JP2014075031A - Geometrical error identification method and numerical control method, numerical control device, and machining center using the same - Google Patents
Geometrical error identification method and numerical control method, numerical control device, and machining center using the same Download PDFInfo
- Publication number
- JP2014075031A JP2014075031A JP2012222174A JP2012222174A JP2014075031A JP 2014075031 A JP2014075031 A JP 2014075031A JP 2012222174 A JP2012222174 A JP 2012222174A JP 2012222174 A JP2012222174 A JP 2012222174A JP 2014075031 A JP2014075031 A JP 2014075031A
- Authority
- JP
- Japan
- Prior art keywords
- vector
- geometric error
- error
- identification method
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 239000013598 vector Substances 0.000 claims abstract description 74
- 238000005259 measurement Methods 0.000 claims abstract description 47
- 238000012417 linear regression Methods 0.000 claims abstract description 12
- 230000001419 dependent effect Effects 0.000 claims abstract description 6
- 238000013519 translation Methods 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 8
- 238000003754 machining Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012951 Remeasurement Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Automatic Control Of Machine Tools (AREA)
- Numerical Control (AREA)
Abstract
Description
本発明はマシニングセンタなどの工作機械の幾何誤差同定方法と当該幾何誤差同定方法を使用した数値制御方法、数値制御装置及びマシニングセンタに関する。 The present invention relates to a geometric error identification method for a machine tool such as a machining center, a numerical control method using the geometric error identification method, a numerical control device, and a machining center.
マシニングセンタとして、3軸マシニングセンタや5軸マシニングセンタが知られている。5軸マシニングセンタは、3軸マシニングセンタの直線3軸に回転2軸を加えたものである。この5軸マシニングセンタ(以下、マシニングセンタを「MC」と略す)は多くの種類・型式があるが、一般的には、立形3軸MCのX軸(左右)、Y軸(前後)、Z軸(上下)の直線3軸に、C軸(テーブル回転)とA軸(チルト)の回転2軸を加えたものや、C軸(テーブル回転)とB軸(主軸ヘッド)の回転2軸を加えたものがよく使用されている。 As a machining center, a 3-axis machining center and a 5-axis machining center are known. The 5-axis machining center is obtained by adding two rotation axes to the three linear axes of the 3-axis machining center. There are many types and models of this 5-axis machining center (hereinafter, the machining center is abbreviated as “MC”). (Upper and lower) linear three axes plus C axis (table rotation) and A axis (tilt) rotation two axes, C axis (table rotation) and B axis (spindle head) rotation two axes Are often used.
5軸MCはインペラやブレードのような3次元複雑形状の加工が行える反面、3軸MCに比べて多軸となる関係で加工精度の維持・管理が難しいという問題がある。5軸の間で幾何誤差(機械本体に元々存在する誤差)があると、ワークや工具の取り付け状態を以下に精密に調整しても、ワークに加工誤差が生じてしまう。 The 5-axis MC can process a three-dimensional complicated shape such as an impeller and a blade, but has a problem that it is difficult to maintain and manage the machining accuracy because it has more axes than the 3-axis MC. If there is a geometric error between the five axes (an error that originally exists in the machine main body), a machining error occurs in the workpiece even if the workpiece or tool mounting state is precisely adjusted as follows.
前記幾何誤差は、例えばA、C回転軸とX、Y、Z並進軸との平行度や、A、C回転軸間の回転中心の不一致などを含み、5軸MCの製造・組立時に発生する。この幾何誤差は、誤差の差分もしくはその倍の大きさでワークの加工誤差として顕在化することがある。このため、幾何誤差を正確に同定し、NCプログラム作成時に当該幾何誤差を補償するように機械情報として入力することが求められている。 The geometric error includes, for example, the parallelism between the A and C rotation axes and the X, Y, and Z translation axes, the mismatch of the rotation centers between the A and C rotation axes, and the like, and is generated when the 5-axis MC is manufactured and assembled. . This geometric error may be manifested as a workpiece machining error with an error difference or twice as large. For this reason, it is required to accurately identify the geometric error and input it as machine information so as to compensate for the geometric error when creating the NC program.
従来、5軸MCの幾何誤差を同定したり、当該誤差に基づいてNCプログラムの座標系を修正したりする技術として、例えば特許文献1−6に記載されたものがある。 Conventionally, as a technique for identifying a geometric error of a 5-axis MC or correcting a coordinate system of an NC program based on the error, there is one described in Patent Documents 1-6, for example.
特許文献1の技術は、B’軸を固定した状態でC軸部材をC軸回りに回転させ、所定旋回角度毎の主軸先端位置を測定し、測定データから、重回帰分析によりC軸部材の旋回平面を決定し、当該旋回平面の法線ベクトルをC軸方向のベクトルとして、幾何誤差を補償するようにNCプログラムの座標系を変更している。 In the technique of Patent Document 1, the C-axis member is rotated around the C-axis while the B ′ axis is fixed, and the position of the spindle tip at each predetermined turning angle is measured. The turning plane is determined, and the NC program coordinate system is changed to compensate for the geometric error by using the normal vector of the turning plane as a vector in the C-axis direction.
特許文献2の技術は、特許文献1の技術を改良したもので、主軸回転中心が本来の位置から乖離・傾斜している場合でも、それによる加工誤差を補償するようにしている。 The technique of Patent Document 2 is an improvement of the technique of Patent Document 1, and even if the spindle rotation center is deviated / inclined from its original position, a machining error caused by the center is compensated.
特許文献3の技術は、変形誤差推定値、位置決め誤差推定値、及び、熱変位推定値を、幾何誤差の一部として幾何誤差に取り込み、幾何誤差補償演算手段により幾何誤差の補償値を演算し、サーボ指令値に反映させるようにしている。 In the technique of Patent Document 3, a deformation error estimated value, a positioning error estimated value, and a thermal displacement estimated value are taken into a geometric error as a part of a geometric error, and a geometric error compensation value is calculated by a geometric error compensation calculating means. This is reflected in the servo command value.
