TWI548537B - Three dimensional printer and method for adjusting working coordinate of platform thereof - Google Patents

Three dimensional printer and method for adjusting working coordinate of platform thereof Download PDF

Info

Publication number
TWI548537B
TWI548537B TW102140700A TW102140700A TWI548537B TW I548537 B TWI548537 B TW I548537B TW 102140700 A TW102140700 A TW 102140700A TW 102140700 A TW102140700 A TW 102140700A TW I548537 B TWI548537 B TW I548537B
Authority
TW
Taiwan
Prior art keywords
platform
contact
calibration points
calibration
bearing surface
Prior art date
Application number
TW102140700A
Other languages
Chinese (zh)
Other versions
TW201507876A (en
Inventor
丁士哲
李洋得
何況
Original Assignee
三緯國際立體列印科技股份有限公司
金寶電子工業股份有限公司
泰金寶電通股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三緯國際立體列印科技股份有限公司, 金寶電子工業股份有限公司, 泰金寶電通股份有限公司 filed Critical 三緯國際立體列印科技股份有限公司
Priority to CN201410017074.6A priority Critical patent/CN104416905B/en
Priority to US14/178,273 priority patent/US9731452B2/en
Publication of TW201507876A publication Critical patent/TW201507876A/en
Application granted granted Critical
Publication of TWI548537B publication Critical patent/TWI548537B/en

Links

Description

立體列印裝置及其平台的工作座標的校正方法 Method for correcting working coordinates of three-dimensional printing device and platform thereof

本發明是有關於一種列印裝置及平台的工作座標的校正方法,且特別是有關於一種立體列印裝置及其平台的工作座標的校正方法。 The present invention relates to a method of correcting the working coordinates of a printing device and a platform, and more particularly to a method for correcting the working coordinates of a three-dimensional printing device and its platform.

隨著電腦輔助製造(Computer-Aided Manufacturing,CAM)的進步,製造業發展了立體列印技術,能很迅速的將設計原始構想製造出來。立體列印技術實際上是一系列快速原型成型(Rapid Prototyping,RP)技術的統稱,其基本原理都是疊層製造,由快速原型機在X-Y平面內通過掃描形式形成工件的截面形狀,而在Z座標間斷地作層面厚度的位移,最終形成立體物體。立體列印技術能無限制幾何形狀,而且越複雜的零件越顯示RP技術的卓越性,更可大大地節省人力與加工時間,在時間最短的要求下,將3D電腦輔助設計(Computer-Aided Design,CAD)軟體所設計的數位立體模型真實地呈現出來,不但摸得到,亦可真實地感受 得到它的幾何曲線,更可以試驗零件的裝配性、甚至進行可能的功能試驗。 With the advancement of Computer-Aided Manufacturing (CAM), the manufacturing industry has developed a three-dimensional printing technology that can quickly create the original design concept. The three-dimensional printing technology is actually a series of rapid prototyping (RP) technology. The basic principle is that the laminate is manufactured by the rapid prototyping machine to form the cross-sectional shape of the workpiece by scanning in the XY plane. The Z coordinate is intermittently displaced as a layer thickness, eventually forming a solid object. Three-dimensional printing technology can limit the geometry, and the more complex parts show the superiority of RP technology, which can greatly save manpower and processing time. In the shortest time, 3D computer aided design (Computer-Aided Design) , CAD) software designed by the digital three-dimensional model is truly presented, not only touched, but also real feeling Get its geometric curve, you can test the assembly of the parts, and even perform possible functional tests.

一般而言,目前利用上述快速成型法形成立體物品的立體列印裝置,多是透過讀取一數位立體模型來據此建造關聯於此數位立體模型的立體物體。然而,立體列印裝置中用以承載建造基材的平台易隨著時間而相較於水平面逐漸產生偏斜,而數位立體模型的座標卻未隨之改變,使列印頭仍舊依據原來的平面座標於平台上堆疊建造基材,導致列印出來的立體物體與實際預期產生落差,因而降低立體列印裝置的列印品質及列印良率。 In general, a three-dimensional printing apparatus for forming a three-dimensional article by the above rapid prototyping method is generally constructed by reading a digital stereo model to construct a solid object associated with the digital stereo model. However, the platform for carrying the built substrate in the three-dimensional printing device tends to be gradually skewed with respect to the horizontal plane over time, while the coordinates of the digital stereo model are not changed, so that the print head is still in accordance with the original plane. Coordinates are stacked on the platform to build the substrate, resulting in a printed solid object that is expected to drop, thus reducing the print quality and print yield of the three-dimensional printing device.

本發明提供一種立體列印裝置及其平台的工作座標的校正方法,其無需手動調整平台的位置即可校正平台偏斜的問題。 The invention provides a method for correcting a working coordinate of a three-dimensional printing device and a platform thereof, which can correct the problem of platform skew without manually adjusting the position of the platform.

本發明的一種立體列印裝置包括一平台、一列印頭及一控制單元。平台包括一承載面以及多個位於承載面上的校位點。列印頭設置於平台上方並經配置以沿著一基準面移動及沿著基準面的一法線方向移動。控制單元控制列印頭分別自基準面往平台移動至與校位點接觸,以得到各校位點對應於基準面的一平面座標以及各校位點至基準面的一最短距離,並依據平面座標以及最短距離得到承載面對應於基準面的一座標補償值,並依據座標補償值校正一數位立體模型資訊的一模型座標。控制單元依據校正後的模型座標移動列印頭以列印出關聯於數位立體模型資訊的一 立體物體於承載面上。 A three-dimensional printing device of the present invention includes a platform, a print head and a control unit. The platform includes a bearing surface and a plurality of calibration points on the bearing surface. The print head is disposed above the platform and configured to move along a reference plane and along a normal to the reference plane. The control unit controls the print head to move from the reference plane to the platform to contact with the calibration point, so as to obtain a plane coordinate of each calibration point corresponding to the reference plane and a shortest distance from each calibration point to the reference plane, and according to the plane The coordinate and the shortest distance obtain a standard compensation value of the bearing surface corresponding to the reference surface, and correct a model coordinate of the digital stereo model information according to the coordinate compensation value. The control unit moves the print head according to the corrected model coordinates to print one of the information associated with the digital stereo model The solid object is on the bearing surface.

本發明的一種平台的工作座標的校正方法,適用於包括一承載面以及多個校位點的一平台。校位點位於承載面上。上述方法包括下列步驟。首先,控制一移動件分別自一基準面往承載面移動至與校位點接觸。接著,計算各校位點對應於基準面的一平面座標以及各校位點至基準面的一最短距離,並依據平面座標以及最短距離得到承載面對應於基準面的一座標補償值。接著,依據座標補償值校正平台欲執行的一工作的一工作座標。 The method for correcting the working coordinates of a platform of the present invention is applicable to a platform including a bearing surface and a plurality of calibration points. The school site is located on the bearing surface. The above method includes the following steps. First, a moving member is controlled to move from a reference surface to a bearing surface to contact with a calibration point. Then, a plane coordinate corresponding to the reference plane and a shortest distance from each calibration point to the reference plane are calculated, and a target compensation value of the bearing surface corresponding to the reference plane is obtained according to the plane coordinate and the shortest distance. Then, a working coordinate of a job to be executed by the platform is corrected according to the coordinate compensation value.

基於上述,本發明的立體列印裝置適於在執行列印任務前,先控制其列印頭自一基準面分別往平台移動至與平台上的多個校位點接觸,以得到平台的承載面對應於此基準面的一座標補償值,再依據此座標補償值來校正一數位立體模型資訊的一模型座標,以依據校正後的模型座標移動列印頭以列印出關聯於此數位立體模型資訊的立體物體。如此,即可使列印頭能依據校正後的模型座標而移位至正確的工作點上,而不會因平台的偏斜而影響立體物體的列印良率以及列印精準度。換句話說,本發明是透過計算承載面對應於基準面的座標補償值來據此調整數位立體模型資訊的模型座標,以對平台的偏斜進行補償。 Based on the above, the three-dimensional printing device of the present invention is adapted to control the print head to move from a reference plane to a plurality of calibration points on the platform before the print job is performed to obtain the load of the platform. The surface corresponds to a standard compensation value of the reference surface, and then a model coordinate of the digital stereo model information is corrected according to the coordinate compensation value, so as to move the printing head according to the corrected model coordinates to print the digital stereo associated with the digital image. A three-dimensional object of model information. In this way, the print head can be shifted to the correct working point according to the corrected model coordinates without affecting the printing yield and printing accuracy of the solid object due to the deflection of the platform. In other words, the present invention adjusts the model coordinates of the digital stereo model information by calculating the coordinate compensation value of the bearing surface corresponding to the reference surface to compensate for the skew of the platform.

除此之外,本發明更衍生出一種平台的工作座標的校正方法,其可在執行工作前先控制一移動件自一基準面分別往平台移動至與平台上的多個校位點接觸,以得到平台的承載面對應於此基準面的一座標補償值,再依據此座標補償值來校正此平台欲 執行的工作的一工作座標。如此,本發明的校正方法無需手動調整平台的水平,即可使移動件能依據校正後的模型座標而移位至正確的工作點上執行工作,而不會因平台的偏斜而影響工作的執行良率以及執行精準度。如此,本發明無需透過手動調整平台的水平,即可達到校正平台的偏斜的效果。 In addition, the present invention further derives a method for correcting the working coordinates of the platform, which can control a moving part to move from a reference plane to the platform to contact with a plurality of calibration points on the platform before performing the work. Obtaining a standard compensation value corresponding to the reference surface of the platform, and correcting the platform according to the coordinate compensation value A working coordinate of the work performed. In this way, the calibration method of the present invention can manually shift the work piece to the correct working point according to the corrected model coordinates without manually adjusting the level of the platform, without affecting the work due to the deflection of the platform. Execution yield and execution accuracy. Thus, the present invention can achieve the effect of correcting the deflection of the platform without manually adjusting the level of the platform.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100‧‧‧立體列印裝置 100‧‧‧Three-dimensional printing device

110‧‧‧平台 110‧‧‧ platform

112‧‧‧承載面 112‧‧‧ bearing surface

114a、114b、114c‧‧‧校位點 114a, 114b, 114c‧‧‧ school sites

114d、114e、114f‧‧‧校位點/金屬墊片 114d, 114e, 114f‧‧‧ school location / metal gasket

120‧‧‧列印頭、移動件 120‧‧‧Print heads, moving parts

122‧‧‧金屬噴嘴 122‧‧‧Metal nozzle

124‧‧‧電源 124‧‧‧Power supply

126‧‧‧金屬校位探針 126‧‧‧Metal calibration probe

130‧‧‧控制單元 130‧‧‧Control unit

200‧‧‧電腦主機 200‧‧‧Computer host

D1、D2、D3、D4、D5、D6‧‧‧最短距離 D1, D2, D3, D4, D5, D6‧‧‧ shortest distance

h1‧‧‧高度差 H1‧‧‧ height difference

N1‧‧‧法線方向 N1‧‧‧ normal direction

PL‧‧‧基準面 P L ‧‧‧ datum

圖1是依照本發明的一實施例的一種立體列印裝置的工作情境的方塊示意圖。 1 is a block diagram showing the working environment of a three-dimensional printing apparatus according to an embodiment of the invention.

圖2是依照本發明的一實施例的一種立體列印裝置的方塊示意圖。 2 is a block diagram of a three-dimensional printing apparatus in accordance with an embodiment of the present invention.

圖3A是依照本發明的一實施例的一種立體列印裝置的示意圖。 3A is a schematic diagram of a three-dimensional printing apparatus in accordance with an embodiment of the present invention.

圖3B是依照本發明的另一實施例的一種立體列印裝置的示意圖。 3B is a schematic diagram of a three-dimensional printing apparatus in accordance with another embodiment of the present invention.

圖4是圖3B的立體列印裝置之列印頭的示意圖。 4 is a schematic view of the print head of the three-dimensional printing apparatus of FIG. 3B.

圖5是圖4的列印頭與校位點接觸的示意圖。 Figure 5 is a schematic illustration of the print head of Figure 4 in contact with a school point.

圖6是圖4的列印頭的局部放大示意圖。 Figure 6 is a partially enlarged schematic view of the print head of Figure 4;

圖7是依照本發明的一實施例的一種平台的工作座標的校正 方法的流程示意圖。 Figure 7 is a calibration of the working coordinates of a platform in accordance with an embodiment of the present invention. Schematic diagram of the process.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之各實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如:「上」、「下」、「前」、「後」、「左」、「右」等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明,而並非用來限制本發明。並且,在下列各實施例中,相同或相似的元件將採用相同或相似的標號。 The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the embodiments of the invention. The directional terms mentioned in the following embodiments, such as "upper", "lower", "front", "back", "left", "right", etc., are only directions referring to the additional schema. Therefore, the directional terminology used is for the purpose of illustration and not limitation. Also, in the following embodiments, the same or similar elements will be given the same or similar reference numerals.

圖1是依照本發明的一實施例的一種立體列印裝置的工作情境的方塊示意圖。請參照圖1,本實施例的立體列印裝置100適於依據一數位立體模型資訊列印出一立體物體。在本實施例中,數位立體模型資訊可為一立體數位圖像檔案,其可例如由一電腦主機200透過電腦輔助設計(computer-aided design,CAD)或動畫建模軟體等建構而成,並將此數位立體模型資訊切割為多個橫截面資訊,使立體列印裝置100可依據此數位立體模型資訊的橫截面資訊依序製作出多個的立體截面層,所述立體截面層堆疊而形成立體物體。 1 is a block diagram showing the working environment of a three-dimensional printing apparatus according to an embodiment of the invention. Referring to FIG. 1, the three-dimensional printing apparatus 100 of the present embodiment is adapted to print a solid object according to a digital stereo model information. In this embodiment, the digital stereo model information may be a stereo digital image file, which may be constructed, for example, by a computer host 200 through computer-aided design (CAD) or animation modeling software. Cutting the digital stereo model information into a plurality of cross-sectional information, so that the three-dimensional printing device 100 can sequentially create a plurality of three-dimensional cross-section layers according to the cross-sectional information of the digital stereo model information, and the three-dimensional cross-sectional layers are stacked to form Three-dimensional object.

圖2是依照本發明的一實施例的一種立體列印裝置的方塊示意圖。圖3A是依照本發明的一實施例的一種立體列印裝置的示意圖。請同時參照圖2以及圖3A,在本實施例中,立體列印裝置100包括一平台110、一列印頭120及一控制單元130。平台110 包括一承載面112以及位於承載面112上的多個校位點114a、114b、114c。列印頭120設置於平台110上方並經配置以沿著一基準面PL移動,以及沿著基準面PL的一法線方向N1移動。控制單元130分別耦接平台110以及列印頭120,並控制列印頭120分別自基準面PL對應於校位點114a、114b、114c的位置(如圖3A中基準面PL上的虛線圓圈所示的位置)沿著法線方向N1往平台110移動至與校位點114a、114b、114c接觸,以得到校位點114a、114b、114c對應於基準面PL的平面座標以及校位點114a、114b、114c至基準面PL的最短距離D1、D2、D3。 2 is a block diagram of a three-dimensional printing apparatus in accordance with an embodiment of the present invention. 3A is a schematic diagram of a three-dimensional printing apparatus in accordance with an embodiment of the present invention. Referring to FIG. 2 and FIG. 3A , in the embodiment, the three-dimensional printing apparatus 100 includes a platform 110 , a print head 120 , and a control unit 130 . The platform 110 includes a load bearing surface 112 and a plurality of calibration points 114a, 114b, 114c on the load bearing surface 112. The print head 120 is disposed above the platform 110 and configured to move along a reference plane P L and along a normal direction N1 of the reference plane P L . The control unit 130 is coupled to the platform 110 and the print head 120, respectively, and controls the position of the print head 120 corresponding to the calibration points 114a, 114b, 114c from the reference plane P L respectively (such as the dotted line on the reference plane P L in FIG. 3A). The position shown by the circle moves along the normal direction N1 toward the platform 110 to contact with the calibration points 114a, 114b, 114c to obtain the plane coordinates and the calibration position of the calibration points 114a, 114b, 114c corresponding to the reference plane P L . The shortest distances D1, D2, D3 of the points 114a, 114b, 114c to the reference plane P L .

詳細來說,控制單元130可例如先控制列印頭120位移至基準面PL上對應於校位點114a的位置,再控制列印頭120沿著法線方向N1往平台110移動至與校位點114a接觸,以得到校位點114a對應於基準面PL的平面座標以及校位點114a至基準面PL的最短距離D1。接著,控制單元130再例如控制列印頭120位移至基準面PL上對應於校位點114b的位置,再沿著法線方向N1往平台110移動至與校位點114b接觸,以得到校位點114b對應於基準面PL的平面座標以及校位點114b至基準面PL的最短距離D2。之後,控制單元130再例如控制列印頭120位移至基準面PL上對應於校位點114c的位置,再沿著法線方向N1往平台110移動至與校位點114c接觸,以得到校位點114c對應於基準面PL的平面座標以及校位點114c至基準面PL的最短距離D3。在此須說明的是,在本實施例中,校位點114a、114b、114c的數量為三個, 以便於利用三點定義出一平面。然任何所屬技術領域中具有通常知識者皆可依實際需求於平台110上設置所需數量的校位點,本發明並不對校位點的數量做限制。 In detail, the control unit 130 may, for example, first control the displacement of the print head 120 to the position corresponding to the calibration point 114a on the reference plane P L , and then control the print head 120 to move to the platform 110 along the normal direction N1 to the school. contacting sites 114a, 114a to obtain a correction corresponding to the site of the reference plane P L on plane coordinates and the correction site 114a to the reference plane P L is the shortest distance D1. Then, the control unit 130, for example, controls the displacement of the print head 120 to the position corresponding to the calibration point 114b on the reference plane P L , and then moves to the platform 110 along the normal direction N1 to contact with the calibration point 114b to obtain the calibration. site 114b corresponding to the reference plane and the coordinate plane P L correction site 114b to the reference plane P L is the shortest distance D2. Thereafter, the control unit 130 further controls, for example, the displacement of the print head 120 to the position corresponding to the calibration point 114c on the reference plane P L , and then moves to the platform 110 along the normal direction N1 to contact with the calibration point 114c to obtain the calibration. site 114c corresponding to the reference plane P L and a correction coordinate plane 114c site plane P L to the shortest distance D3. It should be noted that in the present embodiment, the number of school points 114a, 114b, and 114c is three, so that a plane is defined by using three points. However, any person having ordinary skill in the art can set a required number of calibration points on the platform 110 according to actual needs, and the present invention does not limit the number of school points.

之後,控制單元130再依據前述步驟所得到的平面座標以及最短距離D1、D2、D3而得到承載面112對應於基準面PL的一座標補償值(coordinate offset),也就是承載面112的平面座標相對於基準面PL的平面座標的偏斜補償值。如此,控制單元130便可依據此座標補償值來校正前述的數位立體模型資訊的一模型座標,再依據校正後的模型座標移動列印頭120以列印出關聯於此數位立體模型資訊的立體物體於承載面112上。如此,即可使列印頭120能依據校正後的模型座標而移位至正確的工作點上,而不會因平台110的偏斜而影響立體物體的列印良率以及列印精準度。換句話說,本實施例依據承載面112對應於基準面PL的座標補償值來對數位立體模型資訊的模型座標進行補償,以透過調整數位立體模型資訊的模型座標來對平台110的偏斜進行補償。如此,本實施例則無需透過手動調整平台110的水平,即可達到校正平台110的偏斜的效果。 Then, the control unit 130 further obtains a coordinate offset of the bearing surface 112 corresponding to the reference plane P L according to the plane coordinates obtained by the foregoing steps and the shortest distances D1, D2, and D3, that is, the plane of the bearing surface 112. The skew compensation value of the coordinates relative to the plane coordinates of the reference plane P L . In this manner, the control unit 130 can correct a model coordinate of the digital stereo model information according to the coordinate compensation value, and then move the print head 120 according to the corrected model coordinates to print the three-dimensional model information associated with the digital stereo model information. The object is on the carrying surface 112. In this way, the print head 120 can be displaced to the correct working point according to the corrected model coordinates without affecting the print yield and print accuracy of the solid object due to the deflection of the platform 110. In other words, the present embodiment compensates the model coordinates of the digital stereo model information according to the coordinate compensation value of the bearing surface 112 corresponding to the reference plane P L to deflect the platform 110 by adjusting the model coordinates of the digital stereo model information. Make compensation. Thus, in this embodiment, the effect of correcting the skew of the platform 110 can be achieved without manually adjusting the level of the platform 110.

此外,在本實施例中,列印頭120與各校位點114a、114b、114c適於在接觸時彼此電性導通。舉例來說,各校位點114a、114b、114c可為一金屬校位點,亦即,位於承載面112上的校位點114a、114b、114c的材質為金屬。又或者,在本發明的另一實施例中,平台110本身即為一金屬平台,而列印頭120則可包括 一金屬噴嘴122,其耦接至一電源124。當列印頭120自基準面PL往平台110移動時,控制單元130開啟電源124,以使列印頭120在與各校位點114a、114b、114c接觸時彼此電性導通並據此產生一接觸訊號,控制單元130適於接收此接觸訊號並依據此接觸訊號對列印頭120進行定位,以得到其校位點114a、114b、114c對應於基準面PL的平面座標以及校位點114a、114b、114c至基準面PL的最短距離D1、D2、D3。 Further, in the present embodiment, the print head 120 and each of the calibration points 114a, 114b, 114c are adapted to be electrically conductive to each other upon contact. For example, each of the school sites 114a, 114b, and 114c may be a metal calibration site, that is, the school sites 114a, 114b, and 114c on the carrier surface 112 are made of metal. Alternatively, in another embodiment of the present invention, the platform 110 itself is a metal platform, and the print head 120 may include a metal nozzle 122 coupled to a power source 124. When the print head 120 moves from the reference plane P L to the platform 110, the control unit 130 turns on the power source 124 to electrically connect the print heads 120 to each other when they are in contact with the calibration points 114a, 114b, 114c. a contact signal, the control unit 130 is adapted to receive the contact signal and position the print head 120 according to the contact signal to obtain a plane coordinate and a school point of the calibration point 114a, 114b, 114c corresponding to the reference plane P L The shortest distances D1, D2, D3 of 114a, 114b, 114c to the reference plane P L .

圖3B是依照本發明的另一實施例的一種立體列印裝置的示意圖。圖4是圖3B的立體列印裝置之列印頭的示意圖。圖5是圖4的列印頭與校位點接觸的示意圖。在此必須說明的是,本實施例之立體列印裝置與圖3A所示之立體列印裝置相似,因此,本實施例沿用前述實施例的元件標號與部分內容,其中採用相同的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,本實施例不再重複贅述。以下將針對本實施例與前述實施例的差異做說明。 3B is a schematic diagram of a three-dimensional printing apparatus in accordance with another embodiment of the present invention. 4 is a schematic view of the print head of the three-dimensional printing apparatus of FIG. 3B. Figure 5 is a schematic illustration of the print head of Figure 4 in contact with a school point. It should be noted that the three-dimensional printing device of the present embodiment is similar to the three-dimensional printing device shown in FIG. 3A. Therefore, the present embodiment uses the component numbers and parts of the foregoing embodiments, wherein the same reference numerals are used. The same or similar elements, and the description of the same technical content is omitted. For the description of the omitted part, reference may be made to the foregoing embodiment, and the description is not repeated herein. The differences between the present embodiment and the foregoing embodiments will be described below.

請參照圖3B至圖5,在本實施例中,校位點114d、114e、114f可為如圖3B所示的多個金屬墊片114d、114e、114f,其分別夾持於平台110並位於承載面112上,金屬墊片114d、114e、114f的一頂面如圖3所示高於承載面112。在此情形下,平台110可為一玻璃平台或是其他絕緣材質的平台,當然,本發明並不以此為限。列印頭120如圖4所示包括一金屬噴嘴122以及一金屬校位探針126。金屬校位探針126可耦接至電源124。當控制單元130 控制列印頭120分別自基準面PL對應於校位點114d、114e、114f的位置沿著法線方向N1往平台110移動時,控制單元130開啟電源124,以使金屬校位探針126在與各校位點114d、114e、114f接觸時彼此電性導通並據此產生接觸訊號,控制單元130則接收此接觸訊號並依據此接觸訊號對金屬校位探針126進行定位,以得到其校位點114d、114e、114f對應於基準面PL的平面座標以及校位點114d、114e、114f至基準面PL的最短距離D4、D5、D6。 Referring to FIG. 3B to FIG. 5, in the embodiment, the calibration points 114d, 114e, and 114f may be a plurality of metal spacers 114d, 114e, and 114f as shown in FIG. 3B, which are respectively clamped on the platform 110 and located. On the bearing surface 112, a top surface of the metal spacers 114d, 114e, 114f is higher than the bearing surface 112 as shown in FIG. In this case, the platform 110 can be a glass platform or a platform of other insulating materials. Of course, the invention is not limited thereto. The print head 120 includes a metal nozzle 122 and a metal calibration probe 126 as shown in FIG. The metal calibration probe 126 can be coupled to the power source 124. When the control unit 130 controls the print head 120 to move from the reference plane P L to the platform 110 along the normal direction N1 from the position of the calibration points 114d, 114e, 114f, respectively, the control unit 130 turns on the power source 124 to make the metal school The position probe 126 is electrically connected to each other when in contact with the calibration points 114d, 114e, and 114f, and generates a contact signal according to the position, and the control unit 130 receives the contact signal and positions the metal calibration probe 126 according to the contact signal. to obtain the correction which sites 114d, 114e, 114f corresponding to the reference plane P L and a correction coordinate plane sites 114d, 114e, 114f to the reference plane P L is the shortest distance D4, D5, D6.

圖6是圖4的列印頭的局部放大示意圖。請參照圖5以及圖6,在本實施例中,金屬校位探針126設置於金屬噴嘴122的周圍,且金屬校位探針126的校位頂點與金屬噴嘴122的噴嘴頂點之間具有一高度差h1,使金屬校位探針126與金屬噴嘴122在進行各自的工作時不會彼此干擾。也就是說,當立體列印裝置在進行平台110的水平校正時,是利用列印頭120的金屬校位探針126進行校位,而在進行列印工作時,則是利用列印頭120的金屬噴嘴122將熱熔性材料擠出而成型於承載面112上,以列印出立體物體。當列印頭120自基準面PL往平台110移動以與各校位點114d、114e、114f接觸時,金屬噴嘴122不會碰觸到承載面112而干擾平台110的校位,而當金屬噴嘴122在列印立體物體時,金屬校位探針126也不會接觸到承載面112而干擾立體列印工作的進行。 Figure 6 is a partially enlarged schematic view of the print head of Figure 4; Referring to FIG. 5 and FIG. 6 , in the embodiment, the metal calibration probe 126 is disposed around the metal nozzle 122 , and the apex of the metal calibration probe 126 and the nozzle apex of the metal nozzle 122 have a The height difference h1 causes the metal calibration probe 126 and the metal nozzle 122 to not interfere with each other while performing their respective operations. That is to say, when the three-dimensional printing device performs the horizontal correction of the platform 110, the metal calibration probe 126 of the printing head 120 is used for the calibration, and when the printing operation is performed, the printing head 120 is utilized. The metal nozzle 122 extrudes the hot melt material and forms it on the bearing surface 112 to print a solid object. When the print head 120 moves from the reference plane P L to the platform 110 to contact the calibration points 114d, 114e, 114f, the metal nozzle 122 does not touch the bearing surface 112 and interferes with the calibration of the platform 110, and when the metal When the nozzle 122 prints a solid object, the metal calibration probe 126 does not contact the carrier surface 112 and interferes with the progress of the three-dimensional printing operation.

圖7是依照本發明的一實施例的一種平台的工作座標的校正方法的流程示意圖。依據前一實施例所述的立體列印裝置100 可衍生出一種平台的工作座標的校正方法,本實施例的校正方法可適用於一平台110,其可具有一承載面112以及多個校位點,且校位點可為如圖3A所示的位於承載面112上的金屬校位點114a、114b、114c,亦可為如圖3B所示的多個金屬墊片114d、114e、114f,其分別夾持於平台110並位於承載面112上,金屬墊片114d、114e、114f的頂面如圖3所示高於承載面112。在此需說明的是,本實施例的校正方法所適用的平台110可為如圖3A以及圖3B所示的立體列印裝置100的平台110,亦可為任意一待校正其承載面112的水平程度的平台。在本實施例中,相同或相似的元件將採用相同的標號標示。 FIG. 7 is a schematic flow chart of a method for correcting a working coordinate of a platform according to an embodiment of the invention. The three-dimensional printing apparatus 100 according to the previous embodiment The calibration method of the working coordinate of the platform may be derived. The calibration method of the embodiment may be applied to a platform 110, which may have a bearing surface 112 and a plurality of calibration points, and the calibration point may be as shown in FIG. 3A. The metal calibration points 114a, 114b, 114c on the bearing surface 112 may also be a plurality of metal spacers 114d, 114e, 114f as shown in FIG. 3B, which are respectively clamped on the platform 110 and located on the bearing surface 112. The top surface of the metal spacers 114d, 114e, 114f is higher than the bearing surface 112 as shown in FIG. It should be noted that the platform 110 to which the calibration method of the embodiment is applied may be the platform 110 of the three-dimensional printing apparatus 100 as shown in FIG. 3A and FIG. 3B, or any one of the bearing surfaces 112 to be corrected. The level of the platform. In the present embodiment, the same or similar elements will be designated by the same reference numerals.

本實施例的平台110的工作座標的校正方法包括下列步驟:首先,控制一移動件120分別自一基準面PL往承載面112移動至與校位點接觸(步驟S110)。具體來說,移動件120可設置於平台110上方並經配置以沿著一基準面PL移動,並適於沿著基準面PL的一法線方向N1移動。本實施例可例如透過一控制單元來控制移動件120沿著法線方向N1分別自基準面PL對應於校位點的位置往平台110移動至與校位點接觸。以圖3A的實施例為例,控制單元可例如先控制移動件120位移至基準面PL上對應於校位點114a的位置,再往靠近平台110的方向移動至與校位點114a接觸。接著,再控制移動件120位移至基準面PL上對應於校位點114b的位置再控制移動件120往平台110移動至與校位點114b接觸。之後,再控制移動件120位移至基準面PL上對應於校位點114c 的位置再控制移動件120往平台110移動至與校位點114c接觸。如此可重覆上述步驟直至移動件120自基準面PL分別往平台110移動至與各校位點接觸為止。 The method for correcting the working coordinates of the platform 110 of the present embodiment includes the following steps: First, a moving member 120 is controlled to move from a reference plane PL to the carrying surface 112 to contact with the calibration point (step S110). In particular, the moving member 120 can be disposed above the platform 110 and configured to move along a reference plane P L and adapted to move along a normal direction N1 of the reference plane P L . In this embodiment, for example, a control unit can be used to control the moving member 120 to move from the position of the reference plane P L corresponding to the calibration point to the platform 110 in the normal direction N1 to contact with the calibration point. Taking the embodiment of FIG. 3A as an example, the control unit may, for example, first control the displacement of the moving member 120 to the position corresponding to the calibration point 114a on the reference plane P L , and then move to the position close to the platform 110 to contact with the calibration point 114a. Then, the moving member 120 is controlled to be displaced to the position corresponding to the calibration point 114b on the reference plane P L , and then the moving member 120 is moved to the platform 110 to be in contact with the calibration point 114b. Thereafter, the moving member 120 is controlled to be displaced to the position corresponding to the calibration point 114c on the reference plane P L , and then the moving member 120 is moved to the platform 110 to be in contact with the calibration point 114c. The above steps can be repeated until the moving member 120 moves from the reference plane P L to the platform 110 to contact each of the calibration points.

承上述,本實施例的移動件120在與各校位點接觸時可彼此電性導通而據此產生一接觸訊號,控制單元適於接收此接觸訊號並依據此接觸訊號對移動件120進行定位。如此,即可計算校位點分別對應於基準面PL的平面座標以及校位點114a、114b、114c分別至基準面PL的最短距離D1、D2、D3,並依據上述的平面座標以及最短距離D1、D2、D3得到承載面112對應於基準面PL的一座標補償值(步驟S120)。詳細而言,控制單元可如前所述先控制移動件120位移至基準面PL上對應於校位點114a的位置並往平台110移動至與校位點114a接觸,以計算出校位點114a對應於基準面PL的平面座標以及校位點114a至基準面PL的最短距離D1。接著,再控制移動件120位移至基準面PL上對應於校位點114b的位置並控制移動件120往平台110移動至與校位點114b接觸,以計算出校位點114b對應於基準面PL的平面座標以及校位點114b至基準面PL的最短距離D2。之後,再控制移動件120位移至基準面PL上對應於校位點114c的位置並往平台110移動至與校位點114c接觸,以計算出校位點114c對應於基準面PL的平面座標以及校位點114c至基準面PL的最短距離D3。之後,再依據前述計算而得的平面座標以及最短距離D1、D2、D3而得到承載面112對應於基準面PL的一座標補償值,也就是承載面112的 平面座標相對於基準面PL的平面座標的偏斜補償值。 According to the above, the moving component 120 of the embodiment can be electrically connected to each other when in contact with each calibration point, thereby generating a contact signal, and the control unit is adapted to receive the contact signal and position the moving component 120 according to the contact signal. . Thus, the correction can be calculated sites correspond to the reference plane P L and a correction coordinate plane sites 114a, 114b, 114c respectively, to the reference plane P L is the shortest distance D1, D2, D3, and based on the above-described plane coordinates and the shortest The distances D1, D2, and D3 obtain a landmark compensation value of the bearing surface 112 corresponding to the reference plane P L (step S120). In detail, the control unit may first control the displacement of the moving member 120 to the position corresponding to the calibration point 114a on the reference plane P L and move to the platform 110 to contact with the calibration point 114a to calculate the calibration point. P L corresponding to the reference surface 114a of the coordinate plane and a correction plane site 114a to P L is the shortest distance D1. Then, the moving member 120 is controlled to be displaced to the position corresponding to the calibration point 114b on the reference plane P L and the moving member 120 is moved to the platform 110 to contact with the calibration point 114b to calculate that the calibration point 114b corresponds to the reference surface. P L and a correction coordinate plane site 114b to the reference plane P L is the shortest distance D2. Thereafter, the moving member 120 is controlled to be displaced to the position corresponding to the calibration point 114c on the reference plane P L and moved to the platform 110 to contact with the calibration point 114c to calculate the plane of the calibration point 114c corresponding to the reference plane P L . The coordinates and the shortest distance D3 from the school point 114c to the reference plane P L . Then, according to the plane coordinates obtained by the foregoing calculation and the shortest distances D1, D2, D3, the target compensation value of the bearing surface 112 corresponding to the reference plane P L is obtained, that is, the plane coordinate of the bearing surface 112 relative to the reference plane PL The offset compensation value of the plane coordinates.

接著,依據座標補償值校正平台110欲執行的工作的一工作座標(步驟S130)。也就是說,控制單元在得到承載面112的平面座標相對於基準面PL的平面座標的偏斜補償值後,可依據此座標補償值來對平台110接下來欲執行的工作的預設工作座標進行補償及校正,使移動件120能依據此校正後的工作座標而移位至正確的工作點上執行工作,而不會因平台110的偏斜而影響到欲執行的工作的執行良率以及精確度。 Next, a work coordinate of the work to be performed by the platform 110 is corrected based on the coordinate compensation value (step S130). That is to say, after the control unit obtains the skew compensation value of the plane coordinate of the bearing surface 112 with respect to the plane coordinate of the reference plane P L , the preset work of the next work to be performed by the platform 110 can be performed according to the coordinate compensation value. The coordinates are compensated and corrected so that the moving member 120 can be shifted to the correct working point according to the corrected working coordinate to perform the work without affecting the execution yield of the work to be performed due to the skew of the platform 110. And accuracy.

綜上所述,本發明的立體列印裝置適於依據一數位立體模型資訊列印一立體物體,而立體列印裝置在執行列印任務前會先控制其列印頭自一基準面分別往平台移動至與平台上的多個校位點接觸,以得到平台的承載面對應於此基準面的一座標補償值,再依據此座標補償值來校正上述的數位立體模型資訊的一模型座標,以依據校正後的模型座標移動列印頭以列印出立體物體於承載面上。如此,即可使列印頭能依據校正後的模型座標而移位至正確的工作點上,而不會因平台的偏斜而影響立體物體的列印良率以及列印精準度。換句話說,本發明是透過計算承載面對應於基準面的座標補償值來據此調整數位立體模型資訊的模型座標,以對平台的偏斜進行補償。如此,本發明無需透過手動調整平台的水平,即可達到校正平台的偏斜的效果。 In summary, the three-dimensional printing device of the present invention is adapted to print a three-dimensional object according to a digital stereo model information, and the three-dimensional printing device controls the print head from a reference surface before performing the printing task. The platform moves to contact with a plurality of calibration points on the platform to obtain a standard compensation value corresponding to the reference surface of the platform, and then corrects a model coordinate of the digital stereo model information according to the coordinate compensation value. The print head is moved according to the corrected model coordinates to print a solid object on the bearing surface. In this way, the print head can be shifted to the correct working point according to the corrected model coordinates without affecting the printing yield and printing accuracy of the solid object due to the deflection of the platform. In other words, the present invention adjusts the model coordinates of the digital stereo model information by calculating the coordinate compensation value of the bearing surface corresponding to the reference surface to compensate for the skew of the platform. Thus, the present invention can achieve the effect of correcting the deflection of the platform without manually adjusting the level of the platform.

此外,本發明更衍生出一種平台的工作座標的校正方法,其可在執行工作前先控制一移動件自一基準面分別往平台移 動至與平台上的多個校位點接觸,以得到平台的承載面對應於此基準面的一座標補償值,再依據此座標補償值來校正此平台欲執行的工作的一工作座標。如此,本發明的校正方法無需手動調整平台的水平,即可使移動件能依據校正後的模型座標而移位至正確的工作點上執行工作,而不會因平台的偏斜而影響工作的執行良率以及執行精準度。 In addition, the present invention further derives a method for correcting the working coordinates of the platform, which can control a moving part to move from a reference plane to the platform before performing the work. Moving to contact with a plurality of calibration points on the platform to obtain a target compensation value corresponding to the reference surface of the platform, and correcting a working coordinate of the work to be performed by the platform according to the coordinate compensation value. In this way, the calibration method of the present invention can manually shift the work piece to the correct working point according to the corrected model coordinates without manually adjusting the level of the platform, without affecting the work due to the deflection of the platform. Execution yield and execution accuracy.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

110‧‧‧平台 110‧‧‧ platform

112‧‧‧承載面 112‧‧‧ bearing surface

114a、114b、114c‧‧‧校位點 114a, 114b, 114c‧‧‧ school sites

120‧‧‧列印頭 120‧‧‧Print head

122‧‧‧金屬噴嘴 122‧‧‧Metal nozzle

D1、D2、D3‧‧‧最短距離 D1, D2, D3‧‧‧ shortest distance

N1‧‧‧法線方向 N1‧‧‧ normal direction

PL‧‧‧基準面 P L ‧‧‧ datum

Claims (12)

一種立體列印裝置,包括:一平台,包括一承載面以及多個校位點,該些校位點位於該承載面上;一列印頭,設置於該平台上方,該列印頭經配置以沿著一基準面移動以及沿著該基準面的一法線方向移動;以及一控制單元,耦接並控制該平台以及該列印頭,該控制單元控制該列印頭分別自該基準面往該平台移動至與該些校位點接觸,以得到各該校位點對應於該基準面的一平面座標以及各該校位點至該基準面的一最短距離,並依據該些平面座標以及該些最短距離得到該承載面對應於該基準面的一座標補償值,並依據該座標補償值校正一數位立體模型資訊的一模型座標,該控制單元依據校正後的該模型座標移動該列印頭以列印出關聯於該數位立體模型資訊的一立體物體於該承載面上。 A three-dimensional printing device comprises: a platform comprising a bearing surface and a plurality of calibration points, wherein the calibration points are located on the bearing surface; a row of printing heads disposed above the platform, the printing head being configured Moving along a reference plane and moving along a normal direction of the reference plane; and a control unit coupling and controlling the platform and the print head, the control unit controlling the print head from the reference plane The platform is moved to contact with the calibration points to obtain a plane coordinate of each of the calibration points corresponding to the reference plane and a shortest distance from the calibration point to the reference plane, and according to the plane coordinates and The shortest distances obtain a standard compensation value of the bearing surface corresponding to the reference surface, and correct a model coordinate of the digital stereo model information according to the coordinate compensation value, and the control unit moves the printing according to the corrected model coordinates The head prints a solid object associated with the digital stereo model information on the bearing surface. 如申請專利範圍第1項所述的立體列印裝置,其中該控制單元控制該列印頭沿著該基準面的一法線方向分別自該基準面對應該些校位點的位置往該平台移動至與該些校位點接觸。 The three-dimensional printing device of claim 1, wherein the control unit controls the print head to face the platform from a position corresponding to the calibration points from a direction along a normal direction of the reference surface Move to contact these school locations. 如申請專利範圍第1項所述的立體列印裝置,其中該列印頭與各該校位點適於在接觸時彼此電性導通,以使該控制單元在該列印頭與各該校位點接觸時接收一接觸訊號,並依據該些接觸訊號分別對該列印頭進行定位以得到該些平面座標以及該些最短距離。 The three-dimensional printing device as claimed in claim 1, wherein the print head and each of the calibration points are adapted to be electrically connected to each other during contact, so that the control unit is in the print head and each school When the contact is in contact, a contact signal is received, and the print heads are respectively positioned according to the contact signals to obtain the planar coordinates and the shortest distances. 如申請專利範圍第3項所述的立體列印裝置,其中各該校位點為一金屬校位點,該列印頭包括一金屬噴嘴。 The three-dimensional printing device of claim 3, wherein each of the calibration points is a metal calibration point, and the print head comprises a metal nozzle. 如申請專利範圍第4項所述的立體列印裝置,其中該金屬噴嘴,耦接至一電源,當該列印頭自該基準面往該平台移動時,該控制單元開啟該電源。 The three-dimensional printing device of claim 4, wherein the metal nozzle is coupled to a power source, and the control unit turns on the power source when the print head moves from the reference surface to the platform. 如申請專利範圍第4項所述的立體列印裝置,其中當該列印頭自該基準面往該平台移動時,該金屬噴嘴分別與各該校位點接觸並彼此電性導通,以使該控制單元在該金屬噴嘴與各該校位點接觸時接收該接觸訊號。 The three-dimensional printing device of claim 4, wherein when the printing head moves from the reference surface to the platform, the metal nozzles are respectively in contact with each of the calibration points and electrically connected to each other, so that The control unit receives the contact signal when the metal nozzle contacts each of the calibration points. 如申請專利範圍第3項所述的立體列印裝置,其中該些校位點為多個金屬墊片,夾持於該平台並位於該承載面上,該列印頭包括一金屬噴嘴以及一金屬校位探針,當該列印頭自該基準面往該平台移動時,該金屬校位探針與各該校位點接觸並彼此電性導通,以使控制單元在該金屬校位探針與各該校位點接觸時接收該接觸訊號。 The three-dimensional printing device of claim 3, wherein the calibration points are a plurality of metal spacers, and are clamped on the platform and located on the bearing surface, the print head includes a metal nozzle and a a metal calibration probe, the metal calibration probe is in contact with each of the calibration points and electrically connected to each other when the print head moves from the reference surface to the platform, so that the control unit is in the metal calibration The contact signal is received when the needle contacts each of the school sites. 如申請專利範圍第7項所述的立體列印裝置,其中該金屬校位探針設置於該金屬噴嘴的周圍,且該金屬校位探針的一校位頂點與該金屬噴嘴的一噴嘴頂點之間具有一高度差。 The three-dimensional printing device of claim 7, wherein the metal calibration probe is disposed around the metal nozzle, and a vertex of the metal calibration probe and a nozzle vertex of the metal nozzle There is a height difference between them. 一種平台的工作座標的校正方法,適用於包括一承載面以及多個校位點的一平台,該些校位點位於該承載面上,該方法包括:控制一移動件分別自一基準面往該承載面移動至與該些校位 點接觸;計算各該校位點對應於該基準面的一平面座標以及各該校位點至該基準面的一最短距離,並依據該些平面座標以及該些最短距離得到該承載面對應於該基準面的一座標補償值;以及依據該座標補償值校正該平台欲執行的一工作的一工作座標。 A method for correcting a working coordinate of a platform is applicable to a platform including a bearing surface and a plurality of calibration points, wherein the calibration points are located on the bearing surface, the method comprising: controlling a moving component from a reference plane The bearing surface is moved to the school positions Point contact; calculating a plane coordinate corresponding to the reference plane and a shortest distance from each of the calibration points to the reference plane, and obtaining the bearing surface corresponding to the plane coordinates and the shortest distances a standard compensation value of the reference surface; and a working coordinate for correcting a work to be performed by the platform according to the coordinate compensation value. 如申請專利範圍第9項所述的平台的工作座標的校正方法,其中控制該移動件分別自該基準面往該承載面移動至與該些校位點接觸的步驟更包括:控制該移動件沿著該基準面的一法線方向分別自該基準面對應該些校位點的位置往該承載面移動至與該些校位點接觸。 The method for correcting the working coordinates of the platform according to claim 9 , wherein the step of controlling the moving member to move from the reference surface to the bearing surface to contact the calibration points further comprises: controlling the moving component The bearing surface is moved to a position corresponding to the calibration points from a position corresponding to the calibration points from the reference in a normal direction of the reference plane. 如申請專利範圍第9項所述的平台的工作座標的校正方法,更包括:在該移動件與各該校位點接觸時接收一接觸訊號;以及依據各該接觸訊號對該列印頭進行定位,以計算各該平面座標以及各該最短距離。 The method for correcting the working coordinates of the platform according to claim 9 further includes: receiving a contact signal when the moving member is in contact with each of the calibration points; and performing the printing head according to each of the contact signals Positioning to calculate each of the plane coordinates and each of the shortest distances. 如申請專利範圍第11項所述的平台的工作座標的校正方法,其中在該移動件與各該校位點接觸時接收該接觸訊號的步驟更包括:提供一電源至該移動件,以在該移動件與各該校位點接觸時,該移動件與各該校位點電性導通而產生該接觸訊號。 The method for correcting the working coordinates of the platform according to claim 11, wherein the step of receiving the contact signal when the moving member contacts each of the calibration points further comprises: providing a power source to the moving member to When the moving component is in contact with each of the calibration points, the moving component is electrically connected to each of the calibration points to generate the contact signal.
TW102140700A 2013-08-23 2013-11-08 Three dimensional printer and method for adjusting working coordinate of platform thereof TWI548537B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410017074.6A CN104416905B (en) 2013-08-23 2014-01-14 Three-dimensional printing device and method for correcting working coordinate of platform of three-dimensional printing device
US14/178,273 US9731452B2 (en) 2013-08-23 2014-02-12 Three dimensional printer and method for adjusting working coordinate of platform thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361869079P 2013-08-23 2013-08-23

Publications (2)

Publication Number Publication Date
TW201507876A TW201507876A (en) 2015-03-01
TWI548537B true TWI548537B (en) 2016-09-11

Family

ID=53186011

Family Applications (8)

Application Number Title Priority Date Filing Date
TW102137158A TWI526327B (en) 2013-08-23 2013-10-15 Three dimensional printing apparatus
TW102137783A TWI518442B (en) 2013-08-23 2013-10-18 Three-dimensional scanner
TW102137785A TW201507847A (en) 2013-08-23 2013-10-18 Three dimensional printing apparatus
TW102137938A TWI513571B (en) 2013-08-23 2013-10-21 Printing head module and three dimensional printing apparatus using the same
TW102139104A TWI552814B (en) 2013-08-23 2013-10-29 Wire fusing apparatus
TW102140705A TW201507849A (en) 2013-08-23 2013-11-08 Three dimensional printing apparatus and three-dimensional printing preview and printing method thereof
TW102140700A TWI548537B (en) 2013-08-23 2013-11-08 Three dimensional printer and method for adjusting working coordinate of platform thereof
TW102141307A TWI491494B (en) 2013-08-23 2013-11-13 Three dimensional printing apparatus

Family Applications Before (6)

Application Number Title Priority Date Filing Date
TW102137158A TWI526327B (en) 2013-08-23 2013-10-15 Three dimensional printing apparatus
TW102137783A TWI518442B (en) 2013-08-23 2013-10-18 Three-dimensional scanner
TW102137785A TW201507847A (en) 2013-08-23 2013-10-18 Three dimensional printing apparatus
TW102137938A TWI513571B (en) 2013-08-23 2013-10-21 Printing head module and three dimensional printing apparatus using the same
TW102139104A TWI552814B (en) 2013-08-23 2013-10-29 Wire fusing apparatus
TW102140705A TW201507849A (en) 2013-08-23 2013-11-08 Three dimensional printing apparatus and three-dimensional printing preview and printing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW102141307A TWI491494B (en) 2013-08-23 2013-11-13 Three dimensional printing apparatus

Country Status (1)

Country Link
TW (8) TWI526327B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI680859B (en) * 2018-09-03 2020-01-01 三緯國際立體列印科技股份有限公司 Three dimensional printing method and three dimensional printing apparatus
TWI721849B (en) * 2020-04-06 2021-03-11 中國鋼鐵股份有限公司 Welding wire connecting device and operation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW446682B (en) * 1997-02-21 2001-07-21 Speedline Technologies Inc Method and apparatus for measuring the height of a substrate in a dispensing system
CN101460290A (en) * 2006-04-03 2009-06-17 斯特拉塔西斯公司 Auto tip calibration in an extrusion apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5816466A (en) * 1996-04-19 1998-10-06 The Lincoln Electric Company Wire feeding apparatus
US6460958B2 (en) * 2000-02-29 2002-10-08 Minolta Co., Ltd. Three-dimensional object printing apparatus and method
TW200526386A (en) * 2004-02-04 2005-08-16 Hsiu-Che Wu Rapid prototyping process and apparatus equipped with a spindle and an ink jet printing system
TW200821138A (en) * 2006-11-14 2008-05-16 Univ Kun Shan Forming method of rapid prototyping applying closed-loop error control of RE (reverse engineering) technology
TWI370409B (en) * 2007-07-04 2012-08-11 Ind Tech Res Inst 3-d object fabrication methods and systems
WO2011025166A2 (en) * 2009-08-31 2011-03-03 Lee Jongoh Apparatus for printing parallax barrier on glass substrate and method for manufacturing 3d stereoscopic image display panel using same
DE102010054824A1 (en) * 2010-12-16 2012-06-21 Kai Parthy Print head for rapid prototyping printer for extruding thermoplastic or reactive plastic wires, has heating unit in which wire supply openings are inserted, where wires are supplied or retracted via openings
DE102011013961A1 (en) * 2011-03-14 2012-09-20 Kai Parthy Thermally melting wire, particularly welding wires for three-dimensional printer in frequency division multiplexing process, has surface with specific irregularities or shape deviation in scoring, grooves, rails, nubs or cracks
JP2013010125A (en) * 2011-06-29 2013-01-17 Bridgestone Corp Joining apparatus for wire materials
CN102873447A (en) * 2012-10-12 2013-01-16 天津冶金集团中兴盛达钢业有限公司 Steel wire connecting method
CN203109129U (en) * 2013-04-01 2013-08-07 宁波奥凯安全科技有限公司 Wire rod automatic butt welding device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW446682B (en) * 1997-02-21 2001-07-21 Speedline Technologies Inc Method and apparatus for measuring the height of a substrate in a dispensing system
CN101460290A (en) * 2006-04-03 2009-06-17 斯特拉塔西斯公司 Auto tip calibration in an extrusion apparatus

Also Published As

Publication number Publication date
TW201507850A (en) 2015-03-01
TWI491494B (en) 2015-07-11
TW201507874A (en) 2015-03-01
TW201507787A (en) 2015-03-01
TW201507849A (en) 2015-03-01
TW201507847A (en) 2015-03-01
TWI513571B (en) 2015-12-21
TW201508413A (en) 2015-03-01
TWI552814B (en) 2016-10-11
TW201507876A (en) 2015-03-01
TW201507848A (en) 2015-03-01
TWI518442B (en) 2016-01-21
TWI526327B (en) 2016-03-21

Similar Documents

Publication Publication Date Title
US9731452B2 (en) Three dimensional printer and method for adjusting working coordinate of platform thereof
US10286645B2 (en) Three-dimensional printing apparatus and method for compensating coordinate offset between nozzles thereof
US10539949B2 (en) Three-dimensional printing appratus and method for calibrating printing inaccuracy thereof
US10603893B2 (en) 3D printing device and printing correction method
CN110312588B (en) Stacking control device, stacking control method, and storage medium
JP4347386B2 (en) Processing robot program creation device
CN101657767B (en) Method and device for controlling robots for welding workpieces
KR101655024B1 (en) A device for optimal calibration of dimensional displacements in 3D printed parts and an optimal calibration method of dimensional displacements in 3D printed parts
TWI564108B (en) Three dimensional printing apparatus
CA2728127C (en) Apparatus and method for printing on articles having a non-planar surface
TWI571380B (en) A printing method for three-dimensional object and system thereof
JP6091153B2 (en) Welding robot system and placement method of placement object on surface plate in welding robot
TW201541342A (en) Three dimensional printing apparatus and method for detecting printing anomaly
JP2003150219A (en) Simulation device for work machine
CN104385590B (en) A kind of method that 3 D-printing system carries out product self-inspection
TWI535553B (en) Three-dimensional printing apparatus
US20150057785A1 (en) Three-dimensional printing apparatus and three-dimensional preview and printing method thereof
CN112106055A (en) Real-time quality control during manufacturing using augmented reality
TWI548537B (en) Three dimensional printer and method for adjusting working coordinate of platform thereof
JP2018036828A (en) Data generation device, three dimensional molding device, manufacturing method of molding object and program
KR20220082311A (en) A method for correcting errors in 3d printing
JP2015033655A (en) Method for manufacturing coating base material

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees