TW201123477A - Thin film solar cell and fabrication method thereof - Google Patents

Thin film solar cell and fabrication method thereof Download PDF

Info

Publication number
TW201123477A
TW201123477A TW098143393A TW98143393A TW201123477A TW 201123477 A TW201123477 A TW 201123477A TW 098143393 A TW098143393 A TW 098143393A TW 98143393 A TW98143393 A TW 98143393A TW 201123477 A TW201123477 A TW 201123477A
Authority
TW
Taiwan
Prior art keywords
layer
conductive layer
solar cell
thin film
photovoltaic
Prior art date
Application number
TW098143393A
Other languages
Chinese (zh)
Inventor
Chin-Yao Tsai
Original Assignee
Auria Solar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auria Solar Co Ltd filed Critical Auria Solar Co Ltd
Priority to TW098143393A priority Critical patent/TW201123477A/en
Priority to US12/842,048 priority patent/US8212143B2/en
Priority to US13/104,645 priority patent/US20110209750A1/en
Publication of TW201123477A publication Critical patent/TW201123477A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

A thin film solar cell including a substrate, a first conductive layer, a photovoltaic layer, a second conductive layer and an insulating passivation layer is provided. The first conductive layer disposed on the substrate has a plurality of first openings exposing the substrate. The photovoltaic layer disposed on the first conductive layer has a plurality of second openings exposing the first conductive layer. The second conductive layer disposed on the photovoltaic layer is electrically connected to the first conductive layer through the second openings. The second conductive layer has a plurality of third openings, wherein the third openings expose the first conductive layer and a side wall of the photovoltaic layer. The second conductive layer and the side wall of the photovoltaic layer located in the third openings are covered by the insulating passivation layer. A fabrication method of the thin film solar cell is also provided.

Description

201123477 厶 J J L I i〇twf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於-種太陽能電池及其製 別是有關於一種、海膜太陽能電池及其製作方法。/ ,寺 【先前技術】 ^陽,電池市場中,使料晶㈣多晶销電池約 刀之九十以上。然而,這些太陽能電池需使用 ”0微米至350微米的矽晶片作為材 二:1 =能電池的原材料採用高品質⑽晶ί = 使用里的明顯成長,已日漸不足。因此,且 — ^面且馳化製程簡單轉點的薄膜太電= (thmfilmsolarceI1)乃成為新的發展方向。4池 序全:::二】薄:太陽能電池通常是於-基板上依 膜層的過;呈中1層進;,射,二電極層,射堆疊這些 ^ 曰進仃田射切咅丨j製程以將這此膜声圄宏 二可製作多個串聯的光伏單元(一 卜則,¾射至薄膜太陽能電 =能而產生自由電子.對母並 使電子舆電财分別往兩層移動,而 ^電处m ’此時若外加負载電路或電子打,便可提 (、電=而使電路或袭置進行驅動。 更以 換效^仍_!2,域“純财雜體的光電轉 /、有相虽的空間。因此,如何提升習知薄膜太 rl8twf.doc/n 201123477 換率與電性表現以提高產品的整體競爭 力声'為4人人所關〉主的課題。 了 【發明内容】 有鑑於此,本發明提供 食 較佳的光電轉換特性。徑祕太—Μ,其具有 ⑽ί”供一種薄膜太陽能電池的製作方法,其可 I作出上述薄膜太陽能電池。 ’、 第一 括—基板 % ^ g 第二導電層以及一絕緣保護層。 板,有多個暴露出基板的第-開 、ί ¥電層上並具有多個暴露出第一導 汗口。弟二導電層配置於光伏層上並透過第二 二,並,連接第層。第二導電層具有多個第三開 緣保:蒦声:::口 J露出第-導電層與光伏層的側壁。絕 壁Γ曰弟一導電層與位於第三開口内的光伏層的側 絕緣保護層的材質包括透明 絕緣保護層的材質至少包括 碳化矽、氧化铪、氧化鋁或 光伏層為一 IV族薄膜、一 -II-VI族化合物半導體薄膜 在本發明之一實施例中 介電材料或反射性介電材料 在本發明之一實施例中 氧化矽、氮化矽、氮氧化矽 金屬氧化物。 在本發明之一實施例中 III-V族化合物半導體薄膜、 201123477 . 一“ vvt.doc/n 或一有機化合物半導體薄膜。在本發明之一實施例中,ιν 族薄膜包含有 a-Si、μο-Si、a-SiGe、pc-SiGe、a-SiC、pc-SiC、 堆疊式(tandem)IV族薄膜或三層(triple)IV族薄膜至少其 一。在本發明之一實施例中’ III-V族化合物半導體薄膜包 含有砷化镓(GaAs)或磷化銦鎵(InGaP)。 在本發明之一實施例中’ II-VI族化合物半導體薄膜包 含有銅銦砸(CIS)、銅銦鎵碰(CIGS)、鑛化碲(cdTe)或其組 合。在本發明之一實施例中,有機化合物半導體薄膜包含 3-己燒。塞吩(p〇iy(3_hexylthiophene),P3HT)與奈米碳球 (PCBM)混合物。 在本發明之一實施例中,第一導電層的材料為透明導 電層,而第二導電層包含反射層與透明導電層至少其一。 在本發,之另—實施例中,第二導電層的材料為透明導電 層,而第一導電層包含反射層與透明導電層至少其一。 本發明另提出-種薄膜太陽能電池的製作方法,其包 屛驟。首先’提供一基板。接著,形成-第-導電 i板C後J案化第一導電層以形成多個暴露出 二後,Η“二ΐ者’形成—光伏層於第—導電層上。 開口。形=個暴露出第-導電層的第二 電層透過ί二!ί而導電層於光伏層上,其中第二導 弟二導電層與光伏層以“ 卞化 層的側壁的第n 路出第—導電層與光伏 電層上與脖第:n D f m緣倾層於第二導 y '弟—開内的光伏層的側壁上。 X月之實施例中,覆蓋絕緣保護層於第二導電 201123477 J Jwl8twf.doc/n 層上與位於第三開口内的光伏層的側壁上的方法包括進行 一沉積製程、一網印、一乾膜壓合、一塗佈製程、一喷墨 製程或一能量源處理。 在本發明之另一實施例中„,覆蓋絕緣保護層於第二導 電層上與位於第三開口内的光伏層的側壁上的方法包括進 行一電漿氧化製程 在本發明之一實施例中’形成第一開口、第二開口以 及第三開口的方法包括使用一雷射製程。 在本發明之一實施例中’形成光伏層的方法包括射頻 電楽·輔助化學氣相沉積法(Radio Frequency Plasma Enhanced Chemical Vapor Deposition,RP PECVD )、超高頻電漿輔助化學 氣相沉積法(Very High Frequency Plasma Enhanced Chemical Vapor Deposition,VHF PECVD)或者是微波電漿輔助化學氣相 沉積法(Microwave Plasma Enhanced Chemical Vapor Deposition, MW PECVD )。 在本發明之一實施例中,形成第一導電層的方法更包 括形成一透明導電層與一反射層至少其,一於基板上,其中 第二導電層為一透明導電層。在本發明之另一實施例中, 形成第二導電層的方法更包括形成一透明導電層與一反射 層至少其一於光伏層上,其中第一導電層為一透明導電層。 基於上述,本實施例之薄膜太陽能電池將絕緣保護層 覆蓋於位於開口内的光伏層的側壁上’以避免電子電洞對 在位於開口内的光伏層的側壁處產生表面再結合而產生漏 電流,進而可提高薄膜太陽能電池的光電轉換效率。此外, 於實務製作方法上,藉由電漿氧化或相關製程,以使絕緣 201123477 “ ji / lot.'Vf.doc/n 口内的光伏層的侧壁上,如此而 保護層確實地覆蓋位於開 具有上述的優點。 舉實 【實施方式】 円本發明—實關之_太陽能電池的局部剖示 圖。印參考圖1 ’本實施例之薄膜太陽能電池1〇〇包括一 基板110、-第一導電層120、—光伏層13〇、一第二導電 層1430以及一絕緣保護層150。在本實施例中,基板110 可以是一透明基板,如:玻璃基板。 第一導電層120配置於基板110上並具有多個暴露出 基板110的第一開口 122,如圖1所示。在本實施例中, 苐導电層120可以是一透明導電層,其材質例如是銦錫 氧化物(indium tin oxide,IT0)、銦鋅氧化物(indium zinc oxide,IZO)、銦錫鋅氧化物(indium tin zinc oxide, ITZO)、 氧化鋅(zinc oxide)、銘錫氧化物(aluminum tin oxide, ATO)、铭鋅氧化物(aluminum zinc oxide, AZO)、錫銦氧化 物(cadmium indium oxide, CIO)、錦辞氧化物(cadmium zinc oxide,CZO)、鎵鋅氧化物(GZO)及錫氟氧化物(FTO)至少其 在另一未繪示的實施例中,第一導電層120也可以是 上述透明導電層與一反射層(未繪示)的疊層,其中反射 層位於透明導電層與基板110之間,而反射層的材質可以 201123477… u j ι r ϊ BtWI.flOC/n 使用銀或鋁之類反射性較佳的金屬。 請繼續參考圖1,光伏層130配置於第一導電層12〇 上並具有多個暴露出該第一導電層的第二開口 132。在本 實施例中,光伏層130可以是一1¥族薄膜、一ΠΙ_ν族化 合物半導體薄膜、一 II-VI族化合物半導體薄膜或一有機 化合物半導體薄膜。詳細而言,IV族薄膜例如是包含有 a-Si、/z c-Si、、a-SiGe、μο-SiGe、a-SiC、pc-SiC、堆疊式 (tandem)IV族薄膜或三層(tripie)iv族薄膜至少其一。此 外,III-V族化合物半導體薄膜例如是包含有砷化镓 (GaAs)、磷化銦鎵(inGaP)或其組合,而π_νι族化合物半 導體薄膜例如是包含有銅銦硒(CIS)、銅銦鎵硒(CIGS)、鎘 化碲(CdTe)或其組合。有機化合物半導體薄膜則可以是包 含有3-己烷噻吩(p〇iy(3_hexylthiophene), P3HT)與奈米碳球 (PCBM)混合物的結構。 β意即薄膜太陽能電池100至少可以是採用非晶矽薄膜 太陽能電池、微㈣薄膜太陽能電池、堆4^(tandem)薄 膜太,能電池、三層(triple)式薄膜太陽能電池、銅銦硒薄 =太陽能電池、銅銦鎵硒薄膜太陽能電池、鎘碲薄膜太陽 旎電池或有機薄膜太陽能電池之膜層結構。 ^因此,本實施例之光伏層130主要視使用者的需求而 疋,以上僅為舉例說明,非用以限定本發明。換言之,薄 ,太陽能電池100也可以採用其他可能的薄膜太陽能電池 的膜層結構。 另外,第二導電層140配置於光伏層130上並透過第 201123477 olWf-d〇c/n 二開口 132而電性連接第一導電層120,且第二導電層140 具有多個第三開口 142,其中第三開口 142暴露出第一導 電層12〇與光伏層130的側壁130a,如圖1所示。在本實 施例中,第、二導電層140也可以是一透明導電層,其中此 透=導電層可採用第一導電層12〇所提及的材質,在此不 再头述。在本實施例中,第二導電層140更可以包括反射 中反射層位於透明導電層與光伏層130之間。在此 而要説明的是,當第二導電層14〇具有反射層時,第—導 電層120僅可採用透明導電層的設計。反之,當第—導電 1 120具有反射層的設計聘,第二導電層14〇則可僅採用 例,明導電層的設計,而不具有上述的反射層。在—實施 ,第—導電層120與第二導電層140也可以皆為透明 传用I,而無反射層的配置。簡言之,此部分的設計可依 能雷求而作調整(例如是製作雙面受光的薄膜太陽 明i或早面觉光的薄膜太陽能電池),上述僅為舉例說 n但不限於此。 與位^^絕緣保護層15G覆蓋第二導電層H0 施^ 的先伏層m的側壁13Qa。在本實 氣其:絕緣保護層15°的材質例如是= d而m緣保護層150覆蓋於第二導電層12〇 1 M2内的光伏層13〇的側壁13加上,因此 10 201123477 u jn IStwf.doc/n =了可藉此保護膜層m、⑽、⑽避免受到外在環境的 影響,如水氣。此外,本實施例之絕緣保護層15〇更因覆 蓋於位於第三開口 142内的光伏層130的側壁i3〇a上,因 …此更可避免電子電洞對在位於第三開口 142内的光伏層 130的側土 l3Ga處產生表面再結合,進而產生漏電流的問 題。換δ之,本實施例之薄膜太陽能電池主要是藉由將絕 緣保護層150確實地覆蓋於第二導騎14〇與位於第三開 • 口 142内的光伏層13〇的側壁130a上,從而可避免漏電流 產生的機會,進而可提升薄膜太陽能電池100的光電轉換 效率。 除此之外,若絕緣保護層15〇的材質是採用反射性介 電材料,此時’可提高光線於光伏層12〇内部的再利用率, 從而可提升薄膜太陽能電池1〇〇的光電轉換效率。需要說 明的是,當絕緣保護層15〇使用反射材料時,第一導電層 120則不可具有上述反射層的設計。 另外,本發明亦提供一種製作上述薄膜太陽能電池 _ 100的方法,其說明如下。 圖fA〜圖2D為本發明一實施例之薄膜太陽能電池的 局部剖示流賴。請參相Μ ’首先,提供上述的基板 110’其中關於基板110的描述可參考上述,在此不贅言。 然後,形成第一導電層12〇於基板11〇上並圖案化第 —導電層120以形成多個暴露出基板11〇的第二開口 122’如圖2B所示。在本實施例巾,形成第一導電層12〇 的方式例如是使用濺鍍法(sputtering)、金屬有機化學氣相 沈積(metal organic chemical vapor deposition,M0CVD) wf.doc/n 201123477 1 / 1 u t 法、或蒸鍍法(evaporation)全面地形成於基板110上。而 後,再使用第一道雷射製程圖案化第一導電層120,用以 作為後續形成多個串聯次電池(sub cell)的下電極,其中此 部分為本領域之通常知識者所熟知之技術,在此不贅述。201123477 厶 J J L I i〇twf.doc/n VI. Description of the Invention: [Technical Field] The present invention relates to a solar cell and a method thereof, and to a sea-film solar cell and a method of fabricating the same. / , Temple [Previous technology] ^ Yang, in the battery market, the material crystal (four) polycrystalline pin battery is about 90% of the knife. However, these solar cells need to use "0 micron to 350 micron germanium wafers as the material 2: 1 = high-quality (10) crystals of the raw materials of the battery = the obvious growth in use, has become increasingly insufficient. Therefore, The film is too simple to turn on the film = (thmfilmsolarceI1) is a new development direction. 4 pool order full::: two] thin: solar cells are usually on the substrate according to the film layer; Into;, shot, two-electrode layer, shot stacking ^ ^ 曰 仃 仃 射 射 咅丨 咅丨 制 制 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以= can generate free electrons. The mother and the electronic 舆 舆 移动 移动 移动 移动 分别 分别 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Drive. Also in the effect of ^ still _! 2, the domain "pure fiscal hybrid photoelectric / / phase space. Therefore, how to improve the conventional film too rl8twf.doc/n 201123477 conversion rate and electrical performance In order to improve the overall competitiveness of the product, the voice of 'for 4 people is the main subject.' In view of the above, the present invention provides a better photoelectric conversion characteristic. The method has a (10) ί for a method for fabricating a thin film solar cell, which can make the above thin film solar cell. —Substrate % ^ g The second conductive layer and an insulating protective layer. The board has a plurality of first-opening electrodes on which the substrate is exposed and has a plurality of exposed first sweat guiding ports. On the photovoltaic layer and through the second two, and connected to the first layer. The second conductive layer has a plurality of third open edge protection: 蒦::: mouth J exposes the first conductive layer and the sidewall of the photovoltaic layer. The material of the side insulating protective layer of the conductive layer and the photovoltaic layer located in the third opening comprises a material of a transparent insulating protective layer comprising at least tantalum carbide, yttria, alumina or photovoltaic layer as a group IV film, 1-II- Group VI compound semiconductor film In one embodiment of the invention, the dielectric material or the reflective dielectric material in one embodiment of the invention is cerium oxide, cerium nitride, cerium oxynitride metal oxide. In an embodiment of the invention III-V compound semiconductor thin film, 201123477. A "vvt.doc/n or an organic compound semiconductor film. In an embodiment of the invention, the ιν family film comprises a-Si, μο-Si, a-SiGe, At least one of pc-SiGe, a-SiC, pc-SiC, a tandem group IV film or a triple family IV film. In one embodiment of the invention, the 'III-V compound semiconductor film comprises There is gallium arsenide (GaAs) or indium gallium phosphide (InGaP). In one embodiment of the present invention, the 'II-VI compound semiconductor thin film contains copper indium germanium (CIS), copper indium gallium bump (CIGS), ore. Phlegm (cdTe) or a combination thereof. In an embodiment of the invention, the organic compound semiconductor film comprises 3-hexene. A mixture of p〇iy (3_hexylthiophene, P3HT) and a nanocarbon sphere (PCBM). In an embodiment of the invention, the material of the first conductive layer is a transparent conductive layer, and the second conductive layer comprises at least one of a reflective layer and a transparent conductive layer. In another embodiment of the present invention, the material of the second conductive layer is a transparent conductive layer, and the first conductive layer comprises at least one of a reflective layer and a transparent conductive layer. The invention further proposes a method for fabricating a thin film solar cell, which comprises the steps. First, a substrate is provided. Then, after forming the -first conductive i-plate C, the first conductive layer is formed to form a plurality of exposed two, and then the "two" is formed - the photovoltaic layer is on the first conductive layer. Opening. Shape = exposure The second electrical layer of the first conductive layer is transparently disposed on the photovoltaic layer, wherein the second conductive layer and the photovoltaic layer are “the n-th conductive layer of the sidewall of the germanium layer” And the photovoltaic layer and the neck: n D fm edge layered on the sidewall of the photovoltaic layer of the second conductive y 弟 弟 开. In the embodiment of X month, the method of covering the insulating protective layer on the second conductive layer 201123477 J Jwl8twf.doc/n layer and the sidewall of the photovoltaic layer located in the third opening comprises performing a deposition process, a screen printing, a dry film Pressing, a coating process, an inkjet process or an energy source process. In another embodiment of the present invention, the method of covering the insulating protective layer on the second conductive layer and the sidewall of the photovoltaic layer located in the third opening comprises performing a plasma oxidation process in an embodiment of the present invention. The method of forming the first opening, the second opening, and the third opening includes using a laser process. In one embodiment of the invention, the method of forming a photovoltaic layer includes a radio frequency hydride and an auxiliary chemical vapor deposition method (Radio Frequency). Plasma Enhanced Chemical Vapor Deposition (RP PECVD), Very High Frequency Plasma Enhanced Chemical Vapor Deposition (VHF PECVD) or Microwave Plasma Enhanced Chemical (Microwave Plasma Enhanced Chemical) Vapor Deposition, MW PECVD. In an embodiment of the invention, the method for forming the first conductive layer further comprises: forming a transparent conductive layer and a reflective layer at least on the substrate, wherein the second conductive layer is transparent Conductive layer. In another embodiment of the invention, the method of forming the second conductive layer further comprises forming a transparent The electrical layer and a reflective layer are at least one of the photovoltaic layers, wherein the first conductive layer is a transparent conductive layer. Based on the above, the thin film solar cell of the embodiment covers the insulating protective layer on the sidewall of the photovoltaic layer located in the opening. 'To avoid the electron hole from generating a surface recombination at the sidewall of the photovoltaic layer located in the opening to generate leakage current, thereby improving the photoelectric conversion efficiency of the thin film solar cell. Further, in the practical manufacturing method, by plasma oxidation Or related processes to make insulation 201123477 "ji / lot.'Vf.doc / n on the sidewall of the photovoltaic layer, so that the protective layer is indeed covered and opened with the above advantages.实施实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施 实施1] The thin film solar cell 1 of the present embodiment includes a substrate 110, a first conductive layer 120, a photovoltaic layer 13A, a second conductive layer 1430, and an insulating protective layer 150. In this embodiment, the substrate 110 may be a transparent substrate such as a glass substrate. The first conductive layer 120 is disposed on the substrate 110 and has a plurality of first openings 122 exposing the substrate 110, as shown in FIG. In this embodiment, the tantalum conductive layer 120 may be a transparent conductive layer made of, for example, indium tin oxide (IT0), indium zinc oxide (IZO), indium tin zinc oxide. Indium tin zinc oxide (ITZO), zinc oxide, aluminum tin oxide (ATO), aluminum zinc oxide (AZO), cadmium indium oxide (cadmium indium oxide, CIO), cadmium zinc oxide (CZO), gallium zinc oxide (GZO), and tin oxyfluoride (FTO), at least in another embodiment not shown, the first conductive layer 120 may also It is a laminate of the transparent conductive layer and a reflective layer (not shown), wherein the reflective layer is located between the transparent conductive layer and the substrate 110, and the material of the reflective layer can be 201123477... uj ι r ϊ BtWI.flOC/n using silver Or a metal with better reflectivity such as aluminum. Referring to FIG. 1, the photovoltaic layer 130 is disposed on the first conductive layer 12A and has a plurality of second openings 132 exposing the first conductive layer. In the present embodiment, the photovoltaic layer 130 may be a 1¥ family film, a ΠΙν-group compound semiconductor film, a II-VI compound semiconductor film or an organic compound semiconductor film. In detail, the group IV film includes, for example, a-Si, /z c-Si, a-SiGe, μο-SiGe, a-SiC, pc-SiC, a tandem group IV film or three layers ( Tripie) At least one of the iv films. In addition, the III-V compound semiconductor thin film includes, for example, gallium arsenide (GaAs), indium gallium phosphide (inGaP), or a combination thereof, and the π_νι compound semiconductor thin film includes, for example, copper indium selenide (CIS), copper indium. Gallium selenide (CIGS), cadmium telluride (CdTe) or a combination thereof. The organic compound semiconductor film may be a structure containing a mixture of 3-hexanethiophene (P3HT) and nanocarbon sphere (PCBM). β means that the thin film solar cell 100 can be at least an amorphous germanium thin film solar cell, a micro (tetra) thin film solar cell, a stack of 4 (tandem) thin film, a battery, a triple film solar cell, a copper indium selenium thin film. = film structure of solar cells, copper indium gallium selenide thin film solar cells, cadmium tellurium thin film solar tantalum batteries or organic thin film solar cells. Therefore, the photovoltaic layer 130 of the present embodiment is mainly based on the needs of the user, and the above is merely illustrative and is not intended to limit the present invention. In other words, the thin, solar cell 100 can also adopt the film structure of other possible thin film solar cells. In addition, the second conductive layer 140 is disposed on the photovoltaic layer 130 and electrically connected to the first conductive layer 120 through the second opening 132 of the 201123477 olWf-d〇c/n, and the second conductive layer 140 has a plurality of third openings 142. The third opening 142 exposes the first conductive layer 12 and the sidewall 130a of the photovoltaic layer 130, as shown in FIG. In this embodiment, the first and second conductive layers 140 may also be a transparent conductive layer, wherein the conductive layer may be made of the first conductive layer 12, which will not be described here. In this embodiment, the second conductive layer 140 may further include a reflective mid-reflection layer between the transparent conductive layer and the photovoltaic layer 130. It is to be noted that when the second conductive layer 14A has a reflective layer, the first conductive layer 120 can only adopt a design of a transparent conductive layer. On the other hand, when the first conductive layer 120 has a design of a reflective layer, the second conductive layer 14 can be used only for the design of the conductive layer without the above-mentioned reflective layer. In the implementation, the first conductive layer 120 and the second conductive layer 140 may also be transparently used without a reflective layer. In short, the design of this part can be adjusted according to the requirements (for example, a thin-film solar cell that produces a double-sided light-receiving film or an early-surface light), which is by way of example only, but not limited thereto. The insulating layer 15G is covered with the sidewalls 13Qa of the first cladding layer m of the second conductive layer H0. In this embodiment, the material of the insulating protective layer 15° is, for example, = d, and the m-edge protective layer 150 is covered by the sidewall 13 of the photovoltaic layer 13〇 in the second conductive layer 12〇1 M2, so 10 201123477 u jn IStwf.doc/n = can be used to protect the film layers m, (10), (10) from external environmental influences such as moisture. In addition, the insulating protective layer 15 of the present embodiment is further covered on the sidewall i3〇a of the photovoltaic layer 130 located in the third opening 142, so that the electron hole pair is prevented from being located in the third opening 142. The surface of the photovoltaic layer 130 is recombined at the side soil l3Ga, thereby generating a problem of leakage current. For the δ, the thin film solar cell of the present embodiment is mainly covered by the insulating protective layer 150 on the sidewall 130a of the photovoltaic layer 13 位于 located in the third opening 142. The opportunity for leakage current generation can be avoided, and the photoelectric conversion efficiency of the thin film solar cell 100 can be improved. In addition, if the material of the insulating protective layer 15 is made of a reflective dielectric material, the light utilization of the inside of the photovoltaic layer 12 can be improved, thereby improving the photoelectric conversion of the thin film solar cell. effectiveness. It should be noted that when the insulating protective layer 15 is made of a reflective material, the first conductive layer 120 may not have the design of the above reflective layer. Further, the present invention also provides a method of producing the above thin film solar cell _ 100, which is explained below. Figures fA to 2D are partial cross-sectional views of a thin film solar cell according to an embodiment of the present invention. Please refer to the same. First, the substrate 110' described above is provided. The description about the substrate 110 can be referred to the above, and it is not to be noted here. Then, a first conductive layer 12 is formed on the substrate 11A and the first conductive layer 120 is patterned to form a plurality of second openings 122' exposing the substrate 11A as shown in FIG. 2B. In the embodiment of the present invention, the first conductive layer 12 is formed by, for example, sputtering, metal organic chemical vapor deposition (M0CVD), wf.doc/n 201123477 1 / 1 ut A method or an evaporation method is integrally formed on the substrate 110. Then, the first conductive layer 120 is patterned by using a first laser process to serve as a lower electrode for subsequently forming a plurality of series sub cells, which is a technique well known to those skilled in the art. I will not go into details here.

接著,形成上述的光伏層130於第一導電層120上, 並圖案化光伏層130以形成多個暴露出第一導電層120的 第二開口 132,如圖2C所示。在本實施例中,形成光伏層 130的方法可以是採用射頻電漿輔助化學氣相沉積法(Ra(^〇 Frequency Plasma Enhanced Chemical Vapor Deposition, RF PECVD)、超高頻電漿辅助化學氣相沉積法(Very High Frequency Plasma Enhanced Chemical Vapor Deposition, VHF PECVD )或者疋从波電浆輔助化學氣相沉積法(Micr〇waveNext, the photovoltaic layer 130 is formed on the first conductive layer 120, and the photovoltaic layer 130 is patterned to form a plurality of second openings 132 exposing the first conductive layer 120, as shown in FIG. 2C. In this embodiment, the method for forming the photovoltaic layer 130 may be a radio frequency plasma enhanced chemical vapor deposition (RF), ultra high frequency plasma assisted chemical vapor deposition. (Very High Frequency Plasma Enhanced Chemical Vapor Deposition, VHF PECVD) or 疋 slave wave plasma assisted chemical vapor deposition (Micr〇wave)

Plasma Enhanced Chemical Vapor Deposition,MW PECVD ),以 全面地形成光伏層130於第一導電層12〇上。其中根據光 伏層I30是採用何種膜層設計(如IV族薄膜或II-VI化合物 半導體薄膜的結構),而可調整其膜層的形成方法,上述僅 為舉例說明。同樣地’完成上述光伏層130的製作步驟後, 通常會再使用第二道雷射製程以同時圖案化光伏層13〇, 以形成如圖2C所示的具有多個第二開口 132的光伏層 13〇’此部分同樣為本領域之通常知識者所熟知之技術與步 驟’在此不贅述。 然後,形成上述提及的第二導電層14〇於光伏層13〇 上’並圖案化第二導電層⑽與光伏層15G 露出第-導_的第三開口 142,如圖d: 貫施例中’形成第二導電層14〇的方式同於上述形成第一 201123477 η /i8twf.doc/n 導電層120的方式,可參考上述說明在此不再費述 地,接著會再使用第三道雷射製程圖案化第二導電層⑷ 與光伏層130以形成上述的第三開口 142,其中圖案化 的第二導電層140主要是用以作為形成多個串聯次電1 (sub cell)的上電極,此部分同樣為本領域之通常知識者_ 熟知之技術與步驟,在此不贅述。 汴 θ需要說明的是,若第二導電層Μ0為疊層結構,例如 φ 疋透明導電層與反射層,而第一導電層120為透明導電 層,此時,可先形成透明導電層於光伏層13〇上,再形成 反^層於透明導電層上,即可形成一種僅可使用單面照光 的薄膜太陽能電池。反之,第一導電層12〇亦可為疊層結 構,例如是反射層與透明導電層的疊層,如此亦可形^ 一種單面照光的薄膜太陽能電池,其製作方法可表考上 述’在此不再贅述,惟須注意的是,此時第二導電層1々ο 僅可為透明導電層,而接下來步驟中的絕緣保護層15〇僅 可為透光材質,而不可具有反射性的材料。 鲁接著’覆蓋上述的絕緣保護層150於第二導電層14〇 與位於第三開口 142内的光伏層130的側壁i3〇a,如圖i 所示。在本實施例中,覆蓋絕緣保護層15〇於第二導電層 120上與光伏層130的側壁130a上的方法可以是一沉積势 程、一網印、一乾膜壓合、一塗佈製程、一喷墨製程或二 能量源處理將上述絕緣保護層150所提及的材料確實地形 成於於第二導電層140與位於第三開口 142内的光伏^ 130的側壁i3〇a上。在另一實施例中,也可以是進行一電 漿氧化製程以於第三開口 142内的光伏層130的側壁130a 13 201123477 u j a /1 〇i>vf.doc/n '^形成上述的絕緣保護層150,其中此電漿氧化製程例如 疋c〇2電裝氧化製程。在再一實施例中,也可將第二導 電層I40與位於第三開口 142内的光伏層13〇的侧壁13〇a 暴露於空'氣,以形成一自然氧化層(nativeoxidelayer), 其中此自然氧化層即為本實施例之絕緣保護層150。換言 ^,形成上述絕緣保護層150的方式可視使用者的需求; 疋,上述僅為舉例說明,但本發明並不限於此。 詳細而言’由於絕緣保護層150覆蓋位於第三開口 142 内的光伏層130的侧壁130a上,如此則可避免電子電洞對 在位於第三開口 142内的光伏層13〇的側壁隱處產生表 面再結合,而產生漏電流的問題。換言之,本實施例採用 上述的方法將絕緣保護層15〇覆蓋於第二導電層14〇與位 於第二開口 142内的光伏層13〇的侧壁13〇a上,以避免漏 電流產生的齡,從而可提升_太陽能電池1GG的光電 ,換效率至此’大致完成上述的薄膜太陽能電池 製作方法。 承上述可知’-種薄膜太陽能電池的製作流程方塊圖 =^ =圖3所示,其中圖3繪示一種薄膜太陽能 方塊圖。在本實施例中,_示的流程方塊 =乡?、上逑圖2A〜圖2D與圖i所繪示的流程剖示圖及 其況明,在此便不再贅述。 綜上所述,本發明之薄膜太陽能電池及其製作方法至 少列優點。首先,藉由將絕緣保護層覆蓋於位於開 2勺光伙層的側壁上,以避免電子電洞對在位於開口内 的光伏層的㈣處產生表㈣結合㈣生㈣流 14 201123477 Ji/i8twf.d〇c/n 提向薄膜太陽能電池的光電轉換效率。此外,在製程實務 上’.由於可採用不同的方式形成絕緣保護層(如讓光伏層 自二氧化,或是使用電漿氧化製程、或其他適當的製程), 、以使絕緣保護層可確實地覆蓋位於開口内的光伏層的側壁 上,進而避免電子電洞對在位於開口内的光伏層的側壁^ 產生表面再結合的機會,而具有上述的優點。 雖然本發明已以實施例揭露如上,然其並非用以限定 ,發明,任何所屬技術領域中具有通常知識者,在不脫離 ^發明之精神和範_,當可作些許之更動與潤飾,故本 X明之保護朗當視後附之申料利範騎界定者為準。 【圖式簡單說明】 圖。圖1為本發明—實施例之薄膜太陽能電池的局部剖示 局部:為本發明一實施例之薄膜太陽能電池的 圖3繪示一種薄膜太陽能電池的流程方塊圖。 【主要元件符號說明】 100 :薄膜太陽能池 11 〇 .基板 120 :第一導電層 122 :第一開口 130 :光伏層 130a :側壁 15 wf.doc/n 201123477 132 :第二開口 140 :第二導電層 142 :第三開口 150 :絕緣保護層Plasma Enhanced Chemical Vapor Deposition (MW PECVD) is used to form the photovoltaic layer 130 on the first conductive layer 12A. The method of forming the film layer can be adjusted depending on which film layer design (e.g., the structure of the group IV film or the II-VI compound semiconductor film) is used for the photovoltaic layer I30, and the above is merely illustrative. Similarly, after the fabrication steps of the photovoltaic layer 130 described above are completed, a second laser process is typically used to simultaneously pattern the photovoltaic layer 13A to form a photovoltaic layer having a plurality of second openings 132 as shown in FIG. 2C. 13 〇 'This section is also well known to those skilled in the art of the technology and steps' will not be described here. Then, forming the above-mentioned second conductive layer 14 on the photovoltaic layer 13' and patterning the second conductive layer (10) and the photovoltaic layer 15G to expose the third opening 142 of the first-guide, as shown in FIG. The manner of forming the second conductive layer 14〇 is the same as the manner of forming the first 201123477 η /i8twf.doc/n conductive layer 120, and the above description will not be described here, and then the third track will be used. The laser process patterning the second conductive layer (4) and the photovoltaic layer 130 to form the third opening 142 described above, wherein the patterned second conductive layer 140 is mainly used to form a plurality of series sub cells. Electrodes, which are also well-known in the art, are well-known techniques and steps, and are not described here.汴θ It should be noted that if the second conductive layer Μ0 is a stacked structure, such as φ 疋 transparent conductive layer and reflective layer, and the first conductive layer 120 is a transparent conductive layer, at this time, a transparent conductive layer may be formed first in the photovoltaic On the layer 13 and then forming a reverse layer on the transparent conductive layer, a thin film solar cell which can only use single-sided illumination can be formed. On the contrary, the first conductive layer 12 can also be a laminated structure, for example, a laminate of a reflective layer and a transparent conductive layer, so that a single-sided light-emitting thin film solar cell can be formed, and the manufacturing method thereof can be described above. Therefore, it should be noted that the second conductive layer 1 々 ο can only be a transparent conductive layer, and the insulating protective layer 15 接下来 in the next step can only be a transparent material, and can not be reflective. s material. Lu then covers the above-mentioned insulating protective layer 150 on the second conductive layer 14A and the sidewall i3a of the photovoltaic layer 130 located in the third opening 142, as shown in FIG. In this embodiment, the method of covering the insulating protective layer 15 on the second conductive layer 120 and the sidewall 130a of the photovoltaic layer 130 may be a deposition potential, a screen printing, a dry film pressing, a coating process, An inkjet process or a dual energy source process positively forms the material mentioned above for the insulating protective layer 150 on the second conductive layer 140 and the sidewall i3a of the photovoltaic device 130 located in the third opening 142. In another embodiment, a plasma oxidation process may be performed to form the sidewall insulation of the photovoltaic layer 130 in the third opening 142. The insulation protection is formed by the sidewall 130a 13 201123477 uja /1 〇i>vf.doc/n '^ Layer 150, wherein the plasma oxidation process, such as 疋c〇2, is an electrical oxidation process. In still another embodiment, the second conductive layer I40 and the sidewall 13〇a of the photovoltaic layer 13〇 located in the third opening 142 may also be exposed to the air to form a native oxide layer. This natural oxide layer is the insulating protective layer 150 of the present embodiment. In other words, the manner of forming the above-mentioned insulating protective layer 150 can be seen by the user; 疋, the above is merely illustrative, but the invention is not limited thereto. In detail, since the insulating protective layer 150 covers the sidewall 130a of the photovoltaic layer 130 located in the third opening 142, the electron hole can be prevented from being hidden from the sidewall of the photovoltaic layer 13 位于 located in the third opening 142. The surface is recombined to create a problem of leakage current. In other words, in the embodiment, the insulating protective layer 15 is covered on the sidewall 13 〇a of the photovoltaic layer 13 位于 in the second opening 142 by the above method to avoid the age of leakage current. Therefore, the photoelectricity of the solar cell 1GG can be improved, and the efficiency is changed to the above, and the above-described method for fabricating the thin film solar cell is substantially completed. According to the above, a block diagram of the production process of a thin film solar cell is shown in Fig. 3, wherein Fig. 3 shows a thin film solar block diagram. In the present embodiment, the flow block of the process block shown in FIG. 2 is shown in FIG. 2A to FIG. 2D and FIG. 2, and the description thereof will not be repeated here. In summary, the thin film solar cell of the present invention and the method of fabricating the same have at least an advantage. First, by covering the insulating protective layer on the sidewall of the 2 scoop layer, to avoid the electron hole from generating (4) at the (4) of the photovoltaic layer located in the opening. (4) The raw (four) flow 14 201123477 Ji/i8twf .d〇c/n Improves the photoelectric conversion efficiency of thin film solar cells. In addition, in the process practice '. Because the insulation protection layer can be formed in different ways (such as letting the photovoltaic layer self-oxidation, or using plasma oxidation process, or other suitable process), so that the insulation protection layer can be sure The above-mentioned advantages are obtained by covering the sidewalls of the photovoltaic layer located in the opening, thereby avoiding the opportunity for the electron holes to recombine the surface of the photovoltaic layer located in the opening. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any person having ordinary knowledge in the art can make some changes and refinements without departing from the spirit and scope of the invention. The protection of X Ming will be subject to the definition of the application of Li Fan. [Simple diagram of the diagram] Figure. 1 is a partial cross-sectional view showing a thin film solar cell according to an embodiment of the present invention. FIG. 3 is a flow block diagram of a thin film solar cell. [Description of main component symbols] 100: Thin film solar cell 11 基板. Substrate 120: First conductive layer 122: First opening 130: Photovoltaic layer 130a: Side wall 15 wf.doc/n 201123477 132: Second opening 140: Second conductive Layer 142: third opening 150: insulating protective layer

Claims (1)

8twf.doc/n 201123477 七 申請專利範園 種薄膜太陽能電池,包括 1· 一基板 基板二電層;.配置於該基板上並具有多個暴露出該 該第-一導光^層的第—導電層上並具有多個暴露出 二接導層上並透過該些第二開 開口’其中該些;三:::露==^^ 的側壁;以及 蛤電層與該光伏層 口内側:蓋該第二導電層與位於該些第三開 2·如申請專利範圍第丨項所述之 :該絕緣保護層的材質包括透明介電材料或反二介= 中4缘如伴 ==第1項所述之薄膜太陽能電池,其 二=質至少包括氧切、氮切、氣氧化 中4:/二項所述之薄膜太陽能電池,其 中以先伙層為IV知_、-ΙΙΙ·ν族化合物體 一 II_VI族化合物半導體_或—有機彳 _ 5.如帽專利範圍第4項所述 中IV族薄膜包含有a-Si、料i、a_SiGe、崎Ge、n 17 201123477 ^ i /1 〇iwf.doc/n μο-SiC、堆疊式(tandem)IV族薄膜或三層(triple)iv族薄膜 至少其一。 6. 如申請專利範圍第4項所述之薄膜太陽能電池,其 中該IH>V知化合物半導體薄膜包含有坤化镓(以八幻或填 化銦鎵(InGaP)。 7. 如申請專利範圍第4項所述之薄膜太陽能電池,其 中該II-VI族化合物半導體薄膜包含有銅銦硒(CIS)、銅銦 鎵硒(CIGS)、鎘化碲(cdTe)或其組合。 8. 如申請專利範圍第4項所述之細太陽能電池,其 中該有機化合物半導體薄膜包含3-己烷噻吩 (Poly(3-hexylthi〇Phene),P3HT)與奈米碳球(pcBM)混合物。 -如曾申^專利範圍第1項所述之薄膜太陽能電池,其 中"笫電層的材料為透明導電層, 含反射層與透料電層至少其―。 $ %^層匕 10.如申請專利範圍第丨項所述之薄膜 第―導電層崎料為透明導電層,* 包含反射層與透明導電層至少其一。 寺电曰 lh種薄膜太陽能電池的製作方法,包括. 提供一基板; 7 r匕祜. 形成-第-導電層於該基板上; 圖案化該第一暮恭a 一開口; ¥电層以形成多個暴露出該基板的第 形成-光伏層於該第—導電層上; 圖案〜光伏層以形成多個暴露出該第—導電層的 201123477 d 3i/i 8twf.doc/n 弟二開口; 形成一第二導電層於該光伏層上,其中該 透過5亥些第二開口而電性連接該第一導電層; 电層 圖案化該第二導電層與該献層㈣❹ 该苐一導電層與該光伏層的側壁的第三開口;以及’、出 覆^絕緣保護層於該第二導電層上與位於該 二開口内的該光伏層的側壁上。 二弟8twf.doc/n 201123477 Seven application patents for a thin film solar cell, comprising: a substrate substrate two electrical layer; configured on the substrate and having a plurality of exposed first light guiding layer - The conductive layer has a plurality of sidewalls exposed on the two guiding layers and passing through the second opening openings, wherein the third layer is exposed: and the inner layer of the photovoltaic layer is: Covering the second conductive layer and the third opening is as described in the third paragraph of the patent application: the material of the insulating protective layer comprises a transparent dielectric material or a reverse dielectric layer; The thin film solar cell according to item 1, wherein the second type includes at least the thin film solar cell of the oxygen cut, the nitrogen cut, and the gas oxidation, wherein the first layer is the IV, _, -ΙΙΙ·ν Group compound II-VI compound semiconductor _ or - organic 彳 _ 5. The Group IV film according to item 4 of the cap patent range contains a-Si, material i, a_SiGe, Saki Ge, n 17 201123477 ^ i /1 At least one of 〇iwf.doc/n μο-SiC, a tandem group IV film or a triple iv film. 6. The thin film solar cell of claim 4, wherein the IH>V compound semiconductor thin film comprises gallium arsenide (in octagonal or filled indium gallium (InGaP). 7. The thin film solar cell of claim 4, wherein the II-VI compound semiconductor film comprises copper indium selenide (CIS), copper indium gallium selenide (CIGS), cadmium telluride (cdTe) or a combination thereof. The fine solar cell of item 4, wherein the organic compound semiconductor film comprises a mixture of 3-(hexane) (Phenide) and a carbon carbon (pcBM). The thin film solar cell of the first aspect of the invention, wherein the material of the electric layer is a transparent conductive layer, and the reflective layer and the transmissive electric layer are at least “. % % . . . . . . . . . . . . . . . . . . The film-conducting layer of the film is a transparent conductive layer, and comprises at least one of a reflective layer and a transparent conductive layer. The manufacturing method of the temple electric film solar cell includes: providing a substrate; 7 r匕祜Forming a -first conductive layer on the substrate; pattern An electric layer is formed to form a plurality of first-photovoltaic layers exposing the substrate on the first conductive layer; a pattern of ~ photovoltaic layers to form a plurality of exposed first conductive layers a second conductive layer is formed on the photovoltaic layer, wherein the second conductive opening is electrically connected to the first conductive layer; the electrical layer is patterned. 3D/i 8twf.doc/n a second conductive layer and the donor layer (4), a third opening of the conductive layer and the sidewall of the photovoltaic layer; and ', an insulating protective layer on the second conductive layer and the second opening On the side wall of the photovoltaic layer. 12.如申請專利範圍第n項所述之薄膜太带、 中:蓋該絕緣保護層於該第二導電= 4於忒二第二開口内的該光伏層的側壁上的方法 、 一沉積製程、一網印、一乾膜壓合、一塗佈一仃 製程或一能量源處理。 、 嘴墨 Τ睛寻利範圍第Η項所述之薄膜太 的製作方法’其巾覆蓋該絕緣鎌層於該第二導電^上盘 位於該些第三開口内的該光伏層的側壁上的方 ^二 一電漿氧化製程。 ㈣運仃 14.如申言月專利範圍第u項所述之薄膜太陽能電池 的製作=法,其中形成該些第一開口、該些第二開口以及 該些第三開口的方法包括使用一雷射製程。 ,15.如申請專利範圍第u項所述之薄膜太陽能電池 的製造方法,其中形成該光伏層的方法包括射頻電漿輔助 化學氣相沉積法(Radio Frequency Plasma Enhanced Chemical Vapor Deposition,RF PECVD )、超高頻電漿辅助化學氣相沉積 法(Very High Frequency Plasma Enhanced Chemical Vapor Deposition,VHF PECVD)或者是微波電漿辅助化學氣相沉積 19 201123477 •wf.doc/n 法(Microwave Plasma Enhanced Chemical Vapor Deposition, MWPECVD) 〇 l6.如申請專利範圍第u項所述之薄膜太陽能電池 透以Ϊ座=成該第-導電層的方法更包括形成-導電層為-透明導^至少其—於該基板上,其中該第二 的製作方法,‘二二乾圍第—U項所述之薄膜太陽能電池 透明導電層與二反^成該第二導電層的方法更包括形成一 一導電層為—透明缘2至少其一於該光伏層上,其中該第 ¥電層。12. The method according to claim n, wherein the film is over-banded, covered: the insulating protective layer is disposed on the sidewall of the photovoltaic layer in the second opening of the second conductive layer, and a deposition process , a screen printing, a dry film pressing, a coating process or an energy source treatment. The method for fabricating the film as described in the second aspect of the invention, wherein the film covers the insulating layer on the sidewall of the photovoltaic layer in the third openings Square ^ two plasma oxidation process. (4) The method of manufacturing a thin film solar cell according to the invention of claim 5, wherein the method of forming the first opening, the second openings, and the third openings comprises using a Shooting process. The method for manufacturing a thin film solar cell according to claim 5, wherein the method for forming the photovoltaic layer comprises a Radio Frequency Plasma Enhanced Chemical Vapor Deposition (RF PECVD), Ultra High Frequency Plasma Enhanced Chemical Vapor Deposition (VHF PECVD) or Microwave Plasma Enhanced Chemical Vapor Deposition 19 201123477 •wf.doc/n method (Microwave Plasma Enhanced Chemical Vapor Deposition , MWPECVD) 〇l6. The thin film solar cell according to claim 5, wherein the method of forming the first conductive layer further comprises forming a conductive layer-transparent conductive layer at least on the substrate The second manufacturing method, the method for forming a transparent conductive layer of the thin film solar cell and the method of forming the second conductive layer by the method of forming a second conductive layer, further comprises forming a conductive layer as a transparent edge 2 at least one of the photovoltaic layers, wherein the first electrical layer. 2020
TW098143393A 2009-07-24 2009-12-17 Thin film solar cell and fabrication method thereof TW201123477A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW098143393A TW201123477A (en) 2009-12-17 2009-12-17 Thin film solar cell and fabrication method thereof
US12/842,048 US8212143B2 (en) 2009-07-24 2010-07-23 Thin film solar cell and manufacturing method thereof
US13/104,645 US20110209750A1 (en) 2009-07-24 2011-05-10 Thin film solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098143393A TW201123477A (en) 2009-12-17 2009-12-17 Thin film solar cell and fabrication method thereof

Publications (1)

Publication Number Publication Date
TW201123477A true TW201123477A (en) 2011-07-01

Family

ID=45046692

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098143393A TW201123477A (en) 2009-07-24 2009-12-17 Thin film solar cell and fabrication method thereof

Country Status (1)

Country Link
TW (1) TW201123477A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488593A (en) * 2021-06-01 2021-10-08 位速科技股份有限公司 Thin film photovoltaic structure
TWI798951B (en) * 2021-11-22 2023-04-11 凌巨科技股份有限公司 Semi transmissive solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488593A (en) * 2021-06-01 2021-10-08 位速科技股份有限公司 Thin film photovoltaic structure
CN113488593B (en) * 2021-06-01 2023-11-14 位速科技股份有限公司 Thin film photovoltaic structure
TWI798951B (en) * 2021-11-22 2023-04-11 凌巨科技股份有限公司 Semi transmissive solar cell

Similar Documents

Publication Publication Date Title
TWI373848B (en) Method of fabricating solar device
CN103107228B (en) Photoelectric conversion device
US20110203650A1 (en) Optical converter device and electronic equipment including the optical converter device
US20100059100A1 (en) Thin-film type solar cell and method for manufacturing the same
JP2012186415A (en) Manufacturing method of photoelectric conversion element, photoelectric conversion element, and tandem-type photoelectric conversion element
TW200929579A (en) Solar cell and method of manufacturing the same
JP2010123916A (en) METHOD FOR FORMING GexSi1-x BUFFER LAYER OF SOLAR ENERGY CELL ON SILICON WAFER
US20110120534A1 (en) Thin film solar cell and manufacturing method thereof
US9640685B2 (en) Solar cell and method of fabricating the same
JP2006222272A (en) Photosensor
WO2023098038A1 (en) Method for preparing columnar electrode structure of perovskite solar cell
TW201123477A (en) Thin film solar cell and fabrication method thereof
Fan et al. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact
JP2012256881A (en) Manufacturing method of solar cell module
TW201123483A (en) Thin film solar cell and manufacturing method thereof
CN109728173A (en) Thin-film solar cells and preparation method thereof
Myong Recent patent issues on intermediate reflectors for high efficiency thin-film silicon photovoltaic devices
US20150144182A1 (en) Solar cell and method for manufacturing same
US20110088779A1 (en) Method for manufacturing thin-film solar cell and thin-film solar cell
JP2014053572A (en) Material for semiconductor layer of photoelectric conversion element, photoelectric conversion element, and method of manufacturing the same
CN208637427U (en) A kind of photoelectric conversion device
CN108198871A (en) Heterojunction solar cell and its manufacturing method
JP2011114290A (en) Photoelectric conversion device, and method of manufacturing the same
JP2010283162A (en) Solar cell and method for manufacturing the same
TW201123482A (en) Thin film solar cell and fabrication method thereof