特許文献4の技術は、エラーマップを作成して誤差を精度よく補正するようにしている。 The technique of Patent Document 4 creates an error map and corrects errors with high accuracy.
特許文献5の技術は、回転軸の傾き誤差と位置誤差を測定する際、回転テーブル上に被測定治具を複数配置することで、回転テーブルの位置決め回数を減少させ、測定時間を短縮化している。 In the technique of Patent Document 5, when measuring the tilt error and the position error of the rotary shaft, a plurality of jigs to be measured are arranged on the rotary table, thereby reducing the number of times the rotary table is positioned and shortening the measurement time. Yes.
特許文献6の技術は、回転テーブルの円周上の12カ所に被測定治具を等間隔で配置し、被測定治具の各位置を測定し、各位置を通る円を円弧近似法により近似し、これにより回転軸と並進軸の幾何誤差を同定している。 In the technique of Patent Document 6, jigs to be measured are arranged at 12 intervals on the circumference of the rotary table, each position of the jig to be measured is measured, and a circle passing through each position is approximated by an arc approximation method. Thus, the geometric error between the rotation axis and the translation axis is identified.
しかし、いずれの特許文献の技術も、高精度で幾何誤差を同定しようとすると、測定点が多くなって測定時間が長くかかり、また被測定治具を増やして測定時間を短縮しようとすると、複数の被測定治具の取り付けに手間がかかり、いずれも生産性が低下するという課題がある。 However, in any of the patent document techniques, if geometric errors are to be identified with high accuracy, the number of measurement points increases and it takes a long time to measure. It takes time to attach the jig to be measured, and there is a problem that productivity is lowered in all cases.
そこで本発明の目的は、少ない測定点で精度よく回転軸の幾何誤差を同定する方法を提供し、また、当該幾何誤差同定方法を使用した数値制御方法、数値制御装置及びマシニングセンタを提供することにある。 Therefore, an object of the present invention is to provide a method for accurately identifying a geometric error of a rotating shaft with a small number of measurement points, and to provide a numerical control method, a numerical control device, and a machining center using the geometric error identification method. is there.
前記課題を解決するため、本発明は、所定角度で組み合わせた回転2軸を含む機械構造体の幾何誤差を同定する幾何誤差同定方法であって、当該幾何誤差同定方法は、前記機械構造体の原点を基準とし、前記回転2軸を1回以上所定角度で回転させることにより、前記機械構造体の被測定点を前記原点から離れた少なくとも3つの異なる複数の位置に移動させ、 当該被測定点の、複数の移動先での機械座標ベクトルと、複数の移動先での幾何誤差の影響を含まない理論機械座標ベクトルとの差分ベクトルDを演算し、当該差分ベクトルDを、前記回転2軸の幾何誤差を未知数として複数の移動先における当該幾何誤差の影響を表すベクトルを誤差ベクトルEとしたとき、当該誤差ベクトルEを説明変数として前記差分ベクトルDを従属変数とする線形回帰式で表し、当該線形回帰式の偏差を最小化することにより回帰係数を算出し、当該回帰係数から前記幾何誤差を同定するようにしたことを特徴とする幾何誤差同定方法である。なお、前記「機械座標ベクトル」は、機械座標を表す位置ベクトルを略したものである。 In order to solve the above problems, the present invention provides a geometric error identification method for identifying a geometric error of a mechanical structure including two rotational axes combined at a predetermined angle, and the geometric error identification method includes: By rotating the two rotation axes at a predetermined angle at least once with respect to the origin, the measured point of the mechanical structure is moved to at least three different positions apart from the origin, and the measured point The difference vector D between the machine coordinate vector at a plurality of movement destinations and the theoretical machine coordinate vector not including the influence of the geometric error at the plurality of movement destinations is calculated, and the difference vector D is calculated for the two rotation axes. When a vector representing the influence of the geometric error at a plurality of destinations is defined as an error vector E with the geometric error as an unknown, the error vector E is used as an explanatory variable, and the difference vector D is defined as a dependent variable. Expressed in linear regression equation for the deviation of the linear regression equation to calculate the regression coefficients by minimizing a geometric error identification method, wherein from the regression coefficient that was set to identify the geometric errors. The “machine coordinate vector” is an abbreviation of a position vector representing machine coordinates.
本発明は以上のように、誤差ベクトルEを説明変数とし差分ベクトルDを従属変数とする線形回帰式の偏差を最小化することで回帰係数を推定し、この回帰係数から幾何誤差を同定するようにしたので、回転2軸の幾何誤差を少ない測定点で高精度かつ短時間で求めることができる。 As described above, the present invention estimates the regression coefficient by minimizing the deviation of the linear regression equation having the error vector E as the explanatory variable and the difference vector D as the dependent variable, and identifies the geometric error from the regression coefficient. As a result, the geometric error of the two rotation axes can be obtained with high accuracy and in a short time with a small number of measurement points.
以下、本発明による幾何誤差の同定方法を、機械構造体としての5軸MCの回転2軸(A軸とC軸)の幾何誤差同定方法に適用した実施形態について説明する。 Hereinafter, an embodiment in which the geometric error identifying method according to the present invention is applied to a geometric error identifying method for two rotational axes (A axis and C axis) of a 5-axis MC as a mechanical structure will be described.
(5軸MCの概略)
図1は、5軸MCの主軸回りの要部と、5軸MCを制御するための数値制御装置(ブロック図)10を示している。同図で1はフレーム、2は主軸、3はテーブル、4はトラニオン、5はサドルである。数値制御装置10の構成自体は従来の数値制御装置と変わらないが、幾何誤差を補正するためのソフトウェアがROMに格納される。
(Outline of 5-axis MC)
FIG. 1 shows a main part around the main axis of the 5-axis MC and a numerical control device (block diagram) 10 for controlling the 5-axis MC. In the figure, 1 is a frame, 2 is a main shaft, 3 is a table, 4 is a trunnion, and 5 is a saddle. The configuration itself of the numerical control device 10 is the same as that of the conventional numerical control device, but software for correcting geometric errors is stored in the ROM.
数値制御装置10のプロセッサCPUが、ROMに格納されたシステムプログラムをバスを介して読み出し、装置全体を制御する。一時的な計算データや表示データはRAMに格納される。表示器/MDIユニット20を介してオペレータが入力した各種データもRAMに格納される。図中、31〜36はモータ、37はポジションコーダである。モータ31〜36は、X軸並進用、Y軸並進用、Z軸並進用、A軸回転用、C軸回転用、主軸用の計6個である。 The processor CPU of the numerical controller 10 reads a system program stored in the ROM via the bus and controls the entire apparatus. Temporary calculation data and display data are stored in the RAM. Various data input by the operator via the display / MDI unit 20 are also stored in the RAM. In the figure, reference numerals 31 to 36 denote motors, and 37 denotes a position coder. There are a total of six motors 31 to 36 for X-axis translation, Y-axis translation, Z-axis translation, A-axis rotation, C-axis rotation, and main axis.
(幾何誤差の同定方法の原理)
図2に、5軸MCのC軸とA軸回りを概略的に示す。C軸とA軸を各1回以上所定回転角度で回転させることで、テーブル3上の被測定点を5軸MCの機械座標系の原点から離れた少なくとも3つの異なる複数の位置に移動させる。そして幾何誤差のデータ(後述する誤差ベクトルEのX、Y、Z方向の各成分)を得るために、テーブル3上の被測定点の移動位置を機械座標系で測定する。
(Principle of geometric error identification method)
FIG. 2 schematically shows the 5-axis MC around the C-axis and the A-axis. By rotating the C axis and the A axis at least once at a predetermined rotation angle, the measurement point on the table 3 is moved to at least three different positions apart from the origin of the 5-axis MC machine coordinate system. Then, in order to obtain geometric error data (components in the X, Y, and Z directions of an error vector E described later), the moving position of the measurement point on the table 3 is measured by the machine coordinate system.
テーブル3はC軸回りに回転可能であり、かつ、A軸回りに傾斜可能である。テーブル3上の被測定点は、この実施形態では図2のようにC軸テーブル3に固定された基準球6で与えられる。基準球6の中心座標が被測定点である。原点はテーブル3の初期位置で設定する。この初期位置は任意であるが、通常は水平でC軸回りに回転角0°とする。 The table 3 can rotate about the C axis and can tilt about the A axis. In this embodiment, the measurement point on the table 3 is given by a reference sphere 6 fixed to the C-axis table 3 as shown in FIG. The center coordinate of the reference sphere 6 is the point to be measured. The origin is set at the initial position of the table 3. Although this initial position is arbitrary, it is usually horizontal and has a rotation angle of 0 ° around the C axis.
C軸とA軸を各1回以上所定回転角度で回転させる際のC軸とA軸の「所定回転角度」は任意であり、5軸MCの表示器/MDIユニット20から数値制御装置10に設定する。この移動において、C軸、A軸は必ず1回は回転させる。基準球6を移動させる場合、一度の移動でC軸とA軸の両方を回転させてもよいし、いずれか一方のみを回転させてもよい。 The “predetermined rotation angle” of the C-axis and the A-axis when the C-axis and the A-axis are rotated at a predetermined rotation angle at least once each is arbitrary, and the 5-axis MC display / MDI unit 20 sends the numerical control device 10 Set. In this movement, the C axis and A axis are always rotated once. When the reference sphere 6 is moved, both the C axis and the A axis may be rotated by one movement, or only one of them may be rotated.
本発明の幾何誤差同定方法は、被測定点としての基準球6の中心の移動先の機械座標ベクトルと、幾何誤差の影響を含まない基準球6の中心の理論機械座標ベクトルとの差分ベクトルDを演算する。そして、この差分ベクトルDを、回転2軸(C軸とA軸)の幾何誤差を未知数として複数の移動先における幾何誤差の影響を表すベクトルを誤差ベクトルEとしたとき、誤差ベクトルEを説明変数として差分ベクトルDを従属変数とする線形回帰式で表す。この線形回帰式の偏差を最小化することにより回帰係数を算出し、当該回帰係数から幾何誤差を同定する。これが本発明の幾何誤差同定方法の原理である。 The geometric error identification method of the present invention is a difference vector D between a machine coordinate vector at the center of a reference sphere 6 as a measured point and a theoretical machine coordinate vector at the center of the reference sphere 6 that does not include the influence of the geometric error. Is calculated. When the difference vector D is defined as an error vector E, the error vector E being an explanatory variable when the geometric error of two rotation axes (C axis and A axis) is an unknown and a vector representing the influence of the geometric error at a plurality of destinations is used. As a linear regression equation with the difference vector D as a dependent variable. A regression coefficient is calculated by minimizing the deviation of the linear regression equation, and a geometric error is identified from the regression coefficient. This is the principle of the geometric error identification method of the present invention.
回転2軸(C軸とA軸)の幾何誤差は、表1に示すように、4つの回転誤差δ1〜δ4と4つの並進誤差δ5〜δ8からなる。
本発明の幾何誤差同定方法では、回転2軸により基準球6を移動させて各移動位置でその中心座標を測定する場合、各測定点で誤差ベクトルEのX、Y、Z方向の3つの成分が得られるので、3つの移動位置で3回測定すれば未知数としての8個の幾何誤差を同定するのに必要なデータが得られる。 In the geometric error identification method of the present invention, when the center sphere is measured at each moving position by moving the reference sphere 6 by two rotational axes, the three components of the error vector E in the X, Y, and Z directions at each measurement point. Therefore, if measurement is performed three times at three moving positions, data necessary for identifying eight geometric errors as unknowns can be obtained.
(被測定点の測定)
被測定点の測定は、図2(A)(B)のように、被測定治具としての基準球6の位置(機械座標位置)を、タッチセンサ7で測定することで行う。タッチセンサ7は主軸2に取り付けて使用する。基準球6を、図2(A)のようにA軸回りに回転するテーブル3の上の任意の位置に固定し、図2(B)のように、主軸2を操作することにより、この基準球6の表面の少なくとも4カ所に、タッチセンサ7のプローブ7aを当接させる。
(Measurement of measured points)
The measurement of the measurement point is performed by measuring the position (machine coordinate position) of the reference sphere 6 as the measurement jig with the touch sensor 7 as shown in FIGS. The touch sensor 7 is used by being attached to the main shaft 2. The reference sphere 6 is fixed at an arbitrary position on the table 3 that rotates about the A axis as shown in FIG. 2A, and the main shaft 2 is operated as shown in FIG. The probes 7 a of the touch sensor 7 are brought into contact with at least four places on the surface of the sphere 6.
図2(B)では、プローブ7aを基準球6に5回当接させた状態を示している。同図の破線はプローブ7aの移動軌跡である。当接したときの主軸2の位置(機械座標位置)から、基準球6の中心座標を5軸MCで計算する。なお、位置測定センサはタッチセンサ以外の例えばレーザセンサ等の非接触センサを使用することも可能である。 FIG. 2B shows a state in which the probe 7a is in contact with the reference sphere 6 five times. The broken line in the figure is the movement locus of the probe 7a. From the position (machine coordinate position) of the main shaft 2 at the time of contact, the center coordinates of the reference sphere 6 are calculated with five axes MC. The position measurement sensor may be a non-contact sensor such as a laser sensor other than the touch sensor.
基準球6の測定は、図2(C)のように、最初にテーブル3の初期位置(原点位置)で測定する。得られた測定データが初期位置の機械座標ベクトルである。この初期位置で測定した後、図2(D)のようにテーブル3を任意方向に任意角度傾斜させ、この状態で基準球6の中心座標Pjをタッチセンサ7で測定する。テーブル3を回転させる方向と回転角度は任意であるが、当該方向と角度は5軸MCの数値制御装置10で管理されている。テーブル3を傾斜させるだけでなく、同時にC軸回りに任意方向に任意角度回転させて基準球6の中心座標Pjを測定してもよいし、テーブル3を傾斜させないでC軸回りに任意方向に任意角度回転させて基準球6の中心座標Pjを測定してもよい。 The reference sphere 6 is measured first at the initial position (origin position) of the table 3 as shown in FIG. The obtained measurement data is the machine coordinate vector at the initial position. After measurement at this initial position, the table 3 is tilted at an arbitrary angle in an arbitrary direction as shown in FIG. 2D, and the center coordinate P j of the reference sphere 6 is measured by the touch sensor 7 in this state. The direction and angle of rotation of the table 3 are arbitrary, but the direction and angle are managed by the 5-axis MC numerical controller 10. In addition to tilting the table 3, the center coordinate P j of the reference sphere 6 may be measured by rotating the table 3 at an arbitrary angle around the C axis at the same time, or in any direction around the C axis without tilting the table 3. The center coordinate P j of the reference sphere 6 may be measured by rotating it at an arbitrary angle.
このように基準球6を任意に移動させて2回目の測定を行う。得られた測定データから第1移動位置での第1の機械座標ベクトルを得る。同様に、テーブル3を任意方向に任意量回転させ、初期位置及び既測定位置を除く位置で3回目、4回目の測定を行い、第2移動位置での第2の機械座標ベクトルと、第3移動位置での第3の機械座標ベクトルを得る。こうして得られた第1〜第3の機械座標ベクトルが、幾何誤差の影響を有する測定値である。なお、測定点は等間隔で設定する必要はなく、精度を上げるため、幾何誤差の影響がある程度大きいと思われる任意の測定点で測定すればよい。 In this way, the second measurement is performed by arbitrarily moving the reference sphere 6. A first machine coordinate vector at the first movement position is obtained from the obtained measurement data. Similarly, the table 3 is rotated by an arbitrary amount in an arbitrary direction, the third measurement and the fourth measurement are performed at positions excluding the initial position and the measured position, the second machine coordinate vector at the second movement position, and the third A third machine coordinate vector at the moving position is obtained. The first to third machine coordinate vectors obtained in this way are measurement values having the influence of geometric errors. Note that the measurement points do not need to be set at equal intervals, and may be measured at any measurement point where the influence of the geometric error is considered to be somewhat large in order to improve accuracy.
(幾何誤差の影響がない理論機械座標ベクトルと、幾何誤差が影響する機械座標ベクトル)
図2(C)(D)のように、テーブル3上の任意の位置は、ワーク座標系のベクトルPwと、機械座標系のベクトルPmで表すことができる。ワーク座標系はテーブル上に設定された座標系であり、機械座標系は5軸MCの直線3軸(X、Y、Z)で構成された座標系である。
本発明の幾何誤差同定方法は誤差を機械座標で表すので、幾何誤差を含む回転2軸の運動を座標回転行列で記述することとする。
ここで、ワーク座標系ベクトルPwと機械座標系ベクトルPmは、以下の式(1)(2)のように表すことができる。
As shown in FIGS. 2C and 2D, an arbitrary position on the table 3 can be represented by a workpiece coordinate system vector Pw and a machine coordinate system vector Pm. The work coordinate system is a coordinate system set on a table, and the machine coordinate system is a coordinate system constituted by three straight axes (X, Y, Z) of five axes MC.
Since the geometric error identification method of the present invention expresses the error in machine coordinates, the motion of the two rotation axes including the geometric error is described by a coordinate rotation matrix.
Here, the workpiece coordinate system vector Pw and the machine coordinate system vector Pm can be expressed by the following equations (1) and (2).
また、A軸の旋回を表す座標回転マトリックスをMA、C軸の回転を表す座標回転マトリックスをMCとすると、それぞれ以下の式(3)、(4)のように表わされる。
前記δ1〜δ8の8個の幾何誤差の影響を表す座標変換マトリックスは、それぞれ以下の式(5)、(6)で表される。
ここでMeAがA軸に関する幾何誤差の座標変換マトリックスであり、MeCがC軸に関する幾何誤差の座標変換マトリックスである。
Here, Me A is a coordinate conversion matrix of geometric errors related to the A axis, and Me C is a coordinate conversion matrix of geometric errors related to the C axis.
幾何誤差の影響がない場合の理論機械座標ベクトルPm0と、幾何誤差が影響する場合の機械座標ベクトルPmは、それぞれ次式(7)(8)で表される。
ここで、1つの幾何誤差δiが影響する場合の機械座標ベクトルをPmiとし、例えばδ1だけが影響する場合の機械座標ベクトルをPm1とすると、当該Pm1は次式(9)で表される。
(幾何誤差の同定)
初期角度(通常は0°)における基準球6の中心座標からワーク座標ベクトルPwを求める。このワーク座標ベクトルPwを用いて、j番目の測定点における基準球6の理論機械座標ベクトルPm0jと、幾何誤差δiが影響する場合の機械座標ベクトルPmijは、式(7)(8)から、それぞれ次式(11)(12)で表される。
〔数11〕
Pm0j =MA・MC・Pw ・・・・・(11)
〔数12〕
Pmij =MeA・MA・MeA -1・MeC・MC・MeC -1・Pw ・・・・・(12)
(Identification of geometric errors)
A workpiece coordinate vector Pw is obtained from the center coordinates of the reference sphere 6 at the initial angle (usually 0 °). Using this work coordinate vector Pw, the theoretical machine coordinate vector Pm 0j of the reference sphere 6 at the j-th measurement point and the machine coordinate vector Pm ij when the geometric error δ i affects are expressed by the equations (7) and (8). Are expressed by the following equations (11) and (12).
[Equation 11]
Pm 0j = M A , M C , Pw (11)
[Equation 12]
Pm ij = Me A · M A · Me A -1 · Me C · M C · Me C -1 · Pw (12)
これより、j番目の測定点における、基準球6の中心位置を表す機械座標ベクトルPjと、理論機械座標ベクトルP0jの差分ベクトルDjは、次式(13)で表される。
また、j番目の測定点における幾何誤差δiの影響を表す誤差ベクトルEijは次式(14)で表される。
差分ベクトルDjを従属変数、幾何誤差の影響を表す誤差ベクトルEijを説明変数として、次式(15)の1次線形回帰式で表す。
〔数15〕
Dj =K1・E1j+K2・E2j+・・・+Ki・Eij+ε ・・・・・(15)
回帰係数K1,K2・・Kが、幾何誤差の影響Eijの重みを表す未知変数である。末尾のεが偏差である。
1個の幾何誤差が、単位幾何誤差(回転誤差なら0.001rad、並進誤差なら0.001mm)である場合について、X、Y、Zの3方向の影響を算出し、各測定点について当該3方向のデータを得る。同様に、他の幾何誤差についても、各測定点について3方向のデータを得る。
Difference vector DjIs a dependent variable, an error vector E representing the effect of geometric errorijAs an explanatory variable, it is expressed by a linear regression equation of the following equation (15).
[Equation 15]
Dj= K1・ E1j+ K2・ E2j+ ... + Ki・ Eij+ Ε (15)
Regression coefficient K1,K2..K is the effect of geometric error EijIs an unknown variable representing the weight of. The last ε is the deviation.
When one geometric error is a unit geometric error (0.001 rad for a rotation error, 0.001 mm for a translation error), the influence in three directions of X, Y, and Z is calculated, and the 3 Get direction data. Similarly, for other geometric errors, data in three directions are obtained for each measurement point.
これにより、次式(16)の関係が得られる。
式(16)について、偏差εを最小化することにより回帰係数K1,K2・・Kiを決定(推定)する。ここでは最小二乗法を用いて回帰係数K1,K2・・Kiを決定するが、偏差εを最小化する方法は最小二乗法に限られない。そしてこの回帰係数K1,K2・・Kiから幾何誤差を同定する。この実施形態では、前述のように4つの回転誤差δ1〜δ4の単位幾何誤差を0.001rad、4つの並進誤差δ5〜δ8の単位幾何誤差を0.001mmとする。表2のように、回帰係数に単位幾何誤差を掛けたものが求める幾何誤差である。単位幾何誤差は任意の大きさでよいが、実際の幾何誤差に比べて著しく大きいか著しく小さいと計算誤差が大きくなる。このため、前記単位幾何誤差は実際の幾何誤差とオーダー的に揃えておくのがよい。 For equation (16), the regression coefficients K 1, K 2 ·· K i are determined (estimated) by minimizing the deviation ε. Here, the regression coefficients K 1, K 2 ... Ki are determined using the least square method, but the method for minimizing the deviation ε is not limited to the least square method. And identify the geometric error from the regression coefficients K 1, K 2 ·· K i . In this embodiment, as described above, the unit geometric error of the four rotation errors δ 1 to δ 4 is 0.001 rad, and the unit geometric error of the four translation errors δ 5 to δ 8 is 0.001 mm. As shown in Table 2, the geometric error is obtained by multiplying the regression coefficient by the unit geometric error. The unit geometric error may be an arbitrary size, but if the unit geometric error is significantly larger or smaller than the actual geometric error, the calculation error increases. For this reason, the unit geometric error should be aligned with the actual geometric error in order.
回帰係数を決定する際には、必要に応じて適当な検定(例えばt検定)を行い、その有意性を判断してもよい。表2の例では、決定係数R2=0.988(R:相関係数)という結果が得られており、線形回帰式を用いて差分ベクトルDの98.8%が説明できる。 When determining the regression coefficient, an appropriate test (for example, t test) may be performed as necessary to determine its significance. In the example of Table 2, a result of determination coefficient R 2 = 0.988 (R: correlation coefficient) is obtained, and 98.8% of the difference vector D can be explained using a linear regression equation.
このように、線形回帰式により説明できる差分ベクトルDの誤差の割合を、決定係数R2から知ることができる。決定係数R2が予め定めた閾値(例えば0.8)よりも小さい場合には、測定点数を増やして再度測定するなどの対応を行えばよい。最後に、基準となる大きさとして設定した並進誤差0.001mm、回転誤差0.001radを回帰係数に掛合せる。この掛け合わせた値が同定した幾何誤差である。
(幾何誤差同定方法のフローチャート)
以上で説明した幾何誤差同定方法は、フローチャートに示すと図3、図4のようになる。このフローチャートの内容が図1の数値制御装置10のROMに格納されている。図3は、基準球6を原点からj回移動させ、j番目の移動先における中心座標Pjを算出するまでのフローチャートである。S1でj=0とされ、S2で回転2軸が所定の設定角度(θA=Aj、θC=Cj)に位置決めされる。S3で基準球6の中心座標Pjが測定され、S4で基準球6の中心座標Pjがメモリに保存される。
(Flow chart of geometric error identification method)
The geometric error identification method described above is shown in FIG. 3 and FIG. The contents of this flowchart are stored in the ROM of the numerical controller 10 shown in FIG. FIG. 3 is a flowchart from when the reference sphere 6 is moved j times from the origin to calculation of the center coordinate P j at the j-th destination. In S1, j = 0 is set, and in S2, the two rotation axes are positioned at predetermined set angles (θ A = A j , θ C = C j ). S3 center coordinates P j of the reference sphere 6 is measured, the center coordinates P j of the reference sphere 6 is stored in memory in S4.
S5で基準球6の1回目の移動〜j回目の移動までの全ての中心座標Pjの測定点を算出したか否かが判定され、全ての中心座標Pjの測定点がまだ算出されていない場合、S6でj=j+1とされ、S2にリターンする。そしてS2で被測定点(基準球6の中心)の次の移動のために回転2軸を所定の設定角度(θA=Aj、θC=Cj)に位置決めする。S5でj回目の移動までの全ての中心座標Pjの測定点が算出されたと判定されると、フローを終了する。 In S5, it is determined whether or not the measurement points of all the center coordinates P j from the first movement to the j- th movement of the reference sphere 6 have been calculated, and all the measurement points of the center coordinates P j have been calculated. If not, j = j + 1 is set in S6, and the process returns to S2. In S2, the two rotation axes are positioned at predetermined set angles (θ A = A j , θ C = C j ) for the next movement of the measured point (center of the reference sphere 6). If it is determined in S5 that all the measurement points of the central coordinates P j up to the j-th movement have been calculated, the flow is ended.
図4は、前述した測定点の測定データに基づいて、幾何誤差を同定するまでのフローチャートである。まず、S1で初期角度(C軸の回転角度=0°、A軸の回転角度=0°)における基準球6の中心座標から、ワーク座標ベクトルPwが算出され、S2でj=0とされる。S3で理論機械座標ベクトルPmojが算出され、S4で差分ベクトルDjが算出される。S5で全ての測定点を算出したか否かが判定され、全ての測定点をまだ算出していない場合は、S6でj=j+1とされ、S3にリターンする。S5で全ての測定点を算出したと判定されると、S7でi=1とされ、S8でj=0とする。 FIG. 4 is a flowchart until the geometric error is identified based on the measurement data of the measurement points described above. First, the workpiece coordinate vector Pw is calculated from the center coordinates of the reference sphere 6 at the initial angles (C-axis rotation angle = 0 °, A-axis rotation angle = 0 °) in S1, and j = 0 is set in S2. . S3 in the calculated theoretical machine coordinate vector Pm oj, the difference vector D j are calculated in S4. It is determined whether or not all measurement points have been calculated in S5. If all measurement points have not yet been calculated, j = j + 1 is set in S6, and the process returns to S3. If it is determined that all measurement points have been calculated in S5, i = 1 is set in S7, and j = 0 is set in S8.
次に、S9で理論機械座標ベクトルPmojを算出し、S10で機械座標ベクトルPmijが算出される。次にS11で幾何誤差の影響を表す誤差ベクトルEijが算出され、S12で全ての測定点を算出したかどうかが判定される。全ての測定点を算出していない場合、S13でj=j+1とし、S9にリターンする。S12で全ての測定点を算出したと判定されると、S14ですべての幾何誤差の影響を算出したかどうかが判定される。すべての幾何誤差の影響を算出していない場合、S15でi=i+1とされ、S8にリターンする。 Next, a theoretical machine coordinate vector Pm oj is calculated in S9, and a machine coordinate vector Pm ij is calculated in S10. Next, an error vector E ij representing the influence of the geometric error is calculated in S11, and it is determined whether or not all measurement points have been calculated in S12. If all the measurement points have not been calculated, j = j + 1 is set in S13, and the process returns to S9. If it is determined in S12 that all measurement points have been calculated, it is determined in S14 whether or not the influence of all geometric errors has been calculated. When the influence of all geometric errors is not calculated, i = i + 1 is set in S15, and the process returns to S8.
S14ですべての幾何誤差の影響を算出したと判定されると、S16で回帰係数K1…Kiが最小二乗法で決定される。そしてS17で決定係数R2が所定の閾値(例えば0.8)よりも大きいか否かが判定される。決定係数R2が所定の閾値以下の場合、S18で測定点が追加され、S19で再測定が行われる。測定点の追加はS18で1箇所追加すればよいが、決定係数R2の大きさと所定の閾値との格差に応じて、2箇所以上の測定点を一度に追加してもよい。 If it is determined in S14 that the influence of all geometric errors has been calculated, regression coefficients K 1 ... K i are determined by the least square method in S16. The coefficient of determination R 2 in S17 whether greater than a predetermined threshold (e.g., 0.8) is determined. If the coefficient of determination R 2 is equal to or less than a predetermined threshold value, adds the measurement point at S18, remeasurement is performed at S19. Additional measurement points may be added one position in S18, but in accordance with the difference between the coefficient of determination R 2 magnitude and a predetermined threshold value, may be added two or more positions of the measuring points at once.
以上、幾何誤差の同定方法について説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば本発明は回転2軸を含む機械構造体一般に適用可能であり、適用対象は5軸MCに限定されない。また、回転2軸の角度は90°に限定されるものではなく、90度以外の組み合わせ角度についても当該角度に対応して座標回転行列を適宜変更することで本発明を適用可能である。すなわち、90度以外の組み合わせ角度の場合、各軸の運動を表す座標回転マトリックスの間に、2軸が交差する角度に応じた座標回転マトリックスを挿入することで、機械座標ベクトルを表すことができる。 Although the geometric error identification method has been described above, the present invention is not limited to the above-described embodiment, and various modifications can be made. For example, the present invention can be applied to general mechanical structures including two rotating shafts. The application target is not limited to the 5-axis MC. Further, the angle of the two rotation axes is not limited to 90 °, and the present invention can be applied to a combination angle other than 90 degrees by appropriately changing the coordinate rotation matrix corresponding to the angle. That is, in the case of a combination angle other than 90 degrees, a machine coordinate vector can be expressed by inserting a coordinate rotation matrix corresponding to the angle at which the two axes intersect between coordinate rotation matrices representing the motion of each axis. .
1:フレーム
2:主軸
3:テーブル
4:トラニオン
5:サドル
10:数値制御装置
1: Frame 2: Spindle 3: Table 4: Trunnion 5: Saddle 10: Numerical control device
Claims (8)
前記機械構造体の原点を基準とし、前記回転2軸を1回以上所定角度で回転させることにより、前記機械構造体の被測定点を前記原点から離れた少なくとも3つの異なる複数の位置に移動させ、
当該被測定点の、複数の移動先での機械座標ベクトルと、複数の移動先での幾何誤差の影響を含まない理論機械座標ベクトルとの差分ベクトルDを演算し、当該差分ベクトルDを、前記回転2軸の幾何誤差を未知数として複数の移動先における当該幾何誤差の影響を表すベクトルを誤差ベクトルEとしたとき、当該誤差ベクトルEを説明変数として前記差分ベクトルDを従属変数とする線形回帰式で表し、当該線形回帰式の偏差を最小化することにより回帰係数を算出し、当該回帰係数から前記幾何誤差を同定するようにしたことを特徴とする幾何誤差同定方法。 A geometric error identification method for identifying a geometric error of a mechanical structure including two rotational axes combined at a predetermined angle, the geometric error identification method comprising:
Using the origin of the machine structure as a reference, the measurement point of the machine structure is moved to at least three different positions apart from the origin by rotating the two rotation axes at a predetermined angle at least once. ,
A difference vector D between a machine coordinate vector at a plurality of destinations of the measurement point and a theoretical machine coordinate vector not including the influence of geometric errors at the plurality of destinations is calculated, and the difference vector D is A linear regression equation using the error vector E as an explanatory variable and the difference vector D as a dependent variable, where an error vector E is a vector representing the influence of the geometric error at a plurality of destinations with the geometric error of the two rotation axes as an unknown. A geometric error identification method, wherein a regression coefficient is calculated by minimizing a deviation of the linear regression equation, and the geometric error is identified from the regression coefficient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012222174A JP5968749B2 (en) | 2012-10-04 | 2012-10-04 | Geometric error identification method and numerical control method, numerical control apparatus and machining center using the geometric error identification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012222174A JP5968749B2 (en) | 2012-10-04 | 2012-10-04 | Geometric error identification method and numerical control method, numerical control apparatus and machining center using the geometric error identification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014075031A true JP2014075031A (en) | 2014-04-24 |
JP5968749B2 JP5968749B2 (en) | 2016-08-10 |
Family
ID=50749147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012222174A Active JP5968749B2 (en) | 2012-10-04 | 2012-10-04 | Geometric error identification method and numerical control method, numerical control apparatus and machining center using the geometric error identification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5968749B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016218746A (en) * | 2015-05-20 | 2016-12-22 | オークマ株式会社 | Geometric error parameter identification method in machine tool, and control method and device of machine tool |
JP2017071011A (en) * | 2015-10-06 | 2017-04-13 | Okk株式会社 | Method for identification of geometric error in mechanical structure and numerical control method with use of geometric error identification method, numerical control device and machining center |
JP2017159376A (en) * | 2016-03-07 | 2017-09-14 | 中村留精密工業株式会社 | Machine accuracy measuring method and device in machine tool |
CN109521729A (en) * | 2018-11-14 | 2019-03-26 | 内蒙古工业大学 | A kind of three axis numerically controlled machine can compensate for and not can compensate for geometric error separation method |
US10802464B2 (en) | 2017-12-06 | 2020-10-13 | Fanuc Corporation | Numerical controller |
CN112613084A (en) * | 2020-12-10 | 2021-04-06 | 北京电子工程总体研究所 | Error analysis method for connecting rod transmission mechanism |
CN113341878A (en) * | 2021-06-23 | 2021-09-03 | 重庆理工大学 | Thermal error measuring method of five-axis numerical control machine tool |
CN113917888A (en) * | 2021-10-27 | 2022-01-11 | 中国航发沈阳黎明航空发动机有限责任公司 | Machining precision improving method based on fixed angular orientation calibration and compensation |
CN113950650A (en) * | 2019-06-12 | 2022-01-18 | 三菱电机株式会社 | Adjustment amount estimation device, adjustment amount estimation method, and adjustment amount estimation program |
CN114147726A (en) * | 2021-12-27 | 2022-03-08 | 哈尔滨工业大学 | Robot calibration method combining geometric error and non-geometric error |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001269839A (en) * | 2000-03-23 | 2001-10-02 | Toshiba Mach Co Ltd | Correcting method of main spindle head position error in multiple spindle machine tool |
JP2006281338A (en) * | 2005-03-31 | 2006-10-19 | Olympus Corp | Machining program generator, machining method, and program |
-
2012
- 2012-10-04 JP JP2012222174A patent/JP5968749B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001269839A (en) * | 2000-03-23 | 2001-10-02 | Toshiba Mach Co Ltd | Correcting method of main spindle head position error in multiple spindle machine tool |
JP2006281338A (en) * | 2005-03-31 | 2006-10-19 | Olympus Corp | Machining program generator, machining method, and program |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016218746A (en) * | 2015-05-20 | 2016-12-22 | オークマ株式会社 | Geometric error parameter identification method in machine tool, and control method and device of machine tool |
JP2017071011A (en) * | 2015-10-06 | 2017-04-13 | Okk株式会社 | Method for identification of geometric error in mechanical structure and numerical control method with use of geometric error identification method, numerical control device and machining center |
JP2017159376A (en) * | 2016-03-07 | 2017-09-14 | 中村留精密工業株式会社 | Machine accuracy measuring method and device in machine tool |
US10802464B2 (en) | 2017-12-06 | 2020-10-13 | Fanuc Corporation | Numerical controller |
CN109521729A (en) * | 2018-11-14 | 2019-03-26 | 内蒙古工业大学 | A kind of three axis numerically controlled machine can compensate for and not can compensate for geometric error separation method |
CN113950650A (en) * | 2019-06-12 | 2022-01-18 | 三菱电机株式会社 | Adjustment amount estimation device, adjustment amount estimation method, and adjustment amount estimation program |
CN112613084A (en) * | 2020-12-10 | 2021-04-06 | 北京电子工程总体研究所 | Error analysis method for connecting rod transmission mechanism |
CN113341878A (en) * | 2021-06-23 | 2021-09-03 | 重庆理工大学 | Thermal error measuring method of five-axis numerical control machine tool |
CN113341878B (en) * | 2021-06-23 | 2023-04-18 | 重庆理工大学 | Thermal error measuring method of five-axis numerical control machine tool |
CN113917888A (en) * | 2021-10-27 | 2022-01-11 | 中国航发沈阳黎明航空发动机有限责任公司 | Machining precision improving method based on fixed angular orientation calibration and compensation |
CN113917888B (en) * | 2021-10-27 | 2023-05-23 | 中国航发沈阳黎明航空发动机有限责任公司 | Machining precision improving method based on fixed angular calibration and compensation |
CN114147726A (en) * | 2021-12-27 | 2022-03-08 | 哈尔滨工业大学 | Robot calibration method combining geometric error and non-geometric error |
CN114147726B (en) * | 2021-12-27 | 2024-05-03 | 哈尔滨工业大学 | Robot calibration method combining geometric error with non-geometric error |
Also Published As
Publication number | Publication date |
---|---|
JP5968749B2 (en) | 2016-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5968749B2 (en) | Geometric error identification method and numerical control method, numerical control apparatus and machining center using the geometric error identification method | |
JP6570957B2 (en) | Geometric error identification method for mechanical structure, numerical control method using the geometric error identification method, numerical control apparatus, and machining center | |
JP6295070B2 (en) | Geometric error identification method for multi-axis machine tools and multi-axis machine tools | |
He et al. | A new error measurement method to identify all six error parameters of a rotational axis of a machine tool | |
Zhu et al. | Integrated geometric error modeling, identification and compensation of CNC machine tools | |
CN101866163B (en) | Numerical control machine tool and numerical control device | |
CN109454281B (en) | Method for calibrating propeller workpiece coordinate system in robot milling | |
JP2015203567A (en) | Metrology system | |
JP2011173234A (en) | Control method for machine tool | |
JP2009104317A (en) | Numerical control method and numerical controller | |
JPWO2009057229A1 (en) | Error map creation method and apparatus, and numerically controlled machine tool having error map creation function | |
WO2011104757A1 (en) | Numeric control device | |
JP2017027360A (en) | Error compensation system for machine, error compensation method, and error compensation program | |
JP2018142064A (en) | Error identification method for machine tool | |
JP2007044802A (en) | Swivel axis center measuring method in multi-axis machine tool | |
Lei et al. | Error measurement of five-axis CNC machines with 3D probe–ball | |
JP6606054B2 (en) | Machine tool motion error identification method | |
JP2014215079A (en) | Geometric deviation measurement method, and geometric deviation measurement device | |
JP2015069355A (en) | Error correction amount creation device | |
KR20170056372A (en) | Method for Measurement And Compensation of Error on Portable 3D Coordinate Measurement Machine | |
JP4575887B2 (en) | Work posture control method | |
JP2010105117A (en) | Accuracy measuring method, error correction method for numerically controlled machine tool and numerically controlled machine tool with error correcting function | |
JP2019197333A (en) | Path correction method and control device of multiple spindle processing machine | |
KR102035334B1 (en) | Method for measuring geometric errors of 4-axis machine tools | |
Sato et al. | Geometric error compensation of five-axis machining centers based on on-machine workpiece measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150908 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160623 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160706 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5968749 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |