TW201104882A - Thin film solar cell and manufacturing method thereof - Google Patents

Thin film solar cell and manufacturing method thereof Download PDF

Info

Publication number
TW201104882A
TW201104882A TW098125100A TW98125100A TW201104882A TW 201104882 A TW201104882 A TW 201104882A TW 098125100 A TW098125100 A TW 098125100A TW 98125100 A TW98125100 A TW 98125100A TW 201104882 A TW201104882 A TW 201104882A
Authority
TW
Taiwan
Prior art keywords
layer
conductive layer
photoelectric conversion
thin film
solar cell
Prior art date
Application number
TW098125100A
Other languages
Chinese (zh)
Inventor
Chin-Yao Tsai
Original Assignee
Auria Solar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auria Solar Co Ltd filed Critical Auria Solar Co Ltd
Priority to TW098125100A priority Critical patent/TW201104882A/en
Priority to US12/842,048 priority patent/US8212143B2/en
Publication of TW201104882A publication Critical patent/TW201104882A/en
Priority to US13/104,645 priority patent/US20110209750A1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

A thin film solar cell including a substrate, a first conducting layer, a photovoltaic layer, a second conducting layer and a passivation layer is provided. The first conducting layer disposed on the substrate has a plurality of openings, so as to divide the first conducting layer into bottom electrodes of a plurality of photovoltaic elements. The photovoltaic layer disposed on the first conducting layer has a plurality of openings. The second conducting layer is disposed on the photovoltaic layer and electrically connected with the first conducting layer via the openings. The passivation layer is disposed onto the sidewall of the photovoltaic layer, so as to electrically isolate the photovoltaic layer and the second conducting layer within the openings. A fabrication method of the thin film solar cell is also provided.

Description

201104882 31089twt:doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於-種太陽能電池及其製作方法,且特 別是有關於一種具有保護層的薄骐太陽能電池及其製作方 法。 【先前技術】 隨著環保意識抬頭,節能減碳的概念逐漸受眾人所重 視,再生能源的開發與利用成為世界各國積極投入發展的 重點。其中’可將太陽光轉換成電能的太陽能電池更^ 前最被看㈣明星產業,目此眾家廠商祕投人太陽能 池的製造。目前’太陽能電池的關鍵問題在於其光 效率的提升,而能夠提升太陽能電池的光電轉換效二 味著產品競喜六66接斗。 1 'E' 圖1為習知-種薄膜太陽能電池的剖面示意圖 太陽能電池⑽包括基板110、第一導電層12 = 層130以及第二導制140。其中,薄膜太陽能電池l n 具有彼此串聯的多個光伏元件1G2。光電轉換 有PIN接面的光電轉換結構。 、3 為具 舉例來說’當光線L由外側照射至薄 , ,時’光電轉換層130適於受光能而產生電^ =池 並藉由PIN接面所形成的内建電場使電電二’十, —導電層12〇以及第二導電層140移動;2往第 的儲存形態,此時若外加負載電路或電 電能 J衣夏,便可提供 201104882 31089twf.doc/n 電能=電路或裝置進行驅動。 易在靠近第= = = f也100中’由於電子電洞對容 生表面再社二/ 〇與光電轉換層130的界面S處產 膜太陽能電、、Ι =ΓΓ/Γ_η^η),如此會影響導致薄 ’也100的光電轉換效率。 【發明内容】 低電膜太陽能電池’其可降 本發明二: 具有較佳的光電轉換效率。 作出上、十) 膜太陽能電池的製作方法,其能製 作出上述之賴太陽能電池。 ^ 導電換Γ物太陽能電池,其包括基板、第-屛配晋於其^ 、層、弟二導電層以及保護層。第一導電 ‘成多個献反第:γ,以使第一導電層分 層上並且有多個】二^电極。光電轉換層配置於第一導電 導電/。、第二導^ 而多個第二開σ暴露部分第一 口盘第置於光電轉換層上並透過多個第二 三開口且二連接’其中第二導電層具有多個第 置於各第二門口ίτ;暴露部分第—導電層。保護層配 μ 'α 汗 則壁上、並位於光電轉換層盥第-導電 層之間,以使位於多個笛_門口如t付伏I、弟—冷电 電層電性絕緣。 #—開_光電無層與第二導 在本發明之—實施例中, 於0.1奈米至10奈米之π =佧又層的厚度貫質上介 之間。在—貫施例中,上述保護層的 201104882 31USytwt.doc/n 厚度較佳為介於1奈米至5奈米之間。 料實施例中,上述保護層的材質為介電材 材料、或含有氧或是氮衫的化合物。在 矽。 抓貝例如疋軋化石夕、統石夕或氮氧化- 在本發明之一實施例中, 半導體層與第二型半導體層。在層=第:型 換層更包括本質層,配置於第一型半 轉 體層之間。 導體層第一型半導 半導m 型半導體層為p型 2體層為Ν型半導體層’而第二型半導體層為。型4 型半實關巾,上述第—財導體層、第二 薄膜:的材料為元素職表四族元素半導體 二」#素週期表三五族化合物半導體薄膜、元素週期表 =、Mb合物半導體薄膜或有機化合物半導體薄膜或其^ 導體之Γ實施例中,上述元素週期表四族元素半 素薄膜、、晶相、多晶相、非晶相與微晶相之碳元 錯薄膜/ 2薄膜、鍺元素薄膜、碳切薄膜或是石夕化 缉補至少其—或是频合。 物半一實施例令,上述元素週期表三五族化合 、、體⑽包含有坤化鎵(GaAs)化合物薄膜或石粦化銦鎵 201104882 31089twf.doc/n (InGaP)化合物薄膜至少其一或是其組合。 在本發明之—實施例中,上述元素週期表二六族化合 物半導體薄膜包含有銅銦硒(CIS)化合物薄膜、鋼銦鎵石°西 (CIGS)化合物薄膜、碲化鎘(CdTe)化合物薄膜至 一 是其組合。 '、况 在本發明之一實施例中,上述有機化合物半導體薄膜 包含小分子有機化合物或是共輛高分子施體與奈米 a 體之混合物。 ’、’、〃、厌本文BACKGROUND OF THE INVENTION 1. Field of the Invention . [Prior Art] With the rise of environmental awareness, the concept of energy conservation and carbon reduction has gradually been emphasized by the audience. The development and utilization of renewable energy has become the focus of active development in all countries of the world. Among them, the solar cell that converts sunlight into electric energy is the most watched (four) star industry, and it is the manufacture of the solar pool of the secret manufacturer. At present, the key problem of solar cells is that their light efficiency is improved, and the photoelectric conversion efficiency of solar cells can be improved. 1 'E' FIG. 1 is a schematic cross-sectional view of a conventional thin film solar cell. The solar cell (10) includes a substrate 110, a first conductive layer 12 = a layer 130, and a second conductive 140. Among them, the thin film solar cell 11 has a plurality of photovoltaic elements 1G2 connected in series to each other. Photoelectric conversion A photoelectric conversion structure with a PIN junction. 3, for example, 'When the light L is irradiated from the outside to the thin, the photoelectric conversion layer 130 is adapted to receive light energy to generate electricity and the built-in electric field formed by the PIN junction makes the electric two Ten, the conductive layer 12〇 and the second conductive layer 140 move; 2 to the first storage form, at this time, if a load circuit or electric energy J is applied, 201104882 31089twf.doc/n electric energy=circuit or device can be provided drive. It is easy to approach the ===f and also in the '100' due to the electron hole to the surface of the regenerative surface of the second surface and the photoelectric conversion layer 130, the solar energy, Ι =ΓΓ/Γ_η^η) Will affect the photoelectric conversion efficiency resulting in thin 'also 100. SUMMARY OF THE INVENTION A low-electrode solar cell can be degraded. The invention 2 has better photoelectric conversion efficiency. A method for fabricating a film solar cell of the above, tenth, which can make the above-mentioned solar cell. ^ Conductive switch solar cell, which comprises a substrate, a first layer, a layer, a second layer, and a protective layer. The first conductive ‘multiple anti-phase: γ, so that the first conductive layer is layered and has a plurality of electrodes”. The photoelectric conversion layer is disposed on the first conductive conductive/. And the second conductive portion and the plurality of second open σ exposed portions of the first disk are placed on the photoelectric conversion layer and are transmitted through the plurality of second three openings and the two connections are formed, wherein the second conductive layer has a plurality of first places Two gates ίτ; exposed part of the first conductive layer. The protective layer is provided with μ 'α sweat on the wall and between the photoelectric conversion layer and the first conductive layer so as to be electrically insulated from a plurality of flute gates such as t-volts I and the cold-electric layer. #—开_光电无层和第二导 In the embodiment of the present invention, between 0.1 nm and 10 nm, the thickness of the layer is between the upper layers. In the embodiment, the thickness of the above-mentioned protective layer 201104882 31 USytwt.doc/n is preferably between 1 nm and 5 nm. In the embodiment, the protective layer is made of a dielectric material or a compound containing oxygen or a nitrogen shirt. In 矽. Grabs, for example, rolling fossils, ores, or oxynitride - in one embodiment of the invention, a semiconductor layer and a second type of semiconductor layer. In the layer = type: layer, the layer further includes an intrinsic layer disposed between the first type of semi-transformed layers. Conductor layer The first type of semiconductive semiconducting m-type semiconductor layer is a p-type 2 body layer which is a germanium type semiconductor layer ' and a second type semiconductor layer. Type 4 semi-solid sealing towel, the above-mentioned first-conductor layer and second film: the material of the elemental group of the four elements of the semiconductor semiconductor 2" periodic table of the three-five semiconductor film, periodic table =, Mb compound In the embodiment of the semiconductor thin film or the organic compound semiconductor thin film or the conductor thereof, the above-mentioned four-element thin film of the elemental periodic table, the crystal phase, the polycrystalline phase, the carbon phase error film of the amorphous phase and the microcrystalline phase / 2 Film, tantalum film, carbon cut film or Shi Xihua complement at least - or frequency. According to an embodiment of the invention, the above-mentioned periodic table of the three or five groups of the elements, the body (10) comprises a film of a gallium arsenide (GaAs) compound or a film of a compound of indium gallium arsenide 201104882 31089 twf.doc/n (InGaP) at least one or It is a combination. In an embodiment of the present invention, the hexa-hexa compound semiconductor thin film of the periodic table includes a copper indium selenide (CIS) compound film, a steel indium gallium (CIGS) compound film, and a cadmium telluride (CdTe) compound film. The first one is its combination. In one embodiment of the invention, the organic compound semiconductor thin film comprises a small molecule organic compound or a mixture of a plurality of polymer donors and a nano a body. ‘,’, 〃, 厌 this article

在本發明之一實施例中,上述光電轉換層更包 ϊ =換層、4光電轉換層或三層以上光電轉換層H 豐結構。 曰j尹 ㈣t發明之—實施例中,上述第一導電層的材料為透 一導電層,而第二導電層包含反射層與透明導電層至少其 在本發明之一實施例中,上述第二導電戶 ^電層,而該第—導電層包含反射層與透i導電層至^ 括下能料㈣財法,其包 首先k供一基板。然後,形成當— 板ΐ二接著,於第-導電層上形成多個第1 口 "t 疗轉換層於第一導電層上。繼之,於光電 二成 夕個弟二.以暴露部份第 ^形成 於多個第二開口之側壁上。然後,形成第:導 201104882 3lusytwt.d〇c/n 接,而第丄過第二開口與第一導電層連 曝露部分第—導^ 開口’亚且多個第三開口 形成自體氧化月ί或二=處i述形成保護層的方法包括 二二中;上述形成第 程或是機械力移除製程。'方去包括進仃雷射製程、钱刻製 轉換導陽能電池具有設置於光電 的光電轉換層與第二導電層電;j:緣可:倾第二開口内 低電子電洞對在光電辕拖ώ #二、’此—來,將可降 再結合的機會,進提導電層的界面附近發生 率。另外,本發的光電轉換效 牙製作出上料媒鴻料^^场▲魏㈣造方法, 為讓本發明之上述特徵和優點 攀實施例,並配合所附圖式作詳細說明如γ易懂,下文特 f實施方式j 圖2為本發明—實施例之薄暝太干 意圖。讀參照圖2,薄膜太陽能電池2〇〇=池局部剖面示 ,導電層220、光電轉換層23 匕括基板210、第 〜一. 導電層冰以及保護 201104882 31089twf.doc/n 層250。在本實施例中,基板21〇例如是一透明基板,如: 玻璃基板。 苐^電層220配置於基板210上並具有多個第一開 口 T1 ’以使第一導電層21〇分隔成多個光伏元件的下 電極三在本實施例中,第一導電層220為-透明導電層, ,材貝可k氧化鋅、銦縣化物、崎氧錄、鋼錫辞 ^物、轉氧化物、轉氧化物、驗氧化物、録辞氧 鲁 鎵鋅氧化物或錫氟氧化物至少其中之一。 一在另—未繪示的實施例中,第一導電層22〇也可以是 (未緣示)與上述透明導電層的疊層,其中反射 ^ :導電層與基板之間,而反射層的材質可以使 卜卜冰士銀(Ag)、顧(Μ〇)或銅(CU)等反射性較佳的金屬。 明並不限制薄膜太陽能電池中光伏元件搬 的面積或數量。 第一 5電t專換層230配置於第-導電層220上並具有多個 2’分別暴露部分第—導電層22G,如U2所示。 芦4 = 1二薄膜太陽能電池2〇0是一種單一光電轉換 能電池膜層結構,惟本發明不限於此。在其 例+ ’薄膜太陽能電池2〇0也可以是非晶石夕 = = 能電池、堆疊式—) 、A 一層式(tnPle)矽缚膜太陽能電池。 轉換本發明一實施例的薄膜太陽能電池,其光電 i W剖面不意圖。請參照圖2及圖3A,詳細地 上姑轉換層23Q例如是具有第-型半導體層232、 201104882 31U^ytwtdoc/n 本質層236與第二型半導體層234。其中第一型半導體層 232為P型半導體層,而第二型半導體層234為n型半導 體層。換言之,本實施例的光電轉換層23〇為一種piN光 電轉換結構,在部分實施例中,光電轉換層232也可以是 不具有本質層236的PN光電轉換結構。在另一實施例中, 上述光電轉換層23〇的第一型半導體層2幻可為n型半導 體層,而光電轉換層230的第二型半導體層234可為?型 圖3B為本發明另一實施例的薄瞑太陽能電池,豆 電轉換層的局部剖面示意圖。請參照圖2b 還可以是如圖3B所示的雙層^ 層二其中光電轉換層23〇包括第—光電轉換層施以及第In an embodiment of the invention, the photoelectric conversion layer further comprises a layer, a 4 photoelectric conversion layer or a three-layer photoelectric conversion layer. In an embodiment, the material of the first conductive layer is a conductive layer, and the second conductive layer comprises a reflective layer and a transparent conductive layer. At least in an embodiment of the present invention, the second The conductive layer comprises a reflective layer and a transparent conductive layer to the lower energy material (4), and the package is first supplied to a substrate. Then, a plurality of first "t treatment conversion layers are formed on the first conductive layer on the first conductive layer. Then, in the photocell, the second is formed on the side wall of the plurality of second openings. Then, forming a first: 201105882 3lusytwt.d〇c/n connection, and a second opening through the second opening and the first conductive layer, the exposed portion of the first opening and the third opening forming the auto-oxidation month Or the method of forming the protective layer includes the second or the second; the above-mentioned forming the first process or the mechanical force removing process. 'Party to include the laser process, the money engraving conversion solar cell has a photoelectric conversion layer and a second conductive layer disposed on the photoelectric; j: edge: tilting the lower opening of the lower electronic hole in the photoelectric辕 dragging #2, 'this-to, will be able to reduce the chance of recombination, the incidence near the interface of the conductive layer. In addition, the photoelectric conversion effect tooth of the present invention produces a loading medium, a field ▲ Wei (four) manufacturing method, in order to make the above-mentioned features and advantages of the present invention climb the embodiment, and the detailed description of the drawing is as γ It is understood that the following is a description of the embodiment of the present invention. Referring to Fig. 2, a thin film solar cell 2 〇〇 = a partial cross section of the cell, a conductive layer 220, a photoelectric conversion layer 23 comprising a substrate 210, a first to a conductive layer of ice, and a layer of protection 200404882 31089twf.doc/n 250. In the present embodiment, the substrate 21 is, for example, a transparent substrate such as a glass substrate. The electrical layer 220 is disposed on the substrate 210 and has a plurality of first openings T1 ′ to divide the first conductive layer 21 成 into the lower electrodes of the plurality of photovoltaic elements. In the embodiment, the first conductive layer 220 is - Transparent conductive layer, bismuth zinc oxide, indium statate, sulphate, steel tin, oxide, oxide, oxide, osmium oxygallium oxide or tin oxyfluoride At least one of them. In another embodiment, not shown, the first conductive layer 22 can also be a laminate of the transparent conductive layer (not shown), wherein the reflective layer is between the conductive layer and the substrate, and the reflective layer is The material can be made of a highly reflective metal such as Bubs Silver (Ag), Gu (Μ〇) or copper (CU). It does not limit the area or amount of photovoltaic elements moved in thin film solar cells. The first electrical circuit 230 is disposed on the first conductive layer 220 and has a plurality of 2' exposed portions of the first conductive layer 22G, as shown by U2. The reed 4 = 1 thin film solar cell 2 〇 0 is a single photoelectric conversion energy cell film layer structure, but the invention is not limited thereto. In the case of the example, the thin film solar cell 2〇0 can also be an amorphous stone == energy battery, stacked type-), A one-layer (tnPle) tantalum film solar cell. In the case of converting a thin film solar cell according to an embodiment of the present invention, the photoelectric i W profile is not intended. Referring to FIG. 2 and FIG. 3A, the upper switching layer 23Q has, for example, a first-type semiconductor layer 232, a 201104882 31U^ytwtdoc/n essential layer 236, and a second-type semiconductor layer 234. The first type semiconductor layer 232 is a P type semiconductor layer, and the second type semiconductor layer 234 is an n type semiconductor layer. In other words, the photoelectric conversion layer 23 of the present embodiment is a piN photoelectric conversion structure, and in some embodiments, the photoelectric conversion layer 232 may also be a PN photoelectric conversion structure having no essential layer 236. In another embodiment, the first type semiconductor layer 2 of the photoelectric conversion layer 23A may be an n-type semiconductor layer, and the second type semiconductor layer 234 of the photoelectric conversion layer 230 may be? Figure 3B is a partial cross-sectional view showing a soybean-electric conversion layer of a thin tantalum solar cell according to another embodiment of the present invention. Referring to FIG. 2b, it may be a double layer as shown in FIG. 3B. The photoelectric conversion layer 23 includes a first photoelectric conversion layer and a second

