel concentration. Since it did, it can determine the ignition degree of a fuel easily based on fuel concentration, and can improve safety | security.

また、請求項4の発明の燃料比計測装置によれば、微粉炭中の固定炭素からのラマン散乱光とC−H結合からのラマン散乱光または炭化水素の蛍光との比率に基づいて燃料比を算出可能に構成し、配管内を流動する微粉炭に向けて光を照射する光照射手段と、この光照射手段から微粉炭に照射された光の散乱光を検出する光検出器と、光検出器が検出した散乱光の強度に基づいて微粉炭の濃度を求める濃度検出手段と、濃度検出手段が検出した微粉炭濃度に基づいて微粉炭の発火度合を判定する発火度合判定手段とを設け、制御手段は、発火度合判定手段が判定した微粉炭の発火度合に基づいてレーザ光の照射強度を制御するので、微粉炭の送給中にリアルタイムでその燃料比を求めることができると共に、この微粉炭の発火度合を判定し、燃料比を求めるためのレーザ光の照射強度を制御することで、微粉炭の発火を事前に把握することができ、その結果、安全性を向上することができる。   According to the fuel ratio measuring device of the invention of claim 4, the fuel ratio is based on the ratio of the Raman scattered light from the fixed carbon in the pulverized coal and the Raman scattered light from the C—H bond or the fluorescence of the hydrocarbon. A light irradiating means for irradiating light toward the pulverized coal flowing in the pipe, a light detector for detecting scattered light from the light irradiated to the pulverized coal, and a light Concentration detection means for determining the concentration of pulverized coal based on the intensity of scattered light detected by the detector, and ignition degree determination means for determining the ignition degree of pulverized coal based on the pulverized coal concentration detected by the concentration detection means Since the control means controls the irradiation intensity of the laser light based on the ignition degree of the pulverized coal determined by the ignition degree determining means, the fuel ratio can be obtained in real time during the delivery of the pulverized coal. Determine the degree of ignition of pulverized coal, By controlling the irradiation intensity of the laser beam for obtaining the postal ratio can grasp the firing of pulverized coal in advance, as a result, it is possible to improve safety.

請求項5の発明の燃料比計測装置によれば、光照射手段が配管内に微粉炭の流動方向に交差する面状の光を照射可能であり、光検出器がこの面状の光の散乱光を検出可能であり、濃度検出手段は、この面状の散乱光の強度分布に基づいて微粉炭の濃度を求めるので、配管を流動する微粉炭の発火の可能性を空間的に把握することができ、微粉炭の発火度合の判定精度を向上することができる。   According to the fuel ratio measuring apparatus of the fifth aspect of the invention, the light irradiation means can irradiate the pipe with the planar light that intersects the flow direction of the pulverized coal, and the light detector scatters the planar light. Since the light can be detected and the concentration detection means obtains the concentration of the pulverized coal based on the intensity distribution of the surface scattered light, it is possible to spatially grasp the possibility of the pulverized coal flowing through the pipe. It is possible to improve the accuracy of determining the degree of ignition of pulverized coal.

請求項6の発明の燃料比計測装置によれば、光検出器は光照射手段から微粉炭に照射された光の散乱光を配管の径方向に沿った分布状態として検出し、濃度検出手段は配管の径方向に沿って分布された散乱光の強度分布に基づいて微粉炭の濃度を求めるので、配管を流動する微粉炭の発火の可能性をその径方向に沿った分布として把握することができ、微粉炭の発火度合の判定精度を向上することができる。   According to the fuel ratio measuring apparatus of the invention of claim 6, the photodetector detects the scattered light of the light irradiated to the pulverized coal from the light irradiation means as a distribution state along the radial direction of the pipe, and the concentration detection means Since the concentration of pulverized coal is determined based on the intensity distribution of scattered light distributed along the radial direction of the pipe, the possibility of ignition of the pulverized coal flowing through the pipe can be grasped as a distribution along the radial direction. It is possible to improve the accuracy of determining the degree of ignition of pulverized coal.

請求項7の発明の燃料比計測装置によれば、光検出器は、入力端が同心円状に配置されて外周側にある出力端が上部または下部になるように直線状に配置された複数の光ファイバ束を有し、光照射手段から微粉炭に照射された光の散乱光を前記光ファイバ束により配管の径方向に沿った分布状態として検出し、濃度検出手段は配管の径方向に沿って分布された散乱光の強度分布に基づいて微粉炭の濃度を求めるので、配管を流動する微粉炭の発火の可能性をその径方向に沿った分布として把握することができ、微粉炭の発火度合の判定精度を向上することができる。   According to the fuel ratio measuring apparatus of the seventh aspect of the invention, the photodetector includes a plurality of light detectors arranged linearly so that the input ends are concentrically arranged and the output ends on the outer peripheral side are upper or lower. It has an optical fiber bundle, and the scattered light of the light irradiated to the pulverized coal from the light irradiating means is detected as a distribution state along the radial direction of the pipe by the optical fiber bundle, and the concentration detecting means is along the radial direction of the pipe. Since the concentration of pulverized coal is determined based on the intensity distribution of scattered light distributed in this way, the possibility of ignition of the pulverized coal flowing through the pipe can be grasped as a distribution along its radial direction. The degree determination accuracy can be improved.

請求項8の発明の燃料比計測装置によれば、光照射手段は配管内の微粉炭に向けて先端ほど光密度が高くなる光を照射可能としたので、配管内に照射された光の密度を径方向に沿って変化させることで、光の減衰を抑制して確実に散乱光を検出することができる。   According to the fuel ratio measuring apparatus of the eighth aspect of the invention, the light irradiating means can irradiate the light whose light density increases toward the tip toward the pulverized coal in the pipe, so the density of the light irradiated into the pipe Is changed along the radial direction, the attenuation of light can be suppressed and scattered light can be reliably detected.

請求項9の発明の燃料比計測方法によれば、微粉炭中の固定炭素からのラマン散乱光とC−H結合からのラマン散乱光または炭化水素の蛍光との比率に基づいて燃料比を算出可能とし、配管内を流動する微粉炭に向けて光を照射し、この微粉炭に照射された光の散乱光の強度に基づいて微粉炭の濃度を求め、この微粉炭濃度に基づいて微粉炭の発火度合を判定しレーザ光の照射強度を制御するようにしたので、微粉炭の送給中にリアルタイムでその燃料比を求めることができると共に、この微粉炭の発火度合を判定し、燃料比を求めるためのレーザ光の照射強度を制御することで、微粉炭の発火を事前に把握することができ、その結果、安全性を向上することができる。   According to the fuel ratio measuring method of the invention of claim 9, the fuel ratio is calculated based on the ratio of the Raman scattered light from the fixed carbon in the pulverized coal and the Raman scattered light from the C—H bond or the fluorescence of the hydrocarbon. The pulverized coal flowing through the pipe is irradiated with light, the concentration of the pulverized coal is obtained based on the intensity of the scattered light of the light irradiated to the pulverized coal, and the pulverized coal is determined based on the pulverized coal concentration. Since the degree of ignition of the pulverized coal is controlled by controlling the irradiation intensity of the laser light, the fuel ratio can be obtained in real time while the pulverized coal is being fed, and the degree of ignition of the pulverized coal is determined and the fuel ratio is determined. By controlling the irradiation intensity of the laser beam for obtaining the above, it is possible to grasp the ignition of pulverized coal in advance, and as a result, it is possible to improve safety.

以下に、本発明に係る燃料発火判定装置及び方法並びに燃料比計測装置及び方法の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Embodiments of a fuel ignition determination device and method and a fuel ratio measurement device and method according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は、本発明の実施例1に係る燃料発火判定装置が適用された燃料比計測装置の概略構成図である。   FIG. 1 is a schematic configuration diagram of a fuel ratio measuring device to which a fuel ignition determination device according to Embodiment 1 of the present invention is applied.

実施例1において、図1に示すように、燃料比計測装置11は、図示しないボイラへ燃料としての微粉炭Fを供給する配管Pに沿って設けられており、この微粉炭Fの燃料比を計測するものである。この燃料比計測装置11において、ハウジング12内にはレーザ装置13が収容されており、このレーザ装置13は、微粉炭Fが流動する配管Pに対してレーザ光Lを照射するものである。この場合、ハウジング12と配管Pとの間にはレーザ通路14及び開閉バルブ15が設けられており、レーザ装置13から照射されたレーザ光Lは、このレーザ通路14を通って配管P内を流れる微粉炭Fの流動方向にほぼ直行する方向に照射されるようになっている。なお、図示しないが、レーザ通路14に対してパージ空気を供給可能となっている。   In Example 1, as shown in FIG. 1, the fuel ratio measuring device 11 is provided along a pipe P for supplying pulverized coal F as fuel to a boiler (not shown), and the fuel ratio of the pulverized coal F is determined. It is to be measured. In this fuel ratio measuring device 11, a laser device 13 is accommodated in a housing 12, and this laser device 13 irradiates a laser beam L to a pipe P in which pulverized coal F flows. In this case, a laser passage 14 and an opening / closing valve 15 are provided between the housing 12 and the pipe P, and the laser light L emitted from the laser device 13 flows through the pipe P through the laser path 14. Irradiation is performed in a direction substantially perpendicular to the flow direction of the pulverized coal F. Although not shown, purge air can be supplied to the laser passage 14.

また、ハウジング12内には、レーザ装置13に隣接して光検出器16が収容されており、この光検出器16は、微粉炭中の固定炭素からのラマン散乱光と、C−H結合からのラマン散乱光または炭化水素の蛍光を受光して検出可能となっている。即ち、レーザ装置13とレーザ通路14との間には、ビームスプリッタ17が設けられると共に、光検出器16とこのビームスプリッタ17との間には、フィルタ18が設けられている。そして、燃料比算出部19は、光検出器16が検出した固定炭素からのラマン散乱光と、C−H結合からのラマン散乱光または炭化水素の蛍光との比率に基づいて燃料比を求めることができる。   Further, a photodetector 16 is accommodated in the housing 12 adjacent to the laser device 13, and this photodetector 16 is composed of Raman scattered light from fixed carbon in pulverized coal and C—H bonds. It is possible to detect and detect Raman scattered light or hydrocarbon fluorescence. That is, a beam splitter 17 is provided between the laser device 13 and the laser path 14, and a filter 18 is provided between the photodetector 16 and the beam splitter 17. Then, the fuel ratio calculation unit 19 obtains the fuel ratio based on the ratio between the Raman scattered light from the fixed carbon detected by the photodetector 16 and the Raman scattered light from the C—H bond or the fluorescence of the hydrocarbon. Can do.

即ち、微粉炭Fは、その固定炭素分のほとんどがC(炭素)であり、揮発分はC(炭素)、H(水素)からなる低分子量でガスとして揮発しやすい炭化水素(HC)であり、その他、ケイ素(Si)、アルミ(Al)等が含まれている。即ち、レーザ装置13から発振されるレーザ光Lの波長を532nmとすると、固定炭素からのラマン散乱光の波長は570nm近傍、C−H結合からのラマン散乱光16の波長は630nm近傍の信号強度を測定することができ、固定炭素分と揮発分との比率により燃料比を求めることができる。   That is, pulverized coal F is a hydrocarbon (HC) that is mostly low in carbon and easily volatilized as a gas, with volatile matter being C (carbon) and H (hydrogen). In addition, silicon (Si), aluminum (Al), and the like are included. That is, when the wavelength of the laser light L oscillated from the laser device 13 is 532 nm, the wavelength of Raman scattered light from fixed carbon is around 570 nm, and the wavelength of Raman scattered light 16 from C—H bond is around 630 nm. Can be measured, and the fuel ratio can be obtained from the ratio of the fixed carbon content to the volatile content.

一方、発火判定装置21は、微粉炭Fを供給する配管Pに沿って燃料比計測装置11に隣接して設けられており、この微粉炭Fの発火度合を判定するものである。この発火判定装置21において、ハウジング22内には光照射手段としてのレーザ装置23が収容されており、このレーザ装置23は、微粉炭Fが流動する配管Pに対してレーザ光Lを照射するものである。この場合、ハウジング22と配管Pとの間にはレーザ通路24及び開閉バルブ25が設けられており、レーザ装置23の発光素子23aから照射されたレーザ光Lは、このレーザ通路24を通って配管P内を流れる微粉炭Fの流動方向にほぼ直行する方向に照射されるようになっている。なお、図示しないが、レーザ通路24に対してパージ空気を供給可能となっている。   On the other hand, the ignition determination device 21 is provided adjacent to the fuel ratio measuring device 11 along the pipe P for supplying the pulverized coal F, and determines the degree of ignition of the pulverized coal F. In this ignition determination device 21, a laser device 23 as a light irradiation means is accommodated in a housing 22, and this laser device 23 irradiates a laser beam L to a pipe P in which pulverized coal F flows. It is. In this case, a laser passage 24 and an opening / closing valve 25 are provided between the housing 22 and the pipe P, and the laser light L emitted from the light emitting element 23a of the laser device 23 passes through the laser path 24 and is piped. Irradiation is performed in a direction substantially perpendicular to the flow direction of the pulverized coal F flowing in P. Although not shown, purge air can be supplied to the laser passage 24.

また、ハウジング22内には、レーザ装置23に隣接して光検出器26が収容されており、この光検出器26の受光素子26aは、微粉炭中からの散乱光を受光して検出可能となっている。そして、濃度算出部(濃度検出手段)27は、光検出器26が検出した散乱光の強度に基づいて微粉炭の濃度を推定ことができる。また、発火度合判定部28は、この濃度算出部27が推定した微粉炭濃度に基づいて微粉炭Fの発火度合を判定することができる。つまり、発火度合判定部28は、濃度算出部27が推定した微粉炭濃度が、予め設定された発火領域濃度にあるかどうかを判定する。   In addition, a photodetector 26 is accommodated in the housing 22 adjacent to the laser device 23, and a light receiving element 26a of the photodetector 26 can receive and detect scattered light from pulverized coal. It has become. The concentration calculation unit (concentration detection means) 27 can estimate the concentration of pulverized coal based on the intensity of scattered light detected by the photodetector 26. Further, the ignition degree determination unit 28 can determine the ignition degree of the pulverized coal F based on the pulverized coal concentration estimated by the concentration calculation unit 27. That is, the ignition degree determination unit 28 determines whether or not the pulverized coal concentration estimated by the concentration calculation unit 27 is in a preset ignition region concentration.

この場合、光照射手段としてのレーザ装置23を適用したが、微粉炭Fに入射する光はレーザ光Lに限るものではないが、光の波長が短いほど散乱光は発生しやすいため、例えば、微粉炭Fの粒子径(約70ミクロン)より小さめに設定すると散乱の効果が大きい。また、この散乱光の波長はほとんど変化しないので、入射した光と同じ波長付近を受光するようにすると外乱光の影響を除去できる。そして、微粉炭Fの濃度と散乱光の強度と発火領域(発火度合)の関係を事前に調べておき、光検出器26が検出した散乱光の強度を微粉炭濃度に換算すればよい。微粉炭Fの場合、酸素濃度が一定とした場合、微粉炭濃度100g/m3〜1800g/m3の領域が発火領域濃度である。 In this case, although the laser device 23 as the light irradiation means is applied, the light incident on the pulverized coal F is not limited to the laser light L, but the shorter the wavelength of the light, the more likely the scattered light is generated. If it is set smaller than the particle size of pulverized coal F (about 70 microns), the effect of scattering is great. Further, since the wavelength of the scattered light hardly changes, the influence of disturbance light can be eliminated by receiving light in the vicinity of the same wavelength as the incident light. And the relationship between the density | concentration of pulverized coal F, the intensity | strength of scattered light, and an ignition area | region (ignition degree) should be investigated beforehand, and the intensity | strength of the scattered light which the photodetector 26 detected should just be converted into pulverized coal density | concentration. For pulverized coal F, if the oxygen concentration is constant, the area of the pulverized coal concentration 100g / m 3 ~1800g / m 3 is ignited area density.

制御部(制御手段)30は、上述した燃料比計測装置11及び発火判定装置21を制御可能である。そして、この制御部30は、発火判定装置21の発火度合判定部28が、現在の微粉炭濃度が予め設定された発火領域濃度に近づいたと判定したとき、燃料比計測装置11のレーザ装置13からのレーザ光の照射強度を制御、例えば、レーザ光Lの照射を停止する。なお、発火判定装置21の発火度合判定部28が現在の微粉炭濃度が予め設定された発火領域濃度に近づいたと判定した場合、微粉炭Fの送給を停止するようにしても良い。   The control unit (control means) 30 can control the fuel ratio measurement device 11 and the ignition determination device 21 described above. When the ignition degree determination unit 28 of the ignition determination device 21 determines that the current pulverized coal concentration has approached a preset ignition region concentration, the control unit 30 starts from the laser device 13 of the fuel ratio measurement device 11. The irradiation intensity of the laser beam is controlled, for example, the irradiation of the laser beam L is stopped. In addition, when the ignition degree determination part 28 of the ignition determination apparatus 21 determines with the present pulverized coal density | concentration approaching the preset ignition region density | concentration, you may make it stop supply of pulverized coal F. FIG.

このように実施例1の燃料比計測装置11及び発火判定装置21にあっては、配管P内を流動する微粉炭Fに向けてレーザ光Lを照射するレーザ装置23と、このレーザ装置23から微粉炭Fに照射されたレーザ光Lの散乱光を検出する光検出器26と、光検出器26が検出した散乱光の強度に基づいて微粉炭Fの濃度を求める濃度算出部27と、この濃度算出部27が検出した微粉炭濃度に基づいて微粉炭Fの発火度合を判定する発火度合判定部28とを設け、発火度合判定部28が、現在の微粉炭濃度が発火領域濃度に近づいたと判定したとき、制御部30は、燃料比計測装置11のレーザ装置13を停止するようにしている。   As described above, in the fuel ratio measurement device 11 and the ignition determination device 21 according to the first embodiment, the laser device 23 that irradiates the laser light L toward the pulverized coal F flowing in the pipe P, and the laser device 23. A photodetector 26 for detecting scattered light of the laser light L irradiated to the pulverized coal F, a concentration calculating unit 27 for determining the concentration of the pulverized coal F based on the intensity of the scattered light detected by the photodetector 26, and An ignition degree determination unit 28 that determines the ignition degree of the pulverized coal F based on the pulverized coal concentration detected by the concentration calculation unit 27 is provided, and the ignition degree determination unit 28 determines that the current pulverized coal concentration approaches the ignition region concentration. When the determination is made, the control unit 30 stops the laser device 13 of the fuel ratio measuring device 11.

従って、燃料比計測装置11により微粉炭Fの送給中にリアルタイムでその燃料比を求めることができると共に、発火判定装置21によりこの微粉炭の発火度合を判定し、現在の微粉炭濃度が発火領域濃度に近づいたときには、燃料比計測装置11のレーザ装置13を停止することで、微粉炭Fの発火を事前に把握することができ、その結果、安全性を向上することができる。   Accordingly, the fuel ratio measuring device 11 can obtain the fuel ratio in real time during the delivery of the pulverized coal F, and the ignition determination device 21 determines the ignition degree of the pulverized coal, and the current pulverized coal concentration is ignited. When the region concentration is approached, the laser device 13 of the fuel ratio measuring device 11 is stopped, whereby the ignition of the pulverized coal F can be grasped in advance, and as a result, the safety can be improved.

図2は、本発明の実施例2に係る燃料比計測装置の概略構成図、図3は、微粉炭の種類によるレーザ出力の切換操作を表すグラフである。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。   FIG. 2 is a schematic configuration diagram of a fuel ratio measuring apparatus according to Embodiment 2 of the present invention, and FIG. 3 is a graph showing a laser output switching operation depending on the type of pulverized coal. In addition, the same code | symbol is attached | subjected to the member which has the same function as what was demonstrated in the Example mentioned above, and the overlapping description is abbreviate | omitted.

実施例2の燃料比計測装置は、図2に示すように、微粉炭Fを供給する配管Pに沿って設けられており、燃料比計測機能と燃料発火判定機能を有している。この実施例2の燃料比計測装置において、光照射手段としてのレーザ装置31は、微粉炭Fが流動する配管Pに対して、この微粉炭Fの流動方向に交差する面状のレーザ光Lを照射することができる。光検出器としてのCCDカメラ32は、フィルタ33を通して微粉炭中からの面状の散乱光を受光して検出可能となっている。この場合、CCDカメラ32は、フィルタ33により微粉炭中の固定炭素からのラマン散乱光と、C−H結合からのラマン散乱光または炭化水素の蛍光とに分光して受光可能となっている。   As shown in FIG. 2, the fuel ratio measuring device of the second embodiment is provided along a pipe P that supplies pulverized coal F, and has a fuel ratio measuring function and a fuel ignition determination function. In the fuel ratio measuring apparatus according to the second embodiment, the laser device 31 serving as the light irradiation unit emits a planar laser beam L that intersects the flow direction of the pulverized coal F to the pipe P through which the pulverized coal F flows. Can be irradiated. The CCD camera 32 as a photodetector can detect and detect planar scattered light from pulverized coal through a filter 33. In this case, the CCD camera 32 can receive light by spectroscopically analyzing the Raman scattered light from the fixed carbon in the pulverized coal and the Raman scattered light from the C—H bond or the fluorescence of the hydrocarbon by the filter 33.

そして、燃料比算出部34は、CCDカメラ32が検出した固定炭素からのラマン散乱光と、C−H結合からのラマン散乱光または炭化水素の蛍光との比率に基づいて燃料比を求めることができる。   The fuel ratio calculation unit 34 obtains the fuel ratio based on the ratio of the Raman scattered light from the fixed carbon detected by the CCD camera 32 and the Raman scattered light from the C—H bond or the hydrocarbon fluorescence. it can.

一方、濃度算出部(濃度検出手段)35は、CCDカメラ32が検出した面状の散乱光の強度分布に基づいて微粉炭の濃度を推定することができる。また、発火度合判定部36は、この濃度算出部35が推定した微粉炭濃度に基づいて微粉炭Fの発火度合を判定することができる。つまり、発火度合判定部36は、濃度算出部35が推定した微粉炭濃度が、予め設定された発火領域濃度にあるかどうかを判定する。この場合、CCDカメラ32は面状の散乱光を検出し、濃度算出部35は面状の散乱光の強度分布に基づいて微粉炭の濃度を推定するため、発火度合判定部36は、配管Pの断面方向における全ての領域で微粉炭Fの発火度合を判定することとなる。   On the other hand, the concentration calculation unit (concentration detection means) 35 can estimate the concentration of pulverized coal based on the intensity distribution of the planar scattered light detected by the CCD camera 32. Further, the ignition degree determination unit 36 can determine the ignition degree of the pulverized coal F based on the pulverized coal concentration estimated by the concentration calculation unit 35. That is, the ignition degree determination unit 36 determines whether or not the pulverized coal concentration estimated by the concentration calculation unit 35 is in a preset ignition region concentration. In this case, the CCD camera 32 detects planar scattered light, and the concentration calculation unit 35 estimates the concentration of pulverized coal based on the intensity distribution of the planar scattered light. The ignition degree of the pulverized coal F is determined in all the regions in the cross-sectional direction.

制御部(制御手段)37は、発火度合判定部36が、現在の微粉炭濃度が予め設定された発火領域濃度に近づいたと判定したとき、レーザ装置31からのレーザ光の照射強度を制御する。   The control unit (control means) 37 controls the irradiation intensity of the laser light from the laser device 31 when the ignition degree determination unit 36 determines that the current pulverized coal concentration has approached a preset ignition region concentration.

即ち、燃料としての微粉炭Fを配管Pを通してボイラに供給する場合、ボイラの燃焼状態に応じて微粉炭Fの種類を切換えている。即ち、図3に示すように、時間t0では、高燃比炭の供給割合を100%として低燃比炭の供給割合を0%としている。この状態から高燃比炭の供給割合を徐々に低下させる一方、低燃比炭の供給割合を徐々に上昇させていく。一般に、高燃比炭に比べて低燃比炭の方が揮発分を多く含んでいるために発火しやすい。そのため、高燃比炭を供給するときのレーザ光の出力レベルを高レベルAとし、低燃比炭を供給するときのレーザ光の出力レベルを低レベルBとし、低燃比炭の供給割合が所定の切り替え閾値を越えたときに、レーザ光の出力レベルを高レベルAから低レベルBに切替えるようにしている。 That is, when supplying the pulverized coal F as fuel to the boiler through the pipe P, the type of the pulverized coal F is switched according to the combustion state of the boiler. That is, as shown in FIG. 3, at time t 0 , the supply ratio of high-fuel ratio coal is 100%, and the supply ratio of low-fuel ratio coal is 0%. From this state, the supply ratio of high-fuel ratio coal is gradually decreased, while the supply ratio of low-fuel ratio coal is gradually increased. In general, low-fuel coal is more likely to ignite because it contains more volatile matter than high-fuel coal. Therefore, the output level of laser light when supplying high-fuel ratio coal is set to high level A, the output level of laser light when supplying low-fuel ratio coal is set to low level B, and the supply ratio of low-fuel ratio coal is switched to a predetermined level. When the threshold value is exceeded, the laser light output level is switched from the high level A to the low level B.

即ち、低燃比炭の供給割合と微粉炭Fの濃度との関係を事前に調べておき、発火度合判定部36は、現在の微粉炭濃度が低燃比炭の供給割合(切り替え閾値)に対応する濃度にあると判定したとき、レーザ装置31からのレーザ光の照射強度を高レベルAから低レベルBに切替える。   That is, the relationship between the supply ratio of the low-fuel ratio coal and the concentration of the pulverized coal F is examined in advance, and the ignition degree determination unit 36 corresponds to the supply ratio (switching threshold) of the current pulverized coal concentration. When it is determined that the density is present, the irradiation intensity of the laser beam from the laser device 31 is switched from the high level A to the low level B.

このように実施例2の燃料比計測装置にあっては、微粉炭Fが流動する配管Pに向けて面状のレーザ光Lを照射するレーザ装置31と、フィルタ33を通して微粉炭中からの面状の散乱光を受光検出なCCDカメラ32と、CCDカメラ32が検出した面状の散乱光の強度分布に基づいて微粉炭の濃度を推定する濃度算出部35と、濃度算出部35が推定した微粉炭濃度に基づいて微粉炭Fの発火度合を判定する発火度合判定部36とを設け、発火度合判定部36が、現在の微粉炭濃度が発火領域濃度に近づいたと判定したとき、制御部37は、レーザ装置31の照射強度を調整するようにしている。   As described above, in the fuel ratio measuring apparatus according to the second embodiment, the surface from the pulverized coal through the filter 33 and the laser device 31 that irradiates the planar laser beam L toward the pipe P through which the pulverized coal F flows. A CCD camera 32 that receives and detects the scattered light, a concentration calculation unit 35 that estimates the concentration of pulverized coal based on the intensity distribution of the planar scattered light detected by the CCD camera 32, and a concentration calculation unit 35 An ignition degree determination unit 36 that determines the ignition degree of the pulverized coal F based on the pulverized coal concentration is provided, and when the ignition degree determination unit 36 determines that the current pulverized coal concentration has approached the ignition region concentration, the control unit 37. Adjusts the irradiation intensity of the laser device 31.

従って、発火度合判定部36により現在の微粉炭濃度が高燃比炭と低燃比炭との供給割合(切り替え閾値)に対応する濃度にあると判定したとき、レーザ装置31からのレーザ光の照射強度を高レベルAと低レベルBとの間で切替えることとなり、微粉炭Fの発火を事前に把握することができ、その結果、安全性を向上することができる。この場合、配管Pを流動する微粉炭Fの発火の可能性を空間的に把握することができ、微粉炭Fの発火度合の判定精度を向上することができる。   Therefore, when the ignition degree determination unit 36 determines that the current pulverized coal concentration is at a concentration corresponding to the supply ratio (switching threshold value) of the high-fuel ratio coal and the low-fuel ratio coal, the irradiation intensity of the laser light from the laser device 31 is determined. Is switched between the high level A and the low level B, and the ignition of the pulverized coal F can be grasped in advance, and as a result, the safety can be improved. In this case, the possibility of ignition of the pulverized coal F flowing through the pipe P can be spatially grasped, and the determination accuracy of the degree of ignition of the pulverized coal F can be improved.

図4は、本発明の実施例3に係る燃料比計測装置の概略構成図、図5は、実施例3の燃料比計測装置における散乱光の受光状態を表す説明図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。   FIG. 4 is a schematic configuration diagram of a fuel ratio measuring device according to a third embodiment of the present invention, and FIG. 5 is an explanatory diagram showing a light receiving state of scattered light in the fuel ratio measuring device of the third embodiment. In addition, the same code | symbol is attached | subjected to the member which has the same function as what was demonstrated in the Example mentioned above, and the overlapping description is abbreviate | omitted.

実施例3の燃料比計測装置は、図4に示すように、微粉炭Fを供給する配管Pに沿って設けられており、燃料比計測機能と燃料発火判定機能を有している。この実施例3の燃料比計測装置において、光照射手段としてのレーザ装置41は、入力光ファイバ42を介して微粉炭Fが流動する配管Pにレーザ光Lを照射することができる。即ち、入力光ファイバ42から出力されたレーザ光Lは、ミラー43を介して配管Pに照射される。また、ミラー43と配管Pとの間には、ミラー44が設けられており、微粉炭中からの散乱光をほぼ直角に反射してレンズ45に向けることができる。このレンズ45は、微粉炭中から散乱してミラー44にて反射された散乱光を集光するものであり、集光された散乱光は複数の出力光ファイバが円形状に束ねられた光ファイバ束46に入光可能となっている。この光ファイバ束46は、円形状から平面状に出力光ファイバの配列方向に変えられる。   As shown in FIG. 4, the fuel ratio measuring device of the third embodiment is provided along a pipe P that supplies pulverized coal F, and has a fuel ratio measuring function and a fuel ignition determination function. In the fuel ratio measuring device of the third embodiment, the laser device 41 as the light irradiating means can irradiate the pipe P in which the pulverized coal F flows through the input optical fiber 42 with the laser light L. That is, the laser beam L output from the input optical fiber 42 is irradiated to the pipe P through the mirror 43. Further, a mirror 44 is provided between the mirror 43 and the pipe P, and the scattered light from the pulverized coal can be reflected almost at right angles and directed to the lens 45. The lens 45 collects scattered light scattered from the pulverized coal and reflected by the mirror 44. The collected scattered light is an optical fiber in which a plurality of output optical fibers are bundled in a circular shape. Light can enter the bundle 46. The optical fiber bundle 46 is changed from the circular shape to the planar shape in the arrangement direction of the output optical fibers.

即ち、レーザ装置41から配管P内の微粉炭Fにレーザ光Lが照射されると、このレーザ光Lは微粉炭Fに衝突して散乱光を発生するが、この場合、図5に実線で示すように、配管P内の上部を流れる微粉炭Fに衝突して発生する散乱光はその広がり角が大きく、図5に点線で示すように、配管P内の下部を流れる微粉炭Fに衝突して発生する散乱光はその広がり角が小さい。そのため、配管P内の上部の微粉炭Fからの散乱光(図5の実線)は、光ファイバ束46における外側に配設された出力光ファイバに入射し、配管P内の下部の微粉炭Fからの散乱光は、光ファイバ束46における中心側に配設された出力光ファイバに入射する。そして、この光ファイバ束46は、円形状から平面状に出力光ファイバの配列方向に変えられるが、この場合、円形状の光ファイバ束46における中心側の出力光ファイバは中央部に、上側の出力光ファイバは上部に、下側の出力光ファイバは下部にそれぞれ配設される。   That is, when the pulverized coal F in the pipe P is irradiated with the laser light L from the laser device 41, the laser light L collides with the pulverized coal F and generates scattered light. In this case, a solid line in FIG. As shown, the scattered light generated by colliding with the pulverized coal F flowing in the upper part of the pipe P has a large spread angle and collides with the pulverized coal F flowing in the lower part of the pipe P as shown by the dotted line in FIG. The scattered light thus generated has a small spread angle. Therefore, the scattered light (solid line in FIG. 5) from the upper pulverized coal F in the pipe P enters the output optical fiber disposed outside the optical fiber bundle 46, and the lower pulverized coal F in the pipe P. The scattered light from the light enters an output optical fiber disposed on the center side of the optical fiber bundle 46. The optical fiber bundle 46 is changed from a circular shape to a planar shape in the arrangement direction of the output optical fibers. In this case, the output optical fiber on the center side of the circular optical fiber bundle 46 is located at the center portion and on the upper side. The output optical fiber is disposed in the upper part, and the lower output optical fiber is disposed in the lower part.

そのため、図4に示すように、平面状に配設された出力光ファイバの束46から出力される散乱光は、分光器47を介して光検出器としてのCCDカメラ48に入力されるが、このCCDカメラ48は、散乱光を配管Pの径方向(上下方向)に沿った分布状態として検出することとなる。   Therefore, as shown in FIG. 4, scattered light output from a bundle of output optical fibers 46 arranged in a plane is input to a CCD camera 48 as a photodetector via a spectroscope 47. The CCD camera 48 detects the scattered light as a distribution state along the radial direction (vertical direction) of the pipe P.

また、CCDカメラ48は、分光器47により微粉炭中の固定炭素からのラマン散乱光と、C−H結合からのラマン散乱光または炭化水素の蛍光とに分光して受光可能となっている。燃料比算出部49は、CCDカメラ48が検出した固定炭素からのラマン散乱光と、C−H結合からのラマン散乱光または炭化水素の蛍光との比率に基づいて燃料比を求めることができる。   The CCD camera 48 can receive light by spectroscopically separating into Raman scattered light from fixed carbon in pulverized coal and Raman scattered light from C—H bonds or hydrocarbon fluorescence. The fuel ratio calculation unit 49 can obtain the fuel ratio based on the ratio between the Raman scattered light from the fixed carbon detected by the CCD camera 48 and the Raman scattered light from the C—H bond or the fluorescence of the hydrocarbon.

一方、濃度算出部(濃度検出手段)50は、CCDカメラ48が検出した配管Pの径方向に沿った散乱光の強度分布に基づいて微粉炭Fの濃度を推定することができる。また、発火度合判定部51は、この濃度算出部50が推定した微粉炭濃度に基づいて微粉炭Fの発火度合を判定することができる。つまり、発火度合判定部51は、濃度算出部50が推定した微粉炭濃度が、予め設定された発火領域濃度にあるかどうかを判定する。配管P内を流れる微粉炭Fは、この配管Pの上部より下部の方が粒子径は大きい。この場合、CCDカメラ48は配管Pの径方向に沿った散乱光を検出し、濃度算出部50は配管Pの径方向に沿った散乱光の強度分布に基づいて微粉炭の濃度を推定するため、発火度合判定部36は、配管Pの断面方向におけるほとんどの領域で微粉炭Fの発火度合を判定することとなる。   On the other hand, the concentration calculation unit (concentration detection means) 50 can estimate the concentration of the pulverized coal F based on the intensity distribution of the scattered light along the radial direction of the pipe P detected by the CCD camera 48. Further, the ignition degree determination unit 51 can determine the ignition degree of the pulverized coal F based on the pulverized coal concentration estimated by the concentration calculation unit 50. That is, the ignition degree determination unit 51 determines whether the pulverized coal concentration estimated by the concentration calculation unit 50 is in a preset ignition region concentration. The pulverized coal F flowing in the pipe P has a larger particle diameter in the lower part than in the upper part of the pipe P. In this case, the CCD camera 48 detects scattered light along the radial direction of the pipe P, and the concentration calculation unit 50 estimates the concentration of pulverized coal based on the intensity distribution of the scattered light along the radial direction of the pipe P. The ignition degree determination unit 36 determines the ignition degree of the pulverized coal F in most regions in the cross-sectional direction of the pipe P.

そして、制御部(制御手段)52は、発火度合判定部51が、現在の微粉炭濃度が予め設定された発火領域濃度に近づいたと判定したとき、レーザ装置41からのレーザ光の照射強度を制御し、その出力を低下させる。   And the control part (control means) 52 controls the irradiation intensity | strength of the laser beam from the laser apparatus 41, when the ignition degree determination part 51 determines with the present pulverized coal density | concentration approaching the preset ignition area density | concentration. And reduce its output.

このように実施例3の燃料比計測装置にあっては、微粉炭Fが流動する配管Pに向けてレーザ光Lを照射するレーザ装置41と、分光器47を通して配管Pの径方向に沿って分布された微粉炭中からの散乱光を受光検出なCCDカメラ48と、CCDカメラ48が検出した散乱光の強度分布に基づいて微粉炭の濃度を推定する濃度算出部50と、濃度算出部50が推定した微粉炭濃度に基づいて微粉炭Fの発火度合を判定する発火度合判定部51とを設け、発火度合判定部51が、現在の微粉炭濃度が発火領域濃度に近づいたと判定したとき、制御部52は、レーザ装置41の照射強度を調整するようにしている。   As described above, in the fuel ratio measuring apparatus according to the third embodiment, the laser device 41 irradiates the laser beam L toward the pipe P through which the pulverized coal F flows, and the radial direction of the pipe P through the spectroscope 47. A CCD camera 48 that receives and detects scattered light from the distributed pulverized coal, a concentration calculation unit 50 that estimates the concentration of pulverized coal based on the intensity distribution of the scattered light detected by the CCD camera 48, and a concentration calculation unit 50 Is provided with an ignition degree determination unit 51 that determines the ignition degree of the pulverized coal F based on the estimated pulverized coal concentration, and when the ignition degree determination unit 51 determines that the current pulverized coal concentration has approached the ignition region concentration, The control unit 52 adjusts the irradiation intensity of the laser device 41.

従って、発火度合判定部51が微粉炭Fの発火度合を判定し、現在の微粉炭濃度が発火領域濃度に近づいたとときには、レーザ装置41の照射強度を調整することで、微粉炭Fの発火を事前に把握することができ、その結果、安全性を向上することができる。この場合、配管Pを流動する微粉炭Fの発火の可能性をその径方向に沿った分布として把握することができ、微粉炭Fの発火度合の判定精度を向上することができる。   Therefore, when the ignition degree determination unit 51 determines the ignition degree of the pulverized coal F and the current pulverized coal concentration approaches the ignition region concentration, the ignition intensity of the laser device 41 is adjusted to ignite the pulverized coal F. As a result, the safety can be improved. In this case, the possibility of ignition of the pulverized coal F flowing in the pipe P can be grasped as a distribution along the radial direction, and the determination accuracy of the ignition degree of the pulverized coal F can be improved.

図6は、本発明の実施例4に係る燃料比計測装置の概略構成図、図7は、実施例4の燃料比計測装置における散乱光の受光状態を表す説明図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。   FIG. 6 is a schematic configuration diagram of a fuel ratio measuring device according to a fourth embodiment of the present invention, and FIG. 7 is an explanatory diagram showing a light receiving state of scattered light in the fuel ratio measuring device of the fourth embodiment. In addition, the same code | symbol is attached | subjected to the member which has the same function as what was demonstrated in the Example mentioned above, and the overlapping description is abbreviate | omitted.

実施例4の燃料比計測装置において、図6及び図7に示すように、レーザ装置41は、入力光ファイバ42を介して微粉炭Fが流動する配管Pにレーザ光Lを照射することができる。この場合、入力光ファイバ42から出力されたレーザ光Lは、レンズ61により所定角度で拡散され、ミラー43で反射されて配管P内に照射されることで、レーザ光Lは、配管P内の微粉炭Fに向けて先端ほど光密度が高くなるものとなっている。   In the fuel ratio measuring device of the fourth embodiment, as shown in FIGS. 6 and 7, the laser device 41 can irradiate the pipe P in which the pulverized coal F flows through the input optical fiber 42 with the laser light L. . In this case, the laser light L output from the input optical fiber 42 is diffused at a predetermined angle by the lens 61, reflected by the mirror 43 and irradiated into the pipe P, so that the laser light L in the pipe P is irradiated. The light density increases toward the pulverized coal F toward the tip.

つまり、水平な配管P内の流れる微粉炭Fは、粒子径が大きいものが底部を流れ、粒子径が小さいものが上部を流れる傾向にあり、粒子径が小さいと発火しやすく、大きいと発火しにくい。そのため、レーザ光Lのエネルギ密度もこれに応じて変化させることで、より高いエネルギを入射することができる。また、発生する蛍光・散乱光は、入射する光の強さに比例する。入射する光の強度と発生する蛍光・散乱光は、通過する微粉炭Fの量に応じて減衰するため、配管Pの底部ほど計測できる信号強度は小さくなる。そのため、入射する光の密度を変化させることで、減衰を補正している。   That is, the pulverized coal F flowing in the horizontal pipe P tends to ignite when the particle diameter is small, and tends to ignite when the particle diameter is small. Hateful. Therefore, by changing the energy density of the laser beam L accordingly, higher energy can be incident. The generated fluorescence / scattered light is proportional to the intensity of incident light. Since the intensity of incident light and the generated fluorescence / scattered light are attenuated according to the amount of pulverized coal F passing therethrough, the signal intensity that can be measured at the bottom of the pipe P becomes smaller. Therefore, attenuation is corrected by changing the density of incident light.

従って、配管P内の微粉炭Fに向けて照射されたレーザ光Lは、先端ほど光密度が高くなることで、粒子径が小さく発火しやすい微粉炭Fに対して低エネルギ密度のレーザ光Lを照射し、粒子径が大きく発火しにくい微粉炭Fに対して高エネルギ密度のレーザ光Lを照射する。そして、配管Pの底部を流れる計測信号強度の小さい微粉炭Fに向けて高エネルギ密度のレーザ光Lを照射することで、減衰を補正することができる。   Therefore, the laser light L irradiated toward the pulverized coal F in the pipe P has a light density higher toward the tip, so that the laser beam L having a lower energy density than the pulverized coal F having a small particle diameter and easily ignited. , And the high energy density laser beam L is irradiated to the pulverized coal F having a large particle diameter and difficult to ignite. And attenuation | damping can be correct | amended by irradiating the laser beam L of high energy density toward the pulverized coal F with small measurement signal intensity | strength which flows through the bottom part of the piping P. FIG.

そして、ミラー43と配管Pとの間には、ミラー44が設けられており、微粉炭中からの散乱光をほぼ直角に反射してレンズ45に向け、このレンズ45により微粉炭中から散乱してミラー44にて反射された散乱光を集光する。そして、集光された散乱光は複数の出力光ファイバが円形状に束ねられた光ファイバ束46に入光可能となっている。   A mirror 44 is provided between the mirror 43 and the pipe P, and the scattered light from the pulverized coal is reflected almost at right angles toward the lens 45 and is scattered from the pulverized coal by the lens 45. Then, the scattered light reflected by the mirror 44 is collected. The collected scattered light can enter the optical fiber bundle 46 in which a plurality of output optical fibers are bundled in a circular shape.

なお、この光ファイバ束46の構成、並びに、分光器47、CCDカメラ48、燃料比算出部49、濃度算出部50、発火度合判定部51、制御部52の構成は、前述した実施例4と同様であるため、説明は省略する。   The configuration of the optical fiber bundle 46 and the configurations of the spectroscope 47, the CCD camera 48, the fuel ratio calculation unit 49, the concentration calculation unit 50, the ignition degree determination unit 51, and the control unit 52 are the same as those in the fourth embodiment. Since it is the same, description is abbreviate | omitted.

このように実施例4の燃料比計測装置にあっては、レーザ装置41により入力光ファイバ42を介して微粉炭Fが流動する配管Pにレーザ光Lを照射可能とし、このレーザ光Lをレンズ61により所定角度に拡散した後に、ミラー43で反射して配管P内に照射するように構成することで、レーザ光Lが配管P内の微粉炭Fに向けて先端ほど光密度が高くなるようにしている。   As described above, in the fuel ratio measuring apparatus according to the fourth embodiment, the laser device 41 can irradiate the laser beam L to the pipe P in which the pulverized coal F flows through the input optical fiber 42 by the laser device 41. After being diffused at a predetermined angle by 61, the laser beam L is reflected by the mirror 43 and irradiated into the pipe P, so that the light density increases toward the pulverized coal F in the pipe P toward the tip. I have to.

従って、配管P内を流れる微粉炭Fの粒子径や配管Pを流れる微粉炭Fの位置に応じてレーザ光Lのエネルギ密度を調整することで、発火を抑制して高精度な検出を行うことができ、微粉炭Fの発火を事前に適正に把握することができ、その結果、安全性を向上することができる。   Therefore, by adjusting the energy density of the laser light L according to the particle diameter of the pulverized coal F flowing in the pipe P and the position of the pulverized coal F flowing in the pipe P, the ignition is suppressed and highly accurate detection is performed. Thus, it is possible to appropriately grasp the ignition of the pulverized coal F in advance, and as a result, it is possible to improve safety.

図8は、本発明の実施例5に係る燃料比計測装置の概略構成図である。なお、前述した実施例で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。   FIG. 8 is a schematic configuration diagram of a fuel ratio measuring apparatus according to Embodiment 5 of the present invention. In addition, the same code | symbol is attached | subjected to the member which has the same function as what was demonstrated in the Example mentioned above, and the overlapping description is abbreviate | omitted.

実施例5の燃料比計測装置において、図8に示すように、レーザ装置41は、入力光ファイバ42を通ってミラー43を介して微粉炭Fが流動する配管Pにレーザ光Lを照射することができる。そして、微粉炭Fからの散乱光をミラー44により反射してレンズ45で集光した後、複数の出力光ファイバが円形状に束ねられた光ファイバ束71に入光可能となっている。   In the fuel ratio measuring device of the fifth embodiment, as shown in FIG. 8, the laser device 41 irradiates the pipe P in which the pulverized coal F flows through the input optical fiber 42 and the mirror 43 with the laser light L. Can do. Then, after the scattered light from the pulverized coal F is reflected by the mirror 44 and collected by the lens 45, light can enter the optical fiber bundle 71 in which a plurality of output optical fibers are bundled in a circular shape.

この光ファイバ束46は、円形状から平面状に出力光ファイバの配列方向に変えられ、端部にフィルタ72が装着されている。各フィルタ72に対向して光検出器73が設けられ、各光検出器73は、AD変換器74を介して信号処理装置75に接続されている。そして、信号処理装置75は、燃料比算出部49及び濃度算出部50に接続されている。   The optical fiber bundle 46 is changed from a circular shape to a planar shape in the arrangement direction of the output optical fibers, and a filter 72 is attached to the end portion. A photodetector 73 is provided opposite to each filter 72, and each photodetector 73 is connected to a signal processing device 75 via an AD converter 74. The signal processing device 75 is connected to the fuel ratio calculation unit 49 and the concentration calculation unit 50.

従って、信号処理装置75は、平面状に配設された出力光ファイバの束71から出力される散乱光をフィルタ72、光検出器73、AD変換器74を介して受光し、燃料比算出部49は微粉炭Fの燃料比を求め、濃度算出部50は、配管Pの径方向に沿った散乱光の強度分布に基づいて微粉炭Fの濃度を推定する。発火度合判定部51は、この微粉炭濃度に基づいて微粉炭Fの発火度合を判定する。そして、制御部52は、発火度合判定部51が、現在の微粉炭濃度が予め設定された発火領域濃度に近づいたと判定したとき、レーザ装置41からのレーザ光の照射強度を制御し、その出力を低下させる。   Accordingly, the signal processing device 75 receives the scattered light output from the bundle of output optical fibers 71 arranged in a plane via the filter 72, the photodetector 73, and the AD converter 74, and a fuel ratio calculation unit. 49 calculates | requires the fuel ratio of the pulverized coal F, and the density | concentration calculation part 50 estimates the density | concentration of the pulverized coal F based on the intensity distribution of the scattered light along the radial direction of the piping P. FIG. The ignition degree determination unit 51 determines the ignition degree of the pulverized coal F based on the pulverized coal concentration. And the control part 52 controls the irradiation intensity | strength of the laser beam from the laser apparatus 41, when the ignition degree determination part 51 determines with the present pulverized coal density | concentration approaching the preset ignition area density | concentration, and the output Reduce.

このように実施例5の燃料比計測装置にあっては、配管Pの径方向に沿って分布された微粉炭からの散乱光を、フィルタ72、光検出器73、AD変換器74、信号処理装置75を用いて散乱光の強度分布を求めている。従って、CCDカメラや分光器などを用いることなく、安価に配管P内の微粉炭Fの濃度を推定することができ、構造の簡素化を図ることができる。   As described above, in the fuel ratio measuring apparatus according to the fifth embodiment, the scattered light from the pulverized coal distributed along the radial direction of the pipe P is filtered with the filter 72, the photodetector 73, the AD converter 74, and the signal processing. The intensity distribution of scattered light is obtained using the device 75. Therefore, the concentration of the pulverized coal F in the pipe P can be estimated at low cost without using a CCD camera or a spectroscope, and the structure can be simplified.

本発明に係る燃料比計測装置及び方法は、燃料の濃度から発火度合を判定して安全性を向上させるものであり、燃料を送給するシステムにおける燃料比計測装置及び方法に適用して有用である。 Engaging Ru fuel ratio measuring apparatus and method according to the present invention, to determine the ignition degree from the concentration of the fuel is intended to improve safety, fuel feed Kyusuru to fuel ratio measuring apparatus and a method that put the system Useful to apply.

本発明の実施例1に係る燃料発火判定装置が適用された燃料比計測装置の概略構成図である。1 is a schematic configuration diagram of a fuel ratio measurement device to which a fuel ignition determination device according to Embodiment 1 of the present invention is applied. 本発明の実施例2に係る燃料比計測装置の概略構成図である。It is a schematic block diagram of the fuel ratio measuring apparatus which concerns on Example 2 of this invention. 微粉炭の種類によるレーザ出力の切換操作を表すグラフである。It is a graph showing switching operation of the laser output by the kind of pulverized coal. 本発明の実施例3に係る燃料比計測装置の概略構成図である。It is a schematic block diagram of the fuel ratio measuring apparatus which concerns on Example 3 of this invention. 実施例3の燃料比計測装置における散乱光の受光状態を表す説明図である。It is explanatory drawing showing the light-receiving state of the scattered light in the fuel ratio measuring apparatus of Example 3. 本発明の実施例4に係る燃料比計測装置の概略構成図である。It is a schematic block diagram of the fuel ratio measuring apparatus which concerns on Example 4 of this invention. 実施例4の燃料比計測装置における散乱光の受光状態を表す説明図である。It is explanatory drawing showing the light-receiving state of the scattered light in the fuel ratio measuring apparatus of Example 4. 本発明の実施例5に係る燃料比計測装置の概略構成図である。It is a schematic block diagram of the fuel ratio measuring apparatus which concerns on Example 5 of this invention.

符号の説明Explanation of symbols

11 燃料比計測装置
13 レーザ装置
16 光検出器
19,34,49 燃料比算出部
21 発火判定装置
23,31,41 レーザ装置(光照射手段)
26 光検出器
27,35,50 濃度算出部(濃度検出手段)
28,36,51 発火度合判定部
30,37,52 制御部(制御手段)
32,48 CCDカメラ(光検出器)
F 微粉炭(燃料)
P 配管
DESCRIPTION OF SYMBOLS 11 Fuel ratio measurement apparatus 13 Laser apparatus 16 Photo detector 19, 34, 49 Fuel ratio calculation part 21 Ignition determination apparatus 23, 31, 41 Laser apparatus (light irradiation means)
26 Photodetector 27, 35, 50 Concentration calculation unit (concentration detection means)
28, 36, 51 Firing degree determination unit 30, 37, 52 Control unit (control means)
32, 48 CCD camera (photodetector)
F pulverized coal (fuel)
P piping

Claims (4)

微粉炭が流動する配管に対してレーザ光を照射し、微粉炭中の固定炭素からのラマン散乱光と、C−H結合からのラマン散乱光または炭化水素の蛍光を検出し、この検出した固定炭素からのラマン散乱光とC−H結合からのラマン散乱光または炭化水素の蛍光との比率に基づいて燃料比を求める燃料比計測装置において、前記配管内を流動する微粉炭に向けてその流動方向に交差する光を照射する光照射手段と、該光照射手段から微粉炭に照射された光の散乱光を検出する光検出器と、該光検出器が検出した散乱光の強度に基づいて微粉炭の濃度を求める濃度検出手段と、該濃度検出手段が検出した微粉炭濃度に基づいて微粉炭の発火度合を判定する発火度合判定手段と、該発火度合判定手段が判定した微粉炭の発火度合に基づいて前記レーザ光の照射強度を制御する制御手段とを具え、
前記光検出器は、入力端が同心円状に配置されて外周側にある出力端が上部または下部になるように直線状に配置された複数の光ファイバ束を有し、前記光照射手段から微粉炭に照射された光の散乱光を前記光ファイバ束により前記配管の径方向に沿った分布状態として検出し、前記濃度検出手段は、前記配管の径方向に沿って分布された散乱光の強度分布に基づいて微粉炭の濃度を求めることを特徴とする燃料比計測装置。
Laser pipe is irradiated to the pipe where pulverized coal flows, and Raman scattered light from fixed carbon in pulverized coal and Raman scattered light from C—H bond or hydrocarbon fluorescence are detected, and this detected fixation In a fuel ratio measuring device for obtaining a fuel ratio based on a ratio of Raman scattered light from carbon and Raman scattered light from C—H bonds or fluorescence of hydrocarbons, the flow toward the pulverized coal flowing in the pipe Based on the light irradiation means for irradiating light intersecting the direction, the photodetector for detecting the scattered light of the light irradiated to the pulverized coal from the light irradiation means, and the intensity of the scattered light detected by the light detector Concentration detection means for determining the concentration of pulverized coal, ignition degree determination means for determining the ignition degree of pulverized coal based on the pulverized coal concentration detected by the concentration detection means, and ignition of pulverized coal determined by the ignition degree determination means Based on the degree And control means for controlling the irradiation intensity of light,
The photodetector has a plurality of optical fiber bundles arranged in a straight line so that the input ends are arranged concentrically and the output end on the outer peripheral side is at the top or the bottom. The scattered light of the light irradiated to the charcoal is detected as a distribution state along the radial direction of the pipe by the optical fiber bundle, and the concentration detection means is an intensity of the scattered light distributed along the radial direction of the pipe. A fuel ratio measuring device characterized in that the concentration of pulverized coal is obtained based on the distribution.
前記光照射手段は、前記配管内の微粉炭に向けて先端ほど光密度が高くなる光を照射可能であることを特徴とする請求項1に記載の燃料比計測装置。   The fuel ratio measuring device according to claim 1, wherein the light irradiating means is capable of irradiating light whose light density increases toward the tip toward the pulverized coal in the pipe. 微粉炭が流動する配管に対してレーザ光を照射し、微粉炭中の固定炭素からのラマン散乱光とC−H結合からのラマン散乱光とを検出し、この検出した固定炭素からのラマン散乱光とC−H結合からのラマン散乱光または炭化水素の蛍光との比率に基づいて燃料比を求める燃料比計測方法において、前記配管内を流動する微粉炭に向けてその流動方向に交差する光を照射し、微粉炭に照射された光の散乱光を、入力端が同心円状に配置されて外周側にある出力端が上部または下部になるように直線状に配置された複数の光ファイバ束により前記配管の径方向に沿った分布状態として検出し、この検出した散乱光の強度分布に基づいて微粉炭の濃度を求め、この微粉炭濃度に基づいて微粉炭の発火度合を判定し、この発火度合に基づいてレーザ光の照射強度を制御することを特徴とする燃料比計測方法。   A laser beam is irradiated to a pipe through which pulverized coal flows, and Raman scattered light from fixed carbon in pulverized coal and Raman scattered light from C—H bond are detected, and Raman scattering from the detected fixed carbon is detected. In a fuel ratio measurement method for obtaining a fuel ratio based on a ratio between light and Raman scattered light from C—H bonds or hydrocarbon fluorescence, light crossing the flow direction toward pulverized coal flowing in the pipe A plurality of optical fiber bundles arranged in a straight line so that the input end is arranged concentrically and the output end on the outer peripheral side is at the top or bottom. To detect the distribution state along the radial direction of the pipe, determine the concentration of the pulverized coal based on the intensity distribution of the detected scattered light, determine the ignition degree of the pulverized coal based on the concentration of the pulverized coal, Laser based on the degree of ignition Fuel ratio measuring method and controlling the irradiation intensity of. 前記配管内を流動する微粉炭に向けてその流動方向に交差すると共に前記配管内の微粉炭に向けて先端ほど光密度が高くなる光を照射することを特徴とする請求項に記載の燃料比計測方法。 4. The fuel according to claim 3 , wherein the fuel is irradiated with light that crosses the flow direction toward the pulverized coal flowing in the pipe and increases in light density toward the pulverized coal in the pipe toward the tip. Ratio measurement method.
JP2005050791A 2005-02-25 2005-02-25 Fuel ratio measuring apparatus and method Expired - Fee Related JP4347237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005050791A JP4347237B2 (en) 2005-02-25 2005-02-25 Fuel ratio measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005050791A JP4347237B2 (en) 2005-02-25 2005-02-25 Fuel ratio measuring apparatus and method

Publications (2)

Publication Number Publication Date
JP2006234634A JP2006234634A (en) 2006-09-07
JP4347237B2 true JP4347237B2 (en) 2009-10-21

Family

ID=37042443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005050791A Expired - Fee Related JP4347237B2 (en) 2005-02-25 2005-02-25 Fuel ratio measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP4347237B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5193177B2 (en) * 2009-12-28 2013-05-08 三菱重工業株式会社 Apparatus and method for measuring dust concentration and gas composition in gas
CN103439301B (en) * 2013-08-05 2016-01-20 广东电网公司电力科学研究院 A kind of on-the-spot rapid analysis of No. 20 steel ball body of light nodulizing grades
KR101450302B1 (en) 2014-02-04 2014-10-27 다이오코리아(주) automatic detection system of the dust leakage
CN104655864B (en) * 2015-02-12 2016-08-24 唐山瑞思可节能技术有限公司 Coal dust real-time online verifying attachment
CN106477273B (en) * 2015-06-02 2018-07-10 南通大学 Ribbon conveyer energy consumption Forecasting Methodology based on support vector machines
CN110455749A (en) * 2019-08-09 2019-11-15 张建会 A kind of food quality detection device based on scattering spectrum technology
US11859817B2 (en) 2020-12-07 2024-01-02 General Electric Company System and method for laser ignition of fuel in a coal-fired burner
CN113109227A (en) * 2021-05-28 2021-07-13 西安热工研究院有限公司 Device and method for monitoring coal powder concentration deviation by using laser transmission method

Also Published As

Publication number Publication date
JP2006234634A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4347237B2 (en) Fuel ratio measuring apparatus and method
KR102155809B1 (en) Analyzer to determine fine dust
CA2771509C (en) Optical flue gas monitor and control
KR101789364B1 (en) Fluid composition analysis mechanism, heat generation amount measurement device and power plant, and liquid composition analysis method
CN107991250B (en) Measurement cell and gas analysis device
US20110045420A1 (en) Burner monitor and control
CN106323826B (en) Ultralow emission smoke monitoring device and monitoring method
US8967996B2 (en) Combustion controller
JP5453607B2 (en) Light scattering dust concentration meter
JP2004354370A (en) Method and apparatus for detecting, characterizing and/or eliminating floating fine particles
JP2014182106A (en) Thermometer
JPS6036825A (en) Control method for combustion flame and device thereof
JP5422493B2 (en) Gas calorific value measuring device and gas calorific value measuring method
JP4160866B2 (en) Optical measuring device
JP6523840B2 (en) Gas component detector
EP3465149A1 (en) Method and apparatus for determining a concentration of a substance in a liquid medium
JP2005024249A (en) Laser measuring apparatus
JP2021515891A (en) A particle sensor operated by a laser-induced incandescence method with a confocal arrangement of a laser spot and a temperature radiation spot.
JP3790504B2 (en) Pulverized coal combustion system
AU589758B2 (en) An in situ particle size measuring device
JP3716222B2 (en) Fuel ratio measuring apparatus and method
JP7142843B2 (en) Concentration measuring device and concentration measuring method
US20130057856A1 (en) Fluid composition analysis mechanism, calorific value measurement device, power plant and fluid composition analysis method
JP2016075519A (en) Concentration evaluating device and method, powder supplying system and method, and pulverized coal boiler
WO2017209685A1 (en) Method and apparatus for determining a concentration of a substance in a liquid medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees