201108904 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種導熱基板,尤指設置於一電子元件 與一散熱模組之間,用於將電子元件所產生之熱傳導至散 熱模組者》 【先前技術】 電子產品在技術的進步下,逐漸朝向高效能化發展, 而高效能電子元件相對需要較高功率來驅動,惟伴隨著功 率的提高,電子元件在運作時亦產生可觀的熱量,這些累 積在電子元件上的熱量將對電子元件造成損害,造成電子 疋件壽命及可靠度下降,舉例來說,在綠能產業迅速發展 下發光一極體(LED,hght-emitting diode)在照明、背光模 組等領域的重要性也日益增加,纟以照明產業更是積極將 白熾燈源置換成LED燈源,隨之帶動LED需求日益增加, 然而目前LED輸入功率約僅15〜25%的電能轉化為光其 餘75〜85%的輸入功率均轉化為熱量,熱量若累積在led 將造成其發光強度降低、發光顏色偏移、封裝材料產生黃 變及壽命減少等問題,尤其對高功率LED而言,其所產生 的熱對LED之影響更不可忽視。 參見第四圖所示,為解決上述熱量所帶來之不良影響, 於電子元件(40)上可裝設有導熱絕緣金屬基板(iMS, Insulated metal substrate),用以將電子元件(4〇)上產生的熱 i傳‘至散熱模組(圖中未示)發散,現有技術中常見用於 電子7L件之導熱絕緣金屬基板,其結構係於一導電金屬層 (3 1)與導熱金屬層(33)之間設置一導熱絕緣層(32),現有 201108904 技術之導熱絕緣金屬基板概略有三種製程,其中: 第一種製程係先將導熱粉體與熱可塑性有機樹脂分散 混合,將混合完成之溶液分別塗佈於導電金屬層(3 〇表面與 導熱金屬層(33)表面,並將二者烘烤完全乾燥,使其分別在 兩金屬層(31)(33)表面形成一熱可塑性導熱複合薄膜,隨後 將兩金屬層(31)(33)以形成有熱可塑性導熱複合薄膜的一面 貼合,並藉由熱壓合製程令熱可塑性導熱複合薄膜熔融而 將兩金屬層(31)(33)黏著,而構成一電子元件用導熱絕緣金 屬基板,此一製程之缺點為需經過高溫壓合,壓合之溫度 大於200〇C,且易在各層介面產生孔洞,因而造成熱阻增加; 第二種製程係先將導熱固體粉體與液態熱固性有機樹 脂混合成樹脂漿料(slurry),並將漿料塗佈於導熱金屬層(33) 表面形成導熱複合樹腊衆料薄層,再將導電金屬層(3 1) 覆蓋於漿料薄層上,以加溫加壓方式令導熱複合樹脂漿料 薄層熱固化成一導熱絕緣層,該製程之缺點係樹脂漿料在 熱固化前具流動性,在加溫加壓壓合製程中,易有未固化 漿料溢出板外之問題,且膠漿料在壓合過程中,易產生導 熱固體粉末與液態熱固性樹脂分相之現象,造成導熱固體 粉末在導熱絕緣層中分散不均,導致絕緣層導熱效率及可 靠度下降; 第二種製程為在樹脂熔點以上之溫度,將無機導熱粉 末熱塑性塑膠、熱固性環氧樹脂均句混練,形成一均勻 狀橡膠材料,在製膜加工前,於均勻橡膠材料中加入一熱 固丨生%氧固化劑及催化劑,並藉由塑膠加工工程(包含擠出 成升> (extrusion)、輪壓成形(calendering)、射出成形(injecti〇nr 201108904 mohiing))製成-附有離型材之導秦絕緣複合材料薄膜,該 導熱絕緣複合材料薄膜之高分子部分為一交互穿透結構 (IPN,interpenetrating netw〇rk),將移除離型材之導熱絕緣 複合薄膜置於導電金屬層(31)與導熱金屬層(33)之間,再以 加溫壓合製程將絕緣層與兩金屬層(31)(33)貼合而構成所述 導熱絕緣金屬基板,該製程之缺點為橡膠材料製備過程需 在高溫下混練’熱塑性塑膠在高溫混練過程中為一高黏度 流體,無機導熱粉末不易在其中均勻分散,且具交互穿透 結構之導熱絕緣複合材料薄膜在壓合時,須加熱至熱塑性 塑膠之熔點以上’如此易造成無法均勻流平於金屬層㈠ 表面而在介面形成空隙或孔洞,使導熱絕緣金屬基板熱阻 上升。 上述該三種製程所製備之導熱絕緣金屬基板,因受限 於電性可靠度之影響,導熱絕緣層之厚度必須大於75微米 (Mm)以上,且為降低其導熱絕緣層之熱阻值,必須將該導 熱絕緣層之熱傳導係數提高,因此其添加之導熱粉體用量 之體積百分比需大於50%以上,造成導熱絕緣複合材料之 機械強度不良,易受外力而產生破孔或龜裂,使得電性可 罪度下降。 【發明内容】 有蓉於上述三種製程所製備之現有技術之導熱絕緣金 屬基板,其導熱絕緣層有於介面處易產生孔洞或空隙、導 熱效率低或機械強度不良等情形’而致使導熱絕緣金屬基 板有熱阻上升或電性可靠度不足之缺點,本發明係藉由改 良該導熱絕緣層據以解決之。 201108904 為達成上述發明目的,本發明所運用之技術手段在於 提供一種具低熱阻、低熱膨脹係數及高電性可靠度之電子 元件用導熱基板,其包含有: 一導電金屬層; 一南電性可靠度導熱高分子複合材料層,其形成於所 述導電金屬層一側面,高電性可靠度導熱高分子複合材料 層之居度"於1至25微米之間,熱阻抗值小於ο.!]。〇_ in2/W,且玻璃轉移溫度大於2〇〇°C ; 一導熱可低溫壓合高分子複合材料層,其形成於高電 性可靠度導熱高分子複合材料層的一側面上,導熱可低溫 壓合高分子複合材料層的厚度介於1至65微米之間,且熱 阻抗值小於0.1 °C -in2/W,該導熱可低溫壓合高分子複合材 料層與高電性可靠度導熱高分子複合材料層的總厚度大於 15微米; 一導熱金屬基材層,其壓合於導熱可低溫壓合高分子 複合材料層一側面。 本發明所運用之另一技術手段在於提供一種具低熱 阻、低熱膨脹係數及高電性可靠度之電子元件用導熱基板 之製造方法,其步驟包括: 提供一導電金屬層; 於導電金屬層一側面形成一高電性可靠度導熱高分子 複合材料層:先將導熱粉末分散於含有高電性可靠度樹脂 之呵刀子令液中,導熱粉末佔高電性可靠度導熱高分子複 ^材料層之體積百分比小於50%,混合後為一導熱高電性 可靠度高分子複合材料溶&,再藉由濕式塗佈㈣將其塗 # 201108904 佈於導電金屬層之一側,並於140〜350°C下經過30〜60分 鐘乾燥及環化製程,於導電金屬層上形成該高電性可靠度 導熱高分子複合材料層,其玻璃轉移溫度大於200°C ; -於高電性可靠度導熱高分子複合材料層一側面形成一 導熱可低溫壓合高分子複合材料層:先將導熱粉末分散於 熱可塑性高分子、熱固性樹脂與交聯劑混合溶液中,且導 熱粉末佔導熱可低溫壓合高分子複合材料層之體積百分比 介於20%〜70%之間,混合後成為一導熱可低溫壓合高分子 • 複合材料溶液,再藉由濕式塗佈技術將其塗佈於高電性可 靠度導熱高分子複合材料層一側面,且於100〜160°C下乾 燥1〜3分鐘,而在一高電性可靠度導熱高分子複合材料層 上形成一半交聯(semi-curing)之導熱可低溫壓合高分子複合 材料薄膜,其玻璃轉移溫度小於120°C ; 於導熱可低溫壓合高分子複合材料層一側面壓合一導 熱金屬基材層:首先提供一導熱金屬基材層,並將其設置 於導熱可低溫壓合高分子複合材料層一側面,隨後於 ® 120°C〜190°C與5 5~95Kgf/cm2條件下進行熱壓合1〜2分鐘, 使半交聯之導熱可低溫壓合高分子複合材料層熔融與導熱 金屬基材層接著,再於160°C〜200°C下進行烘烤熟化2〜8 小時,使該半交聯之導熱可低溫壓合高分子複合材料層完 全交聯。 本發明之具低熱阻、低熱膨脹係數及高電性可靠度之 電子元件用導熱基板,由於其係使用濕式塗佈技術來塗佈 高電性可靠度之導熱高分子複合材料層與導熱可低溫壓合 高分子複合材料層,因此可減少其與導電金屬層或導熱金. 201108904 屬基材層的介面處的孔隙’可避免現有技術中第一種製程 因絕緣層介面孔隙之產生而造成熱阻上升之缺點,並且濕 式塗佈製程可使得高電性可靠度之導熱高分子複合材料層 與導熱可低溫麗合if)分子複合材料層分別可更容易渗入導 電金屬層或導熱金屬基材層之粗糙表面,從而增加相互間 的接著力,使成品兼具現有技術第三種製程之成品的優點, 又使用/燕式塗佈技術具有導熱粉末可經溶液分散製程更 均勻为散於向分子複合材料溶液中,可解決現有技術中各 製备需經加熱至高溫以分散導熱粉末之缺點,· 此外,所述導熱可低溫壓合高分子複合材料層在完全 交聯前為半交聯狀,其特性可避免如現有技術第二種製程 中’樹脂漿料在高溫下流動性太高而造成未固化漿料溢出 板外之問題。 【實施方式】 一參見第一圖所示,本發明之具低熱阻、低熱膨脹係數 Φ 及同電性可罪度之電子元件用導熱基板,其可設置於一電 子元件(20)上,用以將該電子元件(2〇)運作時所產生之熱量 陕速導離電子几件(2〇),例如可將熱量傳導至一散熱模組(圖 未示)予以發散,其結構係依序堆疊包含有一導電金屬層 (。) 阿電性可靠度導熱高分子複合材料層(12)、一導熱 〇低皿壓口问分子複合材料層(13)以及一導熱金屬基材層 (14)。 所述V電金屬層(1丨)之材質與現有技術之導熱絕緣金屬 二板之導電金屬層相同,該導電金屬層(U)可經姓刻線路設 十用以承載電子元件(20),並傳導電子元件(2〇)所產生之^ f 201108904 熱量。 所述尚電性可靠度導熱高分子複合材料層(12),其形成 於導電金屬層(11)一側面’參見第二圖所示,其製備方式為. 先將導熱粉末以一般物理性分散技術(例如:混練均質機)分 散於含有向電性可靠度樹脂之南分子溶液中,導熱粉末佔 高電性可靠度導熱高分子複合材料層(12)之體積百分比小於 50%,混合後成為一導熱高電性可靠度高分子複合材料溶 液,再藉由濕式塗佈技術將混合後之導熱高電性可靠度高 鲁分子複合材料溶液塗佈於所述導電金屬層(1丨)之一側,濕式 塗佈技術可減少與導電金屬層〇1)介面處產生的孔隙,而後 再於140〜350°C下進行30〜60分鐘乾燥及環化製程,即於 導電金屬層(11)上形成該高電性可靠度導熱高分子複合材料 層(12),其尽度介於1至25微米之間,熱阻抗值小於〇 13 °C -in2/W ’且玻璃轉移溫度(Tg)大於2〇〇。(:; 所述導熱粉末可選自於粒徑在1〇微米以下之金屬氮化 物、金屬氧化物、碳化矽所組成之群組。 所述導熱可低溫壓合向分子複合材料層(13),其形成於 高電性可靠度導熱高分子複合材料層(12)的一側面上,參見 第二圖所示,其製備方式為:先將導熱粉末以一般物理性 刀政技術分散於熱可塑性高分子、熱固性樹脂與交聯劑混 合溶液中,且導熱粉末佔導熱可低溫壓合高分子複合材料 層(13)之體積百分比介於20%〜7〇%之間,混合後成為導熱 可低溫壓合高分子複合材料溶液’再藉由濕式塗佈技術將 展合後之導熱可低溫壓合高分子複合材料溶液塗佈於所述 间電性可靠度導熱高分子複合材料層(12) 一側面上,且於『 201108904 100〜160°C下乾燥1〜3分鐘,而在高電性可靠度導熱高分 子複合材料層(12)上形成一半交聯(semi-curing)之導熱可低 溫壓合高分子複合材料薄膜,其厚度介於1至65微米之間, 熱阻抗值小於〇.l°C-in2/W,且玻璃轉移溫度小於120°C, 此外,導熱可低溫壓合高分子複合材料層(13)與高電性可靠 度導熱高分子複合材料層(12)的總厚度係大於15微米; 所述導熱粉末可選自於粒徑小於10微米之金屬氮化 物、金屬氧化物、碳化矽所組成之群組;201108904 VI. Description of the Invention: [Technical Field] The present invention relates to a thermally conductive substrate, particularly disposed between an electronic component and a heat dissipation module for conducting heat generated by the electronic component to the heat dissipation module. [Prior Art] Under the advancement of technology, electronic products are gradually moving towards high-performance development, while high-performance electronic components require relatively high power to drive, but with the increase of power, electronic components also generate considerable heat during operation. The heat accumulated on the electronic components will cause damage to the electronic components, resulting in a decrease in the life and reliability of the electronic components. For example, in the rapid development of the green energy industry, LEDs (hght-emitting diodes) are The importance of lighting, backlight modules and other fields is also increasing. The lighting industry is actively replacing incandescent light sources with LED light sources, which in turn drives LED demand. However, the current LED input power is only 15~25%. The electrical energy is converted into light. The remaining 75~85% of the input power is converted into heat. If the heat is accumulated in the LED, the luminous intensity will drop. , Light color shift, the encapsulating material to yellowing and reduced life issues, especially for high-power LED, the effect of heat it produces to an LED but can not be ignored. As shown in the fourth figure, in order to solve the adverse effects caused by the above heat, an electronic component (40) may be provided with an insulated metal substrate (iMS) for electronic components (4〇). The heat generated on the heat transfer module (not shown) is diverged. In the prior art, a thermally conductive and insulated metal substrate for an electronic 7L piece is commonly used, and the structure is connected to a conductive metal layer (31) and a thermally conductive metal layer. A thermal conductive insulating layer (32) is disposed between (33). The thermal conductive insulating metal substrate of the prior art 201108904 has three processes, wherein: the first process first disperses and mixes the thermal conductive powder with the thermoplastic organic resin, and the mixing is completed. The solution is respectively coated on the surface of the conductive metal layer (3 〇 surface and the heat conductive metal layer (33), and the two are baked completely to form a thermoplastic heat conduction on the surfaces of the two metal layers (31) (33), respectively. The composite film is then bonded to the two metal layers (31) (33) on the side on which the thermoplastic thermal conductive composite film is formed, and the two thermoplastic layers are melted by a thermocompression bonding process to bond the two metal layers (3). 1) (33) adheres to form a thermally conductive and insulating metal substrate for an electronic component. The disadvantage of this process is that it needs to be pressed at a high temperature, the temperature of the bonding is greater than 200 〇C, and holes are easily formed in the interface layers, thereby causing heat. The second process is to first mix the heat conductive solid powder with the liquid thermosetting organic resin into a resin slurry, and apply the slurry on the surface of the heat conductive metal layer (33) to form a heat conductive composite tree wax. Layer, then the conductive metal layer (31) is covered on the thin layer of the slurry, and the thin layer of the thermally conductive composite resin slurry is thermally cured into a thermally conductive insulating layer by heating and pressing. The disadvantage of the process is that the resin slurry is hot. It has fluidity before curing. In the heating and pressing process, it is easy to have the problem that the uncured slurry overflows the plate, and the rubber slurry is easy to produce the phase separation between the heat conductive solid powder and the liquid thermosetting resin during the pressing process. The phenomenon causes uneven dispersion of the thermally conductive solid powder in the thermally conductive insulating layer, resulting in a decrease in thermal conductivity and reliability of the insulating layer; the second process is a temperature above the melting point of the resin, and the inorganic thermally conductive powder thermoplastic The thermosetting epoxy resin is uniformly mixed to form a uniform rubber material. Before the film forming process, a thermosetting antimony oxygen curing agent and a catalyst are added to the uniform rubber material, and the plastic processing engineering (including extrusion into升> (extrusion), calendering, injection molding (injecti〇nr 201108904 mohiing)) - a conductive insulating film with a release profile, the polymer portion of the thermally conductive composite film is An interpenetrating structure (IPN, interpenetrating netw〇rk), the thermally conductive insulating composite film of the removed profile is placed between the conductive metal layer (31) and the thermally conductive metal layer (33), and then heated and pressed. The insulating layer is bonded to the two metal layers (31) (33) to form the thermally conductive and insulative metal substrate. The disadvantage of the process is that the rubber material preparation process needs to be mixed at a high temperature. The thermoplastic plastic is a high viscosity fluid during the high temperature mixing process. The inorganic thermal conductive powder is not easily dispersed uniformly therein, and the thermal conductive insulating composite film having the cross-penetrating structure must be heated to the melting point of the thermoplastic plastic when pressed. Thus easily lead to (i) can not be uniformly leveling the surface of the metal layer to form holes or voids in the interface, that the increased thermal insulation resistance metal substrate. The thermal conductive insulating metal substrate prepared by the above three processes is limited by the electrical reliability, and the thickness of the thermal conductive insulating layer must be greater than 75 micrometers (Mm) or more, and in order to reduce the thermal resistance of the thermally conductive insulating layer, it is necessary to reduce the thermal resistance of the thermally conductive insulating layer. The thermal conductivity of the thermally conductive insulating layer is increased, so that the volume percentage of the thermally conductive powder to be added needs to be greater than 50%, resulting in poor mechanical strength of the thermally conductive insulating composite material, and being susceptible to external forces to cause holes or cracks, thereby making electricity Sexual sin has declined. SUMMARY OF THE INVENTION There is a prior art thermally conductive and insulative metal substrate prepared by the above three processes, wherein the thermally conductive insulating layer has pores or voids at the interface, low heat conduction efficiency or poor mechanical strength, etc. The substrate has the disadvantages of increased thermal resistance or insufficient electrical reliability, and the present invention is solved by improving the thermally conductive insulating layer. 201108904 In order to achieve the above object, the technical means used in the present invention is to provide a heat-conductive substrate for electronic components having low thermal resistance, low thermal expansion coefficient and high electrical reliability, comprising: a conductive metal layer; The reliability thermal conductive polymer composite layer is formed on one side of the conductive metal layer, and the high electrical reliability of the thermal conductive polymer composite layer is between 1 and 25 microns, and the thermal resistance value is less than ο. !]. 〇_in2/W, and the glass transition temperature is greater than 2 〇〇 ° C; a heat-conducting low-temperature pressure-bonded polymer composite layer formed on one side of the high-electricity reliability thermal conductive polymer composite layer, heat conduction The low temperature pressure-bonded polymer composite layer has a thickness of between 1 and 65 micrometers, and the thermal resistance value is less than 0.1 ° C -in 2 /W, and the heat conduction can be low-temperature pressure-bonded polymer composite layer and high electrical reliability heat conduction. The total thickness of the polymer composite layer is greater than 15 microns; a thermally conductive metal substrate layer that is pressed against a side of the thermally conductive, low temperature pressable polymer composite layer. Another technical method used in the present invention is to provide a method for manufacturing a heat conductive substrate for electronic components having low thermal resistance, low thermal expansion coefficient and high electrical reliability, the steps of which include: providing a conductive metal layer; A high-electricity reliability thermal conductive polymer composite layer is formed on the side surface: the thermal conductive powder is first dispersed in a knife-containing liquid containing a high-reliability reliability resin, and the thermal conductive powder accounts for a high-electricity reliability thermal conductive polymer composite material layer The volume percentage is less than 50%, and after mixing, it is a thermally conductive high-reliability polymer composite material dissolved & and then coated by wet coating (4) on one side of the conductive metal layer, and at 140 After 30~60 minutes drying and cyclization process at ~350 °C, the high-electricity reliability thermal conductive polymer composite layer is formed on the conductive metal layer, and the glass transition temperature is greater than 200 ° C; - high electrical reliability One side of the thermal conductive polymer composite layer forms a thermally conductive low temperature pressure-bonded polymer composite layer: the thermal conductive powder is first dispersed in the thermoplastic polymer, the thermosetting resin and the cross-linking In the mixed solution, the thermal conductive powder accounts for between 20% and 70% by volume of the thermally conductive low-temperature pressure-bonded polymer composite layer, and after mixing, becomes a thermally conductive low-temperature pressure-bonded polymer composite solution, and then Wet coating technology is applied to one side of the high-electricity reliability thermal conductive polymer composite layer, and dried at 100~160 ° C for 1 to 3 minutes, while a high-electricity reliability thermal polymer composite Forming a semi-curing heat-conducting low-temperature pressure-bonding polymer composite film on the material layer, the glass transition temperature is less than 120 ° C; and bonding a heat conduction on the side of the heat-conductive low-temperature pressure-bonded polymer composite material layer Metal substrate layer: firstly provide a layer of thermally conductive metal substrate and set it on one side of the layer of thermally conductive low-temperature pressure-bonded polymer composite, followed by conditions of ® 120 ° C to 190 ° C and 5 5 to 95 Kgf / cm 2 The hot-pressing is carried out for 1 to 2 minutes to make the semi-crosslinked heat-conducting low-temperature pressure-bonded polymer composite material layer melt and thermally conductive metal substrate layer, and then bake and mature at 160 ° C to 200 ° C 2~ 8 hours to make the semi-crosslinking guide Nip low temperature polymer composite material layer completely crosslinked. The heat-conductive substrate for electronic components with low thermal resistance, low thermal expansion coefficient and high electrical reliability is coated with a high-reliability thermal conductive polymer composite layer and heat conduction by using wet coating technology. The low temperature press-bonding of the polymer composite layer can reduce the porosity of the interface with the conductive metal layer or the heat conductive gold. 201108904 is a substrate layer of the substrate layer can avoid the first process in the prior art due to the generation of the interface layer pores The disadvantage of the increase in thermal resistance, and the wet coating process can make the highly conductive reliability of the thermally conductive polymer composite layer and the thermally conductive low-temperature blend if) molecular composite layer can penetrate into the conductive metal layer or the thermally conductive metal base, respectively. The rough surface of the material layer, thereby increasing the mutual adhesion force, so that the finished product has the advantages of the finished product of the third process of the prior art, and the use of the /swallow coating technology has the heat conductive powder which can be more evenly distributed through the solution dispersion process. In the solution of the molecular composite material, the defects in the prior art that need to be heated to a high temperature to disperse the thermally conductive powder can be solved, and The low-temperature pressure-bonded polymer composite layer is semi-crosslinked before being completely cross-linked, and its characteristics can avoid the uncured slurry overflow caused by the liquidity of the resin slurry being too high at a high temperature in the second process of the prior art. Off-board issues. [Embodiment] As shown in the first figure, the heat-conductive substrate for electronic components of the present invention having low thermal resistance, low thermal expansion coefficient Φ and homoelectricity can be disposed on an electronic component (20). The heat generated by the operation of the electronic component (2〇) is guided away from the electronic component (2〇), for example, the heat can be transmitted to a heat dissipation module (not shown) for divergence, and the structure is sequentially The stack comprises a conductive metal layer (.) an electrically reliable thermally conductive polymer composite layer (12), a thermally conductive low-pressure orifice molecular composite layer (13) and a thermally conductive metal substrate layer (14). The material of the V-electrode metal layer (1丨) is the same as that of the conductive metal layer of the thermal conductive insulating metal plate of the prior art, and the conductive metal layer (U) can be disposed by the surname line to carry the electronic component (20). And conduction of electronic components (2〇) generated by ^ f 201108904 heat. The thermal reliability polymer composite layer (12) is formed on one side of the conductive metal layer (11). Referring to the second figure, the preparation method is: firstly dispersing the thermal conductive powder in a general physical state. The technology (for example, a kneading homogenizer) is dispersed in a southern molecular solution containing a positively-reliable resin, and the thermal conductive powder accounts for less than 50% by volume of the high-electricity reliability thermally conductive polymer composite layer (12). a thermally conductive and highly reliable polymer composite solution, and then applying a mixed heat conduction and high electrical reliability high-lubric molecular composite solution to the conductive metal layer (1丨) by a wet coating technique On one side, the wet coating technique can reduce the pores generated at the interface of the conductive metal layer ,1), and then perform drying and cyclization processes at 140 to 350 ° C for 30 to 60 minutes, that is, on the conductive metal layer (11). Forming the high-reliability thermally conductive polymer composite layer (12) with a fullness between 1 and 25 microns, a thermal resistance value less than 〇13 °C -in2/W' and a glass transition temperature (Tg) ) is greater than 2 〇〇. (:; The thermally conductive powder may be selected from the group consisting of metal nitrides, metal oxides, and niobium carbide having a particle diameter of 1 μm or less. The heat conduction may be low-temperature pressed to a molecular composite layer (13) It is formed on one side of the high-electricity reliability thermal conductive polymer composite layer (12), as shown in the second figure, which is prepared by first dispersing the thermal conductive powder in the thermoplasticity by a general physical knife-knife technique. In a mixed solution of a polymer, a thermosetting resin and a crosslinking agent, and the heat conductive powder accounts for between 20% and 7% by volume of the thermally conductive low temperature pressure-bonded polymer composite material layer (13), and becomes a heat conductive low temperature after mixing. Pressing the polymer composite solution to apply the thermally conductive low-temperature pressure-bonded polymer composite solution after bonding to the interlayer of the electrically reliable reliability thermal conductive polymer composite (12) On one side, and dried at 『201108904 100~160°C for 1~3 minutes, the semi-curing heat conduction on the high-electricity reliability thermal conductive polymer composite layer (12) can be low temperature. Pressed polymer The composite material film has a thickness of between 1 and 65 micrometers, a thermal resistance value of less than 〇.l ° C-in 2 /W, and a glass transition temperature of less than 120 ° C. In addition, the thermal conductivity can be low-temperature pressed to the polymer composite layer (13) The high-reliability thermal conductive polymer composite layer (12) has a total thickness of more than 15 μm; the thermally conductive powder may be selected from metal nitrides, metal oxides, and niobium carbide having a particle diameter of less than 10 μm. Group of groups;
# 所述熱可塑性高分子,可選自於玻璃轉移溫度在90°C 以下的壓克力共聚物(Acrylic copolymer)、丁二稀橡膠共聚 物(butadiene copolymer)、聚苯乙婦共聚物(polystyrene copolymer)或聚醯胺樹脂(polyamide)所組成之群組,選用之 熱可塑性高分子内需含有緩基(carboxy group)、胺基(amine) 或經基(hydroxy group),可與部份交聯劑於溶劑供乾過程 中形成半交聯(semi-curing)高分子薄膜; 所述熱固性樹脂係為環氧樹脂,該環氧樹脂分子包含 ® 兩個以上之環氧官能基(epoxy group),而環氧當量(epoxy equivalent weight)為100〜5000 g/eq.,經烘烤交聯製程可與 交聯劑、熱可塑性高分子交聯、亦或自行交聯反應((^〇^_ linking reaction),形成網狀結構(network)高分子; 所述交聯劑可選自含有兩個以上反應官能基之芳香族 類或脂肪族類所組成之群組,該反應官能基包含羧基 (carboxy group)、酸酐(anhydride group)、胺基(amine)、經 基(hydroxy group)或異氰酸基(isocyanate),該交聯劑可與 熱可塑性高分子於溶劑烘乾過程令,形成半交聯(semi' 201108904 curing)高分子,亦可與熱固性樹脂交聯,形成網狀結構 (network)高分子。 所述導熱金屬基材層(14)之材質與現有技術之導熱絕緣 金屬基板之導熱金屬層相同,其壓合於導熱可低溫壓合高 分子複合材料層(13)的一側面,其壓合方式為:先將導熱金 屬基材層(14)置於半交聯之導熱可低溫壓合高分子複合材料 層(13)—侧面,隨後於i2〇°C〜190°C及55~95Kgf/cm2之條 件下進行熱壓合1〜2分鐘,令半交聯之導熱可低溫壓合高 _ 分子複合材料層(13)熔融而與該導熱金屬基材層(14)接著, 由於§亥半交聯高分子薄膜在壓合溫度時,仍具有相當之流 動性,可在壓合過程中容易滲入導熱金屬基材層(14)的粗輪 表面’增加導熱可低溫壓合高分子複合材料層(13)與導熱金 屬基材層(14)之接著力,而後再於16〇。(:〜200°C下進行烘烤 熟化2〜8小時’使半交聯之導熱可低溫壓合高分子複合材 料層(13)完全交聯(fuii_curing),即構成本發明之具低熱阻、 低熱膨脹係數及高電性可靠度之電子元件用導熱基板。 本發明之具低熱阻、低熱膨脹係數及高電性可靠度之 電子元件用導熱基板,其高電性可靠度導熱高分子複合材 料層(12)與導熱可低溫壓合高分子複合材料層(13)(以下合 稱導熱絕緣層(A))之厚度係小於90微米,於較佳實施例中 可小於75微米,且導熱絕緣層(A)的總熱阻可降低至〇1 °C-in2/W以下’並且不需提高導熱絕緣層(A)之熱傳導係數, 故其添加之導熱粉體用量所佔體積百分比可減少,使得導 熱絕緣層(A)之機械強度增加,不易受外力而產生破孔或龜 裂; 11 201108904 此外,導熱絕緣層(A)的總體積電阻大於i〇i3q _crn, 具備優良的絕緣特性,且其熱膨脹係數(coefficient of thermal expansion)在低溫範圍(120oC 以下)小於 30ppm/°C, 而在120°C以上之熱膨脹係數可小於SOppm/oC,因此具有 良好的電性可靠度,導熱絕緣層(A)之破壞電壓達3000伏 特以上,單位厚度之破壞電壓達1.70KV/mil·以上,具有良 好之尺寸安定性,再者,導熱絕緣層(A)可通過288°C錫爐 浸泡10秒以上’因此熱穩定性良好’而該導熱可低溫壓合 鲁 南分子複合材料層(13)具有較南之延伸性(elongation),在 高溫低溫循環測試(heat cycle test)時,可緩衝因不同材質 之導電金屬層(11)與導熱金屬基材層(14)之熱膨脹係數不同 而產生之熱應力,提高本發明之具低熱阻、低熱膨脹係數 及高電性可靠度之電子元件用導熱基板之環境可靠度。 以下對依據前述實施方式所製成之導熱基板特性進行 比較,由於本發明係著重於導熱絕緣層(A)之特性,故僅針 對rfj電性可靠度導熱高分子複合材料層(12)及導熱可低溫壓 鲁 合高分子複合材料層(13)構成之導熱絕緣層(A)進行比較, 其所需考慮之性質如表一所述,其中為測試接著力,係使 用l/2〇z之壓延銅箔作為導電金屬層(n)與導熱金屬基材層 (14) ’目的在於例示本發明之各實施例中,導電絕緣層與金 屬層之接著力,金屬層之材質種類並非本發明所限制之項 目,在不脫離創作精神下所作之修飾或變更,皆屬本創作 所意圖保護者; 表一 12 201108904 考量因素 考量原因 檢測規 範或儀器 導熱絕緣層總厚度 (thickness of dielectric layer) 測量導熱絕緣層之總厚度,以計 算其熱阻值。 ASTM D1005 導熱絕緣層之熱傳導係數 (thermal conductivity of dielectric layer) 量測導熱絕緣層之熱傳導係數, 以驗證其熱傳導效果,並計算其熱阻 值。 ASTM E1461 ASTM D5470 熱阻(thermal resistance dielectric layer) 經由量測之導熱絕緣層總厚度與 導熱絕緣層之熱傳導係數,依據熱傳 導理論計算導熱絕緣層之熱阻值。 由 ASTM E1461 與 ASTMD1005 量測結果計 算 破壞電壓 (Breakdown voltage of dielectric layer) 驗證導熱絕緣層之高電性可靠度 性質 IPC-TM- 650NO.2.5.6 導熱可低溫壓合複合材料層 接著力 (Peel strength of dielectric layer) 驗證導熱可低溫壓合複合材料層 接著力 IPC-TM- 650NO.2.4.9 導熱絕緣層之熱膨脹係數 (Coefficient of thermal expansion of dielectric layer) 驗證導熱絕緣層之尺寸熱穩定性 ASTM E 831 導熱基板之錫爐浸泡測試 (Solder test for IMS) 驗證導熱絕緣層之熱穩定性 IPC-TM-650 N0.2.4.13 表二為本發明之三個實施例結果彙整,實施例係根據 籲本發明戶斤闡述之内容實&,表三為比較例之囊I,其係根 據二家市售產品廠商之產品型錄,比較例一係依據Denka 產品型錄而得,比較例二係依據Laird產品型錄而得,比較 例二係依據Bergquist產品型錄而得,本發明内容所列舉之 比杈例主要與本發明之實施例比較,僅係以例示比較說明 本發明於較佳狀況下的操作結果,非企圖以之對該比較例 之製造者作任何侵權之行為。 表二 考量因素 實施例 實施例 實施 一 二 例三 13 201108904# The thermoplastic polymer may be selected from Acrylic copolymer, butadiene copolymer, and polystyrene having a glass transition temperature of 90 ° C or less. Group of copolymers or polyamides, the thermoplastic polymer selected to contain a carboxy group, an amine or a hydroxy group, which can be partially crosslinked The agent forms a semi-curing polymer film in a solvent supply process; the thermosetting resin is an epoxy resin, and the epoxy resin molecule comprises more than two epoxy groups. The epoxy equivalent weight is 100~5000 g/eq., and the cross-linking process can be cross-linked with cross-linking agent, thermoplastic polymer, or self-crosslinking reaction ((^〇^_ linking Reacting to form a network polymer; the crosslinking agent may be selected from the group consisting of aromatic or aliphatic groups containing two or more reactive functional groups, and the reactive functional group comprises a carboxyl group (carboxyl) Group), anhydride (a Nhydride group), amine, hydroxy group or isocyanate, which can be semi-crosslinked with a thermoplastic polymer in a solvent drying process (semi' 201108904 The polymer may be crosslinked with a thermosetting resin to form a network polymer. The material of the thermally conductive metal substrate layer (14) is the same as that of the thermally conductive metal substrate of the prior art thermally conductive insulating metal substrate. Pressing on one side of the thermally conductive low-temperature pressure-bonded polymer composite layer (13), the pressing method is: first placing the heat-conductive metal substrate layer (14) in a semi-crosslinked heat-conducting low-temperature pressure-bonding polymer composite Material layer (13) - side, then hot pressed for 1~2 minutes under conditions of i2〇 °C~190 °C and 55~95Kgf/cm2, so that the semi-crosslinked heat conduction can be low-temperature pressed high _ molecular compound The material layer (13) is melted to be in contact with the thermally conductive metal substrate layer (14). Since the semi-crosslinked polymer film has a considerable fluidity at the pressing temperature, it can easily penetrate into the heat conduction during the pressing process. The surface of the rough wheel of the metal substrate layer (14) increases thermal conductivity. The adhesion between the temperature-bonded polymer composite layer (13) and the thermally conductive metal substrate layer (14), and then at 16 〇. (: baking at 200 ° C for 2 to 8 hours to make semi-crosslinking) The heat-conducting low-temperature pressure-bondable polymer composite material layer (13) is completely cross-linked (fuii_curing), that is, the heat-conductive substrate for electronic components of the present invention having low thermal resistance, low thermal expansion coefficient and high electrical reliability. The heat-conductive substrate for electronic components with low thermal resistance, low thermal expansion coefficient and high electrical reliability, the high-electricity reliability thermal conductive polymer composite material layer (12) and the heat-conductive low-temperature pressure-bonding polymer composite material layer ( 13) (hereinafter collectively referred to as the thermally conductive insulating layer (A)) has a thickness of less than 90 μm, and in a preferred embodiment may be less than 75 μm, and the total thermal resistance of the thermally conductive insulating layer (A) may be lowered to 〇1 ° C - Below in2/W and without increasing the thermal conductivity of the thermally conductive insulating layer (A), the volume percentage of the thermally conductive powder added can be reduced, so that the mechanical strength of the thermally conductive insulating layer (A) is increased and is not easily affected by external forces. Holes or cracks are generated; 11 201108904 In addition, the total volume resistance of the thermally conductive insulating layer (A) is greater than i〇i3q _crn, which has excellent insulation properties and its coefficient of thermal expansion in the low temperature range (below 120oC) Less than 30ppm/°C, and the thermal expansion coefficient above 120°C can be less than SOppm/oC, so it has good electrical reliability. The breaking voltage of the thermal conductive insulating layer (A) is more than 3000 volts, and the unit thickness is The breakdown voltage is up to 1.70KV/mil·, which has good dimensional stability. Furthermore, the thermal conductive insulation layer (A) can be immersed in a 288°C tin furnace for more than 10 seconds, so the thermal stability is good. The Heluun Molecular Composite Layer (13) has a southerly elongation, which can buffer the conductive metal layer (11) and the thermally conductive metal substrate layer of different materials in the high temperature and low temperature cycle test. (14) The thermal stress generated by the difference in thermal expansion coefficient improves the environmental reliability of the thermally conductive substrate for electronic components of the present invention having low thermal resistance, low thermal expansion coefficient, and high electrical reliability. The following is a comparison of the characteristics of the thermally conductive substrate produced according to the foregoing embodiment. Since the present invention focuses on the characteristics of the thermally conductive insulating layer (A), it is only for the rfj electrical reliability of the thermally conductive polymer composite layer (12) and heat conduction. The thermal conductive insulating layer (A) composed of the low-temperature pressure-bonded polymer composite material layer (13) can be compared, and the properties to be considered are as described in Table 1, in which the test adhesion force is used. The rolled copper foil is used as the conductive metal layer (n) and the heat conductive metal substrate layer (14). The purpose of the present invention is to illustrate the adhesion between the conductive insulating layer and the metal layer in various embodiments of the present invention, and the material type of the metal layer is not the present invention. Restricted items, modifications or changes made without the spirit of creation are the intentions of the authors of the creation; Table 1 12 201108904 Considerations for the reasons for the reason or the thickness of the thermal insulation layer of the instrument The total thickness of the insulating layer to calculate its thermal resistance. ASTM D1005 Thermal conductivity of dielectric layer Measure the thermal conductivity of the thermally conductive insulating layer to verify its thermal conductivity and calculate its thermal resistance. ASTM E1461 ASTM D5470 thermal resistance dielectric layer The thermal resistance of the thermally conductive insulating layer is calculated according to the thermal conduction theory by measuring the total thickness of the thermally conductive insulating layer and the thermal conductivity of the thermally conductive insulating layer. Breakdown voltage of dielectric layer by ASTM E1461 and ASTM D1005 Verification of high electrical reliability properties of thermally conductive insulation layer IPC-TM- 650NO.2.5.6 Thermally conductive low temperature laminated composite layer adhesion (Peel Strength of dielectric layer) Verifying the thermal conductivity of the low temperature composite layer. IPC-TM- 650NO.2.4.9 Coefficient of thermal expansion of dielectric layer Verification of the thermal stability of the thermal insulation layer ASTM E 831 Solder Test for IMS Thermal Insulation Test Verification of Thermal Stability of Thermally Conductive Insulation Layer IPC-TM-650 N0.2.4.13 Table 2 is a summary of the results of three embodiments of the present invention, and the examples are based on The content of the invention is explained by the invention. Table 3 is a comparison example of the capsule I, which is based on the product catalogues of the two commercially available product manufacturers, and the comparative example is based on the Denka product catalogue, Comparative Example 2 It is based on the Laird product catalogue, and the second comparative example is based on the Bergquist product catalogue. The specific examples listed in the present disclosure are mainly related to the embodiment of the present invention. The comparison is merely illustrative of the results of the operation of the present invention in a preferred state, and is not intended to be an act of infringement by the manufacturer of the comparative example. Table 2 Considerations Examples Embodiments Implementation One Two Example Three 13 201108904
導熱高電性可 靠度複合材料層 聚醯亞胺體積百分比 (%) 100 82 75 導熱粉體體積百分比 (%) 0 18 25 導熱粉體種類 … AIN h-BN 乾膜厚度(μ m) 12 18 18 導熱可低溫壓 合複合材料層 混合高分子體積百分 比(%) 60 60 60 導熱粉體種類 A1N AIN AIN 導熱粉體體積百分比 (%) 40 40 40 乾膜厚度(μ m) 37 29 40 絕緣層總厚度(/zm) 49 47 58 熱傳導係數(W/m-K)(ASTME1461) 0.90 1.38 1.55 熱阻(°C-in.2/W) 0.084 0.053 0.058 破壞電壓(KV) 6.93 3.20 4.63 破壞電壓(KV/mil.) 3.54 1.70 1.99 導熱可低溫壓合複合材料層接著力 (Kgfi^cm)(導熱可低溫壓合複合材料層與高電性 可靠度導熱高分子複合材料層及導熱 金屬基材層之間的接著力) 1.084 1.008 1.030 熱膨脹係數(ppm/°C)(4(M50°C) 15-19 8〜17 14〜2 8 金屬導熱絕緣基板特性 .錫爐浸泡測試(288°C/10sec.) Pass Pass Pass • __^ 考量因素 比較例一 比較例二 比較例三 廠商/型號 Denka/K-1 Laird / 1KA04 Bergquist / HT-04503 絕緣層總厚度("m) 100 102 75 熱傳導係數(W/m-K) 2.0(ASTM E1461) 3.0(ASTM D5470) 2.2(ASTM D5470) 熱阻(°C-in.VW) 0.079 0.053 0.053 破壞電壓(KV) 6.8 3.2 6.0 單位厚度之破壞電壓 (KV/mil.) 1.70 0.80 2.00 導熱可低溫壓合複合 材料層接著力(Kgfcm) 2.57 0.80 0.80 熱膨脹係數(ppm/°C) 78 32/81(<Tg/ >Ts) 25/95(<Tg/ >Tg) 金屬導熱絕緣基板特性 14 201108904 錫爐浸泡測試 C288°C/10sec.) Pass Pass Pass 本發明實施例一至實施例三: 所述高電性可靠度導熱高分子複合材料層(12),其高電 性可靠度咼分子樹脂溶液於實施例一至三中均為聚醯胺酸 (Polyamide)之 2-甲基砒啶酮(1_Methyl_2_Pyrr〇lid〇ne,NMp) 高分子溶液,經溶劑烘乾及加溫環化製程後得以形成聚醯 亞胺(Polyimide)高分子,而導熱粉末於實施例一係無添加, 於貫施例二中係添加1 8 %的氮化鋁,於實施例三中係添加 25%的氮化硼,高電性可靠度導熱高分子複合材料層之 乾膜厚度於實施例一為12微米,於實施例二及三均為18 微米; 所述導熱可低溫壓合高分子複合材料層(丨3),於實施例 一至.三中’其熱可塑性高分子均為丁基橡膠共聚物,交聯 劑均為多官能基之芳香族胺類,而導熱粉末均為氮化鋁, 添加量於各實施例中均為40%,導熱可低溫壓合高分子複 s材料層(13)之乾膜厚度於實施例一為37微米,於實施例 二為29微米,於實施例三為40微米。 本發明實施例一與比較例一比較可得知:實施例一未 添加導熱粉體’且導熱絕緣層(A)總厚度僅比較例一之丨/2, 且在導熱絕緣層(A)熱阻值相近下(約〇.〇8 °C-in2/W),實施 例一之破壞電壓(6.93KV)大於比較例一(6.8KV),且實施例 一之單位厚度破壞電壓(3.54KV/mil·)甚至為比較例一 (1.70KV/mil.)之2.08倍’综上所述,實施例一可在導熱絕 緣層(A)總厚度為比較例一之1/2時,達到相同的熱阻及較 高的電性可靠度。 15 201108904 本發明實施例二與比較例二比較可得知,實施例二為 添加氮化鋁導熱粉體於高電性可靠度導熱·高分子複合材料 層(12)中,導熱絕緣層(A)之總厚度僅比較例二之1/2,在導 熱絕緣層(A)熱阻值相近下(0.053 °C-in2/W),實施例二與比 較例二之破壞電壓相同(3.2KV),且實施例二之單位厚度破 壞電壓(1.7KV/mil_)甚為比較例二(〇.8KV/mil.)之 2_125 倍, 综上所述,實施例三添加氮化紹(A1N)導熱粉體後,提高高 電性可靠度導熱高分子複合材料層(12)之熱傳導係數,以降 # 低導熱絕緣層(A)之總熱阻,但仍可維持絕緣層之高電性可 靠度。 本發明實施例三與比較例二比較可得知,實施例三為 添加氮化硼導熱粉體於高電性可靠度導熱高分子複合材料 層(12)中’導熱絕緣層(A)之總厚度僅比較例二之〇.6倍, 在絕緣層熱阻值相近下(約〇.〇5 °C-in.2/W),實施例三之破 壞電壓(4.63KV)大於比較例二(3.2KV),實施例三之單位厚 度破壞電壓(1.99KV/mil·)甚為比較例二(0 8KV/mil.)之2.5 _ 倍’又本發明實施例三與比較例三之比較,實施例三之厚 度為比較例三之0.77倍,絕緣層之熱阻相近下p) 0 05 〇c_ in. /W) ’單位厚度之破壞電壓亦相近(約2.〇KV/mil.),综上 所述’實施例三添加氮化硼(h-BN)導熱粉體後,亦可提高 高電性可靠度導熱高分子複合材料層(丨2)之熱傳導係數及電 性可靠度。 此外’於本發明之所有實施例中,導熱可低溫壓合複 合材料層(13),其與高電性可靠度導熱高分子複合材料層(12) 及導熱金屬基材層(14)之間的接著力均可達1 Kgf/cm以上, 16 201108904 而導熱絕緣層(A)之熱膨脹係數約在3〇ppm/(>c以下,其中 該熱膨脹係數值皆較所有比較例為小,表示本發明之導熱 絕緣層(A)相較於比較例具有較佳的熱尺寸安定性。 實施例與比較例之比較結論說明:本發明可藉由高電 性可罪度導熱鬲分子複合材料層(12)來維持絕緣層整體之電 性可靠度,且降低絕緣層厚度,進而降低絕緣層熱阻,進 而減少導熱粉末在高分子複合材料中之比例,以維持高分 子複合材料之機械性質。 綜上所述’本發明之具低熱阻、低熱膨脹係數及高電 性可靠度之電子元件用導熱基板,係適用於放熱電子元件 之承載,並具備低熱阻、高電性可靠度等優點,且在加溫 過程中,具高尺寸安定性,在承載電子元件之鍍錫鉛製程 時,可提升板材之可靠度。 【圖式簡單說明】 第一圖為本發明之剖視圖。 第二圖為本發明之高電性可靠度導熱高分子複合材料 層之製備流程圖。 第三圖為本發明之導熱可低溫壓合高分子複合材料層 之製備流程圖。 第四圖為現有技術之導熱絕緣金屬基板之剖視圖。 【主要元件符號說明】 (11) 導電金屬層 (12) 高電性可靠度導熱高分子複合材料層 (1 3)導熱可低溫壓合高分子複合材料層 17 201108904 (14)導熱金屬基材層 (A)導熱絕緣層 (20)電子元件 (31) 導電金屬層 (32) 導熱絕緣層 (33) 導熱金屬層 (40)電子元件Thermal conductivity and high reliability reliability Composite layer Polyimine volume percentage (%) 100 82 75 Thermal powder volume percentage (%) 0 18 25 Thermal powder type... AIN h-BN Dry film thickness (μ m) 12 18 18 Thermally Conductive Low Temperature Pressable Composite Layer Mixed Polymer Volume Percent (%) 60 60 60 Thermal Powder Type A1N AIN AIN Thermal Powder Volume Percent (%) 40 40 40 Dry Film Thickness (μm) 37 29 40 Insulation Total thickness (/zm) 49 47 58 Thermal conductivity (W/mK) (ASTME1461) 0.90 1.38 1.55 Thermal resistance (°C-in.2/W) 0.084 0.053 0.058 Destruction voltage (KV) 6.93 3.20 4.63 Destruction voltage (KV/ Mil.) 3.54 1.70 1.99 Thermally Conductive Low Temperature Pressable Composite Layer Adhesion (Kgfi^cm) (Between Thermally Conductive Low Temperature Compression Composite Layer and High Electrical Reliability Thermal Conductive Polymer Composite Layer and Thermal Metal Substrate Layer Adhesion) 1.084 1.008 1.030 Thermal expansion coefficient (ppm/°C) (4 (M50°C) 15-19 8~17 14~2 8 Metal thermal insulation insulating substrate characteristics. Tin furnace soak test (288°C/10sec.) Pass Pass Pass • __^ Considerations Comparison Example 1 Comparative Example 2 Comparative Example 3 Manufacturer / Model Denka/K-1 Laird / 1KA04 Bergquist / HT-04503 Insulation total thickness ("m) 100 102 75 Thermal conductivity (W/mK) 2.0 (ASTM E1461) 3.0 (ASTM D5470) 2.2 (ASTM D5470) Thermal resistance (°C-in.VW) 0.079 0.053 0.053 Destruction voltage (KV) 6.8 3.2 6.0 Destruction voltage per unit thickness (KV/mil.) 1.70 0.80 2.00 Thermally conductive low temperature lamination composite layer adhesion (Kgfcm) 2.57 0.80 0.80 Thermal expansion Coefficient (ppm/°C) 78 32/81 (<Tg/ >Ts) 25/95 (<Tg/>Tg) Metal Thermally Conductive Insulating Substrate Characteristics 14 201108904 Tin Furnace Soaking Test C288°C/10sec.) Pass Pass Pass Embodiment 1 to Embodiment 3 of the present invention: the high-electricity reliability thermal conductive polymer composite material layer (12), and the high electrical reliability 咼 molecular resin solution is polyamine in the first to third embodiments. Polyamide 2-methyl acridone (1_Methyl_2_Pyrr〇lid〇ne, NMp) polymer solution, after solvent drying and heating cyclization process to form a polyimide polymer, and heat conduction The powder is not added in the first embodiment, and in the second embodiment, 18% aluminum nitride is added. In the third embodiment, 25% boron nitride is added, and the dry film thickness of the high-electricity reliability thermal conductive polymer composite layer is 12 micrometers in the first embodiment, and 18 micrometers in the second and third embodiments; The polymer composite material layer (丨3) can be pressed at a low temperature, and in the first to third embodiments, the thermoplastic polymer is a butyl rubber copolymer, and the crosslinking agent is a polyfunctional aromatic amine. The heat conductive powder is aluminum nitride, the amount of addition is 40% in each embodiment, and the dry film thickness of the heat conductive low temperature pressable polymer s material layer (13) is 37 micrometers in the first embodiment, in the second embodiment. It is 29 microns and is 40 microns in the third embodiment. Comparing the first embodiment of the present invention with the first comparative example, it can be seen that the first embodiment has no thermal conductive powder added and the total thickness of the thermally conductive insulating layer (A) is only 丨/2 of the first example, and the thermal conductive layer (A) is hot. The resistance value is similar (about °.〇8 °C-in2/W), the breakdown voltage of Example 1 (6.93KV) is greater than that of Comparative Example 1 (6.8KV), and the unit thickness breakdown voltage of Example 1 (3.54KV/ Mil·) even 2.08 times of Comparative Example 1 (1.70 KV/mil.). In summary, the first embodiment can achieve the same when the total thickness of the thermally conductive insulating layer (A) is 1/2 of the first comparative example. Thermal resistance and high electrical reliability. 15 201108904 The second embodiment of the present invention is compared with the second comparative example. The second embodiment is that the aluminum nitride thermal conductive powder is added to the high-electricity reliability thermal conductive polymer composite layer (12), and the thermal conductive insulating layer (A) The total thickness of the film is only 1/2 of that of the second example. In the thermal insulation layer (A), the thermal resistance is similar (0.053 °C-in2/W), and the destruction voltage of the second embodiment is the same as that of the second embodiment (3.2KV). And the unit thickness breakdown voltage (1.7KV/mil_) of the second embodiment is 2_125 times that of the second comparative example (〇.8KV/mil.). In summary, the third embodiment adds the nitrided (A1N) thermal conductive powder. After the body, the thermal conductivity of the highly conductive reliability thermal conductive polymer composite layer (12) is increased to reduce the total thermal resistance of the low thermal conductive insulating layer (A), but the high electrical reliability of the insulating layer can be maintained. Comparing the third embodiment of the present invention with the second comparative example, the third embodiment is the total of the thermal conductive insulating layer (A) in the high-electricity reliability thermal conductive polymer composite layer (12). The thickness is only 6 times higher than that of the second example. Under the thermal resistance of the insulating layer is similar (about °. 5 ° C - in. 2 / W), the breakdown voltage of the third embodiment (4.63 KV) is greater than that of the second comparative example ( 3.2KV), the unit thickness breakdown voltage of the third embodiment (1.99KV/mil·) is even 2.5 _ times of the second comparative example (0 8KV/mil.) and the third embodiment of the present invention is compared with the third comparative example. The thickness of Example 3 is 0.77 times that of Comparative Example 3. The thermal resistance of the insulating layer is close to p) 0 05 〇c_ in. /W) 'The breakdown voltage per unit thickness is also similar (about 2. 〇KV/mil.), In the above description, the addition of boron nitride (h-BN) thermal conductive powder to the third embodiment can also improve the thermal conductivity and electrical reliability of the highly electrically reliable thermally conductive polymer composite layer (丨2). In addition, in all embodiments of the present invention, the thermally conductive low temperature pressable composite layer (13) is interposed between the highly electrically reliable thermally conductive polymer composite layer (12) and the thermally conductive metal substrate layer (14). The adhesion force can reach 1 Kgf/cm or more, 16 201108904 and the thermal expansion coefficient of the thermal conductive insulating layer (A) is about 3 〇ppm/(>c or less, wherein the thermal expansion coefficient values are smaller than all the comparative examples, indicating The thermally conductive insulating layer (A) of the present invention has better thermal dimensional stability than the comparative example. Comparison of the examples and the comparative examples shows that the present invention can be made by a high electrical sinusity thermal conductivity bismuth molecular composite layer (12) to maintain the electrical reliability of the entire insulating layer, and reduce the thickness of the insulating layer, thereby reducing the thermal resistance of the insulating layer, thereby reducing the proportion of the thermal conductive powder in the polymer composite to maintain the mechanical properties of the polymer composite. In summary, the heat-conducting substrate for electronic components having low thermal resistance, low thermal expansion coefficient and high electrical reliability is suitable for carrying heat-dissipating electronic components, and has low thermal resistance and high electrical reliability. Point, and in the heating process, with high dimensional stability, can improve the reliability of the plate during the tin-plated lead process for carrying electronic components. [Schematic description] The first figure is a cross-sectional view of the present invention. The figure is a flow chart for preparing a high-electricity reliability thermal conductive polymer composite layer according to the present invention. The third figure is a flow chart for preparing a thermally conductive low-temperature pressure-bonded polymer composite material layer according to the present invention. Cross-sectional view of thermally conductive and insulative metal substrate [Description of main component symbols] (11) Conductive metal layer (12) High-electricity reliability thermal conductive polymer composite layer (1 3) Thermally conductive low-temperature pressure-bonded polymer composite layer 17 201108904 ( 14) Thermally conductive metal substrate layer (A) Thermally conductive insulating layer (20) Electronic component (31) Conductive metal layer (32) Thermally conductive insulating layer (33) Thermally conductive metal layer (40) Electronic component