Li轉換層23%。在圖3B所示的實施例中,第〜光電 ^換層230a例如是具有第―型半導體層⑽、第〜本質 :236a與第二型半導體層234a。其中第_ 、 為P型半導體層,而第二型半導體層234^Ν型半導體 層。在其他實施例中,第—光電轉換層23Ga也可以是不具 有第一本質層236a的PK[半導體堆疊結構。 類似地,第二光電轉換層230b例如是具有第〜型半 導體層232b、第二本質層236b與第二型半導體層2灿, 其中第-型半導體層232b》p型半導體層,而第二型半 導體層234b $ N财導體層。同樣地,本實施例的第二 光電轉換層230b亦為—種piN半導體堆疊結構。然而, 在其他實施例中,第二光電轉換層23Gb也可以是不具有第 201104882 31089twf.doc/a 二本質層230b的PN半導體堆疊結構。 在另-實施例中,上述第-光電轉換層23〇 型半導體層232a與第二光電轉換層23〇b的第—型丰'曾一 層機可為N型半導.體層,而第一光電轉換層μ = 二型半導體層23½與第二光電轉換層23〇b :弟 體層234b可為P型半導體層。 —半導 上述實施例的光電轉換層230僅為舉例說明, 並不限制光電轉換層230中所使用光電轉換層的#^日月 或結構,本領域具通常知識者當可視需要而加以調^数目 在上述的實施例中,光電轉換層23〇可 ^上四族元素碳、梦或是鍺所形成之半導體_,例=期 ^晶相、多晶相、非晶相與微晶相之碳元素薄膜、夸 厚,、錯元素_、碳切_或是魏_膜至少发f 或?其組合。舉例來說’光電轉換層挪的材料除 外’其材料亦可以是銅銦鎵硒(⑽)、鎘化碲(CdT: t、,且合,,使得本實施例之薄膜太陽能電池2⑽形成— 、·5錮鎵赠膜太陽能電池或魏碲薄膜太陽能電^。 以是ΐ分實施例中,光電轉換層23G的材料還可 導體薄膜或有機化合物半導體薄膜或t rr Λ . δ —五族化合物半導體薄膜包括:砷化銨 '或碟^_(Ιη(Μ>)化合物薄膜至少其 括^ ί 期表二六族化合物半導體薄膜包 1 ^化合物薄膜、銅銦鎵硒(CIGS)化合物薄 11 201104882 31089twf.doc/n 膜、碲化鎘(CdTe)化合物薄膜至少其一或是其組合。有 機化合物半導體薄膜則包括共軛高分子施體與奈米碳球受 體之混合物。 請繼續參考圖2,第三導電層240配置於光電轉換層.·: 230上並透過第二開口 T2與第一導電層220電性連接,其 中第二導電層240具有多個第三開口 T3’且第三開口暴露 部分第一導電層220。 在本實施例中’第二導電層240可以是採用上述的透 明導電層所提及的材質,在此不再贅述。此外,第二導電 層240更可以包括反射層,其中反射層位於上述透明導電 層上。在此需要說明的是,當第二導電層240具有反射層 時’第一導電層220僅可為透明導電層。反之,當第一導 電層220具有反射層的設計時,第二導電層240僅可為透 明導電層,而不具有上述的反射層。在一實施例中,第一 ‘電層220與第二導電層240也可以皆為透明導電層,而 無反射層的配置。換言之,此部分的設計可依使用者的需 求而作調整(例如是製作雙面受光的薄膜太陽能電池或單 面受光的薄膜太陽能電池),上述僅為舉例說明,非限於 此。 ' 才寸別疋,溥膜太陽能電池200具有保護層250的配 置。其中,保護層250配置於各第二開口 T2之側壁sw ,位於光電轉換層23Q與第二導電層之間,以使位於 第一開σ T2内的光電轉換層23()與第二導電層 絕緣。在本實施例中,保護層-的厚度實質上介於 201104882 31089twf.d〇c/n 較佳可介於實施例中,保護層携的厚度 可為介電材料二緣材間。保護層250的材質例如 言,保護層250.==或含有氧元素的化合物。具體而 之類的絕緣物質。是氧切、氮切或氮氧化石夕 電子陽(未㈣)照射而產生的The Li conversion layer is 23%. In the embodiment shown in Fig. 3B, the first photoelectric conversion layer 230a has, for example, a first-type semiconductor layer (10), a first-type semiconductor layer 236a, and a second-type semiconductor layer 234a. Wherein the first _ is a P-type semiconductor layer and the second-type semiconductor layer is a 234-type semiconductor layer. In other embodiments, the first photoelectric conversion layer 23Ga may also be a PK [semiconductor stack structure] having no first intrinsic layer 236a. Similarly, the second photoelectric conversion layer 230b has, for example, a first-type semiconductor layer 232b, a second intrinsic layer 236b, and a second-type semiconductor layer 2, wherein the first-type semiconductor layer 232b′p-type semiconductor layer, and the second type Semiconductor layer 234b $ N financial conductor layer. Similarly, the second photoelectric conversion layer 230b of the present embodiment is also a piN semiconductor stacked structure. However, in other embodiments, the second photoelectric conversion layer 23Gb may also be a PN semiconductor stacked structure that does not have the second layer 230b of the 201104882 31089 twf.doc/a. In another embodiment, the first-type photoelectric conversion layer 23 of the first semiconductor layer 232a and the second photoelectric conversion layer 23〇b may be an N-type semi-conducting layer, and the first photoelectric The conversion layer μ = the two-type semiconductor layer 231⁄2 and the second photoelectric conversion layer 23〇b: the precursor layer 234b may be a P-type semiconductor layer. The semiconductor conversion layer 230 of the above-described embodiment is merely illustrative, and does not limit the time period or structure of the photoelectric conversion layer used in the photoelectric conversion layer 230, and those skilled in the art can adjust it as needed. In the above embodiments, the photoelectric conversion layer 23 may be a semiconductor formed by a group of four elements of carbon, a dream or a germanium, for example, a phase, a polycrystalline phase, an amorphous phase, and a microcrystalline phase. Carbon film, exaggerated, wrong element _, carbon cut _ or Wei _ film at least f or a combination thereof. For example, 'the material except the material of the photoelectric conversion layer' may be copper indium gallium selenide (10), cadmium telluride (CdT: t, and, in combination, so that the thin film solar cell 2 (10) of the present embodiment is formed - · 5 锢 gallium donated film solar cell or Wei 碲 thin film solar power ^. In the embodiment, the material of the photoelectric conversion layer 23G may also be a conductor film or an organic compound semiconductor film or t rr Λ . δ - group compound semiconductor The film comprises: a film of ammonium arsenide or a film of at least Ιη(Μ>) at least a compound of the semiconductor film package 1 ^ compound film, copper indium gallium selenide (CIGS) compound thin 11 201104882 31089twf .doc/n film, cadmium telluride (CdTe) compound film at least one or a combination thereof. The organic compound semiconductor film includes a mixture of a conjugated polymer donor and a nanocarbon balloon acceptor. Please continue to refer to FIG. The third conductive layer 240 is disposed on the photoelectric conversion layer . . . , 230 and electrically connected to the first conductive layer 220 through the second opening T2 , wherein the second conductive layer 240 has a plurality of third openings T3 ′ and the third opening is exposed. Part of the first conductive layer 2 In the present embodiment, the second conductive layer 240 may be a material mentioned in the above transparent conductive layer, and will not be described herein. Further, the second conductive layer 240 may further include a reflective layer, wherein the reflective layer is located. On the above transparent conductive layer, it should be noted that when the second conductive layer 240 has a reflective layer, the first conductive layer 220 can only be a transparent conductive layer. Conversely, when the first conductive layer 220 has a reflective layer design. The second conductive layer 240 can only be a transparent conductive layer, and does not have the above reflective layer. In an embodiment, the first 'electric layer 220 and the second conductive layer 240 can also be transparent conductive layers without reflection In other words, the design of this part can be adjusted according to the needs of the user (for example, a double-sided light-receiving thin film solar cell or a single-sided light-receiving thin film solar cell), which is merely illustrative and not limited thereto. The film solar cell 200 has a configuration of the protective layer 250. The protective layer 250 is disposed on the sidewall sw of each of the second openings T2, and is located in the photoelectric conversion layer 23Q and the second conductive layer. In order to insulate the photoelectric conversion layer 23() located in the first opening σ T2 from the second conductive layer. In the embodiment, the thickness of the protective layer is substantially between 201104882 31089 twf.d〇c/n. In an embodiment, the thickness of the protective layer may be between the two materials of the dielectric material. The material of the protective layer 250 is, for example, a protective layer 250.== or a compound containing oxygen. Specifically, an insulating material. It is produced by oxygen cutting, nitrogen cutting or nitrous oxide cation (not (four)) irradiation.

轉換層230與第二導電層鳩之間的保護 ^0,如此可使第二導電層24〇與位於第二開心内的 換層23G彼此電性絕緣,進而可降低電子電洞對在 T2之側壁sw附近產生再結合。換言之,相較 於不/、有賴層250的賴太陽能電池1G 電池可具有較佳的光電轉換效率。 祕太“ 以下將說明上述薄膜太陽能電池2〇〇的製造方法。 圖4A至圖4H為本發明一實施例之薄膜太陽能電池 的製作流關。ff先參關4A,首先,提供上述的基板 210,基板210例如是玻璃基板。 然後,如圖4B所示,形成第一導電層22〇於基板21〇 上。在本實施例中,第一導電層220例如是使用上述所提 及的透明導電層的材質,而形成第一導電層22〇的方法例 如是使用濺鍍法(sputtering)、金屬有機化學氣相沈積 (chemical vapor deposition,CVD)法、或蒸鍍法 (evaporation)。 接著,如圖4C所示,於第一導電層220上形成多個 13 201104882 31089twf.doc/a 苐-開Π Tl’以使第—導電層,分隔成多個光伏元件的 下電極。在本實施例中’形成第一開口 Τ1的方式例如是 採用雷射製程、則製程或是機械力移除製程。 ^再來,如圖4D所示,形成上述的光電轉換層230於 第-導電層22〇上。在本實施例中,形成光電轉換層23〇 的方式例如是例如是採用射頻電漿輔助化學氣相沉積法 (Radio Frequency Plasma Enhanced Chemical Vapor Deposition, RF PECVD)、超高頻電漿輔助化學氣相沉積法卿 Frequency Plasma Enhanced Chemical Vapor Deposition, VHF · PECVD)、或者是微波電漿輔助化學氣相沉積法(驗··The protection between the conversion layer 230 and the second conductive layer ,, so that the second conductive layer 24〇 and the layer 23G located in the second happy layer are electrically insulated from each other, thereby reducing the electron hole pair at the T2 Recombination occurs near the side wall sw. In other words, the solar cell 1G battery of the layer 250 can have better photoelectric conversion efficiency than the layer 250 solar cell. The following is a description of the manufacturing method of the above-mentioned thin film solar cell 2A. Fig. 4A to Fig. 4H are diagrams showing the fabrication of a thin film solar cell according to an embodiment of the present invention. ff firstly participates in 4A, firstly, the substrate 210 described above is provided. The substrate 210 is, for example, a glass substrate. Then, as shown in Fig. 4B, a first conductive layer 22 is formed on the substrate 21A. In the present embodiment, the first conductive layer 220 is, for example, transparent conductive as mentioned above. The material of the layer, and the method of forming the first conductive layer 22 is, for example, sputtering, chemical vapor deposition (CVD), or evaporation. As shown in FIG. 4C, a plurality of 13 201104882 31089 twf.doc/a 苐-opening T1' are formed on the first conductive layer 220 to separate the first conductive layer into the lower electrodes of the plurality of photovoltaic elements. In this embodiment The manner of forming the first opening Τ 1 is, for example, a laser process, a process, or a mechanical force removal process. Further, as shown in FIG. 4D, the above-described photoelectric conversion layer 230 is formed on the first conductive layer 22 In this embodiment For example, the method of forming the photoelectric conversion layer 23 is, for example, Radio Frequency Plasma Enhanced Chemical Vapor Deposition (RF PECVD), ultra high frequency plasma assisted chemical vapor deposition (Frequency Plasma). Enhanced Chemical Vapor Deposition, VHF · PECVD), or microwave plasma assisted chemical vapor deposition (test ··

Plasma Enhanced Chemical Vapor Deposition, MW PECVD )。 其中光電轉換層230的沉積厚度可視使用者的需求而定。 繼之,於光電轉換層230上形成多個第二開口 T2以 暴露=份第一導電層220,如圖犯所示。在本實施例中, 形成第二開口丁2的方式例如是採用雷射製程、蝕刻製程 或是機械力移除製程。 接著,开>成保護層250於第二開口 Τ2之側壁SW上, ^ 如,4F所示。在本實施例中,形成保護層25〇的方式例 · 如是以c〇2電漿處理Ρ以於光電轉換層23〇位於第二開口 T2的側壁SW上氧化,進而形成上述的保護層25〇。在本 實施例中,可藉由改變C〇2電漿處理?.的製程參數,如: 時間、氣體壓力、輸出功率等參數,以調整保護層25〇之 厚度。而在本實施例中,保護層25〇的厚度實質上介於〇1 奈米至10奈米之間,在部分實施例中,保護層25〇的厚度 14 201104882 31089twf.doc/n 實質上介於1奈米至5奈米之間為較佳。此外,在部分實 施例中,也可以使用形成自體氧化層的方式來形成保護^ 250。 又曰 詳細而言,在進行圖4F的步驟前,可先於光電轉換 層230上方(第一導電層220之對向側)形成較薄之氧化 層,如此,例如在進行c〇2電漿處理P時,光電轉換層23〇 上方較不易形成過厚的氧化層而增加各光伏元件2〇2間的 串聯電阻。在其他實施例中,亦可在此c〇2電漿處理p後, 例如以研磨或其他方式減少位於光電轉換層23〇上方的氧 化層厚度。上述僅為形成保護層230的其中一種方式。在 另貫施例中,也可以採用其他適當製程於側壁SW上形 成具有上述材料的保護層250。 然後,形成上述第二導電層240於光電轉換層230 上其中第一導電層240透過第二開口 T2與第一導電層 220電性連接,如圖4G所示。其中,第二導電層通常 作^多個光伏元件202的上電極。在本實施例中,形成第 二^電層240的方法例如是使用上述濺鍍法、金屬有機化 车氣相^尤積法、或蒸鑛法,而其材質例如是前述之透明導 電層材質,在此便不再贅述。 一接著,可選擇性地進行如圖4H所示之步驟。如圖4 1例如可使用雷射製程、蝕刻製程或是機械力移除製 形成多個第三開口 T3,其中各第三開口 丁3曝露部 二^〜導電層220。至此,即完成上述圖2所示之薄膜太 月匕電池200的製作流程。 201104882 3108Vtwt..doc/i\ 需要說明的是,若第二導電層240為疊層結構,如: 透明導電層與反射層,而第一導電層22〇為透明導電層。 此時,可先形成透明導電層於半導體疊層23〇上, 反射層於透明導電層上'接-著再進行上述之圖4H的^ 步驟’即可形成-種僅可使用單面照光的薄膜太陽能^也。 另外,第一導電層220也可以是疊層結構,如:及 f與透明導電層的疊層,如此亦可軸另—料面照的 薄膜太陽能電池’其製作方法可參考上述,在此*再警、 惟敝意的是,此時第二導電層·僅可為透明導|層。’ 来+ϋΓ:由於本發_薄膜太陽能電池具有設i於 弟二導電層之間的保護層,因此當薄膜太陽 1電池受猶照射而綺光_換時 、 對將不易在光電轉換層盥第_導 生的电子-电洞 =換§之’本發明的薄膜太陽能電池可 ^ 轉換效率。另外,太秣B日々爲ηιί 另罕又仏的光黾 賴太··的製造方法可 便用間早的步驟在賴太陽能電 而提高薄膜太陽能電池的性能。-成上核禮層,進 雖然本發明已以實施你丨鹿雨 本發明,任何所屬技術 ^ σ ^其亚非用以限定 本發明之精神和範圍二=通常知識者,在不脫離 明之保護範圍當視後附之申請專利本發 【圖式簡單說明】 圖1為習知一種薄膜 处杂 圖2為本發明一每、此电池的局部剖面示意圖。 ^例之薄膜太陽能電池的局部剖面 16 201104882 31089tvvf.doc/n 示意圖。 圖3A為本發明一實施例的薄膜太陽能電池,其光電 轉換層的局部剖面示意圖。 圖3B為本-發明另一實施例的薄膜太陽能電池,其光 電轉換層的局部剖面示意圖。 圖4A至圖4H為本發明一實施例之薄膜太陽能電池 的製作流程圖。 【主要元件符號說明】 100、200 :薄膜太陽能電池 102、202 :光伏元件 110、210 :基板 120、220 :第一導電層 130、230 :光電轉換層 140、240 :第二導電層 232、232a、232b :第一型半導體層 236、236a、236b :本質層 234、234a、234b :第二型半導體層 250 :保護層 T1 :第一開口 T2 :第二開口 T3 :第三開口 L :光線 S :界面 SW :側壁 17Plasma Enhanced Chemical Vapor Deposition, MW PECVD). The deposition thickness of the photoelectric conversion layer 230 may depend on the needs of the user. Next, a plurality of second openings T2 are formed on the photoelectric conversion layer 230 to expose = a portion of the first conductive layer 220, as shown. In the present embodiment, the second opening 2 is formed by, for example, a laser process, an etching process, or a mechanical force removal process. Then, the protective layer 250 is formed on the sidewall SW of the second opening ,2, as shown by 4F. In the present embodiment, a method of forming the protective layer 25A is performed by plasma treatment of c〇2 to oxidize the photoelectric conversion layer 23 on the side wall SW of the second opening T2 to form the above-mentioned protective layer 25〇. . In this embodiment, can the plasma treatment be changed by C?2? Process parameters such as time, gas pressure, output power, etc., to adjust the thickness of the protective layer 25〇. In this embodiment, the thickness of the protective layer 25A is substantially between 〇1 nm and 10 nm. In some embodiments, the thickness of the protective layer 25〇14 201104882 31089twf.doc/n substantially It is preferably between 1 nm and 5 nm. Further, in some embodiments, the protection 250 may be formed using a method of forming an auto-oxidation layer. Further, in detail, before performing the step of FIG. 4F, a thin oxide layer may be formed before the photoelectric conversion layer 230 (opposite side of the first conductive layer 220), such as, for example, performing c〇2 plasma. When P is processed, it is less likely to form an excessively thick oxide layer above the photoelectric conversion layer 23 to increase the series resistance between the photovoltaic elements 2〇2. In other embodiments, the thickness of the oxide layer above the photoelectric conversion layer 23〇 may also be reduced, for example, by grinding or otherwise, after the plasma treatment of p. The above is only one of the ways to form the protective layer 230. In another embodiment, a protective layer 250 having the above materials may be formed on the sidewall SW by other suitable processes. Then, the second conductive layer 240 is formed on the photoelectric conversion layer 230, wherein the first conductive layer 240 is electrically connected to the first conductive layer 220 through the second opening T2, as shown in FIG. 4G. Wherein, the second conductive layer is generally used as the upper electrode of the plurality of photovoltaic elements 202. In the present embodiment, the method of forming the second electrical layer 240 is, for example, using the above-described sputtering method, metal organic gas vaporization method, or steaming method, and the material thereof is, for example, the aforementioned transparent conductive layer material. I will not repeat them here. Subsequently, the steps shown in Fig. 4H can be selectively performed. As shown in FIG. 4, for example, a plurality of third openings T3 may be formed by using a laser process, an etching process, or a mechanical force removal process, wherein each of the third openings 3 exposes the conductive layer 220. So far, the production process of the thin film moon cell 200 shown in Fig. 2 above is completed. 201104882 3108Vtwt..doc/i\ It should be noted that if the second conductive layer 240 is a laminated structure, such as a transparent conductive layer and a reflective layer, and the first conductive layer 22 is a transparent conductive layer. In this case, a transparent conductive layer can be formed on the semiconductor laminate 23, and the reflective layer can be formed on the transparent conductive layer by performing the above-mentioned step 4 of FIG. 4H to form a single-sided illumination. Thin film solar ^ also. In addition, the first conductive layer 220 may also be a laminated structure, such as: a laminate of f and a transparent conductive layer, and thus a thin-film solar cell that can be axially coated, and the manufacturing method thereof can be referred to the above. Again, it is desirable that the second conductive layer can only be a transparent conductive layer. '来+ϋΓ: Since the present invention _ thin film solar cell has a protective layer between the two conductive layers of the second layer, when the thin film solar 1 battery is irradiated by the helium, the light will be difficult to change in the photoelectric conversion layer. The first-conducting electron-hole = § 'the thin film solar cell of the present invention can convert efficiency. In addition, the 秣 秣 々 η η ί ί ί 另 另 另 另 另 另 赖 赖 赖 赖 赖 赖 赖 赖 赖 赖 赖 赖 赖 赖 赖 赖 赖 赖 赖 赖 赖 赖 赖 的 的 的 的 的 的 的-Into the nuclear ritual, although the present invention has been implemented in your stag deer rain, any of the techniques ^ σ ^ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a conventional film. FIG. 1 is a partial cross-sectional view of the battery of the present invention. ^ Example of a partial section of a thin film solar cell 16 201104882 31089tvvf.doc/n Schematic. Fig. 3A is a partial cross-sectional view showing a photoelectric conversion layer of a thin film solar cell according to an embodiment of the present invention. Fig. 3B is a partial cross-sectional view showing a thin film solar cell according to another embodiment of the invention. 4A to 4H are flow charts showing the fabrication of a thin film solar cell according to an embodiment of the present invention. [Description of main component symbols] 100, 200: thin film solar cells 102, 202: photovoltaic elements 110, 210: substrates 120, 220: first conductive layers 130, 230: photoelectric conversion layers 140, 240: second conductive layers 232, 232a 232b: first type semiconductor layer 236, 236a, 236b: intrinsic layer 234, 234a, 234b: second type semiconductor layer 250: protective layer T1: first opening T2: second opening T3: third opening L: light ray S : Interface SW: Sidewall 17

Claims (1)

201104882 3108ytwt.doc/n 七、申請專利範圍: 1. 一種薄膜太陽能電池,包括: 一基板; 一弟一導電層,配置於該.基板上並具有多個 口’以使該第—導電層分隔成多個光伏元件的下電了開 一光電轉換層,配置於該第—導電層上並具, 一開口 : 5亥些第二開口暴露部分該第一導電層;夕個第 一第二導電層,配置於該光電轉換層上並透 亡開口與該第„導電層連接,其中該第二導電層具^第 第二開口 ’且該些第三開σ曝露部分該第-導電層;多個 -保護層,配置於各該第二開口之側壁上 以及 光電轉換層與二導電層之間,以使位於該些第〜於讀 内的該光電轉換層與該第二導電層電性絕緣。〜開D 2. 如申請專利朗訂項所述之薄膜太陽 中該保護層的厚度實質上介於G.1奈米至1G奈米。…其 3·如申凊專利範圍第2項所述之薄膜太陽能 中該保護層的厚度實質上介於丨奈东至5奈米之間:’其 4.如申請專利範圍第1項所述之薄膜太陽能曾〜 =該保護層的材質為介電材料、絕緣材料、或含有^其 氣元素的化合物材料。 或是 5·如申請專利軸第彳項所狀薄膜太陽 中該保護層的材質包括氣化梦、氮切或氮氧切其 6.如申請專利範圍第丨項所述之薄膜太陽 中該光電轉換層包括u半導體層與—第二型^其 V體 18 201104882 31089twf.doc/n 層 7·如申請專利範 =第—型铸體層為ρ型半導體層其 層,而該第二體層為N型半導體 i干V體層為p型半導體層。 8.如申請專利範圍第6項所述之薄膜 中該光電轉換芦爭白紅 ,^„ 苟 %池,其 層與I玄弟二型半導體層之間。 +導體 如申請專利範圍第8項所述之_太陽能電池,1 二土-型半導體層、該第二型半導體層與該本質層的^ 料為-兀素週期表四族元素半導體薄膜、—元素週^ — 五族化合物半導體_ 一元素職表二六族化合物= 體薄膜或一有機化合物半導體薄膜或其組合。 10. 如申請專利範圍第9項所述之薄膜太陽能電池, 其中δ亥元素週期表四族元素半導體薄膜包含有單晶相、多 a曰相、非晶相與微晶相之竣元素薄膜、石夕元素薄膜、錯元 素薄膜、奴化石夕薄膜或是石夕化鍺薄膜至少其一或是其纟且人 11. 如申請專利範圍第9項所述之薄膜太陽能電池3,° 其中該元素週期表三五族化合物半導體薄膜包含有〜砷化 鎵(GaAs)化合物薄膜或一磷化銦鎵(InGaP)化合物為 少其一或是其組合。 12.如申請專利範圍第9項所述之薄膜太陽能電池, 其中該元素週期表二六族化合物半導體薄膜包含有〜鋼鋼 硒(CIS)化合物薄膜、一銅銦鎵硒(CIGS)化合物薄膜、— 19 201104882 j i uoyiwi.doc/n 化鎘(CdTe)化合物薄獏至少其一或是其組合。 13.如中請專利範目第9項所述之薄膜太陽能電池, 其中該有機化合物半導體_包含_热高分子施體盘一 奈米碳球受體之混合物。 M.如申請專利範圍第丨項所述之_太陽能電池, 其中該光電轉換層更包括雙層光電轉換層、三層光 層、或三層以上光電轉換層的堆疊結構。e i 、 15.如ΐ請專利範㈣丨項所述之_ 其中該第一導電層的材料為透明導電層,而該第電声 包含反射層與透明導電層至少其一。 一等 廿16\如=請專利範圍第1項所述之薄膜太陽能電池, 其中該第二¥電層的材料為透明導電層,而該第—導電層 包含反射層與透明導電層至少其一。 曰 17. —種薄膜太陽能電池的製造方法, 提供一基板; ’ 形成一弟一導電層於該基板上; 於該第一導電層上形成多個第一開口,以使該第一導 電層分隔成多個光伏元件的下電極; 形成一光電轉換層於該第一導電層上; 於該光電轉換層上形成多個第二開口 份該 第一導電層; ' 形成一保護層於該些第二開口之側壁上;以及 形成-第二導電層,配置於該光電轉換層上並透過該 些第二開口與該第—導電層連接’該第二導電層具有多個 20 201104882 31089tvvf.doc/n 第三開口,且該些第三開口曝露部分該第一導電層, 其中該保護層位於該光電轉換層與該第二導電層之 間,以使位於該些第二開口内的該光電轉換層與該第二導 電層電性絕緣。 -- 18. 如申請專利範圍第17項所述之薄膜太陽能電池 的製造方法,其中形成該保護層的方法包括形成一自體氧 化層或進行一電漿處理。 19. 如申請專利範圍第17項所述之薄膜太陽能電池 的製造方法,其中形成該第一開口、形成該第二開口與形 成該第三開口的方法包括進行一雷射製程、一钱刻製程或 是一機械力移除製程。201104882 3108ytwt.doc/n VII. Patent application scope: 1. A thin film solar cell comprising: a substrate; a first conductive layer disposed on the substrate and having a plurality of ports to separate the first conductive layer into a plurality of photovoltaic elements are electrically powered off, and a photoelectric conversion layer is disposed on the first conductive layer, and an opening: 5 ha, the second openings expose a portion of the first conductive layer; and the first and second conductive layers Disposed on the photoelectric conversion layer and connected to the first conductive layer, wherein the second conductive layer has a second opening and the third opening σ exposes the first conductive layer; a protective layer disposed on sidewalls of each of the second openings and between the photoelectric conversion layer and the second conductive layer to electrically insulate the photoelectric conversion layer located in the first to the read from the second conductive layer. ~ Open D 2. The thickness of the protective layer in the film sun as described in the patent application is substantially between G.1 nm and 1 G.... 3 of which is described in claim 2 of the patent scope The thickness of the protective layer in the thin film solar energy is substantially Between Naidong and 5 nm: 'The 4. The thin film solar energy mentioned in the first application of the patent scope~~ The material of the protective layer is a dielectric material, an insulating material, or a compound material containing a gas element thereof. Or 5. The material of the protective layer in the film sun as claimed in the patent application No. 3 includes gasification dream, nitrogen cut or oxynitride. 6. In the thin film sun as described in the scope of the patent application. The photoelectric conversion layer includes a u semiconductor layer and a second type of V body 18 201104882 31089twf.doc/n layer 7 · as claimed in the patent model = the first type of casting layer is a layer of a p type semiconductor layer, and the second body layer is The N-type semiconductor i dry V body layer is a p-type semiconductor layer. 8. In the film according to claim 6 of the patent application, the photoelectric conversion is ruined by red, ^ 苟% pool, and its layer and I Xuandi type semiconductor Between the layers. +conductor as described in claim 8 of the solar cell, a two-earth-type semiconductor layer, the second-type semiconductor layer and the intrinsic layer are - a halogen-based periodic group of four-element semiconductor thin film, Elemental Week - Group C Compound Semiconductor - One Elemental Table Quaternary Compound = Body Film or Organic Compound Semiconductor Film or a combination thereof. 10. The thin film solar cell according to claim 9, wherein the group IV semiconductor film of the δHu cycle element comprises a single crystal phase, a polya 曰 phase, a bismuth element film of an amorphous phase and a microcrystalline phase, a thin film solar cell 3, wherein the element is a thin film solar cell according to claim 9 of the invention, in which the stone elemental film, the elemental film, the sinusoidal film, or the sinusoidal film is at least one or the same. The tri-five compound semiconductor thin film of the periodic table includes a film of a gallium arsenide (GaAs) compound or an indium gallium phosphide (InGaP) compound, which is one or a combination thereof. 12. The thin film solar cell according to claim 9, wherein the hexa-group compound semiconductor film of the periodic table comprises a steel thin film of selenium (CIS) compound, a film of a copper indium gallium selenide (CIGS) compound, — 19 201104882 ji uoyiwi.doc/n Cadmium (CdTe) compounds are at least one or a combination thereof. 13. The thin film solar cell of claim 9, wherein the organic compound semiconductor comprises a mixture of a thermal polymer donor disk and a nanocarbon balloon acceptor. The solar cell according to the above aspect of the invention, wherein the photoelectric conversion layer further comprises a double-layer photoelectric conversion layer, a three-layer optical layer, or a stacked structure of three or more photoelectric conversion layers. e i , 15. The method of claim 4, wherein the material of the first conductive layer is a transparent conductive layer, and the first electrical sound comprises at least one of a reflective layer and a transparent conductive layer. The thin film solar cell of the first aspect of the invention, wherein the material of the second electric layer is a transparent conductive layer, and the first conductive layer comprises at least one of a reflective layer and a transparent conductive layer. .曰17. A method of fabricating a thin film solar cell, providing a substrate; forming a conductive layer on the substrate; forming a plurality of first openings on the first conductive layer to separate the first conductive layer Forming a photoelectric conversion layer on the first conductive layer; forming a plurality of second opening portions on the photoelectric conversion layer; forming a protective layer on the first And forming a second conductive layer disposed on the photoelectric conversion layer and connected to the first conductive layer through the second openings. The second conductive layer has a plurality of 20 201104882 31089tvvf.doc/ a third opening, wherein the third openings expose a portion of the first conductive layer, wherein the protective layer is located between the photoelectric conversion layer and the second conductive layer to enable the photoelectric conversion in the second openings The layer is electrically insulated from the second conductive layer. The method of manufacturing a thin film solar cell according to claim 17, wherein the method of forming the protective layer comprises forming an auto-oxidation layer or performing a plasma treatment. 19. The method of manufacturing a thin film solar cell according to claim 17, wherein the forming the first opening, forming the second opening, and forming the third opening comprises performing a laser process and a process Or a mechanical force to remove the process. 21twenty one
TW098125100A 2009-07-24 2009-07-24 Thin film solar cell and manufacturing method thereof TW201104882A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW098125100A TW201104882A (en) 2009-07-24 2009-07-24 Thin film solar cell and manufacturing method thereof
US12/842,048 US8212143B2 (en) 2009-07-24 2010-07-23 Thin film solar cell and manufacturing method thereof
US13/104,645 US20110209750A1 (en) 2009-07-24 2011-05-10 Thin film solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098125100A TW201104882A (en) 2009-07-24 2009-07-24 Thin film solar cell and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW201104882A true TW201104882A (en) 2011-02-01

Family

ID=44813799

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098125100A TW201104882A (en) 2009-07-24 2009-07-24 Thin film solar cell and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW201104882A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI460876B (en) * 2011-02-21 2014-11-11 Ctf Solar Gmbh Method and apparatus for substrate cover layer (verfahren und vorrichtung zur beschichtung von substraten)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI460876B (en) * 2011-02-21 2014-11-11 Ctf Solar Gmbh Method and apparatus for substrate cover layer (verfahren und vorrichtung zur beschichtung von substraten)

Similar Documents

Publication Publication Date Title
TWI438904B (en) Method for obtaining high performance thin film devices deposited on highly textured substrates
EP2609628B1 (en) Photovoltaic device and module with improved passivation and a method of manufacturing.
US20080121264A1 (en) Thin film solar module and method of fabricating the same
US9461186B2 (en) Back contact for a photovoltaic module
JP2018535554A (en) Solar cell with multiple absorbers interconnected via selective junction of charge carriers
JP2009531871A (en) Technology for manufacturing photovoltaic modules
WO2010144480A3 (en) Photovoltaic module and method of manufacturing a photovoltaic module having multiple semiconductor layer stacks
TW201123481A (en) Solar cell and manufacturing method thereof
JP2014075526A (en) Photoelectric conversion element and photoelectric conversion element manufacturing method
JP2012186415A (en) Manufacturing method of photoelectric conversion element, photoelectric conversion element, and tandem-type photoelectric conversion element
CN111430384A (en) Solar cell module, laminated solar cell and manufacturing method thereof
JP3755048B2 (en) Integrated thin film tandem solar cell and manufacturing method thereof
WO2009110409A1 (en) Solar cell
JP2006222384A (en) Integrated thin film solar battery and its manufacturing method
JP6013200B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
JP2012231142A (en) Solar cell
US20110120534A1 (en) Thin film solar cell and manufacturing method thereof
TW201123483A (en) Thin film solar cell and manufacturing method thereof
TW201104882A (en) Thin film solar cell and manufacturing method thereof
TWI578553B (en) Crystalline silicon solar cell and method of fabricating the same
JP2005322707A (en) Integrated solar cell
JP6013198B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
TW201123477A (en) Thin film solar cell and fabrication method thereof
JP2004335733A (en) Thin film solar cell
JP2004335734A (en) Thin film solar cell