TW201111086A - Process control device, laser processing apparatus, and laser processing system - Google Patents

Process control device, laser processing apparatus, and laser processing system Download PDF

Info

Publication number
TW201111086A
TW201111086A TW099117366A TW99117366A TW201111086A TW 201111086 A TW201111086 A TW 201111086A TW 099117366 A TW099117366 A TW 099117366A TW 99117366 A TW99117366 A TW 99117366A TW 201111086 A TW201111086 A TW 201111086A
Authority
TW
Taiwan
Prior art keywords
processing
moving speed
angle
workpiece
unit
Prior art date
Application number
TW099117366A
Other languages
Chinese (zh)
Inventor
Tomonori Mukae
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of TW201111086A publication Critical patent/TW201111086A/en

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Numerical Control (AREA)

Abstract

This invention provides a process control device which is capable of setting an appropriate moving speed of the processing head in a short time and reducing the rate of processing defects. In the process control device for controlling the three-dimensional laser processing of a work by irradiating the work with laser, a moving speed setting unit 33 and a control instruction unit 35 are provided. The moving speed setting unit 33 sets the moving speed of the processing head for each processing position in accordance with the angle formed by the direction of the surface of the work and the direction of the processing nozzle at the processing position set on the work to correspond with the angle at the processing position, and the control instruction unit 35 outputs a control instruction to the work according to the set moving speed to control the three dimensional laser processing of the work.

Description

201111086 六、發明說明: 【發明所屬之技術領域】 工角度 雷射加工 本發明係有關於一種相應對工件(work)的加 進行加工控制的加工控制裝置、雷射加工裝置及 糸統。 【先前技術】 三維雷射加卫機’基本上係藉由對工件表面垂直地吗 射雷射光以進行雷射加卫。於這種三維雷射加工機中,有、 在顯示加工位置的各標示點,將加工噴嘴對工件(η〇ζζ^) 的方向(雷射光的入射角度)設定至適切的方向,並且使加 工頭件(head)以適切的移動速度一邊移動一邊加工的必 要。 例如,以設定加工頭件的移動速度的手段而言,有具 有依據標示點間的各軸的移動量計算出移動速度的速度設 定功能的三維雷射加工機。此外,以設定加工喷嘴對工件 的方向的三維雷射加工機而言,有具有以下構造的三維雷 射加工機:具有可繞著Z軸(錯直抽)的中心轴線旋轉的旋 轉轴(W軸)、及相對於z軸可繞著傾斜的轴線旋轉的姿勢 軸(U軸),且於使旋轉軸及姿勢軸旋轉之際,加工點為不 變的頭件構造(加工頭件構造)。 例如’在記載於專利文獻1的三維雷射加工機,係從 現在的旋轉軸及姿勢軸的角度計算出喷嘴方向向量 (vector),並且計算出於一定時間姿勢軸變化的角度。然 後,相應姿勢軸的角度變化量計算出為了使喷嘴方向向量 322051 4 201111086 的χγ方向保持固定而旋轉旋轉軸的角度,並進行以所計算 出的角度量使旋轉軸旋轉的控制。 (先前技術文獻) (專利文獻) 專利文獻1 :國際公開第01/087532號 【發明内容】 (發明欲解決之課題) 於上述習知的技術,係不管加工噴嘴對工件的角度如 何,而以預定的移動速度移動加工頭件。此外,於上述習 知的技術,運用計算出加工頭件的移動速度的速度設定功 能的情形時,係以加工喷嘴方向對加工面一直都是位於垂 直方向的方式,來設定在各標示點的加工頭件的移動速 度。因此,實際上對非為垂直的部分,係有由於加工喷嘴 方向對工件的傾斜份量增加板厚而容易變成加工不良的問 題。此外,存在有以下問題:當以手動進行速度修正時, 於速度修正的教導(teachi ng)作業需要較長的時間,並且 難以作適切地速度修正。 (解決課題的手段) 本發明為有鑑於前述之問題所開發者,目的為獲得一 種加工控制裝置、雷射加工裝置及雷射加工系統,係可在 短時間設定加工頭件的適切的移動速度,並可減低加工不 良者。 為了解決上述課題,並達成目的,本發明係於控制藉 由照射雷射進行工件的三維雷射加工的加工控制裝置中, 5 322051 2〇1111086 係具備:移動速度設定部’係依據設定於前述工件上的加 工位置之前述工件的面方向與前述加工頭件的加工喷嘴方 '向所形成成的角度,就每一前述加工位置設定相應於在前 述加工位置的前述角度的前述加工頭件的前移動速度;以 及控制部’係按照所設定的前述移動速度輸出對前述工件 的控制指示以控制前逑三維雷射加工。 (發明的效果) 依據本發明’由於係依據工件的面方向與加工喷嘴方 向所形成的角度設定移動速度,故達到可在短時間設定加 工頭件之適切的移動迷度,並且減低加工不良的效果。 【實施方式】 於以下’係依據圖式詳細地說明本發明實施形態的加 工控制裝置、雷射加工骏置及雷射加工系統。 (實施型態) 第1圖係顯示實施形態的三維雷射加工機的構成圖。 於第1圖’係將三維雷射加工機ι〇0的構成例以斜視圖顯 不。三維雷射加工機1〇〇係依據後述的NC資料101A、以 及在各指示點的加工噴嘴1〇對工件w的角度(後述的噴嘴 角度0 )’設定在各指示點的加工頭件9的移動速度(後述 的移動速度d)。接著,以依各指示點所設定的移動速度d 一邊使加工頭件9移動〜邊進行工件^的三維雷射加工。 二維雷射加工機10 〇,係具有:工作擾(w〇rk hb丨e) 2, 以可移動於X軸方向的方式設於基座(bed)1上;橫樑 (cross rail)6,水平地架設於左右的支柱(c〇iumn)4、5 6 322051 201111086 •‘間;Y軸單元7,以可移動於〇4方㈣方式設置於橫標6; Z軸單元8,以可移動於Z軸方向的方式設置於γ軸單元7; •加工頭件9,安裝於z軸單元8;加工喷嘴(雷射用喷嘴別, 安裝於加工頭件9的前端部;以及電腦(⑺聊㈣式的加 工控制裝置30。 加工控制裝置30係具備有作為人機介面化抑 ―interface)的操作盤lu及CRT等晝面顯示部 11B。工作檯2、γ抽單元7及z轴單元8係各別由圖示省 略的X㈣服馬達(servomotor)、y轴飼服馬達及2轴飼 服馬達所㈣,域由來自加王控縣置30的各軸指令受 位置控制。 加工頭件9,係與習知者相同的構成。第2圖係顯示 加工頭件的構成的一例圖。加工頭件9係有:於?轴單元 8的前端藉由轴承構们3以可繞著α轴(Z軸)的中心線.旋 轉的凝轉轴14、以及藉由軸承構件15安襄於旋轉轴的 前端而對α軸可繞著傾斜的軸線(々軸)旋轉的姿勢軸 ^,並於姿勢軸16的前端安裝有加工噴嘴10。旋轉軸14 如由α軸伺服馬達17旋轉驅動,姿勢軸丨6係由0軸伺服 馬達18旋轉驅動。 一 X轴词服馬達、γ軸伺服馬達、ζ軸伺服馬達(省略圖 ^ α輛伺服馬達17及3軸伺服馬達18,係分別由來自 拴制裴置30的驅動訊號所驅動。此外,各軸(X軸、γ 轴、Ζ細、±丄 α軸、/5軸)的伺服馬達,係按照教導資料 (teaching data)—面將加工喷嘴丨〇相對於工作檯2上的 7 322051 201111086 —工件(被加工物)w的分隔距離保持為固定,一面以使雷射 .光的光點(spot)順著加工線附近並且以使加工喷嘴1〇的 ‘方向對工件W的表面幾乎成為垂直(法線)的方式藉由加工 控制裝置30控制。藉此,於使旋轉軸14及姿勢軸16旋轉 時,可使加工點為不變。 第3圖’係顯7Γ實施形態的雷射加工系統的構成的方 塊圖。雷射加工糸統,係具備有:CAD/CAM(c〇mputer Aided201111086 VI. Description of the Invention: [Technical Field of the Invention] Working Angle Laser Processing The present invention relates to a processing control device, a laser processing device, and a cymbal system for processing control of a workpiece. [Prior Art] A three-dimensional laser elevator is basically performing laser reinforcement by vertically emitting laser light to the surface of the workpiece. In the three-dimensional laser processing machine, the direction of the workpiece (n〇ζζ^) (the incident angle of the laser light) is set to an appropriate direction at each marked point at the display processing position, and the processing is performed. It is necessary to process the head while moving at an appropriate moving speed. For example, a three-dimensional laser processing machine having a speed setting function for calculating a moving speed based on the amount of movement of each axis between the marked points is used as means for setting the moving speed of the machining head. Further, in the three-dimensional laser processing machine which sets the direction of the processing nozzle to the workpiece, there is a three-dimensional laser processing machine having a structure in which a rotating shaft which is rotatable about a central axis of the Z-axis (missing straight) is provided ( W axis), and a posture axis (U axis) that is rotatable about an inclined axis with respect to the z axis, and a machining head is a constant head structure when the rotation axis and the posture axis are rotated (machining head piece) structure). For example, in the three-dimensional laser processing machine described in Patent Document 1, the nozzle direction vector is calculated from the angles of the current rotation axis and the posture axis, and the angle at which the axis changes due to the posture is calculated. Then, the angle change amount of the corresponding posture axis is calculated by rotating the rotation axis for keeping the χγ direction of the nozzle direction vector 322051 4 201111086 constant, and controlling the rotation axis to be rotated by the calculated angle amount. (Prior Art Document) (Patent Document) Patent Document 1: International Publication No. 01/087532 [Draft of the Invention] (Problems to be Solved by the Invention) The above-mentioned conventional technique is based on the angle of the processing nozzle to the workpiece, The machining head is moved at a predetermined moving speed. Further, in the above-described conventional technique, when the speed setting function for calculating the moving speed of the machining head is used, the machining nozzle is always positioned in the vertical direction so that the machining surface is always in the vertical direction. The moving speed of the machining head. Therefore, in actuality, the portion that is not vertical is likely to become a defective machining due to an increase in the thickness of the workpiece due to the inclination of the workpiece. Further, there is a problem in that when the speed correction is performed manually, the teaching of the speed correction requires a long time, and it is difficult to make an appropriate speed correction. Means for Solving the Problems The present invention has been made in view of the above problems, and an object thereof is to obtain a processing control device, a laser processing device, and a laser processing system, which are capable of setting an appropriate moving speed of a machining head member in a short time. And can reduce the number of poorly processed. In order to solve the above problems and achieve the object, the present invention is directed to a processing control device for controlling three-dimensional laser processing of a workpiece by irradiation with a laser, and 5 322051 2〇1111086 includes: a moving speed setting unit is set according to the foregoing Setting the surface direction of the workpiece at the processing position on the workpiece to an angle formed by the processing nozzle side of the processing head member, and setting the processing head member corresponding to the aforementioned angle at the processing position for each of the processing positions The front moving speed; and the control unit' outputs a control instruction to the workpiece in accordance with the set moving speed to control the front three-dimensional laser processing. (Effects of the Invention) According to the present invention, since the moving speed is set in accordance with the angle formed by the surface direction of the workpiece and the direction of the processing nozzle, it is possible to set the appropriate movement of the machining head in a short time and to reduce the machining failure. effect. [Embodiment] The machining control device, the laser machining device, and the laser machining system according to the embodiment of the present invention will be described in detail below based on the drawings. (Embodiment) Fig. 1 is a view showing the configuration of a three-dimensional laser processing machine according to an embodiment. In Fig. 1, a configuration example of the three-dimensional laser processing machine ι 〇 0 is shown in an oblique view. The three-dimensional laser processing machine 1 is set to the machining head 9 of each of the indication points in accordance with the NC data 101A to be described later and the angle of the machining nozzle 1 at the respective indication points to the workpiece w (the nozzle angle 0 to be described later). Movement speed (moving speed d to be described later). Next, the machining head unit 9 is moved by the moving speed d set by each of the indication points to perform three-dimensional laser processing of the workpiece. The two-dimensional laser processing machine 10 has a working disturbance (w〇rk hb丨e) 2, which is arranged on the bed 1 so as to be movable in the X-axis direction; a cross rail 6 Horizontally erected on the left and right pillars (c〇iumn) 4, 5 6 322051 201111086 • 'between; Y-axis unit 7, can be moved to the 横4 square (four) way to the horizontal standard 6; Z-axis unit 8 to be movable The Z-axis direction is set to the γ-axis unit 7; • The machining head 9 is attached to the z-axis unit 8; the machining nozzle (the laser nozzle is attached to the front end of the machining head 9; and the computer ((7) Chat (4) The processing control device 30 is provided with an operation panel lu and a face display unit 11B such as a CRT as a human interface interface. The table 2, the γ pumping unit 7, and the z-axis unit 8 are provided. Each of the X (four) service motor (servomotor), the y-axis feed motor, and the 2-axis feed motor (4), which are omitted from the drawings, is controlled by the position of each axis command from the Kaohsiung County 30. The machining head 9 The configuration is the same as that of the conventional one. Fig. 2 is a view showing an example of the configuration of the machining head. The machining head 9 is provided with the shaft unit 8 The front end is tilted about the α-axis by the bearing structure 3 with the condensing shaft 14 rotatable about the center line of the α-axis (Z-axis) and the front end of the rotating shaft by the bearing member 15. The axis axis (々 axis) rotates the posture axis ^, and the machining nozzle 10 is attached to the front end of the posture axis 16. The rotation axis 14 is rotationally driven by the α-axis servo motor 17, and the posture axis 丨 6 is rotationally driven by the 0-axis servo motor 18. An X-axis word service motor, a γ-axis servo motor, and a ζ-axis servo motor (omitted from the figure α α servo motor 17 and the 3-axis servo motor 18 are driven by drive signals from the clamp unit 30, respectively. The servo motor of each axis (X axis, γ axis, Ζ thin, ±丄α axis, /5 axis) is based on the teaching data—the machining nozzle 丨〇 is relative to the table 2 7 322051 201111086 - the separation distance of the workpiece (subject) w is kept constant, so that the spot of the laser light is directed to the vicinity of the processing line and the surface of the workpiece W is almost the same as the 'direction of the processing nozzle 1' The vertical (normal) mode is controlled by the machining control device 30. Therefore, when the rotating shaft 14 and the posture axis 16 are rotated, the machining point can be made constant. Fig. 3 is a block diagram showing the configuration of the laser processing system of the embodiment. The laser processing system has Yes: CAD/CAM (c〇mputer Aided

Design/Computer Aided Manufacturing,電腦輔助設計/ 電腦輔助製造)2。、加工控制裝置30、以及力 =助理;十置 (加工處理部)4〇。 CAD/CAM 20,係支援加工的工件w(製品)的設計及加 工(離線教導(offline teaching))的電腦等裝置。CAD/CAM 20係具備有:輸入部21、工件形狀資訊記憶部22、加工 頭件位置資訊計算部23、喷嘴角度計算部24、Nc資料製 作部25、輪出部26及工件形狀設計部27。 輸入部21 ’係輸入由設計工件W的加工後形狀(製品) 的設計者所輸入的指示資訊(用以設定工件w的形狀的指 示)。輸入部21,係將輸入的指示資訊傳送到工件形狀設 計部27。工件形狀設計部27係按照所輸入的指示資訊設 計工件W的形狀、並將關於設計的工件w形狀的指示資訊 (以下,稱為工件形狀資訊a)傳送至工件形狀資訊記憶部 22。工件形狀資訊記憶部22,係記憶工件形狀資訊a的記 憶體等。 加工頭件位置資訊計算部23’係依據工件形狀資訊記 322051 8 201111086 :,計算出關於雷射加工中的加 • =2位置(教導點的位置)的資訊(以下,稱為加工頭 9的X: °“)。加工頭件位置資訊b,係例如為加工頭件 9的X軸方向、γ舳古A 7 _ 只1卞 ,^ 車方向、2轴方向、〇:軸方向及/5軸方 力】。加工頭件位置資訊計算部23,係將計算出的 ㈣=5位置資訊_送至喷嘴角度計算部24及NC資料 —喷?角度!算部24 ’係依據工件形狀資訊記憶部22 算出二1形狀貝汛a’以及加工頭件位置資訊計算部23計 =力:工頭件位置資訊b,計算出在各教導點的加工嗔 嘴亩Λ子於工#w的角度(喷嘴角度θ)(角度資訊)。噴 25。异部24,係將喷嘴角度θ傳送至化資料製作部 第4圖,係用以說明噴嘴角度對工件的圖。喷嘴角度 ,係由工件W表面的法線向量(赠虹取工件W的面二 。、以及從加工喷嘴10射出雷射光的方向(加工喷嘴方向 ^成的角度。當將加工頭件9的加工嘴嘴方向m與工件 的向量N設為相同方向(垂直)時,加工的工件你 方= 另—方面,當於加工頭件9的加工嘴嘴 與工件w的法線向量N之間給予0。以外的預定角戶 寻,加工的工件W的厚度則成為L2(L2>L1)。 又Design/Computer Aided Manufacturing, Computer Aided Design / Computer Aided Manufacturing) 2. , processing control device 30, and force = assistant; ten sets (processing processing unit) 4 〇. The CAD/CAM 20 is a device that supports the design and processing (offline teaching) of the workpiece w (product). The CAD/CAM 20 system includes an input unit 21, a workpiece shape information storage unit 22, a machining head position information calculation unit 23, a nozzle angle calculation unit 24, an Nc data creation unit 25, a wheeling unit 26, and a workpiece shape design unit 27. . The input unit 21' inputs instruction information (instruction for setting the shape of the workpiece w) input by the designer of the processed shape (product) of the design workpiece W. The input unit 21 transmits the input instruction information to the workpiece shape design unit 27. The workpiece shape designing unit 27 designs the shape of the workpiece W in accordance with the input instruction information, and transmits instruction information (hereinafter referred to as workpiece shape information a) regarding the designed workpiece w shape to the workpiece shape information storage unit 22. The workpiece shape information storage unit 22 is a memory for storing the workpiece shape information a. The machining head position information calculation unit 23' calculates information about the addition of the ==2 position (the position of the teaching point) in the laser processing according to the workpiece shape information record 3225018 201111086: (hereinafter, referred to as the processing head 9) X: °"). The machining head position information b is, for example, the X-axis direction of the machining head member 9, γ舳古 A 7 _ only 1 卞, ^ vehicle direction, 2 axis direction, 〇: axis direction, and /5 The machining head position information calculation unit 23 sends the calculated (four)=5 position information_ to the nozzle angle calculation unit 24 and the NC data-spray angle! calculation unit 24' based on the workpiece shape information memory. The part 22 calculates the two-shape beak a' and the machining head position information calculation unit 23 count = force: the fore piece position information b, and calculates the angle at which the processing of the grout at the respective teaching points is at the work #w (nozzle) Angle θ) (angle information). Spray 25. The different portion 24 transmits the nozzle angle θ to the chemical data creation unit, Fig. 4, which is used to explain the nozzle angle to the workpiece. The nozzle angle is determined by the surface of the workpiece W. Normal vector (the surface of the workpiece W is given by the rainbow, and the laser light is emitted from the processing nozzle 10 Direction (the angle at which the nozzle direction is machined. When the machining nozzle direction m of the machining head member 9 is set to the same direction (vertical) as the workpiece vector N, the machined workpiece is in the other side, as in the machining head. A distance between the processing nozzle of the member 9 and the normal vector N of the workpiece w is 0. The predetermined angle is found, and the thickness of the workpiece W to be processed is L2 (L2 > L1).

=料製作部烈,係依據來自喷嘴角度計算部μ的 喷鳥角度Θ、以及加工頭件位置#訊計算部23計曾 加工頭件位置資訊b,製作用以加工工件w的NC 322051 9 201111086 述的NC資料101A)。NC資料舰,係為包含各教導點的 加工頭件9的位置(座標)及喷嘴角度$戶斤構成的教導程式 (數值控制程式)。NC資料製作部25,係將製作的NC資料 101A傳送至輸出部26。輸出部26,係將Nc資料製作部25 製作的NC資料101A輸出,並傳送至加工控制裝置3〇。 加工控制裝置30係具備有輸入部3卜角度/速度對應 資訊記憶部32、移動速度設定部(速度設定功能)33 ' NC 貝料製作部34以及控制指示部(控制部)35。輸入部31, 係輸入從CAD/CAM20的輸出部26所送來的Nc資料1〇1八。 輸入部31 ’係將所輸入的NC資料1〇1A傳送至移動速度設 定部33及NC資料製作部34。 角度/速度對應資訊記憶部32,係為記憶關於喷嘴角 度Θ與加工頭件9的移動速度的對應關係的資訊(後述的 角度/速度對應資訊102)的記憶體(mem〇ry;)等。角度/速 度對應資訊(對應關係資訊)1〇2,係於喷嘴角度0為 某個角度的情形,規定以某個移動速度d使加工頭件g移 動的資訊。 移動速度設定部33,係依據來自輸入部31的Nc資料 101A、以及角度/速度對應資訊記憶部%内的角度/速度對 應資訊102,設定在各教導點的加玉頭件9的移動速度d。 具體而言,移動速度設定部33係從NC資料1〇u内抽出噴 嘴角度Θ,並且從角度/速度對應資訊1〇2内抽出對應噴 嘴角度Θ的加工頭件9的移動速度d。移動速度設定部 33,係將設定的移動速度d傳送至阢資料製作部34。 322051 10 201111086 •【資料製作部34係按照來自輸入部31的NC資料 _ 101A、以及移動速度設定部33計算出的移動速度心製作 用以加工工件W的NC資料(後述的Nc資料1〇1幻。【資料 10㈣為於_料ΗΠΑ附加了各教導點的移動速度」的 數值控制程式wc:資料製作部34係將製作的nc資料麵 傳送至控制指示部35。 控制指示部35,係數值控制裝置⑽:Numerical C〇ntr〇1),依據NC資料製作部34所製作的NC資料1〇1B, 控制加工處理裝㈣。控制指示部35,係將用以控制加工 處理裝置40的控制指示資訊傳送至加工處理裝置4〇。本 實施形•態的控制指示部35,係例如依據NC資料i〇ib内的 移動速度d,將控制各教導點的加工頭件9的移動速度d 的指示傳送至加工處理裝置4〇。 加工控制襄置3〇及加工處理裝置4〇係對應於三維雷 射加,機100。從而’加工處理裝置4〇,係具有:基座卜 工作檯2、左右的支柱4 ’ 5、橫樑6、γ轴單元7、z轴單 =8加工頭件9及加工噴嘴J 〇。加工處理裝置扣,係按 照f加工控制裝置30的控制指示部35所傳送來的控制指 〇資fl纭射加工工件W。本實施形態的加工處理裝置4〇, 係按各教導點依據來自控制指示部3 5的指示以移動速度d 使加工頭件9移動。 接著,說明關於在Nc資料1〇1A及NC資料1〇ΐβ,所 設定之在各教導點的喷嘴角度Θ。第5圖,係用以說明在 各教導點所設定的喷嘴角度的圖。於NC資料ι〇1Α、101Β 322051 201111086 :有作為加工頭件9的位置之例如教導點P1至 • 冷點P1至P4,係對應於工件w上的加工位置。 ^教導點P1的工件w’係具有平行平面的形狀, $ 的工件W’係具有平行於yz平面的形狀。此 45。的自^P2駐件丨’係具有與χγ平面及YZ平面成 的角度㈣狀,此外,錄導點Ρ4的 =行於ρ平面的形狀。於教導點Ρ1、Ρ2,加工噴幻、〇有的 肚件W的表㈣乎錢直的方式設定喷嘴角度 件二依:加工位置,而有為了避免加工頭件9與工 . 垂直於工件W的表面的法線向量Ν盥來自 加工喷嘴10的雷射光射出方向(加之門 為,角“)的情形:: A工件w^;^使貝鳴角度0成為〇。時,則加工頭件9 角声Γ成·/具趙而言’當在教導點P3的附近使喷嘴 二的主面與加工喷嘴10所成的角度 件W的工件面^導點P3的加工時’設定有教導點P4的工 ^件面wl會與加工頭件9接觸。 於第?二:用以說明對應工件形狀的喷嘴角度的圖。 教導點P3附近的,形狀及加工頭 位置W2之際,若將喷嘴 /導點P3附近的加工 加,㈣前端與二=由:於::=:2 322051 12 201111086 :導點P3將喷嘴角度”成為預定角度(不干涉加 工頭件9及工件W的角度)的方式設定。 料,如在第4圖所說明,當對加工 喷嘴角度Θ時,與喷嘴角…〇。的情形比較,進 :丁加工的王件W板厚度將會增加加工頭件9傾斜部分的 二=1。的喷嘴角度“工工件w的情形,若以與 、、度0加工時的移動速度相同的移動 、:二加工頭件9移動,則有成為加工不良的情形。因此, 在本貫施形態,係對應喷嘴角度Θ來設定加工頭们 動速度d(相對基準速度的減速量)。又,於以下,有將教 導點P1至P4等的教導點稱作教導點Px的情形。 接著,說明關於實施形態的雷射加工系統的動作順 序。第7圖,係顯示雷射加工系統的動作順序的流程圖 謂2G,係將由設計者用以設定形狀的指示 貝透過輸人部21輸人至讀形狀設計部27。工件 =計部27,係按照所輸人的指示資訊設計工件W形狀, ^將設:的工件形狀資心傳送至1件形狀資訊記憶部 。工件形狀貢訊記憶部22 ’係記憶工件形狀資訊&amp;。 加工頭件位置資訊計算部2 3,係 憶部22内的工件形狀資訊…計算出關於雷射=;= 工頭件9的位置的加工頭件位置ftKb(步驟 口 :位置資赠算心3,係將計算出的加工頭件位置資訊^ 專送至喷'^角度計算部24及NC資料製作部25。 喷嘴角度計算部24,係依據工件形狀資訊記憶部η 322051 13 201111086 内的工件形狀資訊a、以及加工頭件位置資訊計算部2 *算出的加工頭件位置資訊b,言十算出各教導點Px的噴嘴角 、度W步驟S20)。喷嘴角度計算部24,係將喷嘴角 傳送至NC資料製作部25。 又 2料製作部25,係依據來自噴嘴角度計算部^的 喷嘴角度Θ、以及加工頭件位置資訊計算部⑴十算出的 加工頭件位置資訊b’製作具有喷嘴角度Θ的阢 101A(步驟S30)。NC資料製作部25,係將製作的Nc資料 101A傳送至輸出部26。輸出部26,係將叱資料製 5 製作的NC資料101A傳送至加工控制裝置3〇。 從CAD/CAM 20的輸出部26送往加工控制裝置3〇的 NC資料蘭,係經由輸入部31輸入至移動 及NC資料製作部34β 移動速度設定部33,係依據來自輸入部31的狀資料 腕、以及角度/速度對應資訊記憶部⑽内的角度/速度對 應貧訊102 ’設定在各教導點ρχ的加工頭件9的移動速度 d。於此’說明關於角度/速度對應資訊102。 第8圖’係顯示角度/速度對應資訊的—例圖。於 度/速度對應貧訊1〇2,係與喷嘴角度θ及加工頭件9的 移動速度d建立對應。例如,〇^θ〈3〇β與移動速度d的 1 奢_基準值)。建立對應,3()。0 .。與移動速度d的6〇% 立對應’ 60 $〜90。與移動速度d的30%(基準值)建立 對應。移動速度d為_情形,減速為〇% '移動 為_的情形’減速為樣、而移動速度d為3_情ς, 32205] 14 201111086 ' 減速為70%。 \㈣速技定部33,係從【資料腕内按各教導點 抽出噴嘴角度Θ ’並且從角度/速度對應資訊⑽内抽出 對應各喷嘴角度Θ的加工頭件9的移動速度d。例如,喷 嘴角度0為45的情形,移動速度設定部33,係從角度/ 速度對應資訊102内抽出_作為對應㈣5。的移動速度 並將該60%設^至移動速度d(步驟S4Q)。移動速度設 定部33,係將設定的移動速度d傳送至NC資料製作部%。 NC資料製作部34,係依據來自輸入部31的NC資料 ι〇ΐΑ、以及移動速度設定部33計算出的移動速度d,製作 阢資料101B。NC資料製作部34,係藉由於NC資料i〇u 設定在各教導點Px的移動速度d而製作NC資料i〇iBiC 資料製作部34,係製作例如將在教導點p3的移動速度d 設為60%的NC資料1〇1Β(步驟S5〇)。NC資料製作部%, 係將製作的NC資料101B傳送至控制指示部35。 /於此’說明關於NC資料10U、101B的構成。第9圖 係顯示NC資料的構成例圖。於第9圖,於上段側係顯示 NC資料101A,並於下段側顯示NC資料1〇1Bc&gt;NC資料1〇ia 係由包含:各教導點Px的加工頭件位置資訊b、以及各教 導點Px的喷嘴角度0所構成。此外,NC資料1〇1β係由 包含.各教導點Px的加工頭件位置資訊b、各教導點ρχ 的噴嘴角度0、以及各教導點ρχ的移動速度0所構成。 換言之’ NC資料101Β係於NC資料101Α附加各教導點Ρχ 的移動速度d所構成。 322051 15 201111086 於雷射加工系統,係在設定了各教導點Px的移動速 度d後進行工件w的試驗加工,若於試驗加工沒有問題, 則進行工件W的量產加工。於進行試驗加工及量產加工之In the material production unit, the NC 322051 9 201111086 for processing the workpiece w is produced based on the bird angle Θ from the nozzle angle calculating unit μ and the machining head position information calculation unit 23. NC data 101A). The NC data ship is a teaching program (numerical control program) consisting of the position (coordinate) of the machining head 9 and the nozzle angle of each teaching point. The NC data creating unit 25 transmits the created NC data 101A to the output unit 26. The output unit 26 outputs the NC data 101A created by the Nc data creating unit 25, and transmits it to the processing control device 3A. The machining control device 30 includes an input unit 3 angle/speed corresponding information storage unit 32, a moving speed setting unit (speed setting function) 33', an NC beating unit 34, and a control instructing unit (control unit) 35. The input unit 31 inputs the Nc data 1〇1 eight sent from the output unit 26 of the CAD/CAM 20. The input unit 31' transmits the input NC data 1〇1A to the moving speed setting unit 33 and the NC data creating unit 34. The angle/speed correspondence information storage unit 32 is a memory (mem〇ry;) that stores information on the correspondence relationship between the nozzle angle Θ and the moving speed of the machining head 9 (the angle/speed correspondence information 102 to be described later). The angle/speed correspondence information (correspondence information) 1〇2 is information for moving the machining head g at a certain moving speed d when the nozzle angle 0 is an angle. The moving speed setting unit 33 sets the moving speed d of the jade head 9 at each teaching point based on the Nc data 101A from the input unit 31 and the angle/speed correspondence information 102 in the angle/speed corresponding information storage unit %. . Specifically, the moving speed setting unit 33 extracts the nozzle angle 从 from the NC data 1〇u, and extracts the moving speed d of the machining head 9 corresponding to the nozzle angle 从 from the angle/speed correspondence information 1〇2. The moving speed setting unit 33 transmits the set moving speed d to the data creating unit 34. 322051 10 201111086 • The data creation unit 34 creates NC data for processing the workpiece W in accordance with the moving speed center calculated from the NC data _101A of the input unit 31 and the moving speed setting unit 33 (Nc data 1〇1 described later) The data control unit 34 transmits the created nc data plane to the control instructing unit 35. The control instructing unit 35, the coefficient value, is a numerical control program wc: the data creation unit 34 transmits the created nc data plane. The control device (10): Numerical C〇ntr〇1) controls the processing device (4) based on the NC data 1〇1B created by the NC data creating unit 34. The control instructing unit 35 transmits control instruction information for controlling the processing device 40 to the processing device 4A. The control instructing unit 35 of the present embodiment transmits an instruction to control the moving speed d of the machining head 9 of each teaching point to the machining processing device 4, for example, based on the moving speed d in the NC data i〇ib. The machining control device 3 and the processing device 4 are corresponding to the three-dimensional laser plus machine 100. Therefore, the processing apparatus 4 includes a susceptor table 2, left and right pillars 4', a beam 6, a γ-axis unit 7, a z-axis single = 8 processing head 9 and a processing nozzle J 。. The processing device is buckled to project the workpiece W in accordance with the control finger transmitted from the control instructing unit 35 of the f-processing control device 30. In the processing apparatus 4 of the present embodiment, the machining head unit 9 is moved at the moving speed d in accordance with an instruction from the control instructing unit 35 in accordance with each teaching point. Next, the nozzle angle Θ set at each teaching point in the Nc data 1〇1A and the NC data 1〇ΐβ will be described. Fig. 5 is a view for explaining the nozzle angle set at each teaching point. In the NC data ι〇1Α, 101Β 322051 201111086: as the position of the machining head member 9, for example, the teaching point P1 to the cold point P1 to P4 corresponds to the machining position on the workpiece w. ^ The workpiece w' of the teaching point P1 has a shape of a parallel plane, and the workpiece W' of $ has a shape parallel to the yz plane. This 45. The ^P2 station 丨' has an angle (four) shape with respect to the χ γ plane and the YZ plane, and further, the position of the recording point Ρ 4 is in the shape of the ρ plane. In the teaching point Ρ 1, Ρ 2, processing the illusion, the table of the belly piece W (four) is in a straight way to set the nozzle angle piece according to the processing position, and in order to avoid machining the head piece 9 and work. perpendicular to the workpiece W The normal vector of the surface Ν盥 comes from the direction in which the laser light is emitted from the processing nozzle 10 (plus the gate is the angle "): A workpiece w^; ^ makes the beep angle 0 become 〇. Then, the processing head 9 In the case of the processing of the corners of the corners of the angles of the nozzles W and the workpieces of the machining nozzles 10 in the vicinity of the teaching point P3, the teaching point P4 is set. The part surface wl will be in contact with the processing head piece 9. In the second part: a diagram for explaining the nozzle angle corresponding to the shape of the workpiece. When the shape is near the shape P3 and the processing head position W2, if the nozzle/guide point is to be used Processing plus in the vicinity of P3, (4) Front end and second = by:::=:2 322051 12 201111086: The guide point P3 sets the nozzle angle to a predetermined angle (the angle between the machining head 9 and the workpiece W is not interfered). Material, as illustrated in Figure 4, when the angle of the machined nozzle is ,, with the nozzle angle...〇. In comparison with the situation, the thickness of the W-plate of the D-processing will increase the thickness of the inclined portion of the processing head 9 by two=1. In the case of the workpiece angle w, if the movement is the same as the movement speed at the time of the machining of the degree 0, the movement of the second machining head 9 may cause a machining failure. Therefore, in the present embodiment, In the following, the teaching point of the teaching points P1 to P4 and the like is referred to as the teaching point Px. The operation sequence of the laser processing system of the embodiment. Fig. 7 is a flow chart showing the operation sequence of the laser processing system, 2G, which is used by the designer to set the shape of the image through the input unit 21 to the reader. The shape designing unit 27. The workpiece=meter unit 27 designs the shape of the workpiece W according to the instruction information of the input person, and transmits the workpiece shape of the workpiece to the one shape information memory unit. The workpiece shape compensation memory unit 22' The processing head shape information information &amp; processing head position information calculation unit 2 3, the workpiece shape information in the memory unit 22 ... calculates the processing head position ftKb with respect to the laser =; = the position of the fore piece 9 (step port :Location The bonus core 3 is sent to the spray '^ angle calculating unit 24 and the NC data creating unit 25. The nozzle angle calculating unit 24 is based on the workpiece shape information memory unit η 322051 13 201111086 The workpiece shape information a in the inside and the machining head position information b calculated by the machining head position information calculation unit 2 calculate the nozzle angle and degree W of each teaching point Px (step S20). The nozzle angle calculation unit 24 The nozzle angle is transmitted to the NC data creation unit 25. The second material preparation unit 25 is based on the nozzle angle Θ from the nozzle angle calculation unit and the machining head position information b' calculated by the machining head position information calculation unit (1). The 阢101A having the nozzle angle Θ is created (step S30). The NC data creation unit 25 transmits the created Nc data 101A to the output unit 26. The output unit 26 transmits the NC data 101A produced by the 叱 data system 5 to the processing. The NC device blue sent from the output unit 26 of the CAD/CAM 20 to the machining control device 3 is input to the movement and NC data creation unit 34β movement speed setting unit 33 via the input unit 31, based on the input. Department 3 The shape data wrist of 1 and the angle/speed corresponding to the angle/speed corresponding information memory unit (10) correspond to the movement speed d of the machining head member 9 set at each teaching point ρχ. Here, the angle/speed correspondence is described. Information 102. Fig. 8 is an example of the display of angle/speed correspondence information. The degree/speed corresponding to the information 1〇2 corresponds to the nozzle angle θ and the moving speed d of the machining head member 9. For example, ^θ<3〇β and the moving speed d of 1 extravagant_reference value). Correspondence is established, 3().0. Corresponds to '60$~90' with the moving speed d of 6〇%. Corresponds to 30% (reference value) of the moving speed d. The moving speed d is _the case, the deceleration is 〇% 'the case where the movement is _' decelerates to the sample, and the moving speed d is 3_information, 32205] 14 201111086 'the deceleration is 70%. \(4) The speed technique setting unit 33 extracts the nozzle angle Θ from the teaching points in accordance with each teaching point and extracts the moving speed d of the processing head member 9 corresponding to each nozzle angle 从 from the angle/speed correspondence information (10). For example, when the nozzle angle 0 is 45, the moving speed setting unit 33 extracts _ from the angle/speed correspondence information 102 as the correspondence (4) 5. The moving speed is set to 60% to the moving speed d (step S4Q). The moving speed setting unit 33 transmits the set moving speed d to the NC data creating unit %. The NC data creating unit 34 creates the UI data 101B based on the NC data ι from the input unit 31 and the moving speed d calculated by the moving speed setting unit 33. The NC data creating unit 34 creates the NC data i〇iBiC data creating unit 34 by setting the moving speed d of each teaching point Px by the NC data i〇u, and creates, for example, the moving speed d at the teaching point p3. 60% of the NC data is 1〇1Β (step S5〇). The NC data creation unit % transmits the created NC data 101B to the control instruction unit 35. / This describes the configuration of the NC data 10U, 101B. Fig. 9 is a diagram showing an example of the structure of the NC data. In Fig. 9, the NC data 101A is displayed on the upper side, and the NC data is displayed on the lower side. 1〇1Bc&gt; NC data 1〇ia includes: processing head position information b of each teaching point Px, and teaching points Px has a nozzle angle of zero. Further, the NC data 1〇1β is composed of the machining head position information b including the respective teaching points Px, the nozzle angle 0 of each teaching point ρχ, and the moving speed 0 of each teaching point ρχ. In other words, the NC data 101 is composed of the moving speed d of each of the teaching points NC in the NC data 101. 322051 15 201111086 In the laser processing system, the test w of the workpiece w is performed after the movement speed d of each teaching point Px is set, and if there is no problem in the test processing, the mass production of the workpiece W is performed. For testing and mass production processing

際,控制指示部35,係依據NC資料製作部34製作的NC 寊料101B,將用於控制加工處理裝置4〇的控制指示資訊 傳达至加工處理裝置4〇,並藉此控制加工處理裝置4〇。 加工處理裝置40,係按照由加工控制裝置30的控制 指示部35所送來的控制指示資訊,雷射加工工件w(步驟 S60)。本實施形態的加工處理裝置4〇,係以按各教導點 根據來自控制指示部3 5的控制指示資訊之移動速度d使加 工頭件9移動。 再者,於本貫施形態,係說明關於資料製作部 依據加工頭件位置資訊b及喷嘴角度0製作肊資料ΜΗ 的情形,但NC資料製作部25,係亦可依據工件形狀資訊&amp; 及喷嘴角度6»製作NC資料101A。 ° 此外,於本實施形態,雖說明關於CAD/Cam 於阢 資料101A附加喷嘴角度0的情形,但⑽夂職,、係亦 可將各教導點Px的工件W面的法線向量N附加於nc 101A以取代喷嘴角度θ。這種情形時,加工控制農置加 的,動速度設定部33,係依據加工頭件9的加工喷頭方向 向量及工件W面的法線向量N,計算出噴嘴角度0。藉此 即使在三維雷射加工機⑽财修正加工頭件9的傾曰斜’ 時,仍可在NC資料製作部34容易並正確地修正加 位置資訊b。 千 322051 16 201111086 ㈣此外’於本實施形態,雖說明關於CAD/CAM 20將噴 =度Θ附加於NC資料1〇1A並傳送至加工控制裝㈣ ⑽麵’亦可將_料觀及噴嘴角度 刀別地傳送至加工控制裝置3〇。 此外’於角度/速度對應#訊102,係沒有固定喷嘴角 ^的範圍與移動速度d的對應關係的必要,亦可為可任 :地設^的構成。例如,於顯示於第8 _角度/速度對應 2訊102中,將移動速度d為100%的情形的噴嘴角度 °又為㈣卜以將Q1透過使用者可任意地設定的方式 構成三維雷射加工機剛。同樣地,將移動速度d為_ 的情形的噴嘴角度Θ設為㈣_,將以QbQ2透過 使用者從操作盤11A等可任意地設定的方式構成三維雷射 加工機⑽。再者,將移動速度d為3G%的情形的喷嘴角度 Θ設為Q10&lt;9O。’以將Q2透過使用者可任意地設定= 方式構成三維雷射加工機1〇〇β此外,於角度/速度對應資 3fl 102中’亦可以將移動速度d的值可任意設定的方式構 成^雷射加工機⑽。此外,在第8圖,於角度/速度對 應資訊102巾,雖將喷嘴角度θ區分為三個範圍,但噴嘴 角度6»的範圍亦可為兩個或四個以上。 、 此外,於本實施形態,雖說明關於使用角度/速度對 應資Λ 102设定移動速度d的情形,但亦可為使用用喷嘴 角度Θ的預定計算式設定移動速度^這種情形,移動速 度设定部33,係例如使用式設定移動速度d。 F’ =Fxcos Θ------------⑴ 322051 17 201111086 . ;,係為減速後的移動速度d,j?則p、出 的基準的移動速度。 則知減速前 此外,於本實施形態,雖說明 的喷嘴角度0蠻“丁 子目應加工噴嘴1〇 可相應噴嘴角度Θ 動速度」㈣ t更移動速度d以外的加工條件。例 ΙΓΓ嘴角度θ變更雷射加工時的加工輸出。 他裝置(紗°^/nw_AM2G以外的其 係作成具備:二=:形,角度置 1 可為具備工件形狀資訊記憶部22的構成,Ι=Γ /CAM 20的工件形狀資訊記憶部找取 心此外,角度計算裝置,係亦 :狀貝说 , CAD/CAM 20 晋23取得的加工頭件位置資訊b。角度計算裝 ,禮計算出的喷嘴角度$傳送至⑽/c 控制裝置30。 此外,移動速度d,係亦可為加工控制裝置3()以外的 移動速度設定裝置)設定。這種情形,移動速度 =部_構成。移動速度設定裝置,編鑛;/; 侍NC貪料ι〇1Α,並將設定的移動速度d傳送至加 制裝置30。 ,此外,於CAD/CAM20,係亦可使用未設定喷嘴角度0 的製作完成的MC資料,以製作1#料福。這種情形, 322051 18 201111086 ==25係使用嘴嘴角度計細計算出的喷嘴 角度Θ及製作完成的NC資料製㈣資料1〇1八。 如此依據實施形態,由於設定相應噴嘴角度Θ的移 動速度d,故可以在相應工件w的板厚的移動速度d下進 :加工。此外’省去了以手動進行在錄導點^的移動速 度的修正的二時及以手動編輯叱資料mA、mB的工時。 糟此,可縮域導作業時間。從而,可在短時間設定加工 頭件9的適切的移動速度d並且可減低加工不良。 此外,由於藉由CAd/CAM20計算喷嘴角度θ’故可 f加工控制裝置30輕易地設定移動速度d。此外,CAD/CM 20將工件W面的法線向量N傳送至加工控制裝置3〇的情 形,於藉由加工控制裝置3〇修正了加工頭件9的傾斜之 際’可谷易並正確地修正加工頭件位置資Μ。 此外,由於使用角度/速度對應資訊1〇2設定移動速 度d ’故可於加工控制裝置3〇輕易地設定移動速度d。此 外,使用用喷嘴角度Θ的預定算式設定移動速度d的情 形’可輕易的設以目應噴嘴角度Θ的詳細的移動速度。 (產業上的可利用性) 如以上所述,本發明的加工控制裝置、雷射加工裝置 工 及雷射加工系統,係適用於相應對工件的加工減的加 控制。 【圖式簡單說明】 第1圖係顯不貫施形態的三維雷射加工機的構成圖。 第2圖係顯示加工頭件的構成的-例圖。 322051 201111086 射加工機的構成的方塊 第3圖係顯示實施形態的雷 第4圖係用以說明噴嘴角度對卫件的圖。 第5圖係用以說明在各指示點的噴嘴角度的圖。 第6圖係用㈣_應H的形狀的喷嘴角度的 第9圖係顯示NC資料的構成例的圖。 【主要元件符號說明】 1 基座 2 工作楼 4、5 支柱 6 橫樑 7 Y軸單元 8 Z軸單元 9 加工頭件 10 加工噴嘴 11A 操作盤 11B 晝面顯示部 13、15 轴承構件 14 旋轉輛 16 姿勢軸 17 α軸伺服馬 18 21 /5軸伺服馬達 輸入部 20 CAD/CAM 工件形狀資訊記憶部 第7 _顯示雷射加卫系統的運作流㈣流程圖〇 第8圖係顯示角度/速度對應資訊的一例圖。 22 23 24 26 30 NC資料製作部 工件形狀設計部 輸入咅 加工頭件位置資訊計算部 噴嘴角度計算部25、34 輸出部 2Ί 加工控制裝置 31 32205】 20 201111086 32 角度/速度對應資訊記憶部 ,33 移動速度設定部 35 控制指示部 • 40 加工處理裝置 100 三維雷射加工機 101A、 101B NC資料 102 角度/速度對應資訊 a 工件形狀資訊 b 加工頭件位置資訊 d 移動速度 Μ 加工喷嘴方向 N 法線向量 Ρ1 至 Ρ4 、Ρχ 教導點 W 工件 wl 工件面 w2 加工位置 θ 喷嘴角度 21 322051The control instructing unit 35 transmits the control instruction information for controlling the processing device 4 to the processing device 4 based on the NC material 101B created by the NC data creating unit 34, thereby controlling the processing device. 4〇. The processing unit 40 laser-processes the workpiece w in accordance with the control instruction information sent from the control instructing unit 35 of the processing control unit 30 (step S60). In the processing apparatus 4 of the present embodiment, the processing head 9 is moved in accordance with the movement speed d of the control instruction information from the control instructing unit 35 for each teaching point. Furthermore, in the present embodiment, the data creation unit creates a data 依据 based on the processing head position information b and the nozzle angle 0, but the NC data creation unit 25 can also be based on the workpiece shape information &amp; Nozzle angle 6» makes NC data 101A. In addition, in the present embodiment, the case where the nozzle angle 0 is added to the CAD/Cam data 101A is described. However, (10) the normal vector N of the workpiece W surface of each teaching point Px may be added to Nc 101A to replace the nozzle angle θ. In this case, the machining speed control unit 33 calculates the nozzle angle 0 based on the machining head direction vector of the machining head 9 and the normal vector N of the workpiece W surface. Thereby, the position information b can be easily and accurately corrected in the NC data creating unit 34 even when the three-dimensional laser processing machine (10) corrects the tilting angle of the processing head 9. Thousands 322051 16 201111086 (4) In addition, in the present embodiment, it is described that the CAD/CAM 20 attaches the spray degree Θ to the NC data 1〇1A and transmits it to the machining control device (4) (10) face 'can also view the nozzle angle The knife is transferred to the machining control device 3〇. Further, in the angle/speed correspondence #102, there is no need to fix the correspondence between the range of the nozzle angle ^ and the moving speed d, and it is also possible to provide a configuration. For example, in the 8th_angle/speed correspondence 2 signal 102, the nozzle angle ° in the case where the moving speed d is 100% is (4), and the Q1 is configured to be arbitrarily set by the user to form a three-dimensional laser. The processing machine just got. In the same manner, the nozzle angle Θ when the moving speed d is _ is (4) _, and the three-dimensional laser processing machine (10) is configured such that the user can arbitrarily set the operation panel 11A or the like by the QbQ2. Further, the nozzle angle Θ in the case where the moving speed d is 3 G% is set to Q10 &lt; 'The three-dimensional laser processing machine 1〇〇β can be configured by arbitrarily setting Q2 through the user. In addition, the angle/speed correspondence 3fl 102 can also be configured to arbitrarily set the value of the moving speed d. Laser processing machine (10). Further, in Fig. 8, in the angle/speed correspondence information 102, although the nozzle angle θ is divided into three ranges, the nozzle angle 6» may be in the range of two or more. Further, in the present embodiment, the case where the moving speed d is set using the angle/speed corresponding resource 102 is described. However, the moving speed may be set using a predetermined calculation formula using the nozzle angle Θ, and the moving speed may be used. The setting unit 33 sets the moving speed d using, for example, a usage formula. F' = Fxcos Θ ------------ (1) 322051 17 201111086 . ; , is the moving speed d after deceleration, j? then the moving speed of the reference. In addition, before the deceleration, in the present embodiment, the nozzle angle 0 described above is quite the same as the machining condition other than the moving speed d. Example The nozzle angle θ changes the machining output during laser machining. Other devices other than the yarns °^/nw_AM2G are provided with two:: shape, the angle is set to 1 and the workpiece shape information storage unit 22 is provided, and the workpiece shape information memory unit of Ι=Γ /CAM 20 finds the heart. In addition, the angle calculation device is also referred to as the processing head position information b obtained by the CAD/CAM 20/23. The angle calculation device calculates the nozzle angle $ transmitted to the (10)/c control device 30. The moving speed d can also be set for the moving speed setting device other than the machining control device 3 (). In this case, the moving speed = part _ constitutes. The moving speed setting device, the ore; /; the NC sputum 〇1〇, and transmits the set moving speed d to the adding device 30. In addition, in CAD/CAM20, the MC data that has not been set to the nozzle angle of 0 can be used to make 1#. In this case, 322051 18 201111086 ==25 is the nozzle angle calculated by the nozzle angle meter and the NC data system (4) is completed. According to the embodiment, since the moving speed d of the corresponding nozzle angle 设定 is set, the machining speed can be performed at the moving speed d of the thickness of the corresponding workpiece w. In addition, the man-hours for manually correcting the movement speed of the recording point ^ and manually editing the data mA and mB are omitted. Worse, this can be used to shorten the working time. Thereby, the appropriate moving speed d of the machining head member 9 can be set in a short time and the machining failure can be reduced. Further, since the nozzle angle θ' is calculated by the CAd/CAM 20, the processing control device 30 can easily set the moving speed d. Further, when the CAD/CM 20 transmits the normal vector N of the workpiece W plane to the machining control device 3, when the inclination of the machining head member 9 is corrected by the machining control device 3, it is easy and correct. Correct the position of the processing head. Further, since the movement speed d' is set using the angle/speed correspondence information 1〇2, the movement speed d can be easily set in the machining control device 3. Further, the case where the moving speed d is set using the predetermined formula of the nozzle angle Θ can be easily set to the detailed moving speed of the nozzle angle Θ. (Industrial Applicability) As described above, the machining control device, the laser processing device, and the laser machining system of the present invention are applied to the corresponding reduction control of the workpiece. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a configuration of a three-dimensional laser processing machine in a form of inconsistency. Fig. 2 is a view showing an example of the configuration of the machining head. 322051 201111086 Block of the configuration of the shot processing machine Fig. 3 shows the diagram of the embodiment of the mine. Fig. 4 is a view for explaining the angle of the nozzle to the guard. Fig. 5 is a view for explaining the nozzle angle at each of the indication points. Fig. 6 is a view showing a configuration example of the NC data by the nozzle angle of the shape of (4)_H. [Description of main component symbols] 1 Base 2 Working building 4, 5 Pillar 6 Beam 7 Y-axis unit 8 Z-axis unit 9 Machining head 10 Machining nozzle 11A Operating panel 11B Kneading display 13 and 15 Bearing member 14 Rotating unit 16 Posture axis 17 α-axis servo horse 18 21 /5-axis servo motor input unit 20 CAD/CAM Workpiece shape information memory unit 7th _Display operation flow of laser-assisted system (4) Flow chart 〇 Figure 8 shows angle/speed correspondence An example of information. 22 23 24 26 30 NC data creation unit workpiece shape design unit input 咅 machining head position information calculation unit nozzle angle calculation unit 25, 34 output unit 2 加工 machining control device 31 32205] 20 201111086 32 Angle/speed correspondence information memory unit, 33 Movement speed setting unit 35 Control instruction unit • 40 Processing processing device 100 Three-dimensional laser processing machine 101A, 101B NC data 102 Angle/speed correspondence information a Workpiece shape information b Processing head position information d Movement speed 加工 Processing nozzle direction N Normal Vector Ρ1 to Ρ4, 教导 teaching point W workpiece wl workpiece surface w2 machining position θ nozzle angle 21 322051

Claims (1)

201111086 七 1. 、申請專利範圍: 一種加工控制裝置’係控制藉由昭射帝 一 維雷射力m加I控難置❹備日^件的三 工位定部’係依據在設定於前述工件上的加 嘴方卜工件的面方向與前述加工頭件的加工喷 ㈣的角度,就每—前述加工位置設定相應於 度則::工位置的則述角度的前述加工頭件的移動速 控制π,係按照所設定的前述移動速度輸出給前述 工件的控制指示以控制前述三維雷射加工。 2.如申請專利範圍帛1JM所述之加工控制裝置,其中,前 述移動速度設定部,係依據使用前述工件的面方向及前 述加工喷嘴方向所計算出的角度,設定前述移動速度。 士申明專利範圍第1項所述之加工控制裝置,其中,前 述移動速度設定部’係使用前述工件的面方向及前述加 工喷嘴方向計算出前述角度,依據所計算出的角度設定 前述移動速度。 浚申叫專利範圍第1至第3項中任一項所述之加工控制 農置’其中’前述移動速度設定部,係依據與前述角度 及前述移動速度建立對應的對應關係資訊,設定相應於 則述角度的前述加工頭件的移動速度。 5·如申請專利範圍第1至第3項中任一項所述之加工控制 I置’其中’前述移動速度設定部,係使用前述角度所 用的預定的計算式計算出前述移動速度,並將計算結果 22 322051 201111086 設定至前述移動速度。 • 6. —種雷射加工裝置,係藉由照射雷射進行工件的三維雷 • 射加工的雷射加工機,具備有: 移動速度設定部,係依據在設定於前述工件上的加 工位置的前述工件的面方向與前述加工頭件的加工嗔 嘴方向所形成的角度,就每一前述加工位置設定相應於 在前述加工位置的前述角度之前述加工頭件的移動速 度; 控制部,按照所設定的前述移動速度輸出給前述工 件的控制指示以控制前述三維雷射加工;以及 加工處理部,係依據來自前述控制部的控制指示, 進行前述工件的三維雷射加工。 7. —種雷射加工系統,係藉由照射雷射進行工件的三維雷 射加工的雷射加工系統,具備有: 喷嘴角度計算部,係計算出在於前述工件上所設定 的加工位置的前述工件的面方向與前述加工頭件的加 工喷嘴方向所形成的角度; 移動速度設定部,係依據所計算出的前述角度就每 一前述加工位置設定相應於在前述加工位置之前述角 度之前述加工頭件的移動速度;以及 控制部,按照所設定的前述移動速度輸出給前述工 件的控制指示以控制前述三維雷射加工。 23 322051201111086 VII 1. The scope of application for patents: A type of processing control device is controlled by the three-station fixed part of the 射 帝 一 一 雷 雷 雷 雷 加 加 加 加 控 ' ' ' ' The angle of the surface of the workpiece on the workpiece and the angle of the processing spray (4) of the processing head member are set corresponding to the degree of each of the processing positions: the moving speed of the processing head member at the angle of the working position The control π is to output a control instruction to the workpiece in accordance with the set moving speed to control the three-dimensional laser processing. 2. The processing control device according to the application of the first aspect of the invention, wherein the moving speed setting unit sets the moving speed based on an angle calculated using a surface direction of the workpiece and a machining nozzle direction. The processing control device according to the first aspect of the invention, wherein the moving speed setting unit calculates the angle using the surface direction of the workpiece and the processing nozzle direction, and sets the moving speed in accordance with the calculated angle. The processing control agricultural setting device according to any one of the first to third aspects of the patent application, wherein the moving speed setting unit is configured according to the correspondence relationship with the angle and the moving speed, and the setting corresponds to The moving speed of the aforementioned machining head member of the angle is described. 5. The processing control according to any one of claims 1 to 3, wherein the moving speed setting unit calculates the moving speed using a predetermined calculation formula for the angle described above, and Calculation result 22 322051 201111086 Set to the aforementioned moving speed. 6. A laser processing apparatus which is a laser processing apparatus for performing three-dimensional laser beam processing of a workpiece by irradiating a laser, comprising: a moving speed setting unit based on a processing position set on the workpiece And an angle formed by the surface direction of the workpiece and the processing nozzle direction of the processing head member, and the moving speed of the processing head member corresponding to the aforementioned angle at the processing position is set for each of the processing positions; The set moving speed is output to the control instruction of the workpiece to control the three-dimensional laser processing; and the processing unit performs three-dimensional laser processing of the workpiece in accordance with a control instruction from the control unit. 7. A laser processing system which is a laser processing system for performing three-dimensional laser processing of a workpiece by irradiating a laser, comprising: a nozzle angle calculating unit that calculates the aforementioned processing position set on the workpiece An angle formed by a surface direction of the workpiece and a processing nozzle direction of the processing head; the moving speed setting unit sets the aforementioned processing corresponding to the aforementioned angle at the processing position for each of the processing positions according to the calculated angle a moving speed of the head piece; and a control unit that outputs a control instruction to the workpiece in accordance with the set moving speed to control the three-dimensional laser processing. 23 322051
TW099117366A 2009-09-28 2010-05-31 Process control device, laser processing apparatus, and laser processing system TW201111086A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009222698A JP5219974B2 (en) 2009-09-28 2009-09-28 Processing control device, laser processing device and laser processing system

Publications (1)

Publication Number Publication Date
TW201111086A true TW201111086A (en) 2011-04-01

Family

ID=43886525

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099117366A TW201111086A (en) 2009-09-28 2010-05-31 Process control device, laser processing apparatus, and laser processing system

Country Status (3)

Country Link
JP (1) JP5219974B2 (en)
CN (1) CN102033511B (en)
TW (1) TW201111086A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102837130A (en) * 2011-06-24 2012-12-26 太航常青汽车安全设备(苏州)有限公司 Weakened laser machining equipment
CN105531073B (en) * 2013-06-28 2018-08-28 通快激光与系统工程有限公司 The control device of the adjusting apparatus of method and process gas supply for being machined, particularly for mechanical welding processing
JP5941108B2 (en) * 2014-08-27 2016-06-29 ファナック株式会社 Laser processing equipment with high-speed positioning function
JP6636753B2 (en) * 2015-09-03 2020-01-29 ファナック株式会社 Numerical control device capable of controlling machining conditions by posture
DE102016000184A1 (en) 2016-01-11 2017-07-27 Zwiesel Kristallglas Ag Laserfilamentieren
JP6487413B2 (en) 2016-12-22 2019-03-20 ファナック株式会社 Laser processing head and laser processing system including the same
KR102108403B1 (en) * 2017-04-14 2020-05-26 (주)비슬로 Multi-axis Laser Manufacturing Machine
CN108247361A (en) * 2018-03-22 2018-07-06 中山市溢丰达机械设备有限公司 Section bar oral area shape surveys number process equipment
JP7245056B2 (en) * 2019-01-16 2023-03-23 三菱電機株式会社 Machining head device
JP7113201B1 (en) * 2020-12-22 2022-08-05 パナソニックIpマネジメント株式会社 LASER PROCESSING APPARATUS AND METHOD FOR ADJUSTING THE FOCUS POSITION OF LASER LIGHT USING THE SAME
CN113500298B (en) * 2021-07-21 2023-03-24 哈尔滨工业大学 Laser ablation processing device and method for micro-texture on surface of curved surface workpiece

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2518898B2 (en) * 1988-08-30 1996-07-31 松下電器産業株式会社 Numerical control device for laser processing machine
JP2603873B2 (en) * 1989-01-09 1997-04-23 三菱電機株式会社 Laser processing machine and laser processing method
JP3424130B2 (en) * 1991-07-30 2003-07-07 豊田工機株式会社 Laser processing machine
DE10085159B4 (en) * 2000-05-19 2008-09-11 Mitsubishi Denki K.K. Control device for a three-dimensional laser processing machine
JP2004314137A (en) * 2003-04-17 2004-11-11 Fanuc Ltd Laser beam machining robot
JP4805123B2 (en) * 2006-12-22 2011-11-02 日酸Tanaka株式会社 Torch groove angle control method and torch groove angle control device
CN101480760A (en) * 2008-01-10 2009-07-15 中国科学院力学研究所 Laser welding method of turbine disc and rotating shaft
JP2009166075A (en) * 2008-01-15 2009-07-30 Fanuc Ltd Numerical control apparatus for controlling laser beam machine
CN101474724B (en) * 2009-01-06 2013-02-27 深圳市大族激光科技股份有限公司 Laser cutting method for angle of rotation

Also Published As

Publication number Publication date
CN102033511A (en) 2011-04-27
JP5219974B2 (en) 2013-06-26
CN102033511B (en) 2013-06-26
JP2011067858A (en) 2011-04-07

Similar Documents

Publication Publication Date Title
TW201111086A (en) Process control device, laser processing apparatus, and laser processing system
US9031688B2 (en) Nesting data generation device and nesting data generation method
US10286645B2 (en) Three-dimensional printing apparatus and method for compensating coordinate offset between nozzles thereof
JP4959028B1 (en) Error measuring apparatus and error measuring method
ES2705730T3 (en) Tracing beam toolpaths for 3D composite contours using machining path surfaces to maintain a single solid representation of objects
JP6112693B1 (en) Additive manufacturing equipment
US10732604B2 (en) System and method for virtually calibrating a computer numeric controlled machine to compensate for surface distortions
JP2012221001A (en) Correction value operation method and program of machine tool
JP2003150219A (en) Simulation device for work machine
JP2009175954A (en) Generating device of processing robot program
JP2012164306A (en) Numerical control device of five-axis control processing machine, numerical control method, program, die, and molding
JP2017071011A (en) Method for identification of geometric error in mechanical structure and numerical control method with use of geometric error identification method, numerical control device and machining center
JP2014075031A (en) Geometrical error identification method and numerical control method, numerical control device, and machining center using the same
JP2015194929A (en) Control method of machine tool, and control device
JP2008044033A (en) Wire electric discharge machine and wire discharge machining method
CN106959667A (en) A kind of lathe translation shaft error of perpendicularity modeling method
JP2008268118A (en) Method and device for measuring shape
JP2014238782A (en) Control method of machine tool
JP2017091429A (en) NC program creation device
JP2015222196A (en) Three dimensional measuring machine and method for measuring shape using the same
WO2021206172A1 (en) Machining method
JP2015133073A (en) Control method for machine tool
TWI548537B (en) Three dimensional printer and method for adjusting working coordinate of platform thereof
CN107921632B (en) Processing trajectory editing device, robot, article processing system, and article manufacturing method
JP2021076892A (en) Numerical control device